
The Algebras for Automatic Relations
Rémi Morvan #Ñ

LaBRI, Univ. Bordeaux, CNRS & Bordeaux INP, France

Abstract
We introduce “synchronous algebras”, an algebraic structure tailored to recognize automatic relations
(a.k.a. synchronous relations, or regular relations). They are the equivalent of monoids for regular
languages, however they conceptually differ in two points: first, they are typed and second, they are
equipped with a dependency relation expressing constraints between elements of different types.

The interest of the proposed definition is that it allows to lift, in an effective way, pseudovarieties
of regular languages to that of synchronous relations, and we show how algebraic characterizations
of pseudovarieties of regular languages can be lifted to the pseudovarieties of synchronous relations
that they induce. Since this construction is effective, this implies that the membership problem is
decidable for (infinitely) many natural classes of automatic relations. A typical example of such a
pseudovariety is the class of “group relations”, defined as the relations recognized by finite-state
synchronous permutation automata.

In order to prove this result, we adapt two pillars of algebraic language theory to synchronous
algebras: (a) any relation admits a syntactic synchronous algebra recognizing it, and moreover, the
relation is synchronous if, and only if, its syntactic algebra is finite and (b) classes of synchronous
relations with desirable closure properties (i.e. pseudovarieties) correspond to pseudovarieties of
synchronous algebras.

2012 ACM Subject Classification Theory of computation → Algebraic language theory

Keywords and phrases synchronous automata, automatic relations, regular relations, transductions,
synchronous algebras, Eilenberg correspondence, pseudovarieties, algebraic characterizations

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.21

Related Version Full Version: https://arxiv.org/abs/2404.15496

Acknowledgements We thank Pablo Barceló, Mikołaj Bojańczyk, and Diego Figueira for helpful
discussions, and some anonymous reviewers for valuable feedback.

Y This pdf contains internal links: clicking on a notion leads to its definition.

1 Introduction

1.1 Background
The landscape of rationality for k-ary relations of finite words (k ≥ 2) is far more complex
than for languages – recall that languages can be seen as unary relations of finite words – as
depicted in Figure 4 on page 20. Perhaps the most natural class is that of rational relations,
defined as relations accepted by non-deterministic two-tape automata – an input (u, v) is
described by writing u on the first tape and v and the second tape – that can move its two
heads independently, from left to right – see [13, §2.1] for a formal definition. For instance,
the suffix relation is rational.

Our paper focuses on synchronous relations, a.k.a. automatic relations or regular relations,
defined as the rational relations that can be recognized by synchronous automata, a subclass
of the machines described above obtained by keeping a single head that moves synchronously
from left to right, reading one pair of letters after the other; we add padding symbols at the
end of the shorter word – see Figure 1. While the suffix relation is not synchronous, typical
examples include the prefix relation, the same-length relation, etc. Synchronous relations play

© Rémi Morvan;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 21; pp. 21:1–21:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:remi.morvan@u-bordeaux.fr
https://www.morvan.xyz
https://orcid.org/0000-0002-1418-3405
https://doi.org/10.4230/LIPIcs.CSL.2025.21
https://arxiv.org/abs/2404.15496
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 The Algebras for Automatic Relations

a central role in the definitions of automatic structures – introduced by Hodgson [23, 24, 25]
and rediscovered by Khoussainov & Nerode [26], see [7, §XI, pp. 627–762]. They also have
been studied in the context of graph databases [5, Definition 3.1, p.7 & Theorem 6.3, p. 13],
see [18, §8, p. 17] for more context & results on extended conjunctive regular path queries.

(a
a) ,

(
b
b

)
,Pad

(a
b) ,

(
b
a

)
(a

b) ,
(

b
a

)
(a

a) ,
(

b
b

)
,Pad

Figure 1 Encoding a pair of words of Σ∗ × Σ∗ into an element of (Σ2)∗ where Σ2 =̂ (Σ ×
Σ) ∪ (Σ × { }) ∪ ({ } × Σ) (left) and a deterministic complete synchronous automaton (right)
over Σ = {a, b} accepting the binary relation of pairs (u, v) such that the number of a’s in u1 . . . uk

and in v1 . . . vk are the same mod 2, where k = min(|u|, |v|). Pad denotes the set of transitions
{(a) , (b) , (a) , (b)}.

▶ Remark 1.1. All our results are described for binary relations, but can be extended to
k-ary synchronous relations, see Section 5.

Synchronous relations stand at the frontier between expressiveness and undecidability: for
instance, Carton, Choffrut and Grigorieff showed that it is decidable whether an automatic
relation is recognizable [13, Proposition 3.9, p. 265], meaning that it can be written as a finite
union of Cartesian products of regular languages.12 Synchronous relations are effectively
closed under Boolean operations – see e.g. [7, Lemma XI.1.3, p. 627], and moreover, inclusion
(and subsequent problems: universality, emptiness, equivalence. . .) is decidable for them, by
reduction to classical automata, contrary to the equivalence problem over rational relations
which is undecidable [6, Theorem 8.4, p. 81].

However, some seemingly easy problems are undecidable: Köcher showed that it is
undecidable if the (infinite) graph defined by a synchronous relation is 2-colourable – [28,
Proposition 6.5, p. 43], and Barceló, Figueira and Morvan showed that undecidability also
holds for regular 2-colourability [3, Theorem 4.4, p. 8]. On the other hand, one can decide if
said graph contains an infinite clique, see [27, Corollary 5.5, p. 32]: this is a consequence of
[35, Theorem 3.20, p. 185].

1.2 Motivation

Any synchronous relation can be seen as a regular language over the alphabet Σ2 =̂ (Σ ×
Σ) ∪ (Σ × { }) ∪ ({ } × Σ) of pairs. On the other hand any regular language L over Σ2

produces a synchronous relation when intersected with the language of all well-formed words –
namely words where the padding symbols are consistently placed; see Section 2 for precise
definitions. In fact, the semantics of synchronous automata such as the one in Figure 1 is
precisely defined this way: it is the intersection of the “classical semantic” of the automaton,
seen as an NFA, intersected with well-formed words.

1 For instance, the relation “having the same length modulo 2” is recognizable, since it can be written as
(aa)∗ × (aa)∗ ∪ a(aa)∗ × a(aa)∗.

2 The problem was latter shown to be NL-complete and PSpace-complete depending on whether the
input automaton is deterministic or not in [4, Theorem 1, p. 3].

R. Morvan 21:3

Figure 2 Drawing in (Σ2)∗ of a V-relation R and ¬R =̂ {(u, v) ∈ Σ∗ × Σ∗ | (u, v) ̸∈ R}, where
R is defined as L ∩ WellFormedΣ with L ∈ V.

In particular, a class V of regular languages over Σ2 (e.g. first-order definable languages,
group languages, etc.) induces a class of so-called V-relations, defined as the relations over Σ
obtained as the intersection of some language of V with well-formed words, see Figure 2. For
instance, the relation of Figure 1 is a V-relation where V is the class of all group languages –
these relations can be alternatively described as those recognized by a deterministic complete
synchronous automaton whose transitions functions are permutations of states.

▶ Question 1.2. Given a class V of languages, can we characterize and decide the class of
V-relations?

As we will see in Example 2.4, for a relation to be VΣ2 is not necessary for it to be a
V-relation.

1.3 Contributions
We answer positively to this question. For this we first need to develop an algebraic theory
of synchronous relations, which enables us to prove the lifting theorem. In short, the lifting
theorem states that algebraic characterizations of classes of word languages can be lifted in a
canonical way to algebraic characterizations of classes of word relations.

The algebraic approach usually provides more than decidability: it attaches canonical
algebras to languages/relations (e.g. monoids for languages of finite words), and often
simple ways to characterize complex properties (e.g. first-order definability, see e.g. [10,
Theorem 2.6, p. 40]). Our synchronous algebras differ from monoids in two points:

they are typed – a quite common feature in algebraic language theory, shared e.g. by
ω-semigroups [29, §4.1, p. 91];
they are equipped with a dependency relation, which expresses constraints between
elements of different types – to our knowledge, this feature is entirely novel.3

Importantly, some variations are possible on the definition of synchronous algebras: in
particular, one could get rid of the notion of dependency relation and Lemmas 3.11 and 4.7
would still hold. However, we show in the full version that these simplified synchronous
algebras cannot characterize the property of being a V-relation. Therefore, the notion of

3 Note that algebras equipped with binary relations have been studied before, e.g. Pin’s ordered ω-
semigroups – see [30, §2.4, p. 7] – but the constraints (here the orderings) are always defined between
elements of the same type.

