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Abstract
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1 Introduction

Expressivity and complexity are two crucial criteria in the design of formal languages for
logical reasoning. However, these two properties alone only paint part of the picture, as
a more succinct language may have advantages over an equally (or even more) expressive
language if formula size is reduced sufficiently to considerably save on storage space and
improve processing time. Two formal languages L1 and L2 may be equally expressive, yet
certain properties may be expressed in L1 by much shorter expressions than in L2; when the
size difference is e.g. exponential, it may dwarf any potential advantage offered by L2 on
account of purely complexity-theoretic considerations.

Modal logics are an appealing framework for computational logic precisely due to the
balance between expressivity and complexity, making them more adaptable than propositional
logic but more tractable than first or higher order logic. But a well-informed choice of the
“right” modal logic for a given task should also involve an understanding of how it fares in
terms of succinctness.

In particular, Gödel-Löb logic (GL) provides a textbook example of a success story in
modal logic: it is the logic of finite (or, more generally, converse well-founded) strict partial
orders, hence it governs the behaviour of computational processes that terminate in finite
time. It is obtained from the basic modal logic K by adding Löb’s axiom, 2(2φ → φ) → 2φ.
It is also the logic of provability in Peano arithmetic and related theories, as well as the
logic of scattered topological spaces, granting it applications in foundations of mathematics
and spatial reasoning. For the first setting, one interprets modal formulas as arithmetical
statements, with variables representing arbitrary statements in the language of PA and 2φ

being interpreted as Gödel’s Bew(⌜φ⌝), which formalises the statement that φ is provable
in PA. Solovay [23] showed that the set of valid formulas (i.e., those that correspond to
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25:2 Exponential Lower Bounds on Definable Fixed Points

theorems of PA) in this setting are precisely those provable in GL. For the second, one
interprets 3 as a topological Cantor derivative operator, e.g. 3φ is the set of limit points of
those points satisfying φ. GL once again captures the set of validities in this context (see
e.g. [6]).

Moreover, GL is remarkably well-behaved, being decidable, finitely axiomatizable, and
enjoying Craig interpolation [8] and definable fixed points [21]. The latter in particular
means that the µ-calculus adds no expressive power to GL [2]. This is also true for the class
Grz of Grzegorczyk frames, based on Noetherian posets; essentially, the reflexive closures of
GL frames [9]. Grz is also the logic of “provably true” over Peano arithmetic and is the
greatest modal companion of intuitionistic propositional logic [26, 8] and is characterised by
the axiom 2(2(φ → 2φ) → φ) → 2φ.

One could thus jump to the conclusion that the µ-calculus over finite posets (either reflexive
or irreflexive) is not worth considering. However, such disinterest would be misguided, as it
does not take questions of succinctness into account. The fixed-point theorem for GL states
that for any formula φ(x) where x occurs only in the scope of 2 (or 3), there is a formula ψ
such that ψ ↔ φ(ψ) is derivable. All proofs [7, 16, 20, 21, 22] yield some ψ that is at least
exponentially larger than φ. This raises the question of whether this bound is optimal, to
which we provide a positive answer. In contrast, the µ-calculus formula µx.φ(x) yields a
fixed point of φ and is only slightly larger than φ itself.1 Thus we conclude that, despite
fixed points already being definable in the basic modal language, there is much to be gained
by passing to a language with explicit fixed point constructors.

Research in succinctness involves delicate techniques and it has been an active area in the
last decades; see e.g. [17, 10, 1]. Closest to the present work, [11] show that over GL frames,
a language with the reflexive modality 3· is exponentially more succinct than a language with
3. As a corollary, exponential succinctness of the µ-calculus is obtained for a language with
3 alone, given that 3· can be defined succinctly in the µ-calculus. However, this result has
two shortcomings with regards to our current goal. First, it does not clarify if the µ-calculus
is more succinct than a language with the reflexive modality 3· , so that the results cannot
be applied to the logic Grz which enjoys a restricted version of the fixed-point theorem.
Second, succinctness is obtained via nested fixed point operators, and the lower bound for the
fixed-point theorem would require a single application of µ. We thus aim for a sharper result
for the µ-calculus, for which we extend known techniques and provide new constructions not
contingent on the distinction between 3 and 3· .

Intuitively, proving that one language L1 is more succinct than another language L2
ultimately boils down to proving a sufficiently big lower bound on the size of L2-formulas
expressing some semantic property. If we want to show that L1 is exponentially more succinct
than L2, we must find an infinite sequence of semantic properties (i.e., classes of models)
P1,P2, . . . definable in both L1 and L2, show that there are L1-formulas φ0, φ1, . . . defining
P1,P2, . . . and prove that, for every n, every L2-formula ψn defining Pn has size exponential
in the size of φn. There are various techniques used for achieving such results; here we use
formula-size games developed in the setting of Boolean function complexity by [19] and in
the setting of first-order logic and some temporal logics by [1]. By now, the formula-size
games have been adapted to a host of modal logics (see for example [14], [18], [13], [25]) and
used to obtain lower bounds on modal formulas expressing properties of Kripke models.

1 Normally the µ-calculus requires that x appear only positively in φ(x), but over GL this condition can
be weakened to allow for modalized formulas.
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2 Modal logic

In this section, we present the modal µ-calculus and formalize its Kripke semantics. Let us
begin by defining the base modal language we will work with. We will consider logics over
variants of the language L3 given by the following grammar (in Backus-Naur form). Fix a
set P of propositional variables (also called atoms), and define:

φ,ψ := ⊤ | ⊥ | p | p | φ ∨ ψ | φ ∧ ψ | 3φ | 2φ

Here, p ∈ P and p denotes the negation of p. For the game-theoretic techniques we will use,
it is convenient to allow negations only at the atomic level, and thus we include all duals as
primitives, but not negation or implication; however, we may use the latter as shorthands,
defined via De Morgan’s laws. Formulas of the forms p, p are literals. The size of a formula
φ is denoted |φ| and is defined as follows.

▶ Definition 1. We define a function | · | : L3 → N recursively by
|p| = |p| = 1
|φ ∧ ψ| = |φ ∨ ψ| = |φ| + |ψ| + 1
|3φ| = |2φ| = |φ| + 1.

Next we review semantics for modal logic in general, and for GL in particular.

▶ Definition 2. A Kripke frame is a structure A = (|A|, RA) where RA is a binary relation
on |A|. If A is a Kripke frame, a valuation on A is a function V : |A| → 2P (recall that P is
the set of atoms). A frame A equipped with a valuation V (often denoted VA) is a Kripke
model.

By abuse on notation we will write x ∈ A instead of x ∈ |A|. The valuation V can be
extended recursively to define truth of all formulas of the modal language.

