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Abstract
In this paper we introduce several quantitative methods for the lambda-calculus based on partial
metrics, a well-studied variant of standard metric spaces that have been used to metrize non-
Hausdorff topologies, like those arising from Scott domains. First, we study quantitative variants,
based on program distances, of sensible equational theories for the λ-calculus, like those arising from
Böhm trees and from the contextual preorder. Then, we introduce applicative distances capturing
higher-order Scott topologies, including reflexive objects like the D∞ model. Finally, we provide a
quantitative insight on the well-known connection between the Böhm tree of a λ-term and its Taylor
expansion, by showing that the latter can be presented as an isometric transformation.
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1 Introduction

Two notions of program approximation. One of the fundamental goals of program semantics
is to understand when two different programs compute the same function. This is why, since
its origins, the semantics of the λ-calculus, the mathematical foundation for higher-order
programming languages, has been focused on the problem of program equivalence. Indeed,
λ-theories, the equational theories of the λ-calculus, constitute one of the pillars of the
mathematical theory behind this much studied language, ranging from more operational
theories, like β-equivalence, to more observational ones, like contextual equivalence.

Actually, several well-known denotational models of the λ-calculus are not just the
source for some λ-theory, but they also provide a topological point of view on them: the
interpretations of the λ-calculus via Böhm trees, Scott domains or the Taylor expansion,
involve spaces whose objects can be seen as limits of “finite” approximants, as well as
continuous functions between such spaces, that is, functions commuting with such limits.
In this way, the λ-theory induced by a topological model is associated with a notion of
approximation, in the sense that a program is equivalent to another program whenever the
net of finite approximants of the first converges to the second.

However, in general computer science, the approximation of a program is more commonly
thought as the fact of computing values which are close (possibly up to some probability)
to those produced by the program itself. By the way, the replacement of computationally
expensive algorithms by more efficient, but somehow inaccurate, ones, is pervasive in all
domains involving probabilistic or numerical methods. This has motivated, in the last few
years, a rise of interest towards semantic approaches to functional languages focused, rather
than on program equivalence, on notions of program similarity [37, 17, 11, 14, 16]. In these
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34:2 The Lambda Calculus Is Quantifiable

approaches, each type is endowed with a pseudo-metric, measuring the amount to which two
programs behave in a similar, although non necessarily equivalent, way, and thus providing
ways to estimate the errors produced by approximated optimization methods. At the same
time, since any pseudo-metric induces an equational theory over programs, namely the one
formed by all the pairs of programs which are at no distance the one from the other, this
approach can be seen as a way to enrich, or “topologize”, well-established notions of program
equivalence.

Quantifying λ-theories via partial metrics. In a sense, the overall goal of this paper is
to reconcile these two, apparently different, ways to look at program approximations, by
developing metric counterparts to well-established methods for the λ-calculus, thus providing
ways to enrich λ-theories with notions of program similarity.

One reason why one could wish to approximate λ-theories by metrics is computational:
while equational theories are generally undecidable, equivalences and, as we’ll see, distances of
finite approximants can often be computed effectively. Could one thus express the equivalence
between two terms as the fact that the distance between their respective approximants gets
closer and closer to zero? This amounts to requiring that the limits in the topology T1
generating the λ-theory are also limits in the topology T2 generated by some program
pseudo-metric. In other words, that T1 is finer than T2.

At the same time, since program metrics are generally undecidable as well, could the
distances between two programs be themselves approximated by looking at the (computable)
distances between their approximants? This amounts to requiring, conversely, that the metric
limits, that is, the limits in T2, are also limits in the topology T1 inducing the λ-theory. In
other words, that T2 is finer than T1.

All this sums up to the following question: can we make the topology arising from
the semantics and the topology arising from the metric coincide? At first, one would
tend to answer no: for instance, while the topology of a metric space is always Hausdorff,
the topologies arising from the semantics of the λ-calculus (e.g. Scott domains) are not.
Nevertheless, there is a well-known reply to this answer, namely partial metrics [8, 9, 28, 42,
40, 38], a well-studied variant of standard metrics developed in connection with ideas from
program semantics. A partial metric differs from a standard metric in that the self-distances
p(x, x) need not be zero; correspondingly, one has a stronger triangular law of the form
p(x, y) ≤ p(x, z) + p(z, y) − p(z, z), taking into account the self-distance of the middle point
z. As a consequence, distinct points will not have disjoint neighborhoods, as soon as the
self-distance of one makes it “too thick”, so to say, to separate it from the other.

In fact, any continuous domain with a countable basis is quantifiable (a term we borrow
from [40]) by a partial metric. This means that its Scott topology does coincide with the
topology induced by the metric [9, 35, 42, 40, 41], so that the limits in the Scott topology
agree with the metric limits and viceversa.

While the quantification of domains via partial metrics has been well-known for a while,
the application of such results to the study of higher-order languages has not been much
explored so far. We do it in this paper: we introduce quantitative variants for well-known
methods like Böhm trees, Scott domains and the Taylor expansion, based on partial metrics,
at the same time providing ways to approximate their associated λ-theories.

Contributions. In this paper we show that several well-known approaches to the study of
the λ-calculus can be quantified, that is, enriched with metric reasoning on program similarity.
Our contributions can be summarized as follows:
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We introduce a partial metric variant of the notion of sensible λ-theory [5] and we explore
quantitative versions of well-known theories like those arising from Böhm trees and the
contextual preorder.
We introduce applicative partial metrics, and we illustrate their use to quantify higher-
order Scott domains as well as reflexive objects, like Scott’s model D∞. This opens the
way to apply metric techniques to typed or non-typed higher-order languages.
Finally, we study the Taylor expansion of λ-terms [18, 19, 4], a powerful technique
inspired by ideas from linear logic, and show that it can be presented as an isometric
transformation from Böhm trees to sets of resource λ-terms, thus refining the well-known
commutation theorem [20], that relates the corresponding λ-theories.

Outline. In Section 2 we recall basic notions about partial metric spaces. In Section 3
we introduce quantitative variants of sensible λ-theories. In Section 4 we investigate the
quantification of higher-order Scott domains via applicative distances, and in Section 5 we
apply these ideas to the quantification of reflexive objects. In Section 6 we discuss the Taylor
expansion. Finally, in Section 7 we indicate related work as well as a few future directions.

2 Partial Metric Spaces

In this section we introduce partial metric spaces and we illustrate a few examples.

▶ Definition 1. A function p : X × X → [0, +∞] is called a partial metric (PM) when it
satisfies the following axioms:
(P1) p(x, x) ≤ p(x, y),
(P2) If p(x, x) = p(x, y) = p(y, y) then x = y,
(P3) p(x, y) = p(y, x),
(P4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).
p is called a partial pseudo-metric (PPM) when it satisfies P1, P3 and P4, and a partial
ultra-metric (PUM) when it satisfies P1, P3 and
(P4U) p(x, y) ≤ max{p(x, z), p(z, y)}.

While in a standard (pseudo-)metric space each point is at distance 0 from itself, condition
P1 states that the distance of a point from itself is only required to be smaller than its distance
from any other point. Condition P2 adapts the usual separation condition d(x, y) = 0 ⇒ x = y

to non-zero self-distances, and distinguishes PMs from PPMs. Condition P3 is the usual
symmetry, while P4 is a strengthening of the triangular law of metric spaces, that also takes
into account the possibly non-zero self-distance of the middle point z. P4U is as for standard
ultra-metric spaces. Notice that P4U implies P4, so PUMs are indeed PPMs. Notice that a
PPM (resp. a PUM, a PM) p always induces a pseudo-metric (resp. a ultra-metric, a metric)
by the formula dp(x, y) := 2p(x, y) − p(x, x) − p(y, y).

A PPM p induces a preorder on X defined by x ≤p y iff p(x, y) ≤ p(x, x). Notice that
this implies by P1 that p(x, y) = p(x, x). When p is a PM the preorder ≤p is indeed an
order. With respect to this preorder, p is antimonotonic in the sense that x ≤p x′ implies
p(x′, y) ≤ p(x, y). Intuitively, the higher points are those with smaller self-distance.

The symmetrization of the preorder ≤p yields an equivalence relation ≃p. In the next
section we will indeed explore the use of partial metrics as ways of approximating preorders
or equivalence relations on λ-terms. We will say that a PPM p quantifies an order (resp. an
equivalence) relation over X when this relation coincides with ≤p (resp. ≃p).

Let us now talk about the topology induced by a PPM.

CSL 2025



34:4 The Lambda Calculus Is Quantifiable

▶ Definition 2 (open balls, topology). Let p be a PPM on X. For any x ∈ X and ϵ ∈ (0, +∞),
the open ball of center x and radius ϵ is the set Bp

ϵ (x) = {y ∈ X | p(y, x) < p(x, x) + ϵ}. The
topology of p, noted Op(X), is formed by all subsets U ⊆ X which are unions of open balls.

