A Complete Inference System for Probabilistic
Infinite Trace Equivalence

Corina Cirstea =
University of Southampton, UK

Lawrence S. Moss =
Indiana University, Bloomington, IN, USA

Victoria Noquez &
Saint Mary’s College of California, Moraga, CA, USA

Todd Schmid &
Bucknell University, Lewisburg, PA, USA

Alexandra Silva &
Cornell University, Ithaca, NY, USA

Ana Sokolova &

Paris Lodron University of Salzburg, Austria

—— Abstract

We present the first sound and complete axiomatization of infinite trace semantics for generative
probabilistic transition systems. Our approach is categorical, and we build on recent results on
proper functors over convex sets. At the core of our proof is a characterization of infinite traces as
the final coalgebra of a functor over convex algebras. Somewhat surprisingly, our axiomatization of
infinite trace semantics coincides with that of finite trace semantics, even though the techniques
used in the completeness proof are significantly different.

2012 ACM Subject Classification Theory of computation — Logic; Theory of computation —
Formal languages and automata theory

Keywords and phrases Coalgebra, infinite trace, semantics, logic, convex sets
Digital Object ldentifier 10.4230/LIPIcs.CSL.2025.30

Funding This material is based upon work supported by the National Science Foundation under
Grant No. DMS-1928930, while the authors were in residence at the Mathematical Sciences Research
Institute in Berkeley, California, during the Summer Research in Mathematics program of 2024.
Corina Cirstea: partly supported by the Leverhulme Trust Research Project Grant RPG-2020-232.
Lawrence S. Moss: Lawrence S. Moss was supported by grant #586136 from the Simons Foundation.
Alexzandra Silva: ERC grant Autoprobe (no. 101002697). This work was done in part while the
author was visiting the Simons Institute for the Theory of Computing.

Acknowledgements We thank Wojtek Rozowski for insightful discussions on related topics and the
anonymous reviewers for helpful suggestions that improved the material presented in the paper. We
thank the National Science Foundation and the Simons Laufer Mathematical Sciences Institute for

their support of our work.

1 Introduction

Probabilistic transition systems have been studied in the semantics and verification literature
for decades. There are many variants, from the simplest Rabin model [16] to systems that
encompass multiple layers of randomized and non-deterministic choice. A good overview of
existing systems and an expressiveness hierarchy was provided in [26, 3].
© Corina Cirstea, Lawrence S. Moss, Victoria Noquez, Todd Schmid, Alexandra Silva, and
5v Ana Sokolova;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jorg Endrullis and Sylvain Schmitz; Article No. 30; pp. 30:1-30:23

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:cc2@ecs.soton.ac.uk
https://orcid.org/0000-0003-3165-5678
mailto:lmoss@iu.edu
https://orcid.org/0000-0002-9908-5774
mailto:vln1@stmarys-ca.edu
https://orcid.org/0000-0001-5517-0929
mailto:t.schmid@bucknell.edu
https://orcid.org/0000-0002-9838-2363
mailto:alexandra.silva@gmail.com
https://orcid.org/0000-0001-5014-9784
mailto:ana.sokolova@cs.uni-salzburg.at
https://orcid.org/0000-0002-8384-3438
https://doi.org/10.4230/LIPIcs.CSL.2025.30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2

A Complete Inference System for Probabilistic Infinite Trace Equivalence

One important class of probabilistic systems are so-called generative probabilistic transition
systems (GPTS). These are much like ordinary (nondeterministic) labelled transition systems,
but each state is assigned a (sub-)probability distribution over outgoing transitions instead
of a set of outgoing transitions. Every state in a GPTS generates a probability distribution
of traces. The traces generated can be finite or infinite depending whether the GPTS models
explicit termination.

In this paper, we will consider GPTS without explicit termination, also widely known
in the literature as Labelled Markov Chains (LMCs), and therefore we are only interested
in including infinite traces in the semantics. That is, each state of an LMC we consider
generates a probability distribution on infinite traces (a.k.a. streams). The main goal of this
paper is to provide an axiomatic characterization of when two states in these LMCs generate
the same probability distribution on streams. We provide a syntax and an inference system
to reason about distributions on streams generated by a state of an LMC, and prove that
the axiomatization is both sound and complete.

Axiomatizing trace distribution semantics is difficult in general, and this is made more
challenging by the presence of infinite traces. One of the seminal works on axiomatizing
probabilistic behaviours is due to Stark and Smolka [29], but they studied probabilistic
bisimilarity (in the sense of [11]), which is a finer equivalence than trace distributions. A
decade later [25], Silva and Sokolova showed that adding one extra axiom to Stark and
Smolka’s axiomatization of probabilistic bisimilarity was enough to obtain a sound and
complete axiomatization of finite trace distribution equivalence. At the core of Silva and
Sokolova’s completeness result was the observation that finite trace distribution equivalence
coincides with bisimilarity after determinization in the category of convex algebras, algebraic
structures that model the closure of convex sets under convex combinations. Stark and
Smolka’s result is the probabilistic analogue of an earlier paper of Milner [15], whereas
Silva and Sokolova’s is the probabilistic analogue of an earlier paper of Rabinovich [17],
where it is shown that a sound and complete axiomatization of trace semantics of labelled
transition systems can be obtained from an axiomatization of bisimilarity. All these works,
non-deterministic and probabilistic, restrict themselves to finite traces.

To achieve our goal, we use a categorical perspective on the semantics of LMCs. This is
in the spirit of [25], but there are crucial technical hurdles to overcome: First, we need to
find an endofunctor on a category that models LMCs as coalgebras and allows the derivation
of the stream distribution semantics in a canonical way. More specifically, we need to give a
coalgebraic characterization of the map that assigns to every state of an LMC the distribution
on streams that the state generates. To this end, we carefully craft the endofunctor G on the
category CA of convex algebras and convex algebra homomorphisms in Section 5. Second,
we show that our endofunctor satisfies a number of desirable properties that enable a sound
and complete axiomatization, including the preservation of pullbacks and properness [14].
Finally, we need to find a suitable syntax for specifying finite LMCs where stream semantics
is of interest. Each of these steps pushes the boundaries of existing work on semantics and
decidability of trace equivalence for automata, and they require new technical results that
form the core contributions of our paper. We briefly describe our contributions below and
give an outline of the paper.

In Section 2, we recall basic definitions on labelled Markov chains and their semantics.

In Section 3, we recall the syntax of Stark and Smolka’s process algebra [29] and Silva
and Sokolova’s axioms for finite trace equivalence [23], which will form the basis of our
inference system and allow us to state our intended soundness and completeness results.

In Section 4, we explain our high-level strategy for proving completeness, which follows
the coalgebraic completeness method described in [22] that originates in [8, 24, 13].

C. Cirstea, L.S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova

In Section 5, we define the endofunctor G, which forms the basis of all of our developments.
The functor G is defined on the category CA of convex algebras and convex algebra
homomorphisms (see Definition 4.1), and makes use of an important mass-splitting
property that resembles a side condition present in [6]. Crucially, we characterize stream
distribution semantics as a final G-coalgebra semantics, via a determinization construction
that turns LMCs into G-coalgebras. This construction is interesting in its own right, given
its simplicity compared to existing finality-based approaches to infinite trace semantics
[9, 5, 6].

In Section 6, we define a G-coalgebra structure on the set of process terms modulo axioms,
which endows the terms with an operational semantics. We show that this term coalgebra
is universal among the free and finitely generated G-coalgebras by providing unique
solutions to finite systems of equations arising from a coalgebra structure.

In Section 7, we conclude our proof of completeness by establishing that G satisfies a
property called properness, introduced by Milius in [14]. The proof that G is proper uses
a topological characterization of congruences of finitely generated convex algebras due to
Sokolova and Woraceck [27].

We conclude with a discussion of related and future work, and the implications of the
completeness theorem in Section 8.

Our completeness result is remarkable for two reasons: First and foremost, our axiomatiz-
ation is precisely the same as Silva and Sokolova’s for finite trace semantics. In other words,
both the (finite) trace distribution semantics and the stream distribution semantics give rise
to the same valid equations between term expressions. Second, the completeness result uses
a novel proof of properness [14, 28] that appears to hinge on the topology of bisimulations
between coalgebras over convex algebras. The latter is a significant point of departure from
the properness proof method of Sokolova and Woracek [28].

2 Labelled Markov Chains and Stream Semantics

In this section, we briefly recall basic definitions of labelled Markov chains, stream semantics,
and the framework of universal coalgebra.

Labelled Markov chains. Given a set X, define D(X) to be the set of finitely supported
probability distributions on X. That is, § € D(X) if and only if 8: X — [0,1], 6(x) > 0 for
finitely many = € X, and 6(X) = > .\ 0(z) = 1. Since the support is finite, each § € D(X)
can be written in the form Y. | r; - z; such that r; € (0,1] and z; € X for each i < n. We
write 1 - x for the Dirac delta at z € X.

For a fixed finite set A of formal symbols called actions, a labelled Markov chain (or LMC)
is a pair (X, 8) consisting of a set X of states and a transition function 8: X — D(A x X).
An LMC is said to be finite if it has finitely many states.

