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Abstract
We study the equational theory of Kleene algebra (KA) w.r.t. languages (here, meaning the equational
theory of regular expressions where each letter maps to any language) by extending the algebraic
signature with the language complement. This extension significantly enhances the expressive power
of KA. In this paper, we present a finite relational semantics completely characterizing the equational
theory w.r.t. languages, which extends the relational characterizations known for KA and for KA
with top. Based on this relational semantics, we show that the equational theory w.r.t. languages is
Π0

1-complete for KA with complement (with or without Kleene-star) and is PSPACE-complete if the
complement only applies to variables or constants.
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1 Introduction

Kleene algebra (KA) [24, 11, 25] is an algebraic system for regular expressions consisting
of identity (1), empty (0), composition (;), union (+), and iteration (_∗). As iteration
frequently appears in computer science, KA has many applications, e.g., the semantics of
programs [46], relation algebra [40], graph query language [12, 21], program verification
[29, 23, 48], and program logics [26, 41, 53]. In practice, we often consider extensions of
KA. One direction of extensions is to extend equations to formulas, e.g., Horn formulas
(t1 = s1 → · · · → tn = sn → t = s) for considering hypotheses [9, 28, 14, 44]. Another
direction is to extend terms by adding some operators. For example, Kleene algebra with
tests (KAT) applies to model Hoare logic [26] and KAT with top (⊤) applies to model
incorrectness logic [41, 53, 45]. It is also natural to extend KA with language operators, e.g.,
reverse [3], residual [8], intersection (∩) [2], top (universality) [53, 45], variable complements
(x) [38, 39], and combinations of some of them [4, 5]. Note that, whereas the class of regular
languages is closed under these operators, such extensions strictly enhance the expressive
power of KA w.r.t. languages (here, meaning regular expressions where each letter maps to
any language); see [38, 39] and Section 2.2 for complement.

In this paper, we study KA w.r.t. languages by extending the algebraic signature with
the language complement (_−). Extending with complement and considering its fragments
is a natural, comprehensive approach, e.g., in logic, formal language [10, 42], and relation
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algebra [50, 40] (see also [1, 6, 32, 43, 34]). The language complement1 in KA w.r.t. languages
significantly enhances the expressive power. For instance, we can define ⊤ and ∩ using
complement: ⊤ = 0− and t∩ s = (t−+ s−)−. Additionally, we can encode positive quantifier-
free formulas by equations of KA terms with complement (Remark 3.3 and Section A).

Our main contribution is to present a finite relational semantics for KA with complement
w.r.t. languages: relational subword models RSUB (Section 3). As KA with complement
has a high expressive power, our relational semantics can apply to a more broad class of
extensions of KA (including KA with ⊤ and ∩) than known relational semantics, e.g., REL
(for KA) [46, third page] and GREL (for KA with ⊤) [53, 45] (see Remark 3.5). A good point
of RSUB is its form; each model is finite and totally ordered (with minimal and maximal
vertices). For instance, the Π0

1 upper bound result of the equational theory of KA with
complement w.r.t. languages is immediate from the finiteness of RSUB. Another good point
is that we can naturally consider lifting techniques known in REL to LANG. For instance,
by using the techniques in [34] w.r.t. REL, we can show the following complexity results:
the equational theory w.r.t. languages is Π0

1-complete for KA with intersection and variable
complements (Theorem 4.12) and for KA with complement and without Kleene-star (i.e.,
star-free regular expressions w.r.t. LANG) (Theorem 4.15); and PSPACE-complete for KA
with variable and constant complements (Theorem 6.10). The PSPACE decidability result
above positively settles the open problem posed in [38, Sect. 7].

This paper is structured as follows. In Section 2, we give basic definitions, including
language models (LANG) and generalized relational models (GREL). In Section 3, we introduce
RSUB (a subclass of GREL) and show that the equational theory w.r.t. LANG coincides with
that w.r.t. RSUB. In Section 4, by using RSUB, we give a reduction from the quantifier-free
theory w.r.t. LANG into the equational theory w.r.t. LANG. Using this reduction, we show
that the equational theory w.r.t. LANG is Π0

1-complete for KA with complement (moreover,
for KA with intersection and variable complements and for KA with complement and without
Kleene-star). In Section 5, by using RSUB, we give a graph characterization for KA terms
with variable and constant complements. In Section 6, by using this characterization, we
show that the equational theory for KA terms with variable and constant complements is
PSPACE-complete. In Section 7, we conclude this paper.

2 Preliminaries

We write N for the set of non-negative integers. For l, r ∈ N, we write [l, r] for the set
{i ∈ N | l ≤ i ≤ r}. For a set X, we write ℘(X) for the power set of X.

For a set X (of letters), we write X∗ for the set of words over X. A language over X is a
subset of X∗. We use w, v to denote words and use L,K to denote languages, respectively.
We write ∥w∥ for the length of a word w. We write ε for the empty word. We write wv for
the concatenation of words w and v. For languages L,K ⊆ X∗, the concatenation L ;K and
the Kleene-star L∗ is defined by:

L ;K =∆ {wv | w ∈ L ∧ v ∈ K}, L∗ =∆
⋃
n≥0
{ε} ; L ; · · · ; L︸ ︷︷ ︸

n times

.

A (2-pointed) graph G over a set A is a tuple ⟨|G|, {aG}a∈A, 1G, 2G⟩, where |G| is a
non-empty set (of vertices), each aG ⊆ |G|2 is a binary relation, and 1G, 2G ∈ |G| are
vertices. Let G,H be graphs over a set A. For a map f : |G| → |H|, we say that f is a graph

1 KAT [29] is also an extension of KA with complement, but this complement is not the language
complement.
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homomorphism from G to H, written f : G −→ H, if for all x, y, and a, ⟨x, y⟩ ∈ aG implies
⟨f(x), f(y)⟩ ∈ aH , f(1G) = 1H , and f(2G) = 2H . We say that f is a graph isomorphism
from G to H if f is a bijective graph homomorphism and for all x, y, and a, ⟨x, y⟩ ∈ aG
iff ⟨f(x), f(y)⟩ ∈ aH . We say that H is a (canonical) edge-extension of G if |H| = |G| and
the identity map is a graph homomorphism from G to H. For a set {1G, 2G} ⊆ X ⊆ |G|,
the induced subgraph of G on X is the graph ⟨X, {aG ∩X2}a∈A, 1G, 2G⟩. For an equivalence
relation E on |G|, the quotient graph of G w.r.t. E is the graph G/E =∆ ⟨|G|/E, {⟨X,Y ⟩ |
∃x ∈ X, y ∈ Y, ⟨x, y⟩ ∈ aG}a∈A, [1G]E , [2G]E⟩ where X/E denotes the set of equivalence
classes of X by E and [x]E denotes the equivalence class of x. Additionally, we use the
following operation:

▶ Definition 2.1. For a graph homomorphism h : G −→ H where G, H are graphs over a set
A, the edge-saturation of G w.r.t. h is the graph S(h) =∆ ⟨|G|, {{⟨x, y⟩ ∈ |G|2 | ⟨h(x), h(y)⟩ ∈
aH}}a∈A, 1G, 2G⟩.

▶ Example 2.2. Let h : G −→ H be the graph homomorphism indicated by green colored
arrows (graphs are depicted as unlabeled graphs for simplicity). Then S(h) is the following
graph in the left-hand side, which is an edge-extension of G where the extended edges are
derived from edges of H:

S(h) = , G = H = .

2.1 Syntax: terms of KA with complement
We consider terms over the signature S =∆ {1(0), 0(0), ;(2),+(2),_∗(1),_

−
(1)}. Let V be a

countably infinite set of variables. For a term t over S, let t be s if t = s− for some s and be
t− otherwise. We use the abbreviations: ⊤ =∆ 0− and t ∩ s =∆ (t− + s−)−.

For X ⊆ {x, 1,⊤,∩,−}, let KAX be the minimal set A of terms over S satisfying:

y ∈ V
y ∈ A 1 ∈ A 0 ∈ A

t ∈ A s ∈ A
t ; s ∈ A

t ∈ A s ∈ A
t+ s ∈ A

t ∈ A
t∗ ∈ A

x ∈ X y ∈ V
y ∈ A

1 ∈ X
1 ∈ A

⊤ ∈ X
⊤ ∈ A

∩ ∈ X t ∈ A s ∈ A
t ∩ s ∈ A

− ∈ X t ∈ A
t− ∈ A

.

We often abbreviate t ; s to ts. We use parentheses in ambiguous situations (where + and ;
are left-associative). We write

∑n
i=1 ti for the term 0 + t1 + · · ·+ tn.

An equation t = s is a pair of terms. An inequation t ≤ s abbreviates the equation
t+ s = s. The set of quantifier-free formulas of KAX is defined by the following grammar:

φ,ψ ::= t = s | φ ∧ ψ | ¬φ. (t, s ∈ KAX)

We use the following abbreviations, as usual: φ ∨ ψ =∆ ¬(¬φ ∧ ¬ψ), φ → ψ =∆ ¬φ ∨ ψ,
φ ↔ ψ =∆ (φ → ψ) ∧ (ψ → φ), f =∆ ¬φ ∧ φ, and t =∆ ¬f. We use parentheses in ambiguous
situations (where ∨ and ∧ are left-associative). We write

∧n
i=1 φi for t ∧ φ1 ∧ · · · ∧ φn and∨n

i=1 φi for f ∨ φ1 ∨ · · · ∨ φn.
We say that a quantifier-free formula is positive if the formula in the following set A:

φ,ψ ∈ A ::= t = s | φ ∧ ψ | φ ∨ ψ (t, s ∈ KAX)

where φ ∨ ψ expresses ¬(¬φ ∧ ¬ψ) in the above. We say that a quantifier-free formula is a
Horn formula if the formula is of the form (

∧n
i=1 φi)→ ψ where n ≥ 0.