Recall that, by P1, the distance between two points x, y is always greater or equal than the
self-distances p(x, x), p(y, y). We could equivalently define open balls as for standard metric
spaces, i.e. Bp

ϵ (x) = {y ∈ X | p(y, x) < ϵ}, but this would make Bp
ϵ (x) empty whenever

ϵ ≤ p(x, x). Open balls are upper: if y ∈ Bp
ϵ (x) and y ≤p y′, by antimonotonicity we

deduce p(y′, x) ≤ p(y, x) < p(x, x) + ϵ, whence y′ ∈ Bp
ϵ (x). As a consequence, all open sets

U ∈ Op(X) are upper.
Contrarily to standard metric spaces, the topology Op(X) is not in general Hausdorff:

suppose x, y are distinct points such that x ≤p y; since any open set containing x must also
contain y, there can be no disjoint open sets U, V such that x ∈ U and y ∈ V . In some cases,
as we’ll see, Op(X) may coincide with the Scott topology induced by the order ≤p.

In Sections 4 and 5 we will explore the use of partial metrics as ways of approximating
(Scott) topologies on λ-terms. We will say that a PPM p quantifies a topology O(X) over X

when O(X) = Op(X).
Continuous functions between PPMs can be defined in the usual topological sense: given

PPMs p, p′, respectively on X and X ′, a function f : X → X ′ is p, p′-continuous when f−1

sends open sets in Op′(X ′) onto open sets in Op(X). There is an equivalent ϵ/δ-definition: f is
p, p′-continuous if for all x ∈ X and ϵ > 0, there exists δ > 0 such that f(Bp

δ (x)) ⊆ Bp′

ϵ (f(x)).
We compare different PPMs on a set X by relating the associated topologies:

▶ Definition 3. Given two PPMs p, p′ on X, we say that p is finer than p′ (noted p ⊑ p′)
when Op′(X) ⊆ Op(X).

Equivalently, p ⊑ p′ when the identity map idX : X → X is p, p′-continuous, i.e. every open
p′-ball contains an open p-ball around any of its points.

We conclude this short presentation with a few examples.

▶ Example 4 (Sierpinski space). The simplest example of a non-Hausdorff topology that is
quantified by a partial metric is the Sierpinski space S = {0, 1}, with the Scott topology
Oσ(S) = {∅, {1}, {0, 1}} induced by the order 0 ≤ 1. Define the PM s on S by s(0, 0) =
s(0, 1) = 1 and s(1, 1) = 0. Notice how this implies 0 ≤s 1. Since 0 has self-distance 1, the
unique open balls are indeed ∅, {1} and {0, 1}, that is, Oσ(S) = Os(S).

▶ Example 5 (Intervals). The closed intervals of R, noted I(R), admit the PM pint(I1, I2) :=
inf{|b − a| | I1 ∪ I2 ⊆ [a, b]}, which is the size of the smallest interval containing I1 and I2.
The order defined by the metric here is intuitive, it is reverse inclusion/the Scott information
order: I ≤pint J iff pint(I, J) ≤ pint(I, I) iff J ⊆ I. The more information one has, the higher.
This example explains the choice of the word “partial”: an interval, in term of Scott topology,
represents an information on a partial execution: we have yet to discover the precise real
number that we are computing. By contrast, the total elements will be those with self
distance 0 (the ones where p behaves like a regular metric), i.e. of the form {r}, a complete
information, of a terminated execution.

▶ Example 6 (Labeled trees). Let ΣTree≤∞ be the set of (non necessarily finite) finitely
branching Σ-labeled trees, where Σ is a countable set of labels. For any α ∈ ΣTree≤∞, let
|α| ∈ N ∪ {∞} indicate the height of α. For any n ∈ N, let αn be the finite tree obtained
by truncating all paths of α at length n, if |α| ≥ n, and be undefined otherwise. We write
αn ≜ βn to indicate that αn and βn are both definite and equal, and αn ̸≜ βn for its negation.
For any α, β ∈ ΣTree≤∞, define div(α, β) := inf{n | αn ≜ βn and αn+1 ̸≜ βn+1}.
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The standard tree (ultra-)metric dtree is defined by d(α, β) = 0 if α = β and 2−div(α,β)

otherwise. We obtain instead a PUM by simply letting ptree(α, β) := 2−div(α,β) (where it is
intended that 2−∞ = 0). For a finite tree α, its self-distance is ptree(α, α) = 2−|α|, while
ptree(α, α) = 0 holds iff α has infinite height. Also this case suggests that finite trees are seen
as “partial” objects, while the infinite trees are the “total” ones. Indeed, ptree, unlike dtree,
quantifies the Scott topology on ΣTree≤∞ (see Section 4).

3 Quantifying λ-Theories

In this section we introduce quantitative variants, based on partial metrics, of sensible
λ-theories that arise from well-studied models of the untyped lambda-calculus, that is, the
theory of Böhm trees and the theory of contextual equivalence. Moreover, we lift several
properties of such equational theories to the corresponding notion of program similarity.

λ-PPMs. Let us first recall the standard notion of λ-theory [5].

▶ Definition 7. A λ-theory T is an equivalence relation ≃T on the set Λ of all λ-terms
satisfying the rules below:
(congr1) M ≃T N ⇒ MP ≃T NP ,
(congr2) M ≃T N ⇒ PM ≃T PN ,
(ξ) M ≃T N ⇒ λx.M ≃T λx.N ,
(β) (λx.M)N ≃T M [N/x].
A λ-theory T is said extensional when it satisfies the rule (η):
(η) M ≃T λx.Mx.
and sensible when it equates all unsolvable terms and does not equate a solvable and an
unsolvable term.

Notice that a sensible theory T must be consistent: it cannot equate all terms.
A λ-theory may either arise from an operational theory (e.g. β- and βη-reduction) or be

induced by a model (as the theory formed by all equations between terms that are interpreted
by the same entity in the model). While there exists a continuum of different λ-theories,
beyond the theories of β and βη-equivalence (respectively, the smallest λ-theory and the
smallest extensional λ-theory), very few theories have been studied in depth. Indeed, all
most common denotational models of the untyped λ-calculus induce one of the two sensible
theories B, and H∗, that we consider below.

We now introduce a quantitative variant of λ-theories. Let us first recall that a point
x in a topological space X is said generic when its closure is X or, equivalently, all its
neighborhoods are dense in X. For instance, 0 is generic in the Sierpinski space S. In the
case of PPM we have the following:

▶ Lemma 8. x is generic in the topology Op(X) iff x ≤p y holds for all y ∈ X.

Proof. Call x generic for p if x ≤p y (that is, p(y, x) = p(x, x)) holds for all y ∈ X. x is
generic for p iff the only open ball centered at x is X: from p(y, x) = p(x, x) it follows that
for any ϵ > 0, y ∈ Bϵ(x), that is, Bϵ(x) = X; conversely, if any open ball centered at x is
equal to X, then, for all ϵ > 0, p(y, x) < p(x, x) + ϵ, which implies p(y, x) ≤ p(x, x) and thus
p(y, x) = p(x, x) by P1.

Now, if x is generic for p, then any open set U containing x must contain some open ball
Bϵ(x), which forces U = X since Bϵ(x) = X, so x is generic in Op(X). Conversely, if x is
generic in Op(X), then for any ϵ > 0, the closure of Bϵ(x) is X. This implies that for all
ϵ > 0, p(y, x) ≤ p(x, x) + ϵ, and thus that p(y, x) = p(x, x), so x is generic for p. ◀

CSL 2025



34:6 The Lambda Calculus Is Quantifiable

▶ Remark 9. Generic points are indistinguishable: if x and y are both generic for p, then from
p(y, y) = p(x, y) = p(x, x) it follows that x ≃p y. Conversely, if x is generic and y is not, then,
x ̸≃p y: if x ≃p y, then, since p(y, x) = p(y, y), for all z, p(y, z) ≤ p(y, x) + p(x, z) − p(x, x) =
p(y, x) + p(x, x) − p(x, x) = p(y, x) = p(y, y), so y would be generic as well.

▶ Definition 10 (λ-PPM). A pseudo-partial metric p over Λ is called a λ-PPM (resp. an
extensional λ-PPM) if the following hold:

≃p is a λ-theory (resp. an extensional λ-theory);
all contexts C[−] correspond to p-continuous maps Λ → Λ.

p is called sensible if all unsolvable terms are generic while no solvable term is.

Observe that we do not require contexts to be non-expansive (or 1-Lipschitz), as in other
standard metric approaches [37, 17, 15], but just continuous. Also notice that, by Remark 9,
a sensible PPM p must satisfy M ≃p N for all unsolvable terms M, N , and M ̸≃p N for M

unsolvable and N solvable: the associated λ-theory ≃p is thus sensible.
In the rest of this section we introduce λ-PPMs quantifying the λ-theories B and H∗.

Böhm Trees. The interpretation of λ-terms as Böhm trees is one of the fundamental tools
in the λ-calculus. The Böhm tree B(M) of a λ-term M is a (Λ ∪ {⊥})-labeled tree defined
co-inductively as follows:

if M reduces to λx1. . . . .λxm.xM1 . . . Mn, then B(M) has a root with label λx1. . . . .λxm.x

and n subtrees B(M1), . . . , B(Mn);
otherwise, B(M) only consists of the root, with label ⊥.