One graphical depiction of a finite LMC is the directed graph with a node for each state
and a decorated edge x a_l’}ﬂ y between nodes x and y whenever §(x)(a,y) = r with » > 0.
We typically drop the 8 notation whenever the transition function is clear from context.

» Example 2.1. The LMC (X,3: X — D(A x X)) with A = {a,b}, X = {z,y}, and
Bx)(a,y) = B(x)(b,x) = B(y)(b,) = B(y)(a,y) = 0.5 is depicted in (2.1).

al0.5

b]0.5 c@c@g al0.5 (2.1)

b|0.5

30:3

CSL 2025

30:4

A Complete Inference System for Probabilistic Infinite Trace Equivalence

Stream semantics. A word over a finite alphabet A is a finite sequence ay - - - a,, (written
as a juxtaposition) of elements of A. We write ¢ for the empty word. A stream is an infinite
sequence (ag,as,...) of elements from A. We write A* for the set of words and A“ for the
set of streams. The set A% carries a topology, with basis given by the cylinder sets,

B, ={(a1,...,an,...) | a1+ a, = w}

where w € A* is a word. In the notation above, B, = A%, as every stream begins with ¢.

Recall that a Borel set is an element of the o-algebra generated by the open sets of
a topological space, a Borel measure is a measure defined on the Borel sets, and a Borel
probability distribution is a Borel measure with total probability 1 [19].

» Definition 2.2. A stream distribution is a Borel probability distribution on the space A% .
The set of all stream distributions on A is written Prob(AY).

Each state of an LMC corresponds to a unique stream distribution that records the
probability of that state eventually emitting streams in a given Borel set. The following
proposition is a special case of [9, Proposition 3.12].

» Proposition 2.3. Let (X, 3) be an LMC. There is a unique map [~]5 : X — Prob(A*)
such that for any r € X and any w € A* and a € A,

[2]5 (Baw) = D B(x)(a,y) [yl 5 (Bw)

yeX

The map [[f}]ﬂ above is the stream semantics of (X, 3). Given states x,y € X, we say z and
y are stream equivalent if [z] 5 = [y] 4.

LMCs as coalgebras. Universal coalgebra is by now a standard framework for studying
state-based systems like LMCs [20]. The theory is sufficiently general for capturing systems
where the states come with additional structure. Systems with structured state spaces are
central to the main result of this paper, so we state the definitions below for more general
categories than the category Set of sets and functions.

» Definition 2.4. Given an endofunctor on a category F: C — C, an F-coalgebra is a
pair (X, c) consisting of an object X of C and an arrow c¢: X — F(X). A coalgebra
homomorphism h: (X,cX) — (Y,c¥) is an arrow h: X —Y such that ¢¥ o h = F(h) o cX.
We write Coalg(F) for the category of F-coalgebras and their homomorphisms.

The set-mapping X — D(X) is a functor, with action on functions given by
D(f)(9) = Zh‘ - f(ws)
i=1

where f: X — Y and 0 = Z?:l r; - ;. The set-mapping X +— A x X is also a functor, with
the action on functions being f — id4 X f. By composition, D(A x —) is an endofunctor on
Set. The point is that LMCs are precisely D(A x —)-coalgebras. Unravelling the definitions,
a coalgebra homomorphism between LMCs h: (X,) — (Y,9) is a function h: X — Y such
that for any z € X, if B(z) = >, r; - (a;,x;), then

d(h(z) =D i (ai, h(z;))
i=1

C. Cirstea, L.S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova

Coalgebra homomorphisms are precisely the maps that preserve the branching-time behaviour
of probabilistic systems.

A category C is concrete if there is a faithful functor U: C — Set. An object X in a
concrete category C is essentially a set U(X) with additional structure, and arrows X — Y
are functions that preserve that structure. We write € X for € U(X). The category Set
is of course concrete, as witnessed by the identity functor.

» Definition 2.5. Let (X,cX) and (Y,) be F-coalgebras where F: C — C and C is concrete,
€ X andy €Y. We say ¢ and y are behaviourally equivalent and write x ~ y if there is

a cospan (X, cX) N (Z,c%) &£ (Y,cY) in Coalgc(F) such that h(z) = k(y).

For LMCs, behavioural equivalence (which coincides with probabilistic bisimilarity)
implies stream equivalence [21, Theorem 6.7].

» Proposition 2.6. Let (X,) and (Y,9) be LMCs, x € X,y €Y. Ifx ~ vy, then [[a:]]ﬁ = [yly-

The converse fails: for LMCs, behavioural equivalence is strictly finer than stream
equivalence (see, e.g., [21, Figure 8]). It follows that there is no LMC structure (Prob(A“), c)
such that [—]; : (X, 8) — (Prob(A),¢) is always a coalgebra homomorphism.

3 Axiomatizing Stream Semantics

In this section, we recall Stark and Smolka’s specification language for probabilistic transition
systems [29] and the axioms for trace equivalence proposed by Silva and Sokolova [25].

A Specification Language for LMCs

Fix an infinite set V' of variables. Consider the set of terms generated by the grammar below,
e,fu=v|ae|led, f|luve

where v € V, a € A, and r € [0, 1]. A variable v is bound in a term e if it appears within the
scope of pv (=), and guarded if it appears within the scope of some a(—). The set PTerm of
productive process terms is the set of terms e such that every variable v appearing in e is
both guarded and bound. Given variables vy, ..., v,, we write PTerm(vy,...,v,) for the set
of guarded terms whose free variables are contained in {v1,...,v,}.

Intuitively, the operation a(—) is prefizing by a, and ae denotes the process that makes
an a-labelled transition with probability 1 into e. The operations &, are called convexr sums,
and e @, f denotes the process whose outgoing transitions are the same as e and f, but with
probabilities scaled by r € [0,1] and 1 — r respectively. The operation pv (—) is recursion
in v, and pv g behaves exactly as g[uv g/v] does, where g[uv g/v] denotes the productive
process term obtained by substituting every free occurrence of v in g with pv g. Recursion is
the source of loops in the LMCs specified by productive process terms. The intuition behind
each operation on productive process terms is formalized as follows.

» Definition 3.1. For anye,f € PTerm,a € A, v € V, g € PTerm(v), and r € [0, 1], define
T(ae) =1-(a,e) 7(ed®r f)=r7(e)+ (1 —r)7(f) 7(w g) =7(glmv g/v])

Then (PTerm, 7) is the syntactic LMC.

30:5

CSL 2025

30:6

A Complete Inference System for Probabilistic Infinite Trace Equivalence

Each probabilistic process term e shares its stream semantics with a state in a finite LMC.
In particular, let (e) be the set of probabilistic process terms f such that e ‘“_|”> e L I
Then (e) is finite and 7 restricts to a transition structure 7.y : (e) — D(A x (e)) [21]. We

also have [e] = [e]. , since [e]_ only depends on states reachable from e.

T(e)
The converse is also true. The following theorem, analogous to Kleene’s theorem for

regular expressions [10], is a direct consequence of results presented in [29].

» Theorem 3.2. Let (X, 3) be a finite LMC and let x € X. There exists an e € PTerm such
that e and = are behaviourally equivalent.

As an immediate consequence of Theorem 3.2 and Proposition 2.6, we have that PTerm
is a fully expressive specification language for states of finite LMCs.

» Corollary 3.3. Let (X,) be a finite LMC and let x € X. There exists an e € PTerm such
that [e], = [z]4-

From now on, we drop 7 and simply write [e] instead of [e]_, for e € PTerm.

» Example 3.4. The state x in the LMC (2.1) has the same stream semantics as the term
wv (bv ®os alpu (au Go5 bv)))). However, it appears that there is a redundancy in the
LMC (2.1). Both = and y emit a and b with the same probability, and each transitions to the
other with the same probability. Thus, the stream semantics of both states x and y is the
unique Borel probability distribution p satisfying p(Bq,...q,) = 0.5" for any a; - - - a,, € {a,b}*,
making x and y stream equivalent to the state z below. This one-state LMC corresponds to
the process term pv (av G5 bv).

01052z)Dal05

It follows that Juv (bv @o5 aluu (au Bos bv))))] = [uv (av Gg.5 bv)] .

Axioms for stream equivalence

As we have seen from Example 3.4, even very different looking productive process terms can
be stream equivalent. To facilitate reasoning about equivalence, we give a set of inference
rules for deducing algebraically that two productive process terms are stream equivalent.

» Definition 3.5 (Provable equivalence). Probabilistic process terms e, f € PTerm are said
to be provably equivalent, written e = f, if e = f can be proven from axioms in Fig. 1. We

write [e] for the =-equivalence class of e.

The main goal of the paper is to prove that the axioms in Fig. 1 are sound and complete
to reason about stream semantics of LMCs:

e=f <= [=1/] («<=) : Completeness (=) : Soundness

Soundness was established in [21, Theorem 6.9]. The main result in this paper is completeness,
which verifies [21, Conjecture 1].

» Theorem 3.6 (Completeness). Let e, f € PTerm. If [e] = [f], then e = f.