▶ Definition 3. Let A = (A, RA) be any Kripke frame and V a valuation. We define the
truth set

∥φ∥A =: {w ∈ A : (A, w) ⊩ φ}

by structural induction on φ:

w ∈ ∥p∥A ⇔ p ∈ V (w)
w ∈ ∥p∥A ⇔ p ̸∈ V (w)
w ∈ ∥φ ∧ ψ∥A ⇔ w ∈ ∥φ∥A ∩ ∥ψ∥A
w ∈ ∥φ ∨ ψ∥A ⇔ w ∈ ∥φ∥A ∪ ∥ψ∥A
w ∈ ∥3φ∥A ⇔ ∃v(wRAv&w ∈ ∥φ∥A)
w ∈ ∥2φ∥A ⇔ ∀v(wRAv ⇒ w ∈ ∥φ∥A)

Given a model A and formulas φ,ψ, we say that φ is equivalent to ψ on A if ∥φ∥A = ∥ψ∥A.
If A is a class of models, we say that φ,ψ are equivalent over A if they are equivalent on
any element of A. We may also say that φ ≡ ψ over A and omit mention of A if it is the
class of all Kripke models.

We will focus our attention mostly on the logics GL and Grz, which as we will see
can be regarded as a fragment. GL may be interpreted over structures with a converse
well-founded relation and for our purposes we may restrict our attention to models based on
trees, presented as strict partial orders.

CSL 2025



25:4 Exponential Lower Bounds on Definable Fixed Points

▶ Definition 4. A tree is a pair (T,≺), where T is a set and ≺ is a strict partial order such
that, if η ∈ T then {ζ ∈ T : ζ ≺ η} is finite and linearly ordered, and T has a minimum
element called its root. We will sometimes notationally identify (T,≺) as T , and write ⪯
for the reflexive closure of ≺.

Maximal elements of T are leaves. For η, ζ ∈ T , we say that ζ is a child of η if ζ is
the least element ξ (if it exists) such that η ≺ ξ. A path (of length m) on T is a sequence
η⃗ = (ηi)i≤m such that ηi+1 is the child of ηi.

For our purposes, a GL model is a model A where (A, RA) is a finite tree, in which case
we write <A instead of RA. As we will be working exclusively with GL frames and models,
in the sequel we write simply frame or model instead of GL frame or GL model.

▶ Remark 5. It should be stressed that working in a more restrictive class of models yields
stronger results as far as succinctness is concerned: for example, if no small modal formula ψ
is equivalent to some µ-calculus expression φ over the class of GL models as we have defined
them, then certainly no small ψ′ is equivalent to φ over the class of all Kripke models, as in
particular ψ′ would still have to be equivalent to φ over the smaller class of GL models.

3 Extensions and fixed points

The modal language, as we have presented it, may be naturally extended to include other
operations. Even when these operations do not add expressive power to our language, they
can yield considerable gains in terms of succinctness, as we will see later in the text. We
begin by discussing the reflexive modality.

3.1 The reflexive modality
We may define a modality based on ⊑ rather than <. This may be defined in L3 by letting
⊡φ be a shorthand for φ ∧ 2φ. Dually, 3· φ is defined as a shorthand for φ ∨ 3φ. Let L33·
be the extension of L3 that includes 3· ,⊡ as primitives. Semantics for L33· are defined
by setting ∥φ∥A = ∥φ′∥A, where φ′ is obtained by replacing instances of 3· ,⊡ by their
definitions; note that in general, φ′ tends to be exponentially larger than φ [11]. We extend
Definition 1 to L33· in the obvious way, by

|3· φ| = |⊡φ| = |φ| + 1.

Closely related to GL is the logic Grz of Noetherian (reflexive) partial orders, but it is
easy to see that Grz is also the logic of GL frames, although based on L3· rather than L3.
By working over the combined language L33· , our succinctness results apply to both GL
and Grz, as well as many weaker logics.

3.2 Fixed Point Theorems
The celebrated De Jongh-Sambin theorem states that fixed points for modalized formulas are
definable in GL, where x is modalized in φ if it only appears in the scope of 3 or 2.2 For
example, the formula ¬2p has a fixed point ψ such that ψ ≡ ¬2ψ over GL; in this case, we
can take ψ = 3⊤. An upper bound on the size of ψ can be obtained by analyzing existing
proofs.

2 In other words, φ is of the form ψ(2(χ1(x)), . . . ,2(χn(x))) with x not occuring in ψ(p1, . . . , pn).
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▶ Theorem 6 (De Jongh ~1975, Sambin [21]). Given a formula φ(x) in which x is modalized,
there is a formula ψ such that φ(ψ) ≡ ψ over the class of GL models. The formula ψ is
unique up to equivalence, and is of size 2O(|φ| log(|φ|)).

Proof. We follow the construction of the fixed point formula in [21]. Since x is modalized
in φ, we have that φ = ψ

(
2χ1(x), . . . ,2χn(x)

)
. Let σn

i be the fixed point of ψ[2χi(x)/⊤],
then the fixed point σn+1 of φ is ψ

(
2χ1(σn

1 ), . . . ,2χn(σn
n)

)
. Let m = |φ| and k ≤ |ψ|. Then

by induction on n, one readily shows that |σ1| ≤ m+ k and then |σn + 1| ≤ m+ n · |σn−1| ≤
m · 2(n+1) log(n+1). ◀

The logic Grz also enjoys a fixed point property, but in this case for formulas φ(x) where
x is positive, i.e. with the restriction that x may not appear in φ.

Observe how in the case of GL, we ask for x to be modalized in φ(x) while in Grz and
in the µ-calculus we want it to be positive. Positivity is typically required in order to avoid
pathological cases. For example if 2¬p were to have a definable fixed point ψ in Grz, then
over Grz the following would hold ψ ≡ 2¬ψ ≡ ¬ψ ∧ 2¬ψ, a contradiction. Naturally, there
is always a fixed point for any φ(x) over GL as well when x is positive in φ(x), however it is
not necessarily unique up to equivalence.

▶ Theorem 7. Given a formula φ(x) in which x is positive, there is a formula ψ such that
φ(ψ) ≡ ψ over the class of Grz models. The size of ψ may be bounded by a 2O(|φ|3) function.

This does not seem to have been stated in this form in the literature, but it is a consequence
of Theorem 8 below, which states that the µ-calculus is no more expressive than modal
logic over the classes of GL or Grz models. In order to make this precise, let us review the
µ-calculus.

3.3 The µ-calculus
The µ-calculus is obtained from L33· by adding formula constructors µx.φ and νx.φ, where
x is positive in φ. We denote the resulting language by Lµ

33· . For a model A, a variable x and
X ⊆ |A|, let A[x/X] be a model which is the same as A except that VA[x/X](x) = X. Then,
∥µx.φ∥A is the least fixed point of the map X 7→ ∥φ∥A[x/X] ; in other words, ∥µx.φ∥A =
∥φ∥A[x/∥µx.φ∥A] , and every other set with this property contains ∥µx.φ∥A. Syntactically, we
obtain µx.φ(x) ≡ φ(µx.φ(x)). Similarly, ∥νx.φ∥A is the greatest fixed point of the map
X 7→ ∥φ∥A[x/X] . This definition is known to be sound due to the Knaster-Tarski theorem [24],
which entails that monotone operators on a powerset always have least and greatest fixed
points.