An alternative presentation of B(M) is via partial terms, which are λ-terms in normal
form, enriched with the constant ⊥ and rules λx.⊥ → ⊥, ⊥M → ⊥. We note these partial
terms A, B, . . . . The set A of partial terms is ordered by the contextual closure ⪯ of the
relation generated by ⊥ ⪯ A, for all A ∈ A. Partial terms correspond straightforwardly to
finite Böhm trees.

For any λ-term M , let the partial term MA be defined inductively as follows: MA =
λx⃗.y(M1)A . . . (Mn)A if M = λx⃗.yM1 . . . Mn, and MA = ⊥ if M = λx⃗.(λy.P )M1 . . . Mn+1.
Let A ≤ M whenever M β-reduces to M ′ with A ⪯ M ′

A. We then let B(M) = {A | A ≤ M}.
Observe that B(M) can be seen at the same time as a tree under the relation ≤, and the
standard tree ordering B(M) ⪯ B(N) holds precisely when B(M) is included in B(N).

The λ-theory B contains all equations M ≃B N , where B(M) = B(N). B is sensible but
non-extensional (as e.g. B(λx.x) ̸= B(λx.λy.xy)).

We now introduce the corresponding λ-PPM: we measure the distance between λ-terms
by comparing their Böhm trees via the tree partial metric.

▶ Definition 11 (Böhm partial metric). For any two λ-terms M, N , let

pBöhm(M, N) := ptree(B(M), B(N)).

Observe that pBöhm(M, M) = 0 iff B(M) is infinite. It is not difficult to check that pBöhm
captures the theory B:

▶ Proposition 12. M ≤pBöhm N iff B(M) ≤ B(N), and thus M ≃pBöhm N iff M ≃B N .

As discussed in Section 4, pBöhm captures the Scott topology of Böhm trees. This proves that
contexts are continuous, and thus that pBöhm is a λ-PPM. Moreover, since ptree(⊥, α) = 1,
the unsolvable terms are generic, while, for any solvable term M , pBöhm(M, M) < 1 and
thus, for any ϵ < 1 − pBöhm(M, M), the open ball BpBöhm

ϵ (M) does not contain the term
λx.M (since pBöhm(M, λx.M) = 1 > pBöhm(M, M) + ϵ).
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▶ Remark 13. While the theory B is Π0
2-complete, the distances ptree(A, B) are effectively

computable whenever A, B are finite trees (equivalently, partial terms). Moreover, to check
that pBöhm(M, N) < ϵ, it is necessary and sufficient to find approximants A ≤ M and B ≤ N

such that ptree(A, B) < ϵ.

Contextual equivalence. We now consider the theory arising from contextual equivalence.
Let M ⊑ctx N if for all context C[−], if C[M ] is solvable, then C[N ] is solvable. The theory
H∗ contains all equations M ≃H∗ N where M ⊑ctx N and N ⊑ctx M both hold. It is
extensional and sensible, and is indeed the maximum sensible theory.

To quantify H∗ we define the following distance:

▶ Definition 14 (contextual partial metric). For all terms M, N , we define

pctx(M, N) =
∞∑

n=0

{
1
2n

∣∣∣ Cn[M ] is unsolvable or Cn[N ] is unsolvable
}

,

where (Cn[−])n∈N is an enumeration of all contexts.

The distance pctx(M, N) intuitively counts all contexts Cn[−] that fail on either M or N .
In particular, the self-distance pctx(M, M) counts the contexts that fail on M .

The following result shows that pctx captures the contextual preorder:

▶ Proposition 15. M ≤pctx N iff M ⊑ctx N , and thus M ≃pctx N iff M ≃H∗ N .

For the result above, the choice of the enumeration is irrelevant, as is the choice of the
weights 1

2n , which could be replaced by arbitrary weights θn summing up to 1.
▶ Remark 16. Contrarily to contextual equivalence, which is Π0

2-complete as well, to check
that N ∈ Bpctx

ϵ (M) one does not need to look at the behavior of M and N under all contexts.
Intuitively, Bpctx

ϵ (M) contains all those programs that behave like M on certain finitely many
contexts. Indeed, pctx(M, N) < pctx(M, M) + ϵ means that the contexts on which M does
converge and N does not sum up to some value strictly smaller than ϵ. This is true iff N

converges on those finitely many contexts Ci[−], where 2−(i+1) ≤ ϵ, on which M converges.

▶ Proposition 17. pctx is a sensible extensional λ-PPM.

Proof. Let us show that contexts yield continuous maps. Take a term M , ϵ > 0 and a
context C. We need to find some δ > 0 such that for all P ∈ Bpctx

δ (M), C[P ] ∈ Bpctx
ϵ (C[M ]).

By Remark 16 there exists a finite number of contexts C1, . . . , Ck such that Ci[C[M ]] is
solvable and N ∈ Bpctx

ϵ (C[M ]) iff Ci[N ] is solvable for i = 1, . . . , k. Take m such that for
all i = 1, . . . , k, the context Ci[C[−]] has an index smaller than m, and let δ = 2−m. Notice
that Ci[C[M ]] is solvable. Moreover, for any term P , if P ∈ Bpctx

δ (M), then Ci[C[P ]] must be
solvable for all i = 1, . . . , m. This implies then that C[P ] ∈ Bpctx

ϵ (C[M ]), as desired.
The sensibility of pctx essentially follows from the well-known genericity lemma [5, 2]: if

C[M ] is solvable, where M is unsolvable, then C[N ] must be solvable for all N ; this implies
that for any unsolvable M , and for any term N , pctx(M, N) = pctx(M, M), so M is generic in
pctx. Conversely, if M is solvable, then, for any unsolvable term N , one can easily construct
a context C such that C[M ] reduces to λx.x and C[N ] diverges. This allows us to conclude
that pctx(M, N) > pctx(M, M), and thus that M is not generic in p. ◀

Similarly to the λ-theory H∗, the λ-PPM pctx is maximum among sensible λ-PPMs.

▶ Proposition 18. For any sensible λ-PPM p, p ⊑ pctx.

CSL 2025
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Proof. Let p be a sensible λ-ppm. Consider a term M and ϵ > 0. We must find δ > 0 such
that Bp

δ (M) ⊆ Bpctx
ϵ (M). By Remark 16 there exists a finite number of contexts C1, . . . , Ck

such that Ci[M ] is solvable and N ∈ Bpctx
ϵ (M) iff Ci[N ] is solvable for i = 1, . . . , k.

Fix an i ≤ k and let Qi = Ci[M ]. Since Qi is solvable and p is sensible, we can find an
open set Ui containing Qi and not containing any unsolvable term. Since p is a λ-PPM, Ci

corresponds to a continuous function, and thus C−1
i (Ui) contains some open ball Bp

δi
(M).

Let δ = mini δi: if P ∈ Bp
δ (M), then for all i = 1, . . . , k, Ci[P ] ∈ Ui, so it must be solvable.

We conclude then that P ∈ Bpctx
ϵ (M). ◀

▶ Remark 19. That pBöhm ⊏ pctx can be easily seen directly: the elements of Bpctx
ϵ (M) are

those which converge on a finite number of contexts C1, . . . , Ck on which M converges too
(cf. Remark 16). For any such context Ci, the convergence of Ci[M ] to a head normal form
only depends on the exploration of a finite portion of B(M), say up to height mi. Letting
m = maxi{mi} and δ = 2−m, we have then that BpBöhm

δ (M) ⊆ Bpctx
ϵ (M). The converse

inclusion pctx ⊑ pBöhm cannot hold: any open ball BpBöhm
ϵ (I) around I = λx.x that does not

contain its η-expansion λx.λy.xy contains no open pctx-ball around I.
Other well-known characterizations of H∗ exist, which suggest different ways to quantify

this theory. One is in terms of the so-called Nakajima trees (cf. [5], Ex. 19.4.4, p. 511): these
are a variant of Böhm trees that are invariant under the η-rule. By adapting the tree partial
metric one could then obtain another partial metric pNakajima that quantifies H∗.

Moreover, the theory H∗ is induced by a large class of denotational models of the λ-
calculus (cf. [31]), including in particular the models based on Scott domains, that we discuss
in Sections 4 and 5, or the relational model from [6], to which the techniques illustrated in
those sections can be easily adapted.

4 Quantifying Scott Domains

As discussed in the introduction, the λ-theories like B or H∗ are induced by topological
models, based on Scott domains, which provide notions of approximant for λ-terms. In
this section, after discussing the connection between partial metrics and Scott domains, we
introduce applicative PPMs as a means to capture domains of Scott-continuous functions,
and we illustrate how this leads to quantify topological models of typed λ-calculi.

Scott Domains via Partial Metrics. Let us recall some basic terminology about dcpos and
Scott domains.