CSL 2025

https://arxiv.org/abs/2404.15496

21:4 The Algebras for Automatic Relations

dependency seems necessary to tackle Question 1.2. Moreover, we show that these algebras
arise from a monad, but to our knowledge none of the meta-theorems developing algebraic
language theories over monads apply to it, see the full version for more details.

We show that assuming that V is a ∗-pseudovariety of regular languages – in short, a class
of regular languages with desirable closure properties – , then the algebraic characterization
of V can be easily lifted to characterize V-relations.

▶ Theorem 4.2 (Lifting theorem: Elementary Formulation). Given a relation R and a ∗-
pseudovariety of regular languages V corresponding to a pseudovariety of monoids V, the
following are equivalent:
1. R is a V-relation,
2. R is recognized by a finite synchronous algebra A whose underlying monoids are all in V,
3. all underlying monoids of the syntactic synchronous algebras AR of R are in V.

This theorem rests on a solid algebraic theory. First, we show the existence of syntactic
algebras (Lemma 3.11): each relation R admits a unique canonical and minimal algebra
AR , which is finite iff the relation is synchronous, and then, we exhibit a correspondence
between classes of finite algebras and classes of synchronous relations (Lemma 4.7) – we
assume suitable closure properties; these classes are called “pseudovarieties”. While the proof
structures of Lemmas 3.11 and 4.7 follow the classic proofs, see e.g. [31], the dependency
relation has to be taken into account quite carefully, leading for instance to a surprising
definition of residuals, see Definition 4.5.

Organization. After giving preliminary results in Section 2, we introduce the synchronous
algebras in Section 3 and show the existence of syntactic algebras. We then proceed to prove
the lifting theorem for ∗-pseudovarieties in Section 4, and after introducing ∗-pseudovarieties
of synchronous relations, we provide a more algebraic reformulation of the lifting theorem
(Theorem 4.9). We conclude the paper with a short discussion in Section 5.

1.4 Related Work
The algebraic framework has been extended far beyond languages of finite words: let us cite
amongst other Reutenauer’s “algèbre associative syntactique” for weighted languages [33,
Théorème I.2.1, p. 451] and their associated Eilenberg theorem [33, Théorème III.1.1, p. 469];
for languages of ω-words, Wilke’s algebras and ω-semigroups, see [29, §II, pp. 75–131 &
§VI, pp. 265–306]; more generally, for languages over countable linear orderings, see Carton,
Colcombet & Puppis’ “⊛-monoids” and “⊛-algebras” [14, §3, p. 7]. A systemic approach has
been recently developed using monads, see the full version. Non-linear structures are also
suited to such an approach, see e.g. Bojańczyk & Walukiewicz’s forest algebras [11, §1.3,
p. 4] [10, §5, p. 159], or Engelfriet’s hyperedge replacement algebras for graph languages [15,
§2.3, p. 100] [9, §6.2, p. 194]. For relations over words (a.k.a. transductions), recognizable
relations are exactly the ones recognized by monoid morphisms Σ∗ × Σ∗ → M where M
is finite. This can be trivially generalized to show that a relation R is a finite union of
Cartesian products of languages in V if, and only if, it is recognized by a monoid from V,
the pseudovariety of monoids corresponding to V, see the full version. In 2023, Bojańczyk
& Nguyễn managed to develop an algebraic structure called “transducer semigroups” for
“regular functions” [8, Theorem 3.2, p. 6], an orthogonal class of relations to ours – see
Figure 4.

https://arxiv.org/abs/2404.15496
https://arxiv.org/abs/2404.15496
https://arxiv.org/abs/2404.15496

R. Morvan 21:5

The counterpart of V-relations for rational relations – that we call here V-rational relations
– was studied by Filiot, Gauwin & Lhote [20]: they show that if V has decidable membership,
then “V-rational transductions” also have decidable membership [20, Theorem 4.10, p. 26].
“Rational transductions” correspond in Figure 4 to the intersection of functional relations
with rational relations: this class is orthogonal to synchronous relations, but is included in
the class of “regular functions”. A different problem – focussing more on the semantics of
the transduction – , called “V-continuity” was studied by Cadilhac, Carton & Paperman
[12, Theorem 1.3, p. 3], although it has to be noted that their results only concern a finite
number of pseudovarieties.

2 Preliminaries

2.1 Automata & Relations
We assume familiarity with basic algebraic language theory over finite words, see [10, §1, 2, 4,
pp. 3–66 & pp. 107–156] for a succinct and monad-driven approach, or [31, §I–XIV, pp. 3–247]
for a more detailed presentation of the domain. We also refer to [36] for a presentation on
pseudovarieties.4 More precise pointers are given in the full version.

A relation is a subset of Σ∗ × Σ∗, where Σ is an alphabet – i.e. a non-empty finite
set. We define its complement ¬R as the relation {(u, v) ∈ Σ∗ × Σ∗ | (u, v) ̸∈ R}. Letting
Σ2 =̂ (Σ×Σ) ∪ (Σ×{ }) ∪ ({ }×Σ), a synchronous automaton is a finite-state machine with
initial states, final states, and non-deterministic transitions labelled by elements of Σ2 . We
denote by WellFormedΣ the set of well-formed words over Σ2 where the padding symbols are
placed consistently, namely: if some padding symbol occurs on a tape/component, then the
following symbols of this tape/component must all be padding symbols. From this constraint,
and since () ̸∈ Σ2 , there can never be padding symbols on both tapes.

Note that elements of WellFormedΣ are in natural bijection with Σ∗ × Σ∗ – see Figure 1.
The relation recognized by a synchronous automaton is the set of pairs (u, v) ∈ Σ∗ × Σ∗

such that their corresponding element in WellFormedΣ is the label of an accepting run of the
automaton. We say that a relation is synchronous if it is recognized by such a machine.
▶ Remark 2.1. Crucially, in the semantics of synchronous automata we never try to feed
them inputs where the padding symbols are not consistent: for instance, while(

aab
b a

)
, or

(
aba
a b

)
are sequences in (Σ2)∗, the behaviour of a synchronous automaton on such sequences is
completely disregarded to define the relation it recognizes.

We can then reformulate the definition of the semantics of a synchronous automaton, to
make the connection with V-relations – see the next subsection – explicit.

▶ Fact 2.2. Given a synchronous automaton, its semantics as a synchronous automaton
can be written as the intersection of its semantics as a classical automaton over Σ2 with
WellFormedΣ.

In particular a relation R is synchronous if, and only if, it is a regular language when
seen as a subset of (Σ2)∗.

4 “Pseudovarieties of foo” and “varieties of finite foo” – where foo is e.g. “groups” or “semigroups” – are
used interchangeably in the literature.

CSL 2025

https://arxiv.org/abs/2404.15496

21:6 The Algebras for Automatic Relations

2.2 Induced Relations
Given a class V of regular languages, the class of V-relations over Σ consists of all relations
of the form L ∩ WellFormedΣ for some L ∈ VΣ2 – see Figure 2.5

For instance, if V is the class of all regular languages, then by Fact 2.2, V-relations are
exactly the regular relations, a.k.a. synchronous relations! However, because of Remark 2.1,
the minimal automaton for a relation, seen as a language over Σ2 , can be significantly more
complex than a deterministic complete synchronous automaton recognizing it, see Figure 3
in page 19 – while the size blow-up is only polynomial, it breaks many of the structural
properties of the automaton, such as the property of being a permutation automaton.

Note that if R belongs to V when R is seen as a language over Σ2 , then R is a V-relation.
The converse implication holds under some strong assumption on V (Fact 2.3), but is not
true in general (Example 2.4).

▶ Fact 2.3. If V is a class of languages closed under intersection and that contains
WellFormedΣ, then a relation R is a V-relation if, and only if, it belongs to V when seen as
a language over Σ2 .

Classes of languages V satisfying the previous assumption (e.g. first-order definable
languages, piecewise-testable languages, etc.) are easy to capture when it comes to V-
relations since this class reduces to V-languages. So, in the remaining of the paper, we will
focus on classes V which do not satisfy the assumptions of Fact 2.3, such as group languages.

▶ Example 2.4 (Group relations). If V is the class of group languages, namely languages
recognized by permutation automata6 or equivalently by a finite group, then we call V-
relations “group relations”. They can be characterized as relations recognized by permutation
synchronous automata. For instance, the relation of Figure 1 is a group relation as witnessed
by the permutation synchronous automaton of Figure 1. Note however that it is not a group
language, when seen as a language over Σ2 , since its minimal automaton over Σ2 is not a
permutation automaton, see Figure 3 on Page 19.

▶ Fact 2.5. Given a relation R and a class V of languages, the following are equivalent:
1. R is a V-relation;
2. R and ¬R are V-separable as languages over Σ2 , i.e. there is a language in V which

contains R and does not intersect ¬R.