CSL 2025
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2.2 Semantics: language models
An S-algebra A is a tuple ⟨|A|, {fA}f(k)∈S⟩, where |A| is a non-empty set and fA : |A|k → |A|
is a k-ary map for each f(k) ∈ S. A valuation v of an S-algebra A is a map v : V→ |A|. For a
valuation v, we write v̂ : KA{−} → |A| for the unique homomorphism extending v. Moreover,
for a quantifier-free formula φ, we define v̂(φ) ∈ {true, false} by:

v̂(t = s)⇔∆ (v̂(t) = v̂(s)), v̂(φ ∧ ψ)⇔∆ (v̂(φ) and v̂(ψ)), v̂(¬φ)⇔∆ (not v̂(φ)).

For a quantifier-free formula φ and a class of valuations (of S-algebra) C,2 we write

C |= φ ⇔∆ v̂(φ) holds for all valuations v ∈ C.

We abbreviate {v} |= φ to v |= φ. The equational theory w.r.t. C is the set of all equations
t = s such that C |= t = s. The quantifier-free theory w.r.t. C is the set of all quantifier-free
formulas φ such that C |= φ.

The language modelA over a setX, written langX , is the S-algebra defined by |A| = ℘(X∗),
1A = {ε}, 0A = ∅, and for all L,K ⊆ X∗,

L ;A K = L ;K, L+A K = L ∪K, L∗
A

= L∗, L−
A

= X∗ \ L.

We write LANGX for the class of all valuations of langX and write LANG for
⋃
X LANGX .

The equational theory (resp. quantifier-free theory) w.r.t. languages expresses that w.r.t.
LANG.

The language [t] ⊆ V∗ of a term t is v̂st(t) where vst is the standard language valuation
on the language model over the set V, which is defined by vst(x) = {x} for x ∈ V. Since
vst ∈ LANG, we have

LANG |= t = s ⇒ [t] = [s] (†)

The converse direction fails; e.g., when x ̸= y, we have [y] ⊆ [x] and LANG ̸|= y ≤ x, because
[y] = {y} ⊆ V∗ \ {x} = [x] and v̂(y) = {ε} ̸⊆ V∗ \ {ε} = v̂(x) where v is a valuation of langX
s.t. v(x) = v(y) = {ε}. See [38] for more counter-examples.

▶ Remark 2.3. For (non-extended) KA, the equational theory w.r.t. languages coincides with
the language equivalence [25, 2] (i.e., the converse direction of Equation (†) also holds). This
is an easy consequence of the completeness theorem of KA [25] (see also [38, Appendix A]
for a direct proof). From this, KA with complement (even with variable complements) has a
strictly more expressive power than KA.

In the sequel, we consider the equational theory w.r.t. languages.

2.3 (Generalized) relational models
We write △A for the identity relation on a set A: △A =∆ {⟨x, x⟩ | x ∈ A}. For binary relations
R,S on a set B, the composition R ; S, and the reflexive transitive closure R∗ are defined by:

R ; S =∆ {⟨x, z⟩ | ∃y, ⟨x, y⟩ ∈ R ∧ ⟨y, z⟩ ∈ S}, R∗ =∆
⋃
n≥0
△B ;R ; · · · ;R︸ ︷︷ ︸

n times

.

2 This paper considers classes of valuations rather than classes of S-algebras (cf. Theorem 3.6).
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Let U be a binary relation on a non-empty set B. A generalized relational model3 A on
U is an S-algebra such that |A| ⊆ ℘(U), 1A = △B , 0A = ∅, and for all R,S ⊆ U ,

R ;A S = R ; S, R+A S = R ∪ S, R∗
A

= R∗, R−
A

= U \R.

We say that A is a relational model if U = B2 and |A| = ℘(B2). We write GREL (resp. REL)
for the class of all valuations of generalized relational models (resp. relational models).4

Let A be a generalized relational model on a binary relation U on a set A. For a non-empty
subset B ⊆ A, the (induced) submodel A ↾ B of A w.r.t. B is the generalized relational
model on the binary relation U ∩B2 on the set B with the universe {R ∩B2 | R ∈ |A|}. We
say that a non-empty subset B ⊆ A is ⊤-closed if for all x, y, z ∈ A, if ⟨x, z⟩, ⟨z, y⟩ ∈ U and
x, y ∈ B, then z ∈ B. When B is ⊤-closed, it is easy to see that the map

κB : R 7→ R ∩B2

forms an S-homomorphism from A to A ↾ B (the condition is used for preserving ; and ∗).
Similarly, for a valuation v of A, let v ↾ B be the valuation of A ↾ B given by the map κB .

3 RSUB: finite relational models for language models

In this section, we define the class RSUB of relational subword models, for the equational
theory w.r.t. languages of KA{−}. RSUB is a subclass of finite generalized relational models
where the universe relation U is a total order.

▶ Definition 3.1. Let n ∈ N. The relational subword language model A of length n, written
rsubn, is the generalized relational model on the set U = {⟨i, j⟩ ∈ [0, n]2 | i ≤ j} s.t.

|A| = {R ∈ ℘(U) | R ⊇ △[0,n] ∨ U \R ⊇ △[0,n]}.

We write RSUBn for the class of all valuations of rsubn and write RSUB for
⋃
n≥0 RSUBn. ⌟

Each rsubn is based on the image of Pratt’s embedding (or called Cayley map) [46]5:

ιX : L 7→ {⟨w,wv⟩ | w ∈ X∗ ∧ v ∈ L}

where we restrict the universe X∗ of words into the subwords of a word of length n with
pairwise distinct letters (i.e., a subword of length i corresponds to the vertex i in rsubn).

Let rlangX be the generalized relational model on ιX(X∗) with the universe {ιX(L) | L ⊆
X∗}. It is easy to see that the map ιX forms an S-isomorphism from langX to rlangX . For a
word w, let Subw(w) be the set of subwords of w. By Definition 3.1, it is easily shown that

for a word w ∈ X∗ of length n, the generalized relational model rlangX ↾ Subw(w) is
isomorphic to a subalgebra of rsubn,
for a word w = a1 . . . an ∈ X where a1, . . . , an are pairwise distinct letters, the generalized
relational model rlangX ↾ Subw(w) is isomorphic to rsubn,

3 By definition, for each generalized relational model, U is a preorder: (Reflexivity): By △B = 1A ∈
|A| ⊆ ℘(U), we have △B ⊆ U ; (Transitivity): By ∅ = 0A ∈ |A|, U = ∅−A

∈ |A|, and U ; U = U ;A U ∈
|A| ⊆ ℘(U), we have U ; U ⊆ U .

4 Generalized relational models and relational models are variants of proper relation algebras and full
proper relation algebras (see, e.g., [22]), respectively, where B is non-empty set and the converse operator
is not introduced (due to this, U is possibly not symmetric, cf. [22, Lem. 3.4]) here.

5 This trick itself is already used to prove equivalences between relational and language models, e.g., for
KAT [29] and for KA{⊤} [53, 45].

CSL 2025
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by the map

θ : R 7→ {⟨∥w∥, ∥v∥⟩ | ⟨w, v⟩ ∈ R}.

We then have that the equational theory w.r.t. languages coincides with that w.r.t. RSUB.

▶ Theorem 3.2. For all KA{−} terms t and s, we have: LANG |= t ≤ s⇔ RSUB |= t ≤ s.

Proof. (⇒): For each n ∈ N, by the surjective S-homomorphism given by:

langX
ιX−−→ rlangX

κSubw(a1...an)−−−−−−−−−→ rlangX ↾ Subw(a1 . . . an) θ−→ rsubn

where a1, . . . , an are any pairwise distinct letters and X = {a1, . . . , an}. (As Subw(a1 . . . an)
is ⊤-closed, κSubw(a1...an) is indeed an S-homomorphism.) (⇐): We prove the contraposition.
By LANG ̸|= t ≤ s, there are X, v ∈ LANGX , and w0 ∈ X∗ such that w0 ∈ v̂(t) \ v̂(s). We
then consider the S-homomorphism given by:

langX
ιX−−→ rlangX

κSubw(w0)−−−−−−→ rlangX ↾ Subw(w0) θ−→ rsub∥w0∥

Let v′, v′′, and v′′′ be the valuations of rlangX , rlangX ↾ Subw(w0), and rsubn, given by ιX ◦v,
κSubw(w0) ◦ v′, and θ ◦ v′′, respectively. We then have:

w0 ∈ v̂(t) \ v̂(s) ⇒ ⟨ε, w0⟩ ∈ v̂′(t) \ v̂′(s) (By w0 ∈ L iff ⟨ε, w0⟩ ∈ ιX(L))
⇒ ⟨ε, w0⟩ ∈ v̂′′(t) \ v̂′′(s) (By ε, w0 ∈ Subw(w0))
⇒ ⟨0, ∥w0∥⟩ ∈ v̂′′′(t) \ v̂′′′(s). (By ⟨ε, w0⟩ ∈ R iff ⟨0, ∥w0∥⟩ ∈ θ(R))

Hence, RSUB ̸|= t ≤ s. ◀

▶ Remark 3.3. By almost the same argument as Theorem 3.2, we can extend the coincidence
between LANG and RSUB from the equational theory to the positive quantifier-free theory
(see Section A for more details). However, this coincidence is broken (only LANG |= φ ⇐
RSUB |= φ holds) for the quantifier-free theory and even for Horn theory. For instance,
φ =∆ xx ≤ 0 → x ≤ 0 is a counter-example (LANG |= φ holds because, if w ∈ v̂(x), then
ww ∈ v̂(xx); however, RSUB1 ̸|= φ under the valuation x 7→ {⟨0, 1⟩}). ⌟

▶ Corollary 3.4. The equational theory w.r.t. languages is in Π0
1 for KA{−} terms.