A partially ordered set (X, ≤) is a dcpo (directed complete partial order) if all directed
subsets of X admit a least upper bound. The way below relation ≪ on a dcpo is defined by
x ≪ y iff for all directed subset ∆ ⊆ X, y ≤

∨
∆ implies x ≤ d, for some d ∈ ∆. A point

x ∈ X is said compact if x ≪ x. A basis for a dcpo X is a subset B ⊆ X such that for any
x ∈ X, the set ∆ = {y ∈ B | y ≪ x} is directed and x =

∨
∆. A dcpo is said continuous

if it has a basis and algebraic if it has a basis formed of compact elements. A domain is a
continuous dcpo with a countable basis. A domain X is bounded complete if for any finite set
Y ⊆fin X, if an upper bound of Y exists in X, then

∨
Y exists in X. A bounded complete

and algebraic domain is called a Scott domain.
The Scott topology Oσ(X) on a partially ordered set (X, ≤) has open sets being upper

subsets U ⊆ X which are finitely accessible: x ∈ U implies y ∈ U for some y ≪ x. A function
f : X → Y between dcpos is said continuous iff f is monotone and commutes with the lubs
of directed subsets, that is, for all directed ∆ ⊆ X, f(

∨
∆) =

∨
f(∆). This is equivalent

to asking f to be continuous, in the usual sense, with respect to the Scott topology. The
category of bounded complete domains and continuous functions is cartesian closed (cf. [1]).
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Let us specify what it means for a dcpo to be quantified by a partial metric.

▶ Definition 20. A dcpo (X, ≤) is quantified by a PM p when its associated Scott topology
is quantified by p, that is, when Op(X) = Oσ(X).

Beyond the Sierpinski space S, also the other two dcpos from Section 2 are quantified by
the associated PMs (proofs are in the long version):

▶ Proposition 21. The interval dcpo I(R) is quantified by pint (cf. Example 5). The domain
ΣTree≤∞ of Σ-trees is quantified by ptree (cf. Example 6).

When p quantifies a dcpo (X, ≤), the order ≤p coincides with the order ≤ of the dcpo.

▶ Lemma 22. Suppose the dcpo (X, ≤) is quantified by p. Then ≤ coincides with ≤p.

Proof. ≤ coincides with the specialization order x ≤Oσ(X) y ⇔ ∀U ∈ Oσ(X)(x ∈ U ⇒ y ∈
U); similarly, ≤p coincides with the specialization order x ≤Op(X) y ⇔ ∀U ∈ Op(X)(x ∈
U ⇒ y ∈ U). From Oσ(X) = Op(X) we deduce that the two specialization orders coincide,
and thus ≤ and ≤p as well. ◀

However, checking that a partial metric p captures the order of the dcpo is not in general
enough to deduce that p quantifies the dcpo, as shown by Example 24 below. The following
proposition provides necessary (but not sufficient) conditions.

▶ Proposition 23. Let (X, ≤) be a continuous dcpo and p a partial metric on X such that
≤ coincides with ≤p.Then the following conditions are equivalent:
1. Op(X) ⊆ Oσ(X);
2. open p-balls are finitely accessible;
3. p is Scott-continuous (as a map towards the dcpo ([0, +∞], ≥)).

Proof.
(1 ⇔ 2) Since the open balls are upper sets, these are Scott open iff they are finitely

accessible.
(3 ⇒ 2) p is Scott continuous when for all x ∈ X and directed subset ∆ ⊆ X one has

p(x,
∨

δ) = infd∈δ p(x, d). Suppose p is continuous and let y ∈ Bϵ(x). We need to
show that there exists y′ ≪ y such that y′ ∈ Bϵ(x). This implies that for some ϵ′ < ϵ,
p(y, x) < p(x, x) + ϵ′. Since p is continuous and y =

∨
{z | z ≪ y} we have then

inf{p(z, x) | z ≪ y} = p(y, x) < p(x, x) + ϵ′. This implies in turn that for some y′ ≪ y,
p(y′, x) ≤ p(x, x) + ϵ′ < p(x, x) + ϵ, that is, y′ ∈ Bϵ(x).

(2 ⇒ 3) Suppose that open p-balls are finitely accessible, hence Scott open. Let ∆ ⊆ X be
a directed set and x ∈ X. We need to prove that p(x,

∨
∆) = infd∈∆ p(x, d). Observe

that the “≤” direction directly follows from d ≤
∨

∆. To prove the “≥” direction we
argue as follows: let p(x,

∨
∆) = p(x, x) + δ, with δ ∈ R≥0. Let δ′ > δ, so that we have∨

∆ ∈ Bδ′(x). Since Bδ′(x) is Scott-open, there exists w ≪
∨

∆ such that w ∈ Bδ′(x).
From w ≪

∨
∆ it follows that, for some d ∈ D, w ≤ d holds, whence p(d, x) ≤ p(w, x) <

p(x, x) + δ′. We have thus proved that for all δ′ > δ there exists d ∈ ∆ such that
p(d, x) < p(x, x) + δ′, which implies then infd∈∆ p(d, x) ≤ p(x, x) + δ = p(x,

∨
∆). ◀

To check the converse condition Oσ(X) ⊆ Op(X), one must show that, given x ≪ y,
one can form open balls around y whose elements all lie way above x. This corresponds to
showing that the basic open sets ↠ x = {y | x ≪ y} for the Scott topology are metric open.
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▶ Example 24. We construct a PM on ΣTree≤∞ that captures the tree order but fails
to quantify its Scott topology. Define a variant q of the tree partial metric as q(α, β) =
1
2 ptree(α, β) + 1

4 if α ̸= β or α = β is finite, and as ptree(α, β) if α = β is infinite. q is still a
partial metric and furthermore the order ≤q coincides with the tree order (and thus with ≤p

as well); now, letting αn be a directed sequence of finite trees converging to an infinite tree
α, we have limn q(αn, α) = 1

4 > 0 = q(
∨

n αn, α). Hence q is not Scott-continuous, and by
Proposition 23 we have that Oq(ΣTree≤∞) ̸⊆ Oσ(ΣTree≤∞).

▶ Remark 25 (computability of p(x, y) < ϵ). An immediate and useful consequence of the fact
that open balls are Scott open is that p(x, y) < ϵ holds precisely when p(x′, y′) < ϵ holds for
some approximants x′ ≪ x and y′ ≪ y. In other words, to verify that y is close enough to x

it is enough to check that the approximants of y get close enough to the approximants of x.
When distances between approximants, as well as the relation b ≪ x between a point and
an approximant, are computable, the property p(x, y) < ϵ may be (semi-)decidable, even
though the exact values p(x, y) are as hard as computing the λ-theory (usually, Π0

2 or worse).
For instance, in the case of Böhm trees, to check that pBöhm(M, N) < 2−n, it is enough to
check that B(M) and B(N) coincide up to height n, a property which can be semi-decided.

▶ Example 26 (ϵ/δ-continuity of contexts). As ptree quantifies the Scott topology of trees
(cf. Proposition 21), it quantifies the Scott topology of Böhm trees. From the continuity
theorem for Böhm trees (cf. [5]) we deduce then the following: for all context C[−] and λ-term
M and for all ϵ > 0, there exists δ > 0 such that, for all terms P , pBöhm(P, M) ≤ δ implies
pBöhm(C[P ], C[M ]) ≤ ϵ. Another way of stating this is that for all C[−] and M , for all n ∈ N
there exists m ∈ N such that, if B(P ) and B(M) are the same up to depth m, then B(C[P ])
and B(C[M ]) are the same up to depth n.

Let us conclude this paragraph by recalling a very general result on the quantifiability of
domains, already mentioned in the Introduction:

▶ Theorem 27 (cf. [40]). Let (X, ≤) be a domain with a countable basis (bn)n∈N, and let
θn ∈ (0, 1] be a sequence of weights such that

∑∞
n θn ≤ 1. Then X is quantified by the partial

metric pX
bn,θn

(x, y) =
∑

n∈N θn, where N := {n | bn ̸≪ x or bn ̸≪ y}.

While Theorem 27 provides a general positive answer to the quantifiability problem for
domains, the practical usability of metrics like pX

bn,θn
depends on whether the relation bn ≪ x

between a point and an approximant, and its negation, are computable.

Applicative distances and the function space. The categories of Scott domains
(resp. bounded complete domains) and continuous functions are sub-categories of Top that
are, as is well-known, cartesian closed. Using Theorem 27 it is possible to define, on each
object of such categories, a partial metric that quantifies its topology. However, in common
approaches to higher-order languages (e.g. [17, 25, 16]), one requires distances to be defined
in a compositional way.

For example, given metric spaces (X, dX) and (Y, dY ), a standard way to define a metric
on their cartesian product is by letting dX×Y (⟨x, y⟩, ⟨x′, y′⟩) = dX(x, x′) + dY (y, y′). Indeed,
a similar construction also works for PMs:

▶ Proposition 28. Let X, Y be two Scott domains, quantified, respectively, by the partial
metrics pX , pY . Their cartesian product X × Y is then quantified by the partial metric
pX×Y := 1

2 (pX + pY ).



V. Maestracci and P. Pistone 34:11

We omit the proof of Proposition 28 as it is similar to that of Proposition 30 below (still, the
proof can be found in the extended version).

▶ Remark 29. In the following discussion we restrict attention to partial metrics valued in
[0, 1], rather than on [0, +∞]. This is not a limitation, since for any partial metric p with
values in [0, +∞], the partial metric p≤1 : X × X → [0, 1] defined by p≤1(x, y) := p(x,y)

1+p(x,y)
induces the same topology (cf. [34]).