Proof. By definition, see Figure 2, on page 3. ◀

And so, if the V-separability problem is decidable, then the class of V-relations is
decidable. However, there are pseudovarieties V with decidable membership but undecidable
separability problem [34, Corollary 1.6, p. 478].7 Moreover, some of these classes do not
contain WellFormedΣ [34, Corollary 1.7, p. 478]. But beyond this, even when a separation
algorithm exists, it can be conceptually much harder than its membership counterpart: for

5 The notation L ∈ VΣ2 means that L is a language over the alphabet Σ2 . See [31, introduction of
§XIII.1] for why classes of regular languages are defined in such a way.

6 A permutation automaton is a finite-state deterministic complete automaton whose transition functions
are all permutations of states.

7 The paper cited only claims undecidability of pointlikes, but it was noted in [21, §1, pp. 1–2] that
undecidability of the 2-pointlikes also holds, which is a problem equivalent to separability by [1,
Proposition 3.4, p. 6].

R. Morvan 21:7

instance, deciding membership for group languages is trivial – it boils down to checking if a
monoid is a group – , yet the decidability of the separation problem for group languages is
considered to be one of the major results in semigroup theory: it follows from Ash’s infamous
type II theorem [2, Theorem 2.1, p. 129], see [22, Theorem 1.1, p. 3] for a presentation
of the result in terms of pointlike sets, see also [32, §III, Theorem 8, p. 5] for an elegant
automata-theoretic reformulation.

3 Synchronous Algebras

In this section, we introduce and study the “elementary” properties of synchronous algebras.

3.1 Types & dependent Sets

Motivation. The axiomatization of a semigroup reflects the algebraic structure of finite
words: these objects can be concatenated, in an associative way – reflecting the linearity
of words. Now observe that elements of WellFormedΣ are still linear, but not all words can
be concatenated together: for instance, (a) cannot be followed by (ab). Formally, given two
words u, v ∈ WellFormedΣ, to decide if uv ∈ WellFormedΣ it is necessary and sufficient to
know if the last pair of u and first pair of v consists of a pair of proper letters (denoted by
l⁄l), a pair of a proper letter and a blank/padding symbol (l⁄b) or a pair of a blank/padding
symbol and a proper letter (b⁄l). This information is called the letter-type of an element
of Σ2 .

We then define the type of a word of (Σ2)+ as the pair (α, β), usually written α → β, of
the letter-types of its first and last letters. It is then routine to check that the possible types
of well-formed words are

T =̂
{

l⁄l → l⁄l , l⁄l → l⁄b , l⁄b → l⁄b , l⁄l → b⁄l , b⁄l → b⁄l
}
.

For the sake of readability, we will write α instead of α → α for α ∈ {l⁄l , l⁄b , b⁄l}.
One non-trivial point lies in the following innocuous question: what is the type of the

empty word? Any type of T sounds like an acceptable answer. But then it would be natural
to say that the concatenation of (aaaaaa) of type l⁄l with the empty word of type l⁄l → l⁄b
should be (aaaaaa) of type l⁄l → l⁄b . Automata-wise, this would represent a sequence of
transitions (aa) , (aa) , (aa) together with the promise that the next transition would have a
padding symbol on its second tape. But then, one has to formalize the idea that the two
elements (aaaaaa) of type l⁄l and l⁄l → l⁄b represent the same underlying pair of words of
Σ∗ × Σ∗: this idea will be captured by what we call a dependency relation. A more natural
solution would be to simply introduce a new type for the empty word (or to forbid it), but
we show in the full version that the resulting notion of algebras cannot capture the property
of being a V-relation.

A T-typed set (or typed set for short) consists of a tuple X = (Xτ)τ∈T, where each Xτ is a
set. Instead of x ∈ Xτ , we will often write xτ ∈ X. A map between typed sets X and Y is a
collection of functions Xτ → Yτ for each type τ . Similarly, a subset of X is a tuple of subsets
of Xτ for each type τ . To make the notations less heavy, we will often think of typed sets
as sets with type annotations rather than tuples, and ask that all operators/constructions
should preserve this type.

CSL 2025

https://arxiv.org/abs/2404.15496

21:8 The Algebras for Automatic Relations

▶ Definition 3.1. A dependency relation over a typed set X consists of a reflexive and
symmetric relation ≍ over ⊎X =̂

⋃
τ∈TXτ × {τ}, such that for all xσ, yσ ∈ X, if xσ ≍ yσ,

then xσ = yτ .
Crucially, we do not ask for this relation to be transitive – in some examples the dependency

relation will be an equivalence relation, but not always (see the full version), and this
non-transitivity is actually an important feature, motivated amongst other by the syntactic
congruence and Corollary 3.14.

A dependent set is a T-typed set together with a dependency relation over it. A closed
subset of a dependent set ⟨X,≍⟩ is a subset C ⊆ X such that for all x, x′ ∈ X, if x ≍ x′

then x ∈ C ⇐⇒ x′ ∈ C.8

▶ Example 3.2. Given a finite alphabet Σ, let S2Σ be9 the dependent set of synchronous
words defined by:

(S2Σ)l⁄l =̂ (Σ × Σ)∗,
(S2Σ)l⁄l→l⁄b =̂ (Σ × Σ)∗(Σ ×)∗,
(S2Σ)l⁄b =̂ (Σ ×)∗,
(S2Σ)l⁄l→b⁄l =̂ (Σ × Σ)∗(× Σ)∗,
(S2Σ)b⁄l =̂ (× Σ)∗.

Moreover, ≍ is the reflexive and symmetric closure of the relation that identifies ul⁄l with
ul⁄l→β for all u ∈ (Σ × Σ∗) and β ∈ {l⁄b , b⁄l}, and ul⁄l→l⁄b with ul⁄b for u ∈ (Σ ×)∗,
and ul⁄l→b⁄l with ub⁄l for u ∈ (× Σ)∗. This structure is depicted in Figure 5.

Given a relation R ⊆ Σ∗ ×Σ∗, we denote by R = {(u, v)τ | (u, v)τ ∈ S2Σ and (u, v) ∈ R}
the closed subset of S2Σ induced by R.

▶ Fact 3.3. The map R 7→ R is a bijection between relations and closed subsets of S2Σ.

Proof. Let f be the function which maps a closed subset C of S2Σ to {(u, v) ∈ Σ∗ × Σ∗ |
(u, v)τ ∈ C for some τ ∈ T}. It then follows that f ◦ − (resp. f(−)) is the identity on subsets
of Σ∗ × Σ∗ (resp. closed subsets of S2Σ). ◀

3.2 Synchronous Algebras
One key property of types is that some of them can be concatenated to produce other
types. We say that two types σ, τ ∈ T are compatible when there exists non-empty words
u, v ∈ WellFormedΣ of type σ and τ , respectively, such that uv is well-formed. Said otherwise,
α → β is compatible with β′ → γ if either β = β′ or β = l⁄l – indeed, for this last case note
that e.g. the concatenation of (aaaaaa) of type l⁄l with (aa) of type b⁄l is well-formed. Lastly,
if α → β is compatible with β′ → γ, we define their product as (α → β)·(β′ → γ) =̂ α → γ.
Note that this partial operation is associative, in the following sense: for ρ, σ, τ ∈ T, (ρ·σ)·τ
is well-defined if and only if ρ·(σ·τ) is well-defined, in which case both types are equal. This
implies that the notion of compatibility of types can be unambiguously lifted to finite lists of
types τ1, . . . , τn.

8 In other words, C is a union of equivalence classes of the transitive closure of ≍.
9 The index refers to the arity of the relations we are considering: here we focus on binary relations, but

all constructions can be generalized to higher arities.

https://arxiv.org/abs/2404.15496

R. Morvan 21:9

▶ Definition 3.4. A synchronous algebra ⟨A, ·,≍⟩ consists of a dependent set ⟨A,≍⟩ together
with a partial binary operation · on A, called product such that:

for xσ, yτ ∈ A, xσ · yτ is defined iff σ and τ are compatible,
associativity: for all xρ, yσ, zτ ∈ A, if ρ, σ, τ are compatible:

(xρ · yσ) · zτ = xρ · (yσ · zτ),

“monotonicity”: for all xσ, x′
σ′ , yτ ∈ A, if xσ ≍ x′

σ′ and both σ, τ and σ′, τ are compatible,
then xσ · yτ ≍ x′

σ′ · yτ , and dually if τ, σ and τ, σ′ are compatible, then yτ · xσ ≍ yτ · x′
σ′ ,

units: for each type τ there is an element 1τ ∈ A such that for any xσ ∈ A, then
1τ · xσ ≍ xσ if τ and σ are compatible, and xσ · 1τ ≍ xσ if σ and τ are compatible, and
moreover, 1l⁄l→β = 1l⁄l · 1β for β ∈ {l⁄b , b⁄l}.