C. Cirstea, L.S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova

€1 = €2

e=edre ae; = aez

p g = pu glu/vl
e1 Drex =€ D1, e ,ng:g[/u) g/v] e1=f1 ex=fy
— e1®r ez = f1 &y fo
(€1 ®r €2) Bs €3 = €1 Drs (€2 o) €3) f=glf/v]

_— 61:f1---6n:fn
afer @, e2) = ae; By aes f=mws Kle/ = kI /7]

Figure 1 Axioms for probabilistic term equivalence. Above, e, e;, f, fi € PTerm, €= (e1,...,€n),
f: (fi,---y fn), g € PTerm(v), and k € PTerm(v1,...,vn). We assume that u is not bound in g in
the first axiom of the second column. The term k[€/] is obtained by simultaneously replacing v;
with e; for each i < n. Note that the equivalence relation axioms are implicit. The difference with
the axiomatization for bisimilarity is the distributivity axiom (lower-left).

4 Blueprint for Proving Completeness

The main goal of the rest of the paper is to prove Theorem 3.6, completeness of our inference
system. We begin with a high-level sketch of the proof to ease the flow into the upcoming
technical sections. At the core of our argument will be the fact that the semantics of terms,
as given by [—], can be factorized:

r -] Y
PTerm i> PTerm/= L> Prob(A®) (4.1)

The existence of this factorization is a consequence of soundness, which implies that [—]

factors through the quotient PTerm/= for a particular function 97: PTerm/= — Prob(A¥).

Once we have such factorization, we can reason as follows:
[]=1/1 = o' () =0"(f) = ll=0f] = e=f

Now completeness follows if we can justify the % step, which amounts to injectivity of . In
other words, Theorem 3.6 follows if T is injective. And that is precisely what we are going to
prove. Before we outline the completeness proof, we need a few notions from convex algebra.

» Definition 4.1. A convex algebra is an algebraic structure consisting of a set X and a
family of binary operations @,: X x X — X (written infiz) satisfying

rTOy=0 cE,rx=0 O, Y=y 1,0 (20rY) Dsz=2Dps (y@% Z)
An affine map, or convex algebra homomorphism, between convex algebras (X, @ff) and
(Y,®)) is a function h: X —'Y that satisfies h(x &, y) = h(x) ®} h(y) for each p € [0,1].
The category of convex algebras and affine maps is denoted CA.

A convez algebra (X, @?) is free and generated by a set B C X if every map f: B —
Y from B to the carrier of a convex algebra (Y, @Z) extends to a unique affine map
7 (X, @) = (Y,@®)). The set B is then the set of generators of the free algebra (X, ®)).
If B is a finite set, then the free algebra gemerated by B is free finitely generated, ffg, for
short. A convex algebra is finitely generated, fg, for short, if it is a homomorphic image of a
free finitely generated one.

Note that we will often write X instead of (X, @,) if the convex algebra structure is clear
from the context.

30:7

CSL 2025

30:8

A Complete Inference System for Probabilistic Infinite Trace Equivalence

Back to the intended completeness result as outlined above, we break the proof of
injectivity of Ot into 3 steps, each of independent interest.

Step 1

We identify the category of convex algebras as the right base category to define the stream
semantics of LMCs. More precisely, we define a functor G on CA and show that the convex
algebra of Borel probability distributions Prob(A“) carries a final G-coalgebra structure
(Prob(A%),¢). By turning any LMC (X, 8) into a G-coalgebra (D(X),dp) via a determ-
inization construction (see Definition 5.11), we obtain the determinized stream semantics
(X,0), (-)g = 8; on: X = D(X) — Prob(A¥) via the final coalgebra homomorphism
8;3: (D(X),03) — (Prob(A“),). We then relate this determinized stream semantics to the
original stream semantics [—] defined in Proposition 2.3 using the syntactic LMC (PTerm, 7)
as shown in the diagram (4.1).

Step 2

We provide a G-coalgebra structure (PTerm/=, 9) on the equivalence classes of terms modulo
provable equivalence and show that every ffg G-coalgebra (X, 8) (i.e., X is ffg) has a unique
coalgebra homomorphism into (PTerm/=,d). This is related to solving certain systems of
equations in PTerm/=. We also show that (PTerm/=,) is locally fg, in the following sense:

» Definition 4.2. A G-coalgebra (X,7) is locally fg if for any x € X, there is a subcoalgebra
(U,vu) of (X,v) such that x € U and U is fg. A locally fg G-coalgebra (X,) is final if every
locally fg G-coalgebra admits a unique coalgebra homomorphism into (X,7).

The significance of (PTerm/=, d) being locally fg is related to the lemma below.
» Lemma 4.3. Every homomorphic image of a locally fg G-coalgebra is also locally fg.

Consider the surjective-injective factorization of the coalgebra homomorphism 9 below.

r o N
(PTerm/=,9) (J,p) L (Prob(A“), ()

To show that ' is injective, it suffices to show that the map ¢ has a left inverse, a coalgebra
homomorphism k: (J, p) — (PTerm/=,0) such that k o ¢ = id, as then

0'([e]) = 9'([f]) & voq[e]) = roq(f]) = a(le]) = a([f]) = koq([e]) = koq([f]) « [e] = [f].

One way to do this is to show that (PTerm/=,0) is the final locally fg G-coalgebra. In
such a case, by Lemma 4.3, (J,p) is also locally fg, and therefore admits the desired
(necessarily unique) coalgebra homomorphism k. Indeed, by finality, since k o ¢ and id are
both homomorphisms from (PTerm/=,9) to itself, they must be the same, i.e., k o ¢ = id.

Step 3

Lastly, we will establish sufficient conditions guaranteeing that (PTerm/=,9) is the final
locally fg G-coalgebra. Our end goal will be to apply the following theorem, which can be
obtained from a combination of [14, Corollary 5.9] and [27, Corollary 5.5].

C. Cirstea, L.S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova

» Theorem 4.4. Suppose that F is a finitary proper endofunctor on CA that preserves
surjective affine maps. Then an F-coalgebra (Y,w) is a final locally fg coalgebra if and only
if (i) (Y,w) is locally fg and (ii) for every ffg F-coalgebra (D(X),03), there is a unique
coalgebra homomorphism (D(X),05) — (Y, w).

Theorem 4.4 uses the notion of a proper functor, which we will define in Definition 7.6
below.

After having completed Step 2, we will have already seen that (PTerm/=,) is locally
fg, and furthermore that every ffg G-coalgebra admits a unique coalgebra homomorphism
into (PTerm/=,0). Thus, completing Step 3 hinges on showing that the functor G is finitary,
that it preserves surjective affine maps, and that G is proper. Step 3 is the most technical of
the three steps.

To summarize, here are our obligations stated in the three steps above:

1. We must define G : CA — CA, endow Prob(A“) with a G-coalgebra structure ¢, turning
Prob(A%, () into a final G-coalgebra.

2. Given an LMC (X,), we must explain how it is determinized to yield a G-coalgebra
(D(X),0s), and how its stream semantics [—] is obtained from the final coalgebra
homomorphism as [—] = 8; on. In other words, we must relate the stream semantics to
the determinzed stream semantics (—) 3.

3. We must define a coalgebra structure 8 : PTerm/= — G(PTerm/=) and show that
(PTerm/=,9) is locally fg and that free fg G-coalgebras admit unique coalgebra homo-
morphisms into (PTerm/=, 0).

4. We must show that G is finitary, preserves surjective algebra homomorphisms, and is
proper.

5 Step 1: Convex (Co)Algebras and the Functor G

We begin executing each of the steps in Section 4. We first need some basic definitions on
the category CA of convex algebras.

Convex algebras. Recall that a convex algebra is an algebraic structure consisting of a
set X and a collection of convex sum operations @,: X x X — X indexed by r € [0, 1]
satisfying the equations in Definition 4.1, and recall that we write CA for the category of
convex algebras.

» Example 5.1. Prime examples of convex algebras are convex subsets of R”, i.e., subsets
C' C R™ such that p, ¢ € C implies that p®, ¢ = rp+ (1 —r)§ € C for all r € [0,1]. Moreover,
for any subset U C R", there is a smallest convex algebra containing U, namely the convez
hull conv(U) = {rp+ (1 —7)q| p,7€ U and r € [0,1]}.

We may use the following syntax as a generalized convex sum in an arbitrary convex
algebra: given rq,...,7r, € (0,1) and x1,...,x,, define

n n—1

Pri-wi=an o, (@ : jirn %) (5.1)

i=1 i=1

It is important to note that, technically, the base case is n = 2. We can also use this notation
if r; =0 for i # j and r; = 1, but in that case we define @, r; - ; = z;. Up to the convex
algebra axioms, any two ways of reordering the summands of (5.1) produces equivalent terms.
This justifies the slight abuse of notation @, g s - @, where S is a set and r(_y: S — [0, 1]
is a function such that) o7, =1 and only finitely many of the r, are non-zero.

30:9

CSL 2025

30:10

A Complete Inference System for Probabilistic Infinite Trace Equivalence

Free convex algebras. (D(X),®,) is the free convex algebra generated by the set X.
Hence, for any convex algebra (Y, 692;), and any function f: X — Y, there is a unique linear
extension f#: (D(X),®,) — (Y,®)) of f such that f#(1-2) = f(x). The universal property
of free convex algebras gives rise to the adjunction F 4 U, where F(X) = (D(X), ®,) is
the free functor that maps a set to the free convex algebra generated by it and a function
f: X =Y toD(f): D(X) — DY), and U is the forgetful functor from CA to Set that
forgets the algebraic structure and is identity on homomorphisms.

