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Abstract
We give a sound and complete (in)equational theory for simulation of finite state automata. Our
approach uses a string diagrammatic calculus to represent automata and a functorial semantics to
capture simulation in a compositional way. Interestingly, in contrast to other approaches based on
regular expressions, fixpoints are a derived notion in our calculus and the resulting axiomatisation is
finitary.
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1 Introduction

Non-deterministic automata are basic models of computation which play a central role in
formal verification – for instance, the Kripke frames used in the semantics of modal and
temporal logics are non-deterministic automata. In verification, one often tries to answer a
question of the form: does state s of the model satisfy φ? This question can be rephrased in
terms of trace containment – do all the valid traces starting from s satisfy φ? To effectively
answer it, formulae can be compiled to models which are then compared to the original model,
using simulation for trace containment [2] (or, if one requires a finer semantics, bisimulation).

Another approach to reason about model behaviour is algebraic: one can design a language
into which both the models and the formulae can be compiled, and reason equationally about
their relationship in this common language. A very successful example of this approach
is Kleene algebra and extensions thereof [13, 15, 23, 10]. In the algebraic approach, it is
important that one has sufficient axioms to reason about the equivalence or refinement
of behaviours. This amounts to providing a sound and complete axiomatization of the
intermediary language with respect to model behaviour. Famously, Kozen was the first to
provide a sound and complete algebraic axiomatization of language-equivalence of regular
expressions [14]. The main challenge to overcome was the handling of loops (or Kleene star),
a challenge which reappears in extensions of Kleene algebra and in other process calculi.
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27:2 A Complete Diagrammatic Calculus for Automata Simulation

This paper builds on recent work connecting language theory and string diagrams [20] to
offer a novel perspective on non-deterministic finite-state automata (NFA) and simulation.
Remarkably, [20] provides a finitary axiomatization of NFA up to language equivalence. The
key point is that automata are represented in a more modular syntax of string diagrams, in
which loops/fixpoints are a derived notion. Moreover, the proposed diagrammatic language
is more expressive, exploiting the underlying lattice structure of languages. This allows
the authors to (i) encode not only the NFA themselves, but relations between the states of
NFA, as well as (ii) an equational proof that these relations satisfy the defining properties of
simulations [20]. The payoff is that it becomes possible to reason purely equationally (or
inequationally, since we allow inequalities between diagrams) about fixpoints, a feature that
is provably impossible to achieve in a traditional syntax [22].

Below, we give an example of a (bi)simulation (in blue) between two NFA, with their
diagrammatic representation below. These correspond to a∗(b(a + b)∗ + 1) and (a + b)∗;
proving that they are (bi)similar in a traditional syntax requires fixpoint axioms. Our
axiomatisation on the other hand will allow us to derive this fact using purely (in)equational
reasoning on the diagrams themselves (Example 38).

b
a, ba a, b

a

b
a

a

b

b

=

Contributions. Our main contribution is a complete axiomatisation of NFA simulation.
Contrary to language equivalence, the algebraic study of simulation has not been explored
in depth in previous work, with the notable exception of Frendrup and Jensen’s work on
CCS expressions modulo similarity [9]. Given the clear importance of simulation for program
refinement and bisimulation, it is worthwhile to develop different techniques to study it.
Here, we offer a novel perspective on simulation through a string diagrammatic calculus
with the same syntax as the one in [20], but a new semantics, capturing similarity instead
of language equivalence. Importantly, the added expressiveness of our calculus allows the
complete axiomatisation to be finite. Moreover, on the road to completeness, we prove several
results about the algebraic structure of automata up to simulation, in particular that they
form a lattice (Section 2.2, Theorem 5), and characterise fixed-points of systems of linear
inequalities (Theorem 8).

Outline. After introducing some preliminary material in Section 2, we recall the diagram-
matic calculus in which we encode NFA, together with a functorial (that is, compositional)
semantics expressed in terms of simulation, rather than language-equivalence (Section 3).
In Section 4 we provide constructions to translate between NFA and string diagrams. The
main technical result appears in Section 5: we prove that the calculus is sound and complete
to reason about simulation of NFA. We discuss related work and future research in Section 6,
including a discussion of how our approach could extend to NFA modulo bisimilarity.
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2 Background: automata and simulation

In this section we recall the necessary background regarding automata, simulation, as well
as some basic properties and algebraic operations first introduced by Milner [18]. Then, we
characterise the solutions of certain systems of equations (or rather, inequations, in this
case), a result which will be instrumental in showing the soundness of our diagrammatic
representation of NFA in later sections.

In what follows, we fix some finite alphabet Σ, over which all NFA will be defined and
write Pf (Σ) for the set of finite subsets of Σ.

2.1 Automata and their algebraic operations
We recall here the notion of automaton with which we will work throughout.

▶ Definition 1 (Nondeterministic Finite Automaton). A nondeterministic finite automaton
(NFA) A over Σ is a quadruple (Q, q0, F, α) where Q is a finite set of states, q0 ∈ Q is the
initial state of A, F ⊆ Q is a set of final states (also seen as a function Q→ {0, 1}), and
α ⊆ Q× Σ×Q is the transition relation. We will denote q

a−→A q′ for (q, a, q′) ∈ α, and will
omit the sub-scripted A in case it is clear in context. Note that we do not allow ϵ-transitions.

A path in A is a sequence (qi0 , . . . , qik
) ∈ Qk+1 where qij

−→A qij+1 , denoted qi0 ⇝A qik
.

We will use the following standard operations on NFA extensively: sum, (synchronous) product
and composition, including prefixing. Rigorous definitions can be found in Appendix A. Let
A = (Q, q0, F, α) and B = (S, s0, G, β) be two NFA.
Sum. A + B is defined by taking Q ∪ S ∪ {t0} where t0 is a new state which can transition

to the set of states reachable from q0 and s0.
Product. A × B is defined by taking the Q × S as set of states and allowing transitions

(q, s) a−→A×B (q′, s′) iff q
a−→A q′ and s

a−→B s′.
Composition. A.B is defined by attaching a copy of B to every final state in A and keeping

as final states those of B.
Prefix. a.A is the composition of ({q0, q1}, q0, {q1}, {(q0, a, q1)}) and A. We will also write

S.A for S ∈ Pf (Σ) as a shorthand for
(∑

a∈S a
)

.A =
∑

a∈S a.A.
Finally, we define three special NFA to which we will often refer:

⊥ = ({q0}, q0, 0,∅) 1 = ({q0}, q0, 1,∅) ⊤ = ({q0}, q0, 1, {(q0, a, q0) | a ∈ Σ})

2.2 The simulation lattice
We now define (strong) simulation of a NFA by another, the central concept of this paper.

▶ Definition 2 (Simulation Relation, Simulation preorder). Let A = (Q, q0, F, α), B =
(S, s0, G, β) be two NFAs. A simulation relation from A to B is a binary relation R ⊆ Q× S

such that (1) (q0, s0) ∈ R; (2) if (q, s) ∈ R, then F (q) ≤ G(s); (3) if (q, s) ∈ R and q
a−→A q′,

then there exists a state s′ ∈ S such that s
a−→B s′ and (q′, s′) ∈ R.