Let us now consider the function space. Given metric spaces (X, d) and (X ′, d′), a
standard compositional way to define a metric on the space C(X, X ′) of continuous functions
from X to X ′ is via the sup-condition dsup(f, g) = supx∈X d′(f(x), f(x′)). Notably, when
X is compact, dsup metrizes the compact-open topology on C(X, X ′). Other compositional
metrics on the space of non-expansive functions NExp(X, X ′), depending on both d and d′,
can be found in the literature [10, 15]. Similar compositional definitions are also found in
more operational approaches like e.g. [37, 25].

A common intuition in all these definitions is that two functions are close when their
application to close (or even identical) points produces points that are still close. We will
call functional distances respecting this idea applicative distances.

However, to define an applicative PM on the space of continuous functions, we cannot
directly adapt a definition like dsup: unlike for standard (pseudo-)metrics, the sups of a
family of PPMs does not define a PPMs. This is due to condition P4, which relies in a
contravariant way on the medium self-distance p(z, z).

Instead, we will rely on the remark that a continuous function f : X → Y is uniquely
determined by its action on the (countably many) elements of a basis of X. This suggests
indeed the definition from the Proposition below:

▶ Proposition 30. Let X, Y be two bounded complete domains, quantified, respectively, by
the PMs pX , pY , and let (an)n∈N be an enumeration of a basis of X. Then, for all 0 < θ ≤ 1

2 ,
their exponential X ⇒ Y is quantified by the PM

pθ
X⇒Y (f, g) =

∞∑
n=1

θnpY (f(an), g(an)). (1)

Before proving the result above, let us first discuss the PM pθ
X⇒Y . The distances

pθ
X⇒Y (f, g) are defined by infinite series, which are convergent by our assumption that

pX , pY are bounded by 1. However, for any ϵ > 0, the verification that pθ
X⇒Y (f, g) < ϵ can

be reduced to a finitary test:

▶ Lemma 31. For all continuous functions f, g : X → Y , for all n > 0, there exists N ∈ O(n)
such that, if pY (f(ai), g(ai)) < 2−(n+1) holds for all i = 1, . . . , N , then pθ

X⇒Y (f, g) < 2−n.

Proof. Let ϵ = 2−n. We must choose N so that
∑∞

i>N θi < ϵ
2 . Since

∑∞
n=1 θn ≤ 1, this

corresponds to requiring
∑N

n=1 θn > 1 − ϵ
2 , or, equivalently, 1−θN+1

1−θ − 1 > 1 − ϵ
2 . A few

computations yield then the condition N + 1 > log
(
3θ + θ2ϵ + ϵ

)
∈ O(log ϵ).

Let us show that under this condition the claim holds. Suppose pθ(f(ai), g(ai)) ≤ ϵ
2 holds

for i = 1, . . . , N . Then we have

pθ(f, g) =
(

N∑
k=1

θnq(f(ak), g(ak))
)

+
( ∞∑

k>N

θnq(f(ak), g(ak))
)

≤

(
N∑

k=1
θn ϵ

2

)
+ ϵ

2 ≤ ϵ

◀
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The intuition behind the test above is that for N high enough, the infinite sum
∑∞

n≥N θn

gets too small to actually matter in checking that pθ
X⇒Y (f, g) is smaller than ϵ, and one is

thus reduced to the finite sum
∑N

n=1 θnpY (f(an), g(an)). This is indeed a key ingredient
in showing that open balls of functions are finitely accessible, and in particular, that if
g ∈ Bϵ(f), this only depends on finitely many values of g.

Conversely, from pθ
X⇒Y (f, g) < ϵ, one can deduce bounds pY (f(an), g(an)) < θ−nϵ for

all n ∈ N, although such bounds become more and more loose as n increases, due to the
exponential scaling factor θ−n.

Let us now turn to the proof of Proposition 30. First, let us recall that, given bounded
complete domains X, Y , with countable bases B(X), B(Y ), the domain C(X, Y ) admits a
countable basis formed by all functions of the form ( ↠ a ↘ b), where a ∈ B(X), b ∈ B(Y ),
and ( ↠ a ↘ b)(x) = b in case a ≪ x, while ( ↠ a ↘ b)(x) = ⊥ otherwise.

Importantly, while it is always the case that f ≪ g implies f(x) ≪ g(x) for all x ∈ X,
the converse need not hold. Rather, the way below relation can be characterized as follows.

▶ Lemma 32 (cf. [21]). For all f, g ∈ C(X, Y ), f ≪ g iff there exists basis elements
a1, . . . , an ∈ B(X) and b1, . . . , bn ∈ B(Y ) such that

bi ≪ g(ai),

↠ ai ≪ g−1( ↠ bi)1, for all i = 1, . . . , n,
f ≤

∨n
i=1( ↠ ai ↘ bi).

We now have all ingredients to prove Proposition 30.

Proof of Proposition 30.
Oσ(X ⇒ Y ) ⊇ OpX⇒Y (X ⇒ Y ): We have to show that open balls are Scott-open. First

observe that open balls are upper sets. We thus only need to show that they are finitely
accessible: for all g ∈ Bϵ(f) we must find some h ≪ g such that h ∈ Bϵ(f). Let then
g ∈ Bϵ(f), so that pλ

X⇒Y (f, g) < pλ
X⇒Y (f, f) + ϵ. Observe that this implies that we

can find positive reals θ, δ > 0 such that θ + δ ≤ ϵ and pλ
X⇒Y (f, g) < pλ

X⇒Y (f, f) + δ.
Let N be such that

∑∞
n>N λn ≤ θ

2 . For all n ≤ N , fix some bn ∈ B θ
2
(g(an)) such that

bn ≪ g(an), and some basis element cn ≪ an.
Let now h =

∨N
i=1( ↠ ci ↘ bi). From bi ≪ g(ai) it follows that ai ∈ g−1( ↠ bi), and thus

that ↠ ci ≪ g−1( ↠ bi). By Lemma 32 this implies that h ≪ g. Let us show that h ∈ Bϵ(f).
For all n < N , we have pY (h(an), g(an)) ≤ pY (bn, g(an)) < pY (g(an), g(an)) + θ

2 , whence,
for all n ≤ N , pY (h(an), g(an)) − pY (g(an), g(an)) < θ

2 . Let’s check that h ∈ Bϵ(f):

pλ
X⇒Y (h, f) =

∞∑
n=1

λnpY (h(an), f(an))

≤
∞∑

n=1
λn
(

pY (h(an), g(an)) + pY (g(an), f(an)) − pY (g(an), g(an))
)

≤
N∑

n=1
λn
(

pY (h(an), g(an)) − pY (g(an), g(an))
)

+
∞∑

n>N

λnpY (h(an), g(an)) + pλ
X⇒Y (g, f)

1 Recall that O(X) is a continuous domain. For two open sets U, V ∈ O(X), U ≪ V holds when any
open cover of V has a finite subset which covers U .
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<

N∑
n=1

λn θ

2 +
∞∑

n>N

λn + pλ
X⇒Y (f, f) + δ

≤ θ

2 + θ

2 + pλ
X⇒Y (f, f) + δ ≤ pλ

X⇒Y (f, f) + ϵ.

Oσ(X ⇒ Y ) ⊆ OpX⇒Y (X ⇒ Y ): It suffices to show that the basic Scott open sets ↠ f
contain an open p-ball Bϵ(g) around any of its points g ∈ ↠ f . So, suppose f ≪ g: by
Lemma 32 there exists c1, . . . , cn ∈ X, b1, . . . , bn ∈ Y such that bi ≪ g(ci), ↠ ci ≪ g−1( ↠

bi) and f ≤
∨

i( ↠ ci ↘ bi). From bi ≪ g(ci) it follows that there exists ϵi > 0 such that
Bϵi

(g(ci)) ⊆ ↠ bi. Let N be such that for all i = 1, . . . , n, ci has an index ≤ N in the
enumeration an of B(X). Let ϵ = λN min{ϵ1, . . . , ϵn}.
We claim that Bϵ(g) ⊆ ↠ f : let h ∈ Bϵ(g), then, from

∑
n λn

(
pY (h(an), g(an)) −

pY (g(an), g(an))
)

< ϵ, we deduce, for i = 1, . . . , n, pY (h(ci), g(ci)) < pY (g(ci), g(ci)) +
λ−iϵ ≤ pY (g(ci), g(ci)) + ϵi, that is, h(ci) ∈ Bϵi(g(ci)). We deduce that bi ≪ h(ci), and
thus that f ≤

∨
i( ↠ ci ↘ bi) ≪ h. We can thus conclude that f ≪ h. ◀

We conclude this section with a few examples.

▶ Example 33 (RealPCF). The language RealPCF [22] is an extension of PCF with a
type I for partial real numbers (i.e. finite approximations of real numbers or, equivalently,
computable closed intervals) and primitives for computable analysis, with a canonical Scott
semantics in which I is interpreted via the domain I(R). This is perfectly in line with the
quantification of I(R) we presented in Example 5, which sees smaller and smaller intervals
as providing more and more information. Via the applicative distances just presented, we
obtain then a quantification of the Scott semantics of full RealPCF.

▶ Example 34 (Scott topologies of open and closed sets). Given a topological space X, one
can endow the space O(X) of its open sets with the Scott topology induced by the inclusion
order, as well as the (homeomorphic) space C(X) of its closed sets under the Scott topology
induced by the reversed inclusion order.

