
Simple Types for Probabilistic Termination
Willem Heijltjes #

Department of Computer Science, University of Bath, UK

Georgina Majury #

Department of Computer Science, University of Bath, UK

Abstract
We present a new typing discipline to guarantee the probability of termination in probabilistic
lambda-calculi. The main contribution is a particular naturality and simplicity: our probabilistic
types are as simple types, but generated from probabilities as base types, representing a least
probability of termination. Simple types are recovered by restricting probabilities to one.

Our vehicle is the Probabilistic Event Lambda-Calculus by Dal Lago, Guerrieri, and Heijltjes,
which presents a solution to the issue of confluence in probabilistic lambda-calculi. Our probabilistic
type system provides an alternative solution to that using counting quantifiers by Antonelli, Dal
Lago, and Pistone, for the same calculus.

The problem that both type systems address is to give a lower bound on the probability that terms
head-normalize. Following the recent Functional Machine Calculus by Heijltjes, our development
takes the (simplified) Krivine machine as primary, and proceeds via an extension of the calculus
with sequential composition and identity on the machine. Our type system then gives a natural
account of termination probability on the Krivine machine, reflected back onto head-normalization
for the original calculus. In this way we are able to avoid the use of counting quantifiers, while
improving on the termination bounds given by Antonelli, Dal Lago, and Pistone.

2012 ACM Subject Classification Theory of computation → Lambda calculus; Theory of computation
→ Type theory; Theory of computation → Probabilistic computation

Keywords and phrases lambda-calculus, probabilistic termination, simple types

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.31

Acknowledgements We would like to thank Melissa Antonelli, Ugo Dal Lago, and Paolo Pistone
for the constructive conversation about both our approaches, and the anonymous referees for their
helpful commentary.

1 Introduction

While the study of probabilistic computation can be traced to the 1950s [11], the first study
of the probabilistic λ-calculus in particular is considered to be by Saheb-Djahromi in the
late 70s [30]. In the near half century since, many variations on higher-order probabilistic
computation have been considered [10, 12, 19, 20, 26, 29]. In recent years, perhaps due to
the potential for applications in machine learning and modelling of probabilistic systems,
the area has seen a return to popularity [5, 6, 16, 17, 24, 31]. An important computational
phenomenon in its own right, the study of probabilistic choice can also provide a “foot in the
door” for understanding how more general effects might manifest, leading for instance to the
recent Functional Machine Calculus (FMC) as a confluent λ-calculus with effects [3, 18] that
will play a central role in our development.

In this paper we consider the problem of probabilistic termination, the probability that
a given reduction mechanism reaches the normal form of a term, a key consideration for
probabilistic computation and the subject of significant recent attention [4, 7, 8, 15, 22]. 1

1 Note that this objective is distinct from almost-sure termination: it considers exact probabilities,
not those converging in the limit. Almost-sure termination is more commonly studied for iterative
constructs [21, 27]; extending the lambda-calculus with an almost-surely terminating iterator is the
subject of future work.

© Willem Heijltjes and Georgina Majury;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 31; pp. 31:1–31:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:w.b.heijltjes@bath.ac.uk
https://orcid.org/0009-0001-8941-1150
mailto:gvrm20@bath.ac.uk
https://orcid.org/0009-0004-4325-0699
https://doi.org/10.4230/LIPIcs.CSL.2025.31
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Simple Types for Probabilistic Termination

Termination being one of the prime considerations of type systems in general, the question of
type systems for probabilistic termination is pertinent [1, 7]. Our contribution in this paper
is a new typing discipline for probabilistic termination, following the recent line of work on
the probabilistic event λ-calculus [9] and the FMC. Their prime features are confluence for
probabilistic computation and other effects, and the encoding of multiple reduction strategies
within a single calculus.

One of the greatest challenges facing the study of probabilistic computation is confluence.
In most variants the outcome of duplicating a probabilistic term is strategy dependent.
Consider the instruction “write down the result of flipping a coin twice”: it is ambiguous
whether “twice” refers to “write” or “flipping”, and the choice of interpretation changes the
possible outcomes. In most of the literature results are therefore either restricted to a single
strategy, such as call–by–value or call–by–name, or rely on a modified definition of reduction.
This raises the question whether it is possible to have confluence for probabilistic computation,
while expressing different strategies, and rewriting without restriction on contexts, properties
which lend elegance to the λ-calculus. The probabilistic event λ-calculus [9] proposes a
solution to this problem by decomposing a probabilistic sum M ⊕ N into a choice operation
M a N , understood as a conditional “if a then M else N”, and a probabilistic generator
a . P , representing a coin toss whose outcome is bound to the boolean variable a in the

term P , which then determines the choice for M a N . When in argument position a . M acts
as a wrapper, similar to thunking in call–by–push value [25] and the bang-calculus [14, 15],
protecting the operator from evaluation. These factors combine to return confluence to the
calculus, allowing for arbitrary evaluation strategies with an unrestricted β-reduction.

The probabilistic event λ-calculus (PEΛ) was introduced in [9] with a simple type system,
corresponding to that on the lambda-calculus. This system ignored the probabilistic elements
of the calculus, and thus gave little insight into the properties of this extension. In a
deterministic calculus a type system provides various safety guarantees. These may be
qualitative: termination, outputs, composability; or quantitative: run time, term size. In
the probabilistic setting, however, it is natural to wonder what guarantees can be made,
when the behaviour of a single term can vary between iterations. If, as in the type system
mentioned, the probabilities are ignored, strong results can be obtained, albeit on a fairly
uninteresting fragment of the calculus. Once probability is acknowledged by the type system
the guarantees made become similarly qualified: probability of termination, almost-sure
termination, expected run time. Here, we consider the first of these.

One proposed type system for the PEΛ [1], labelled Cλ→, introduces counting quantifiers
as a Curry–Howard correspondent to an intuitionistic counting propositional logic. These
provide a mechanism to express “proportion of truth” by quantifying the number of satisfying
assignments to a formula within a given model, in the way that existential and universal
quantification may be understood via the existence of a satisfying assignment, respectively
the satisfaction of all assignments. By taking the assignments to a formula to describe
the branches of a probabilistic computation, counting quantifiers may be used to describe
probability bounds. By this mechanism, Cλ→ provides a lower bound on the probability
of head normalisation. However, as illustrated in [1], the bounds provided by Cλ→ are not
tight, even in situations where this would be expected (see Example 8).

In this paper we present an alternative approach to the same problem, for the same
calculus, using a different inspiration, to provide improved termination bounds. Deriving
from the PEΛ, the FMC provides an additional feature that, to us, seemed crucial to a
natural account of probabilistic termination via the type system. First, the “machine” in
question is the (simplified) Krivine machine [23], whose evaluation is closely related to head

W. Heijltjes and G. Majury 31:3

normalisation. The FMC here adds an intriguing aspect: it introduces sequential composition
and identity on the machine, where the latter, the imperative skip, provides a notion of
successful termination, notably absent from the machine for standard λ-calculus. Moreover,
this becomes the primary interpretation of types: a type derivation in the FMC is a proof
that the machine successfully terminates. Our main question for this work was how to adapt
this to capture probabilistic termination. The answer, described in Section 6, is an extended
sequential probabilistic event λ-calculus SPEΛ, with a type system SPEΛQ⇒ that naturally
describes probabilistic termination of the machine, as well as probabilistic termination of
head reduction.

The type system SPEΛQ⇒ for the extended sequential calculus reflects back onto a natural
type system for the original probabilistic event λ-calculus, PEΛQ→, which gives probabilistic
head normalization in the following way: types generalize simple types by replacing the base
type with a probability. Formally,

A, B ::= p | A → B

where p ∈ [0, 1] ∩Q is a rational number between zero and one inclusive. The intuition is that
the base type for simple types, o, may be understood as signifying successful evaluation, even
if it is uninhabited. After all, a constant base type such as for booleans or integers signifies
the successful return of a corresponding value. This further matches the interpretation in the
FMC, where the type o is inhabited by skip, and corresponds to termination of the machine
without producing a result. Our approach, then, is to replace certain termination with a
probability of termination, replacing the base type o with a probability p. We consider the
striking simplicity and natural intuition of this approach one of our main contributions.