Proof. By the finite model property of RSUB (the universe |rsubn| is finite for each n). ◀

Comparison to other semantics
▶ Remark 3.5 (RSUB and GREL). For KA{⊤}, the equational theory of LANG coincides with
that of GREL [45, REL′ in Sect. 5][53]. However for KA{−}, this coincidence is broken. For
instance, the following equations are valid w.r.t. LANG but not valid w.r.t. GREL (the first
equation is not valid also w.r.t. REL):

a ≤ bab+ bab a

a, b a, b

a | ab ∩ cd ≤ a⊤d+ c⊤b a,⊤ b,⊤
c,⊤ d,⊤

(Each figure expresses a valuation for (G)REL ̸|= _ where some edges are omitted.) Here,
LANG |= a ≤ bab+ bab is shown by distinguishing the cases based on LANG |= 1 ≤ b ∨ 1 ≤ b.
The inequation ab ∩ cd ≤ a⊤d+ c⊤b is Levi’s inequation [30][5, Example 26]. ⌟
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EqT(REL)

EqT(GREL)

EqT(RSUBst)

EqT(RSUB)

EqT({vst})

EqT(LANG)
⊇ ⊆

=

=

⊉⊆

⊉
⊈

a ≤ a⊤a [53, 45]

a ∩ b = 0 where a ̸= b
a = a a [38]

(ab) ∩ 1 = (a ∩ 1)(b ∩ 1) [2]
a ≤ bab + bab (Remark 3.5)

Figure 1 Equational theories for KA{−} under GREL.

Additionally, the standard language valuation can also be given as a subclass of RSUB
(cf. Theorem 3.2), based on the following correspondence between words and relations:

a1a2 . . . an | . . .a1 a2 an .

▶ Theorem 3.6. For all terms t and s, [t] = [s] iff RSUBst |= t = s where

RSUBst =∆
⋃
n≥0

{
v ∈ RSUBn

∣∣∣ ⋃
a∈V v(a) = {⟨i− 1, i⟩ | i ∈ [1, n]}

v(a) (where a ranges over V) are disjoint sets

}
.

Proof. By the same construction in the proof of Theorem 3.2, as RSUBst is the subclass of
RSUB obtained by restricting valuations to the standard language valuation {vst}. ◀

Figure 1 summarizes the equational theories above where the inclusions are shown by
REL ⊆ GREL ⊇ RSUB ⊇ RSUBst (and Theorem 3.2) and the non-inclusions are shown
by counter-examples. Additionally, note that EqT({vst}) = EqT(GREL) for KA [25] and
EqT(LANG) = EqT(GREL) for KA{⊤} [53, 45].

4 From quantifier-free formulas to equations

In this section, we show that there is a (polynomial-time) reduction from the quantifier-
free theory into the equational theory, w.r.t. RSUB. Slightly more generally, we show this
characterization for submodel-closed classes. We say that a class C ⊆ GREL is submodel-closed
if for all v ∈ C (on a binary relation U on a set A) and all non-empty subsets B ⊆ A, we
have (v ↾ B) ∈ C. By definition, RSUB is a submodel-closed class up to isomorphism. Also,
REL and GREL are submodel-closed. Additionally, for v ∈ GREL (on a binary relation U on
a set A), we say that a vertex x ∈ A is minimal on v if ⟨x, y⟩ ∈ v̂(⊤) for all y ∈ A and that
a vertex x ∈ A is maximal on v if ⟨y, x⟩ ∈ v̂(⊤) for all y ∈ A. In the following lemma, we
have that, to check whether a given equation is valid, it suffices to check for minimal and
maximal pairs of vertices.

▶ Lemma 4.1. Let C ⊆ GREL be submodel-closed. For all terms t, s, we have: C |= t ≤ s ⇔
∀v ∈ C,∀l, r s.t. l is minimal and r is maximal on v, ⟨l, r⟩ ̸∈ v̂(t) \ v̂(s).

Proof. (⇒): Trivial. (⇐): We prove the contraposition. Let v ∈ C (on a binary relation
U on a set A), l, and r be s.t. ⟨l, r⟩ ∈ v̂(t) \ v̂(s). Let B =∆ {z ∈ A | ⟨l, z⟩, ⟨z, r⟩ ∈ U}. By
letting v′ =∆ v ↾ B, we have ⟨l, r⟩ ∈ v̂′(t) \ v̂′(s) (= (v̂(t) ∩ B2) \ (v̂(s) ∩ B2)). Hence, this
completes the proof. ◀

Next, using minimal vertex l and maximal vertex r, we consider replacing each inequation
u ≤ 0 with ⊤u⊤ ≤ 0, based on that v |= u ≤ 0 iff ⟨l, r⟩ ̸∈ v̂(⊤u⊤). More generally, for a
quantifier-free formula φ, let Tr(φ) be the KA{−} term defined by:6

6 Tr(t = s) can be simplified for specific cases, e.g., Tr(t ≤ s) = ⊤(t ∩ s−)⊤ and Tr(t ≤ 0) = ⊤t⊤.
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Tr(t = s) =∆ ⊤((t ∩ s−) + (t− ∩ s))⊤, Tr(φ ∧ ψ) =∆ Tr(φ) + Tr(ψ), Tr(¬φ) =∆ Tr(φ)−.

(For the case of t = s, we use the fact GREL |= t = s ↔ (t ∩ s−) + (t− ∩ s) ≤ 0.) We then
have the following.

▶ Lemma 4.2. Let v ∈ GREL, l be a minimal vertex on v, and r be a maximal vertex on v.
For all quantifier-free formulas φ (of KA{−} terms), we have:

v |= φ ⇔ ⟨l, r⟩ ̸∈ v̂(Tr(φ)).

Proof. By easy induction on φ. Case (t = s): Let u = (t ∩ s−) + (t− ∩ s). Then v |= t = s

iff v̂(u) = ∅ iff ⟨l, r⟩ ̸∈ v̂(⊤u⊤) iff ⟨l, r⟩ ̸∈ v̂(Tr(t = s)). Case ψ ∧ ρ: By (⟨l, r⟩ ̸∈ v̂(Tr(ψ))
and ⟨l, r⟩ ̸∈ v̂(Tr(ρ))) iff ⟨l, r⟩ ̸∈ v̂(Tr(ψ) + Tr(ρ)). Case ¬ψ: By (not ⟨l, r⟩ ̸∈ v̂(Tr(ψ))) iff
⟨l, r⟩ ̸∈ v̂(Tr(ψ)−). ◀

▶ Theorem 4.3. Let C ⊆ GREL be submodel-closed. For all quantifier-free formulas φ,

C |= φ ⇔ C |= Tr(φ) ≤ 0.

Proof. By Lemmas 4.1 and 4.2. ◀

By the reduction of Theorem 4.3, we have the following complexity results.

▶ Corollary 4.4. The quantifier-free theory w.r.t. RSUB for KA{−} terms is in Π0
1.

Proof. By Theorem 4.3 with Corollary 3.4. (The Π0
1-hardness will be derived from Theo-

rem 4.12.) ◀

▶ Corollary 4.5. The equational theory w.r.t. REL/GREL for KA{−} terms is Π1
1-complete.

Proof. (Π1
1-hard): By Theorem 4.3 with that the Horn theory of KA w.r.t. REL/GREL is

Π1
1-complete [20]. (In Π1

1): By the same argument as [20]. ◀

▶ Remark 4.6. In cotrast to Corollary 4.4, the authors do not know the complexity of the
quantifier-free theory (resp. Horn theory) w.r.t. LANG for KA/KA{−} terms, cf. the Horn
theory is Π1

1-complete for ∗-continuous KA [27] and for KA w.r.t. REL/GREL [20]. (E.g., in
the proof of [27], quotient models of the standard language valuation are used, but they are
not in LANG in general.) ⌟

Also, as a special case of Theorem 4.3, we have the following Hoare hypothesis elimination.

▶ Corollary 4.7 (Hoare hypothesis elimination). Let C ⊆ GREL be submodel-closed. For all
terms t, s, u, we have:

C |= u ≤ 0→ t ≤ s ⇔ C |= t ≤ s+⊤u⊤.

Proof. By Theorem 4.3 with easy inequations, we have:

C |= u ≤ 0→ t ≤ s ⇔ C |= ⊤(t ∩ s−)⊤ ≤ ⊤u⊤ (By Theorem 4.3)
⇔ C |= t ∩ s− ≤ ⊤u⊤ (⇒: By 1 ≤ ⊤ ⇐: By ⊤⊤ ≤ ⊤)
⇔ C |= t ≤ s+⊤u⊤. ◀
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▶ Remark 4.8. Theorem 4.3 and Corollary 4.7 fail w.r.t. LANG; for Corollary 4.7, for instance,
we have:

LANG |= xx ≤ 0→ x ≤ 0, LANG ̸|= x ≤ ⊤xx⊤.

