
The Complexity of Deciding Characteristic
Formulae in Van Glabbeek’s Branching-Time
Spectrum
Luca Aceto # Ñ

Department of Computer Science, Reykjavik University, Iceland
Gran Sasso Science Institute, L’Aquila, Italy

Antonis Achilleos # Ñ

Department of Computer Science, Reykjavik University, Iceland

Aggeliki Chalki #Ñ

Department of Computer Science, Reykjavik University, Iceland

Anna Ingólfsdóttir # Ñ

Department of Computer Science, Reykjavik University, Iceland

Abstract
Characteristic formulae give a complete logical description of the behaviour of processes modulo
some chosen notion of behavioural semantics. They allow one to reduce equivalence or preorder
checking to model checking, and are exactly the formulae in the modal logics characterizing classic
behavioural equivalences and preorders for which model checking can be reduced to equivalence or
preorder checking.

This paper studies the complexity of determining whether a formula is characteristic for some
process in each of the logics providing modal characterizations of the simulation-based semantics in
van Glabbeek’s branching-time spectrum. Since characteristic formulae in each of those logics are
exactly the satisfiable and prime ones, this article presents complexity results for the satisfiability and
primality problems, and investigates the boundary between modal logics for which those problems
can be solved in polynomial time and those for which they become computationally hard.

Amongst other contributions, this article also studies the complexity of constructing characteristic
formulae in the modal logics characterizing simulation-based semantics, both when such formulae
are presented in explicit form and via systems of equations.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Complexity theory and logic

Keywords and phrases Characteristic formulae, prime formulae, bisimulation, simulation relations,
modal logics, complexity theory, satisfiability

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.26

Related Version Full Version: https://doi.org/10.48550/arXiv.2405.13697 [1]

Funding This work has been funded by the projects “Open Problems in the Equational Logic of
Processes (OPEL)” (grant no. 196050), “Mode(l)s of Verification and Monitorability” (MoVeMnt)
(grant no. 217987), and “Learning and Applying Probabilistic Systems” (grant no. 206574-051) of
the Icelandic Research Fund.

Acknowledgements The authors thank the anonymous reviewers for comments that led to improve-
ments in the paper. This paper is dedicated to the memory of Rance Cleaveland (1961–2024), who
used characteristic formulae to compute behavioural relations, logically and efficiently.

© Luca Aceto, Antonis Achilleos, Aggeliki Chalki, and Anna Ingólfsdóttir;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 26; pp. 26:1–26:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luca@ru.is
https://en.ru.is/the-university/faculty-and-staff/luca/
https://orcid.org/0000-0001-8554-6907
mailto:antonios@ru.is
https://sites.google.com/view/antonisachilleos
https://orcid.org/0000-0002-1314-333X
mailto:angelikic@ru.is
https://aggelikichal.github.io/
https://orcid.org/0000-0001-5378-0467
mailto:annai@ru.is
https://en.ru.is/the-university/faculty-and-staff/annai
https://orcid.org/0000-0001-8362-3075
https://doi.org/10.4230/LIPIcs.CSL.2025.26
https://doi.org/10.48550/arXiv.2405.13697
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 The Complexity of Deciding Characteristic Formulae

1 Introduction

Several notions of behavioural relations have been proposed in concurrency theory to describe
when one process is a suitable implementation of another. Many such relations have been
catalogued by van Glabbeek in his seminal linear-time/branching-time spectrum [22], together
with a variety of alternative ways of describing them including testing scenarios and axiom
systems. To our mind, modal characterizations of behavioural equivalences and preorders are
some of the most classic and pleasing results in concurrency theory – see, for instance, [25] for
the seminal Hennessy-Milner theorem and [12, 16, 17, 22] for similar results for other relations
in van Glabbeek’s spectrum and other settings. By way of example, in their archetypal modal
characterization of bisimilarity, Hennessy and Milner have shown in [25] that, under a mild
finiteness condition, two processes are bisimilar if, and only if, they satisfy the same formulae
in a multi-modal logic that is now often called Hennessy-Milner logic. Apart from its intrinsic
theoretical interest, this seminal logical characterization of bisimilarity means that, when
two processes are not bisimilar, there is always a formula that distinguishes between them.
Such a formula describes a reason why the two processes are not bisimilar, provides useful
debugging information and can be algorithmically constructed over finite processes – see,
for instance, [8, 14] and [35], where Martens and Groote show that, in general, computing
minimal distinguishing Hennessy-Milner formulae is NP-hard.

On the other hand, the Hennessy-Milner theorem seems to be less useful to show that two
processes are bisimilar, since that would involve verifying that they satisfy the same formulae,
and there are infinitely many of those. However, as shown in works such as [3, 6, 12, 23, 39], the
logics that underlie classic modal characterization theorems for equivalences and preorders
over processes allow one to express characteristic formulae. Intuitively, a characteristic
formula χ(p) for a process p gives a complete logical characterization of the behaviour of p
modulo the behavioural semantics of interest ≲, in the sense that any process is related to p
with respect to ≲ if, and only if, it satisfies χ(p).1 Since the formula χ(p) can be constructed
from p, characteristic formulae reduce the problem of checking whether a process q is related
to p by ≲ to a model checking problem, viz. whether q satisfies χ(p). See, for instance, the
classic reference [15] for applications of this approach.

Characteristic formulae, thus, allow one to reduce equivalence and preorder checking to
model checking. But what model checking problems can be reduced to equivalence/preorder
checking ones? To the best of our knowledge, that question was first studied by Boudol and
Larsen in [11] in the setting of modal refinement over modal transition systems. See [3, 4]
for other contributions in that line of research. The aforementioned articles showed that
characteristic formulae coincide with those that are satisfiable and prime. (A formula is
prime if whenever it entails a disjunction φ1 ∨ φ2, then it must entail φ1 or φ2.) Moreover,
characteristic formulae with respect to bisimilarity coincide with the formulae that are
satisfiable and complete [7]. (A modal formula is complete if, for each formula φ, it entails
either φ or its negation.) The aforementioned results give semantic characterizations of
the formulae that are characteristic within the logics that correspond to the behavioural
semantics in van Glabbeek’s spectrum. Those characterizations tell us for what logical
specifications model checking can be reduced to equivalence or preorder checking. However,

1 Formulae akin to characteristic ones first occurred in the study of equivalence of structures using first-
order formulae up to some quantifier rank. See, for example, the survey paper [40] and the textbook [20].
The existence of formulae in first-order logic with counting that characterize graphs up to isomorphism
has significantly contributed to the study of the complexity of the Graph Isomorphism problem – see,
for instance, [13, 30].

L. Aceto, A. Achilleos, A. Chalki, and A. Ingólfsdóttir 26:3

given a specification expressed as a modal formula, can one decide whether that formula
is characteristic and therefore can be model checked using algorithms for behavioural equi-
valences or preorders? And, if so, what is the complexity of checking whether a formula is
characteristic? Perhaps surprisingly, those questions were not addressed in the literature
until the recent papers [2, 7], where it is shown that, in the setting of the modal logics that
characterize bisimilarity over natural classes of Kripke structures and labelled transition
systems, the problem of checking whether a formula is characteristic for some process modulo
bisimilarity is computationally hard and, typically, has the same complexity as validity
checking, which is PSPACE-complete for Hennessy-Milner logic and EXP-complete for its
extension with fixed-point operators [26, 33] and the µ-calculus [31].

The aforementioned hardness results for the logics characterizing bisimilarity tell us that
deciding whether a formula is characteristic in bisimulation semantics is computationally
hard. But what about the less expressive logics that characterize the coarser semantics in
van Glabbeek’s spectrum? And for what logics characterizing relations in the spectrum does
computational hardness manifest itself? Finally, what is the complexity of computing a
characteristic formula for a process?