2 The probabilistic event lambda-calculus

We recall the probabilistic event lambda-calculus PEΛ from [9]. Assume countable sets of
variables, ranged over by x, y, z, and of events, ranged over by a , b , c . The former are term
variables, to be instantiated by terms of the calculus, and the latter are boolean variables, to
be instantiated by ⊤ (true) or ⊥ (false). The PEΛ extends the λ-calculus with a generator
a . M , which flips a coin and binds the result (⊤ or ⊥) to a , and a choice or conditional

M a N , which evaluates to M if a is true, and to N otherwise. A traditional probabilistic
sum of terms, M ⊕ N , may be encoded as a . M a N . Generators are normally fair, with
equal probability for ⊤ or ⊥, though on occasion we may need a biased generator a p which
chooses ⊤ with probability p, and ⊥ with 1 − p.

▶ Definition 1. Terms are given by the following grammar,

M, N ::= x | λx. M | M N | a . M | M a N

with, from left to right: a variable; an abstraction, which binds x in M ; an application; a
generator, which binds a in M ; and a choice.

The free variables and free events of a term M are written fv(M) and fe(M) respectively.
Substitution is written prefix: {N/x}M is the capture-avoiding substitution of N for x in
M . For an event a we define two projection functions πa

⊤ and πa
⊥, which apply the effect of

instantiating a with true and false respectively, to a term M .

CSL 2025

31:4 Simple Types for Probabilistic Termination

▶ Definition 2. The projection functions πa
i for an event a and i ∈ {⊥, ⊤} are given as

follows, where a ̸= b.

πa
i x = x

πa
i (λx. M) = λx. πa

i M

πa
i (M N) = (πa

i M) (πa
i N)

πa
⊤(M a N) = πa

⊤M πa
i (M b N) = (πa

i M) b (πa
i N)

πa
⊥(M a N) = πa

⊥N πa
i (b . M) = b . πa

i M

We use the standard notions of context, head context, and applicative context to define
the reduction relations. Note that a head context is of the form λx1. . . λxn. {} M1. . . Mm

where m and n are potentially zero.

▶ Definition 3. Contexts C, head contexts H, and applicative contexts A are defined as
follows. A context C with the hole replaced by M , capturing variables, is written C{M}.

C ::= {} | λx. C | C M | M C H ::= λx. H | A

| a . C | C a M | M a C A ::= A M | {}

A probability p, q is a rational number between 0 and 1 inclusive. Probabilistic reduction
will return a multi-(sub-)distribution [2], a finite multiset of weighted terms M written as
[p1 ·M1, . . . , pn ·Mn] whose weight |M| =

∑
i≤n pi is (at most) one.2 For simplicity, we will

refer to these as distributions, and we convert implicitly between terms M and the singleton
distribution [1 ·M]. Multiset union is written S + T , and the empty multiset as ∅. A
distribution M is scaled to pM by multiplying each weight in M by p. The underlying
probability (sub-)distribution of M, the finite function from terms to probabilities obtained
by collecting like terms p ·M and q ·M as (p+q) ·M , is written ⌊M⌋.

▶ Definition 4. Beta-reduction β and head β-reduction βh are given by closing the
beta-rule below under all contexts C respectively under head contexts H, and implicitly return
a singleton distribution.

(λx. M)N β {N/x}M

Projective reduction π is the following reduction relation from terms to distributions.

H{ a . M} π [1
2 ·H{πa

⊤M} , 1
2 ·H{πa

⊤M}]

Head reduction (h) = (βh) ∪ (π) is the union of head β-reduction and projective
reduction. Reduction is lifted to distributions of terms in the expected way: if M N then
[p ·M] + M (pN) + M. We write for the reflexive-transitive closure of a reduction
relation .

The PEΛ features a second notion of reduction, permutative reduction p [9], which
gives a more fine-grained evaluation of probabilistic sums. It is this reduction for which
confluence is particularly significant. The effect of permutative reduction is to bridge the
gap between the decomposed operators a and M a N and the standard probabilistic sum
M ⊕ N , encoded as a . M a N , by internalizing the reduction of a . M to the sum of its two
projections [9, Proposition 29]:

a . M p a . (πa
⊤M) a (πa

⊥M) (if a ∈ fe(M)) .

2 We use multi-distributions rather than distributions to accommodate the reduction measure for the
proof of head normalization in Appendix A.2.

W. Heijltjes and G. Majury 31:5

Γ, x : A ⊢ x : A

Γ, x : A ⊢ M : B

Γ ⊢ λx. M : A → B

Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ M N : B

Γ ⊢ M : A Γ ⊢ N : A

Γ ⊢ M a N : A

Γ ⊢ M : A

Γ ⊢ a . M : A

Figure 1 The simple type system PEΛ→.

In this paper we will work with projective reduction, since we are interested in termination
of head reduction. We will, on occasion, consider terms where probabilistic sums are of the
traditional form M ⊕ N = a . M a N with a /∈ fe(M), fe(N). As per the above, these are
effectively the normal forms of permutative reduction.

3 Probabilistic types

Before introducing our probabilistic type system, we recall simple types for the PEΛ [9].

▶ Definition 5. Simple types are given by the following grammar.

A, B ::= o | A → B

A typing context Γ is a finite function from term variables to types, written as a sequence
x1 : A1, . . ., xn : An. A typing judgment Γ ⊢ M : A assigns the type A to the term M in the
context Γ. The simply-typed probabilistic event λ-calculus PEΛ→ is given by the typing rules
in Figure 1.

Simple types ignore the probabilistic constructs of the calculus, generator and choice,
requiring only that branches of a choice have equal types. This gives the expected result:
typed terms are strongly normalizing, since every possible branch of the computation is typed.
For probabilistic termination, we wish to capture that a given fraction of all branches of a
computation, terminates – where our notion of termination is given by head normalization.

Our approach derives from the following idea: if the base type o of simple types, even if
not inhabited, denotes certainty of termination, then we may generalise this to probability of
termination by replacing base types with arbitrary probabilities. This yields the following
notion of types.

▶ Definition 6. Probabilistic types are given by the following grammar, where p ∈ [0, 1] ∩ Q.

A, B ::= p | A → B

The intuitive meaning of, for example, assigning a term M a type A → B → p is: given
inputs of type A and B, M terminates with probability at least p. The identity term I = λx. x

may be assigned any type p → p: given an input N that terminates with probability p, the
term I N does so as well. The type system will include an axiom that any term, in particular a
non-terminating one such as Ω = (λx. xx)(λx. xx), may be assigned a termination probability
of zero. This is expressed by a type A1 → . . . → An → 0: for any inputs A1 through An, the
term will terminate with probability at least zero.

Note that these types generalise simple types with a single, uninhabited base type o. A
probabilistic system with multiple base types, say integers and booleans, would pair the
return type with a probability, for instance an integer with 1

2 probability, or a boolean with
1
4 probability. The extension of the calculus with sequencing, in Sections 5 and 6, will give a
more concrete account of how probabilities interact with return values and return types.

CSL 2025

31:6 Simple Types for Probabilistic Termination

E | Γ, x : A ⊢ x : A
var

E | Γ ⊢ M : A → 0
zero

E | Γ ⊢ M : A → q

E | Γ ⊢ M : A → p
low (p < q)

E | Γ, x : A ⊢ M : B

E | Γ ⊢ λx. M : A → B
abs

E | Γ ⊢ M : A → B E | Γ ⊢ N : A

E | Γ ⊢ M N : B
app

E, a 7→i | Γ ⊢ Mi : A

E, a 7→i | Γ ⊢ M⊤ a M⊥ : A
chc

E, a 7→⊤ | Γ ⊢ M : A → p E, a 7→⊥ | Γ ⊢ M : A → q

E | Γ ⊢ a . M : A → 1
2 p + 1

2 q
gen

Figure 2 The probabilistic type system PEΛQ→.

The term a . M a Ω gives a fair probabilistic choice between M and Ω. For the com-
putation to be well-typed regardless of the choice, M and Ω should have the same input
types, so that they can be applied to the same arguments. Hence, if M has type A → B → p,
we may choose A → B → 0 for Ω. Then the type for a . M a Ω should be A → B → 1

2 p: given
arguments of type A and B, the computation chooses M with probability 1

2 and so terminates
with probability at least 1

2 p.
These considerations motivate the shape of our probabilistic type system, with one further

aspect to explain. An arbitrary generator term a . M reduces with a fair probability to
either πa

⊤M or πa
⊥M , which may then terminate with different probabilities. However, using

projections would mean the type system loses the property of being inductive on terms. We
will instead record the assignment of a truth value to a in an additional context E, that
we call an event valuation. The type derivation then projects a term M a N to M or to N

according to the value of a in the event valuation E.