Note that condition (3) can also be phrased in terms of relational composition as
R−1;−→A⊆−→B ; R−1. In this case, we say that A is simulated by B (or that B simulates A)
and we write A ⪯ B, or A ⪯R B to specify the simulation relation.

It immediately follows that ⪯ is a preorder on NFAs: for all A, B, C NFAs we have
A ⪯id A, as well as A ⪯R B and B ⪯R′ C implies A ⪯R;R′ C.

CSL 2025



27:4 A Complete Diagrammatic Calculus for Automata Simulation

▶ Definition 3 (Similarity partial order). If A and B are two NFA such that A ⪯ B and
B ⪯ A, we say that they are similar and write A ≃ B.

We call Ω the set of all NFA modulo similarity. Given two equivalence classes X = [A],
Y = [B], we write X ≤ Y if A ⪯ B.

It is a standard fact about preorders that ≤ forms a partial order over Ω. Moreover, all
previously defined operations are monotone with respect to it.

▶ Proposition 4 (Monotony of composition). Let A = (Q, q0, F, α) and B = (S, s0, G, β) be
two NFAs and let A′ = (Q′, q′

0, F ′, α′), B′ = (S′, s′
0, G′, β′) such that A ⪯ A′, B ⪯ B′. Then

we have A.B ⪯ A′.B′. In particular, prefixing is monotone with respect to ⪯.

Proof. Assume in particular that A ⪯RA
A′, B ⪯RB

B′. Let R = RA ∪ {((i, s), (j, s′)) |
(s, s′) ∈ RB , (qi, q′

j) ∈ RA, F (qi) = 1}. We will show that A.B ⪯R A′.B′.
RA ⊆ R, thus (q0, q′

0) ∈ R.
Let (t, t′) ∈ R, and t

a−→A.B u. The interesting case happens when t = qi with F (qi) = 1
and u = (i, s) with s0

a−→B s. Since B ⪯RB
B′, (s0, s′

0) ∈ RB and there is a s′ ∈ S′ such
that s′

0
a−→B s′ and (s, s′) ∈ RB .

Moreover, since t = qi ∈ Q and (t, t′) ∈ R, t′ = q′
j ∈ Q′; and we also have F (qi) = 1 ≤

F ′(q′
j) thus q′

j is final in A′. By definition of A′.B′ this means that q′
j

a−→A′.B′ (j, s′), and
by definition of R we also have ((i, s), (j, s′)) ∈ R, which concludes the proof. ◀

Proposition 4 allows us to lift prefixing to equivalence classes of NFA modulo similarity as a
monotone operation: let a.[A] = [a.A] for [A] ∈ Ω.

The second key result of this subsection is the existence of a lattice structure on Ω. We
first state the necessary properties for NFA before lifting the sum and product to Ω.

▶ Theorem 5 (Bounded lattice operations). Let A, B be two NFAs. We have:
1. ⊥ ⪯ A ⪯ ⊤
2. A×B ⪯ A, B and if C ⪯ A, B then C ⪯ A×B (that is, product of NFAs acts as a meet)
3. A, B ⪯ A + B and if A, B ⪯ C then A + B ⪯ C (that is, sum of NFAs acts as a join)

Proof. We give the simulation relation for each:
1. The full relation suffices for each inequality.
2. A × B ⪯ A through the projection, i.e., the relation {((q, s), q) | q ∈ Q}. The same

goes for B symmetrically. Moreover if C ⪯RA
A and C ⪯RB

B then C ⪯R A×B with
R = {(t, (q, s)) | (t, q) ∈ RA and (t, s) ∈ RB}.

3. The simulation relations for A, B ⪯ A + B are given by the injections. If A ⪯RA
C and

B ⪯RB
C, then A + B ⪯R C with R = {(p0, t0)} ∪ {(q, t) | (q, t) ∈ RA} ∪ {(s, t) | (s, t) ∈

RB}, if p0 and t0 are the initial state of A + B and C respectively. ◀

Direct consequences of this theorem are the monotony of + and ×, their commutativity and
unitality (with ⊥ and ⊤ respectively). The monotony of + and × also allows us to lift the
sum and product to the set of NFA modulo similarity: for [A], [B] ∈ Ω, let [A]+[B] = [A+B]
and [A]× [B] = [A×B]; finally we let ⊥ and ⊤ denote [⊥] and [⊤] respectively.

▶ Corollary 6. Ω is a lattice, with + as join, × as meet, ⊥ as bottom, and ⊤ as top.

In what follows, we will often use NFA to denote their equivalence class modulo similarity.
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2.3 Systems of linear inequalities
In this section we introduce systems of linear inequalities and characterise their (least)
solutions. This is not only an original result of independent interest, but one we will use
later to show the soundness of the representation of NFA in our diagrammatic calculus.

▶ Definition 7 (System of linear inequations). Let n ∈ N and K0, . . . , Kn ∈ Ω, and for all
0 ≤ i, j ≤ n, let di,j ∈ Pf (Σ). These define a system of n + 1 inequations:

(E) :

Ki +
n∑

j=0
di,j .Xj ≤ Xi


0≤i≤n

where X0, . . . , Xn are variables taking value in Ω. Using matrix multiplication and vector
notations, we will write (E) as K + DX ≤ X.

The following theorem is the key result of this section: given a system of inequalities, we
construct the (equivalence class of) NFA that is its unique smallest solution. Frendrup and
Jensen prove a similar result [9, Theorem 7] for their syntax directly, but our methods are
different and of independent interest.

▶ Theorem 8. Let D be a matrix of coefficients in Pf (Σ).
1. For every vector K, the system K + DX ≤ X has a unique smallest solution S(K).
2. Let F ∈ {0, 1}n+1, K be a NFA and A = (Q, q0, F, α) where Q = {qi}0≤i≤n, and qi

a−→ qj

iff a ∈ di,j. Let A = (A0, . . . , An) where Ai = (Q, qi, F, α). Then S(F.K) = A.K.

Proof.
1. By monotony of prefixing and summing, X 7→ K + DX is monotonous; by the Knaster-

Tarski theorem it has a unique least fixed point, which is the solution we are looking
for.

2. One can see easily that A.K is a solution. We show that it is the smallest. For that
sake, let X = (X0, . . . , Xn) be a solution of the system. In all that follows we write x

(i)
0

for the initial state of Xi. For each 0 ≤ i ≤ n, let Yi = Fi.K +
∑n

j=0 di,j .Xj , si be its
initial state, and Ri be the simulation relation from Yi to Xi. We now fix a i, and build
a simulation relation S from Ai.K to Xi.
First, for all 0 ≤ j ≤ n we define Pj as follows:

Pj =
⋃

qi0 →Ai
···→Ai

qik

Rik−1 ; · · · ; Ri0

where i0 = i and ik = j. It is a simulation relation by union and composition. Then let

S′ =
⋃

qj s.t. qi⇝Ai
qj

{(qj , x) | (x(j)
0 , x) ∈ Pj}

S′′ =
⋃

qj s.t. qi⇝Ai
qj

F (qj)=1

{((j, t), x) | ∃x′ ∈ Xj : (t, x′) ∈ Rj and (x′, x) ∈ Pj}

and S = {(qi, x
(i)
0 )} ∪ S′ ∪ S′′.