The free functor F is a left adjoint to the forgetful functor, and clearly D = U o F.
It follows that (D, n,u) is a monad on Set with nx(z) = 1 -z and px = (idp(x))#, and
furthermore, CA is isomorphic to the category of Eilenberg-Moore algebras for D [31]. In
particular, the free convex algebra generated by a set X is the Eilenberg-Moore algebra
(D(X), ux). We often omit writing the forgetful functor when no confusion arises, and (in
accordance with our convention to drop the algebra structure when no confusion arises) also
often just write D(X) for the free algebra F(X).

Adding a fresh element L to a convex algebra. In order to define the endofunctor G,
we need the following construction on convex algebras. Given a convex algebra X, define
X, ={L}U{r-z|re€(0,1],z € X}. The set X, obtains a convex algebra structure with
respect to the convex sum operation defined

L@gLl=1L rad,L=(r)z Lags-y=(1-q)s)y
rer®gs-y=(qgr+(1—gq)s) (z& Y)

qr
qr+(1—q)s

» Lemma 5.2. Let X be a conver algebra. As defined above, (X, ,®) is a convex algebra.
Moreover, givenr-x and s-y in X, r-x=s-y if and only if r = s and x = y.

» Remark 5.3. We introduce some notation going forwards. We often use the notation 0 - x
for L, even implicitly, despite that 0-z =0y for all z,y € X.

The construction (—); : CA — CA is a functor whose action on convex algebra homomorph-
isms is given by h (r-x) = r-h(x) for any convex algebra homomorphism h: (X, ®,) — (Y, ®,)
and any x € X. The homomorphism A additionally satisfies A, (1) = L. Freely adjoining
L is analogous to going from probability distributions to sub-probability distributions (maps
0: X — [0,1] such that }__ 0(x) < 1). The following lemma makes this precise.

» Lemma 5.4. Let D, be the finitely supported sub-probability distribution functor, and let
Prob, (A%¥) be the set of Borel sub-probability measures on A¥. Then as convex algebras,
D(X)l = 'DL(X) and Prob(A‘*’)l = ProbL(A"’).

The functor G : CA — CA

We are now ready to introduce the functor on CA needed to move from Set to CA. There are
different ways to define such a functor, e.g. Silva and Sokolova [25] use another functor for
the axiomatization of finite trace semantics. The choice of the “right” functor so that our
intended results go through, i.e., the choice of this particular functor G, is one of the main
contributions of this paper.

Given a convex algebra X and a convex algebra homomorphism h: X — Y let

GX)={fsA>x0| Yrl=1} GO =]zl (5.2)

a€A

C. Cirstea, L.S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova

where f(a) = rf - x! for each f € G(X) and a € A. Equivalently, G(h)(f) = h, o f. Note
that in the definition of G(X) above, the sum is the usual sum of real numbers, and that we
define f = 0 and leave = undefined when f(a) = L.

» Proposition 5.5. As it is defined in (5.2), G is an endofunctor on CA.

We use the following terminology to refer to the defining property of G: If f : A — X has
the property that), r! =1, as mentioned in (5.2), we say that f satisfies the mass-splitting
property, or that f is mass splitting.*

In particular, a function f: A — D, (X) is mass splitting, i.e., f € G(D(X)), if and
only if the total mass >, 4 > .cx f(a)(z) is equal to 1. Given such a function, one can
reverse-engineer a unique probability distribution 6§ € D(A x X) such that f computes the
marginal f(a) = 0({a} x X) for each a € A. Thus, a G-coalgebra of the form (D(X),~)
represents the same data as an LMC (X, 8) by reverse-engineering 3(z) from (1 - z) for
each z € X. We think of G-coalgebras as the deterministic counterpart of LMCs. Their
exact relationship will be made precise at the end of this section.

» Remark 5.6. Note that as a set, X; = 14 (0,1] x X, and so the description of G(X) above
can also be taken as a definition of a functor H: Set — Set. Indeed, G is a lifting of H to
CA. However, the convex algebra structure on X, is not the convex algebra structure on
1+ (0,1] x X obtained from (co)products in CA. The convex algebra structure is instead
hand-tailored to match the structure of sub-probability distributions.

(I), and whenever TJ(I) > 0, we

In a given G-coalgebra (X,), we write mass, (a, x) for rq
write next,(a,z) for 22 Then whenever y(z)(a) = L, mass,(a,z) = 0 while next,(a,z) is

undefined; and when mass,(a,z) > 0,
v(x)(a) = mass,(a, x) - next,(a, x). (5.3)

where the - symbol here is from X ;. Note that we often drop v and write simply mass
and next. In this notation, the mass-splitting property says that for all x € X, we have
> qea mass(a,) = 1.

Given G-coalgebras (X, 7) and (Y,w), unravelling the definitions of mass and next reveals
that a function h : X — Y is a coalgebra homomorphism if and only if

mass(a, z) - h(next(a, x)) = mass(a, h(x)) - next(a, h(x)) (5.4)

for any a € A and € X. In other words, for all z € X and a € A, mass(a, x) = mass(a, h(x)),
and if this is greater than 0, then h(next(a,z)) = next(a, h(z)) as well.

A final G-coalgebra. We are now in the position to show that Prob(A%) is the carrier of
a final G-coalgebra. First, observe that, like D(X), Prob(A“) is a convex algebra with the
canonical convex sums, p @, 8 = rp+ (1 — r)f. In the proof of Theorem 5.13, we use the
D-algebra in the more general, Eilenberg-Moore, form (Prob(A4%),), where

E(Zﬁ - pi)(B) = Zﬁpi(B) (5.5)
i=1 i=1

! The mass-splitting property was inspired by a condition in Goy and Rot’s paper [6, Proposition 4.5].

30:11

CSL 2025

30:12

A Complete Inference System for Probabilistic Infinite Trace Equivalence

» Definition 5.7. The G-coalgebra structure (Prob(A%), () is given by, for p € Prob(A¥),
_ 1 if p(Ba) =0
=1 iz (B> plaB)/p(Ba)) if p(Ba) > 0 (56)

where for Borel B, aB = {(a,a1,...) | (a1,...) € B} is the Borel set obtained by prefixing.

It is easy to check that ¢ is a convex algebra homomorphism and that {(p) satisfies the
mass-splitting property for each p € Prob(A%).

» Remark 5.8. It is important to note that next¢(a,—): Prob(A“) — Prob(A®“) is not (in
general) a convex algebra homomorphism.

» Theorem 5.9. The G-coalgebra (Prob(A%), () is final. That is, for any G-coalgebra (X,),
there is a unique coalgebra homomorphism v : (X,~) — (Prob(A%), ().

Here is a hint of a hint. We define vf(x)(B,,) € [0, 1] by recursion on the length of w:
yH(@)(B:) =1

71 (@) (Baw) = {O if y(z)(a) = L (5.7)

mass(a,) - y'(next(a, 2))(B,) if v(z)(a) # L

One needs to show that this specifies each function «' as a finitely additive function on the
generators of the Borel algebra, that the resulting function 7' is a convex algebra morphism
as well as a G-coalgebra morphism, and finally that it is the unique such map.

» Remark 5.10. It is also true that (forgetting the convex algebra structure) Prob(A“) is the
final coalgebra of the functor H : Set — Set mentioned in Remark 5.6. This provides a way
to define the stream semantics of LMCs using finality (Proposition 2.3), i.e., without the
convex algebra structure. However, other ingredients in our completeness proof do require
convex algebras.

Determinization: Connecting LMCs and G-coalgebras

Earlier in this section, we mentioned that one can think of G-coalgebras as deterministic
counterparts to LMCs. We now make the relationship between LMCs and G-coalgebras
precise. Using the universal property of free convex algebras and the correspondence
between finitely supported probability distributions 6 € D(A x —) and functions f: A —
D, (—) satisfying the mass-splitting property, we can construct a determinization functor
A: Coalgg (D(A x —)) — Coalgca(G) as follows.

First, we define the natural transformation Ay : D(A x Y) — G(D(Y)) by

Ay (0)(a) = {L i 50 =0 (5.8)

Sa - (i@(a, —)) otherwise
for each set Y, § € D(AxY), and a € A, with s, = Zer O(a,y). After making the
identification D(X); = D, (X), this amounts to Ay (0)(a)(z) = 6(a,x). A routine check
verifies that Ay is natural in Y and that for any § € D(A x Y), A\y(0) satisfies the mass-
splitting property.
Having constructed A, we can now define the determinization A(Y, 3) of the LMC (Y,)
to be the linear extension of the composition of Ay after 3.

C. Cirstea, L.S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova

» Definition 5.11. The determinization functor A: Coalgge (D(A x —)) — Coalgea(G) is
the functor given by A(Y,B) = ((D(Y), uy),0) with 9 = (Ay o B)* for any LMC (Y, 3),
and A(h) = D(h) for any coalgebra homomorphism h between LMCs.