▶ Definition 7. The probabilistically typed probabilistic event λ-calculus PEΛQ→ is given by
the typing rules in Figure 2, using the following definitions. An event valuation E is a finite
function from events to {⊥, ⊤}, written as a sequence a1 7→i1, . . . , an 7→in. A typing context
Γ is a finite function from variables to types, written x1 : A1, . . . , xn : An. A probabilistic
typing judgement E | Γ ⊢ M : A assigns a type A to the term M in the context of E and Γ.
A sequence of antecedents A1 → . . . → An → p is abbreviated with vector notation as A → p.

The typing rules are syntax-driven, except for the low rule to lower a given bound. The
rule is not essential to the type system, since it is already implied in the meaning of types as
giving a lower bound; but for the same reason, since it is implied, including it brings more
clarity than omitting it. Note further that the typing rule gen assumes a fair coin toss for
the generator a , which gives the resulting probability of 1

2 p + 1
2 q. An unfair toss a r with

ratio r would give a probability rp + (1 − r)q.

▶ Example 8. To demonstrate our type system we reprise the example t[a, b] from [1, Section
6.2], written here as the term a . b . c . T below. In Figure 3 we derive the following type.

a . b . c . T : 1 → 3
8 where T = ((I c Ω) b Ω) a (Ω b I)

We will discuss a number of aspects of our type system. First, as a particularly natural
feature, observe that the rules var, abs and app make it conservative over standard simply-
typed λ-calculus – which, interestingly, is agnostic to the choice of base types.

W. Heijltjes and G. Majury 31:7

D⊥,⊥,⊥ =

a 7→⊥, b 7→⊥, c 7→⊥ | x : 1 ⊢ x : 1
var

a 7→⊥, b 7→⊥, c 7→⊥ | ⊢ λx. x : 1 → 1
abs

a 7→⊥, b 7→⊥, c 7→⊥ | ⊢ I c Ω: 1 → 1
chc

a 7→⊥, b 7→⊥, c 7→⊥ | ⊢ (I c Ω) b Ω: 1 → 1
chc

a 7→⊥, b 7→⊥, c 7→⊥ | ⊢ ((I c Ω) b Ω) a (Ω b I) : 1 → 1
chc

D⊥,⊥ =
D⊥,⊥,⊥

a 7→⊥, b 7→⊥, c 7→⊥ | ⊢ T : 1 → 1 a 7→⊥, b 7→⊥, c 7→⊤ | ⊢ T : 1 → 0
zero

a 7→⊥, b 7→⊥ | ⊢ c . T : 1 → 1
2

gen

D⊥ =

D⊥,⊥
a 7→⊥, b 7→⊥ | ⊢ c . T : 1 → 1

2 a 7→⊥, b 7→⊤ | ⊢ c . T : 1 → 0
zero

a 7→⊥ | ⊢ b . c . T : 1 → 1
4

chc

D⊤,⊤,i =

a 7→⊤, b 7→⊤, c 7→i | x : 1 ⊢ x : 1
var

a 7→⊤, b 7→⊤, c 7→i | ⊢ λx. x : 1 → 1
abs

a 7→⊤, b 7→⊤, c 7→i | ⊢ Ω b I : 1 → 1
chc

a 7→⊤, b 7→⊤, c 7→i | ⊢ ((I c Ω) b Ω) a (Ω b I) : 1 → 1
chc

D⊤,⊤ =
D⊤,⊤,⊥

a 7→⊤, b 7→⊤, c 7→⊥ | ⊢ T : 1 → 1
D⊤,⊤,⊤

a 7→⊤, b 7→⊤, c 7→⊤ | ⊢ T : 1 → 1
a 7→⊤, b 7→⊤ | ⊢ c . T : 1 → 1

gen

D⊤ = a 7→⊤, b 7→⊥ | ⊢ c . T : 1 → 0
zero D⊤,⊤

a 7→⊤, b 7→⊤ | ⊢ c . T : 1 → 1

a 7→⊤ | ⊢ b . c . T : 1 → 1
2

gen

D =
D⊥

a 7→⊥ | ⊢ b . c . T : 1 → 1
4

D⊤
a 7→⊤ | ⊢ b . c . T : 1 → 1

2

| ⊢ a . b . c . T : 1 → 3
8

gen

Figure 3 Typing derivations for Example 8, where T = ((I c Ω) b Ω) a (Ω b I).

CSL 2025

31:8 Simple Types for Probabilistic Termination

Second, a key difference with the simple type system of Figure 1 is that probabilistic
branching occurs in the generator rule, whereas for simple types it is the choice rule. This is
due to aiming for head normalization instead of strong normalization. Consider the example
term a . M a (Ω a N). Head reduction projects it to M and N , removing Ω, which will not
be reduced. This is reflected in the probabilistic type system, where the branches of the
generator typing rule project to M and N via the event valuation. The simple type system,
reflecting strong normalization, would require also Ω to be typed – which of course it cannot.

For terms of the form M ⊕ N = a . M a N this difference is moot: both type systems
branch similarly for this construct, to M and N . This leaves as only distinction the
generalisation of types themselves, from a single base type o to probabilities p. In accordance
with the meaning of a base type as the probability of termination, simple types are then
recovered by restricting to base type p = 1. This rules out the rules zero and low, assigning a
zero-weighted type A → 0 and reducing the weight of a type. It is easy to observe that the
remaining rules preserve the restriction p = 1, to give the following proposition.

▶ Proposition 9. For the fragment below left, the simply-typed PEΛ coincides with the
probabilistically-typed PEΛ restricted to the types below right.

M, N ::= x | λx. M | M N | a . M a N A, B ::= 1 | A → B

Our main result for the probabilistically-typed PEΛ is that a type A → p guarantees head
normalization with probability at least p. Formally, this is stated by a head reduction to a
distribution of which a proportion of at least p is in head-normal form.

▶ Theorem 10. For closed M , if M : A → p then M h N0 + N1 where all terms in N0 are
head normal and |N0| ≥ p.

The result will follow directly from the corresponding Theorem 22 for the expanded
probabilistic calculus with sequential composition, introduced in Section 5.

4 Comparison with counting quantifiers

In this section we will give a close comparison with the type system Cλ→ of Antonelli,
Dal Lago, and Pistone [1], and demonstrate that our approach gives tighter bounds on the
probability of termination.

The first distinction between Cλ→ and PEΛQ→ is that the former uses indexed event
variables xi

a for i ∈ N instead of events a. However, there is no formal need for this; since
the indices i are static, we may replace xi

a and xj
a for distinct i and j simply with distinct

events a and b. This simplification extends to the semantics. Probabilities in Cλ→ are
given by boolean formulas b over the variables xi

a, indicating a subset of the space (2N)X

where X is a finite set of events. However, since the indices i are fixed and bounded, it
is sufficient to consider finite spaces 2X . The elements of this set are the event valuations
E with domain X, and a boolean formula b over X indicates the set of event valuations
JbKX = {E ∈ 2X | E |= b}, where E |= b is characterized syntactically as expected:

E, a 7→⊤ |= a E, a 7→⊥ |= ¬a E |= ⊤
E |= b E |= c

E |= b∧ c

E |= b

E |= b∨ c

For a set E ⊆ 2X the measure µX(E) is given by

µX(E) = |E|
2|X|

W. Heijltjes and G. Majury 31:9

where |S| denotes the size of a set S. Then µ(b) is µX(JbKX) where X is the domain of b.
This coincides with the measure µ(b) over (2N)X in [1], as the latter makes no essential use
of the infinity offered by N.

The second difference is the syntax of types: Cλ→ introduces probabilities through
counting quantifiers Cp, where PEΛQ→ has probabilities as base types. Types are nevertheless
isomorphic: Cλ→ types s are of the form Cp(s1 → · · · → sn → o), with a fixed outer counting
quantifier, and map 1-to-1 onto PEΛQ→ types A of the form A1 → . . . → An → p by associating
the probability p instead with the consequent o. Formally, we encode types s and typing
contexts Γ of Cλ→ into our setting as follows.

JCq(o)K = q

JCq(s ⇒ τ)K = JsK → JCq(τ)K Jx1 : s1, . . . , xn : snK = x1 : Js1K, . . . , xn : JsnK

Having connected boolean formulas b to event valuations E, and Cλ→ types to PEΛQ→

types, we may state the following conservativity result of PEΛQ→ over Cλ→.

▶ Proposition 11. If E ∈ JbKX then

Γ ⊢X M : b↣ s implies E | JΓK ⊢ M : JsK .

Proof. By induction on the typing derivation for Γ ⊢X M : b↣ s. ◀

▶ Corollary 12. For a given closed term M the type system PEΛQ→ gives the same or higher
termination bounds than Cλ→.