Note that S′′ is well defined since if qj is final, then K ⪯Rj
Xj . We show that S is a

simulation relation.

CSL 2025



27:6 A Complete Diagrammatic Calculus for Automata Simulation

By definition, (qi, x
(i)
0 ) ∈ S

Let (qj , x) ∈ S, and qj
a−→ qk. By definition, this means (qj , x) ∈ S′, i.e. (x(j)

0 , x) ∈ Pj .
By definition of Rj , we have (sj , x

(j)
0 ) ∈ Rj . Combined to the existence of a path

qi ⇝ qj → qk, this implies (sj , x) ∈ Pk. Moreover, we know by construction of A that
sj

a−→ x
(k)
0 since qj

a−→ qk. Therefore, Pk being a simulation relation, there is a y such
that x

a−→ y and (x(k)
0 , y) ∈ Pk i.e. (qk, y) ∈ S′.

Let qj be an accessible final state in A and (qj , x) ∈ S with qj
a−→ (j, t), meaning

t0
a−→K t. Moreover since qj is final, K ⪯Rj

Xj and thus (t0, x
(j)
0 ) ∈ Rj . By simulation

there is a x′ ∈ Xj such that x
(j)
0

a−→ x′ and (t, x′) ∈ Rj . Moreover (qj , x) ∈ S thus
(x(j)

0 , x) ∈ Pj . By simulation, there is a y with (x′, y) ∈ Pj such that x
a−→ y, which

concludes this case.
The proof in the case (j, t) a−→ (j, t′) is direct by applying the simulation property. ◀

3 Syntax and semantics

In this section, we define a diagrammatic calculus in which we can encode NFA in a natural
way. The syntax has appeared in previous work [20], but the semantics is new, reflecting the
focus of this work on simulation, rather than language-equivalence. We will then equip the
same syntax with an (in)equational theory which we will show in Section 5 fully axiomatises
the intended semantics. We proceed in three steps:

In Section 3.1, we define our syntax as a free coloured prop on a number of generators,
using string diagrams to depict its morphisms. For an introduction to string diagrammatic
syntax, we refer the reader to [21].
In Section 3.2, we formalise the intended semantics as a symmetric monoidal functor
into the symmetric monoidal category (SMC) of monotone relations with the Cartesian
product.
Finally, we equip the syntax with a partial order which is sound for the intended semantics.
This order is given by a finite number of (in)equalities of the same type.

3.1 Syntax
We build on a line of research that has sought to give a formal treatment of graphical models of
computation of varying expressive power within the unifying language of symmetric monoidal
categories. More specifically, we rely on the notion of coloured product and permutations
category (prop), a mathematical structure which generalises standard multisorted algebraic
theories [5]. Formally, a prop is a strict symmetric monoidal category (SMC) whose objects
are words of a finite alphabet and where the monoidal product ⊕ on objects is given by
concatenation. Equivalently, it is a strict SMC whose objects are all monoidal products of a
finite number of generating objects.

Our syntax is a prop PS , freely generated from a signature S = (G, M): a pair of a finite
set of objects G and a set M of morphisms g : v → w, where v and w are words over G.
There are two ways of describing the morphisms of the prop PS concretely. As terms of
(G∗, G∗)-sorted syntax whose constants are elements of M and whose operations are the
usual categorical composition (−); (−) : PS(u, v)× PS(v, w)→ PS(u, w) and the monoidal
product (−)⊕ (−) : PS(v1, w1)× PS(v2, w2)→ PS(v1v2, w1w2), quotiented by the laws of
SMCs. However, this quotient is cumbersome and unintuitive to work with.
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This is why we prefer a different representation: with their two forms of composition,
monoidal categories admit a natural two-dimensional notation of string diagrams. The idea
is that a morphism c : v → w of PS is better represented as a box with |v| ordered wires
labelled by the elements of v on the left and |w| wires labelled by the elements of w on
the right. We can compose these diagrams in two different ways: horizontally with ; by
connecting the right wires of the first diagram to the left wires of the second (when the types
match), and vertically with ⊕ by simply juxtaposing two diagrams: c ; d = c d

u v w

and d1 ⊕ d2 = c1

c2

v1

v2

w1

w2. Intuitively, morphisms of PS can be pictured as (directed acyclic)

graphs whose nodes are labelled by elements of M . The symmetry σa,b : ab→ ba is drawn
as a wire crossing which swaps the a-and b-wires, and the unit for ⊕, id0 : 0→ 0, as the
empty diagram (we use 0 to denote the empty word). With this representation the laws
of SMCs become diagrammatic tautologies.

In this work, we start with the same diagrammatic syntax as [20], which we call SynΣ. It
is the free two-coloured prop freely generated by the objects and morphisms below.

Two generating objects, ▶ (right) and ◀ (left), whose identities we will depict respectively
as and .
The following generating morphisms:

a (a ∈ Σ) (1)

(2)

Morphisms of SynΣ are thus vertical and horizontal compositions of these generators, poten-
tially including wire crossings. The direction of the arrows on the generators’ wires denotes
their type: for example, represents an operation of type ▶→▶▶, while has type
◀▶→ ε (where ε denotes the empty list, i.e., the unit for the monoidal product).

As in [20], we will use the generators (1) to represent NFA: , , allow
us to encode states by gathering incoming and outgoing transitions, while the transitions
themselves are encoded with a . The remaining two generators, and , allow us to
form feedback loops, with which we can encode iteration, as we will see in more details in
Section 4. The , , play another important role: they will allow us to
construct simulation relations directly in our syntax.

The white generators , , in (2) are not used to build automata-diagrams, but
will allow us to show that the diagrammatic simulation relations we construct do satisfy the
required properties, and thereby allow us to prove that one automaton simulates another
using purely (in)equational reasoning. As we will see next, these are not artificial syntactic
operations, but emerge naturally out of the chosen semantics.

Note that [20] also contained dual generators , which are not needed here.

3.2 Semantics
In this section, we explain how to interpret the diagrams of the previous section as relations.
We will formalise the intended semantics as a SMC, and the interpretation as a symmetric
monoidal functor from the syntax to the semantics.

Contrary to [20], the relations in our target semantics are not between languages, but
between elements of Ω, that is, equivalence classes of NFAs up to similarity. As in [20], each
generator is interpreted as a monotone relation between posets.

▶ Definition 9 (Monotone relation). Given two posets (X,≤X) and (Y,≤Y ), a relation
R : X → Y is monotone whenever for (x, y) ∈ R, if x′ ≤X x, y ≤Y y′ then (x′, y′) ∈ R.

CSL 2025



27:8 A Complete Diagrammatic Calculus for Automata Simulation

▶ Proposition 10 (SMC of monotone relations). Posets and monotone relations form a SMC
ProfB with composition given by relational composition, where the identity for an object
(X,≤X) is the order relation ≤X itself, and with monoidal product the product of posets.