Note in particular that for any type τ ∈ {l⁄l , l⁄b , b⁄l}, then 1τ ·xτ ≍ xτ but since 1τ ·xτ
has type τ and ≍ is a dependency relation, then 1τ · xτ = xτ . This implies in particular
that restricting ⟨A, ·⟩ to a type l⁄l , l⁄b or b⁄l yields a monoid. These are called the three
underlying monoids of A. The canonical example of synchronous algebras is synchronous
words S2Σ under concatenation. Its underlying monoids are (Σ × Σ)∗, (Σ × { })∗ and
({ } × Σ)∗.

▶ Fact 3.5. Any closed subset of A either contains all units, or none of them.

Proof. From 1l⁄l→l⁄b = 1l⁄l · 1l⁄b we have 1l⁄l ≍ 1l⁄l→l⁄b and 1l⁄l→l⁄b ≍ 1l⁄b .
By symmetry between l⁄b and b⁄l , we also have 1l⁄l ≍ 1l⁄l→b⁄l and 1l⁄l→b⁄l ≍ 1b⁄l .
Hence, if a closed subset of A contains at least one unit, then it must contain them all. ◀

Note that the product induces a monoid left (resp. right) action of the underlying monoid
Al⁄l (resp. Al⁄b) on the set Al⁄l→l⁄b . Moreover, xl⁄l 7→ xl⁄l · 1l⁄b identifies any
element of type l⁄l with an element of type l⁄l → l⁄b . Over S2Σ, these identifications are
injective, but it need not be the case in general. Note also that in general, xl⁄l · 1l⁄l→l⁄b =
xl⁄l · 1l⁄l · 1l⁄b = xl⁄l · 1l⁄b .

▶ Remark 3.6. There exists a monad over the category of dependent sets whose Eilenberg-
Moore algebras exactly correspond to synchronous algebras, see the full version.

Morphisms of synchronous algebras are defined naturally as maps that preserve the type,
units, the product and the dependency relation.

Free algebras. S2Σ is free in the sense that for any synchronous algebra A, there is a
natural bijection between synchronous algebra morphisms S2Σ → A and maps of typed sets
Σ2 → A. Said otherwise, synchronous algebra morphisms are uniquely defined by their value
on Σ2 .

3.3 Recognizability

Given a synchronous algebra A, a morphism φ : S2Σ → A and a closed subset Acc ⊆ A
called “accepting set”, we say that ⟨φ,A,Acc⟩ recognizes a relation R ⊆ Σ∗ × Σ∗ when
R = φ−1[Acc]. We extend the notion of recognizability to ⟨φ,A⟩ or to simply A by existential
quantification over the missing elements in the tuple ⟨φ,A,Acc⟩.

CSL 2025

https://ncatlab.org/nlab/show/algebra+over+a+monad
https://ncatlab.org/nlab/show/algebra+over+a+monad
https://arxiv.org/abs/2404.15496

21:10 The Algebras for Automatic Relations

Synchronous algebra induced by a monoid. A monoid morphism φ : (Σ2)∗ → M naturally
induces a synchronous algebra morphism φ̃ : S2Σ → AM , where:

AM has for every type τ a copy of M , and ≍ is {(xσ, xτ) | x ∈ M,σ, τ ∈ T},
for all xσ, yτ ∈ AM with compatible type, xσ · yτ =̂ (x · y)σ·τ ,
φ̃ (ab) =̂

(
φ (ab)

)
l⁄l , φ̃ (a) =̂

(
φ (a)

)
l⁄b , and φ̃ (a) =̂

(
φ (a)

)
b⁄l .

The algebra simply duplicates M as many times as needed and identifies two elements
together when they originated from the same element of M .

▶ Fact 3.7. If φ recognizes R for some relation R ⊆ Σ∗ × Σ∗ seen as a language over Σ2 ,
then φ̃ recognizes R.

Consolidation of a synchronous algebra. Given a synchronous algebra morphism φ : S2Σ →
A, define its consolidation10 as the semigroup morphism φ0 : (Σ2)∗ → A0, where A0 is the
monoid obtained from ⊎A by first merging units, by adding a zero (denoted by 0), and
extending · to be a total function by letting all missing products equal 0, and φ0 sends a
word u ∈ (Σ2)∗ to

0 if u is not well-formed,
φ(ul⁄l) if u ∈ (Σ × Σ)∗,
φ(ul⁄b) if u ∈ (Σ ×)+,
φ(ub⁄l) if u ∈ (× Σ)+,
φ(ul⁄l→l⁄b) if u ∈ (Σ × Σ)+(Σ ×)+,
φ(ul⁄l→b⁄l) if u ∈ (Σ × Σ)+(× Σ)+.

Note that this operation disregards the dependency relation of A.

▶ Fact 3.8. If φ recognizes some relation R, then φ0 recognizes R, when seen as a language
over Σ2 .

The following result follows from Facts 2.2, 3.7, and 3.8.

▶ Proposition 3.9. A relation is synchronous if and only if it is recognized by a finite
synchronous algebra.

Let us continue with a slightly less trivial example of algebra.

▶ Example 3.10 (Group relations: Example 2.4, cont’d.). Fix p, q ∈ N>0. Let Zp,q denote the
algebra whose underlying monoids are:

the trivial monoid (0,+) for type l⁄l ,
the cyclic monoid (Z/pZ,+) for type l⁄b ,
the cyclic monoid (Z/qZ,+) for type b⁄l .

Moreover, the sets Zl⁄l→l⁄b and Zl⁄l→b⁄l are defined as Z/pZ and Z/qZ, respectively.
The product is addition – we identify 0l⁄l with the zero of Z/pZ and of Z/qZ. We denote
by k̄ the equivalence class of k ∈ Z in Z/nZ when n is clear from context. The dependency
relation identifies (1) all units together and (2) xσ with 1τ · xσ and xσ · 1τ when the types
are compatible.

Let φ : S2Σ → Zp,q be the synchronous algebra morphism defined by

φ (ab) =̂ 0̄l⁄l , φ (a) =̂ 1̄l⁄b , φ (a) =̂ 1̄b⁄l and φ(ετ) =̂ 0̄τ for τ ∈ T.

10 Named by analogy with Tilson’s construction [37, §3, p. 102].

R. Morvan 21:11

This morphism recognizes any relation of the form

RI,J =̂
{

(u, v)
∣∣ |u| > |v| and (|u| − |v| mod p) ∈ I, or

|u| < |v| and (|v| − |u| mod q) ∈ J.
}
,

where I ⊆ Z/pZ and J ⊆ Z/qZ are such that 0̄ ̸∈ I and 0̄ ̸∈ J . This last condition is
necessary because the accepting set has to be a closed subset of Zp,q: if 0̄ was in I, then we
would need 0̄ ∈ J , but also to add 0̄l⁄l to the accepting set: this would recognize{

(u, v)
∣∣ |u| > |v| and (|u| − |v| mod p) ∈ I, or

|u| < |v| and (|v| − |u| mod q) ∈ J, or |u| = |v|
}
.

Note also that all relations RI,J with 0̄ ̸∈ I and 0̄ ̸∈ J are group relations: letting G

be the group Z/pZ × Z/qZ, R can be written as WellFormedΣ ∩ ψ−1[I × {0} ∪ {0} × J]
where ψ : (Σ2)∗ → G is the monoid morphism defined by ψ (ab) =̂ (0̄, 0̄), ψ (a) =̂ (1̄, 0̄) and
ψ (a) =̂ (0̄, 1̄).

3.4 Syntactic Morphisms & Algebras

▶ Lemma 3.11 (Syntactic morphism theorem). For each relation R, there exists a surjective
synchronous algebra morphism

ηR: S2Σ ↠ AR

that recognizes R and is such that for any other surjective synchronous algebra morphism
φ : S2Σ ↠ B recognizing R, there exists a synchronous algebra morphism ψ : B ↠ AR such
that the diagram

S2Σ AR

B,

ηR

φ
ψ

commutes. The objects ηR and AR are called the syntactic synchronous algebra morphism
and syntactic synchronous algebra of R, respectively. Moreover, these objects are unique up
to isomorphisms of the algebra.

▶ Corollary 3.12 (of Proposition 3.9 and Lemma 3.11). A relation is synchronous if and only
if its syntactic synchronous algebra is finite.

The proof of Lemma 3.11 – see the full version – relies, as in the case of monoids, on the
notion of congruence.