Hence, to use Hoare hypothesis elimination, it is essential to use RSUB instead of LANG. ⌟

▶ Remark 4.9. When C = REL, we have C |= φ ↔ Tr(φ) ≤ 0 (cf. Theorem 4.3) and
C |= (u ≤ 0 → t ≤ s) ↔ (t ≤ s + ⊤u⊤) (cf. Corollary 4.7) by the Schröder-Tarski
translation [50, XXXII.][19, p. 390, 391]. However, they fail in general when C is RSUB
or GREL. For instance, when C = RSUB, t = ⊤, s = 0, and u = x, the second above is
equivalent to “RSUB ̸|= (¬x ≤ 0) ↔ ⊤ ≤ ⊤x⊤”, but this fails; when v ∈ RSUB1 satisfies
v(x) = {⟨0, 1⟩}, we have v̂(⊤) = {⟨0, 0⟩, ⟨0, 1⟩, ⟨1, 1⟩} but v̂(⊤x⊤) = {⟨0, 1⟩}. This is why we
go via “⟨l, r⟩ ̸∈ v̂(_)”. ⌟

▶ Remark 4.10. We say that a class C ⊆ GREL is ⊤-submodel-closed if, for all v ∈ C (on a
binary relation U on a set A) and all ⊤-closed non-empty subsets B ⊆ A, we have (v ↾ B) ∈ C.
By definition, if C is submodel-closed, thne C is ⊤-submodel-closed. Lemma 4.1, Theorem 4.3,
and Corollary 4.7 can be straight-forwardly generalized for ⊤-submodel-closed classes. ⌟

4.1 Undecidability via Hoare hypothesis elimination
Using Hoare hypothesis elimination w.r.t. RSUB (Corollary 4.7) (see also Remark 4.8), we
show the undecidability of the equational theory w.r.t. LANG. The proof can be obtained by
the same argument as [34, Lem. 47] by replacing REL with RSUB.

A context-free grammar (CFG) C over a finite set A is a tuple ⟨X,R, s⟩, where
X is a finite set of non-terminal labels s.t. A ∩X = ∅,
R is a finite set of rewriting rules x← w of x ∈ X and w ∈ (A ∪X)∗,
s ∈ X is the start label.

The relation x ⊢C w, where x ∈ X and w ∈ A∗, is defined as the minimal relation closed
under the following rule: for all n ∈ N, x, x1, . . . , xn ∈ X and w0, . . . , wn, v1, . . . , vn ∈ A∗, if
x← w0x1w1 . . . xnwn ∈ R, then

x1 ⊢C v1 . . . xn ⊢C vn
x ⊢C w0v1w1 . . . vnwn

. The language [C] is defined by

[C] =∆ {w ∈ A∗ | s ⊢C w}. It is well-known that the universality problem for CFGs – given a
CFG C, does [C] = A∗ hold? – is Π0

1-complete. We can naturally encode this problem by the
quantifier-free theory w.r.t. RSUB as follows.

▶ Lemma 4.11. Let C = ⟨X,R, s⟩ be a CFG over a finite set A = {a1, . . . , an}. Then,

[C] = A∗ ⇔ RSUB |= (
∧

(x←w)∈R

w ≤ x)→ ((
n∑
i=1

ai)∗ ≤ s).

Proof. By [34, Lem. 47] with replacing REL with RSUB, because the valuations used in the
proof are of the form of RSUB and the operators ⊤ and _− do not occur in the formula.
(See a full version [35] for an explicit proof.) ◀

▶ Theorem 4.12. The equational theory w.r.t. languages is Π0
1-complete for KA{x,∩}.

Proof. (in Π0
1): By Corollary 3.4. (Π0

1-hard): Let C = ⟨X, {xi ← wi | i ∈ [1,m]}, s⟩ be a
CFG over a finite set A = {a1, . . . , an}. Based on (

∧m
i=1 wi ≤ xi)↔ (

∑m
i=1 wi ∩ xi ≤ 0), by

applying the Hoare hypothesis elimination (Corollary 4.7) to Lemma 4.11, we have: [C] = A∗

iff RSUB |= (
∑n
i=1 ai)∗ ≤ s + ⊤(

∑m
i=1 wi ∩ xi)⊤. Thus, we can give a reduction from the

universality problem of CFGs. ◀
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Moreover, by the following fact, we can eliminate Kleene-star from Lemma 4.11.

▶ Proposition 4.13. RSUB |= 1 = x⊤ → x∗ = ⊤.

Proof. Let n ∈ N and v ∈ RSUBn. Let i ∈ [1, n] be arbitrary. By ⟨i−1, i−1⟩ ̸∈ v̂(1) = v̂(x⊤),
we have ⟨i − 1, i − 1⟩ ̸∈ v̂(x). By ⟨i − 1, i⟩ ∈ v̂(1) = v̂(x⊤), we have ⟨i − 1, i⟩ ∈ v̂(x) (by
⟨i− 1, i− 1⟩ ̸∈ v̂(x)). Thus, we have v̂(x∗) = {⟨i, j⟩ | 0 ≤ i ≤ j ≤ n} = v̂(⊤). ◀

▶ Lemma 4.14. Let C = ⟨X,R, s⟩ be a CFG over a finite set A = {a1, . . . , an}. Then,

[C] = A∗ ⇔ RSUB |= (1 = (
n∑
i=1

ai)⊤ ∧
∧

(x←w)∈R

w ≤ x)→ (⊤ ≤ s).

Proof Sketch. By the same argument as Lemma 4.11 with replacing (
∑n
i=1 ai)∗ with ⊤

using Proposition 4.13 (see [35], for a detail). ◀

Hence, the undecidability above still holds even without Kleene-star.

▶ Theorem 4.15. The equational theory w.r.t. languages is Π0
1-complete for KA{−} without

Kleene-star.

Proof. By the same way as Theorem 4.12 using Lemma 4.14 instead of with Lemma 4.11. ◀

▶ Remark 4.16. Theorem 4.15 is close to Trakhtenbrot’s theorem [52] in first-order logic. By
a similar Kleene-star elimination via an encoding of connectivity in finite models [15, p. 30],
we can also give a reduction from the universality problem of CFGs into the theory of the
finite validity problem of first-order logic (resp. the calculus of relations). (See [35], for a
detail.) ⌟

5 Graph characterization for KA{x,1,⊤,∩} terms

In Sections 5 and 6, we show that the equational theory w.r.t. languages for KA{x̄,1̄,⊤} is
decidable and PSPACE-complete. We recall Section 2 for graphs. In this section, we give a
graph characterization of the equational theory of RSUB for KA{x,1,⊤,∩}, by generalizing the
graph characterization of REL [34, Thm. 18] (and also [1, 6, 7]). Slightly more generally, we
show this characterization for submodel-closed classes (Section 4).

5.1 Graph languages for KA{x,1,⊤,∩}

Let Ṽ =∆ {x, x | x ∈ V} ∪ {1,⊤} and Ṽ1 =∆ Ṽ ∪ {1}. For a KA{x,1,⊤,∩} term t, the graph
language G(t) [1, 7, 34] is a set of graphs over Ṽ1 defined by:7

G(x) =∆ { x } where x ∈ Ṽ, G(0) =∆ ∅, G(1) =∆ { },
G(t ∩ s) =∆ { G

H
| G ∈ G(t) ∧H ∈ G(s)}, G(t+ s) =∆ G(t) ∪ G(s),

G(t ; s) =∆ { G H | G ∈ G(t) ∧H ∈ G(s)}, G(t∗) =∆
⋃
n≥0
G(tn).

For a valuation v ∈ GREL on a binary relation on a set B and ⟨x, y⟩ ∈ v̂(⊤), let G(v, x, y)
be the graph defined by: G(v, x, y) =∆ ⟨B, {v̂(a)}a∈Ṽ1

, x, y⟩. For a class C ⊆ GREL, let GRC

7 We introduce ⊤-labeled edges, cf. [34, Def. 6], because ⊤ is not fixed to the full relation.
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be the graph language {G(v, x, y) | v ∈ C and ⟨x, y⟩ ∈ v̂(⊤)}. Note that if C ⊆ GREL is
submodel-closed, then GRC is induced subgraph-closed (i.e., every induced subgraph of every
G ∈ G is isomorphic to a member of G).

We recall edge-saturations S(h) of Definition 2.1. For a graph G and graph language G,
let

SC(G) =∆ {S(h) | ∃H ∈ GRC , h : G −→ H}, SC(G) =∆
⋃
H∈G
SC(H).

▶ Example 5.1. The following is an instance of SRSUB(G) where V = {a}:

SRSUB( a a ) =


a, 1 a, 1

a a a

1

, a, 1 a, 1
a a a

1

,

a, 1
a, 1

a, 1
a a a

1

, a, 1 a, 1
a, 1

a a a

1


.

(Here, gray-colored edges are the edges extended by edge-saturations SRSUB. We omit
unimportant edges.)

For instance, the below right graph above can be obtained from the following map:

a a a, 1,⊤
a, 1,⊤ a, 1,⊤

.

Note that, for instance, SRSUB( a a ) does not contain graphs of the forms

a, 1
1

a, 1
1

1
nor a, 1 a, 1

1
because we cannot make a graph homo-

morphism into graphs of RSUB. ⌟

By the form of GRRSUB, each graph H ∈ SRSUB(_) satisfies the following:
⊤H is a total preorder (possibly not a total order);
aH ⊇ 1H or aH ⊇ 1H holds for each a ∈ V.

Let HQ =∆ H/(1H)= and GQ =∆ {HQ | H ∈ G} where R= denotes the equivalence closure
of R. We then have the following graph language characterization, which is an analog of [34,
Thm. 18], but is slightly generalized for including RSUB (see [35], for an explicit proof).

▶ Theorem 5.2. Let C ⊆ GREL be submodel-closed. For all KA{x,1,⊤,∩} terms t, s,

C |= t ≤ s ⇔ ∀H ∈ SC(G(t))Q,∃G ∈ G(s), G −→ H.