Moreover, monotone relations of the same type can be ordered by inclusion, making ProfB
into an order-enriched SMC.

The SMC ProfB of monotone relations has also appeared in the literature under the name of
Boolean(-enriched) [8, 20] and relational [11] profunctors, or weakening relations [19].

Since SynΣ is freely-generated, to define a symmetric monoidal functor J·K : SynΣ → ProfB,
it is sufficient to specify the image of each generating object and morphism.

▶ Definition 11 (Semantics). Let J·K be the following mapping.
For the generating objects, let J▶K = (Ω,≥) and J◀K = (Ω,≤). By Definition 9, this fixes
the interpretation of the corresponding identities to be the order relations themselves:

J K = {(X, Y ) | Y ≤ X} J K = {(X, Y ) | X ≤ Y }

We map generating morphisms to the following relations:
r z

=
{(

X, (Y1, Y2)
)
| Yi ≤ X, i = 1, 2

}
J K = {(X, •) | X ∈ Ω}

r z
=

{(
(X1, X2), Y

)
| Y ≤ Xi, i = 1, 2

}
J K = {(•, Y ) | Y ∈ Ω}

r z
= {(•, (Y1, Y2)) | Y2 ≤ Y1}

r z
= {((X1, X2), •) | X1 ≤ X2}

J a K = {(X, Y ) | a.Y ≤ X} (a ∈ Σ)
r z

=
{(

X, (Y1, Y2)
)
| Y1 × Y2 ≤ X,

}
J K = {(⊤, •)}

A few remarks about the semantics are in order.
The order relation is built into the identity wires and . The two directions
represent the identities on Ω ordered by ≥ := {(X, Y ) : Y ≤ X} and ≤ respectively. This
is the opposite of the convention in [20], and is imposed by the use of prefixes (as opposed
to suffixes in [20]) to interpret the atomic actions a , cf. last item of this list.
The black primitives are standard monotone relations associated with any poset. One can
see them as copy, delete, and their duals, relative to the relevant partial order relation.
Similarly, the wire-bending primitives are interpreted as relations that exist for any poset,
making use of the fact that our semantic category is compact-closed [12].
The white generators are interpreted as the meet and top of the lattice structure obtained
in Corollary 6. Contrary to [20], we do not need generators for the join of the lattice –
this is one of the distinguishing features of language equivalence and simulation.
The action of a for each letter a ∈ Σ, relates a.Y to any NFA X simulating it.

▶ Proposition 12. J·K extends to a symmetric monoidal functor SynΣ → ProfB.

Proof. Since SynΣ is freely generated, we just need to check that each generator is a
monotone relation. The only non-immediate case is the monotony of J a K, which follows
from Proposition 4. ◀

This means that we can compute the semantics of arbitrary diagrams in a fully composi-
tional way, using the following rules for composition and monoidal product:

Jc ; dK =
q

c d
u v wy

=
{

(X, Z) | ∃Y (X, Y) ∈
q

c
y

, (Y, Z) ∈
q

d
y}

Jc1 ⊕ c2K =
s

c1

c2

v1

v2

w1

w2

{
=

{(
(X1, X2), (Y1, Y2)

)
| (Xi, Yi) ∈

q
ci

y
, i = 1, 2

}
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3.3 Inequational theory
In Figure 1 below we introduce MDA, the theory of Milner Diagram Algebra, a set of
axioms which will prove complete for simulation of NFA (once we have shown how to encode
them into the diagrammatic syntax). Some background on symmetric monoidal (inequality)
theories can be found in Appendix B.

Unsurprisingly MDA is close to the existing diagrammatic axiomatisation of NFA up to
language equivalence of [20, Section 3] and we use the same naming scheme to highlight the
similarities and differences between the two. There are two main differences: the lack of ,
and and (E1-E2) which only hold laxly here, witnessing the simulation a.b+a.c ⪯ a.(b+c).
This is akin to how regular expressions up to (bi)similarity do not satisfy left-distributivity
of composition over the sum, but still satisfy right-distributivity (E3-E4).

(A1)= (A2)= (A3)=

(B1)= (B2)= (B3)=

(B4)= (B5)= (B6)=

(B7)= (B8)= (B9)=

(B10)= (B11)= (B12)=

(C1)= (C2)= (C3)=

a
(E1)

≤ a

a
a

(E2)

≤ a
(E3)= a

a
a

(E4)=

(F1)

≤
(F2)

≤
(F3)

≤
(F4)

≤

(F9)

≤
(F10)

≤
(F11)

≤
(F12)

≤

Figure 1 Theory of Milner Diagram Algebra (MDA).

▶ Remark 13. Note that this theory is not minimal: for example, the lax distributivity axiom
(E1) can be proven using (F1), (B10) and (E3). A similar property holds for (E2). However,
we have preferred to keep them since they highlight the main difference with previous work
on language equivalence/inclusion [20].
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As we will explain more thoroughly in Section 4, we are interested in the properties of
diagrams that are closely related to NFA. We identify these in the following definition.

▶ Definition 14 (Automaton-diagram). We call automaton-diagram any diagram of SynΣ
composed entirely of generators from (1), namely , , , , , , a (a ∈ Σ)
In other words, automata-diagrams are the morphisms of the sub-prop freely generated by the
morphisms of (1). We call this sub-prop AutΣ.

We can now state the main result of this paper.

▶ Theorem 15 (Soundness and Completeness). For any two automata-diagrams c, d :▶→▶,

JcK ⊆ JdK if and only if c ≤MDA d.

The completeness of MDA is the most involved and will be the subject of Section 5. Its
soundness on the other hand is straightforward and is a matter of verifying that each axiom
holds in the semantics. Except for axioms of the E block (see Proposition 16), the soundness
of the remaining (in)equalities follows from properties which have been proven earlier:

The A and B blocks encode equalities that hold for any poset. They imply that our
category of interest is compact-closed (A) and that every object is equipped with a
(bi)commutative bimonoid (B1-B11), a common structure in diagrammatic calculi [16].
The E block encodes the interaction of the atomic actions with the simulation order. As
we already stated, here lies the main difference with [20] – (E1-E2) now only hold laxly.
The C and F blocks encode the lattice structure of (Ω,≤), and all (in)equalities follow
from the existence of meets. The F block in particular encodes a number of adjunctions
in the following 2-categorical sense: two morphisms f : X → Y and g : Y → X are
adjoints if idX ≤ f ; g and g ; f ≤ idY . We write f ⊣ g and say that f is left adjoint to
g. Here, we have four adjunctions: ⊣ ⊣ and ⊣ ⊣ . Note
that the adjunctions involving , , , are the key defining adjunctions
of Cartesian bicategories [6]. The remaining adjunctions hold whenever the supporting
poset is a semi-lattice (has binary meets and top), which is the case for simulation.

We prove here the soundness of axioms (E1-E4) and that the inequalities corresponding to
axioms (E1-E2) are strict.

▶ Proposition 16. We have the following (in-)equalities:
r

a

z
⊊

s
a

a

{ q
a

y
⊊ J K

r
a

z
=

s
a

a

{ q
a

y
= J K

Proof.
1. The proof of the inclusion is straightforward, but the fact that it is strict is more interesting.