Given a synchronous algebra ⟨A,≍, ·⟩, a congruence is any reflexive, symmetric relation
⌢
⌣ over A which is coarser than ≍, and which is locally transitive, meaning that for all
xσ, x

′
σ, yτ , y

′
τ ∈ X, if x′

σ ⌢
⌣ xσ, xσ ⌢

⌣ yτ and yτ ⌢
⌣ y′

τ , then x′
σ ⌢

⌣ y′
τ .11

The quotient structure A/⌢⌣ of A by a congruence ⌢
⌣ is defined as follows:

its underlying typed set consists of the equivalence classes of A under the equivalence
relation {(xσ, yσ) | xσ ⌢

⌣ yσ}, such a class being abusively denoted by [x]⌢⌣,
its product is the product induced by A, in the sense that [x]⌢⌣ · [y]⌢⌣ =̂ [xy]⌢⌣, and

11 In particular, it implies that ⌢
⌣ is transitive when restricted to elements of the same type.

CSL 2025

https://ncatlab.org/nlab/show/isomorphism
https://arxiv.org/abs/2404.15496

21:12 The Algebras for Automatic Relations

its dependency relation is the relation induced by ⌢
⌣, i.e. [x]⌢⌣ ≍ [y]⌢⌣ whenever x ⌢

⌣ y,
its units are defined as the equivalence classes of the units of A.

Moreover, x 7→ [x]⌢⌣ defines a surjective morphism of synchronous algebras from A to A/⌢⌣.
Given a synchronous algebra ⟨A,≍, ·⟩ and a closed subset C ⊆ A, we define a congruence

⌢
⌣
C , called syntactic congruence of C over A by letting aσ ⌢

⌣
C bτ when for all x, y ∈ A

if both xaσy and xbτy are defined, then xaσy ∈ C iff xbτy ∈ C, and
if both xaσ and xbτ are defined, then xaσ ∈ C iff xbτ ∈ C, and
if both aσy and bτy are defined, then aσy ∈ C iff bτy ∈ C.

It is routine to check that the syntactic congruence is indeed a congruence. For instance,
to prove that ⌢

⌣
C is coarser than ≍, observe that if aσ ≍ bτ , then for all x, y s.t. both xaσy

and xbτy are defined, then xaσy ≍ xbτy, and since C is a closed subset of A, xaσy ∈ C iff
xbτy ∈ C. The other two conditions are proven in the same fashion. Note however that
while the relation is locally transitive, it is not transitive in general.

When R ⊆ Σ∗ × Σ∗ is a relation, we abuse the notation and write ⌢
⌣
R to denote the

syntactic congruence ⌢
⌣
R of R in S2Σ. The existence of the syntactic morphism then follows

from the next proposition, proven in the full version.

▶ Proposition 3.13. Let φ : S2Σ ↠ A be a surjective synchronous algebra morphism that
recognizes R, say R = φ−1[Acc] for some closed subset Acc ⊆ A, then

φ/⌢
⌣Acc : S2Σ ↠ A/⌢

⌣Acc

u 7→ [φ(u)]⌢
⌣

Acc

is the syntactic morphism of R.

▶ Corollary 3.14. In the syntactic synchronous algebra AR , the syntactic congruence ⌢
⌣Acc

and the dependency relation ≍ coincide.

Proof. By Proposition 3.13 applied to the syntactic morphism, x 7→ [x]⌢⌣Acc is an isomorphism
from AR to AR/⌢⌣Acc. Hence, [x]⌢⌣Acc ≍ [y]⌢⌣Acc in AR/⌢⌣Acc iff x ≍ y in AR , for all x, y ∈ AR .
But then, the dependency relation ≍ of AR/⌢⌣Acc is, by definition, such that [x]⌢⌣Acc ≍ [y]⌢⌣Acc

iff x ⌢
⌣Acc y. Putting both equivalences together, we get that x ⌢

⌣Acc y iff x ≍ y for all
x, y ∈ AR . ◀

We provide in the full version a simple example of syntactic synchronous algebra whose
dependency relation is not an equivalence relation.

Boolean operations. Given two synchronous algebras A and B, define their Cartesian
product A × B by taking, for each type τ , the Cartesian product Aτ ×Bτ . Units, product are
defined naturally, and the dependency relation is defined by taking the conjunction over each
component. Then ¬R is recognized by A, and R ∪ S and R ∩ S are recognized by A × B.

4 The Lifting Theorem & Pseudovarieties

4.1 Elementary Formulation
▶ Example 4.1 (Group relations: Example 3.10 cont’d). We want to decide when the relation

RI,J =̂
{

(u, v)
∣∣ |u| > |v| and (|u| − |v| mod p) ∈ I, or

|u| < |v| and (|v| − |u| mod q) ∈ J.
}

from Example 3.10 is a group relation. By definition this happens if and only if there exists
a finite group G, together with a monoid morphism φ : (Σ2)∗ → G and a subset Acc ⊆ G s.t.
∀u ∈ WellFormedΣ, u ∈ RI,J iff φ(u) ∈ Acc. We claim:

https://arxiv.org/abs/2404.15496
https://arxiv.org/abs/2404.15496

R. Morvan 21:13

RI,J is a group relation iff
(
0̄ ̸∈ I and 0̄ ̸∈ J

)
. (7)

The right-to-left implication was shown in Example 3.10. We prove the implication from
left to right: let n be the order of G so that xn = 1 for all x ∈ G. In particular, we have:
φ

(
(a)pqn

)
= 1 = φ

(
(aa)pqn

)
. Since φ

(
(aa)pqn

)
̸∈ RI,J , it follows that (a)pqn ̸∈ RI,J i.e.

0̄ ̸∈ I. Also, 0̄ ̸∈ J by symmetry, which concludes the proof.

Even more generally, we can decide if a relation R is a group relation by simply looking
at the syntactic synchronous algebra of R.

▶ Theorem 4.2 (Lifting theorem: Elementary Formulation). Given a relation R and a ∗-
pseudovariety of regular languages V corresponding to a pseudovariety of monoids V, the
following are equivalent:
1. R is a V-relation,
2. R is recognized by a finite synchronous algebra A whose underlying monoids are all in V,
3. all underlying monoids of the syntactic synchronous algebras AR of R are in V.

See the proof in the full version.

▶ Remark 4.3. In light of Theorem 4.2, one can wonder whether the notion of synchronous
algebra is necessary to characterize V-relations, or if it is enough to look at the languages
corresponding to the underlying monoids. Said otherwise, is the membership of R in the class
of V-relations uniquely determined by the regular languages R ∩ (Σ × Σ)∗, R ∩ (Σ × { })∗

and R ∩ ({ } × Σ)∗? Unsurprisingly, synchronous algebras are indeed necessary, as there are
relations R such that:

R ∩ (Σ × Σ)∗ ∈ VΣ×Σ, R ∩ (Σ ×)∗ ∈ VΣ× and R ∩ (× Σ)∗ ∈ V ×Σ, (9)

but R is not a V-relation. This can happen even if V is the ∗-pseudovariety of all regular
languages: for instance for the relation

R =̂ {(u, v) | |u| > |v| > 0 and |u| − |v| is prime}.

Notice that there is a subtle but crucially important difference between (9) and the second
item of the Lifting Theorem: while the underlying monoids of a synchronous algebra A
recognizing R only accept words of the form (Σ × Σ)∗, (Σ ×)∗ or (× Σ)∗, elements of
(Σ × Σ)+(Σ ×)+ or (Σ × Σ)+(× Σ)+ influence the underlying monoids of A via the axioms
of synchronous algebras.

Also, note that the existence the Lifting Theorem follows from the careful definition of
synchronous algebras: more naive definitions of these algebras simply cannot characterize
V-relations, see the full version.

From Theorem 4.2 and the implicit fact that all our constructions are effective, we obtain
a decidability (meta-)result for V-relations.

▶ Corollary 4.4. The class of V-relations has decidable membership if, and only if, V has
decidable membership.

For instance, a relation is a group relation if, and only if, all underlying monoids of its
syntactic synchronous algebra are groups.

CSL 2025

https://arxiv.org/abs/2404.15496
https://arxiv.org/abs/2404.15496

21:14 The Algebras for Automatic Relations

4.2 Pseudovarieties of Synchronous Relations

We introduce the notion of pseudovariety of synchronous algebras and ∗-pseudovariety of
synchronous relations. We show an Eilenberg correspondence between these two notions. We
then reformulate the Lifting Theorem to show that any Eilenberg correspondence between
monoids and regular languages lifts to an Eilenberg correspondence between synchronous
algebras and synchronous relations.