Sub-languages of the µ-calculus are denoted by indicating the modalities allowed, e.g. Lµ
3

allows the modalities 3,2 but not 3· ,⊡. Formula complexity is extended by setting

|µx.φ| = |νx.φ| = |φ| + 1.

Normally the µ-calculus provides a far-reaching extension of modal logic, but surprisingly
this is no longer the case over GL [2] and Grz [9]. The bounds given are obtained from a
separate construction by [12].

▶ Theorem 8. Given a formula φ ∈ Lµ
33· of the µ-calculus, there are formulas φGL and

φGrz of L3 such that φGL ≡ φ over GL and φGrz ≡ φ over Grz. The sizes of φGL and
φGrz are of size 2O(|φ|3).

CSL 2025



25:6 Exponential Lower Bounds on Definable Fixed Points

Proof. In [12], an explicit translation from the µ-calculus into an extension of modal logic
is given, with an operator ♦∞(φ0, φ1, . . . , φn−1). Over both GL and Grz, this operator
is equivalent to 3·

∧
φi, and thus one obtains a translation of the µ-calculus into L3. By

examining the formulas involved, and essentially repeating the same calculation as in [12],
we may compute an upper bound of 2O(|φ|3). ◀

Note that in general φGL and φGrz may be distinct. In view of these results, it may seem
that over GL and Grz, the µ-calculus is merely a cosmetic extension of L3. However, note
that the fixed-point formulas provided by Theorems 6 and 7 are quite large. As we will see,
this is unavoidable and thus the µ-calculus offers a substantial advantage when succinctness
is taken into account. In order to simultaneously provide lower bounds for Theorems 6–8, in
our succinctness results, we will work with formulas that are both positive and modalized.

4 Model equivalence games

In this section, we set up the model equivalence games tailored for a language with 3 and 3·
interpreted over GL models. The game is based on sets of rooted GL models; that is, GL
models A which are generated from some a ∈ A in the sense that A = a↑A := {b ∈ A : a ⊑ b}.
Henceforth we simply call these rooted models and we will usually designate the root by
writing the model as the pair (A, a). The following operations will be useful in describing
the game.

▶ Definition 9. Given a set of rooted models A, we define:
2A := {(b↑A, b) : a <A b for some (A, a) ∈ A};
⊡A := {(b↑A, b) : a ⊑A b for some (A, a) ∈ A};
given f : A →

⋃
A∈A A where f(A) ∈ 2A, then 3f A := rng(f);

given f : A →
⋃

A∈A A where f(A) ∈ ⊡A, then 3· f A := rng(f).
We write 2A for 2{A} and ⊡A for ⊡{A} respectively. We also write A ⊩ φ to mean that φ
holds in the root of every model A ∈ A.

▶ Definition 10. Let M be a class of rooted models and φ be a formula. The (φ,M) model
equivalence game ((φ,M)-meg) is played by two players, Hercules and the Hydra, according
to the following rules.

SETTING UP THE PLAYING FIELD.
The Hydra’s only move is in the initiation of the game by choosing two sets of models
A,B ⊆ M such that A ⊩ φ and B ⊩ ¬φ.

After that, Hercules constructs a finite game-tree T . Each node η ∈ T will be labelled
with a pair (L(η),R(η)) of sets of rooted models, and a symbol that is either a literal or one
of {∧,∨,3,2,3· ,⊡}. We will usually write A(η) ◦ B(η) instead of (A,B) for pairs of sets
of rooted models.

At each step of the construction, a leaf η can be either declared a head or a stub in
accordance to the rules of the game. Once it has been declared a stub, no further moves can
be played on it. The root λ of the tree is labelled as L(λ) ◦ R(λ) = A ◦ B and declared a
head.

Afterwards, the game continues so long as there is at least one head. In each turn,
Hercules chooses a head η labelled by L ◦ R and plays one of the following moves.
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literal-move.
Hercules chooses a literal ι such that L ⊩ ι and R ̸⊩ ι. The node η is declared a stub and
labelled with the symbol ι.

∨-move.
Hercules labels η with the symbol ∨ and chooses two sets L1,L2 ⊆ L such that L = L1 ∪L2.
Two new heads, labelled by L1 ◦ R and L2 ◦ R, are added to the tree as children of η.

∧-move.
Analogous to a ∨-move, except that Hercules instead chooses R1,R2 ⊆ R.

3-move.
Hercules labels η with the symbol 3 and chooses a function f , as in Definition 9, for
which 3f L exists (if it does not exist i.e. for some A ∈ L we have 2A = ∅, Hercules
cannot play this move). We let L1 be 3f L and R1 to be 2R.3 A new head labelled by
L1 ◦ R1 is added as a child to η.

2-move.
Analogous to a 3-move, except that Hercules instead chooses a function f for which
3f R exists and the new head is labelled by 2L ◦ 3f R.

3· -move and ⊡-move.
Analogous to 3- and 2-moves, but with ⊡ and 3· in place of 2 and 3 respectively.

The (φ,M)-meg game concludes when there are no heads. If the game-tree is finite (in
size) and it has no heads, we call it closed and Hercules has won. We say that Hercules has
a winning strategy in n moves in the (φ,M)-meg if no matter how the Hydra sets up the
playing field, the resulting game tree has at most n nodes and is closed.

If there is an L33· formula ψ equivalent to φ on M, Hercules can read a winning strategy
off of ψ for the (φ,M)-meg. Conversely, if Hercules has a winning strategy then such a ψ
can be read off of the game tree when Hydra plays optimally, i.e. always choosing as many
rooted models as allowed. We thus obtain the following.

▶ Theorem 11. Hercules has a winning strategy in n moves in the (φ,M)-meg iff there is a
L33· formula ψ equivalent to φ on M such that |ψ| ≤ n. (See e.g. [18])

It moreover should be clear that Hercules cannot win if there are isomorphic models on the
left and right, since there will be no formula distinguishing them.

▶ Proposition 12. No closed game tree contains a node η such that there are A ∈ L(η),
B ∈ R(η) that are isomorphic. (See e.g. [18])

5 The playing field

We will use the model equivalence games to show that the µ-calculus with a single application
of the least fixed point operator is exponentially more succinct than modal logic over the
class of GL frames, even when equipped with both 3 and 3· . Our proof will be based on an
infinite sequence of formulas that convey the existence of a certain binary tree: the root is
labelled by q0

n, with two children labelled by q0
n−1 and q1

n−1, respectively, and so on until
we reach leaves labelled by q0

0 and q1
0 . To maintain control over the tree structure, we use

auxiliary variables pk which “remember” the parent’s label.

3 In particular, if 2B = ∅ for some B ∈ R, then nothing is added to R1 for the rooted model B.

CSL 2025
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▶ Definition 13. For every n ≥ 0, let the open formulas φ∗
n(x) be defined as follows. First,

for n ∈ N set θn(x) to be the formula∧
j≤2

(
qj

n+1 →
∧
k≤2

3(qk
n ∧ pj ∧ x ∧ ¬qj

n+1)
)

and define φ∗
n(x) =

∧
i≤n θi(x). Then, for n ≥ 0, let φn and φn be defined as:

φn := q0
n+1 ∧ µx.φ∗

n(x);
φn := q1

n+1 ∧ µx.φ∗
n(x).