The aim of this paper is to answer the aforementioned questions for some of the simulation-
based semantics in the spectrum. In particular, we study the complexity of determining
whether a formula is characteristic modulo the simulation [36], complete simulation and ready
simulation preorders [10, 34], as well as the trace simulation and the n-nested simulation
preorders [24]. Since characteristic formulae are exactly the satisfiable and prime ones for each
behavioural relation in van Glabbeek’s spectrum [3], the above-mentioned tasks naturally
break down into studying the complexity of satisfiability and primality checking for formulae
in the fragments of Hennessy-Milner logic that characterize those preorders. By using a
reduction to the, seemingly unrelated, reachability problem in alternating graphs, as defined
by Immerman in [28, Definition 3.24], we discover that both those problems are decidable in
polynomial time for the simulation and the complete simulation preorders, as well as for the
ready simulation preorder when the set of actions has constant size. On the other hand, when
the set of actions is unbounded (that is, it is an input of the algorithmic problem at hand),
the problems of checking satisfiability and primality for formulae in the logic characterizing
the ready simulation preorder are NP-complete and coNP-complete respectively. We also
show that deciding whether a formula is characteristic in that setting is US-hard [9] (that is,
it is at least as hard as the problem of deciding whether a given Boolean formula has exactly
one satisfying truth assignment) and belongs to DP, which is the class of languages that are
the intersection of one language in NP and of one in coNP [38].2 These negative results are
in stark contrast with the positive results for the simulation and the complete simulation
preorder, and indicate that augmenting the logic characterizing the simulation preorder
with formulae that state that a process cannot perform a given action suffices to make
satisfiability and primality checking computationally hard. In passing, we also prove that, in
the presence of at least two actions, (1) for the logics characterizing the trace simulation
and 2-nested simulation preorders, satisfiability and primality checking are NP-complete and
coNP-hard respectively, and deciding whether a formula is characteristic is US-hard, (2) for
the logic that characterizes the trace simulation preorder, deciding whether a formula is
characteristic is fixed-parameter tractable [18], with the modal depth of the input formula
as the parameter, when the size of the action set is a constant, and (3) deciding whether

2 The class DP contains both NP and coNP, and is contained in the class of problems that can be solved
in polynomial time with an NP oracle.

CSL 2025

26:4 The Complexity of Deciding Characteristic Formulae

a formula is characteristic in the modal logic for the 3-nested simulation preorder [24] is
PSPACE-hard. (The proof of the last result relies on “simulating” Ladner’s reduction proving
the PSPACE-hardness of satisfiability for modal logic [32] using the limited alternations of
modal operators allowed by the logic for the 3-nested simulation preorder.)

We also study the complexity of computing characteristic formulae for finite, loop-free
processes modulo the above-mentioned simulation semantics. To do so, we consider two
different representations for formulae, namely an explicit form, where formulae are given by
strings of symbols generated by their respective grammars, and a declarative form, where
formulae are described by systems of equations. We prove that, even for the coarsest
semantics we consider, such as the simulation and complete simulation preorders, computing
the characteristic formula in explicit form for a finite, loop-free process cannot be done in
polynomial time, unless P = NP. On the other hand, the characteristic formula for a process
modulo the preorders we study, apart from the trace simulation preorder, can be computed in
polynomial time if the output is given in declarative form. Intuitively, this is due to the fact
that, unlike the explicit form, systems of equations allow for sharing of subformulae and there
are formulae for which this sharing leads to an exponentially more concise representation.
Finally, in sharp contrast to that result, we prove that, modulo the trace simulation preorder,
even if characteristic formulae are always of polynomial declaration size and polynomial
equational length, they cannot be efficiently computed unless P = NP. In passing, we remark
that all the aforementioned lower and upper bounds hold also for finite processes with loops,
provided that, as done in [6, 29, 39], we add greatest fixed points or systems of equations
interpreted as greatest fixed points to the modal logics characterizing the semantics we study
in this article.

We summarize our results in Table 2. We provide their proofs in the technical appendices
of the full version of the paper [1].

2 Preliminaries

In this paper, we model processes as finite, loop-free labelled transition systems (LTS). A
finite LTS is a triple S = (P,A,−→), where P is a finite set of states (or processes), A is
a finite, non-empty set of actions and −→ ⊆ P × A× P is a transition relation. As usual,
we use p a−→ q instead of (p, a, q) ∈ −→. For each t ∈ A∗, we write p t−→ q to mean that
there is a sequence of transitions labelled with t starting from p and ending at q. An LTS is
loop-free iff p

t−→ p holds only when t is the empty trace ε. A process q is reachable from
p if p t−→ q, for some t ∈ A∗. We define the size of an LTS S = (P,A,−→), denoted by
|S|, to be |P | + |−→|. The size of a process p ∈ P , denoted by |p|, is the cardinality of
reach(p) = {q | q is reachable from p} plus the cardinality of the set −→ restricted to reach(p).
We define the set of initials of p, denoted I(p), as the set {a ∈ A | p a−→ p′ for some p′ ∈ P}.
We write p a−→ if a ∈ I(p), p

a

̸→ if a ̸∈ I(p), and p ̸→ if I(p) = ∅. A sequence of actions
t ∈ A∗ is a trace of p if there is a q such that p t−→ q. We denote the set of traces of p by
traces(p). The depth of a finite, loop-free process p, denoted by depth(p), is the length of a
longest trace t of p.

In what follows, we shall often describe finite, loop-free processes using the fragment of
Milner’s CCS [37] given by the following grammar:

p ::= 0 | a.p | p+ p,

where a ∈ A. For each action a and terms p, p′, we write p a−→ p′ iff
(i) p = a.p′ or
(ii) p = p1 + p2, for some p1, p2, and p1

a−→ p′ or p2
a−→ p′ holds.

L. Aceto, A. Achilleos, A. Chalki, and A. Ingólfsdóttir 26:5

In this paper, we consider the following relations in van Glabbeek’s spectrum: simula-
tion, complete simulation, ready simulation, trace simulation, 2-nested simulation, 3-nested
simulation, and bisimilarity. Their definitions are given below.

▶ Definition 1 ([37, 22, 3]). We define each of the following preorders as the largest binary
relation over P that satisfies the corresponding condition.
(a) Simulation preorder (S): p ≲S q ⇔ for all p a−→ p′ there exists some q a−→ q′ such that

p′ ≲S q
′.

(b) Complete simulation (CS): p ≲CS q ⇔
(i) for all p a−→ p′ there exists some q a−→ q′ such that p′ ≲CS q

′, and
(ii) I(p) = ∅ iff I(q) = ∅.

(c) Ready simulation (RS): p ≲RS q ⇔
(i) for all p a−→ p′ there exists some q a−→ q′ such that p′ ≲RS q

′, and
(ii) I(p) = I(q).

(d) Trace simulation (TS): p ≲T S q ⇔
(i) for all p a−→ p′ there exists some q a−→ q′ such that p′ ≲T S q

′, and
(ii) traces(p) = traces(q).

(e) n-Nested simulation (nS), where n ≥ 1, is defined inductively as follows: The 1-nested
simulation preorder ≲1S is ≲S, and the n-nested simulation preorder ≲nS for n > 1 is
the largest relation such that p ≲nS q ⇔

(i) for all p a−→ p′ there exists some q a−→ q′ such that p′ ≲nS q
′, and

(ii) q ≲(n−1)S p.
(f) Bisimilarity (BS): ≲BS is the largest symmetric relation satisfying the condition defining

the simulation preorder.

It is well-known that bisimilarity is an equivalence relation and all the other relations
are preorders [22, 37]. We sometimes write p ∼ q instead of p ≲BS . Moreover, we have that
∼ ⊊ ≲3S ⊊ ≲2S ⊊ ≲T S ⊊ ≲RS ⊊ ≲CS ⊊ ≲S – see [22].

▶ Definition 2 (Kernels of the preorders). For each X ∈ {S,CS,RS, TS, 2S, 3S}, the kernel
≡X of ≲X is the equivalence relation defined thus: for every p, q ∈ P , p ≡X q iff p ≲X q and
q ≲X p.

Each relation ≲X , where X ∈ {S,CS,RS, TS, 2S, 3S,BS}, is characterized by a fragment
LX of Hennessy-Milner logic, HML, defined as follows [22, 3].

▶ Definition 3. For X ∈ {S,CS,RS, TS, 2S, 3S,BS}, LX is defined by the corresponding
grammar given below (a ∈ A):
(a) LS: φS ::= tt | ff | φS ∧ φS | φS ∨ φS | ⟨a⟩φS .

(b) LCS: φCS ::= tt | ff | φCS ∧φCS | φCS ∨φCS | ⟨a⟩φCS | 0, where 0 =
∧

a∈A[a]ff .
(c) LRS: φRS ::= tt | ff | φRS ∧ φRS | φRS ∨ φRS | ⟨a⟩φRS | [a]ff .
(d) LT S: φT S ::= tt | ff | φT S ∧ φT S | φT S ∨ φT S | ⟨a⟩φT S | ψT S, where

ψT S ::= ff | [a]ψT S.
(e) L2S: φ2S ::= tt | ff | φ2S ∧ φ2S | φ2S ∨ φ2S | ⟨a⟩φ2S | ¬φS .

(f) L3S: φ3S ::= tt | ff | φ3S ∧ φ3S | φ3S ∨ φ3S | ⟨a⟩φ3S | ¬φ2S .

(g) HML (LBS): φBS ::= tt | ff | φBS∧φBS | φBS∨φBS | ⟨a⟩φBS | [a]φBS | ¬φBS .