Say that a synchronous algebra A is a quotient of B when there exists a surjective
synchronous algebra morphism from B to A. A subalgebra of B is any closed subset of B
closed under product and containing the units. We then say that synchronous algebra A
divides B when A is a quotient of a subalgebra of B.

Observe that S2Σ admits the following property: elements of type l⁄l → l⁄b and
l⁄l → b⁄l are generated by the underlying monoids. Since syntactic synchronous algebras
are homomorphic images of S2Σ, they also satisfy this property. In general, we say that a
synchronous algebra A is locally generated if every element of type l⁄l → l⁄b (resp. l⁄l →
b⁄l) can be written as the product of an element of type l⁄l with an element of type l⁄b

(resp. b⁄l).
A pseudovariety of synchronous algebras is any class V of locally generated finite syn-

chronous algebras closed under
finite product: if A,B ∈ V then A × B ∈ V,
division: if some finite locally generated algebra A divides B for some B ∈ V, then
A ∈ V.

Because of Lemma 3.11, a synchronous relation is recognized by a finite synchronous
algebra of a pseudovariety V iff its syntactic synchronous algebra belongs to V.

A ∗-pseudovariety of synchronous relations is a function V : Σ 7→ VΣ such that for any
finite alphabet Σ, VΣ is a set of synchronous relations over Σ such that V is closed under

Boolean combinations: if R,S ∈ VΣ, then ¬R, R ∪ S and R ∩ S belong to VΣ too,
Syntactic derivatives: if R ∈ VΣ, then any relation recognized by the syntactic synchronous
algebra morphism of R also belongs to VΣ.
Inverse morphisms: if φ : S2Γ → S2Σ is a synchronous algebra morphism and R ∈ VΣ
then φ−1[R] ∈ VΓ.

To recover a more traditional definition (of the form “closure under Boolean operations,
residuals12 and inverse morphisms”), we need to properly define what are the residuals of
a relation. It turns out that the answer is quite surprising and less trivial than what one
would expect.

▶ Definition 4.5 (Residuals). Let A be a synchronous algebra, xσ ∈ A, and C ⊆ A be a
closed subset. The left residual and right residual of C by xσ are defined by

x−1
σ C =̂

{
yτ ∈ A | ∃y′

τ ′ ⌢
⌣
C yτ , xσy

′
τ ′ ∈ C

}
, and

Cx−1
σ =̂

{
yτ ∈ A | ∃y′

τ ′ ⌢
⌣
C yτ , y

′
τ ′xσ ∈ C

}
,

respectively. We refer indiscriminately to both these notions as residuals. We extend these
notions to sets, by letting X−1C =̂

⋃
x∈X x

−1C and CX−1 =̂
⋃
x∈X Cx

−1.

12 Also called “quotient” e.g. in [31, §III.1.3, p. 39], or “polynomial derivative” in [9, §4, p. 19].

R. Morvan 21:15

For the sake of readability, we will sometimes drop the type of elements when dealing with
residuals. It is routine to check that residuals are always closed subsets (since ⌢

⌣
C is coarser

than the dependency relation), or that (x−1C)y−1 = x−1(Cy−1). Equivalently, Cx−1
σ can be

defined as the smallest closed subset containing the “naive residual”
{
yτ ∈ A | yτxσ ∈ C

}
.

This latter set is always contained in Cx−1
σ (by reflexivity of ⌢

⌣
C), and moreover, if it is

empty, then so is Cx−1
σ .

As an example, consider the relation R from the full version. Then the “naive right
residual” of R by (a)l⁄b consists of εl⁄l and all elements of type l⁄b and l⁄l → l⁄b . But
it does not contain any element of type b⁄l or l⁄l → b⁄l because such elements cannot be
concatenated with (a)l⁄b on the right. Yet, the residual R (a)−1

l⁄b contains all elements of
type b⁄l (and also l⁄l → b⁄l): for instance, (a)b⁄l ∈ R (a)−1

l⁄b since (a)b⁄l ⌢
⌣
R (a)l⁄b

and (a)l⁄b (a)l⁄b ∈ R.
On the other hand, in the algebra S2a consider the relation S = (aa)∗ × a(aa)∗. Then

S (aa)−1
l⁄l is empty since its “naive residual” {yτ ∈ S2a | yτ · (aa) ∈ S} is empty. Indeed, for

yτ · (aa)l⁄l to be well-defined, one needs τ to be l⁄l , i.e. y encodes a pair of two words (u, v)
of the same length. But then (ua, va) ̸∈ S.

▶ Lemma 4.6. A class V : Σ 7→ VΣ is a ∗-pseudovariety of synchronous relations if, and
only if, it is closed under Boolean combinations, residuals and inverse morphisms.

See the proof in the full version.
Let V→V denote the map (called correspondence) that takes a pseudovariety of syn-

chronous algebras and maps it to

V : Σ 7→ {R ⊆ Σ∗ × Σ∗ | AR ∈ V}.

Dually, let V→V denote the correspondence that takes a ∗-pseudovariety of synchronous
relations V and maps it to the pseudovariety of synchronous algebras generated by all AR

for some R ∈ VΣ. Here, the pseudovariety generated by a class C of finite locally generated
synchronous algebras is the smallest pseudovariety containing all finite locally generated
algebras of C, or equivalently,13 the class of all finite locally generated synchronous algebras
that divide a finite product of algebras of C.14

▶ Lemma 4.7 (An Eilenberg theorem for synchronous relations). The correspondences V→V

and V→V define mutually inverse bijections between pseudovarieties of synchronous algebras
and ∗-pseudovarieties of synchronous relations.

See the proof in the full version.
As consequence of Lemma 4.7, if V is a ∗-pseudovariety of synchronous relations and V

is a pseudovariety of synchronous algebras, we write V↔V to mean that either V→V or,
equivalently, V→V. This relation is called an Eilenberg-Schützenberger correspondence.

13 The proof is straightforward, see e.g. [31, Proposition XI.1.1, p. 190] for a proof in the context of
semigroups.

14 Note that “being locally generated” is not preserved by taking subalgebras, but this is not an issue: we
restrict the construction to (finite) locally generated algebras.

CSL 2025

https://arxiv.org/abs/2404.15496
https://arxiv.org/abs/2404.15496
https://arxiv.org/abs/2404.15496

21:16 The Algebras for Automatic Relations

▶ Proposition 4.8. If V is a pseudovariety of monoids, then

Vsync =̂ {A locally generated finite synchronous algebra
s.t. all underlying monoids of A are in V}

is a pseudovariety of synchronous algebras. Similarly, if V is an ∗-pseudovariety of regular
languages, then the class of V-relations, namely

Vsync : Σ 7→ {R ⊆ Σ∗ × Σ∗ | ∃L ∈ VΣ2 , R = L ∩ WellFormedΣ},

is a ∗-pseudovariety of synchronous relations.

Proof. The first point is straightforward. The second one follows from it and Lemma 4.7
and Theorem 4.2. ◀

Finally, Theorem 4.2 can be elegantly rephrased by saying that correspondences between
pseudovarieties of monoids and ∗-pseudovarieties of regular languages lift to correspond-
ences between pseudovarieties of synchronous algebras and ∗-pseudovarieties of synchronous
relations.

▶ Theorem 4.9 (Lifting Theorem: Pseudovariety Formulation). If, in the Eilenberg corres-
pondence between pseudovarieties of monoids and ∗-pseudovarieties of regular languages we
have V↔V, then in the Eilenberg correspondence between the pseudovariety of synchronous
algebras Vsync and the ∗-pseudovariety of synchronous relations Vsync, we have Vsync ↔Vsync.

5 Discussion

A natural next step is to generalize Question 1.2 by replacing WellFormedΣ by a fixed regular
language Ω.

▶ Question 5.1. Given a class of regular languages V, can we characterize (and decide) all
languages of the form L ∩ Ω for some L ∈ V?

We claim that the construction of synchronous algebras can be generalized for any Ω,
giving rise to the notion of “path algebras”. The lifting theorem for monoids can be shown
to hold for some Ω, including well-formed words for n-ary relations with n ≥ 3, and that it
cannot effectively hold for all Ω.

A natural next step would then be to study the relationship between “path algebras” and
Figueira & Libkin’s L-controlled relations [19, §3], see also [16].

Lastly, it would be interesting to extend the results on algebras to automata: for instance,
can we adapt our proof to show the existence of a minimal synchronous automaton for each
relation?

References
1 Jorge Almeida. Some algorithmic problems for pseudovarieties. Publ. Math. Debrecen, 52(1):531–

552, 1999. Consulted version: https://www.researchgate.net/profile/Jorge-Almeida-14/
publication/2510507_Some_Algorithmic_Problems_for_Pseudovarieties/links/
02e7e531d968b4fe8f000000/Some-Algorithmic-Problems-for-Pseudovarieties.pdf.