Whenever X is exponentiable in Top (which is the case, in particular, whenever X is
a Scott domain), the bijection h : O(X) ≃ Top(X, S), where S is the Sierpinski space and
h(U) is the characteristic function of U , is a homeomorphism [24]. Given a countable basis
(xn)n of X, and weights θn with

∑
n θn ≤ 1, we can then quantify O(X) and C(X) via

pO
xn,θn

(U, V ) =
∞∑

n=1
θn · s(h(U)(xn), h(V )(xn)) =

∑
{θn | xn /∈ U ∨ xn /∈ V } ,

pC
xn,θn

(C, D) = pO(C, D) =
∑

{θn | xn ∈ C ∨ xn ∈ D} .

▶ Example 35 (Böhm trees as closed sets). Consider the poset A of partial terms. Let Ide(A)
be the dcpo of ideals of A, that is, of lower directed subsets of A. Observe that any Böhm
tree B(M) ⊆ A is an element of Ide(A), and the set ↓ B(M) = {U | U ⊆ B(M)} ⊆ Ide(A)
is a closed set under the Scott topology of Ide(A). Given an enumeration An of partial
terms and weights θn, we can then define an alternative λ-PPM by letting pB

An,θn
(M, N) =

pC
↓An,θn

(↓ B(M), ↓ B(N)) =
∑

n{θn | An ̸≤ M or An ̸≤ N}. While they produce different
distances, pB

An,θn
and pBöhm quantify the same topology, i.e. pBöhm ⊒⊑ pB.

▶ Example 36 (Scott topology of the power set). A countable set X is (trivially) a domain
for the order given by equality, and its Scott topology coincides with the indiscrete topology,
i.e. O(X) = P(X). Given an enumeration xn of X, the Scott topology on P(X) is thus
quantified by pP

xn,θn
(A, B) =

∑
{θn | xn /∈ A ∨ xn /∈ B} , for A, B ⊆ X.
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5 Quantifying a Reflexive Object

The denotational models for the untyped λ-calculus correspond to the reflexive objects
within some cartesian closed category, that is, the objects X satisfying the isomorphism
X ≃ X → X. Within cpo-enriched categories, reflexive objects can be obtained by a direct
limit construction, whose paradigmatic example is Scott’s D∞ model. In this section we
show how to quantify this model via applicative distances, at the same time illustrating a
technique that could be adapted to other similar constructions, like e.g. the reflexive object
within the relational model [6].

Quantifying Scott’s D∞. Let us recall the idea of the direct limit construction of a reflexive
object. One starts from some bounded complete domain D, and constructs a sequence of
spaces D0 := D, Dn+1 : Dn → Dn, together with maps in : Dn → Dn+1 and jn : Dn+1 → Dn

forming a pair (in, jn) called an injection/retraction pair, that is, satisfying jn ◦ in = idDn+1

and in ◦ jn ≤ idDn
. One obtains then a reflexive object D∞ ≃ D∞ → D∞ as the direct

limit of the sequence Dn
in→ Dn+1, as well as injection-retraction pairs in∞ : Dn → D∞,

j∞n : D∞ → Dn.
Notice that an element x of D∞ yields, for any n, a function xn := j∞n(x) ∈ Dn =

Dn−1 → Dn−2 → · · · → D0; conversely, any compact element x ∈ Dn yields a compact
element in∞(x) ∈ D∞, and such elements form indeed a basis of D∞.

Suppose now that the starting space D is quantified by some PM p. Using the applicative
metrics from the previous section we can quantify all the Dn by letting p0 := p and
pn+1(x, y) =

∑∞
i=1

1
2i pn(x(an

i ), y(an
i )), where (an

i )i is an enumeration of the basis elements
of Dn. We obtain then a PM quantifying D∞ by letting

p∞(x, y) =
∞∑

n=1

1
2n

pn(xn, yn)

=
∞∑

n,kn−1,...,k0=1

(
1

2n+kn−1+···+k0

)
· p
(

xn(an−1
kn−1

) . . . (a0
k0

), yn(an−1
kn−1

) . . . (a0
k0

)
)

.

Intuitively, the distance p∞ compares x and y by considering all possible ways of evaluating
the functions xn, yn ∈ Dn on n basis elements of the corresponding spaces Dn−1, . . . , D0. As
for the applicative metrics from the previous section, while the distances p∞(x, y) are defined
via infinite series, one can check that x ∈ Bp∞

ϵ (y) by a finitary criterion.

▶ Lemma 37. For all x ∈ D∞ and n > 0, there exists N ∈ O(n) such that for all y ∈ D∞, if,
for all i, k0, . . . , ki−1 ≤ N , p(xia

ki−1
i−1 . . . ak0

0 , yia
ki−1
i−1 . . . ak0

0 ) < 2−(n+1), then p∞(x, y) < 2−n.

Proof. We must find N satisfying
∑∞

n,kn−1,...,k0>N
1

2n+kn−1+···+k0 < ϵ
2 . Notice that if N

satisfies
∑∞

n>N
1

2n < ϵ
2 , then it also satisfies the other condition, so we can argue as for

Lemma 31. ◀

The following result is proved in detail in the long version.

▶ Theorem 38. The partial metric p∞ quantifies the Scott topology of D∞.

Proof. We will exploit a few properties of the maps inm, proved in the extended version:
i. For all n ∈ N, x ∈ Xn and y ∈ X∞, x ≪ yn ⇒ in∞(x) ≪ y.
ii. For all x, y ∈ X∞, x ≪ y iff there exists N ∈ N and w1, . . . , wk ∈ XN such that

w1, . . . , wk ≪ yN and x ≤ iN∞(w1 ∨ · · · ∨ wk).
iii. For all n ∈ N, x ∈ Xn and y ∈ X∞, in∞(x) ≪ y ⇒ ∃N∀k ≥ N, in(n+k)(x) ≪ yn+k.
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Oσ(D∞) ⊇ Op∞(D∞): Let y ∈ Bϵ(x). We need to find y′ ∈ D∞ such that y′ ∈ Bϵ(x)
and y′ ≪ y. From p∞(y, x) < p∞(x, x) + ϵ it follows that we can find θ, δ > 0 such that
p∞(y, x) < p∞(x, x) + δ and δ + θ ≤ ϵ. Let N be such that

∑∞
n>N

1
2n < θ

2 . Since the
pn-balls are Scott open, for all n ≤ N , we can find some zn ∈ B θ

2
(yn) such that zn ≪ yn.

Observe that by (i.) we have in∞(zn) ≪ y. This implies in particular that the join∨N
n=1 in∞(zn) exists in D∞. Define y′ :=

∨N
n=1 in∞(zn). Notice that y′ ≪ y holds so we

just have to check that y′ ∈ Bϵ(x).
First recall that, by antimonotonicity of pn, pn(a ∨ a′, b) ≤ min{pn(a, b), pn(a′, b)}. Now,
for all n ≤ N , we have that y′

n = j∞n(y′) =
(∨

k<N ik,n(zk)
)

∨ zn ∨
(∨

n<k≤N jk,n(zk)
)

.
Then we deduce pn(y′

n, yn) ≤ pn(zn, yn) < pn(yn, yn) + θ
2 . We can now compute

p∞(y′, x) =
∞∑

n=1

1
2n

pn(y′
n, xn)

≤
∞∑

n=1

1
2n

(
pn(y′

n, yn) + pn(yn, xn) − p(yn, yn)
)

≤

( ∞∑
n=1

1
2n

pn(y′
n, yn) − pn(yn, yn)

)
+ p∞(y, x)

=
(

N∑
n=1

1
2n

(pn(y′
n, yn) − pn(yn, yn))

)

+
( ∞∑

n>N

1
2n

(pn(y′
n, yn) − pn(yn, yn))

)
+ p∞(y, x)

<

(
N∑

n=1

1
2n

θ

2

)
+ θ

2 + p∞(x, x) + δ ≤ p∞(x, x) + θ + δ ≤ p∞(x, x) + ϵ.

Oσ(X∞) ⊆ Op∞(X∞): Suppose x ≪ y. We need to find ϵ > 0 such that Bϵ(y) ⊆ ↠ x. By
(ii.) there exists N and w1, . . . , wk ∈ XN such that x ≤ iN∞(w1 ∨ · · · ∨ wk) ≪ y. By (iii.)
there exists N ′ ≥ N such that iNN ′(wj) ≪ yN ′ . Observe that iN ′∞(iNN ′(u)) = iN∞(u),
which implies that x ≤

∨
j iN ′∞(iNN ′(wj)).