Take X = a.b + a.c ∈ Ω. Then (X, (b, c)) ∈
s

a

a

{
. Suppose (X, (b, c)) ∈

r
a

z

too. Then there is a Y ∈ Ω such that a.y ≤ x, and b, c ≤ Y . By the join property of
+, we have b + c ≤ Y and therefore a.(b + c) ≤ X. However a.b + a.c does not simulate
a.(b + c) since there is no state in a.b + a.c having a b-labelled out-transition as well as a
c-labelled one. Thus (X, (b, c)) ̸∈

r
a

z
.

2. J K = {(X, •) : X ∈ Ω} ⊇ {(a.X, •) : X ∈ Ω} = J a K, and it is clear that for all
X ∈ Ω, 0 ̸= a.X because 0 has no transitions.
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3. We have
r

a

z
= {((X1, X2), Y ) : a.Y ≤ X1, X2} and

s
a

a

{
=

((X1, X2), Y ) : ∃U1, U2,

Y ≤ U1, U2
a.U1 ≤ X1
a.U2 ≤ X2


The “⊇” inclusion follows from the monotony of prefixing, which gives us a.Y ≤ a.Ui ≤ Xi

for i = 1, 2. For the other inclusion, choosing U1 = U2 = Y gives the desired result.
4. J a K = {(•, Y ) : ∃X(a.Y ≤ X)} is clearly contained in {(•, Y ) : Y ∈ Ω} = J K; for

the other direction, we can just set X = a.Y . ◀

4 Automata-diagrams

This section aims to explain and justify our representation of NFA using string diagrams.
Our encoding follows that of [20] – the aim of this section is not merely to reproduce it, but
to show that the same syntax is able to represent automata uniformly for different semantics,
and to define the notions we will use in the proof of completeness.

In Section 4.1, we first show that the same encoding is sound for the simulation semantics,
in the sense that the diagram cA which represents a given NFA A has the appropriate
semantics, i.e., JcAK = {(X, Y ) : A.Y ≤ X}. This is Theorem 23 below.
In Section 4.2, we prove a converse result: any automaton-diagram ▶→▶ can be thought
of as a NFA, i.e., for any automaton diagram c, there exists some NFA Ac such that
JcK = {(X, Y ) : Ac.Y ≤ X}. This is Corollary 27 below.

4.1 From automata to string diagrams...
First, we show how to encode relations into our calculus. We will use these to represent the
initial and final states of NFA, and simulation relations in the proof of completeness.

▶ Definition 17 (Relation-diagram). A relation-diagram is a diagram of SynΣ composed
entirely of , , , . We call RelDiag the corresponding sub-prop. A relation-
diagram is functional when it is composed only of , .

In what follows, we call block of a certain subset of the generators of SynΣ, any diagram
made up entirely of the prescribed generators using vertical and horizontal composition (and,
possibly, identities and wire crossings).

▶ Proposition 18 (Encoding relations). Given two finite sets Q = {qi}1≤i≤n and S =
{sj}1≤j≤m, and some relation R ⊆ Q×S, there exists a relation diagram dR :▶n→▶m such
that JdRK = {(X, Y) | Xi ≥ Yj if (qi, sj) ∈ R}.

Proof. We reproduce the construction from [20, Section 4]. The relation-diagram dR ▶n→▶m

is formed of two blocks: first, a block of , , followed by a block of , . The
left i-th port of dR is connected to the the right j-th port through an identity wire
precisely when (qi, sj) ∈ R; we use to accommodate multiple outgoing connections
from a single left port (or none, with ), and for multiple incoming connections into
a right port (or none, with ).

Finally, it is straightforward to see that we have constructed dR so that its semantics is
precisely {(X, Y) | Xi ≥ Yj if (qi, sj) ∈ R}. ◀

We now show how to encode the transition relation of any given automaton.
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▶ Definition 19 (Matrix-diagram). A matrix-diagram is a diagram ▶n→▶m that factors
as a composition of a block of , , another of a for a ∈ Σ, and a last one of

, , such that any path from a left to right port encounters exactly one a .

The intuition behind the condition of the previous definition are to (i) disallow multiple
transitions for the same letter between the same two states, and (ii) disallow ϵ-transitions
since our definition of NFA does not allow them. For example, the following is is a well-
formed matrix-diagram (with the three blocks highlighted), encoding the transition relation
{(q0, a, q1), (q1, b, q2), (q2, a, q1), (q2, a, q2)}.

a

b

a

a

Proposition 20 shows that we can encode any transition relation as a matrix-diagram with
the desired semantics.

▶ Proposition 20 (Encoding transition-relations). Given a set Q = {qi}1≤i≤n and transition
relation α ⊆ Q×Σ×Q, write D for the corresponding n× n matrix of coefficients in Pf (Σ).
There exists a matrix-diagram dα :▶n→▶n such that JdαK = {(X, Y) : DY ≤ X}.

Proof. Again, the idea is already present in [20, Section 4.2]. Let dα be the matrix-diagram
where the i-th input wire is linked to the j-th output wire via a whenever qi

a−→A qj . By
construction, JdαK = {(X, Y) : DY ≤ X}, as we wanted. ◀

The last ingredient of the correspondence between automata-diagrams and NFA is
iteration. As explained above, and allow us to form the diagrammatic counterpart of
iteration, aka the Kleene star, defined as follows.

▶ Definition 21 (Star). For a diagram d :▶n→▶n, let d∗ := d .

▶ Proposition 22 (Stars are least fixpoints). If d :▶n→▶n is a matrix-diagram whose
corresponding matrix is D, then Jd∗K = {(X, Y) : S(Y) ≤ X}, where S(Y) is the (unique)
least solution of the system Y + DX ≤ X.

Proof. The semantics of d∗ is given by {(X, Y) : Y + DX ≤ X}, which is equal to
{(X, Y) : S(Y) ≤ X} by Theorem 8. ◀

▶ Theorem 23 (Encoding of NFA). Let A = (Q, q0, F, α) be an automaton. There exists an
automaton-diagram cA :▶→▶ such that JcAK = {(X, Y ) : A.Y ≤ X}.

Proof. We represent automata as in [20, Section 4.2]. First, fix some ordering of Q =
{qi}1≤i≤n. Then

e :▶→▶n is the relation-diagram encoding the singleton {(q0, •)}, using Proposition 18;
f :▶n→▶ is the relation-diagram encoding the {(qi, •) : qi ∈ F}, using Proposition 18;
d :▶n→▶n is the matrix-diagram representing α, using Proposition 20. It is such that
JdK = {(X, Y) : DY ≤ X}.
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Then, let cA = e; d∗; f where d∗ is defined as in Definition 21. By Proposition 22,
Jd∗K = {(X, Y) : S(Y) ≤ X}. Then we have:

JcAK =

(X, Y ) : ∃X, Y,

∀i, qi ∈ F ⇒ Yi ≤ Y

S(Y) ≤ X
X0 ≤ X


We want to show that JcAK is equal to {(X, Y ) : A.Y ≤ X} by double-inclusion.
(⊆) Let X, Y ∈ Ω be such that A.Y ≤ X. Then take Y = F.Y and X = S(Y). By

definition, if qi ∈ F then Yi ≤ Y , and S(Y) ≤ X.
Moreover S(Y) = S(F.Y ) = A.Y by Theorem 8. Thus X0 = (S(Y))0 = (A.Y )0 =
A0.Y = A.Y ≤ X, and therefore (X, Y ) ∈ JcAK.