▶ Example 5.3. (We recall the inequations in Remark 3.5.) Here are examples to show
KA{x,1,⊤,∩} equations on RSUB using Theorem 5.2. (Gray-colored edges are the edges
extended by edge-saturations SRSUB. We omit unimportant edges.)

LANG |= a ≤ bab+ bab: This equation is shown by the following graph homomorphisms:
G(bab + bab) = { b a b , b a b }

SRSUB(G(a))Q ∋ H : a

b b

a

b b

(Case bH ⊇ 1H ) (Case bH ⊇ 1H )
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LANG |= ab ∩ cd ≤ a⊤d+ c⊤b: For each graph H ∈ SRSUB(G(ab ∩ cd))Q, we can give a
graph homomorphism from some graph in G(a⊤d+ c⊤b) as follows:

G(a⊤d + c⊤b) = { a ⊤ d , c ⊤ b }

SRSUB(G(ab ∩ cd))Q ∋ H :
x

y

a b

c d
⊤

x

y

a b

c d
⊤

(Case ⟨ x , y ⟩ ∈ ⊤H ) (Case ⟨ x , y ⟩ ∈ ⊤H )

Additionally, note that _Q is necessary in general, e.g., for ⊤ ≤ 1 + 1 [34, Remark 19]. ⌟

▶ Remark 5.4. Theorem 5.2 fails when C is not submodel-closed. E.g., if C consists of the one
valuation given by a

b b , t = a, and s = bb, then C |= t ≤ s holds but the right-hand
side does not hold. ⌟

5.2 Word languages for KA{x,1,⊤}

Particularly for KA{x,1,⊤}, Theorem 5.2 can be rephrased by word languages.
For a word w = a1 . . . an over Ṽ, let G(w) be the following graph where |G(w)| = [0, n]:

0 1 2 . . . na1 a2 an .

G(w) is the unique graph in G(w) up to graph isomorphisms.
For a KA{x,1,⊤} term t, we write [t]Ṽ for the word language [t] over Ṽ (namely, x, 1,

and ⊤ are also viewed as letters); e.g., [a]Ṽ = {a} and [a] = V∗ \ {a} for a ∈ V. Note that
G(t) = {G(w) | w ∈ [t]Ṽ}; thus, for KA{x,1,⊤} terms, graph languages are expressible by
using word languages.

Additionally, we introduce nondeterministic finite word automata with epsilon transitions
(NFAs). NFAs are (2-pointed) graphs over Ṽ1 where the source and target vertices denote
the initial and (single) accepting states, respectively, and 1-labeled edges denote epsilon
transitions. For a graph H and a word w = a1 . . . an, we write δHw for the binary relation
(1H)∗ ;aH1 ; (1H)∗ ; . . . ;aHn ; (1H)∗. For q ∈ |H|, we let δHw (q) =∆ {q′ | ⟨q, q′⟩ ∈ δHw }. For Q ⊆ |H|,
we let δHw (Q) =∆

⋃
q∈Q δ

H
w (q). The word language [H]Ṽ is defined as {w ∈ Ṽ∗ | ⟨1H , 2H⟩ ∈ δHw }.

Note that [H]Ṽ = {w ∈ Ṽ∗ | G(w) −→ HQ} if 1H is an equivalence relation. We then have
the following, which a rephrasing of Theorem 5.2 (see Section B for an explicit proof). This
shows that RSUB |= t ≤ s is equivalent to that every NFA obtained from a word w of t by
an edge-saturation w.r.t. RSUB has an intersection with [s]Ṽ.

▶ Corollary 5.5. Let C ⊆ GREL be submodel-closed. For all KA{x,1,⊤} terms t and s,

C |= t ≤ s ⇔ [t]Ṽ ⊆ {w ∈ Ṽ∗ | ∀H ∈ SC(G(w)), [s]Ṽ ∩ [H]Ṽ ̸= ∅}.

▶ Example 5.6. Here are examples to show KA{x,1,⊤} equations on RSUB using Corollary 5.5.
LANG |= a ≤ bab+bab (the first example in Example 5.3): For all NFAs H ∈ SRSUB(G(a)),

we have [bab+ bab]Ṽ ∩ [H]Ṽ ∋
{
bab (bH ⊇ 1H)
bab (bH ⊇ 1H)

by the following paths:

a

b b

| a

b b

(Case bH ⊇ 1H ) (Case bH ⊇ 1H )

LANG |= a ≤ 1 + aa [34, (3)]: For all NFAs H ∈ SRSUB(G(a)), we have [1 + aa]Ṽ ∩ [H]Ṽ ∋{
1 (1H = ∆|H|)
aa (1H = ⊤H)

by the following paths:
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a

1
| a

1

(Case 1H = ∆|H|) (Case 1H = ⊤H )

LANG |= 1aa1 ≤ 1aa1 [39]: For all NFAs H ∈ SRSUB(G(1aa1)), we have [1aa1]Ṽ ∩ [H]Ṽ ∋
1aa1 in either aH ⊇ 1H or aH ⊇ 1H by the following paths:

1 a a 1
1

a

| 1 a a 1
1 a

(Case aH ⊇ 1H ) (Case aH ⊇ 1H )

Next, we use the NFA characterization of Corollary 5.5 for an automata construction.

6 PSPACE decidability for KA{x,1,⊤} terms

In this section, based on the graph characterization (Section 5), we present an NFA construc-
tion for deciding the equational theory for KA{x,1,⊤} terms. Here, we will use NFAs (graphs
over Ṽ1) instead of KA{x̄,1̄,⊤} terms (regular expressions over the alphabet Ṽ). To be more
precise, relying on the graph characterization (Corollary 5.5), we consider the following:
given an NFA J (having the same language as the term s in Corollary 5.5), we construct an
NFA recognizing the following word language:

LJ =∆ {w ∈ Ṽ∗ | ∃H ∈ SRSUB(G(w)), [J ]Ṽ ∩ [H]Ṽ = ∅}.

Note that RSUB |= t ≤ s⇔ [t]Ṽ ∩ LJ = ∅ when [s]Ṽ = [J ]Ṽ. We first present an equivalent
notion of “w ∈ LJ” in Section 6.1, and then we give an NFA construction in Section 6.2. Our
approach in this section is based on [34] where we consider RSUB instead of REL.

6.1 Saturable paths for RSUB
We first give an equivalent notion of [J ]Ṽ ∩ [H]Ṽ = ∅ in the definition of LJ .

▶ Definition 6.1. Let J and H be NFAs. A map U : |H| → ℘(|J |) is an emptiness-witness
for [J ]Ṽ ∩ [H]Ṽ = ∅ if the following hold where Ux =∆ U(x):

1J ∈ U1H and ∀a ∈ Ṽ1,∀⟨x, y⟩ ∈ aH , δJa (Ux) ⊆ Uy,
2J ̸∈ U2H . ⌟

Intuitively, the first condition denotes that U is a cover of the reachable states from the pair
“1J ∈ U1H ”. If the second condition holds, we can see that the pair “2J ∈ U2H ” is unreachable.
As expected, we have the following (see Section C, for a proof).

▶ Proposition 6.2. Let J and H be NFAs where 1H is reflexive. Then, we have:

[J ]Ṽ∩[H]Ṽ = ∅ ⇔ ∃U : |H| → ℘(|J |), U is an emptiness-witness for [J ]Ṽ ∩ [H]Ṽ = ∅.

▶ Example 6.3. We consider the following NFAs J and H. The NFA J satisfies [J ]Ṽ = {w ∈
{a, a}∗ | ∃n ∈ N, a occurs 3n+ 2 times in w} and the NFA H is a graph in SRSUB(G(aaa)),
where ⊤- or 1-labeled edges are omitted, and gray-colored edges are the edges edge-saturated
from the graph G(aaa). From the form of H, one can see that [J ]Ṽ ∩ [H]Ṽ = ∅.

J = x

y

z

a

a
a

a

a

a

H = 0 1 2 3

a, 1 a, 1 a, 1 a, 1

a a a, 1
a, 1

a
a

a

U0 U1 U2 U3

.
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If U0 = U1 = { x } and U2 = U3 = { y }, then this U is an emptiness-witness; e.g., for
⟨1, 2⟩ ∈ aH , δJa (U1) = { y } ⊆ U2. By the witnesses, we have [J ]Ṽ ∩ [H]Ṽ = ∅. Besides this,
if U0 = U1 = { x } and U2 = U3 = { x , y }, then this U is also an emptiness-witness; so, U
may not coincide with the reachable states from the pair “1J ∈ U1H ”. ⌟

Next, we give an equivalent notion of “w ∈ LJ”, by forgetting saturated edges (gray-colored
edges in Example 6.3) using “U” of Proposition 6.2.

▶ Definition 6.4. Let J be a NFA and w be a word. A pair P = ⟨H,U⟩ is a saturable path
for w ∈ LJ if the following hold:
(P-Ext) H is an edge-extension8 of G(w) such that

⊤H is a total preorder and ⊤H ⊇ {⟨i− 1, i⟩ | i ∈ [1, n]} where w = a1 . . . an,
1H = ⊤H ∩ {⟨j, i⟩ | ⟨i, j⟩ ∈ ⊤H} and 1H = ⊤H \ 1H ,
∀a ∈ V, ⟨aH , aH⟩ is either ⟨aG(w) ∪ 1H , aG(w)⟩ or ⟨aG(w), aG(w) ∪ 1H⟩.

(P-Con) H is consistent: ∀a ∈ V, aHQ ∩ aH
Q = ∅.