Note that the explicit use of negation in the grammar for LBS is unnecessary. However,
we included the negation operator explicitly so that LBS extends syntactically each of the
other modal logics presented in Definition 3.

CSL 2025

26:6 The Complexity of Deciding Characteristic Formulae

Given a formula φ ∈ LBS , the modal depth of φ, denoted by md(φ), is the maximum
nesting of modal operators in φ. (See [1, Appendix A] for the formal definition.)

Truth in an LTS S = (P,A,−→) is defined via the satisfaction relation |= as follows:

p |= tt and p ̸|= ff ;
p |= ¬φ iff p ̸|= φ;
p |= φ ∧ ψ iff both p |= φ and p |= ψ;
p |= φ ∨ ψ iff p |= φ or p |= ψ;

p |= ⟨a⟩φ iff there is some p a−→ q such that q |= φ;

p |= [a]φ iff for all p a−→ q it holds that q |= φ.

If p |= φ, we say that φ is true, or satisfied, in p. If φ is satisfied in every process in every
LTS, we say that φ is valid. Formula φ1 entails φ2, denoted by φ1 |= φ2, if every process
that satisfies φ1 also satisfies φ2. Moreover, φ1 and φ2 are logically equivalent, denoted
by φ1 ≡ φ2, if φ1 |= φ2 and φ2 |= φ1. A formula φ is satisfiable if there is a process that
satisfies φ. Finally, Sub(φ) denotes the set of subformulae of formula φ.

For L ⊆ LBS , we define the dual fragment of L to be L = {φ | ¬φ ∈ L}, where ¬tt = ff ,
¬ff = tt, ¬(φ ∧ ψ) = ¬φ ∨ ¬ψ, ¬(φ ∨ ψ) = ¬φ ∧ ¬ψ, ¬[a]φ = ⟨a⟩¬φ, ¬⟨a⟩φ = [a]¬φ, and
¬¬φ = φ. It is not hard to see that p |= ¬φ iff p ̸|= φ, for every process p. Given a process p,
we define L(p) = {φ ∈ L | p |= φ}. A simplification of the Hennessy-Milner theorem gives a
modal characterization of bisimilarity over finite processes. An analogous result is true for
every preorder examined in this paper.

▶ Theorem 4 (Hennessy-Milner theorem [25]). For all processes p, q in a finite LTS, p ∼ q

iff LBS(p) = LBS(q).

▶ Proposition 5 ([22, 3]). Let X ∈ {S,CS,RS, TS, 2S, 3S}. Then p ≲X q iff LX(p) ⊆ LX(q),
for all p, q ∈ P .

▶ Remark 6. Neither ff nor disjunction are needed in several of the modal characterizations
presented in the above result. The reason for adding those constructs to all the logics is
that doing so makes our subsequent results more general and uniform. For example, having
ff and disjunction in all logics allows us to provide algorithms that determine whether a
formula in a logic L is prime with respect to a sublogic.

▶ Definition 7 ([11, 4]). Let L ⊆ LBS. A formula φ ∈ LBS is prime in L if for all φ1, φ2 ∈ L,
φ |= φ1 ∨ φ2 implies φ |= φ1 or φ |= φ2.

When the logic L is clear from the context, we say that φ is prime. Note that every
unsatisfiable formula is trivially prime in L, for every L.

▶ Example 8. The formula ⟨a⟩tt is prime in LS . Indeed, let φ1, φ2 ∈ LS and assume that
⟨a⟩tt |= φ1 ∨ φ2. Since a.0 |= ⟨a⟩tt, without loss of generality, we have that a.0 |= φ1. We
claim that ⟨a⟩tt |= φ1. To see this, let p be some process such that p |= ⟨a⟩tt – that is,
a process such that p a−→ p′ for some p′. It is easy to see that a.0 ≲S p. Since a.0 |= φ1,
Proposition 5 yields that p |= φ1, proving our claim and the primality of ⟨a⟩tt. On the other
hand, the formula ⟨a⟩tt ∨ ⟨b⟩tt is not prime in LS . Indeed, ⟨a⟩tt ∨ ⟨b⟩tt |= ⟨a⟩tt ∨ ⟨b⟩tt, but
neither ⟨a⟩tt ∨ ⟨b⟩tt |= ⟨a⟩tt nor ⟨a⟩tt ∨ ⟨b⟩tt |= ⟨b⟩tt hold.

The definition of a characteristic formula within logic L is given next.

L. Aceto, A. Achilleos, A. Chalki, and A. Ingólfsdóttir 26:7

▶ Definition 9 ([5, 23, 39]). Let L ⊆ LBS. A formula φ ∈ L is characteristic for p ∈ P

within L iff, for all q ∈ P , it holds that q |= φ ⇔ L(p) ⊆ L(q). We denote by χ(p) the unique
characteristic formula for p with respect to logical equivalence.

▶ Remark 10. Let X ∈ {S,CS,RS, TS, 2S, 3S,BS}. In light of Theorem 4 and Proposition 5,
a formula φ ∈ LX is characteristic for p within LX iff, for all q ∈ P , it holds that q |= φ ⇔
p ≲X q. This property is often used as an alternative definition of characteristic formula for
process p modulo ≲X . In what follows, we shall employ the two definitions interchangeably.

In [3, Table 1 and Theorem 5], Aceto, Della Monica, Fabregas, and Ingólfsdóttir presented
characteristic formulae for each of the semantics we consider in this paper, and showed that
characteristic formulae are exactly the satisfiable and prime ones.

▶ Proposition 11 ([3]). For every X ∈ {S,CS,RS, TS, 2S}, φ ∈ LX is characteristic for
some process within LX iff φ is satisfiable and prime in LX .

▶ Remark 12. Proposition 11 is the only result we use from [3] and we employ it as a “black
box”. The (non-trivial) methods used in the proof of that result given in that reference do
not play any role in our technical developments.

We note, in passing, that the article [3] does not deal explicitly with 3S. However, its
results apply to all the n-nested simulation preorders.

We can also consider characteristic formulae modulo equivalence relations as follows.

▶ Definition 13. Let X ∈ {S,CS,RS, TS, 2S, 3S,BS}. A formula φ ∈ LX is characteristic
for p ∈ P modulo ≡X iff for all q ∈ P , it holds that q |= φ ⇔ LX(p) = LX(q).3

When studying the complexity of finding a characteristic formula for some process p with
respect to the behavioural relations we have introduced above, we will need some way of
measuring the size of the resulting formula as a function of |p|. A formula in LX , where
X ∈ {S,CS,RS, TS, 2S, 3S,BS}, can be given in explicit form as in Definition 3 or by means
of a system of equations. In the latter case, we say that the formula is given in declarative
form. For example, formula ϕ = ⟨a⟩(⟨a⟩tt ∧ ⟨b⟩tt) ∧ ⟨b⟩(⟨a⟩tt ∧ ⟨b⟩tt) can be represented by
the equations ϕ = ⟨a⟩ϕ1 ∧ ⟨b⟩ϕ1 and ϕ1 = ⟨a⟩tt ∧ ⟨b⟩tt. We define:

the size of formula φ, denoted by |φ|, to be the number of symbols that appear in the
explicit form of φ,
the declaration size of formula φ, denoted by decl(φ), to be the number of equations that
are used in the declarative form of φ, and
the equational length of formula φ, denoted by eqlen(φ), to be the maximum number of
symbols that appear in an equation in the declarative form of φ.

For example, for the aforementioned formula ϕ, we have that |ϕ| = 13, decl(ϕ) = 2, and
eqlen(ϕ) = 5. Note that decl(φ) ≤ |Sub(φ)| ≤ |φ|, for each φ.

3 The complexity of deciding characteristic formulae modulo preorders

In this section, we address the complexity of deciding whether formulae in LS , LCS , LRS ,
LT S , L2S , and L3S are characteristic. Since characteristic formulae in those logics are
exactly the satisfiable and prime ones [3, Theorem 5], we study the complexity of checking
satisfiability and primality separately in Subsections 3.1 and 3.2.

3 The above definition can also be phrased as follows: A formula φ ∈ LX is characteristic for p modulo
≡X iff, for all q ∈ P , it holds that q |= φ ⇔ p ≡X q. This version of the definition is used, in the setting
of bisimilarity, in references such as [2, 29].

CSL 2025

26:8 The Complexity of Deciding Characteristic Formulae

3.1 The complexity of satisfiability
To address the complexity of the satisfiability problem in LS , LCS , or LRS , we associate
a set I(φ) ⊆ 2A to every formula φ ∈ LRS . Intuitively, I(φ) describes all possible sets of
initial actions that a process p can have, when p |= φ.