Moreover, we can show that A is a natural isomorphism, by providing an inverse trans-
formation xy : G(D(Y)) = D(A xY). For h € G(D(Y)) with h(a) = r, - he, define

0 hia) =1

(5.9)
roha(y) otherwise

xy (h)(a,y) = {

» Proposition 5.12. The natural transformations A and x are inverse to each other. Moreover,
given a G-coalgebra ((D(Y), py),7), let B:Y — D(A X Y) be given by = xy o7y o ny.
Then (DY), py),y) = A(Y,B). As a result, a G-coalgebra is ffg iff it is a determinized
finite LMC.

By Theorem 5.9, (Prob(A¥),() is a final G-coalgebra, so from any LMC (Y, (), we
may determinize to get a G-coalgebra A(Y,) and then use finality to obtain a unique
coalgebra homomorphism 5‘;: A(Y,8) — ((Prob(A¥),%),(). This yields a determinized
stream semantics map (—) g : Y — Prob(A“) by composition, i.e., (y))g = 8;(1 -y). Fulfilling
its intended purpose, determinized stream semantics does indeed coincide with stream
semantics as we previously defined it.

» Theorem 5.13. For every LMC (X, 8), (-)g = [-]5 -

Proof. Let a: D(A x Prob(A“)) — Prob(A%) be given by «(0)(B.) =1, and for all a € A,
w e A*,

a(e)(Baw) = Z g(aap) p(Bw) (510)

pEProb(A«)

For a fixed § € D(A x Prob(A®)), let us use the notation s, for 3 cp op(4e) 6(a, p). Note
that taking w in (5.10) to be the empty word e gives s, = a(0)(B,).

Fix (X,p5). Let us first check that a map f : X — Prob(A%) satisfies the equation
mentioned in Proposition 2.3 if and only if f = a o D(A x f) o 5. That is, f(z)(Baw) =

> yex(B(@)(a,y))(f(y)(Bw)) for all a € A and w € A* if and only if f =aoD(A X f)oS.

This follows from:

(@oD(Ax f)of)@)(Buw) = Y (D(Ax f)(B(2))(a,p)p(Bu)

pEProb(Aw)

> > B@)(a,y) | p(Buw)

pEProb(A«) \y:f(y)=p

> (B@)(a,y)(f(y)(Buw))

yeX

where the first equality is by the definition of «, the second equality is the definition of
D(A x f), and the third only rearranges the sum.

In the notation of Proposition 2.3, the map [~] = [-]; is the unique map so that
[-] = aoD(A x [-]) o 5. So we shall show that the (—) has this same property. We thus
show the commutativity of the outer diagram below (with arrows in blue):

30:13

CSL 2025

30:14

A Complete Inference System for Probabilistic Infinite Trace Equivalence

X L Prob(A*)
|

n
aT
P DX — 5 Prob(4%) N

vy

GDX ———— GProb(A%)

G(Z)T

DA x X) —2 aDx —ZPUY L G (Prob(4%)) «2— D(A x Prob(A*))

. D(A x (-)) 7

The top square commutes by definition of (—), the left part commutes as dg on = Ao 8 by
definition of dg, the middle square commutes because 8; is a coalgebra homomorphism, and
the part on the bottom commutes by naturality of A. The commutativity of the remaining
two parts is shown below.

We first prove that (o @ = G(X) o A, giving commutativity of the part on the right. For
0 € D(A x Prob(A¥)), a € A, and w € A*, we have, on the one hand:

a(0)(Baw) = Z 0(a, p)p(Bw)

pEProb(Avw)

((a())(a) = { + if s,=0

a, . (5.11)
Sa - (Bw = ZpEProb(A“’) e(sap) p(Bw)) if Sa 7é 0

We have used definitions of a from (5.10) and ¢ from (5.6), that aB,, = Bg, and that
a(0)(B,) = sq. On the other hand, we use the definitions of A from (5.8) and ¥ from (5.5):

€L if s, =0

A ro (0 (a) =
Prob(A)()() {Sa'(p'—> H(Z;p)) ifsa;éO

1L if s, =0
0(a, .
Sa* (Buw = 2 peprob(a«) (sap) p(Buw)) if sa # 0

Equations (5.11) and (5.12) now give (o a = G(X) o A.
We turn to the commutativity of the remaining square. First, affineness of the map
8; : DX — Prob(A¥) yields 82; oux =Xo D((’?Q;). We precompose with D(nx), and use the

monad law px o D(nx) = idpx along with the definition of (—|). Thus 8;; = X o D((—))-
Now apply G to see the desired commutativity. |

G(2)(Aprob(a=)(0))(a) = { (5.12)

Returning to our blueprint for completeness in Section 4, Theorem 5.13 shows that [—]
arises from the final coalgebra map of (PTerm, 7).

6 Step 2: PTerm/= as a G-coalgebra

The set PTerm/= of provable equivalence classes of productive process terms inherits a
canonical convex algebra structure from PTerm, given by [e] @, [f] = [e ®, f]. These
operations are well-defined because Fig. 1 includes the necessary axiom and they are indeed
convex operations as Fig. 1 includes the convex algebra axioms. In this section, we show
that PTerm/= also carries a canonical G-coalgebra structure (PTerm/=,9). We then focus
on two goals: The first goal is to show that the stream semantics of a productive process

C. Cirstea, L.S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova

term e is equal to the stream distribution 9 ([e]) obtained from the finality of (Prob(A%), ().
The second goal of this section is to show that (PTerm/=,0) is locally fg and that every ffg
G-coalgebra admits a unique coalgebra homomorphism into (PTerm/=, 9).

Defining 8. Let 7(e) = >°/L i - (ai,e;) and write s, = >, _ 7. We define the map
0: PTerm/= — G(PTerm/=) using the formulas

n

massp(a,[e]) = Y i nexta(a,[e]) = {@(ri/sa)-el} (6.1)

a;=a i=1

for any =-equivalence class [e] € PTerm/= and a € A. It can be shown by induction on
derivations that (6.1) describes a well-defined map, i.e., e = f implies the right-hand sides of
the equations in (6.1) agree.

The following characterization of (PTerm/=,0) illustrates that this is a natural choice of
G-coalgebra structure on PTerm/=.

» Lemma 6.1. Given ey, es € PTerm, let

n

T(e1) = Zri ~(as, fi) T(e2) = Zsz ~(as, fi)
i=1 i=1
If ey = eq, then for any a € A,

n n

Tq = Sq and @(Ti/ra) fi = @(Si/sa) - fi (6'2>

i=1 i=1
where v =), _,Ti and $q =), _, Si.

The proof of Lemma 6.1 is a rather long induction on the proof of e = f. As an immediate
consequence of this lemma, we obtain the following.

» Lemma 6.2. Let (D(PTerm),d,) = A(PTerm,7) and hs = ([-])# be the linear extension
of the quotient-by-= map. Then the following diagram commutes.

D(PTerm) RN PTerm/=
lo- lo (63)
G(D(PTerm)) @ G(PTerm/=)
In particular, 0 is a convex algebra homomorphism, and (PTerm/=,0) is a homomorphic
image of the determinized syntactic LMC.

» Theorem 6.3. For any e € PTerm, [e] = 9'([e]).
Proof. By Theorem 5.9 and Theorem 5.13, [e] = 91(1-¢e) = 0 o hx(1-e) = T([e]). <
» Theorem 6.4. The G-coalgebra (PTerm/=,0) is locally fg.

Proof. It follows from results due to Stark and Smolka [29] that the syntactic LMC (PTerm, 7)
is locally finite, in the sense that for any e € PTerm, there is a finite subcoalgebra (U, 7¢/)
of (PTerm,7) containing e. So, let [¢] € PTerm/= and find a finite subcoalgebra (U, 7¢)
of (PTerm,7) containing e. Then A(U,7y) is a free fg subcoalgebra of A(PTerm,7) =
(D(PTerm), d,) containing 1 - e. Taking the image of A(U, 7)) under hys, we obtain a finite
subcoalgebra (V, dy) = hx(A(U, 1)) of (PTerm/=, 9) containing [e] = hx(1-€), as a quotient
of a free fg G-coalgebra. Thus, [e] is contained in a fg subcoalgebra. <

30:15

CSL 2025

30:16

A Complete Inference System for Probabilistic Infinite Trace Equivalence

Systems of equations from G-coalgebras and their unique solutions

The next goal is to show that every ffg G-coalgebra admits a unique coalgebra homomorphism
into (PTerm/=,0). As we remarked after Definition 5.11, every ffg G-coalgebra is of the
form A(X,) for some finite LMC (X, 3). So, it suffices to show that every determinized
finite LMC admits a unique coalgebra homomorphism into PTerm/=. As we will see, each
coalgebra homomorphism A(X, 3) — (PTerm/=,) corresponds to a solution to a particular
system of equations.

» Definition 6.5. The guarded system of equations corresponding to the finite LMC (X, 3)
is the set of formal equations

5(x,8)={z= @ B@)ay)-ay | v e x} (6.4)

(a,y)€AxX

A solution to the guarded system of equations (6.4) is a map

p: X — PTerm such that (Ve e X) p(z) = @ B(x)(a,y) - ap(y)
(a,y)EAXX

Two solutions @, are equivalent, written p = 1, if p(x) = (x) for all z € X.