In the reverse direction, Example 8 and its counterpart in [1, Section 6.2] show that the
two type systems do not give the exact same bounds, and in some cases PEΛQ→ gives a
strictly higher bound. The reason is that PEΛQ→ locates branching between alternatives at
the gen-rule for a . M , where Cλ→ branches for choice terms M a N or in a contraction rule.
Crucially, the gen-rule allows branches with different termination bounds. We illustrate this
further by attempting to simulate the rule for a . M in Cλ→.

E, a 7→⊤ | JΓK ⊢ M : A → p E, a 7→⊥ | JΓK ⊢ M : A → q

E | JΓK ⊢ a . M : A → 1
2 p + 1

2 q
gen

The branching at this rule in Cλ→ is captured with a contraction on the two premisses,
which requires the probabilities to be equal, i.e. p = q. The derivation is as follows, where
d = ⊤ and µ(d) = 1 for the counting rule.

Γ ⊢X∪{a} M : b∧ a ↣ Cpσ Γ ⊢X∪{a} M : b∧ ¬a ↣ Cpσ b |= (b∧ a) ∨ (b∧ ¬a)
Γ ⊢X∪{a} M : b↣ Cpσ

Γ ⊢X
a .M : b↣ Cpσ

This is the issue illustrated by Example 8 and its counterpart in [1, Section 6.2], for which
PEΛQ→ gives the actual termination probability of 3

8 , while Cλ→ gives a best approximation
of 1

4 . Reprising the example in Cλ→, the two sub-derivations for b . c . T , given in condensed
form below, assign probabilities of 1

4 and 1
2 . These may only be combined in a contraction

by lowering the first probability to match the 1
4 of the first.

⊢{a,b,c} T : a ∧ b ∧ c ↣ C1σ

⊢{a,b}
c . T : a ∧ b ↣ C 1

2 σ

⊢{a}
b . c . T : a ↣ C 1

4 σ

⊢{a,b,c} T : ¬a ∧ ¬b ↣ C1σ

⊢{a,b}
c . T : ¬a ∧ ¬b ↣ C1σ

⊢{a}
b . c . T : ¬a ↣ C 1

2 σ

CSL 2025

31:10 Simple Types for Probabilistic Termination

The above analysis suggests that this issue with Cλ→ may be fixed by adopting the generator
typing rule of PEΛQ→, adjusted appropriately as follows. The key here is that different
branches feature the dual atoms a and ¬a, not seen in either the simple type system PEΛQ→

nor the intersection type system in [1].

Γ ⊢X∪{a} M : c∧ a ↣ Cpσ Γ ⊢X∪{a} M : d∧ ¬a ↣ Cqσ b |= c∨ d

Γ ⊢X
a . M : b↣ C 1

2 p+ 1
2 qσ

5 Sequencing

Two observations about probabilistic λ-calculi motivate the developments in the remainder
of this paper. The first is the primary role of head reduction. It is well known that head
normalization corresponds closely to evaluation on the Krivine Machine [23], and sometimes
the machine gives a more natural model of what is being studied. The second is that
probabilistic evaluation in λ-calculi needs to account for the difference between call–by–
value (cbv) and call–by–name (cbn), to which end additional constructions are introduced,
sometimes ad-hoc. The PEΛ is an example, as is the separate consideration of a cbv- and a
cbn-probabilistic sum by Faggian and Ronchi Della Rocca [16], while Antonelli, Dal Lago,
and Pistone [1] add to the standard cbn-application a second cbv-application.

These observations prompted us to consider probabilistic termination from the perspective
of the Functional Machine Calculus (FMC) [18], a λ-calculus with computational effects.
Firstly, the Krivine Machine plays a central role in the FMC (indeed it is the “M” in “FMC”),
while the FMC provides the machine with a new notion of successful termination, absent
from the standard λ-calculus. It is then a natural question if and how this may be used to
capture the probability of successful termination. Secondly, the FMC may express both cbn
and cbv behaviour, with the cbn λ-calculus a fragment and the cbv λ-calculus encoded in the
syntax. The need for ad-hoc constructs to control reduction behaviour is thus avoided.

The Krivine Machine, simplified by replacing environments with substitution, evaluates a
λ-term in the presence of a stack of input terms. An abstraction λx. M pops the top off the
stack, say N , and continues as {N/x}M , while an application M N pushes its argument N

and continues as M . A λ-term may thus be viewed as a language of instruction sequences
for this machine: application–push, abstraction–pop, variable–execute.

The FMC then extends the λ-calculus with sequential composition M ; N and its unit,
the imperative skip ⋆, with the expected semantics: concatenation of machine instructions
and the empty instruction. As in models of imperative languages, skip indicates successful
termination of the machine. This gives a fragment called the sequential λ-calculus.

We adopt these modifications in the PEΛ to give the sequential probabilistic event λ-
calculus (SPEΛ), defined below. Following [18] we render abstraction as ⟨x⟩. M = λx. M and
application as [N]. M = M N to emphasise the machine behaviour of pop and push, retaining
the standard syntax as a shorthand. In particular, the new notation clarifies the interaction
between push and sequencing: the following three terms are equivalent, rendered first in
standard notation and second with prefix application.

(⋆ N) ; M ∼ (⋆ ; M) N ∼ M N ([N]. ⋆) ; M ∼ [N]. (⋆ ; M) ∼ [N]. M

The full FMC further generalises to a machine with multiple independent stacks, addressed
by a set of locations, in which pop and push are then parameterised to operate on the
corresponding stack. This allows us to encode the effects of mutable higher-order store,
input/output, and indeed probabilistic computation: the generator a . M of the PEΛ is, in
the FMC, an abstraction rnd⟨ a ⟩. M parameterised to draw from a stream of random values
labelled rnd. The SPEΛ is thus a fragment of the FMC with two locations.

W. Heijltjes and G. Majury 31:11

▶ Definition 13. The sequential probabilistic event λ-calculus SPEΛ is given as follows.

M, N, P ::= x | ⟨x⟩. M | [N]. M | a . M | M a N | ⋆ | N ; M

Prefixing binds tighter than sequencing, [N]. M ; P = ([N]. M) ; P , and sequencing asso-
ciates right, M ; N ; P = M ; (N ; P). Projections and contexts extend to the SPEΛ as below;
head contexts and applicative contexts are as for the PEΛ.

πa
i ⋆ = ⋆ πa

i (N ; M) = πa
i N ; πa

i M C ::= . . . | C ; M | M ; C

The interaction between sequentiality and the λ-calculus is governed by the following
sequencing reduction rules. These make sequential composition right-associative, and let the
prefixing of push, pop, and the generator propagate past it (as in a standard list concatenation
algorithm). The result is to make the first such action on the abstract machine the leading
construct.

⋆ ; P σ P
(N ; M) ; P σ N ; (M ; P) ⟨x⟩. M ; P σ ⟨x⟩. (M ; P) (x /∈ fv(P))
[N]. M ; P σ [N]. (M ; P) a . M ; P σ a . (M ; P) (a /∈ fe(P))

The sequencing relation σ is given by closing these rules under all contexts C, and head
sequencing σh by closing under head contexts H only. The β-reduction rule in SPEΛ
notation is as below left, with β given by closing under all contexts and βh by closing
under head contexts. Projective reduction, below right, is as previously.

[N]. ⟨x⟩. M β {N/x}M H{ a . M} π [1
2 ·H{πa

⊤M} , 1
2 ·H{πa

⊤M}]

Head reduction h is the union of all three head relations:

h = βh ∪ σh ∪ π .

We round off by observing the shape of head-normal forms, assuming no free event variables.

▶ Proposition 14. The head-normal forms of event-closed SPEΛ-terms are of one of the
three forms H{⋆}, H{x}, and H{x ; M}.

5.1 Encoding call–by–value
Sequential composition provides an essential element that the λ-calculus lacks, and which
is at the heart of the cbv/cbn dichotomy: control over execution. The cbv behaviour of an
application M N is encoded almost as N ; M : first evaluate the argument N , then evaluate
the function M (the full encoding, below, includes an extra part to also execute M).

We demonstrate the encoding of the cbv-probabilistic λ-calculus Λcbv
⊕ of Faggian and

Ronchi Della Rocca [16]. The encoding of cbv λ-terms is standard: see [13, 18, 28]. Values
V , W and terms M , N encode by the translations −v and −t respectively, below.

Values V, W : xv = x

(λx.M)v = ⟨x⟩. Mt

Terms M, N : Vt = [Vv]. ⋆

(M N)t = Nt ; Mt ; ⟨x⟩. x

(M ⊕ N)t = a . Mt a Nt

The operational intuition is that a push represents a return value: a term Mt evaluates
until it is of the form Vt = [Vv]. ⋆, at which point Vv is pushed to the stack and the machine
terminates. Then β-reduction is simulated as follows.