By the fixed-point theorem for GL, we know there are L33· formulae ψn ≡ φn over GL of
size at most 2O(n log(n)).4 Due to the occurrence of ¬qj

n+1, the formulae θn are equivalent to
the formulae θ′

n obtained by substituting 3· for 3. As such, any lower bound results for the
size of L33· formulae equivalent to the formulae φn in GL will also produce succinctness
results for Lµ

3· , hence also for Grz.
Observe that the formulas φ∗

n(x) are all positive over x and modalized. We therefore
know by the fixed-point theorem for GL that their fixed-point is unique and since they are
positive for x, their fixed point will also be equivalent to their greatest and least fixed point.

As promised, the above formulas will define a tree embedding property as this is a
sufficient condition a rooted model should satisfy in order for some φn to hold in its root. If
we are to be more precise, consider the following model Tn = ⟨Tn,≺, VTn⟩, where Tn is the
set of binary sequences of length ≤ n+ 1, rooted at the empty sequence ⟨⟩ and:
1. VTn(q0

n+1) := {⟨⟩};
2. VTn(qj

i ) = {s ∈ Tn : |s| := n+ 1 − i ∧ s(|s| − 1) = j} for i ≤ n;
3. VTn(pj) = {s ∈ Tn : ∃ k s := r ⌢ ⟨k⟩ ∧ r ∈ VTn(qj

n−|r|)};
where s ⌢ r denotes the concatenation of the sequences s and r. Intuitively, q0

i is true on
paths of length n+ 1 − i that go “left” on the last step, and q1

i holds instead when they go
“right” on the last step. The truth value of pj on the world mimics that of qj

i+1 on its parent.
Note that the lower index of the variables goes “backward” from the root to the leaves.

A model embedding is a function f : M → N such that:
1. For every a, b ∈ M, if a <M b then f(a) <N f(b);
2. For every p ∈ P(M) and a ∈ M, a ∈ VM(p) iff f(a) ∈ VN (p);
where P(M) denotes the set of propositional variables occurring in the valuation of some
world in M; i.e. P(M) := {p ∈ P : ∃v ∈ Mv ⊩ p}.

By construction, for every n, Tn ⊩ φn. While we will mostly focus on φn in our inductive
arguments, down the line we will need models satisfying φn at the root. Models of φn and
φn vary on whether q0

n or q1
n holds at the root, i.e. in φn the tree starts on the “left” and in

φn on the “right”. Hence we use the following notational convention:
Given a rooted model (A, a), let N+(a) be the set of children of a, i.e. the set of direct

successors of a. Define A := (A,<A, VA) where for j = 1 − j:
The valuations of qj

i and qj
i are swapped at the root;

The valuations of pj and pj are swapped at the children of a.
All unmentioned propositional variables will be evaluated the same as before.
Observe that in the case of the tree models we have defined, the symmetric counterpart Tn

satisfies φn at its root.

4 Since the size of φn is linear in n, we substitute n for |φn| in the above expression.
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▶ Lemma 14. Let n ∈ N and (A, a) be a rooted model such that for all b ∈ A, there is at
most one pair ⟨i, j⟩ such that b ∈ VA(qj

i ), and at most one j such that b ∈ VA(pj).
1. The model (A, a) satisfies φn iff there is a model embedding f : Tn → A such that

f(⟨⟩) = a.
2. The model (A, a) satisfies φn iff there is a model embedding f : Tn → A such that

f(⟨⟩) = a.

Proof. We prove both items simultaneously by induction on n.

Left-to-Right. For n = 0 assume first that (A, a) is a model satisfying the assumptions
of the Lemma and additionally A, a ⊩ φ0. Thus A, a ⊩ q0

1 and since A, a ⊩ µx.φ∗
0(x), then

A, a ⊩ φ∗
0(µx.φ∗

0(x)) and hence for k ∈ 2 there are bk = a such that A, bk ⊩ qk
0 ∧ p0. This

naturally gives us the embedding from T1 into A.
Assume that the induction step holds for n and we will show the equivalence for n+ 1. Let
A, a ⊩ φn+1, then A, a ⊩ q0

n+1 and A, a ⊩ φ∗
n+1(µx.φ∗

n+1(x)), so there are bk = a for k ∈ 2
such that A, bk ⊩ qk

n ∧pj ∧µx.φ∗
n+1(x) while also A, bk ̸⊩ q0

n+1. Since A, bk ̸⊩ q0
n+1, it follows

that A, bk ⊩ φ∗
n+1(x) iff A, bk ⊩ φ∗

n(x). Therefore:

A, bk ⊩ µx.φ∗
n+1(x) ⇔

A, bk ⊩ φ∗
n+1(µx.φ∗

n+1(x)) ⇔
A, bk ⊩ φ∗

n(µx.φ∗
n+1(x)) ⇒

A, bk ⊩ φ∗
n(µx.φ∗

n(x)). (1)

The last implication holds by monotonicity. Thus, we can use the induction hypothesis for
b0↑A and b1↑A to obtain the desired embedding. The case for φn is symmetrical.

Right-to-Left. Let f : T0 → A be a model embedding; we just need to show that A, a ⊩
φ∗

0(µx.φ∗
0(x)). By our assumption there will be elements bk = a for k ∈ 2 such that

A, bk ⊩ qk
0 ∧ p0 and A, bk ̸⊩ qj

1 for any j ∈ 2. Therefore A, bk ⊩ φ∗
0(⊥) and since x occurs

positively in φ∗
0, it follows that A, bk ⊩ φ∗

0(µx.φ∗
0(x)). Hence A, a ⊩ φ∗

0(φ∗
0(µx.φ∗

0(x))), and
so A, a ⊩ µx.φ∗

0(x).
Assume now that the induction step holds for n and let f : Tn+1 → A be a model embedding.
Thus A, a ⊩ q0

n+1 and there are bk = a for k ≤ 2 and model embeddings g0 : Tn → b0↑A,
g1 : Tn → b1↑A. By the induction hypothesis, A, b0 ⊩ φn and A, b1 ⊩ φn. Item 2 is proved
similarly. ◀

Our models will be designed so that they have a critical branch on which Hercules will be
forced to play. This critical branch is described using a “successor” function which goes up
the tree along said branch. This and other technical notions needed to describe Hercules’
strategy are given by the following definition.

▶ Definition 15. Given a rooted model (A, a) and a propositional variable p, we will denote
by A(p) the model ⟨A,<A, V

′⟩ where V ′ is the same as VA except that p will also hold in the
root of the model. In the interest of distinguishing the root of A(p) from A(q) we will write
them as a(p) and a(q), respectively (even though it’s technically the same element).

A model with successors is a model A equipped with a partial function SA : A → A such
that SA(a) is always a child of a.