The following theorem was a key component of Stark and Smolka’s completeness proof
for bisimilarity.
» Theorem 6.6 (Stark-Smolka [29]). Every guarded finite system of equations has a unique

solution up to = without the use of the distributivity axiom a(e ®, f) = ae B, af.

An immediate consequence of the above theorem is the existence and uniqueness of
solutions for systems of equations that arise from LMCs.

» Corollary 6.7. Let (X,) be a finite LMC. Then S(X,) has a unique solution up to =.

Using the distributivity axiom, we can transform each equation in (6.4) into an equivalent
system of equations of the form

x = EB mass(a, x) - a next(a, x)
a€A

where mass and next are derived from dg. This tells us that a map ¢: X — PTerm is a
solution to S(X, f) if and only if for all z € X,

o(x) = @ mass(a, z) - a p(next(a, z))
a€A
Solving systems of equations of this form is equivalent to finding G-coalgebra homomorphisms
into (PTerm/=,).

» Lemma 6.8. Let (X,[3) be a finite LMC, and let p: X — PTerm. Define sg: D(X) —
PTerm/= to be the linear extension of the composition [—] o ¢: X — PTerm/=. Then ¢ is a
solution to S(X, B) if and only if s: A(X,) — (PTerm/=,0) is a coalgebra homomorphism.

We immediately obtain the following theorem.

» Theorem 6.9. Let (X,) be a finite LMC. There is a unique G-coalgebra homomorphism
sg: A(X,B) — (PTerm/=,9).

Hence, recalling that every ffg coalgebra arises via determinisation (see Proposition 5.12)
yields that we have a unique homomorphism from any ffg coalgebra to (PTerm/=,9).

C. Cirstea, L.S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova

7 Step 3: Properness of G

In this section, we finish the outline of completeness that we stated in Section 4 by establishing
that G is finitary, preserves surjective affine maps, and is proper. By Theorems 4.4, 6.4,
and 6.9, this allows us to conclude that (PTerm/=,0) is the final locally fg G-coalgebra.

» Lemma 7.1. G preserves pullbacks, and hence monomorphisms.

Let us mention that monomorphisms in CA are exactly those affine maps which are
injective as set functions. This follows from the fact that U: CA — Set is a right adjoint and
thus preserves all limits, in particular all pullbacks. Recall that in any category monos are
characterized as special pullbacks as in the square below. In particular, let f: X — Y be a
monomorphism in CA. Then the square below is a pullback (and conversely) in CA.

id

X — X
idl f
XLY

Then its image under U is also a pullback and thus U(f) is a monomorphism in Set: that is,
f is an injective function.

For space reasons, we omit the proof that G preserves pullbacks. Using Lemma 7.1, we
can establish the first required property of G.

» Lemma 7.2. The functor G : CA — CA on CA is finitary.

Proof. We are going to use the following results:

Fact 1. The forgetful functor U: CA — Set creates directed colimits.

Fact 2. Let C be a category equipped with a functor U: C — S that creates — hence, preserves
and reflects — directed colimits. Let G: C — C be a lifting of an endofunctor H: S — S,
i.e., UoG = HoU. Then, if H preserves directed colimits, so does G.

In our situation, G is defined in Eq. (5.2), C = CA, and S = Set. The proof of Fact 1 is

routine, and similar to that of [1, Remark 3.4 (vii).(4)].

Let us briefly establish Fact 2. Let D: (I,<) — C be a directed diagram in C, and
let (d;: Di — Y);ecs be a colimiting cocone for D. We want to show that (G(d;): GDi —
GY),er is a colimiting cocone for G o D. Since U reflects colimits, it suffices to show that
(UG(d;): UGDi — UGY);¢r is a colimiting cocone for U o G o D. To this end, consider the
directed diagram U o D: (I, <) — S. Since U preserves directed colimits, (U(d;): UDi —
UY);er is a colimiting cocone for U o D. Now, since H is finitary, i.e., it preserves directed
colimits, (HU(d;): HUDi — HUY),cs is a colimiting cocone of the directed diagram
HoUoD. But HoU =U oG, so we can conclude that (UG(d;): UGDi — UGY);cs is a
colimiting cocone of the directed diagram U o G o D, as desired.

We can now proceed with the proof of the lemma. Recall from Remark 5.6 that G
(from Eq. (5.2)) is a lifting of the endofunctor H. The functor H is finitary because for
any set X, and any function f € HX, there is the finite set Z = {x € X | Ja € ATr >
0 such that f(a) = (r,x)} with f € HZ. By Fact 1, the forgetful functor U: CA — Set
creates directed colimits. Thus, the conditions of Fact 2 are satisfied, and we may conclude
that G is finitary. |

» Lemma 7.3. G preserves surjective affine maps.

30:17

CSL 2025

30:18

A Complete Inference System for Probabilistic Infinite Trace Equivalence

Proof. Let h: X — Y be a surjective affine map. Consider G(h): GX — GY. For a € A,
we have G(h)(g)(a)(L) = L and G(h)(g)(a)(r-x) =1 - h(z).

Take f € GY. For each y € Y, denote by z, an element of X with y = h(z,). Such exists
since h is surjective. We define g: A — X as follows. For a € A, if f(a) = L, set g(a) = L
and if f(a) =7y, set g(a) =r-x,. Then g € GX and G(h)(g) = f. <

The most interesting point in this section is the properness of G (see Definition 7.6). In
order to verify that G is proper, we need a few lemmas regarding bisimilarity and behavioural
equivalence for G-coalgebras.

» Lemma 7.4. Let (X,) be a G-coalgebra on CA. Then bisimilarity (the largest bisimulation)
on (X,¢) coincides with behavioural equivalence, which in turn coincides with the final
coalgebra semantics.

Proof. Behavioural equivalence always coincides with the final coalgebra semantics if the
functor admits a final coalgebra, which is the case for our functor G on CA.

CA is complete and cocomplete [2, § 9.3, Prop. 4] and the functor G preserves (weak)
pullbacks by Lemma 7.1. So CA satisfies the requirements of [30, Theorem 4.1]. As a
consequence: (1) every bisimulation is contained in a kernel bisimulation, and hence bisimilar
states are behaviourally equivalent, and (2) every kernel bisimulation is a bisimulation,
yielding that behaviourally equivalent states are bisimilar. |

We need one more lemma that characterises bisimilarity for G in concrete terms. The
proof follows directly from the definition of bisimulation.

» Lemma 7.5. Let (X,7) and (Y,) be G-coalgebras. Let R C X XY be a subalgebra of X xY .
Then R is a bisimulation between (X, v) and (Y,¥) if and only if the following holds: whenever
a € A and (z,y) € R, mass,(a,z) = massg(a,y), and if mass,(a,z) = massg(a,y) # 0, then
R contains (next,(a,x), nexty(a,y)).

Without further ado, let us now proceed with the proof that G is a proper functor, in
the following sense.

» Definition 7.6. Let T be a finitary monad on Set and write Set” for the Eilenberg-Moore
category of T. A zig-zag in Coalgsyr (F') is a diagram of the shape

(X.0) (Zoes) e, () (1)
N T
(Z1,e1) (Z3,e3) (Zon—1,€2n-1)

Write n for the unit of T. The zig-zag above relates © € X with y € Y, written x ~ y, if
there exist elements zop, € Zok, k=1,...,n — 1, with (setting zo = x and z2, = y)

for(zok) = for—1(226—2), k=1,...,n

The endofunctor F' is said to be proper if the following statement holds: for any pair of
ffg F-coalgebras (T(X),c*) and (T(Y),c¥) and any two elements x € X and y € Y with
nx(z) ~ ny (y), there exists a zig-zag in Coalge,r (F) entirely consisting of ffg F-coalgebras
that relates nx (x) with ny (y). We may call such a zig-zag an ffg zig-zag.

» Theorem 7.7. The functor G : CA — CA is proper.

C. Cirstea, L.S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova

Proof. Consider two ffg G-coalgebras (D(X), 9s) and (D(Y'), 9y), with behaviourally equival-
ent states ¢ € D(X) and ¢ € D(Y'). We need to relate ¢ and 1) with a suitable, ffg, zig-zag.
We are going to use bisimilarity B on the coproduct coalgebra® (D(X),d5) + (D(Y),dy) =
(D(X + Y),ag + 0g).

D(X) 11 - L1071y B L2202 - Lo D<Y)
\A (/ \) /
9p D(X+Y) DX +Y)
6/3“1’379 8/3+8,9 ’
Gy G
GD(X) l Gy OB) (Lmz) l GD(Y)
GD(X +Y) GD(X +Y)

where ¢1, 15 denote the coproduct injections. It remains to show that B is finitely generated
as a subalgebra of the product CA, D(X +Y) x D(X +Y). This follows from results below,
using an analytic-algebraic characterization of finitely generated congruences (kernels of
convex algebra homomorphisms) of finitely generated convex algebras.