CSL 2025

31:12 Simple Types for Probabilistic Termination

((λx.M) V)t = [Vv]. ⋆ ; [⟨x⟩. Mt]. ⋆ ; ⟨y⟩. y

σ [Vv]. [⟨x⟩. Mt]. ⟨y⟩. y

β [Vv]. ⟨x⟩. Mt

β {Vv/x}Mt
= ({V/x}M)t

The probabilistic reduction rule of Λcbv
⊕ is that of projective reduction, under the given

encoding, but it applies in surface contexts:

S ::= {} | M S | S M

Then the translation of S{M ⊕ N} indeed does not place the probabilistic redex inside a
push, the requirement for correct behaviour.

5.2 The abstract machine
The small-step operational semantics of the SPEΛ is given by the following abstract machine.
A state is a triple (S, M, K), where M is a term and S and K are stacks of terms. S is
the operand stack, with the head to the right as S N , and K is the continuation stack, with
the head to the left as N K. In both cases the empty stack is written ε, and concatenation
by juxtaposition, S T . Transitions or steps are probabilistic: a transition rule is written as
below left, expressing that the machine transitions from a state (S, M, K) to (T, N, L) with
probability p. We may omit p when p = 1. A run is a sequence of steps, written as below
centre, where probabilities are multiplied, i.e. p below is the product of the probabilities of
all steps. A run is successful if it terminates with skip and an empty continuation stack, as
below right; the stack T then holds the return values of the computation.

step: p
(S , M , K)
(T , N , L) run: p

(S , M , K)
(T , N , L)

successful run: p
(S , M , K)
(T , ⋆ , ε)

▶ Definition 15. The sequential probabilistic machine (SPM) is given by the following
probabilistic transitions.

(S , [N]. M , K)
(S N , M , K)

(S , N ; M , K)
(S , N , M K)

1
2
(S , a . M , K)
(S , πa

⊤M , K)

(S N , ⟨x⟩. M , K)
(S , {N/x}M , K)

(S , ⋆ , M K)
(S , M , K)

1
2
(S , a . M , K)
(S , πa

⊥M , K)

5.3 Big-step semantics
Running the machine for a given term and input stack gives a distribution of return stacks.
We use the following notation, extending from that for distributions over terms.

T = [p1 ·T1, . . . , pn ·Tn] = [pi ·Ti]i≤n

▶ Definition 16. The evaluation relation S, M ⇓ T is defined inductively by the following
rules.

S, ⋆ ⇓ [1 ·S]
S, {N/x}M ⇓ T
S N, ⟨x⟩. M ⇓ T

R, M ⇓ [pi ·Si]i≤n (Si, N ⇓ Ti)i≤n

R, M ; N ⇓
∑

i≤n piTi

S, M ⇓ ∅
S N, M ⇓ T

S, [N]. M ⇓ T
S, πa

⊤M ⇓ T⊤ S, πa
⊥M ⇓ T⊥

S, a . M ⇓ 1
2 T⊤ + 1

2 T⊥

W. Heijltjes and G. Majury 31:13

We demonstrate that small-step and big-step semantics agree.

▶ Proposition 17. S, M ⇓ T if and only if there is a finite collection of n distinct runs

pi

(S , M , ε)
(Ti , ⋆ , ε)

(i ≤ n) such that T = [pi ·Ti]i≤n .

Proof. (=⇒) By induction on S, M ⇓ T . (⇐=) By induction each run in the collection of n

runs. ◀

6 Sequential probabilistic types

Types for the sequential λ-calculus are of the form below, with the meaning: given an input
stack of terms typed by A1 through An, the machine will terminate successfully and return
a stack with types B1 through Bm.

An . . . A1 ⇒ B1 . . . Bm

For the SPEΛ, we parameterize this with the probability of successful termination.

▶ Definition 18. Sequential probabilistic types are given by the following grammars, where
p is a probability.

A, B, C ::= A
p
⇒ C (types)

A ::= A1 . . . An (type vectors)

A typing judgement E | Γ ⊢ M : A assigns a term M the type A in the context of E and Γ,
and E | Γ ⊢ S : A assigns a stack of terms S a type vector A. The sequential probabilistic
type system SPEΛQ⇒ is given by the typing rules in Figure 4. We may omit p when p = 1.

There are no base types: their rôle is subsumed by types with empty vectors (p
⇒). Observe

that because stacks are last-in-first-out, the identity term on two elements is ⟨x⟩. ⟨y⟩. [y]. [x]. ⋆,
i.e. with the order of x and y reversed between popping and pushing. We match this reversal
in types, and assign this term the type AB ⇒ BA. Since we want identity types to be of the
form A ⇒ A, in a type A

p
⇒ C we consider the antecedent type vector A to be reversed, i.e.

A ⇒ A = An . . . A1 ⇒ A1 . . . An .

Probabilistic PEΛ-types embed into sequential types by A → p = A
p
⇒ ε. With this

identification, for PEΛ-terms and -types the two type systems coincide.

▶ Proposition 19. For M a PEΛ-term, E | Γ ⊢ M : A → p if and only if E | Γ ⊢ M : A
p
⇒ ε.

Every type is inhabited by a closed term. For a type A, define the zero term 0A as follows:
for A = B1 . . . Bm

p
⇒ C1 . . . Cn,

0A = ⟨x1⟩ . . . ⟨xm⟩. [0C1] . . . [0Cn
]. ⋆ .

▶ Proposition 20 (Type inhabitation). Every type A is inhabited by its zero term, ⊢ 0A : A.

Proof. By induction on the type A, using the low rule to lower the termination probability
from 1 to an arbitrary p. ◀

CSL 2025

31:14 Simple Types for Probabilistic Termination

E | Γ, x : A
p
⇒ C ⊢ x : A B

p
⇒ B C

var
E | Γ ⊢ M : A

0⇒ C
zero

E | Γ, x : A ⊢ M : B
p
⇒ C

E | Γ ⊢ ⟨x⟩. M : A B
p
⇒ C

abs
E | Γ ⊢ N : A E | Γ ⊢ M : A B

p
⇒ C

E | Γ ⊢ [N]. M : B
p
⇒ C

app

E, a 7→i | Γ ⊢ Mi : A

E, a 7→i | Γ ⊢ M⊤ a M⊥ : A
chc

E, a 7→⊤ | Γ ⊢ M : A
p
⇒ C E, a 7→⊥ | Γ ⊢ M : A

q
⇒ C

E | Γ ⊢ a . M : A
1
2 p+ 1

2 q
⇒ C

gen

E | Γ ⊢ ⋆ : A
1⇒ A

skip
E | Γ ⊢ M : A

p
⇒ B E | Γ ⊢ N : B

q
⇒ C

E | Γ ⊢ M ; N : A
pq
⇒ C

seq

E | Γ ⊢ M : A
q

⇒ C

E | Γ ⊢ M : A
p
⇒ C

low (p<q) (E | Γ ⊢ Mi : Ai) i≤n

E | Γ ⊢ ε M1 . . . Mn : A1 . . . An
stk

Figure 4 The sequential probabilistic type system SPEΛQ⇒.

Type inhabitation is an important justification for the interpretation of types as a
guarantee for successful machine termination: it means that for a typed term M : A

p
⇒ C,

a suitable input stack S : A always exists. Our main theorem, below, formalizes this
interpretation: for a term M : A

p
⇒ C and stack S : A, the machine successfully returns a

stack T : C with probability at least p.

▶ Theorem 21. For a typed, closed term M : A
p
⇒ C and stack S : A there is a finite set of

distinct successful runs

pi

(S , M , ε)
(Ti , ⋆ , ε)

(i ≤ n)

with sum probability
∑

i≤n pi ≥ p.

Proof. See Appendix A.1. ◀

The lower bound given by the theorem is an exact bound when two conditions are met:
the typing derivation does not use the low rule to lower the termination bound, and every use
of the zero rule to assign a zero probability applies to a term that is in fact non-terminating.
In such a case, such as Example 8, types can be seen to give an exact bound.

Since head reduction as a strategy closely follows machine evaluation, it is no surprise
that the termination bound for the machine is also a lower bound for probabilistic head
reduction. This is formalised in the following theorem.

▶ Theorem 22. For a closed M , if M : A
p
⇒ C then M h N0 + N1 where all terms in N0

are head normal and |N0| ≥ p.