▶ Definition 14. Let φ ∈ LRS. We define I(φ) inductively as follows:
(a) I(tt) = 2A,
(b) I(ff) = ∅,
(c) I([a]ff) = {X | X ⊆ A and a ̸∈ X},

(d) I(⟨a⟩φ) =
{

∅, if I(φ) = ∅,
{X | X ⊆ A and a ∈ X}, otherwise

(e) I(φ1 ∨ φ2) = I(φ1) ∪ I(φ2),
(f) I(φ1 ∧ φ2) = I(φ1) ∩ I(φ2).
Note that I(0) = {∅}.

▶ Lemma 15. For every φ ∈ LRS, the following statements hold:
(a) for every S ⊆ A, S ∈ I(φ) iff there is a process p such that I(p) = S and p |= φ.
(b) φ is unsatisfiable iff I(φ) = ∅.

When the number of actions is constant, I(φ) can be computed in linear time for every
φ ∈ LRS . For LCS , we need even less information; indeed, it is sufficient to define I(φ) so
that it encodes whether φ is unsatisfiable, or is satisfied only in deadlocked states (that
is, states with an empty set of initial actions), or is satisfied only in processes that are
not deadlocked, or is satisfied both in some deadlocked and non-deadlocked states. This
information can be computed in linear time for every φ ∈ LCS , regardless of the size of the
action set.

▶ Corollary 16.
(a) Satisfiability of formulae in LCS and LS is decidable in linear time.
(b) Let |A| = k, where k ≥ 1 is a constant. Satisfiability of formulae in LRS is decidable in

linear time.

On the other hand, if we can use an unbounded number of actions, the duality of ⟨a⟩
and [a] can be employed to define a polynomial-time reduction from Sat, the satisfiability
problem for propositional logic, to satisfiability in LRS . Moreover, if we are allowed to
nest [a] modalities (a ∈ A) and have at least two actions, we can encode n propositional
literals using formulae of logn size and reduce Sat to satisfiability in LT S in polynomial
time. Finally, satisfiability in L2S is in NP, which can be shown by an appropriate tableau
construction.

▶ Proposition 17. Let either X = RS and |A| be unbounded or X ∈ {TS, 2S} and |A| > 1.
Satisfiability of formulae in LX is NP-complete.

Deciding satisfiability of formulae in L2S when |A| > 1, turns out to be PSPACE-complete.
(A proof is provided in [1, Appendix B.6].) This means that satisfiability of L3S is also
PSPACE-complete, since L2S ⊆ L3S .

▶ Proposition 18. Let |A| > 1. Satisfiability of formulae in L3S is PSPACE-complete.

3.2 The complexity of primality
We now study the complexity of checking whether a formula is prime in the logics that
characterize some of the relations in Definition 1.

L. Aceto, A. Achilleos, A. Chalki, and A. Ingólfsdóttir 26:9

Table 1 Rules for the simulation preorder. If |∀ is displayed in the conclusion of a rule, then the
rule is called universal. Otherwise, it is called existential.

φ1 ∨ φ2, φ ⇒ ψ
(L∨1)

φ1, φ ⇒ ψ |∀ φ2, φ ⇒ ψ

φ1 ∧ φ2, φ ⇒ ⟨a⟩ψ
(L∧1)

φ1, φ ⇒ ⟨a⟩ψ |∃ φ2, φ ⇒ ⟨a⟩ψ

φ1, φ2 ⇒ ψ1 ∧ ψ2 (R∧)
φ1, φ2 ⇒ ψ1 |∀ φ1, φ2 ⇒ ψ2

⟨a⟩φ1, ⟨a⟩φ2 ⇒ ⟨a⟩ψ
(⋄)

φ1, φ2 ⇒ ψ

φ,φ1 ∨ φ2 ⇒ ψ
(L∨2)

φ1, φ ⇒ ψ |∀ φ2, φ ⇒ ψ

φ,φ1 ∧ φ2 ⇒ ⟨a⟩ψ
(L∧2)

φ1, φ ⇒ ⟨a⟩ψ |∃ φ2, φ ⇒ ⟨a⟩ψ

φ1, φ2 ⇒ ψ1 ∨ ψ2 (R∨)
φ1, φ2 ⇒ ψ1 |∃ φ1, φ2 ⇒ ψ2

φ1, φ2 ⇒ tt
(tt)

True

Primality in LS. Unsatisfiable formulae are trivially prime. Note also that in the case that
|A| = 1, all satisfiable formulae in LS are prime. To address the problem for any action set,
for every satisfiable formula φ ∈ LS we can efficiently compute a logically equivalent formula
φ′ given by the grammar φ ::= tt | ⟨a⟩φ | φ ∧ φ | φ ∨ φ. We examine the complexity of
deciding primality of such formulae.

▶ Proposition 19. Let φ ∈ LS such that ff ̸∈ Sub(φ). Deciding whether φ is prime is in P.

Proof. We describe algorithm PrimeS that, on input φ, decides primality of φ. PrimeS
constructs a rooted directed acyclic graph, denoted by Gφ, from the formula φ as follows.
Every vertex of the graph is either of the form φ1, φ2 ⇒ ψ – where φ1, φ2 and ψ are
sub-formulae of φ – , or True. The algorithm starts from vertex x = (φ,φ ⇒ φ) and applies
some rule in Table 1 to x in top-down fashion to generate one or two new vertices that are
given at the bottom of the rule. These vertices are the children of x and the vertex x is
labelled with either ∃ or ∀, depending on which one is displayed at the bottom of the applied
rule. If x has only one child, PrimeS labels it with ∃. The algorithm recursively continues
this procedure on the children of x. If no rule can be applied on a vertex, then this vertex
has no outgoing edges. For the sake of clarity and consistency, we assume that right rules,
i.e. (R∨) and (R∧), are applied before the left ones, i.e. (L∨i) and (L∧i), i = 1, 2, by the
algorithm. The graph generated in this way is an alternating graph, as defined by Immerman
in [28, Definition 3.24] (see also [1, Appendix A]). In Gφ, the source vertex s is φ,φ ⇒ φ,
and the target vertex t is True. Algorithm PrimeS solves the problem Reacha on input
Gφ, where Reacha is Reachability on alternating graphs and is defined in [28, pp. 53–54].
It accepts φ iff Reacha accepts Gφ. Intuitively, the source vertex (φ,φ ⇒ φ) can reach the
target vertex True in the alternating graph Gφ exactly when for each pair of disjuncts ψ1
and ψ2 in the disjunctive normal form of φ there is a disjunct ψ3 in the disjunctive normal
form of φ that is entailed by both ψ1 and ψ2. It turns out that this is a necessary and
sufficient condition for the primality of φ. For example, consider the formula ⟨a⟩tt ∨ ⟨b⟩tt.
There is no disjunct of ⟨a⟩tt ∨ ⟨b⟩tt that is entailed by both ⟨a⟩tt and ⟨b⟩tt. This is because
that formula is not prime, as we observed in Example 8. On the other hand, the formula
⟨a⟩tt ∨ ⟨a⟩⟨b⟩tt is prime since each of its disjuncts entails ⟨a⟩tt. The full technical details
are included in [1, Appendix C.1]. Note that graph Gφ is of polynomial size and there is a
linear-time algorithm solving Reacha [28]. ◀

CSL 2025

26:10 The Complexity of Deciding Characteristic Formulae

Primality in LCS. Note that, in the case of LCS , the rules in Table 1 do not work any
more because, unlike LS , the logic LCS can express some “negative information” about the
behaviour of processes. For example, let A = {a} and φ = ⟨a⟩tt. Then, PrimeS accepts
φ, even though φ is not prime in LCS . Indeed, φ |= ⟨a⟩⟨a⟩tt ∨ ⟨a⟩0, but φ ̸|= ⟨a⟩⟨a⟩tt
and φ ̸|= ⟨a⟩0. However, we can overcome this problem as described in the proof sketch of
Proposition 20 below.

▶ Proposition 20. Let φ ∈ LCS be a formula such that every ψ ∈ Sub(φ) is satisfiable.
Deciding whether φ is prime is in P.