For each j = 1, . . . , k we can find then ϵj > 0 such that Bϵj
(yN ′) ⊆ ↠ iNN ′(wj). Let

ϵ := 2−(N ′+1) min{ϵj | j = 1, . . . , k}. Suppose z ∈ Bϵ(y): for all j = 1, . . . , k, from
p∞(z, y) ≤ ϵ we deduce pN ′(zN ′ , yN ′) ≤ 2N ′

ϵ < ϵj , whence zN ′ ∈ Bϵj
(yN ′), which forces

iNN ′(wj) ≪ zN ′ . By (i.) the last inequality implies iN ′∞(wj) = iN ′∞(iNN ′(wj)) ≪ z,
and we thus obtain x ≤

∨
j iN ′∞(iNN ′)(wj)) ≪ z, that is, x ≪ z. ◀

The Scott λ-PPM. The interpretation of closed λ-terms in the Scott model D∞, for
D an arbitrary algebraic domain quantified by a PM p, yields a PPM pScott(M, N) :=
p∞(JMK, JNK), where JMK ∈ D∞ indicates the interpretation of M inside D∞. When D

is non-trivial (i.e. D ̸= {⊥}), using well-known properties of the Scott model, pScott(M, N)
yields an extensional and sensible λ-PPM.

The result below relates pScott to the other λ-PPMs discussed in Section 3.

▶ Proposition 39. pBöhm ⊏ pScott ⊏ pctx.
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Proof sketch.
(pBöhm ⊏ pScott) We exploit the approximation theorem for D∞ [5] which says that, for

any closed λ-term M , letting Λo
⊥ be the set of closed partial terms and J−K : Λo

⊥ → D∞
the interpretation function, JMK =

∨
{JAK | A ≤ M}. Since D is algebraic, any open

ball Bp0
ϵ (JMK(⃗a)) contains some compact element c ≪ JMK(⃗a). By the approximation

theorem, then, we deduce that there exists a partial term A ≤ M such that c ≪ JAK(⃗a).
Consider the open ball BpScott

ϵ (M). Thanks to Lemma 37 one can find a finite number of
sequences of basis elements a⃗1, . . . , a⃗n and positive reals δ1, . . . , δn > 0 such that for all
term P , if JP K(⃗ai) ∈ Bp0

δi
(JMK(⃗ai) holds for all i = 1, . . . , n, then P ∈ BpScott

ϵ (M).
By reasoning as above via the approximation theorem, we obtain partial terms
A1, . . . , An ≤ M such that Ai ∈ Bp0

δi
(JMK(⃗ai), and we deduce then A =

∨
i Ai ∈

BpScott
ϵ (M). Letting now k be the height A and θ = 2−k, we thus conclude that

BBöhm
θ (M) ⊆ BpScott

ϵ (M).
The strictness follows from the fact that the associated λ-theories B and H∗ are strictly
included, as argued at the end of Remark 19 for the case of pctx.

(pScott ⊏ pctx) By Proposition 18, we only need to prove strictness. Let I := λx.x and
consider the terms Pk := λy1. . . . .λyk.I. It can be easily checked that, for any context C,
if C[I] is solvable, then C[Pk] must be solvable as well. This implies then that, for any
ϵ > 0, the open ball Bctx

ϵ (I) contains all the terms Pk.
Now, one can construct a compact basis element c ∈ D∞ such that, for all k > 2,
JPkK ̸≪ c ≪ JIK (see the extended version for the details). Since Op∞(D∞) coincides
with the Scott topology, which is generated by the sets ↠ b, for b a basis element, from
c ≪ JIK we deduce that there exists ϵ > 0 such that Bp∞

ϵ (JIK) ⊆ ↠ c. From JP2K ̸≪ c we
deduce then JP2K /∈ Bp∞

ϵ (JIK), we conclude that the open p∞-ball Bp∞
ϵ (JIK) contains no

open pctx-ball. ◀

Recalling that D∞ induces the theory H∗, the relation pBöhm ⊏ pScott is in accordance
with what happens with the corresponding λ-theories. By contrast, while D∞ and the
contextual preorder both induce the λ-theory H∗, the first induces a λ-PPM which is finer
than the contextual partial metric. As can be seen in the proof in the Appendix, the
reason behind this is that, given terms M ⊑ctx P , there exists open pScott-balls Bϵ(P ) whose
elements all lie above M , while pctx cannot define any such ball, since whether M ≤ Q

cannot be tested by applying only finitely many contexts to Q (cf. Remark 16).

6 Quantifying the Taylor Expansion

In this section we discuss the Taylor expansion of λ-terms [18, 19, 20], a well-studied method
that refines methods based on Böhm trees and Scott domains, by decomposing the non-linear
behavior of a term into the linear behavior of a set of simpler terms, called resource λ-terms.
Notably, several well-known properties of λ-terms (like e.g. continuity and stability), which
were originally established by topological and semantic methods, can be proved in a simpler,
combinatorial way, via the Taylor expansion [4].

The famous commutation theorem [20] says that the Taylor expansion commutes with
the construction of the Böhm tree, and shows that the associated λ-theories coincide. By
presenting the Taylor expansion as an isometric transformation, we add a quantitative flavor
to this result, showing that also the corresponding notions of program similarity coincide.

All proofs of the results contained in this section can be found in the extended version.
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Resource terms and the Taylor expansion. As we said, the Taylor expansion associates a
λ-term with a set of terms, called resource terms, with a linear operational semantics. The
set Λr of resource terms is defined by the grammar t := x | λx.t | t⟨t, . . . , t⟩, where ⟨t, . . . , t⟩
indicates a finite multiset of terms. We define an order ≺ over resource λ-terms as the context
closure of the relation ∅ ≺ ⟨t1, . . . , tn⟩. The operational semantics of resource terms replaces
the standard β-rule with a linear monadic rule →r that relates a redex (λx.t)⟨u1, . . . , un⟩
with the set of terms t[uσ(1)/x1, . . . , uσ(n)/n], obtained by replacing each occurrence xi of
x in t by the term uσ(i), whenever t contains exactly n occurrences of x and where σ is
any permutation in Sn. For example, the resource term (λx.x⟨x⟩)⟨y, z⟩ reduces to the set
of terms {y⟨z⟩, z⟨y⟩} corresponding to the two possible ways of distributing y, z across the
two occurrences of x in x⟨x⟩. Instead, the resource term (λx.x⟨x⟩)⟨y⟩ reduces to the empty
set: as the single occurrence of y cannot be duplicated, it does not suffice to replace all
occurrences of x in x⟨x⟩. More generally, if t contains a number of occurrences of x different
from n, then (λx.t)⟨u1, . . . , un⟩ →r ∅. Thanks to the impossibility of duplicating terms,
linear reduction →∗

r is not only confluent, but also strongly normalizing (in linear time).
The Taylor expansion of a λ-term M is a set T (M) ⊆ Λr defined inductively as T (x) =

{x}, T (λx.M) = {λx.t | t ∈ T (M)} and T (MN) = {t⟨t1, . . . , tn⟩ | t ∈ T (M), xn ∈
N, t1, . . . , tn ∈ T (N)}. For example, the Taylor expansion of λx.λy.yx is composed of all
resource terms of the form λx.λy.y⟨x, . . . , x⟩. Since reduction is confluent and strongly
normalizing, we can define the set nf(T (M)) containing the normal forms of the resource
terms in T (M).

The Taylor expansion extends to partial λ-terms by letting T (⊥) = ∅. In this way, we
can define the Taylor expansion of a Böhm tree α ∈ Ide(A) by T (α) =

⋃
{T (A) | A ∈ α},.

The aforementioned commutation theorem says then that T (B(M)) = nf(T (M)); together
with the injectivity of T over Böhm trees (which is easily proved), this shows the equivalence
of the λ-theory B and the λ-theory generated by equating all closed terms whose Taylor
expansions have the same normal form.

We provide an alternative, topological, presentation of the Taylor expansion of Böhm
trees. A natural choice would be to take the Scott topology induced by the resource term
order ⪯. However, under this order, Λr is not a dcpo: limits of directed sequences need
not exist (as they would correspond, just like Böhm trees, to infinite terms). This leads
then to consider, just like for partial terms, the completion Ide(Λr) of Λr, which forms an
algebraic dcpo. The elements of Ide(Λr) can be seen as possibly infinite resource terms, and
the compact elements correspond to the finite ones, that is, to ordinary resource terms.

Recall that Ide(A) can be identified with the set of Böhm trees; the Taylor expansion can be
presented in this setting as a map T ∗ : Ide(A) → P(Ide(Λr)) defined by T ∗(α) = Ide(T (α)).
To see that it is well-defined, let us observe that T (α) ⊆ Λr, so Ide(T (α)) ⊆ Ide(Λr) is a set
of ideals. Notice that the set T ∗(α) is closed with respect to the Scott topology of Ide(Λr).

Defining a metric on Λr. We introduce a PUM on Λr quantifying the order ⪯, which is
essentially an adaptation of the tree partial metric. A normal resource term is of the form
t = λx1. . . . .λxn.xb1 . . . bm, where each bi is a finite multiset bi = ⟨t1

i , . . . , tmi
i ⟩. The height

of a resource term h(t) is defined recursively as h(t) = maxij h(tj
i ) + 1, where t is as above.

For any variable occurrence z in t, we define its height in t ht(z) as ht(z) = 1 if z is as x

above, and as ht(z) = htj
i
(z) + 1 if the occurrence is in tj

i .
For any normal resource term t and n ≤ h(t), we define the resource term t|n, correspond-

ing to the “truncation” of t at height n: if h(t) ≤ n, then t|n = t, and if h(t) > n, then we
replace any subterm of t of the form xb1 . . . bm, where x is at height n, by x∅ . . . ∅. Observe
that h(t|n) ≤ n and h(t|n) = n holds whenever h(t) ≥ n.
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▶ Definition 40 (resource partial metric). For any two resource terms t, u ∈ Λr, we define

r(t, u) := inf{2−n | h(t), h(u) ≥ n and t|n = u|n}.