Proof. See Appendix A.2. ◀

Observe that our main theorem on probabilistic termination for the PEΛ, Theorem 10,
follows immediately from the corresponding Theorem 22 above by conservativity of the SPEΛ
over the PEΛ. This is despite the fact that the proof of Theorem 22 makes essential use of
the notion of successful termination made available by sequencing, absent from the PEΛ.

W. Heijltjes and G. Majury 31:15

7 Conclusions

To us, what stands out about our approach is the simplicity and the natural intuition of our
type system. This manifests in the transparent reasoning in our proofs, which despite using
deep techniques such as abstract reducibility, give a direct and clear connection between
types, machine behaviour, and reduction.

Compared with the approach in [1], the simplicity of our approach manifests in several
advantages. First is to avoid the need for counting quantifiers, associating probabilities
instead with base types, and the use of simple event valuations over boolean formulas.
Second, it is clear that the expression of both call–by–name and call–by–value behaviour is
an essential ingredient for a probabilistic calculus. We eschew the introduction of ad-hoc
constructs, relying instead on a principled interpretation of cbv via sequential composition.
Finally, where the main example [1, Example 6.2] requires intersection types to produce the
exact bound, our approach does so directly in Example 8, while morally remaining within
the realm of simple types, and strictly improving on the bounds provided by Cλ→.

References
1 Melissa Antonelli, Ugo Dal Lago, and Paolo Pistone. Curry and howard meet borel. In Pro-

ceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS‘22),
pages 45:1–45:13. ACM, 2022. doi:10.1145/3531130.3533361.

2 Martin Avanzini, Ugo Dal Lago, and Akihisa Yamada. On probabilistic term rewriting. In
John P. Gallagher and Martin Sulzmann, editors, Proc. Functional and Logic Programming
- 14th International Symposium, FLOPS 2018, volume 10818 of Lecture Notes in Computer
Science, pages 132–148. Springer, 2018. doi:10.1007/978-3-319-90686-7_9.

3 Chris Barrett, Willem Heijltjes, and Guy McCusker. The Functional Machine Calculus II:
Semantics. In 31st EACSL Annual Conference on Computer Science Logic (CSL 2023), volume
252 of Leibniz International Proceedings in Informatics (LIPIcs), pages 10:1–10:18, 2023.
doi:10.4230/LIPIcs.CSL.2023.10.

4 Raven Beutner and Luke Ong. On probabilistic termination of functional programs with
continuous distributions. In Stephen N. Freund and Eran Yahav, editors, Proceedings 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementation
(PLDI), pages 1312–1326. ACM, 2021. doi:10.1145/3453483.3454111.

5 Flavien Breuvart and Ugo Dal Lago. On intersection types and probabilistic lambda calculi.
In roceedings of the 20th International Symposium on Principles and Practice of Declarative
Programming, PPDP 2018, pages 8:1–8:13. ACM, 2018. doi:10.1145/3236950.3236968.

6 Fredrik Dahlqvist and Dexter Kozen. Semantics of higher-order probabilistic programs with
conditioning. Proceedings of the ACM on Programming Languages, 4(POPL):57:1–57:29, 2020.
doi:10.1145/3371125.

7 Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca. Intersection types and
(positive) almost-sure termination. Proceedings of the ACM on Programming Languages,
5(POPL):1–32, 2021. doi:10.1145/3434313.

8 Ugo Dal Lago and Charles Grellois. Probabilistic termination by monadic affine sized typing.
ACM Transactions on Programming Languages and Systems, 41(2):10:1–10:65, 2019. doi:
10.1145/3293605.

9 Ugo Dal Lago, Giulio Guerrieri, and Willem Heijltjes. Decomposing probabilistic lambda-calculi.
In Proceedings of Foundations of Software Science and Computation Structures (FoSSaCS),
volume 12077 of LNCS, pages 136–156, 2020. doi:10.1007/978-3-030-45231-5_8.

10 Ugo Dal Lago and Margherita Zorzi. Probabilistic operational semantics for the lambda
calculus. RAIRO - Theoretical Informatics and Applications, 46(3):413–450, 2012. doi:
10.1051/ita/2012012.

CSL 2025

https://doi.org/10.1145/3531130.3533361
https://doi.org/10.1007/978-3-319-90686-7_9
https://doi.org/10.4230/LIPIcs.CSL.2023.10
https://doi.org/10.1145/3453483.3454111
https://doi.org/10.1145/3236950.3236968
https://doi.org/10.1145/3371125
https://doi.org/10.1145/3434313
https://doi.org/10.1145/3293605
https://doi.org/10.1145/3293605
https://doi.org/10.1007/978-3-030-45231-5_8
https://doi.org/10.1051/ita/2012012
https://doi.org/10.1051/ita/2012012

31:16 Simple Types for Probabilistic Termination

11 Karel de Leeuw, Edward F. Moore, Claude E. Shannon, and Norman Shapiro. Computability
by probabilistic machines. Automata studies, 34:183–198, 1956.

12 Ugo De’Liguoro and Adolfo Piperno. Non deterministic extensions of untyped lambda-calculus.
Information and Computation, 122(2):149–177, 1995. doi:10.1006/inco.1995.1145.

13 Rémi Douence and Pascal Fradet. A systematic study of functional language implementations.
ACM Transactions on Programming Languages and Systems, 20(2):344–387, 1998. doi:
10.1145/276393.276397.

14 Thomas Ehrhard and Giulio Guerrieri. The bang calculus: An untyped lambda-calculus
generalizing call-by-name and call-by-value. In Proceedings of the 18th International Symposium
on Principles and Practice of Declarative Programming (PPDP’16), pages 174–187, 2016.
doi:10.1145/2967973.2968608.

15 Thomas Ehrhard and Christine Tasson. Probabilistic call by push value. Logical Methods in
Computer Science, 15(1), 2019. doi:10.23638/LMCS-15(1:3)2019.

16 Claudia Faggian and Simona Ronchi Della Rocca. Lambda calculus and probabilistic compu-
tation. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019,
pages 1–13, 2019. doi:10.1109/LICS.2019.8785699.

17 Jean Goubault-Larrecq. A probabilistic and non-deterministic call-by-push-value language. In
34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, pages 1–13.
IEEE Computer Society, 2019. doi:10.1109/LICS.2019.8785809.

18 Willem Heijltjes. The functional machine calculus. In Proceedings of the 38th Conference
on the Mathematical Foundations of Programming Semantics, MFPS XXXVIII, volume 1 of
ENTICS, 2022. doi:10.46298/ENTICS.10513.

19 C. Jones and G. D. Plotkin. A probabilistic powerdomain of evaluations. In Proceedings of the
Fourth Annual Symposium on Logic in Computer Science (LICS ’89), pages 186–195. IEEE
Computer Society, 1989. doi:10.1109/LICS.1989.39173.

20 Achim Jung and Regina Tix. The troublesome probabilistic powerdomain. Electronic Notes
in Theoretical Computer Science, 13:70–91, 1998. doi:10.1016/S1571-0661(05)80216-6.

21 Benjamin Kaminski. Advanced Weakest Precondition Calculi for Probabilistic Programs.
PhD thesis, Fakultät für Mathematik, Informatik und Naturwissenschaften, RWTH Aachen
University, 2019. doi:10.18154/RWTH-2019-01829.

22 Naoki Kobayashi, Ugo Dal Lago, and Charles Grellois. On the termination problem for
probabilistic higher-order recursive programs. In Proceedings of the 34th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2019, pages 1–14. IEEE, 2019. doi:10.1109/
LICS.2019.8785679.

23 Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order and Symbolic
Computation, 20(3):199–207, 2007. doi:10.1007/s10990-007-9018-9.

24 Thomas Leventis. A deterministic rewrite system for the probabilistic λ-calculus. Mathematical
Structures in Computer Science, 29(10):1479–1512, 2019. doi:10.1017/S0960129519000045.

25 Paul Blain Levy. Call-by-push-value: A functional/imperative synthesis, volume 2 of Semantic
Structures in Computation. Springer Netherlands, 2003. doi:10.1007/978-94-007-0954-6.

26 Udi Manber and Martin Tompa. Probabilistic, nondeterministic, and alternating decision
trees. In 14th Annual ACM Symposium on Theory of Computing, pages 234–244, 1982.
doi:10.1145/800070.802197.

27 Annabelle McIver and Carroll Morgan. Abstraction and refinement in probabilistic systems.
SIGMETRICS Perform. Eval. Rev., 32(4):41–47, March 2005. doi:10.1145/1059816.1059824.

28 A.J. Power and Hayo Thielecke. Closed Freyd- and κ-categories. In International Colloquium on
Automata, Languages, and Programming (ICALP), volume 1644 of Lecture Notes in Computer
Science, pages 625–634. Springer, 1999. doi:10.1007/3-540-48523-6_59.