In more detail, note that we can identify any ffg algebra D(X) with the simplex in the
vector space RX. This can be done by seeing each Dirac delta 1 -z as a unit vector in
RX. Every congruence relation R C D(X) x D(X) of convex algebras is a subalgebra of
D(X)xD(X), and so by extension can be identified with a (convex) subset of RX x RX = R2X
In particular, our B can be identified with a convex subset of RZX+Y) As turns out, B is
finitely generated as a subalgebra if and only if B is topologically closed in R2X*Y) The
following theorem is a direct consequence of Sokolova-Woracek [27, Proposition 5.9].

» Theorem 7.8. Let R C R?X be a congruence on the ffg convex algebra D(X) C RX. Then
R is finitely generated as a subalgebra if and only if it is topologically closed (closed under
limits of Cauchy sequences).

» Lemma 7.9. Let (D(X),0p) be a G-coalgebra. Then for any a € A, the maps dz(—)(a)
and massg(a, —) are restrictions of R-linear maps RYX — RX*! and RX — R respectively.

Proof. Recall that we think of the Dirac distributions 1 - z as the basis vectors of RX. We
additionally have the unit vector 1- L in R¥*!. For z € X, write

35(1’)((1) = Z Toy Y

yeX

and 7, =1— ZyeX Tzy. Define the matrix M by
M =[rye |z € X and £ € X U{Ll}]

indexed by X x (XU{L}). A quick calculation verifies that indeed, for § € D(X), d3(0)(a) =
M6 by linear extension. Of course, here we are thinking of 6 = > _\ ¢, - = as the column
vector [gz | € X].

Similarly, define the row matrix N = [1 | z € X] of 1’s. Then for 0 =" _ ¢, - 2,

Nﬂz[l 1][ql.|x€X]=ZQ;c

2 Left adjoints preserve colimits, so indeed the coproduct of free convex algebras is given by the formula
D(X)+D(Y)=2D(X +Y), where the “+” on the left hand side is the coproduct in CA.

30:19

CSL 2025

30:20

A Complete Inference System for Probabilistic Infinite Trace Equivalence

We therefore have massg(a,d) = NME. Thus, both d3(—)(a) and massg(a, —) are restrictions
of linear functions. |

» Corollary 7.10. Let (D(X),d3) be a G-coalgebra. Then for any a € A, the maps 93(—)(a)
and massg(a, —) are continuous.

Proof. Follows directly from Lemma 7.9 and that RX, R¥+! and R are finite dimensional.
<

» Theorem 7.11. Let (D(X),03) and (D(Y),0y) be free finitely generated G-coalgebras.
Let (B, £) be the largest bisimulation between D(X) and D(Y'), and regard B as a subset of
DX +Y)x DX +Y)CRXXHY) Then B is a closed set and thus is finitely generated as
a subalgebra.

Proof. We show that the topological closure B of B C R2X+Y) is a bisimulation between
(D(X),d3) and (D(Y),dy). Since B is the largest bisimulation, B C B C B.

We appeal to Lemma 7.5: Let (6,v) € B. Then there is a Cauchy sequence (6;,;);en
such that (0;,1;) — (0,%) as i — oo. This, in particular, means that 6; — 6 and ¢; — ¢ in
the product topology. Now, for a € A,

massg(a,) = massg(a, lim §;)

= lim massg(a, 6;) (Corollary 7.10)
= lim massy(a, ;) (Lemma 7.5)
= massy(a, lim ;) (Corollary 7.10)
= massy(a, V)

This verifies the first condition. To verify the second, suppose that massg(a,) =
massy(a,) # 0. Then there is an N > 0 such that for all ¢ > N, massg(a,§;) =
massy(a, ;) > 0. This allows for the following computation:

9p(0)(a) .~ 9p(0i)(a)

= lim ———"——— = lim nextg(a, ;)

B)
nextg (a, 0) = massg (a, 6) massg(a, 0;)

and similarly for ¢). Above, the step tagged (*) is due to the fact that a product of continuous
functions is continuous on the intersection of their domain, which in this case contains all of
the 6; as well as §. Simply put, we use a known rule for computing limits of sequences of
fractions: The limit of the pointwise-fractions of two sequences is the quotient of the two
limits, given that the denominator sequence has non-zero limit. This tells us that

(nextg(a, 0), nexty(a,)) = lim(nexts(a, 0;), nexty(a, ;) € B
By Lemma 7.5, B is a bisimulation, as desired. <

At long last, we complete the proof of Theorem 7.7 with an appeal to Theorem 7.11. <«

Recap of the proof of completeness, Theorem 3.6

We have taken the approach outlined in Section 4 to showing that the axioms in Fig. 1 are
complete with respect to the stream semantics of probabilistic process terms (Proposition 2.3).
In Step 1, we observed that the semantics map [—] coincides with determinized stream
semantics (—) (Theorem 5.13), and that in particular this meant that the final G-coalgebra

C. Cirstea, L.S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova

homomorphism 97 : (PTerm/=,9) — (Prob(A¥), () satisfies [e] = 07([e]) for each e € PTerm
(Theorem 6.3). Thus, it suffices to show that 97 is injective. To this end, we observed in
Section 4 that it suffices to construct a left inverse k to ¢ in the diagram below.

r o N

(PTerm/=,9) # (J,p) ——— (Prob(A*), () (7.2)

The left inverse k in (7.2) exists if (PTerm/=,0") is the final locally fg G-coalgebra. In
Step 2, we saw that (PTerm/=,0") satisfies a slightly weaker universal property, that every
ffg G-coalgebra admits a unique coalgebra homomorphism into it (Theorem 6.9). In Step 3,
we verified the hypotheses of Theorem 4.4, in particular Theorem 7.7, which tells us that in
fact, (PTerm/=,0") is the final locally fg coalgebra, as desired. This finishes the proof of
completeness, Theorem 3.6.

8 Discussion and Related Work

We present the first sound and complete axiomatization of infinite trace semantics for
generative probabilistic transition systems, settling a recent conjecture of Schmid, Noquez,
and Moss [21]. Our completeness theorem on infinite traces is a new direction in a series
of coalgebraic completeness theorems on finite trace semantics for probabilistic process
calculi [25, 18], thus expanding the scope of this line of work. Our approach is categorical,
and we build on recent results on proper functors over convex sets. In our proof, we use an
analytic-algebraic result about convex congruences to show properness of G. The particular
functor which we prove to be proper has not been studied before, and the properness proof
technique of [28] does not apply to it, but remarkably we could use a result concerning the
geometry of convex congruences due to Sokolova and Woracek [27].

We provide a characterization of infinite traces as the final coalgebra semantics of a functor
over convex algebras. Infinite traces have been studied in the context of semantics of (variants
of GPTS) before: via a largest homomorphism in the (order enriched) Kleisli category of the
Giry monad [32] due to Urabe and Hasuo, via a greatest fixpoint in a category of generalised
relations [4] due to Cirstea, as a final coalgebra on a free positive convex algebra (a convex
algebra with a distinguished element, i.e., in the Kleisli category of the subdistribution
monad) due to Kerstan and Konig [9], and as a subcoalgebra of the final Moore automaton
on a positive convex algebra (in the Eilenberg-Moore category of the subdistribution monad)
due to Goy and Rot [5, 6]. We offer a fourth characterization as a final coalgebra semantics
for a new functor on convex algebras (i.e., in the Eilenberg-Moore category of the finite
probability distribution monad) in Section 5. It is also the final coalgebra of a set functor.

In the future, we want to explore whether the argument we provided for properness
generalizes to other endofunctors on CA and to endofunctors on the category of positive
convex algebras used in [25, 18]. We would like to expand our completeness theorem to
incorporate hypotheses, especially in the context [21] where actions are interpreted concretely
as contractions on a space: If the space and the contractions are fixed, the actions might
satisfy additional relations. More speculatively, it might be interesting to also go in the
opposite direction: Given a set of hypotheses, can one construct a canonical space and a
contraction interpretation of the actions that satisfies the hypotheses? We would also like to
consider different syntax for specifying LMCs and stream measures, such as the so-called
formal language of recursion [7], which connects nicely to iterative algebra. Orthogonally, we
would like to explore axiomatizations of behavioural distances, in the style of quantitative
equational theories [12]. Last but not least, we would like to explore unifying the results of
Silva and Sokolova [25] with those of this paper.

30:21

CSL 2025

30:22

A Complete Inference System for Probabilistic Infinite Trace Equivalence

—— References

1

10

11

12

13

14

15

16

17

18

J. Addmek and J. Rosicky. Locally Presentable and Accessible Categories. London Mathematical
Society Lecture Note Series. Cambridge University Press, 1994.

M. Barr and Ch. Wells. Toposes, Triples and Theories. Springer, Berlin, 1985. Revised and
corrected version available from URL: www.cwru.edu/artsci/math/wells/pub/ttt.html.

F. Bartels, A. Sokolova, and E.P. de Vink. A hierarchy of probabilistic system types. Theoretical
Computer Science, 327:3—22, 2004. doi:10.1016/J.TCS.2004.07.019.

Corina Cirstea. From branching to linear time, coalgebraically. Fundam. Informaticae,
150(3-4):379-406, 2017. doi:10.3233/FI-2017-1474.