By arguing similarly to the case of trees, it can be shown that r is a PUM, and that the
order ≤r coincides with ⪯. Notice that r(t, t) = 2−h(t).

Lifting the metric to P(Λr). We now discuss how to lift the metric r to subsets of Λr.
A standard way to lift a metric d from a set X to its powerset P(X) is via the Hausdorff
lifting Hd(A, B) = max{sup

a∈A
inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}. Intuitively, Hd(A, B) looks, for each

element of one set, for its closest element in the other set, and then measures the distance
that is obtained by this operation in the worst case. The same construction, when applied
to a partial metric p, yields the partial Hausdorff metric Hp (see [3, 28]) which, in spite of
its name, is in fact not a partial metric, as it satisfies a weaker triangular law Hp(A, B) ≤
Hp(A, C) + Hp(C, B) − infc∈C p(c, c).

In any case, the Hausdorff lifting Hr of the resource partial metric is not the right choice
for us: suppose α is an infinite Böhm tree, so that its self-distance is 0; then T (α) is a set of
finite terms of arbitrary depth, so that Hr(T (α), T (α)) = supt∈T (α) r(t, t) = sup{2−|t| | t ∈
T (α)} = 1

2 > 0 = ptree(α, α). Beyond making the Taylor expansion non-isometric, from this
we deduce that Hr is constantly 1

2 over all non-empty Taylor expansions!
Instead, we introduce the following variant of the Hausdorff lifting:

▶ Definition 41. For any PM p : X × X → [0, 1], let H∗
p : P(X) × P(X) → [0, 1] be:

H∗
p (A, B) = max

{
sup
a∈A

inf
a′≥pa∈A,b∈B

p(a′, b), sup
b∈B

inf
b′≥pb∈B,a∈A

p(a, b′)
}

.

Intuitively, on two sets A, B, H∗
p (A, B) measures how close the elements of A get to the

elements of B as soon as one is allowed to freely move higher within A and B following the
order ≤p. Notice that, for α an infinite Böhm tree, we now have H∗

r (T (α), T (α)) = 0, as
desired. Similarly to the partial Hausdorff metric Hp, for a partial metric p, H∗

p is not in
general a partial metric. Indeed, it only satisfies the following properties:

▶ Proposition 42. For any partial metric space (X, p), the distance H∗
p satisfies:

1. H∗
p (A, A) ≤ H∗

p (A, B);
2. H∗

p (A, B) = H∗
p (B, A);

3. H∗
p (A, B) ≤ H∗

p (A, C) + H∗
p (C, B) − infc∈C p(c, c).

However, H∗
p is in fact a PM when restricted to Idep(X), the dcpo of ideals with respect

to the order ≤p.

▶ Proposition 43. For any PM p on X, H∗
p is a PM on Idep(X) quantifying the order ⊆.

When p = r, the resource partial metric, H∗
r indeed quantifies the Scott topology:

▶ Proposition 44. The PM H∗
r quantifies the Scott topology on Ider(Λr).

Taylor is an isometry. The Taylor expansion can be presented either as a map T : Λ → P(Λr)
turning a λ-term into a set of resource terms, or as a map T ∗ : Ide(A) → P(Ide(Λr)) turning
a Böhm tree (i.e. an infinitary normal λ-term) into a set of infinitary resource terms.

We will show that both maps are isometries, when considering Λ with the Böhm PM and
Ide(A) with the tree PM, and measuring sets of (finite/infinite) resource terms via the lifting
H∗

r of the resource partial metric.
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Let the λ-PPM pTaylor be defined by pTaylor(M, N) = H∗
r (nf(T (M)), nf(T (N))). As we

observed, the λ-theory generated by equating all terms M, N such that nf(T (M)) = nf(T (N))
coincides the theory B. Our result will extend this to the corresponding quantitative theories.

Let us first consider the Taylor expansion of λ-terms.

▶ Theorem 45. T : (Λ, pBöhm) −→ (P(Λr), H∗
r ) is an isometry. Thus, pTaylor = pBöhm.

The results above states that, whenever the Böhm trees of two terms M, N differ at height n,
then, by moving higher and higher in their normalized Taylor expansions T (M) and T (N),
one can find resource terms that differ precisely at height n, and can do no better.

Let us now consider the map T ∗. Since Ide(Λr) is quantified by H∗
r , we can consider its

lifting H∗
H∗

r
to P(Idep(Λr)). In fact, the computation of H∗

H∗
r

leads us back to H∗
r :

▶ Lemma 46. For all λ-terms M, N , H∗
r (T (M), T (N)) = H∗

H∗
r
(T ∗(M), T ∗(N)).

Thanks to Proposition 45, this immediately produces:

▶ Theorem 47. T ∗ : (Ide(A), ptree) −→ (P(Ide(Λr)), H∗
H∗

r
) is an isometry.

▶ Remark 48. As shown in detail in the long version, we can obtain an isometry also if we
choose to measure Böhm trees and Taylor expansions using the PMs from Examples 35 and
36. Indeed, for any enumeration (An)n of partial terms, one can define an enumeration (rn)n

of resource terms and weights θn such that T : (B, pB
(An)n, 1

2n
) −→ (P(Λr), pP

(rn)n,θn
) is an

isometry.

7 Conclusions

Related Work. Since their introduction in [8], the literature on partial metrics has grown
vast, and comprises both theoretical investigations [39, 34, 3, 29] and connections with
theoretical computer science [38], notably domain theory [9, 35, 40, 41]. Recently, an elegant
categorical description of partial metric spaces as quantaloid-enriched categories has been
proposed [28], as well as a characterization of the partial metric spaces that are exponentiable
(in a category whose morphisms are the non-expansive - or 1-Lipschitz - functions and not,
as in this paper, all continuous functions). While, as we have said, the metrizability of Scott
domains via partial metrics has been well known since [9, 35], not much is found in this vast
literature about the specific use of partial metrics for studying the topological semantics of
the λ-calculus or, more generally, of higher-order programming languages.

Beyond partial metrics, the literature on higher-order program metrics has been growing
vast as well. As the category Met of metric spaces and non-expansive functions is not
cartesian closed, the literature has focused on two complementary directions: on the one
hand, restrict to cartesian closed sub-categories of Met, like ultra-metric spaces [23], or
injective metric spaces [10]; [15] adapts Mardare’s et al.’s quantitative equational theories [32]
to higher-order languages, introducing a notion of quantitative λ-theory (which, contrarily
to λ-PPMs, require contexts to be non-expansive). On the other hand, restrict attention
to linear [12, 16] or graded [37, 17] λ-calculi, which can be modeled in Met. Notably, [17]
introduces metric CPOs, that is CPOs endowed with sub-continuous metrics (i.e. satisfying
d(limn xn, limn yn) ≤ ϵ whenever d(xn, yn) ≤ ϵ holds for all n). This is a weaker condition
than quantifiability, since the limits in the metric need not coincide with the CPO limits.

Differential logical relations [14, 13] have been recently introduced as a generalized
approach to program metrics, relaxing usual Lipschitz, and even continuity, conditions.
Notably, related models based on generalized partial metric spaces are studied in [27, 36]. In
such models distances need not be positive reals but are computed on an arbitrary quantale.
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Finally, several works have investigated infinitary λ-calculi defined via a metric completion
of ordinary terms [30, 33]. These approaches are based on ultrametrics akin to the tree metric
considered in this paper for Böhm trees. Recall that ordinary metric spaces are topologically
Hausdorff, contrarily to the spaces considered in this paper. The metric completion of partial
metric spaces is discussed in [26, 28].

Future Work. While this paper focuses on metric counterparts for well-known techniques,
our results suggest several potential developments.

The metrizability of Scott domains suggests to study models based on Lipschitz-continuous,
rather than just continuous, functions, as is standard in the literature on linear λ-calculi. For
instance, considering the Böhm metric, a non-expansive context should respect depth: if two
terms M, N coincide up to depth n, then C[M ] and C[N ] must also coincide up to depth n.
This suggests connections with recent work on stratified notions of program equivalence [2].

Sections 4 and 6 introduced several methods to lift a partial metric to the powerset; using
such liftings, as we suggest at several places, our results based on Scott domains could be
adapted to the relational model, in which λ-terms are interpreted via relations R ∈ P(A×B).

While we here just considered the untyped λ-calculus and basic cartesian closed structure
(i.e. finite products and exponentials), the applicative distances introduced in this paper
should adapt well also to languages with coproducts and dependent types; moreover, our
results on the Hausdorff lifting suggests that other monadic liftings (e.g. the probability
monad) could be considered. At the same time, the metric account of RealPCF suggested at
in Example 33 could be explored in more depth, for instance considering the behavior of
operators like the parallel if or even program derivatives.

Finally, the fact that several partial metrics considered in this paper produce computable
distances between finite approximants suggests to explore potential connections with quant-
itative type systems related to the relational and topological semantics, like those based on
non-idempotent intersection types [7].
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