Proof. Consider the algorithm that first computes the formula φ⋄ by applying rule ⟨a⟩tt →⋄
tt, and rules tt ∨ ψ →tt tt and tt ∧ ψ →tt ψ modulo commutativity on φ. It holds that φ is
prime iff φ⋄ is prime and φ⋄ |= φ. Next, the algorithm decides primality of φ⋄ by solving
reachability on a graph constructed as in the case of simulation using the rules in Table 1,
where rule (tt) is replaced by rule (0), whose premise is 0,0 ⇒ 0 and whose conclusion is
True. To verify φ⋄ |= φ, the algorithm computes a process p for which φ⋄ is characteristic
within LCS and checks whether p |= φ. In fact, the algorithm has also a preprocessing phase
during which it applies a set of rules on φ and obtains an equivalent formula with several
desirable properties. See [1, Appendix C.2] for full details. ◀

Primality in LRS. The presence of formulae of the form [a]ff in LRS means that a prime
formula φ ∈ LRS has at least to describe which actions are necessary or forbidden for
any process that satisfies φ. For example, let A = {a, b}. Then, ⟨a⟩0 is not prime, since
⟨a⟩0 |= (⟨a⟩0 ∧ [b]ff) ∨ (⟨a⟩0 ∧ ⟨b⟩tt), and ⟨a⟩0 entails neither ⟨a⟩0 ∧ [b]ff nor ⟨a⟩0 ∧ ⟨b⟩tt.
Intuitively, we call a formula φ saturated if φ describes exactly which actions label the
outgoing edges of any process p such that p |= φ. Formally, φ is saturated iff I(φ) is a
singleton.

If the action set is bounded by a constant, given φ, we can efficiently construct a formula
φs such that (1) φs is saturated and for every ⟨a⟩φ′ ∈ Sub(φs), φ′ is saturated, (2) φ is
prime iff φs is prime and φs |= φ, and (3) primality of φs can be efficiently reduced to
Reacha(Gφs).

▶ Proposition 21. Let |A| = k, where k ≥ 1 is a constant, and φ ∈ LRS be such that if
ψ ∈ Sub(φ) is unsatisfiable, then ψ = ff and ψ occurs in the scope of some [a]. Deciding
whether φ is prime is in P.

As the following result indicates, primality checking for formulae in LRS becomes compu-
tationally hard when |A| is not a constant.

▶ Proposition 22. Let |A| be unbounded. Deciding primality of formulae in LRS is coNP-
complete.

Proof. We give a polynomial-time reduction from Sat to deciding whether a formula in
LRS is not prime. Let φ be a propositional formula over x0, . . . , xn−1. We set φ′ =
(φ∧ ¬xn) ∨ (xn ∧

∧n−1
i=1 ¬xi) and φ′′ to be φ′ where xi is substituted with ⟨ai⟩0 and ¬xi with

[ai]ff , where A = {a0, . . . , an}. As φ′′ is satisfied in an.0, it is a satisfiable formula, and so
φ′′ is prime in LRS iff φ′′ is characteristic within LRS . We show that φ is satisfiable iff φ′′ is
not characteristic within LRS . Let φ be satisfiable and let s denote a satisfying assignment
of φ. Consider p1, p2 ∈ P such that:

p1
ai−→ 0 iff s(xi) = true, for 0 ≤ i ≤ n− 1, and p1

an

̸→, and
p2

an−→ 0 and p2
a

̸→ for every a ∈ A \ {an}.

L. Aceto, A. Achilleos, A. Chalki, and A. Ingólfsdóttir 26:11

It holds that pi |= φ′′, i = 1, 2, p1 ̸≤RS p2, and p2 ̸≤RS p1. Suppose that there is a process q,
such that φ′′ is characteristic for q within LRS . If q an−→, then q ̸≤RS p1. On the other hand,
if q

an

̸→, then q ̸≤RS p2. So, both cases lead to a contradiction, which means that φ′′ is not
characteristic within LRS . For the converse implication, assume that φ is unsatisfiable. This
implies that there is no process satisfying the first disjunct of φ′′. Thus, φ′′ is characteristic
for p2, described above, within LRS .

Proving the matching upper bound is non-trivial. There is a coNP algorithm that uses
properties of prime formulae and rules of Table 1, carefully adjusted to the case of ready
simulation. We describe the algorithm and prove its correctness in [1, Appendix C.3.2]. ◀

Primality in LT S. If we have more than one action, a propositional literal can be encoded
by using the restricted nesting of modal operators that is allowed by the grammar for LT S .
This observation is the crux of the proof of the following result.

▶ Proposition 23. Let |A| > 1. Deciding primality of formulae in LT S is coNP-hard.

Proof. Let A = {0, 1}. The proof follows the steps of the proof of Proposition 22. The initial
and basic idea is that given an instance φ of Sat over x1, . . . , xn, every xi is substituted
with [bi1]ff ∧ ⟨bi1⟩([bi2]ff ∧ ⟨bi2⟩(. . . ([bik]ff ∧ ⟨bik⟩0) . . .)) and ¬xi with [bi1][bi2] . . . [bik]ff ,
where bi1 . . . bik is the binary representation of i and b = 0, if b = 1, and b = 1, if b = 0. For
more technical details, see [1, Appendix C.4.1]. ◀

In contrast to the case for LRS , bounding the size of the action set is not sufficient for
deciding primality of formulae in LT S in polynomial time. However, we show that both
satisfiability and primality become efficiently solvable if we bound both |A| and the modal
depth of the input formula.

▶ Proposition 24. Let |A| = k and φ ∈ LT S with md(φ) = d, where k, d ≥ 1 are constants.
Then, there is an algorithm that decides whether φ is satisfiable and prime in linear time.

Proof. It is necessary and sufficient to check that there is a process p with depth(p) ≤ d

such that (1) p |= φ and (2) for every q with depth(q) ≤ d+ 1, if q |= φ then p ≲T S q. Since
k and d are considered to be constants, there is an algorithm that does so and requires linear
time in |φ|. In particular, the algorithm runs in O(22kd+1 · kd+1 · |φ|). ◀

To classify the problem of deciding whether formulae in LT S are characteristic when |A| is
bounded, let us briefly introduce fixed-parameter tractable problems – see, for instance, [19, 21]
for textbook accounts of this topic. Let L ⊆ Σ∗ × Σ∗ be a parameterized problem. We
denote by Ly the associated fixed-parameter problem Ly = {x | (x, y) ∈ L}, where y is the
parameter. Then, L ∈ FPT (or L is fixed-parameter tractable) if there are a constant α
and an algorithm to determine if (x, y) is in L in time f(|y|) · |x|α, where f is a computable
function [18].

▶ Corollary 25. Let |A| = k, where k ≥ 1 is a constant. The problems of deciding whether
formulae in LT S are satisfiable, prime, and characteristic are in FPT, with the modal depth
of the input formula as the parameter.

We note that the coNP-hardness argument from Proposition 23 applies also to logics that
include LT S . Since LT S ⊆ L2S , the coNP-hardness of deciding primality of formulae in LT S

with |A| > 1 implies the same lower bound for deciding primality of formulae in L2S when
|A| > 1. Next, we show that in L3S with |A| > 1 the problem becomes PSPACE-hard.

CSL 2025

26:12 The Complexity of Deciding Characteristic Formulae

Primality in L3S. Let |A| > 1. PSPACE-hardness of L3S-satisfiability implies PSPACE-
hardness of L3S-validity. Along the lines of the proof of [2, Theorem 26], we prove the
following result.

▶ Proposition 26. Let |A| > 1. Deciding prime formulae within L3S is PSPACE-hard.

▶ Remark 27. Note that primality within LBS coincides with primality modulo ∼. In [2],
primality modulo ∼ is called completeness and it is shown to be decidable in PSPACE.
However, the algorithm used in [2] does not immediately imply that primality within L3S is
in PSPACE.

Interestingly, PSPACE-hardness of L2S-validity implies the following theorem.

▶ Theorem 28. Let X ∈ {CS,RS, TS, 2S, 3S} and |A| > 1. The problem of deciding whether
a formula in L2S is prime in LX is PSPACE-hard.

Proof. We reduce L2S-validity to this problem. Let φ ∈ L2S . The reduction will return a
formula φ′, such that φ is L2S-valid if and only if φ′ is prime in LX . If 0 ̸|= φ, then let
φ′ = tt; in this case, φ is not valid and tt is not prime in LX . Otherwise, let φ′ = 0 ∨ ¬φ.
If φ is valid, then φ′ ≡ 0 and therefore φ′ is prime in LX . On the other hand, if φ is
not valid, then there is some process p |= ¬φ. From 0 |= φ, it holds that p a−→. Then,
φ′ |= 0 ∨

∨
a∈A⟨a⟩tt, but φ′ ̸|= 0 and φ′ ̸|=

∨
a∈A⟨a⟩tt. Since 0 ∨

∨
a∈A⟨a⟩tt ∈ LCS , φ′ is

not prime in LX , where X ∈ {CS,RS, TS, 2S, 3S}. ◀

Theorem 28 shows that when deciding primality in LX , if we allow the input to be in a
logic L that is more expressive than LX , the computational complexity of the problem can
increase. It is then reasonable to constrain the input of the problem to be in LX in order to
obtain tractable problems as in the case of LS and LCS .