(⊇) Let (X, Y ) ∈ JcAK and X, Y be two vectors of behaviours witnessing this membership.
To conclude the proof of the second inclusion, we have A.Y = (A.Y )0 = (S(F.Y ))0 ≤
(S(Y))0 ≤ X0 ≤ X where the third step is our hypothesis.

Finally, we need to show that this representation is independent of the choice of ordering
of Q. This is the case, because any other choice of total order induces a permutations of
the wires. In other words, given another ordering, from which we obtain two other relation-
diagrams e′ and f ′ encoding initial and final states, and a matrix-diagram d′ encoding the
transition relation of A, there exists some permutation π :▶n→▶n such that d′ = π ; d ; π−1,
e′ = e ; π−1, and f ′ = π ; f . A simple diagrammatic derivation shows that d′∗ = π ; d∗ ; π−1

and therefore e′ ; d′∗ ; f ′ = e ; d ; f . ◀

As a result, by soundness, an inequality between two automata-diagrams implies the existence
of a simulation between the corresponding NFA in the reverse order :

▶ Corollary 24. Let A, B be two NFA and cA, cB the corresponding automaton-diagram
obtained from Theorem 23. If cA ≤ cB, then B ≤ A.

Proof. The proof is straightforward: by soundness, cA ≤ cB means JcAK ⊆ JcBK. Since
A.1 = A ≤ A, we have (A, 1) ∈ JcAK. Thus (A, 1) ∈ JcBK, i.e., 1.B = B ≤ A. ◀

4.2 ...and back
Theorem 23 shows how to encode a given NFA as a string diagram into our diagrammatic
syntax. Conversely, given a ▶→▶ automaton-diagram, we can extract the NFA it represents,
by rewriting it into a form which mimics the encoding of NFA of the previous section – this
is what we call a representation.

▶ Definition 25 (Representation). For a diagram c :▶→▶, a representation is a triple
(e, d, f) of a matrix-diagram, d :▶ℓ→▶ℓ, one functional relation-diagram e :▶→▶ℓ, and one
relation-diagram f :▶ℓ→▶, such that

c = e fd∗

The intuition is that d represents the transition relation of the associated automaton, e the
initial state, and f its final states.

▶ Proposition 26. Any automaton-diagram ▶→▶ has a representation.

Proof. The proof is the same as [20, Proposition 4.7]. All axioms used in this proof are in
MDA – crucially, it does not use left-distributivity, but only right-distributivity (E3-E4). ◀
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From here it is easy to extract a diagrammatic representation of its initial state, final states,
and transition relations.

▶ Corollary 27 (NFA from automaton-diagram). Given an automaton-diagram c :▶→▶, there
exists a NFA A such that JcK = {(X, Y ) | A.Y ≤ X}.

Proof. First, by Proposition 26, we can find a representation (e, d, f) of c. We construct
A = (Q, q0, F, α). First, if d :▶n→▶n, let Q = {1, . . . , n}. Then let q0 be the only i such that
(•, i) ∈ R (e) (remember that R (e) is a n× 1 Boolean matrix, which is moreover functional,
so that it is fully characterised by a single i between 1 and n). Let F := {j : (j, •) ∈ R (f)}.
Finally, the transition relation is determined by the matrix-diagram d. Call D be the n× n

matrix with coefficients in Pf (Σ) obtained from Proposition 33. Then, let (i, a, j) ∈ α if
Di,j contains a (remember that the coefficients are finite subsets of Σ). This is well-defined
because d is assumed to be ϵ-free. ◀

5 Completeness

The main idea to tackle completeness is that simulation relations themselves can be encoded
as relation-diagrams into our calculus.

We have already shown how to encode relations as relation-diagrams; now we explain how
to go in the other direction. From any relation-diagram d :▶n→▶m we can obtain a relation
between {1, . . . , n} and {1, . . . , n}, i.e., a matrix with Boolean coefficients. As we will need
to manipulate these relations in calculations below, we formalise the correspondence between
relation-diagrams and relations as a functor from RelDiag (the sub-prop freely generated by
these diagrams) to MatB, the SMC of Boolean matrices with the disjoint sum as monoidal
product. The latter has natural numbers as objects and m × n matrices with Boolean
coefficients as morphisms n→ m. Its morphisms can also be ordered by inclusion if we think
of them as relations: given two Boolean n×m matrices A = (aij) and B = (bij), we write
A ≤ B if aij ≤ bij for all i and j.

▶ Definition 28. Let R (·) be the mapping given by:

R
( )

=
(

1
1

)
R ( ) = 1 R

( )
=

(
1 1

)
R ( ) = 1

By the freeness of RelDiag, we obtain the following result immediately.

▶ Proposition 29. R (·) extends to a symmetric monoidal functor RelDiag→ MatB.

We will use extensively the fact that MDA is complete for relation-diagrams.

▶ Theorem 30 (Completeness for relation-diagrams). If c, d are two relation-diagrams, then
c ≤MDA d iff R (d) ≤ R (c).

Proof. This is a standard completeness result for the symmetric monoidal theory of an
idempotent (co)commutative bimonoid [7, Theorem 7.2], i.e. axioms (B1)-(B11). While it is
usually stated for equalities, the extension to inequalities is straightforward, since inequalities
can be recovered from the semi-lattice structure of the binary operation defined by and

, that is we can show that c ≤ d iff
d

c
= c. See [20, Propositions 5.2-5.3]

for the detailed proof. ◀

We will need the fact that we can (co)copy and (co)delete any relation-diagram.
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▶ Lemma 31 (Distributivity for relation-diagrams). Any relation-diagram d :▶m→▶n satisfies

(cpy)= (co-cpy)=

Proof. Since the corresponding equalities hold in MatB, we can deduce the two syntactic
equalities from Theorem 30 (completeness for relations). ◀

We will need a particularly simple form of simulation below for a single letter.

▶ Lemma 32. For any relation diagram , we have a ≤ a

Proof. By structural induction. The two inductive cases for composition and monoidal
product are straightforward. The base cases are the axioms (E1-E4). ◀

In the previous section, we have used matrix-diagrams (Definition 19) to encode the
transition relations of NFA (Proposition 20). Clearly, we can also go the other way, associating
a unique transition relation δ to each matrix-diagram.

▶ Proposition 33. For any matrix-diagram d :▶n→▶n, there exists a n× n matrix D with
coefficients in Pf (Σ) such that JdK = {(X, Y) : DY ≤ X}.

Proof. This is obvious from the way matrix-diagrams are defined. We can obtain the (i, j)-th
coefficient of D by plugging and into all other left and right ports of d. ◀

We can now show that the relation-diagram encoding a given simulation does satisfy the
diagrammatic analogues of the three defining properties of simulation from Definition 2.