If A is a rooted model with successors, the critical branch of A is the maximal path
w⃗ = (wi)i≤m such that w0 is the root of A and wi+1 = SA(wi) for all i < m; we say that m
is the critical height of A.
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We denote by S [A] the generated submodel of SA(w0) with SA(w0) as its root and its
induced successor function being SS [A](w0). For a natural number r, we define the rth
iteration of SA by induction so that S(0)[A] := A, S(0)

A (w) := w and on the inductive step
S(r+1)[A] := S [S(r)[A]], S(r+1)

A (w) := SA(S(r)
A (w)).

The partial function SA will not be used in the semantics, but it will help us to describe
Hercules’ strategy. We will begin by defining sets of rooted models An and Bn recursively on
n containing 2n+1 models each. Of those, the former 2n will be used to prove our succinctness
lower bound while the latter 2n are auxiliary5 and used solely in our recursive construction.
The following definition is illustrated in Figures 1 and 2.

▶ Definition 16. First, for n = 0 and for i < 2 we define A0
i with domains the sequences

s of length at most 1 on the natural numbers {0, 1, 2}. Then <A0
i

is the prefix relation and
valuations VA0

i
(pi) = {⟨k⟩ : k ≤ 2}, VA0

i
(qi

1) = {⟨⟩} and VA0
i
(qj

0) = {⟨j⟩} for j < 2. Set
SA0

i
(⟨⟩) = ⟨1 − i⟩ and SA0

i
is undefined otherwise. The B0

i have as domain the sequences s of
length at most 1 in the natural numbers ≤ 1. Their relations are the prefix relations and the
valuations are the following: VB0

i
(pi) = {⟨k⟩ : k ≤ 1}, VB0

i
(qi

1) = {⟨⟩} and VB0
i
(qi

0) = {⟨0⟩}.
Set SB0

i
= {(⟨⟩, ⟨1⟩)}.

For 2 ≤ i < 4, we let A0
i := A0

i−2 and B0
i := B0

i−2. Their successor functions remain the
same. Now, given n, we will define the models An+1

i and Bn+1
i with a case distinction in i.

In this paper, given models A and B, we let A ⨿ B be the model with domain the disjoint
union of A and B,6 accessibility relation <A⨿B being the disjoint union of the accessibility
relations <A and <B, and similarly the valuation. This is the set of all the elements in A
and B with each element labelled by the set to which it belongs.

Case i < 2n+1. First, set X to be( 2n+1−1∐
k=0

An
k (p1)

)
⨿ An

i (p0) ⨿ An
i (p0) ⨿ Bn

i (p0),

and construct An+1
i by adding a (fresh) irreflexive root an+1

i which is below all elements
of X and satisfies q0

n+2. We set

SAn+1
i

:= SAn
i

∪ {(an+1
i , an

i (p0))}.

The models Bn+1
i are defined similarly by setting

Y =
( 2n+1−1∐

k=0
An

k (p1)
)

⨿ An
i (p0) ⨿ Bn

i (p0),

and, as before, adding an irreflexive root bn+1
i that satisfies q0

n+2. Set

SBn+1
i

:= SBn
i

∪ {(bn+1
i , bn

i (p0))}.

Case 2n+1 ≤ i < 2n+2. Here we construct our auxiliary models where An+1
i = An+1

i−2n+1

and Bn+1
i = Bn+1

i−2n+1 .

We remark that the auxiliary models were only used to help us inductively construct the
An

i and Bn
i models. Letting An = {An

i : i < 2n}, Bn = {Bn
i : i < 2n} and Mn = An ∪ Bn,

we will study the (φn,Mn)-meg where φn are the formulae in Definition 13.

5 They are the “right” versions of the former models.
6 Hence elements in the intersection A ∩ B will appear twice; once labelled by A and once labelled by B.
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Figure 1 The figure illustrates models in M0 and M1. At the very top, we see the rooted models
of A0,B0 as well as their auxiliary models. These are then used in the construction of the models of
A1,B1 that we can see in the rest of the graphic.

Each copy of the smaller models being used in the construction is indicated by a box and a label.
It is easy to see that A0

0 embeds T0 (with the image being all but the rightmost leaf) and A0
1 embeds

T 0, but B0
0 and B0

1 do not, hence A0
0 satisfies φ0 while B0

0 does not, and similarly A0
1 satisfies φ0

while B0
1 does not. A similar analysis shows that e.g. A1

0 satisfies φ1 but B1
0 does not.

The successor function will point from the root towards the sub-model in the red, dashed boxes;
for example, S [A1

0] = A0
0(p0). The models S [A1

0] and S [B1
0] are similar enough that Hercules is not

able to tell them apart before reaching their topmost worlds. The remaining branches are there to
make this task as difficult as possible.
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6 The lower bound

In this section, we show that if Hydra sets up the playing field with Mn, then Hercules
cannot win the game in fewer than 2n moves. This is our main technical result and will
require several preparatory lemmas.

As mentioned, each model has a critical branch. More specifically, each An+1
i is very

similar to the respective Bn+1
i , and can only be distinguished by Hercules if he plays along

the critical branch. The number i can be seen as coding a binary string simply by writing
i = en+12n+1 + . . .+ e020 in binary. Then each en+1−r indicates whether the critical branch
goes left or right at step i; note that this includes step 0, corresponding to the label of the
root, i.e. the critical branch of An+1

i goes left first while that of An+1
i goes right.

▶ Lemma 17. For all n, i < 2n+2 and r < n+ 2, the following hold:
1. S(r)[An+1

i ] is isomorphic to An+1−r
k (pe);

2. S(r)[Bn+1
i ] is isomorphic to Bn+1−r

i (pe);
where k ≡ i mod 2n+2−r with k < 2n+2−r and e is the digit en+2−r+1 in the binary expansion
of i.

Proof. We will only prove Item 1 as the case for the Bn+1
i model is identical. The case for

r = 1 is immediate from the definitions of the models and the S function. So assume that
the lemma holds for r < n+ 1. By the induction hypothesis, S(r+1)[An+1

i ] is isomorphic to
S [An+1−r

k (pen+1−r )], which by the induction hypothesis for r = 1, this is in turn isomorphic
to An+1−r

k (pen−r ). ◀

By construction, Tn embeds into An
i but not into Bn

i , yielding the following.

▶ Lemma 18. For all n and all i < 2n, An
i ⊩ φn and Bn

i ⊩ ¬φn.

Proof. For this proof, we will extend our definition of · into embeddings as follows: Given
an embedding f : A → B, we define f : A → B to be such that f(a) = f(a) for all a ∈ A.
Notice that f will still be an embedding if it preserves the root r and maps children of the
root of A into children of the root of B (i.e. f [N+(r)] ⊆ N+(f(r))).