Before we give our main result summarizing the complexity of deciding characteristic
formulae, we introduce two classes that play an important role in pinpointing the complexity
of deciding characteristic formulae within LRS , LT S , and L2S . The first class is DP =
{L1 ∩ L2 | L1 ∈ NP and L2 ∈ coNP} [38] and the second one is US [9], which is defined
thus: A language L ∈ US iff there is a non-deterministic Turing machine T such that, for
every instance x of L, x ∈ L iff T has exactly one accepting path. The problem UniqueSat,
viz. the problem of deciding whether a given Boolean formula has exactly one satisfying
truth assignment, is US-complete and US ⊆ DP [9].

▶ Theorem 29.
(a) Deciding characteristic formulae within LS, LCS, or LRS with a bounded action set is

in P.
(b) Deciding characteristic formulae within LRS with an unbounded action set is US-hard

and belongs to DP.
(c) Deciding characteristic formulae within LT S or L2S is US-hard.
(d) Deciding characteristic formulae within L3S is PSPACE-hard.

4 Finding characteristic formulae: The gap between trace simulation
and the other preorders

Let X ∈ {S,CS} or X = RS and |A| is bounded by a constant. The complexity of finding
characteristic formulae within LX depends on the representation of the output. If the
characteristic formula has to be given in explicit form, then the following result holds.

L. Aceto, A. Achilleos, A. Chalki, and A. Ingólfsdóttir 26:13

Table 2 The complexity of deciding satisfiability and primality, and of finding characteristic
formulae for different logics. Findingdecl (resp. Findingexpl) denotes the problem of finding the
characteristic formula for a given finite loop-free process, when the output is given in declarative
(resp. explicit) form. Superscripts = k, > k, and > 1 mean that the action set is bounded by
a constant, unbounded, and has more than one action, respectively. FP is the class of functions
computable in polynomial time. All the results shown in white cells have been proven in this paper,
whereas results in light gray are from [2].

LS LCS L=k
RS L>k

RS L>1
T S L>1

2S L>1
3S LBS

Satisfiability P P P NP-
comp.

NP-
comp.

NP-
comp.

PSPACE-
comp.

PSPACE-
comp.

Primality P P P coNP-
comp.

coNP-
hard

coNP-
hard

PSPACE-
hard

PSPACE-
comp.

Findingdecl FP FP FP FP NP-
hard

FP FP FP

Findingexpl NP-hard

▶ Proposition 30. Let X ∈ {S,CS} or X = RS and |A| is bounded by a constant. If
finding the characteristic formula within LX for a given finite loop-free process can be done
in polynomial time when the output is given in explicit form, then P = NP.

Proof. If the assumption of the proposition is true, the results of this paper allow us to decide
trace equivalence of two finite loop-free processes in polynomial time. (For details, the reader
can see [1, Appendix E.1].) Since trace equivalence for such processes is coNP-complete [27,
Theorem 2.7(1)], this implies that P = NP. ◀

However, if output formulae are given in declarative form, then finding characteristic
formulae within LX , where X ∈ {nS,CS,RS,BS}, n ≥ 1, can be done in polynomial time.

▶ Proposition 31. For every X ∈ {nS,CS,RS,BS}, where n ≥ 1, there is a polynomial-time
algorithm that, given a finite loop-free process p, outputs a formula in declarative form that
is characteristic for p within LX .

Proof. The proof relies on inductive definitions of characteristic formulae within LX , where
X ∈ {S,CS,RS, 2S,BS}, given in [29, 6], and within LnS , n ≥ 3, given in [1, Appendix
E.1]. These definitions guarantee that there are polynomial-time recursive procedures which
construct characteristic formulae within LX . We prove the proposition for X = 2S below.

Given a finite loop-free process p, the characteristic formula for p within L2S is defined
as follows: χ2S(p) = χ̄S(p) ∧

∧
a∈A

∧
p

a−→p′

⟨a⟩χ2S(p′), where χ̄S(p) =
∧

a∈A

[a]
∨

p
a−→p′

χ̄S(p′).

Consider the algorithm that recursively constructs χ2S(p). The algorithm has to construct
χ2S(p′) and χ̄S(p′) for every p′ ∈ reach(p), yielding a linear number of equations. Moreover,
for every p′ ∈ reach(p), χ̄S(p′) is of linear size in |p′|. If p′ = 0, then χ̄S(p′) =

∧
a∈A[a]ff .

Otherwise, |χ̄S(p′)| = O(|{p′′ | p′ a−→ p′′}| + |A|), where |A| is added because for every a ∈ A

such that p′
a

̸→, [a]ff is a conjunct of χ̄S(p′). Note that for every p′′, if χ̄S(p′′) occurs in
χ̄S(p′), it is considered to add 1 to the size of χ̄S(p′). Therefore, |χ̄S(p′)| is of linear size in
|p′|. Using a similar argument, we can show that χ2S(p′) is of linear size. Thus, the algorithm
constructs a linear number of equations, each of which is of linear size in |p|. The proofs for
X ∈ {nS,CS,RS,BS}, n ̸= 2, are analogous. ◀

CSL 2025

26:14 The Complexity of Deciding Characteristic Formulae

▶ Remark 32. Note that the recursive procedures given in [29, 6] and [1, Appendix E.1]
provide characteristic formulae for finite processes with loops provided that we enrich the
syntax of our logics by adding greatest fixed points. See, for example, [6]. Consequently,
constructing characteristic formulae for finite processes within LX , X ∈ {nS,CS,RS,BS},
n ≥ 1, can be done in polynomial time.

We now present the complexity gap between finding characteristic formulae for preorders
CS,RS,BS, and nS, n ≥ 1, and the same search problem for preorder TS. In the former
case, there are characteristic formulae with both declaration size and equational length that
are polynomial in the size of the processes they characterize, and they can be efficiently
computed. On the contrary, for TS, even if characteristic formulae are always of polynomial
declaration size and polynomial equational length, they cannot be efficiently computed unless
P = NP.

▶ Proposition 33. Assume that for every finite loop-free process p, there is a characteristic
formula within LT S for p, denoted by χ(p), such that both decl(χ(p)) and eqlen(χ(p)) are
in O(|p|k) for some k ∈ N. Given a finite loop-free process p, if χ(p) can be computed in
polynomial time, then P = NP.

Next, we prove that we do not expect that a finite loop-free process p has always a short
characteristic formula within LT S when this is combined with a second condition. To show
that statement, we need the following lemma.

▶ Lemma 34. For every finite p and q, traces(p) = traces(q) iff p ≲T S p+q and q ≲T S p+q.

Proof. If traces(p) = traces(q), then p ≲T S p+ q. Indeed, for every p a−→ p′, it holds that
p + q

a−→ p′ and, trivially, p′ ≲T S p′. Moreover, traces(p + q) = traces(p) ∪ traces(q) =
traces(p). Symmetrically, q ≲T S p + q. Conversely, if p ≲T S p + q and q ≲T S p + q, then
traces(p+ q) = traces(p) = traces(q), and we are done. ◀

▶ Proposition 35. Assume that the following two conditions hold:
1. For every finite loop-free process p, there is a characteristic formula within LT S for p,

denoted by χ(p), such that both decl(χ(p)) and eqlen(χ(p)) are in O(|p|k) for some k ∈ N.
2. Given a finite loop-free process p and a formula φ in declarative form, deciding whether φ

is characteristic for p within LT S is in NP.
Then NP = coNP.

Proof. We describe an NP algorithm A that decides non-membership in Sat and makes use
of conditions 1 and 2 of the proposition. Let ϕ be an input CNF formula to Sat. Algorithm
A computes the DNF formula ¬ϕ for which it needs to decide DNF-Tautology. Then, A
reduces DNF-Tautology to deciding trace equivalence of processes p0 and q constructed
as described in the proof of [27, Theorem 2.7(1)]. A can decide if traces(p0) = traces(q)
by checking p0 ≲T S p0 + q and q ≲T S p0 + q because of Lemma 34. Finally, A reduces
p0 ≲T S p0 +q (resp. q ≲T S p0 +q) to model checking: it needs to check whether p0 +q |= χ(p0)
(resp. p0 + q |= χ(q)). To this end, A guesses two formulae φp0 and φq in declarative form of
polynomial declaration size and equational length, and two witnesses that verify that φp0

and φq are characteristic within LT S for p0 and q, respectively. This can be done due to
conditions 1 and 2. A rejects the input iff both p0 +q |= χ(p0) and p0 +q |= χ(q) are true. ◀

L. Aceto, A. Achilleos, A. Chalki, and A. Ingólfsdóttir 26:15

5 A note on deciding characteristic formulae modulo equivalence
relations

So far, we have studied the complexity of algorithmic problems related to characteristic for-
mulae in the modal logics that characterize the simulation-based preorders in van Glabbeek’s
spectrum. As shown in [3], those logics are powerful enough to describe characteristic formulae
for each finite, loop-free process up to the preorder they characterize. It is therefore natural
to wonder whether they can also express characteristic formulae modulo the kernels of those
preorders. The following result indicates that the logics LX , where X ∈ {S,CS,RS}, have
very weak expressive power when it comes to defining characteristic formulae modulo ≡X .