(P-Wit) U : |H| → ℘(|J |) is an emptiness-witness for [J ]Ṽ ∩ [H]Ṽ = ∅.
(P-Sat) H is saturable: ∀a ∈ V,∀⟨i, j⟩ ∈ 1H , δJa (Ui) ⊆ Uj or δJa (Ui) ⊆ Uj. ⌟

Then, as expected, the existence of saturable path can characterize “w ∈ LJ”.

▶ Lemma 6.5 (Section D). Let J be a NFA and w be a word. Then,

w ∈ LJ ⇔ there is a saturable path for w ∈ LJ .

▶ Example 6.6. We recall the NFAs J and H ∈ SRSUB(G(aaa)) in Example 6.3. The
following P is a saturable path for aaa ∈ LJ where ⊤- or 1-labeled edges are omitted:

P =

 0 1 2 3

a, 1 a, 1 a, 1 a, 1

a a a, 1
a, 1{

x
} {

x
} {

x , y
} {

x , y
}

.

(P is of the form of a path graph by taking the quotient graph w.r.t. 1-labeled edges.) P is an
abstraction of edge-saturated graphs. From P , we can construct a graph H ∈ SRSUB(G(aaa))
s.t. [J ]Ṽ ∩ [H]Ṽ = ∅. Because both δJa ({ x }) ⊆ { x , y } and δJa ({ x }) ⊆ { x , y } hold,
in addition to the graph H in Example 6.3, for instance, the following are also possible
edge-saturated graphs:

0 1 2 3

a, 1 a, 1 a, 1 a, 1

a a a, 1
a, 1

a
a

a
0 1 2 3

a, 1 a, 1 a, 1 a, 1

a a a, 1
a, 1

a
a

a

. ⌟

By using saturable paths, we can replace the existence of such gray-colored edges connecting
distant vertices with a “locally” defined witness U . This rephrasing will be useful for our
automata construction.

To give an NFA construction, let

φJ(U , U) =∆ ∀a ∈ V,∀⟨u, u′⟩ ∈ U , δJa (u) ⊆ U ∨ δJa (u′) ⊆ U

and we also replace (P-Sat) with a “local” condition.

8 In this definition, ⊤H -, 1H -, and 1H -edges are edge-saturated and a- and a-edges in 1H (for a ∈ V) are
also edge-saturated. This is for preserving (P-Con) easily.
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▶ Proposition 6.7. Let J and H be graphs. Let i ∈ |H|. Then we have:

(∀a ∈ V,∀j s.t. ⟨j, i⟩ ∈ 1H , δJa (Uj) ⊆ Ui ∨ δJa (Uj) ⊆ Ui) ⇔ φJ(
⋃

j;⟨j,i⟩∈1H

U2
j , Ui).

Proof. For each i, j, we have: (∀a ∈ V, δJa (Uj) ⊆ Ui ∨ δJa (Uj) ⊆ Ui) iff (∀a ∈ V, (∀u ∈
Uj , δ

J
a (u) ⊆ Ui)∨ (∀u′ ∈ Uj , δJa (u′) ⊆ Ui)) iff φJ (U2

j , Ui) (by taking the prenex normal form).
By (∀j s.t. ⟨j, i⟩ ∈ 1H , φJ(U2

j , Ui)) iff φJ(
⋃
j;⟨j,i⟩∈1H U2

j , Ui), this completes the proof. ◀

6.2 Automata from saturable paths
Let X =∆ {X ∈ ℘(Ṽ1) | 1,⊤ ∈ X, 1 ̸∈ X, and ∀x ∈ V, x ∈ X ↔ x ̸∈ X}. (This set is
equivalent to the set {{x ∈ Ṽ1 | 1H ⊆ xH} | H ∈ GRRSUB}.)

▶ Definition 6.8 (NFA construction). Let ▶ and ◀ be two fresh symbols. For a graph J and
a set X ∈ X , let JSX be the graph G defined as follows:
|G| =∆ {▶,◀}∪Q where Q =∆ {⟨U , U⟩ ∈ ℘(|J |2)×℘(|J |) | φJ (U , U)∧∀x ∈ X, δJx (U) ⊆ U},
1G =∆ ({▶} × {⟨U , U⟩ ∈ Q | 1J ∈ U ∧ U = ∅}) ∪ ({⟨U , U⟩ ∈ Q | 2J ̸∈ U} × {◀}),
xG =∆ {⟨⟨U , U⟩, ⟨U ′, U ′⟩⟩ ∈ Q2 | ψX

x,1(U , U,U ′, U ′) ∨ ψXx,1(U , U,U ′, U ′)} for x ∈ Ṽ,
1G =∆ ▶,
2G =∆ ◀.

Here, ψX
x,1(U , U,U ′, U ′) and ψXx,1(U , U,U ′, U ′) are defined as follows:

ψX
x,1(U , U,U ′, U ′) ⇔∆

U ′ = U ∪ U2 ∧
∧ 

δJx (U) ⊆ U ′,
δJ⊤({u | ⟨u, u⟩ ∈ U ′}) ⊆ U ′,
δJ1 ({u | ⟨u, u⟩ ∈ U ′}) ⊆ U ′


,

ψXx,1(U , U,U ′, U ′) ⇔∆ (U ′ = U ∧ U ′ = U ∧ x ∈ X). ⌟

By the form of JSX , if a1 . . . an ∈ [JSX ]Ṽ, then its run is of the following form:

▶ ⟨U0, U0⟩ ⟨U1, U1⟩ ⟨U2, U2⟩ ⟨Un, Un⟩ ◀1 a1 a2 . . . an 1 .

Intuitively, this run corresponds to the following saturable path where some ⊤-, 1-, or
1-labeled edges are omitted and

X
denotes x-labeled edges for x ∈ X:{

1 (if ¬ψX

ai,1
(Ui−1, Ui−1,Ui, Ui))

1 (otherwise)X X X X X X

a1 a2 . . . ai . . . an

U0 U1 U2 Ui−1 Ui Un

.

Here, Ui is used to denote the set
⋃
j;⟨j,i⟩∈1H U2

j (cf. Proposition 6.7) where H is the graph

of the saturable path above. Additionally, we have ψX
ai,1

(Ui−1, Ui−1,Ui, Ui) if ⟨i− 1, i⟩ ∈ 1H

and we have ψXai,1(Ui−1, Ui−1,Ui, Ui) if ⟨i − 1, i⟩ ∈ 1H by construction. Based on this
correspondence, from a word w ∈

⋃
X∈X [JSX ]Ṽ, we can construct a saturable path for

w ∈ LJ , and conversely, from a saturable path for w ∈ LJ , we can show w ∈
⋃
X∈X [JSX ]Ṽ

(see Section E, for details). Thus we have the following.

▶ Lemma 6.9 (Section E). Let J be a graph. Then we have LJ =
⋃
X∈X [JSX ]Ṽ.

▶ Theorem 6.10. The equational theory w.r.t. languages for KA{x,1,⊤} is PSPACE-complete.

CSL 2025
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Table 1 Summary of our complexity results for equational theories w.r.t. languages, with
comparison to other semantics.

KA KA{x} KA{1} KA{x,1} KA{∩}

LANG PSPACE-c [25] PSPACE-c (Theorem 6.10) EXPSPACE-c [4]
RSUB
{vst} PSPACE-c [31] EXPSPACE-c [18]
REL PSPACE-c [25] PSPACE-c [34] in coNEXP [34] EXPSPACE-c [6, 7, 32, 37]

KA{1,∩} KA{x,∩} KA{x,1,∩} KA{−}

LANG Π0
1-c (Theorem 4.12 and Corollary 3.4)

RSUB
(open)

{vst} EXPSPACE-c [18] TOWER-c [49, 47]
REL Π0

1-c [36] Π0
1-c [34] Π1

1-c [20] (Corollary 4.5)

Proof. (in PSPACE): Let t and s be KA{x,1,⊤} terms. Let G and J be NFAs s.t. [G]Ṽ = [t]Ṽ
and [J ]Ṽ = [s]Ṽ. By Corollary 5.5 and Lemma 6.9, we have: RSUB |= t ≤ s⇔ [G]Ṽ ∩ LJ =
∅ ⇔ [G]Ṽ∩(

⋃
X∈X [JSX ]Ṽ) = ∅. Thus we can reduce the equational theory into the emptiness

problem of NFAs of size exponential to the size of the input inequation, where we use the
union construction for ∪ and the product construction for ∩ in NFAs. In this reduction,
using a standard on-the-fly algorithm for the non-emptiness problem of NFAs (essentially the
graph reachability problem), we can give a non-deterministic polynomial space algorithm.
(Note that the membership of “a ∈ |JSX |” and “⟨a, b⟩ ∈ xJSX ” for each x ∈ Ṽ1 can be easily
determined in polynomial space; so, we can construct such an on-the-fly algorithm indeed.)
(Hardness): The equational theory of KA w.r.t. languages coincides with the language
equivalence problem of regular expressions (Remark 2.3), which is PSPACE-complete [31].
Hence, the equational theory of KA{x,1,⊤} is PSPACE-hard. ◀

▶ Remark 6.11. W.r.t. REL, it is open the complexity of the equational theory for KA{x,1,⊤}
[34, Remark 45]. W.r.t. RSUB, each equivalence class induced from 1-labeled edges is always
an interval; so, the problematic case of [34, Remark 45] (w.r.t. REL) does not appear in
Theorem 6.10 (w.r.t. RSUB). ⌟

7 Conclusion and Future directions

We have introduced RSUB for the equational theory w.r.t. languages for KA{−} terms. Using
RSUB, we have shown some complexity results for the equational theory w.r.t. languages
for fragments of KA{−} terms (Table 1). We leave open the decidability and complexity
of the equational theory w.r.t. languages for KA{1,∩} (cf. Remark 6.11). A natural interest
is to consider variants or fragments of KA{−}, e.g., with reverse [3], with tests [29] (by
considering guarded strings) or with (anti-)domain [13]. It would also be interesting to
consider the combination of variables and letters (cf. Theorems 3.2 and 3.6) in the context of
language/string constraints.