We will make use of Lemma 14. First, we show An
i ⊩ φn by proving the existence of

embeddings fn
i : Tn → An

i for i < 2n by induction on n. Notice that since An
i and Tn have

the same depth, we will also obtain fn
i [N+(⟨⟩)] ⊆ N+(fn

i (⟨⟩)); thus, fn
i will also be an

embedding from Tn to An
i+2n = An

i .
For n = 0, one needs only look at the definition of A0

0. Now assume that the statement holds
for n, let i < 2n+1 be arbitrary, j ≡ i mod 2n and fn

j : Tn → An
j be an embedding given

from our induction hypothesis. We can then define fn+1
i : Tn+1 → An+1

i by mapping:
⟨⟩ to an+1

i ;
⟨0⟩⌢ s to the point corresponding to fn

j (s) on the copy of An
j (p0) in An+1

i ;
⟨1⟩⌢ s to the point corresponding to fn

j (s) on the copy of An
j (p0) in An+1

i .
An+1

i satisfies the base conditions of Lemma 14 and thus our induction step holds for all
i < 2n+1 and so An

i ⊩ φn.
We now show Bn

i ⊩ ¬φn by proving that there are no embeddings as in Lemma 14
f : Tn → Bn

i for all i < 2n by induction on n.
For n = 0, this is clear. Assume that the induction hypothesis holds for n, and suppose, for a
contradiction, that there is an embedding f : Tn → Bn+1

i with f(⟨⟩) = bn+1
i for some i < 2n.

As f is an embedding, {q0
n+1, p

0} ⊆ V −1
Bn+1

i

(
f(⟨0⟩)

)
and the only world that satisfies this

condition in Bn+1
i is the root bn

i of the Bn
i (p0) part of the model. This implies the existence

of a root-preserving embedding f ′ : Tn → Bn
i which contradicts our induction hypothesis.

The case for 2n ≤ i < 2n+1 is done in a similar way. ◀
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Figure 2 The inductive structure of the models for n > 0 with the models of An and Bn to the
left and the auxiliary models to the right (0 ≤ i < 2n ≤ j < 2n+1).

Hence, Hydra can set up the playing field by placing the models An
i on the left and the

models Bn
i on the right. In this case, Hercules requires exponentially many moves to win the

game.

▶ Definition 19. Suppose that M, N are two finite rooted models with successors. We
say that r ∈ N distinguishes M and N if S(r)[M] and S(r)[N ] differ on the truth of a
propositional variable at their roots, but whenever i < r, then S(i)[M] and S(i)[N ] agree on
the truth of all propositional variables at their respective roots. We call r the distinguishing
value of M and N .

Note that the distinguishing value of two models M,N need not be defined, but when it is,
it is unique. Moreover, the distinguishing values of the models we have constructed always
exist.

▶ Lemma 20. Fix n ≥ 1 and 0 ≤ i < j < 2n+1. Then, An
i and An

j are distinguished at some
r < n, satisfying the following properties:
(a) If i < 2n and 2n ≤ j, then An

i and An
j have distinguishing value 0.

(b) If An
i and An

j have distinguishing value r, then An+1
i , An+1

j have distinguishing value
r + 1. The same holds for An+1

2n+1+i, An+1
2n+1+j.

Proof. Item a is immediate since the roots of An
i and An

j are evaluated differently. For
Item b, observe that i, j < 2n+1 implies that An+1

i and An+1
j have roots with the same

valuation. Thus, they are distinguished at r+1. Since An+1
2n+1+i = An+1

i and An+1
2n+1+j = An+1

j ,
these are also distinguished at r + 1. ◀

▶ Lemma 21. Fix n and i < 2n+1. Then, An
i and Bn

i are distinguished at n+ 1.

Proof. By an easy induction on n. ◀

By twins of height k we mean a pair of the form (S(k)[An
i ], S(k)[Bn

i ]), where i < 2n and
k ≤ n+ 1. If L is a set of rooted models from An and R a set of rooted models from Bn, we
say that there are twins of height k in L ◦ R if there are twins (S(k)[An

i ], S(k)[Bn
i ]) such that

S(k)[An
i ] ∈ L and S(k)[Bn

i ] ∈ R.
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We will study how pairs of the form (S(k)[An
i ], S(r)[Bn

i ]) in L(η) ◦ R(η) affect the viability
of the various modal moves for Hercules. This will place restrictions on the relationship
between k and r. For example, we see that Item b below states that if k < r then Hercules
couldn’t play any ⊡ moves as Hydra can get from S(k)[An

i ] into a model isomorphic to any
choice of Hercules in ⊡S(r)[Bn

i ]. Clearly, that also excludes any 2 moves for Hercules, as two
isomorphic models are of the same height and hence any isomorphic model the Hydra would
produce for the corresponding ⊡ move, would also show up in a 2 move. In Lemma 22, all
of the restrictions applying to a reflexive modality will not only just apply to the irreflexive
modality, but also, they will apply even if we substitute ≤ for <.

At this point, let us fix n ≥ 0 and assume that Hydra labels the root with An ◦ Bn.

▶ Lemma 22. For any node η in a closed game tree (T,≺) for the (φn,GL)-meg
(a) If there are twins S(k)[An

i ], S(k)[Bn
i ] in L(η) ◦ R(η) with k < n+ 1 then no literal move

was played in the node η.
(b) If there are S(k)[An

i ], S(r)[Bn
i ] in L(η) ◦ R(η) and k < r then ⊡ was not played in the

node η. If k ≤ r then no 2 move was played in η either.
(c) If there are twins S(k)[An

i ], S(k)[Bn
i ] in L(η) ◦ R(η) and a ⊡ move was played in the node

η, then S(k)[Bn
i ] was chosen.

(d) If there are twins S(k)[An
i ], S(k)[Bn

i ] in L(η) ◦ R(η) and a 3· move was played in the node
η, then either S(k)[An

i ] or S(k+1)[An
i ] was chosen. Hence, if a 3 move was played in η,

then S(k+1)[An
i ] was chosen.

(e) If there are two distinct twins S(k)[An
i ], S(k)[Bn

i ] and S(r)[An
j ], S(r)[Bn

j ] in L(η) ◦ R(η),
then

(i) if r + 1 < k, then no 3· or ⊡ move was played in η. Similarly, if r < k, then no 3

or 2 move was played in η.
(ii) If An

i ,Bn
j are distinguished at r and r = k then no 3 move was played in η. If

instead k = r + 1, then no 3· -move was played in η either.

Proof. Item a is immediate by Lemma 21 as no literal move can be played if there are models
(A,B) ∈ L(η) ◦ R(η) with distinguishing value r > 0.

For Item b, if r = n+ 1, then the statement is clear by the definition of the B0
j . Thus, assume

r < n + 1. Then observe that S(r)[Bn
i ] ⊆ ⊡S(k)[An

i ] and hence ⊡S(r)[Bn
i ] ⊆ ⊡S(k)[An

i ].
Hence, no matter where S(r)[Bn

i ] is mapped in ⊡S(r)[Bn
i ] by Hercules, Hydra will include an

isomorphic model in its response. Observe that if k = r then we still have that 2S(k)[Bn
i ] ⊆

2S(k)[An
i ].

In Item c, since ⊡A = 2A ∪ {A} for any model A, we get that 2S(k)[Bn
i ] ⊆ ⊡S(k)[An

i ] and
thus only S(k)[Bn

i ] can be used by Hercules.