2 C. J. Ash. Inevitable graphs: a proof of the type II conjecture and some related decision
procedures. International Journal of Algebra and Computation, 01(01):127–146, March 1991.
doi:10.1142/S0218196791000079.

https://www.researchgate.net/profile/Jorge-Almeida-14/publication/2510507_Some_Algorithmic_Problems_for_Pseudovarieties/links/02e7e531d968b4fe8f000000/Some-Algorithmic-Problems-for-Pseudovarieties.pdf
https://www.researchgate.net/profile/Jorge-Almeida-14/publication/2510507_Some_Algorithmic_Problems_for_Pseudovarieties/links/02e7e531d968b4fe8f000000/Some-Algorithmic-Problems-for-Pseudovarieties.pdf
https://www.researchgate.net/profile/Jorge-Almeida-14/publication/2510507_Some_Algorithmic_Problems_for_Pseudovarieties/links/02e7e531d968b4fe8f000000/Some-Algorithmic-Problems-for-Pseudovarieties.pdf
https://doi.org/10.1142/S0218196791000079

R. Morvan 21:17

3 Pablo Barceló, Diego Figueira, and Rémi Morvan. Separating Automatic Relations. In
Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, 48th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2023), volume 272 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 17:1–17:15, Dagstuhl, Germany, 2023.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. Consulted version: https://arxiv.org/
abs/2305.08727v2. doi:10.4230/LIPIcs.MFCS.2023.17.

4 Pablo Barceló, Chih-Duo Hong, Xuan-Bach Le, Anthony W. Lin, and Reino Niskanen.
Monadic Decomposability of Regular Relations. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019), volume 132 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 103:1–103:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. Consulted version: https://arxiv.org/abs/1903.00728v1.
doi:10.4230/LIPIcs.ICALP.2019.103.

5 Pablo Barceló, Leonid Libkin, Anthony W. Lin, and Peter T. Wood. Expressive languages
for path queries over graph-structured data. ACM Trans. Database Syst., 37(4), December
2012. Consulted version: https://homepages.inf.ed.ac.uk/libkin/papers/pods10-tods.
pdf (saved on http://web.archive.org). doi:10.1145/2389241.2389250.

6 Jean Berstel. Transductions and Context-Free Languages. Vieweg+Teubner Verlag, Wiesbaden,
1979. Consulted version: http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/
LivreTransductions.pdf (saved on http://web.archive.org/). URL: http://link.
springer.com/10.1007/978-3-663-09367-1.

7 Achim Blumensath. Monadic Second-Order Model Theory. Version of 2023-12-19 (saved on
http://web.archive.org/), 2023. URL: https://www.fi.muni.cz/~blumens/MSO.pdf.

8 Mikołaj Bojańczyk and Lê Thành Dũng (Tito) Nguyễn. Algebraic Recognition of Regular
Functions. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International
Colloquium on Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 117:1–117:19, Dagstuhl, Germany,
2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. Consulted version: https://hal.
science/hal-03985883v2. doi:10.4230/LIPIcs.ICALP.2023.117.

9 Mikołaj Bojańczyk. Recognisable Languages over Monads. In Igor Potapov, editor, De-
velopments in Language Theory, Lecture Notes in Computer Science, pages 1–13. Springer
International Publishing, 2015. Consulted version: https://arxiv.org/abs/1502.04898v1.
doi:10.1007/978-3-319-21500-6_1.

10 Mikołaj Bojańczyk. Languages recognised by finite semigroups, and their generalisations to
objects such as trees and graphs, with an emphasis on definability in monadic second-order
logic, August 2020. Lecture notes. arXiv:2008.11635, doi:10.48550/arXiv.2008.11635.

11 Mikołaj Bojańczyk and Igor Walukiewicz. Forest algebras. In Jörg Flum, Erich Grädel, and
Thomas Wilke, editors, Logic and Automata: History and Perspectives [in Honor of Wolfgang
Thomas], volume 2 of Texts in Logic and Games, pages 107–132. Amsterdam University Press,
2008. Consulted version: https://hal.science/hal-00105796v1.

12 Michaël Cadilhac, Olivier Carton, and Charles Paperman. Continuity of Functional Trans-
ducers: A Profinite Study of Rational Functions. Logical Methods in Computer Science,
Volume 16, Issue 1, February 2020. doi:10.23638/LMCS-16(1:24)2020.

13 Olivier Carton, Christian Choffrut, and Serge Grigorieff. Decision problems among the
main subfamilies of rational relations. RAIRO - Theoretical Informatics and Applications,
40(2):255–275, April 2006. Consulted version: http://www.numdam.org/item/10.1051/ita:
2006005.pdf. doi:10.1051/ita:2006005.

14 Olivier Carton, Thomas Colcombet, and Gabriele Puppis. An algebraic approach to MSO-
definability on countable linear orderings. The Journal of Symbolic Logic, 83(3):1147–1189,
September 2018. Consulted version: https://arxiv.org/abs/1702.05342v2. doi:10.1017/
jsl.2018.7.

CSL 2025

https://arxiv.org/abs/2305.08727v2
https://arxiv.org/abs/2305.08727v2
https://doi.org/10.4230/LIPIcs.MFCS.2023.17
https://arxiv.org/abs/1903.00728v1
https://doi.org/10.4230/LIPIcs.ICALP.2019.103
https://homepages.inf.ed.ac.uk/libkin/papers/pods10-tods.pdf
https://homepages.inf.ed.ac.uk/libkin/papers/pods10-tods.pdf
http://web.archive.org
https://doi.org/10.1145/2389241.2389250
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.pdf
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.pdf
http://web.archive.org/
http://link.springer.com/10.1007/978-3-663-09367-1
http://link.springer.com/10.1007/978-3-663-09367-1
http://web.archive.org/
https://www.fi.muni.cz/~blumens/MSO.pdf
https://hal.science/hal-03985883v2
https://hal.science/hal-03985883v2
https://doi.org/10.4230/LIPIcs.ICALP.2023.117
https://arxiv.org/abs/1502.04898v1
https://doi.org/10.1007/978-3-319-21500-6_1
https://arxiv.org/abs/2008.11635
https://doi.org/10.48550/arXiv.2008.11635
https://hal.science/hal-00105796v1
https://doi.org/10.23638/LMCS-16(1:24)2020
http://www.numdam.org/item/10.1051/ita:2006005.pdf
http://www.numdam.org/item/10.1051/ita:2006005.pdf
https://doi.org/10.1051/ita:2006005
https://arxiv.org/abs/1702.05342v2
https://doi.org/10.1017/jsl.2018.7
https://doi.org/10.1017/jsl.2018.7

21:18 The Algebras for Automatic Relations

15 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Lo-
gic: A Language-Theoretic Approach. Encyclopedia of Mathematics and its Applications.
Cambridge University Press, Cambridge, 2012. Consulted version: https://hal.science/
hal-00646514v1. doi:10.1017/CBO9780511977619.

16 María Emilia Descotte, Diego Figueira, and Gabriele Puppis. Resynchronizing Classes of Word
Relations. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella,
editors, 45th International Colloquium on Automata, Languages, and Programming (ICALP
2018), volume 107 of Leibniz International Proceedings in Informatics (LIPIcs), pages 123:1–
123:13, Dagstuhl, Germany, 2018. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. Consul-
ted version: https://hal.science/hal-01721046v2. doi:10.4230/LIPIcs.ICALP.2018.123.

17 Joost Engelfriet and Hendrik Jan Hoogeboom. Mso definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Logic, 2(2):216–254, April 2001. Consulted
version: SciHub. doi:10.1145/371316.371512.

18 Diego Figueira. Foundations of Graph Path Query Languages (Course Notes). In Reasoning
Web Summer School 2021, volume 13100 of Reasoning Web. Declarative Artificial Intelligence -
17th International Summer School 2021, Leuven, Belgium, September 8-15, 2021, Tutorial
Lectures, pages 1–21, Leuven, Belgium, September 2021. Springer. Consulted version: https:
//hal.science/hal-03349901. doi:10.1007/978-3-030-95481-9_1.

19 Diego Figueira and Leonid Libkin. Synchronizing Relations on Words. Theory of Com-
puting Systems, 57(2):287–318, August 2015. Consulted version: https://hal.science/
hal-01793633v1/. doi:10.1007/s00224-014-9584-2.

20 Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote. Logical and Algebraic Characterizations
of Rational Transductions. Logical Methods in Computer Science, Volume 15, Issue 4, December
2019. doi:10.23638/LMCS-15(4:16)2019.