▶ Proposition 36. No formula in LS is characteristic for some process p with respect to ≡S.
For X ∈ {CS,RS}, a formula φ is characteristic for some process p with respect to ≡X iff it
is logically equivalent to

∧
a∈A[a]ff .

Proof. Assume, towards contradiction, that there is a formula φS
c in LS that is characteristic

for some process p with respect to ≡S . Let ℓ be the depth of p and a ∈ A. Define process
q = p + aℓ+10 – that is, q is a copy of p with an additional path that has exactly ℓ + 1
a-transitions. It is easy to see that p ≲S q, but q ̸≲S p. Since p |= φS

c , it holds that q |= φS
c .

However, q ̸≡S p, which contradicts our assumption that φS
c is characteristic for p with

respect to ≡S . For X ∈ {CS,RS}, note that a formula φ is logically equivalent to
∧

a∈A[a]ff
iff it is satisfied only by processes without outgoing transitions, and so it is characteristic for
any such process modulo ≡X . To prove that no formula is characteristic for some process p
with positive depth modulo ≡CS or ≡RS , a similar argument to the one for ≡S can be used.
For ≡RS , the action a should be chosen such that p a−→ p′ for some p′. ◀

For TS and 2S, there are non-trivial characteristic formulae modulo ≡T S and ≡2S ,
respectively. For example, if A = {a, b}, the formula φa = ⟨a⟩([a]ff ∧ [b]ff) ∧ [b]ff ∧ [a][a]ff ∧
[a][b]ff is satisfied only by processes that are equivalent, modulo those equivalences, to process
pa = a.0 that has a single transition labelled with a. Thus, φa is characteristic for pa modulo
both ≡T S and ≡2S . We can use the following theorem as a tool to prove hardness of deciding
characteristic formulae modulo some equivalence relation. Theorem 37 below is an extension
of [2, Theorem 26], so that it holds for every X such that a characteristic formula modulo
≡X exists, namely X ∈ {CS,RS, TS, 2S, 3S,BS}.

▶ Theorem 37. Let X ∈ {CS,RS, TS, 2S, 3S,BS}. Validity in LX reduces in polynomial
time to deciding characteristic formulae with respect to ≡X .

Note that, from the results of Subsection 3.1, validity in LRS with an unbounded action
set, LT S with |A| > 1, and L2S with |A| > 1 is coNP-complete, whereas validity in L3S with
|A| > 1 is PSPACE-complete. Consequently, from Theorem 37, deciding whether a formula is
characteristic modulo ≡RS with an unbounded action set, ≡T S with |A| > 1, and ≡2S with
|A| > 1 is coNP-hard. That problem is PSPACE-hard modulo ≡3S with |A| > 1.

6 Conclusions

In this paper, we studied the complexity of determining whether a formula is characteristic
for some finite, loop-free process in each of the logics providing modal characterizations
of the simulation-based semantics in van Glabbeek’s branching-time spectrum [22]. Since,
as shown in [3], characteristic formulae in each of those logics are exactly the satisfiable
and prime ones, we gave complexity results for the satisfiability and primality problems,

CSL 2025

26:16 The Complexity of Deciding Characteristic Formulae

and investigated the boundary between logics for which those problems can be solved in
polynomial time and those for which they become computationally hard. Our results show
that computational hardness already manifests itself in ready simulation semantics [10, 34]
when the size of the action set is not a constant. Indeed, in that setting, the mere addition
of formulae of the form [a]ff to the logic that characterizes the simulation preorder yields a
logic whose satisfiability and primality problems are NP-hard and coNP-hard respectively.
Moreover, we show that deciding primality in the logic characterizing 3-nested simulation is
PSPACE-hard in the presence of at least two actions.

Amongst others, we also studied the complexity of constructing characteristic formulae in
each of the logics we consider, both when such formulae are presented in explicit form and in
declarative form. In particular, one of our results identifies a sharp difference between trace
simulation and the other semantics when it comes to constructing characteristic formulae.
For all the semantics apart from trace simulation, there are characteristic formulae that have
declaration size and equational length that are polynomial in the size of the processes they
characterize and they can be efficiently computed. On the contrary, for trace simulation,
even if characteristic formulae are always of polynomial declaration size and polynomial
equational length, they cannot be efficiently computed, unless P = NP.

Our results are summarized in Table 2 and open several avenues for future research
that we are currently pursuing. First of all, the precise complexity of primality checking
is still open for the logics characterizing the n-nested simulation semantics. We conjecture
that checking primality in L2S is coNP-complete and that PSPACE-completeness holds for
n-nested simulation when n ≥ 3. Next, we plan to study the complexity of deciding whether
formulae are characteristic in the extensions of the modal logics we have considered in
this article with greatest fixed points. Indeed, in those extended languages, one can define
characteristic formulae for finite processes. It is known that deciding whether a formula is
characteristic is PSPACE-complete for HML, but becomes EXP-complete for its extension
with fixed-point operators – see reference [2]. It would be interesting to see whether similar
results hold for the other logics. Finally, building on the work presented in [3], we plan to
study the complexity of the algorithmic questions considered in this article for (some of) the
linear-time semantics in van Glabbeek’s spectrum.

References

1 Luca Aceto, Antonis Achilleos, Aggeliki Chalki, and Anna Ingólfsdóttir. The complex-
ity of deciding characteristic formulae in van glabbeek’s branching-time spectrum. CoRR,
abs/2405.13697, 2024. doi:10.48550/arXiv.2405.13697.

2 Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. The complexity
of identifying characteristic formulae. J. Log. Algebraic Methods Program., 112:100529, 2020.
doi:10.1016/j.jlamp.2020.100529.

3 Luca Aceto, Dario Della Monica, Ignacio Fábregas, and Anna Ingólfsdóttir. When are prime
formulae characteristic? Theor. Comput. Sci., 777:3–31, 2019. doi:10.1016/j.tcs.2018.12.
004.

4 Luca Aceto, Ignacio Fábregas, David de Frutos-Escrig, Anna Ingólfsdóttir, and Miguel Pa-
lomino. Graphical representation of covariant-contravariant modal formulae. In Bas Luttik
and Frank Valencia, editors, Proceedings 18th International Workshop on Expressiveness in
Concurrency, EXPRESS 2011, Aachen, Germany, 5th September 2011, volume 64 of EPTCS,
pages 1–15, 2011. doi:10.4204/EPTCS.64.1.

5 Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri Srba. Reactive Systems:
Modelling, Specification and Verification. Cambridge University Press, USA, 2007.

https://doi.org/10.48550/arXiv.2405.13697
https://doi.org/10.1016/j.jlamp.2020.100529
https://doi.org/10.1016/j.tcs.2018.12.004
https://doi.org/10.1016/j.tcs.2018.12.004
https://doi.org/10.4204/EPTCS.64.1

L. Aceto, A. Achilleos, A. Chalki, and A. Ingólfsdóttir 26:17

6 Luca Aceto, Anna Ingólfsdóttir, Paul Blain Levy, and Joshua Sack. Characteristic formulae
for fixed-point semantics: a general framework. Math. Struct. Comput. Sci., 22(2):125–173,
2012. doi:10.1017/S0960129511000375.

7 Antonis Achilleos. The completeness problem for modal logic. In Proc. of Logical Foundations
of Computer Science - International Symposium, LFCS 2018, volume 10703 of Lecture Notes
in Computer Science, pages 1–21. Springer, 2018. doi:10.1007/978-3-319-72056-2_1.

8 Benjamin Bisping, David N. Jansen, and Uwe Nestmann. Deciding all behavioral equivalences
at once: A game for linear-time-branching-time spectroscopy. Log. Methods Comput. Sci.,
18(3), 2022. doi:10.46298/lmcs-18(3:19)2022.

9 Andreas Blass and Yuri Gurevich. On the unique satisfiability problem. Inf. Control.,
55(1-3):80–88, 1982. doi:10.1016/S0019-9958(82)90439-9.