Additionally, to separate the expressive power w.r.t. languages, it would also be interesting
to consider games like Ehrenfeucht-Fraïssé games [16, 17] on RSUB, cf., e.g., on REL for the
calculus of relations [33] and on languages for star-free expressions [51].
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A Slight Extensions of Theorem 3.2

In this section, we note that we can extend Theorem 3.2 in the following two:

▶ Theorem A.1. For all positive quantifier-free formulas φ of KA{−} terms, we have:
LANG |= φ⇒ RSUB |= φ.

Proof Sketch. By the same surjective S-homomorphism in the proof of Theorem 3.2(⇒). ◀

▶ Theorem A.2. For all quantifier-free formulas φ of KA{−} terms, we have: RSUB |= φ⇒
LANG |= φ.

Proof. Because the formulas t = s ↔ (t ≤ s ∧ s ≤ t) and t ≤ s ↔ t ∩ s− ≤ 0 are valid
on LANG ∪ SUB, without loss of generality, we can assume that each equation in φ is of
the form u ≤ 0. By taking the conjunctive normal form, it suffices to prove when φ is of
the form (

∨n
i=1 ti ≤ 0) ∨ (

∨m
j=1 ¬sj ≤ 0). We prove the contraposition. By LANG ̸|= φ,

there are X, v ∈ LANGX , w1, . . . , wn ∈ X∗ such that wi ∈ v̂(ti) for i ∈ [1, n] and v̂(sj) = ∅
for j ∈ [1,m]. By letting w0 =∆ w1 . . . wn and considering the same S-homomorphism as
Theorem 3.2(⇐), we have RSUB ̸|= φ. ◀

For Theorem A.2, note that the converse direction fails (Remark 3.3), cf. Theorem A.1.

B Proof of Corollary 5.5

Proof. We have:

C |= t ≤ s ⇔ ∀w ∈ [t]Ṽ,∀H ∈ SC(G(w)),∃v ∈ [s]Ṽ,G(v) −→ HQ

(Theorem 5.2 and G(s) = {G(v) | v ∈ [s]Ṽ})
⇔ ∀w ∈ [t]Ṽ,∀H ∈ SC(G(w)), [s]Ṽ ∩ [H]Ṽ ̸= ∅ ([H]Ṽ = {v ∈ Ṽ∗ | G(v) −→ HQ})
⇔ [t]Ṽ ⊆ {w ∈ Ṽ∗ | ∀H ∈ SC(G(w)), [s]Ṽ ∩ [H]Ṽ ̸= ∅}. ◀
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C Proof of Proposition 6.2

Let R′ ⊆ |H| × |J | be the minimal set such that
⟨1H , 1J⟩ ∈ R′,
∀a ∈ Ṽ1,∀x, x′ ∈ |H|,∀y, y′ ∈ |J |, (⟨x, y⟩ ∈ R′ ∧ ⟨x, x′⟩ ∈ δHa ∧ ⟨y, y′⟩ ∈ δJa ) ⇒ ⟨x′, y′⟩ ∈
R′.

▷ Claim C.1. [J ]Ṽ ∩ [H]Ṽ ̸= ∅ ⇔ ⟨2H , 2J⟩ ∈ R′.

Proof. By definition, R′ coincides with the set of all reachable states of the product NFA of
H and J . ◁

Let R ⊆ |H| × |J | be the minimal set such that
⟨1H , 1J⟩ ∈ R,
∀a ∈ Ṽ1,∀x, x′ ∈ |H|,∀y, y′ ∈ |J |, (⟨x, y⟩ ∈ R∧⟨x, x′⟩ ∈ aH ∧⟨y, y′⟩ ∈ δJa )⇒ ⟨x′, y′⟩ ∈ R.

▷ Claim C.2. R = R′.

Proof. (⊆): Clear, by aH ⊆ δHa . (⊇): By induction on derivations of R′.
Case ⟨1H , 1J⟩ ∈ R′: Trivial, by ⟨1H , 1J⟩ ∈ R.
Case (⟨x, y⟩ ∈ R′ ∧ ⟨x, x′⟩ ∈ δHa ∧ ⟨y, y′⟩ ∈ δJa )⇒ ⟨x′, y′⟩ ∈ R′: By IH, ⟨x, y⟩ ∈ R.

Sub-Case a ̸= 1: Let x0, . . . , xn−1, xn, . . . , xm be s.t. ⟨x, x′⟩ = ⟨x0, xm⟩ and
∗ for all i ∈ [1, n− 1], ⟨xi−1, xi⟩ ∈ 1H ,
∗ ⟨xn−1, xn⟩ ∈ aH ,
∗ for all i ∈ [n+ 1,m], ⟨xi−1, xi⟩ ∈ 1H .
Let y0 = · · · = yn−1 = y and yn = · · · = ym = y′. Then by applying the second rule
multiply, we have ⟨x′, y′⟩ ∈ R.
Sub-Case a = 1: By reflexivity of 1H , ⟨x, x′⟩ ∈ (1H)+. Let x0, . . . , xm (m > 0) be s.t.
⟨x, x′⟩ = ⟨x0, xm⟩ and
∗ for all i ∈ [1,m], ⟨xi−1, xi⟩ ∈ 1H .
Let y0 = y and y1 = · · · = ym = y′. Then by applying the second rule multiply, we
have ⟨x′, y′⟩ ∈ R. ◁

Proof of Proposition 6.2. (⇒): By letting U as the map defined by U(x) =∆ {y | ⟨x, y⟩ ∈ R}.
Here, 2J ̸∈ U2H is shown by [J ]Ṽ ∩ [H]Ṽ = ∅ with Claim C.1 and C.2. (⇐): Let R′′ =∆

{⟨x, y⟩ | y ∈ U(x)}. By the minimality of R, we have R ⊆ R′′. By ⟨2H , 2J⟩ ̸∈ R′′, we have
⟨2H , 2J⟩ ̸∈ R. Hence by Claim C.1 and Claim C.2, we have [J ]Ṽ ∩ [H]Ṽ = ∅. ◀

D Proof of Lemma 6.5

Proof. (⇒): By Proposition 6.2, let H ′ ∈ SRSUB(G(w)) and let U be an emptiness-witness
for [J ]Ṽ ∩ [H ′]Ṽ = ∅. We define the graph H as follows:
|H| = |H ′|,
aH = aH

′ for a ∈ {⊤, 1, 1},
aH = aG(w) ∪ (aH′ ∩ 1H′) for a ∈ Ṽ1 \ {⊤, 1, 1}.

We then have that the pair P =∆ ⟨H,U⟩ is a saturable path for w ∈ LJ , as follows:
(P-Ext): By that H ′ is an edge-saturation w.r.t. RSUB.
(P-Con): Because H ′ is consistent by H ′ ∈ SRSUB(G(w)).
(P-Wit): Because U is an emptiness-witness for [J ]Ṽ ∩ [H ′]Ṽ = ∅.
(P-Sat): Because aH′ ∪ aH

′ = ⊤H′ and U is an emptiness-witness for [J ]Ṽ ∩ [H ′]Ṽ = ∅.

(⇐): Let P = ⟨H,U⟩ be a saturable path for w ∈ LJ . By (P-Ext), 1H is an equivalence
relation. We define the graph H ′ as follows:
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|H ′| = |H|,
aH

′ = aH for a ∈ {⊤, 1, 1},
for a ∈ V and ⟨x, y⟩ ∈ ⊤H ,

if ⟨[x]1H , [y]1H ⟩ ∈ aHQ , then ⟨x, y⟩ ∈ aH′ \ aH
′ ,

else if ⟨[x]1H , [y]1H ⟩ ∈ aH
Q , then ⟨x, y⟩ ∈ aH′

\ aH′ ,
else if Uy ⊆ δJa (Ux), then ⟨x, y⟩ ∈ aH′ \ aH

′ ,
else ⟨x, y⟩ ∈ aH′

\ aH′ .
By the construction of H ′, we have the following:

H ′ is an edge-extension of H: By (P-Con), if ⟨[x]1H , [y]1H ⟩ ∈ aH
Q , then ⟨[x]1H , [y]1H ⟩ ̸∈

aH
Q .

H ′ is consistent: If [x]1H = [y]1H then Ux = Uy, because Ux ⊆ δJ1 (Ux) ⊆ Uy ⊆ δJ1 (Uy) ⊆
Ux by (P-Wit); thus, if [x]1H = [x′]1H and [y]1H = [y′]1H , then ⟨x, y⟩ ∈ aH′ iff ⟨x′, y′⟩ ∈
aH

′ .
for a ∈ V, aH′ = ⊤H′ \ aH′ : Because aH′ ∪ aH

′ = ⊤H′ and H ′ is consistent.
From them and (P-Ext), we have H ′ ∈ SRSUB(G(w)). Also, U is an emptiness-witness for
[J ]Ṽ ∩ [H ′]Ṽ = ∅ as follows. For edges already in H, it is shown by (P-Wit). For extended
edges from H, it is shown by the construction of H ′ (for the last case of the four cases above,
by Uy ̸⊆ δJa (Ux) and (P-Sat), we have Uy ⊆ δJa (Ux)). Hence, this completes the proof. ◀

E Proof of Lemma 6.9

Proof. (⊆): Let w = a1 . . . an ∈ LJ . Let P = ⟨H,U⟩ be a saturable path for w ∈ LJ . Let
X =∆ {a ∈ Ṽ1 | aH ⊇ 1H} (note that X ∈ X ). For each i, let Ui =∆

⋃
j;⟨j,i⟩∈1H U2

j . Then we
have:

φJ(Ui, Ui): By (P-Sat) and Proposition 6.7.
∀a ∈ X, δJa (Ui) ⊆ Ui: By aH ⊇ 1H ⊇ ∆|H| and (P-Wit).