21 S. J. v. Gool and B. Steinberg. Pointlike sets for varieties determined by groups. Advances
in Mathematics, 348:18–50, May 2019. Consulted version: https://arxiv.org/abs/1801.
04638v1. doi:10.1016/j.aim.2019.03.020.

22 Karsten Henckell, Stuart W. Margolis, Jean-Éric Pin, and John Rhodes. Ash’s type II theorem,
profinite topology and Malcev products: part I. International Journal of Algebra and Compu-
tation, 01(04):411–436, December 1991. Consulted version: https://www.irif.fr/~jep/PDF/
HMPR.pdf (saved on http://web.archive.org/). doi:10.1142/S0218196791000298.

23 Bernard R. Hodgson. Théories décidables par automate fini. PhD thesis, Université de
Montréal, 1976. Not available online.

24 Bernard R. Hodgson. On direct products of automaton decidable theories. Theoretical
Computer Science, 19(3):331–335, September 1982. doi:10.1016/0304-3975(82)90042-1.

25 Bernard R. Hodgson. Décidabilité par automate fini. Annales des Sciences Mathématiques du
Québec, 7(1):39–57, 1983. Consulted version: https://www.mat.ulaval.ca/fileadmin/mat/
documents/bhodgson/Hodgson_ASMQ_1983.pdf (saved on http://web.archive.org/).

26 Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures. In Gerhard
Goos, Juris Hartmanis, Jan Leeuwen, and Daniel Leivant, editors, Logic and Computational
Complexity, volume 960, pages 367–392. Springer Berlin Heidelberg, Berlin, Heidelberg, 1995.
doi:10.1007/3-540-60178-3_93.

27 Dietrich Kuske and Markus Lohrey. Some natural decision problems in automatic graphs.
The Journal of Symbolic Logic, 75(2):678–710, June 2010. Consulted version: https://www.
eti.uni-siegen.de/ti/veroeffentlichungen/08-euler-hamilton.pdf (saved on http://
web.archive.org/). doi:10.2178/jsl/1268917499.

28 Chris Köcher. Analyse der Entscheidbarkeit diverser Probleme in automatischen Graphen. PhD
thesis, Technische Universität Ilmenau, Ilmenau, 2014. (Saved on http://web.archive.org/).
URL: https://people.mpi-sws.org/~ckoecher/files/theses/bsc-thesis.pdf.

29 Dominique Perrin and Jean-Éric Pin. Infinite Words, Automata, Semigroups, Logic and Games,
volume 141. Elsevier, 2004. Consulted version: Libgen.

https://hal.science/hal-00646514v1
https://hal.science/hal-00646514v1
https://doi.org/10.1017/CBO9780511977619
https://hal.science/hal-01721046v2
https://doi.org/10.4230/LIPIcs.ICALP.2018.123
https://doi.org/10.1145/371316.371512
https://hal.science/hal-03349901
https://hal.science/hal-03349901
https://doi.org/10.1007/978-3-030-95481-9_1
https://hal.science/hal-01793633v1/
https://hal.science/hal-01793633v1/
https://doi.org/10.1007/s00224-014-9584-2
https://doi.org/10.23638/LMCS-15(4:16)2019
https://arxiv.org/abs/1801.04638v1
https://arxiv.org/abs/1801.04638v1
https://doi.org/10.1016/j.aim.2019.03.020
https://www.irif.fr/~jep/PDF/HMPR.pdf
https://www.irif.fr/~jep/PDF/HMPR.pdf
http://web.archive.org/
https://doi.org/10.1142/S0218196791000298
https://doi.org/10.1016/0304-3975(82)90042-1
https://www.mat.ulaval.ca/fileadmin/mat/documents/bhodgson/Hodgson_ASMQ_1983.pdf
https://www.mat.ulaval.ca/fileadmin/mat/documents/bhodgson/Hodgson_ASMQ_1983.pdf
http://web.archive.org/
https://doi.org/10.1007/3-540-60178-3_93
https://www.eti.uni-siegen.de/ti/veroeffentlichungen/08-euler-hamilton.pdf
https://www.eti.uni-siegen.de/ti/veroeffentlichungen/08-euler-hamilton.pdf
http://web.archive.org/
http://web.archive.org/
https://doi.org/10.2178/jsl/1268917499
http://web.archive.org/
https://people.mpi-sws.org/~ckoecher/files/theses/bsc-thesis.pdf

R. Morvan 21:19

30 Jean-Éric Pin. Positive varieties and infinite words. In Cláudio L. Lucchesi and Arnaldo V.
Moura, editors, LATIN’98: Theoretical Informatics, Lecture Notes in Computer Science,
pages 76–87, Berlin, Heidelberg, 1998. Springer. Consulted version: https://hal.science/
hal-00113768v1. doi:10.1007/BFb0054312.

31 Jean-Éric Pin. Mathematical Foundations of Automata Theory, 2022. Version of February 18,
2022 (saved on http://web.archive.org/); MPRI lecture notes. URL: https://www.irif.
fr/~jep/PDF/MPRI/MPRI.pdf.

32 Thomas Place and Marc Zeitoun. Group separation strikes back. In 2023 38th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13, 2023. Consulted
version: https://arxiv.org/abs/2205.01632v2. doi:10.1109/LICS56636.2023.10175683.

33 Christophe Reutenauer. Séries formelles et algèbres syntactiques. Journal of Algebra, 66(2):448–
483, October 1980. doi:10.1016/0021-8693(80)90097-6.

34 John Rhodes and Benjamin Steinberg. Pointlike sets, hyperdecidability and the identity
problem for finite semigroups. International Journal of Algebra and Computation, November
2011. Consulted version: SciHub. doi:10.1142/S021819679900028X.

35 Sasha Rubin. Automata presenting structures: A survey of the finite string case. Bulletin
of Symbolic Logic, 14(2):169–209, 2008. Consulted version: SciHub. doi:10.2178/bsl/
1208442827.

36 Howard Straubing and Pascal Weil. Varieties. In Jean Éric Pin, editor, Handbook of Auto-
mata Theory, volume I: Theoretical Foundations, pages Chapter 16, pp. 569–614. European
Mathematical Society Publishing House, September 2021. doi:10.4171/Automata.

37 Bret Tilson. Categories as algebra: An essential ingredient in the theory of monoids. Journal
of Pure and Applied Algebra, 48(1):83–198, 1987. doi:10.1016/0022-4049(87)90108-3.

Appendix

(a
a) ,

(
b
b

)
(a

b) ,
(

b
a

)
(a

b) ,
(

b
a

)
(a

a) ,
(

b
b

)

(a) , (b) (a) , (b)

(a) , (b) (a) , (b)

∗
∗

∗

∗

Figure 3 Minimal (deterministic complete) “classical” automaton for the binary relation of
pairs (u, v) such that the number of a’s in u1 . . . uk and in v1 . . . vk are the same mod 2, where
k = min(|u|, |v|), seen as a language over Σ2 . Said otherwise, this is automaton rejects exactly all
words in (Σ2)∗ which (1) are not the valid encoding of a pair of words and (2) are the encoding of a
pair which does not satisfy the property above. Each label ∗ is defined so that the automaton is
deterministic and complete.

CSL 2025

https://hal.science/hal-00113768v1
https://hal.science/hal-00113768v1
https://doi.org/10.1007/BFb0054312
http://web.archive.org/
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://arxiv.org/abs/2205.01632v2
https://doi.org/10.1109/LICS56636.2023.10175683
https://doi.org/10.1016/0021-8693(80)90097-6
https://doi.org/10.1142/S021819679900028X
https://doi.org/10.2178/bsl/1208442827
https://doi.org/10.2178/bsl/1208442827
https://doi.org/10.4171/Automata
https://doi.org/10.1016/0022-4049(87)90108-3

21:20 The Algebras for Automatic Relations

Figure 4 The landscape of rationality for binary relations. Dashed regions are empty: the
intersection of functional relations and two-way rational relations collapses to regular functions by
[17, Theorem 22, p. 243].

R. Morvan 21:21

Figure 5 Representation of the dependent set S2Σ of synchronous words. Coloured edges represent
the dependency relation, and self-loops are not drawn.

CSL 2025

	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Contributions
	1.4 Related Work

	2 Preliminaries
	2.1 Automata & Relations
	2.2 Induced Relations

	3 Synchronous Algebras
	3.1 Types & dependent Sets
	3.2 Synchronous Algebras
	3.3 Recognizability
	3.4 Syntactic Morphisms & Algebras

	4 The Lifting Theorem & Pseudovarieties
	4.1 Elementary Formulation
	4.2 Pseudovarieties of Synchronous Relations

	5 Discussion