Moving into Item d, the cases for k = n+1 and for n = 0 are trivial; therefore, let k < n+1 and
0 < n. By Lemma 17 it is sufficient to prove the statement for k = 0.7 Now assume, aiming
towards a contradiction, that neither of An

i and S [An
i ] were chosen by Hercules. We will show

that all of the remaining alternatives are isomorphic to some model in 2Bn
i . Let us assume

that i < 2n, then Hercules could not choose any model in ⊡{An−1
j (p1), An−1

i (p0), Bn−1
i (p0)}

as all those models belong by definition in Bn
i . Finally, Hercules could not have chosen a

model in 2An−1
i (p0) since 2An−1

i (p0) = 2An−1
i (p1) ⊆ ⊡Bn

i .

7 Formally we should prove it for An
i (pe), Bn

i (pe), but the proof is otherwise identical.
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In Item e-i, we can assume by Lemma 17 that r = 0 and k ≥ 2, and we will show that
S(2)[An

i ] ∈ ⊡Bn
j . This will imply that ⊡S(2)[An

i ] ⊆ ⊡Bn
j , thus giving us S(k)[An

i ] ∈ ⊡Bn
j .

Since i ≠ j, An−1
i (pe) is one of the model branches of Bn

j by definition for some e. Then
S(2)[An

i ] = S [An−1
i (pe)] ∈ ⊡Bn

j .

Finally, we prove Item e-ii. The case for k = n+ 1 is trivial by the definition of the game.
Since r = k < n + 1 is the distinguishing value, by Lemma 17 it follows that S(k)[An

i ] is
isomorphic to An−k

i′ (pe) and S(k)[An
j ] is isomorphic to An−k

j′ (pe) for some i, j, e. Thus we can
without loss of generality assume that r = k = 0. We can assume without loss of generality
that i < 2n ≤ j, then by definition An−1

i ∈ 2Bn
i . ◀

▶ Definition 23. In the closed game tree (T,≺), let Λ(i) be the set of leaves η such that
1. for every η′ ⪯ η there is r ≥ 0 such that the twins (S(r)[An

i ], S(r)[Bn
i ]) appear in

L(η′) ◦ R(η′) and,
2. for every ζ ≺ η, every child σ of ζ with ζ ≺ σ ⪯ η and every other child σ′ of ζ, if

S(r)[An
i ], S(r)[Bn

i ] are in L(σ′) ◦ R(σ′) then S(k)[An
i ], S(k)[Bn

i ] are in L(σ) ◦ R(σ) for
some k < r.

More informally, if η ∈ Λ(i) then the path to η from the root is exactly the path that by
Condition 2 “locally” minimises the height r of the (S(r)[An

i ], S(r)[Bn
i ]) twins is chosen.

▶ Lemma 24. For a closed (φn,GL)-meg game tree (T,≺) in which the Hydra plays
optimally, the following hold:
(a) ∀ i < 2n, Λ(i) ̸= ∅;
(b) ∀ i < 2n ∀ η ∈ Λ(i) ∀ k ≤ n + 1 there is a ζ ⪯ η such that k is least with the property

that S(k)[An
i ], S(k)[Bn

i ] are in L(ζ) ◦ R(ζ);
(c) if 0 ≤ i < j < 2n, then Λ(i) ∩ Λ(j) = ∅.

Proof. We will prove each Item by contradiction, starting with Item a. Assume otherwise
and let ζ be a maximal node of (T,≺) for which Conditions 1 and 2 of Definition 23 hold.
Let k be the least natural number such that (S(k)[An

i ], S(k)[Bn
i ]) ∈ L(ζ) ◦ R(ζ). As ζ is not

a leaf, Hercules has not played a literal move. If Hercules plays a ∨-move, then at least one
of the two children of ζ, call it ζ ′, will have S(k)[An

i ] ∈ L(ζ ′). But since R(ζ) = R(ζ ′), we
get that (S(k)[An

i ], S(k)[Bn
i ]) ∈ L(ζ ′) ◦ R(ζ ′) and this is the least k with such property since

L(ζ ′) ⊆ L(ζ). The case for the ∧-move comes contrary to our maximality assumption for ζ
in the same way as the ∨-move case. If Hercules plays a 3 or a 3· -move, then by Lemma 22
(S(k)[An

i ], S(k)[Bn
i ]) or (S(k+1)[An

i ], S(k+1)[Bn
i ]) will belong to L(ζ ′) ◦ R(ζ ′) with ζ ′ being the

only child of ζ. This satisfies Condition 1, while Condition 2 holds trivially; this contradicts
our minimality assumption for ζ. By Lemma 22, Hercules has not played a 2-move, and this
leaves only the ⊡-move. In this case, Lemma 22 once more dictates that (S(k)[An

i ], S(k)[Bn
i ])

will belong in the only child of ζ. As with the 3· -case, this comes contrary to the minimality
condition for ζ. As such, we have reached a contradiction and so ∀i < 2n, Λ(i) ̸= ∅.

Now for Item b, assume otherwise for some η and k and let ζ ⪯ η be greatest with an r < k

where (S(r)[An
i ], S(r)[Bn

i ]) ∈ L(ζ) ◦ R(ζ). Clearly ζ ≺ η as otherwise a literal move could
be played, something only possible if n + 1 = r < k ≤ n + 1. Thus there is a child σ ⪯ η

of ζ. By Lemma 22 and by the definition of Λ(i), no matter what move Hercules performs,
(S(s)[An

i ], S(s)[Bn
i ]) ∈ L(σ) ◦ R(σ) for some s ≤ k, contradicting either the maximality of ζ

or our original assumption.
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Finally we prove Item c. Assume the statement doesn’t hold, then there are i < j < 2n such
that η ∈ Λ(i) ∩ Λ(j) for some leaf η ∈ T . By Lemma 20 An

i and An
j have some distinguishing

value m ≤ n. Let ζ ≺ η be maximal such that the least r and k with

(S(r)[An
i ], S(r)[Bn

i ]), (S(k)[An
j ], S(k)[Bn

j ]) ∈ L(ζ) ◦ R(ζ) (2)

are such that r ≤ m or k ≤ m. Assume that r = m ≤ k; it will always be the case that one
of them will be m from the proof of Item b. Clearly no ∨ or ∧-move could have been played
at ζ, as then the child σ ≺ η of ζ would either invalidate the choice of ζ, or otherwise, σ
would then be a witness of a failure of Condition 2 for η, thus invalidating the assumption
η ∈ Λ(i) ∩ Λ(j). Similarly, no ⊡-move could have been played either as it would contradict
our choice of the node ζ. If a 3· -move was played at ζ then by Lemma 22 it has to be that
r = k. Hence, the choice of ζ will be violated as (2) will also hold for its child σ ⪯ η. Finally,
the 3 and 2-moves are simpler cases of the 3· and ⊡-moves. ◀

It follows that any closed game tree has at least 2n leaves, yielding our main technical
result.

▶ Proposition 25. For every n ≥ 1, Hercules has no winning strategy of less than 2n + 2
moves on the (φn,Mn)-meg.