▶ Lemma 34 (Simulation for representations). Given two NFA A and Â, let (e, d, f) and
(ê, d̂, f̂) be the representations associated to their respective encoding as automata-diagrams.
If A ≤ Â, there is a relation-diagram such that:

d̂
(1)

≤ d ê
(2)

≤ e f̂
(3)

≤ f

Proof. Assume that R is a simulation relation witnessing A ≤ Â and let be the
relation-diagram encoding R−1, using Proposition 18 with the ordering of the states of A

and Â already fixed by the choice of the representations in the statement of the lemma. Let
us prove satisfies the required inequalities.
(1) For a ∈ Σ, let da be relation-diagram encoding the relation a−→A. Then, if Σ =
{a1, . . . , an}, it is easy to check that

d =

a1

an

...

da1

dan

...

by applying the (E3-E4) axioms to merge letters, as well as the (co)unit axiom for the
black (co)monoid (recall that, as a relation-diagram can be described as a block of

, composed with a block of , ). Naturally, this also holds for d̂.
Then, we show that behaves like a simulation for all da:
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R
(

da

)
= R ( ) ; R

(
da

)
≤ R

(
d̂a

)
; R ( ) (R is a simulation)

= R
(

d̂a

)
By completeness for relations (Theorem 30), we get the reverse syntactic inequality:

d̂a

(*)

≤ da . Finally, putting it all together and using copy and
merge laws for relations, we have:

d̂ =

a1

an

...

d̂a1

d̂an

...
(Lemma 31)=

a1

an

...

d̂a1

d̂an

...
...

(Lemma 32)

≤

a1

an

...

d̂a1

d̂an

...
...

(*)

≤

a1

an

...

da1

dan

...
...

(Lemma 31)=

a1

an

...

da1

dan

... = d

(2-3) Those two inequalities are just straightforward applications of completeness for relations
and the definition of simulation. ◀

The first inequality of the previous lemma is insufficient, because automata-diagrams factor
as e; d∗; f , not e; d; f , for a given representation. The rest of the proof is thus dedicated to
lifting Lemma 34(1) to d∗ instead of just d, using a proof similar to that of [20, Section 5]
(of which we only sketch the main ideas). Crucially, this is where the white generators

, , and their associated axioms come into play.
First, we build a right adjoint to a given simulation relation(-diagram) using

, (see [20, Section 5.2] for the details). Then, the F axioms of MDA are enough to
show the necessary adjunction: ⊣ , this is [20, Lemma 5.14].

▶ Lemma 35. For any relation-diagram , there exists a diagram , such that the
following inequalities hold: (i) m ≤ and (ii) ≤ n .

We can now lift the simulation relation to d∗ as we wanted.

▶ Lemma 36. If d̂ ≤ d then d̂∗ ≤ d∗ .
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Proof. We have

d̂∗ := d̂
(Lemma 35 (i))

≤ d̂

(Lemma 31)= d̂
(assumption)

≤ d

(Lemma 35 (ii))

≤ d =: d∗ ◀

We are finally ready to finish our proof of the completeness of MDA.

Proof of Theorem 15 (completeness). Given two automata-diagrams c, ĉ :▶→▶, we can
first extract their respective representations (e, d, f) and (ê, d̂, f̂), using Proposition 26. From
Corollary 27, we can recover two a NFA A and Â such that JcK = {(X, Y ) | A.Y ≤ X}
and JĉK = {(X, Y ) | Â.Y ≤ X}. If we also assume, as in the statement of the theorem,
that JĉK ⊆ JcK, then, since Â.1 = Â ≤ Â, we have (Â, 1) ∈ JĉK. Thus also (Â, 1) ∈ JcK, i.e.,
A.1 = A ≤ Â. In other words, Â simulates A. Given such a simulation, we can encode it as
a relation diagram and conclude the proof using Lemma 34 as follows:

ĉ = ê f̂d̂∗
(Lemma 34 (2))

≤ ê fd̂∗
(Lemma 34 (1))

≤ ê fd∗

(Lemma 34 (3))

≤ e fd∗ = c ◀

▶ Remark 37 (Completeness for arbitrary automata-diagrams). The results in this paper are
stated for ▶→▶ automata-diagrams, which correspond precisely to NFA (cf. Section 4). It
is natural to wonder whether they extend to automata-diagrams of arbitrary type. The short
answer is yes. First of all, we can always bend the wires of any given automaton-diagram
d : v → w to obtain one of type ▶n→▶m. Semantically, this only amounts to changing
whether a given variable appears on the left or on the right of the relation JdK [20, Proposition
5.4]. Second, it is possible to show [20, Theorem 5.5] that any automaton-diagram ▶n→▶m

distributes over and . As a result, any automaton-diagram ▶n→▶m is fully
characterised by n diagrams of type ▶→▶m. Now, contrary to [20], automata-diagrams
▶n→▶m in this paper do not distribute over and in general (they do so only laxly).
This means that we cannot reduce the completeness for automata-diagrams ▶n→▶m to that
of automata-diagrams ▶→▶. However, it is possible to define a notion of NFA with multiple
sets of final states and to adapt the definition of simulation correspondingly: if (q, s) ∈ R for
some simulation relation R between two such NFA A and B, each with m sets of final states
{Fi}1≤i≤m and {Gi}1≤i≤m, then we have Fi(q) ≤ Gi(s) for all 1 ≤ i ≤ m. Then, all results
of this paper generalise to automata-diagrams ▶→▶m (with multiple right ports, but only
one left port) and we can prove that MDA is complete for all automata-diagrams. While
this is a stronger result, we have preferred to state our main result for the class of diagrams
that correspond more closely to plain NFA, as the more general notion is not standard and
introduces distracting complications.

▶ Example 38. We now come back to the example from the introduction and show how to
prove the similarity of the two NFA.
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b
a, ba

7→
a

a

b

b

(F9)

≤
a

a

b

b

(B4)=
a

a

b

b

(E3)=

a

b

(A1-A2)=

a

b (B7)=

a

b

(B4)=
a

b

(F11)

≤
a

b ← [
a, b

The other inequality can be proven entirely analogously, replacing with , axiom
(F9) with (F1), and axiom (F11) with (F3).

6 Conclusion

In this paper, we have successfully provided a finite axiomatisation of NFA modulo similarity,
using a string diagrammatic syntax.

Related work. In doing so, we have built on an earlier diagrammatic axiomatisation of
NFA up to language equivalence [20]. We have shown here that the same syntax is able
to accommodate a different semantics and can be axiomatised with a slight change of
(in)equational theory: left-distributivity of a over and is now lax. This change
reflects the well-known fact that simulation implies language-inclusion. Another interesting
corollary is that, for deterministic automata(-diagrams), lax left-distributivity is sufficient to
prove language-inclusion (i.e., if we can show that c ≤ d using the axioms of [20], we can
show it using only those of MDA).