29 Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of probability
distributions. In Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’02, pages 154–165, 2002. doi:10.1145/
503272.503288.

https://doi.org/10.1006/inco.1995.1145
https://doi.org/10.1145/276393.276397
https://doi.org/10.1145/276393.276397
https://doi.org/10.1145/2967973.2968608
https://doi.org/10.23638/LMCS-15(1:3)2019
https://doi.org/10.1109/LICS.2019.8785699
https://doi.org/10.1109/LICS.2019.8785809
https://doi.org/10.46298/ENTICS.10513
https://doi.org/10.1109/LICS.1989.39173
https://doi.org/10.1016/S1571-0661(05)80216-6
https://doi.org/10.18154/RWTH-2019-01829
https://doi.org/10.1109/LICS.2019.8785679
https://doi.org/10.1109/LICS.2019.8785679
https://doi.org/10.1007/s10990-007-9018-9
https://doi.org/10.1017/S0960129519000045
https://doi.org/10.1007/978-94-007-0954-6
https://doi.org/10.1145/800070.802197
https://doi.org/10.1145/1059816.1059824
https://doi.org/10.1007/3-540-48523-6_59
https://doi.org/10.1145/503272.503288
https://doi.org/10.1145/503272.503288

W. Heijltjes and G. Majury 31:17

30 Nasser Saheb-Djahromi. Probabilistic LCF. In Mathematical Foundations of Computer Science
1978, Proceedings, 7th Symposium, volume 64 of Lecture Notes in Computer Science, pages
442–451. Springer, 1978. doi:10.1007/3-540-08921-7_92.

31 Davide Sangiorgi and Valeria Vignudelli. Environmental bisimulations for probabilistic higher-
order languages. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, pages 595–607, 2016. doi:10.1145/
2837614.2837651.

A Proofs for Section 6

A.1 Probabilistic machine termination
Our main theorem for the typed SPEΛ will be that a type A

p
⇒ B guarantees a probability

of termination of the machine of at least p, given an input stack of type A, and returning a
stack of type B. The proof is a direct application of abstract reducibility. For each type we
define a set run(A) that holds the terms with the above property, and we proceed to prove
that every term of type A belongs to this set.

We write Dp(X) for the set of finite distributions X of weight |X | ≥ p over a set X.

▶ Definition 23. The set run(−) is defined by mutual induction on types A and type vectors
A as a set of closed terms respectively of closed stacks, as follows.

run(A p
⇒ B) = { M | ∀S ∈ run(A). ∃T ∈ Dp(run(B)). S, M ⇓ T }

run(A1 . . . An) = { ε M1 . . . Mn | Mi ∈ run(Ai) }

For the proof of Lemma 25, the main reducibility lemma, we need the following notation,
as well as an additional lemma. We write σ for a substitution map {Mi/xi}i≤n, where σM

is the application of σ to M . The set run(−) then extends to contexts Γ as follows. Note
that the definition implies that σ is closed (i.e. each substituting term is closed).

run(x1 : A1, . . . , xn : An) = { σ | σxi ∈ run(Ai) , 1 ≤ i ≤ n }

For an event valuation E = (ak 7→ik)k≤n we write πEM for the projection on each ai in E.

πEM = πa1
i1

(. . . (πan
in

M) . . .)

We expand the stacks in a distribution T by prepending a stack S as S T , where S [pi ·Ti]i≤n =
[pi ·S Ti]i≤n.

▶ Lemma 24. If S, M ⇓ T then R S, M ⇓ R T for any stack R.

Proof. By induction on the definition of ⇓. ◀

The main reducibility lemma is then the following.

▶ Lemma 25. If E | Γ ⊢ M : A and σ ∈ run(Γ) then πE(σM) ∈ run(A).

Proof. By induction on the typing derivation for M . Note that since σ is closed, πE(σM) =
σ(πE(M)). We cover three key cases (sequencing, abstraction, and generator); the remaning
are similar.
Sequencing case:

E | Γ ⊢ N : A
p
⇒ B E | Γ ⊢ M : B

q
⇒ C

E | Γ ⊢ N ; M : A
pq
⇒ C

seq

CSL 2025

https://doi.org/10.1007/3-540-08921-7_92
https://doi.org/10.1145/2837614.2837651
https://doi.org/10.1145/2837614.2837651

31:18 Simple Types for Probabilistic Termination

Let N ′ = πE(σN) and M ′ = πE(σM). Given R ∈ run(A), by induction we have
R, N ′ ⇓ [pi ·Si]i≤n with each Si ∈ run(B) and

∑
i≤n pi ≥ p. Again by induction, for each

i ≤ n we have Si, M ′ ⇓ Ti with Ti ∈ Dq(run(C)). The definition of ⇓ gives R, (N ′ ; M ′) ⇓ T
for T =

∑
i≤n piTi. Finally, observe that T ∈ Dpq(run(C)) since |T | =

∑
i≤n pi|Ti| ≥ pq

and since each Ti is a distribution over run(C).
Abstraction case:

E | Γ, x : A ⊢ M : B
p
⇒ C

E | Γ ⊢ ⟨x⟩. M : A B
p
⇒ C

abs

Let σ ∈ run(Γ) and S N ∈ run(B A). We need to demonstrate a distribution T ∈
Dp(run(C)) such that S N, πE(σ(⟨x⟩. M)) ⇓ T . Let M ′ = πE(σM) and note that
since σ is not defined on x and σ and N are closed, πE(σ{N/x}M) = {N/x}M ′ and
πE(σ(⟨x⟩. M) = ⟨x⟩. M ′. The inductive hypothesis for the premise E | Γ, x : A ⊢ M : B

p
⇒

C, with σ{N/x} ∈ run(Γ, x : A), gives the desired T ∈ Dp(run(C)) with evalu-
ation S, {N/x}M ′ ⇓ T . Then by the definition of evaluation, S N, M ′ ⇓ T , and hence
⟨x⟩. M ′ ∈ run(A B

p
⇒ C).

Generator case:

E, a 7→⊤ | Γ ⊢ M : A
p
⇒ C E, a 7→⊥ | Γ ⊢ M : A

q
⇒ C

E | Γ ⊢ a . M : A
1
2 p+ 1

2 q
⇒ C

gen

Let σ ∈ run(Γ) and S ∈ run(A). Let Mi = πE,a7→i(σM) for i ∈ ⊤, ⊥. By the inductive
hypothesis, M⊤ ∈ run(A p

⇒ C) and M⊥ ∈ run(A q
⇒ C), which gives S, M⊤ ⇓ T⊤ and

S, M⊥ ⇓ T⊥ for some T⊤ ∈ Dp(run(C)) and T⊥ ∈ Dq(run(C)). Let r = 1
2 (p + q); then

T = 1
2 (T⊤ +T⊥) ∈ Dr(run(C)) and by definition of evaluation, S, πE(σ(a . M)) ⇓ T . We

conclude that πE(σ(a . M)) ∈ run(A r⇒ C). ◀

Our main theorem, the probability of machine termination, is a direct consequence.

▶ Theorem 21 (restatement). For a typed, closed term M : A
p
⇒ C and stack S : A there is

a finite set of distinct successful runs

pi

(S , M , ε)
(Ti , ⋆ , ε)

(i ≤ n)

with sum probability
∑

i≤n pi ≥ p.

Proof. By Lemma 25 we have M ∈ run(A p
⇒ C) and S ∈ run(A). By the definition of

run(−) we then have S, M ⇓ T with |T | ≥ p. Proposition 17 then gives the desired set of
machine runs. ◀

A.2 Probabilistic head normalization
Finally, we will relate machine termination to head reduction. For a redex in a head context
λx1. . . λxn. {} M1. . . Mm the machine runs as follows: after the abstractions consume the
top n elements off the stack, and the applications push the terms Mi onto it, then the redex
itself is the first part of the term to be evaluated on the machine. Machine evaluation thus
corresponds tightly to head reduction, with the same order of evaluation of redexes.

However, in this correspondence, the machine halts with a variable, while successful
termination in our setting requires a skip with an empty continuation stack. We will thus
use a different approach.

W. Heijltjes and G. Majury 31:19

S, ⋆ ⇓0 [1 ·S]
S, {N/x}M ⇓w T

S N, ⟨x⟩. M ⇓w+1 T
R, M ⇓w [pi ·Si]i≤n (Si, N ⇓vi Ti)i≤n

R, M ; N ⇓(w+
∑

i≤n
vi)

∑
i≤n piTi

S, M ⇓0 ∅
S N, M ⇓w T

S, [N]. M ⇓w+1 T
S, πa

⊤(M) ⇓v T⊤ S, πa
⊥(M) ⇓w T⊥

S, a . M ⇓v+w+1
1
2 T⊤ + 1

2 T⊥

Figure 5 The weighted probabilistic evaluation relation.