Proof. Let (T,≺) be a closed game tree of (φn,Mn)-meg. By Lemma 24, the sets of leaves
{Λ(i) : i < 2n} are non-empty and disjoint. Since each leaf represents a literal move being
played, Hercules must have played at least 2n literal moves. As there are at least 2n leaves,
at least one branching move must have been played. Furthermore, by the definition of Λ(i),
at least one modal rule must have been played. As such, Hercules must have played at least
2n + 2 moves. ◀

7 Succinctness

This section contains the main results of our study, first showing an exponential succinctness
result in a wide range of Kripke frames. An example of such an application can be found
in [12]. We will then examine some additional benefits we can obtain from the connection of
the interpolation and the fixed point theorems of GL.

7.1 Succinctness of definable fixed points
Proposition 25 is a powerful tool for proving succinctness results. In general, succinctness
results for a class of models apply to any larger class. Thus, our results apply not only to
GL models, but also to a wide range of classes of Kripke models.

▶ Theorem 26. Let C be any class of Kripke models containing all finite GL models or all
finite Grz models. Then, there is a sequence of formulas (φ0(x), φ1(x), . . .) which are both
modalized and positive on x with |φi(x)| = O(i) such that for any i ∈ N and any ψ ∈ L33· ,
if φi(ψ) ≡ ψ over C, then |ψ| ≥ 2i.

Proof. The sequence consists of the formulae φ∗
i in Definition 13. Counting the symbols

present in the formulas, we get, by a simple induction, |φ∗
n| ≤ 41 · n. Assume, towards a

contradiction, that there is some ψn ∈ L3 such that ψ ≡ µx.φ∗
n(x) over C and |ψn| < 2n.

But ψ′
n := q0

n ∧ψn ≡ φn by Definition 13, making it an L3 equivalent to φn of size < 2n + 2.
However, by Theorem 11, this contradicts Proposition 25. ◀
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▶ Corollary 27. Let C be any class of Kripke models containing all finite GL models or
all finite Grz models. Then, the languages Lµ

3 and Lµ
3· are exponentially more succinct

than L33· over C. To be precise, for Lµ ∈ {Lµ
3,Lµ

3· }, there is a sequence of Lµ formulas
(φ0, φ1, . . .) with |φi| = O(i) such that for any i ∈ N and any ψ ∈ L33· , if φi ≡ ψ over C,
then |ψ| ≥ 2i.

Proof. Observe that if φ ≡ ψ over C, then it is also the case over GL or Grz. As such, by
Theorem 26, the sequence of Lµ

3 formulae φi of Definition 13 is exponentially more succinct
than their L33· counterparts. Finally, if we consider the sequence of Lµ

3· formulae ψi that
are the same as φi if we were to substitute 3 by 3· , we know that ψi ≡ φi. ◀

7.2 Size of interpolants
A somewhat surprising link to this study is that with the interpolation theorem. The
interpolation has been studied in many logics and via both model theoretic and proof
theoretic means [8, 15]. However, while proof theoretic proofs of the interpolation theorem
give us bounds for the proof size, no good bounds on the interpolants can be immediately
derived. The link in this case is primarily tied to one of the proofs of the fixed-point theorem
which we will briefly present here. Let us first recall the interpolation theorem.

▶ Theorem 28 (Craig interpolation for GL). Let φ and ψ be such that GL ⊢ φ → ψ. There
exists some formula σ containing only variables occurring in both φ and ψ such that

GL ⊢ φ → σ and GL ⊢ σ → ψ.

Proof. See e.g. [8]. ◀

Interpolation then easily implies the definability theorem of Beth.

▶ Theorem 29 (Beth’s definability theorem for GL [5]). For any φ(x) and y different from
x, if GL ⊢ φ(x) ∧φ(y) → (x ↔ y) then there is some formula ψ containing only variables in
φ(x) excluding x such that GL ⊢ φ(x) → (ψ ↔ x).

Proof. By the assumptions GL ⊢ φ(x) ∧ x → (φ(y) → y), then ψ is the formula given by
Craig’s interpolation theorem. For more details, see e.g. [7]. ◀

The proof proceeds by one proving uniqueness of fixed points in the following sense by
Bernardi.

▶ Theorem 30 (Bernardi [3]). Let φ(x) be modalized in x. Then

GL ⊢ ⊡(φ(x) ↔ x) ∧ ⊡(φ(y) ↔ y) → (x ↔ y).

Proof. See [3, 4, 7]. ◀

Then by the Beth definability theorem we can find some appropriate ψ such that GL ⊢
⊡(φ(x) ↔ x) → (ψ ↔ x). As a result, succinctness results for the fixed-point theorem of
GL can be directly applied to provide succinctness results on the size of the interpolants.

▶ Corollary 31. There exist sequences of formulae (φ0, φ1, . . .) and (ψ0, ψ1, . . .) both of size
|φi| , |ψi| ≤ O(i) and such that GL ⊢ φi → ψi for every i, while every interpolant σi of φi

and ψi is of size |σi| = 2Ω(i).

Proof. The sequences consist of the formulae φi(x) := ⊡(φ∗
i (x) ↔ x) ∧ x and ψi(y) :=

⊡(φ∗
i (y) ↔ y) → y. Then any interpolant σi of φi and ψi is necessarily a fixed point of φ∗

i (x)
which by Theorem 26 must have size at least exponential in i. ◀
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8 Conclusion

We have shown that the µ-calculus with only one occurrence of a fixed point operator is
exponentially more succinct than basic modal logic, even when equipped with a reflexive
modality and even in the setting of GL, where fixed points are already definable. This yields
a lower bound on the fixed point formulas provided by Theorems 6 and 7, hence providing
the first lower bounds for these celebrated results. This places the µ-calculus over GL or
Grz as a powerful formal system in terms of expressivity, despite the theoretical definability
of fixed points.

There is a small gap between the upper and lower bound for the fixed-point theorem for
GL, with the lower bound being 2Ω(n) and the upper 2O(n log(n)); it is unclear which of the
two is tighter. In contrast, for Grz we obtain a larger gap of 2Ω(n) vs. 2O(n3); in this case
we believe that the upper bound can be significantly improved, which we plan to address in
future work.

Our proof of succinctness of the interpolants is a rather Post Hoc expansion of our
succinctness for the fixed-point results coming directly from the bibliography. As such it is
restricted to interpolants over GL. As far as we know, a result of this form is new and hence,
a lucrative open problem would be expanding the methods of model equivalence games to
get succinctness lower bounds for interpolants over S4 or K4 frames as an example.

Finally, we note that our techniques provide lower bound on formula length but not on
the number of subformulas, or equivalently, the size of dag-like representations of formulas.
This is particularly relevant since issues such as complexity can be bounded with respect to
the latter measure, which may in fact be much smaller. Finding lower bounds on the number
of subformulas would require a non-trivial modification of the model equivalence game; we
leave the development of such games and the question of whether the µ-calculus remains
exponentially succinct over dag-like formulas as challenging avenues for future research.
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