Our axiomatisation is also closely related to an existing axiomatisation of regular CCS
expressions up to similarity [9]. That work builds on Milner’s axiomatisation of bisimilarity,
adding the axiom E ≤ E+F , an axiom which is derivable in our calculus. The main difference
with our work is that this axiomatisation contains implicational axioms for fixpoints. In
contrast, our axiomatisation is finite, as was the case in our earlier work on language
equivalence [20]. We were able to achieve this by using a more expressive diagrammatic
calculus, in which we can encode not only the simulation relations themselves, but the proof
that they satisfy the desired properties.
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Future work. First, we would like to characterise the expressiveness and give a complete
axiomatisation of the full syntax (including the white generators) for the simulation semantics.

Second, we want to axiomatise the same syntax up to bisimilarity. Recall that a relation
R is a bisimulation between two NFA when both R and R−1 are simulations. The present
completeness result implies it is possible to check “by hand” that a relation-diagram encoding
R witnesses the bisimulation between two automata-diagrams c and d: we have to prove that
c ≤ d and d ≤ c, as in the proof of Theorem 15, using R in one direction and R−1 in the
other. However, this requires us to keep track of which simulation relation we use in each
direction, since the relation ≤ itself omits this crucial piece of information.

Excitingly, this paves the way for a 2-categorical approach to the theory of bisimilarity, a
perspective which would allow us to track the way in which two diagrams are related explicitly:
for c, d two automata-diagrams and r a relation-diagram, r : c⇒ d is a 2-morphism whenever
r is a simulation. We aim to show that this defines a (symmetric monoidal) 2-category and
find a presentation for it, using 2-morphisms to replace the axioms of MDA and further
equalities between them. Since bisimulations would be 2-isomorphisms in this setting, such
a presentation would allow us to construct them as 2-morphisms and prove that they are
invertible and satisfy the required properties using the additional equalities.

Finally, we would like to translate the axioms of MDA into transformations of the
state-transition graph of the corresponding automata, building on the extensive work on
formulating string diagram rewriting as rewriting of hypergraphs [3, 4].
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A Algebraic operations on NFA

We define here precisely the operation we use in the paper. Fix two NFA A = (Q, q0, F, α)
and B = (S, s0, G, β).

▶ Definition 39 (Sum). We define the sum of A and B, denoted A + B as follows: A + B =
(T, t0, H, γ) where:

T = Q ⊔ S ⊔ {t0}, with t0 neither appearing in Q nor S.
H(t) = F (t) if t ∈ Q, H(t) = G(t) if t ∈ S and H(t0) = F (q0) ∨G(t0)
(t, a, t′) ∈ γ whenever (t, a, t′) ∈ α, or (t, a, t′) ∈ β, or t = t0 and (q0, a, t) ∈ α or
(s0, a, t) ∈ β.

Intuitively, summing A and B only consists in merging their initial states into one which
mimics the behaviour of both.

▶ Definition 40 (Synchronous Product). The product A× B = (T, t0, H, γ) of A and B is
defined as:

T = Q× S

t0 = (q0, s0)
H(q, s) = F (q) ∧G(s)
(q, s) a−→A×B (q′, s′) whenever q

a−→A q′ and s
a−→B s′

Intuitively, every path in A×B is also a path in both A and B.

▶ Definition 41 (Composition). The composition A.B = (T, t0, H, γ) of A and B is defined as:
T = Q ⊔ {i | F (qi) = 1} × (S \ {s0}).
t0 = q0
H(q) = F (q) ∧G(s0) for q ∈ Q, and H(i, s) = G(s) for s ∈ S
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There are three cases for transitions in A.B:
For q, q′ ∈ Q, q

a−→A.B q′ whenever q
a−→A q′,

For s, s′ ∈ S, (i, s) a−→A.B (i, s′) whenever s
a−→B s′

For qi ∈ Q such that F (qi) = 1 and s ∈ S, qi
a−→A.B (i, s) whenever s0

a−→B s

Intuitively, to every final state in A we “attach” an entire copy of B.

▶ Definition 42 (Prefix). If a ∈ Σ then A prefixed by a, written a.A, is the composition of
({q0, q1}, q0, {q0 7→ 0, q1 7→ 1}, {(q0, a, q1)}) and A.

We will also write S.A for S ∈ Pf (Σ) some finite subsets of Σ, as a shorthand for(∑
a∈S a

)
.A =

∑
a∈S a.A.

B Background on SMCs and props

B.1 Props, String Diagrams, and Symmetric Monoidal Theories
After having defined our syntax, the free prop PS over signature S, we give its interpretation
into Sem, a SMC that constitutes our target semantics. To guarantee a compositional
interpretation, we require J·K : PS → Sem, the mapping of terms to their intended semantics,
to be a symmetric monoidal functor.

Once we have specified J·K : PS → Sem, it is natural to look for equations to reason about
semantic equality directly on the diagrams themselves. Given a set of equations E, i.e., a set
containing pairs of morphisms of the same type, we write =E for the smallest congruence
w.r.t. the two composition operations ; and ⊕. We say that =E is sound if c =E d implies
JcK = JdK. It is moreover complete when the converse implication also holds. We call a
pair (S, E) a symmetric monoidal theory (SMT) and we can form the prop PS,E obtained
by quotienting each homset of PS by =E . There is then a prop morphism q : PS → PS,E

witnessing this quotient.
The reader familiar with categorical logic, may find it helpful to know that the concrete

description above can be described in more abstract categorical terms, in line with Lawvere’s
account of algebraic theories [17]: signatures can be organised into a category and the free
prop PS given as a monad structure over this category. Furthermore, the category of props
and prop morphisms is equivalent to the category of algebras for this monad. Then, by
standard abstract nonsense, the prop PS,E and the quotient morphism q arise as a coequaliser
of free props. A detailed account of this presentation can be found in [1, Appendix A.2].

B.2 (Pre-)Ordered Props and Symmetric Monoidal Inequality Theories
Our semantic prop Sem often carries additional structure that we wish to lift to the syntax:
monotone relations qua relations can be ordered by inclusion. The corresponding mathemat-
ical structure is that of an ordered (or order-enriched) prop, a prop whose homsets are also
posets, with composition and monoidal product monotone maps.

In the same way that props can be presented by SMTs, an ordered prop can be presented
by symmetric monoidal inequality theory (SMIT). Formally, the data of a SMIT is the same
as that of a SMT: a signature S and a set I of pairs c, d : X → Y of PS -arrows of the same
type, that we now read as inequalities c ≤ d.

As for plain props, we can construct a pre-ordered prop from a SMIT by building the
free prop PS and passing to a quotient PS,I : we first build the pre-order on each homset by
closing I under ⊕ and taking the reflexive and transitive closure of the resulting relation.
Finally, we obtain PS,I by quotienting the resulting prop by imposing anti-symmetry.
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SMITs subsume SMTs, since every SMT can be presented as a SMIT, by splitting each
equation into two inequalities. As a result, in the main text, we only consider SMITs, referring
to them simply as theories, and their defining inequalities as axioms. When referring to a
sound and complete theory, we will also use the term axiomatisation, as is standard in the
literature. The situation for a sound and complete theory is summarised as a commutative
diagram:

PS Sem

PS,I

q

J·K

s

Soundness simply means that J·K factors as s ◦ q through PS,E and completeness means that
s is a faithful prop morphism.
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