The main idea is that reduction shortens the runs of the machine, by removing consecutive
push and pop operations, or in the case of projective reduction, removing a generator. By
annotating the evaluation relation to count abstractions, applications, and generators we
may then observe that this measure reduces under head reduction.

▶ Definition 26. The weighted evaluation relation S, M ⇓w T is given in Figure 5, where the
weight w is a natural number. We extend it to a distribution of terms M by the following
rule, carrying a multiset of weights W.

(S, Mi ⇓wi
Ti)i≤n

S, [pi ·Mi]i≤n ⇓[wi]i≤n

∑
i≤n piTi

The core lemma establishes that the weight in the evaluation relation decreases for
βh and π reduction steps, and is stable under σh. However, this does not apply to

terms introduced by the zero-rule, as S, M ⇓0 ∅, which are the potentially non-terminating
terms. Crucially for our purpose, when the evaluation returns a non-empty distribution,
head-reduction on the term progresses towards a head-normal form.

▶ Lemma 27. Let S, M ⇓w T where T ̸= ∅.
If M σh N then S, N ⇓w T .
If M βh N then S, N ⇓v T with v < w.
If M π N then S, N ⇓W T with v < w for every v in W.

Proof. We first consider the reduction steps themselves, and then their closure under head
contexts. The proof is by induction on ⇓. We consider three cases; the remaining are similar.
Beta [N]. ⟨x⟩. M β {N/x}M Since T is non-empty, the derivation must be as below

left, as none of the inferences may be replaced by a zero-rule. The case is then as follows.

S, {N/x}M ⇓w T
S N, ⟨x⟩. M ⇓w+1 T

S, [N]. ⟨x⟩. M ⇓w+2 T
β S, {N/x}M ⇓w T

Projection a . M π [1
2 ·πa

⊤M , 1
2 ·πa

⊥M] Since T is non-empty, the derivation for the
redex is the first below. The derivation for the reduct, second below, uses the evaluation
rule for distributions.

S, πa
⊤M ⇓v T⊤ S, πa

⊥M ⇓w T⊥

S, a . M ⇓v+w+1
1
2 T⊤ + 1

2 T⊥

S, πa
⊤M ⇓v T⊤ S, πa

⊥M ⇓w T⊥

S, [1
2 ·πa

⊤M, 1
2 ·πa

⊥M] ⇓[v,w]
1
2 T⊤ + 1

2 T⊥

CSL 2025

31:20 Simple Types for Probabilistic Termination

Sequence–generator a . M ; P σ a . (M ; P) (a /∈ fe(P)) The derivations are as
follows, with premises stacked for space. In the second derivation w′ = w +

∑
i≤n ui and

v′ = v +
∑

n<i≤m ui.

R, πa
⊤M ⇓w [pi ·Si]i≤n

R, πa
⊥M ⇓v [pi ·Si]n<i≤m

R, a . M ⇓w+v+1
1
2 [pi ·Si]i≤m (Si, P ⇓ui

Ti)i≤m

R, a . M ; P ⇓(w+v+1+
∑

i≤m
ui)

∑
i≤m

1
2 piTi

R, πa
⊤M ⇓w [pi ·Si]i≤n

(Si, P ⇓ui
Ti)i≤n

R, πa
⊤M ; P ⇓w′

∑
i≤n piTi

R, πa
⊥M ⇓v [pi ·Si]n<i≤m

(Si, P ⇓ui
Ti)n<i≤m

R, πa
⊥M ; P ⇓v′

∑
n<i≤m piTi

R, a . (M ; P) ⇓(w+v+1+
∑

i≤m
ui)

∑
i≤m

1
2 piTi

This concludes the reduction steps. The remaining cases consider the closure under head
contexts. For sequencing reduction, which leaves the weight unchanged, this is immediate,
and the cases for beta-steps are straightforward and omitted. For projective reduction, let
M π [1

2 ·N⊤
1
2 ·N⊥], and consider the remaining cases.

Application [P]. M π [1
2 · [P]. N⊤

1
2 · [P]. N⊥] The derivation for [P]. M is as follows.

S P , M ⇓w T
S, [P]. M ⇓w+1 T

By induction, for the premise of this derivation we get one for the distribution N =
[1

2 ·N⊤, 1
2 ·N⊥], below, where it follows that T = 1

2 T⊤ + 1
2 T⊥ and u, v < w.

S P , N⊤ ⇓u T⊤ S P , N⊥ ⇓v T⊥

S P , N ⇓[u,v] T

Then for P = [1
2 · [P]. N⊤

1
2 · [P]. N⊥] we get the following derivation.

S P , N⊤ ⇓u T⊤

S, [P]. N⊤ ⇓u+1 T⊤

S P , N⊥ ⇓v T⊥

S, [P]. N⊥ ⇓v+1 T⊥

S, P ⇓[u+1,v+1] T

Abstraction ⟨x⟩. M π [1
2 ·⟨x⟩. N⊤

1
2 ·⟨x⟩. N⊥] The derivation for ⟨x⟩. M is as follows.

S, {P/x}M ⇓w T
S P , ⟨x⟩. M ⇓w+1 T

Given the reduction for M , we also have the following, where we abbreviate the reduct
as P.

{P/x}M π [1
2 ·{P/x}N⊤

1
2 ·{P/x}N⊥] = P

By induction this gives us the following derivation for P, where again T = 1
2 T⊤ + 1

2 T⊥
and u, v < w.

S, {P/x}N⊤ ⇓u T⊤ S, {P/x}N⊥ ⇓v T⊥

S, P ⇓[u,v] T

W. Heijltjes and G. Majury 31:21

Then for N = [1
2 ·⟨x⟩. N⊤

1
2 ·⟨x⟩. N⊥] we get the required derivation.

S, {P/x}N⊤ ⇓u T⊤

S P , ⟨x⟩. N⊤ ⇓u+1 T⊤

S, {P/x}N⊥ ⇓v T⊥

S P , ⟨x⟩. N⊥ ⇓v+1 T⊥

S, N ⇓[u+1,v+1] T ◀

We apply the above lemma to relate machine evaluation to head reduction in the following
way: if evaluation returns a distribution of weight p, then head-reduction terminates with
probability at least p.

▶ Lemma 28. If S, M ⇓W T then M h N0 + N1 where all terms in N0 are head normal
and |N0| ≥ |T |.

Proof. Let M = [pi ·Mi]i≤n evaluate by the following derivation.

(S, Mi ⇓wi
Ti)i≤n

S, [pi ·Mi]i≤n ⇓[wi]i≤n

∑
i≤n piTi

First, we head-reduce any Mi where Ti ̸= ∅. This process terminates by induction on W,
using Lemma 27: a β-step or projective step reduces W , while sequencing reduction alone is
terminating and does not increase it.

Then the distribution N0 = [pi ·Mi | i ≤ n, Ti ≠ ∅] is head-normal. The weights of N0
and T are as follows.

|N0| =
∑

[pi | i ≤ n, Ti ̸= ∅] |T | =
∑
i≤n

pi|Ti|

It follows that |N0| ≥ |T |. ◀

Our final theorem then ties everything together: typing gives successful evaluation on the
machine, which in turn gives termination of head reduction.

▶ Theorem 22 (restatement). For a closed M , if M : A
p
⇒ C then M h N0 + N1 where

all terms in N0 are head normal and |N0| ≥ p.

Proof. We provide M with an input stack consisting only of zero terms 0A. Let S be the
stack of zero terms for A. By Proposition 20 zero-terms inhabit their types, so that S : A.

By Lemma 25 we have S ∈ run(A) and M ∈ run(A p
⇒ C). By the definition of run(−)

this gives an evaluation S, M ⇓ T where |T | ≥ p.
For the corresponding weighted derivation S, M ⇓w T , Lemma 28 gives a head reduction

M h N0 + N1 where all terms in N0 are head normal and |N0| ≥ |T | ≥ p. ◀

CSL 2025

	1 Introduction
	2 The probabilistic event lambda-calculus
	3 Probabilistic types
	4 Comparison with counting quantifiers
	5 Sequencing
	5.1 Encoding call–by–value
	5.2 The abstract machine
	5.3 Big-step semantics

	6 Sequential probabilistic types
	7 Conclusions
	A Proofs for Section 6
	A.1 Probabilistic machine termination
	A.2 Probabilistic head normalization