Alexandre Goy. Trace semantics via determinization for probabilistic transition systems.
CoRR, abs/1802.09084, 2018. arXiv:1802.09084.

Alexandre Goy and Jurriaan Rot. (In)finite trace equivalence of probabilistic transition
systems. In Corina Cirstea, editor, Coalgebraic Methods in Computer Science - 14th IFIP WG
1.8 International Workshop, CMCS 2018, volume 11202 of Lecture Notes in Computer Science,
pages 100-121. Springer, 2018. doi:10.1007/978-3-030-00389-0_7.

Antonius J. C. Hurkens, Monica McArthur, Yiannis N. Moschovakis, Lawrence S. Moss, and
Glen T. Whitney. The logic of recursive equations. J. Symb. Log., 63(2):451-478, 1998.
doi:10.2307/2586843.

Bart Jacobs. A bialgebraic review of deterministic automata, regular expressions and languages.
In Kokichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, editors, Algebra, Meaning,
and Computation, Fssays Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday,
volume 4060 of Lecture Notes in Computer Science, pages 375-404. Springer, 2006. doi:
10.1007/11780274_20.

Henning Kerstan and Barbara Ko6nig. Coalgebraic Trace Semantics for Continuous Probabilistic
Transition Systems. Logical Methods in Computer Science, Volume 9, Issue 4, December 2013.
doi:10.2168/LMCS-9(4:16)2013.

S. C. Kleene. Representation of events in nerve nets and finite automata. In Claude Shannon
and John McCarthy, editors, Automata Studies, pages 3—41. Princeton University Press,
Princeton, NJ, 1956.

Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic testing. Inf.
Comput., 94(1):1-28, 1991. doi:10.1016/0890-5401(91)90030-6.

Radu Mardare, Prakash Panangaden, and Gordon Plotkin. Quantitative algebraic reasoning.
In 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages
1-10, 2016.

Stefan Milius. A sound and complete calculus for finite stream circuits. In Proceedings of
the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, pages 421-430.
IEEE Computer Society, 2010. doi:10.1109/LICS.2010.11.

Stefan Milius. Proper functors and fixed points for finite behaviour. Log. Methods Comput.
Sci., 14(3), 2018. doi:10.23638/LMCS-14(3:22)2018.

Robin Milner. A complete inference system for a class of regular behaviours. J. Comput. Syst.
Sci., 28(3):439-466, 1984. doi:10.1016/0022-0000(84)90023-0.

Michael O. Rabin. Probabilistic automata. Inf. Control., 6(3):230-245, 1963. doi:10.1016/
S0019-9958(63)90290-0.

Alexander Moshe Rabinovich. A complete axiomatisation for trace congruence of finite state
behaviors. In Stephen D. Brookes, Michael G. Main, Austin Melton, Michael W. Mislove,
and David A. Schmidt, editors, Mathematical Foundations of Programming Semantics, 9th
International Conference, New Orleans, LA, USA, April 7-10, 1993, Proceedings, volume
802 of Lecture Notes in Computer Science, pages 530-543. Springer, 1993. doi:10.1007/
3-540-58027-1_25.

Wojciech Rozowski and Alexandra Silva. A completeness theorem for probabilistic regular
expressions. In Pawel Sobocinski, Ugo Dal Lago, and Javier Esparza, editors, Proceedings of
the 39th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2024, Tallinn,
Estonia, July 8-11, 2024, pages 66:1-66:14. ACM, 2024. doi:10.1145/3661814.3662084.

www.cwru.edu/artsci/math/wells/pub/ttt.html
https://doi.org/10.1016/J.TCS.2004.07.019
https://doi.org/10.3233/FI-2017-1474
https://arxiv.org/abs/1802.09084
https://doi.org/10.1007/978-3-030-00389-0_7
https://doi.org/10.2307/2586843
https://doi.org/10.1007/11780274_20
https://doi.org/10.1007/11780274_20
https://doi.org/10.2168/LMCS-9(4:16)2013
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1109/LICS.2010.11
https://doi.org/10.23638/LMCS-14(3:22)2018
https://doi.org/10.1016/0022-0000(84)90023-0
https://doi.org/10.1016/S0019-9958(63)90290-0
https://doi.org/10.1016/S0019-9958(63)90290-0
https://doi.org/10.1007/3-540-58027-1_25
https://doi.org/10.1007/3-540-58027-1_25
https://doi.org/10.1145/3661814.3662084

C. Cirstea, L.S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova

19
20

21

22

23

24

25

26

27

28

29

30

31

32

Walter Rudin. Real and Complex Analysis. McGraw-Hill, 1966.

Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci.,
249(1):3-80, 2000. doi:10.1016/S0304-3975(00)00056-6.

Todd Schmid, Victoria Noquez, and Lawrence S. Moss. Fractals from regular behaviours.
In Paolo Baldan and Valeria de Paiva, editors, 10th Conference on Algebra and Coalgebra
in Computer Science, CALCO 2023, June 19-21, 2023, Indiana University Bloomington,
IN, USA, volume 270 of LIPIcs, pages 14:1-14:18. Schloss Dagstuhl — Leibniz-Zentrum fir

Informatik, 2023. Also available at https://arxiv.org/pdf/2306.03894. doi:10.4230/LIPICS.

CALCO0.2023.14.

Todd Schmid, Jurriaan Rot, and Alexandra Silva. On star expressions and coalgebraic
completeness theorems. In Ana Sokolova, editor, Proceedings 37th Conference on Mathematical
Foundations of Programming Semantics, MFPS 2021, Hybrid: Salzburg, Austria and Online,
80th August - 2nd September, 2021, volume 351 of EPTCS, pages 242-259, 2021. doi:
10.4204/EPTCS.351.15.

Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten. General-
izing determinization from automata to coalgebras. Log. Methods Comput. Sci., 9(1), 2013.
doi:10.2168/LMCS-9(1:9)2013.

Alexandra Silva, Marcello M. Bonsangue, and Jan J. M. M. Rutten. Non-deterministic kleene
coalgebras. Log. Methods Comput. Sci., 6(3), 2010. URL: http://arxiv.org/abs/1007.3769.
Alexandra Silva and Ana Sokolova. Sound and complete axiomatization of trace semantics
for probabilistic systems. In Michael W. Mislove and Joél Ouaknine, editors, Twenty-seventh
Conference on the Mathematical Foundations of Programming Semantics, MFPS 2011, Pitts-
burgh, PA, USA, May 25-28, 2011, volume 276 of Electronic Notes in Theoretical Computer
Science, pages 291-311. Elsevier, 2011. doi:10.1016/j.entcs.2011.09.027.

A. Sokolova and E.P. de Vink. Probabilistic automata: system types, parallel composition and
comparison. In C. Baier, B.R. Haverkort, H. Hermanns, J.-P. Katoen, and M. Siegle, editors,
Validation of Stochastic Systems: A Guide to Current Research, pages 1-43. LNCS 2925, 2004.
d0i:10.1007/978-3-540-24611-4_1.

Ana Sokolova and Harald Woracek. Congruences of convex algebras. Journal of Pure and
Applied Algebra, 219(8):3110-3148, 2015. doi:10.1016/j.jpaa.2014.10.005.

Ana Sokolova and Harald Woracek. Proper semirings and proper convex functors. In FoSSaCS
2018, pages 331-347. LNCS 10803, 2018.

Eugene W. Stark and Scott A. Smolka. A complete axiom system for finite-state probabilistic
processes. In Gordon D. Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language,
and Interaction, Essays in Honour of Robin Milner, pages 571-596. The MIT Press, 2000.
Sam Staton. Relating coalgebraic notions of bisimulation. In CALCO 2009, volume 5728,
pages 191-205. LNCS 5728, 2009. doi:10.1007/978-3-642-03741-2_14.

T. Swirszcz. Monadic functors and convexity. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom.
Phys., 22:39-42, 1974.

Natsuki Urabe and Ichiro Hasuo. Coalgebraic infinite traces and Kleisli simulations. Log.
Methods Comput. Sci., 14(3), 2018. doi:10.23638/LMCS-14(3:15)2018.

30:23

CSL 2025

https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.4230/LIPICS.CALCO.2023.14
https://doi.org/10.4230/LIPICS.CALCO.2023.14
https://doi.org/10.4204/EPTCS.351.15
https://doi.org/10.4204/EPTCS.351.15
https://doi.org/10.2168/LMCS-9(1:9)2013
http://arxiv.org/abs/1007.3769
https://doi.org/10.1016/j.entcs.2011.09.027
https://doi.org/10.1007/978-3-540-24611-4_1
https://doi.org/10.1016/j.jpaa.2014.10.005
https://doi.org/10.1007/978-3-642-03741-2_14
https://doi.org/10.23638/LMCS-14(3:15)2018

	1 Introduction
	2 Labelled Markov Chains and Stream Semantics
	3 Axiomatizing Stream Semantics
	4 Blueprint for Proving Completeness
	5 Step 1: Convex (Co)Algebras and the Functor G
	6 Step 2: PTerm/{} as a G-coalgebra
	7 Step 3: Properness of G
	8 Discussion and Related Work