10 Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be traced. J. ACM,
42(1):232–268, 1995. doi:10.1145/200836.200876.

11 Gérard Boudol and Kim Guldstrand Larsen. Graphical versus logical specifications. Theor.
Comput. Sci., 106(1):3–20, 1992. doi:10.1016/0304-3975(92)90276-L.

12 Michael C. Browne, Edmund M. Clarke, and Orna Grumberg. Characterizing finite Kripke
structures in propositional temporal logic. Theor. Comput. Sci., 59:115–131, 1988. doi:
10.1016/0304-3975(88)90098-9.

13 Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identification. Comb., 12(4):389–410, 1992. doi:10.1007/BF01305232.

14 Rance Cleaveland. On automatically explaining bisimulation inequivalence. In Edmund M.
Clarke and Robert P. Kurshan, editors, Computer Aided Verification, 2nd International
Workshop, CAV ’90, volume 531 of Lecture Notes in Computer Science, pages 364–372.
Springer, 1990. doi:10.1007/BFb0023750.

15 Rance Cleaveland and Bernhard Steffen. Computing behavioural relations, logically. In
Javier Leach Albert, Burkhard Monien, and Mario Rodríguez-Artalejo, editors, Automata,
Languages and Programming, 18th International Colloquium, ICALP91, Madrid, Spain, July
8-12, 1991, Proceedings, volume 510 of Lecture Notes in Computer Science, pages 127–138.
Springer, 1991. doi:10.1007/3-540-54233-7_129.

16 David de Frutos-Escrig, Carlos Gregorio-Rodríguez, Miguel Palomino, and David Romero-
Hernández. Unifying the linear time-branching time spectrum of process semantics. Log.
Methods Comput. Sci., 9(2), 2013. doi:10.2168/LMCS-9(2:11)2013.

17 Rocco De Nicola and Frits W. Vaandrager. Three logics for branching bisimulation. J. ACM,
42(2):458–487, 1995. doi:10.1145/201019.201032.

18 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness I:
Basic results. SIAM J. Comput., 24(4):873–921, 1995. doi:10.1137/S0097539792228228.

19 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

20 Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas. Mathematical logic (2. ed.).
Undergraduate texts in mathematics. Springer, 1994.

21 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

22 Rob J. van Glabbeek. The linear time - branching time spectrum I. In Jan A. Bergstra, Alban
Ponse, and Scott A. Smolka, editors, Handbook of Process Algebra, pages 3–99. North-Holland
/ Elsevier, 2001. doi:10.1016/b978-044482830-9/50019-9.

23 Susanne Graf and Joseph Sifakis. A modal characterization of observational congruence on finite
terms of CCS. Inf. Control., 68(1-3):125–145, 1986. doi:10.1016/S0019-9958(86)80031-6.

24 Jan Friso Groote and Frits W. Vaandrager. Structured operational semantics and bisimulation
as a congruence. Inf. Comput., 100(2):202–260, 1992. doi:10.1016/0890-5401(92)90013-6.

25 Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concurrency. J.
ACM, 32(1):137–161, 1985. doi:10.1145/2455.2460.

CSL 2025

https://doi.org/10.1017/S0960129511000375
https://doi.org/10.1007/978-3-319-72056-2_1
https://doi.org/10.46298/lmcs-18(3:19)2022
https://doi.org/10.1016/S0019-9958(82)90439-9
https://doi.org/10.1145/200836.200876
https://doi.org/10.1016/0304-3975(92)90276-L
https://doi.org/10.1016/0304-3975(88)90098-9
https://doi.org/10.1016/0304-3975(88)90098-9
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/BFb0023750
https://doi.org/10.1007/3-540-54233-7_129
https://doi.org/10.2168/LMCS-9(2:11)2013
https://doi.org/10.1145/201019.201032
https://doi.org/10.1137/S0097539792228228
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1016/b978-044482830-9/50019-9
https://doi.org/10.1016/S0019-9958(86)80031-6
https://doi.org/10.1016/0890-5401(92)90013-6
https://doi.org/10.1145/2455.2460

26:18 The Complexity of Deciding Characteristic Formulae

26 Sören Holmström. A refinement calculus for specifications in Hennessy-Milner logic with
recursion. Formal Aspects Comput., 1(3):242–272, 1989. doi:10.1007/BF01887208.

27 Harry B. Hunt III, Daniel J. Rosenkrantz, and Thomas G. Szymanski. On the equivalence,
containment, and covering problems for the regular and context-free languages. J. Comput.
Syst. Sci., 12(2):222–268, 1976. doi:10.1016/S0022-0000(76)80038-4.

28 Neil Immerman. Descriptive Complexity. Springer, 1999. doi:10.1007/978-1-4612-0539-5.
29 Anna Ingolfsdottir, Jens Christian Godskesen, and Michael Zeeberg. Fra Hennessy-Milner

logik til CCS-processer. Master’s thesis, Aalborg University, 1987. In Danish.
30 Sandra Kiefer, Pascal Schweitzer, and Erkal Selman. Graphs identified by logics with counting.

In Giuseppe F. Italiano, Giovanni Pighizzini, and Donald Sannella, editors, Mathematical
Foundations of Computer Science 2015 - 40th International Symposium, MFCS 2015, Milan,
Italy, August 24-28, 2015, Proceedings, Part I, volume 9234 of Lecture Notes in Computer
Science, pages 319–330. Springer, 2015. doi:10.1007/978-3-662-48057-1_25.

31 Dexter Kozen. Results on the propositional µ-calculus. Theor. Comput. Sci., 27:333–354, 1983.
doi:10.1016/0304-3975(82)90125-6.

32 Richard E. Ladner. The computational complexity of provability in systems of modal proposi-
tional logic. SIAM J. Comput., 6(3):467–480, 1977. doi:10.1137/0206033.

33 Kim Guldstrand Larsen. Proof systems for satisfiability in Hennessy-Milner logic with recursion.
Theor. Comput. Sci., 72(2&3):265–288, 1990. doi:10.1016/0304-3975(90)90038-J.

34 Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic testing. Inf.
Comput., 94(1):1–28, 1991. doi:10.1016/0890-5401(91)90030-6.

35 Jan Martens and Jan Friso Groote. Computing minimal distinguishing Hennessy-Milner
formulas is NP-hard, but variants are tractable. In Guillermo A. Pérez and Jean-François
Raskin, editors, 34th International Conference on Concurrency Theory, CONCUR 2023,
volume 279 of LIPIcs, pages 32:1–32:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPIcs.CONCUR.2023.32.

36 Robin Milner. An algebraic definition of simulation between programs. In D. C. Cooper,
editor, Proceedings of the 2nd International Joint Conference on Artificial Intelligence, IJCAI
1971, pages 481–489. William Kaufmann, 1971. URL: http://ijcai.org/Proceedings/71/
Papers/044.pdf.

37 Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
38 Christos H. Papadimitriou and Mihalis Yannakakis. The complexity of facets (and some facets

of complexity). J. Comput. Syst. Sci., 28(2):244–259, 1984. doi:10.1016/0022-0000(84)
90068-0.

39 Bernhard Steffen and Anna Ingólfsdóttir. Characteristic formulae for processes with divergence.
Inf. Comput., 110(1):149–163, 1994. doi:10.1006/inco.1994.1028.

40 Wolfgang Thomas. On the Ehrenfeucht-Fraïssé game in theoretical computer science. In
Marie-Claude Gaudel and Jean-Pierre Jouannaud, editors, TAPSOFT’93: Theory and Practice
of Software Development, International Joint Conference CAAP/FASE, volume 668 of Lecture
Notes in Computer Science, pages 559–568. Springer, 1993. doi:10.1007/3-540-56610-4_89.

https://doi.org/10.1007/BF01887208
https://doi.org/10.1016/S0022-0000(76)80038-4
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1007/978-3-662-48057-1_25
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1137/0206033
https://doi.org/10.1016/0304-3975(90)90038-J
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.4230/LIPIcs.CONCUR.2023.32
http://ijcai.org/Proceedings/71/Papers/044.pdf
http://ijcai.org/Proceedings/71/Papers/044.pdf
https://doi.org/10.1016/0022-0000(84)90068-0
https://doi.org/10.1016/0022-0000(84)90068-0
https://doi.org/10.1006/inco.1994.1028
https://doi.org/10.1007/3-540-56610-4_89

	1 Introduction
	2 Preliminaries
	3 The complexity of deciding characteristic formulae modulo preorders
	3.1 The complexity of satisfiability
	3.2 The complexity of primality

	4 Finding characteristic formulae: The gap between trace simulation and the other preorders
	5 A note on deciding characteristic formulae modulo equivalence relations
	6 Conclusions