Thus ⟨Ui, Ui⟩ ∈ |JSX |. We consider the following run of the NFA JSX on w:

▶ ⟨U0, U0⟩ ⟨U1, U1⟩ ⟨U2, U2⟩ ⟨Un, Un⟩ ◀1 a1 a2 . . . an 1 .

This is indeed a run of the NFA JSX as follows:
⟨▶, ⟨U0, U0⟩⟩ ∈ 1JSX : By 1J ∈ U0 (P-Wit) and U0 = ∅.
⟨⟨Un, Un⟩,◀⟩ ∈ 1JSX : By 2J ̸∈ Un (P-Wit).
∀i ∈ [1, n], ⟨⟨Ui−1, Ui−1⟩, ⟨Ui, Ui⟩⟩ ∈ aJ

SX

i : We distinguish the following cases:
Case ⟨i− 1, i⟩ ∈ 1H :
∗ Ui = Ui−1: By ⟨j, i⟩ ∈ 1H iff ⟨j, i− 1⟩ ∈ 1H , for all j.
∗ Ui = Ui−1: By (P-Wit), we have Ui−1 ⊆ δJ1 (Ui−1) ⊆ Ui ⊆ δJ1 (Ui) ⊆ Ui−1.
∗ ai ∈ X (aHi ⊇ 1H): By aHi ∩ 1H ̸= ∅ and (P-Ext), we have aHi = a

G(w)
i ∪ 1H (if not,

this contradicts to (P-Con)).
Thus by ψXai,1(Ui−1, Ui−1,Ui, Ui), we have ⟨⟨Ui−1, Ui−1⟩, ⟨Ui, Ui⟩⟩ ∈ aJ

SX

i .
Case ⟨i− 1, i⟩ ∈ 1H :
∗ Ui = Ui−1 ∪ U2

i−1: By ⟨j, i⟩ ∈ 1H iff j < i iff ⟨j, i− 1⟩ ∈ 1H ∨ ⟨j, i− 1⟩ ∈ 1H , for all
j. (Intuitively, Ui−1 corresponds to the case ⟨j, i− 1⟩ ∈ 1H and U2

i−1 corresponds
to the case ⟨j, i− 1⟩ ∈ 1H .)

∗ δJai
(Ui−1) ⊆ Ui: By (P-Wit).

∗ δJ⊤({u | ⟨u, u⟩ ∈ Ui}) ⊆ Ui: We have δJ⊤({u | ⟨u, u⟩ ∈ Ui}) = δJ⊤(
⋃
j;⟨j,i⟩∈1H Uj) =⋃

j<i δ
J
⊤(Uj) ⊆ Ui by (P-Wit).
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∗ δJ1 ({u | ⟨u, u⟩ ∈ Ui}) ⊆ Ui: We have δJ1 ({u | ⟨u, u⟩ ∈ Ui}) = δJ1 (
⋃
j;⟨j,i⟩∈1H Uj) =⋃

j<i δ
J
1 (Uj) ⊆ Ui by (P-Wit).

Thus by ψX
ai,1

(Ui−1, Ui−1,Ui, Ui), we have ⟨⟨Ui−1, Ui−1⟩, ⟨Ui, Ui⟩⟩ ∈ aJ
SX

i .
Hence, w ∈ [JSX ].

(⊇): Let X ⊆ X and w = a1 . . . an ∈ [JSX ]Ṽ. Let the run of JSX on w be as follows:

▶ ⟨U0, U0⟩ ⟨U1, U1⟩ ⟨U2, U2⟩ ⟨Un, Un⟩ ◀1 a1 a2 . . . an 1 .

Let H be the edge-extension of G(w) defined as follows:
⊤H = {⟨x, y⟩ ∈ [0, n]2 | ∀i ∈ [y + 1, x], ¬ψX

ai,1
(Ui−1, Ui−1,Ui, Ui)},

1H = ⊤H ∩ {⟨x, y⟩ | ⟨y, x⟩ ∈ ⊤H} and 1H = ⊤H \ 1H ,
∀a ∈ V ∩X, ⟨aH , aH⟩ = ⟨aG(w) ∪ 1H , aG(w)⟩.

Note that by definition of ⊤H , we have
⊤H ⊇ {⟨x, y⟩ | x ≤ y},
⊤H is transitive (by case analysis).

Hence, ⊤H is a total preorder and each equivalence class w.r.t. 1H is an interval [l, r].
Let P =∆ ⟨H,U⟩ where U is defined as i 7→ Ui for i ∈ [0, n]. The following depicts P .

X X X X X X

a1 a2 . . . ai . . . an

{
1 (if ¬ψX

ai,1
(Ui−1, Ui−1,Ui, Ui))

1 (otherwise)

U0 U1 U2 Ui−1 Ui Un

.

Then P is a saturable path for w ∈ LJ as follows:
(P-Ext): By the definition of H.
(P-Con): Assume that aHQ∩aH

Q ≠ ∅. Let x, x′, y, y′ be s.t. [x]1H = [x′]1H , [y]1H = [y′]1H ,
⟨x, y⟩ ∈ aH , and ⟨x′, y′⟩ ∈ aH . WLOG, we can assume that a ∈ X and a ̸∈ X. Then, we
have the following:
⟨x′, y′⟩ ∈ aG(w) (so, x′ = y′ − 1 and ay′ = a): By aH = aG(w) (since a ̸∈ X).
⟨x, y⟩ ∈ aG(w) (so, x = y − 1 and ay = a): If not, then by aH = aG(w) ∪ 1H ,
we have [x]1H = [y]1H . Thus, ⟨y′, y′ − 1⟩ ∈ 1H(⊆ ⊤H). By the definition of
⊤H , we have ¬ψX

ay′ ,1
(Uy′−1, Uy′−1,Uy′ , Uy′). By the definition of aJSX , we have

ψXay′ ,1(Uy′−1, Uy′−1,Uy′ , Uy′), so a ∈ X. This contradicts a ̸∈ X.
([x, x′] ∪ [x′, x]) ∩ ([y, y′] ∪ [y′, y]) = ∅ (so, x = x′ and y = y′): If not, then because the
interval between x and x′ and that between y and y′ have an intersection, we have
[x]1H = [y]1H . Then, in the same manner as above, we have a ∈ X. This contradicts
a ̸∈ X.

Thus, we reach a contradiction, because a = ay = ay′ = a (by y = y′). Hence,
aH

Q ∩ aH
Q = ∅.

(P-Sat): By the form of JSX , we have Ux =
{
Ux−1 (⟨x− 1, x⟩ ∈ 1H)
Ux−1 ∪ U2

x−1 (⟨x− 1, x⟩ ∈ 1H)
. Thus,

Uy =
⋃
x;⟨x,y⟩∈1H U2

x (⋆). By Proposition 6.7, this completes the proof.
(P-Wit): For 1J ∈ U0 and 2J ̸∈ Un, they are shown by the form of JSX . For ∀a ∈
Ṽ1,∀⟨x, y⟩ ∈ aH , δJa (Ux) ⊆ Uy, we distinguish the following cases:

Case a = 1: Then we have
∗ Ux = Uy: By ⟨x, y⟩ ∈ 1H and the form of JSX , we have the following: ∀z ∈

[y + 1, x], ψXaz,1(Uz−1, Uz−1,Uz, Uz). Thus, Uy = Uy+1 = · · · = Ux.
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∗ δJ1 (Ux) ⊆ Ux: By ⟨Ux, Ux⟩ ∈ |JSX |.
Hence, δJ1 (Ux) ⊆ Uy.
Case a = 1: Let z ∈ [x + 1, y] be such that ψX

az,1
(Uz−1, Uz−1,Uz, Uz) and ∀z′ ∈

[z + 1, y],¬ψX
az′ ,1

(Uz′−1, Uz′−1,Uz′ , Uz′). Then we have

δJ1 (Ux) ⊆ δJ1 ({u | ⟨u, u⟩ ∈ Uz}) (by (⋆) and ⟨x, z⟩ ∈ 1H (by ⟨z − 1, z⟩ ∈ 1H))
⊆ Uz (by ψX

az,1
(Uz−1, Uz−1,Uz, Uz))

⊆ Uz+1 = · · · = Uy. (by the form of JSX , ψXaz′ ,1(Uz′−1, Uz′−1,Uz′ , Uz′))

Case a = ⊤: We distinguish the following two sub-cases:
∗ Case ⟨x, y⟩ ∈ 1H : By the similar argument as Case a = 1.
∗ Case ⟨x, y⟩ ∈ 1H : By the similar argument as Case a = 1, we have Ux = Uy and
δJ⊤(Ux) ⊆ Ux, and thus δJ⊤(Ux) ⊆ Uy.

Case a ∈ {a, a | a ∈ V}: We distinguish the following sub-cases:
∗ Case ⟨x, y⟩ ∈ 1H : By ⟨x, y⟩ ∈ aH ∩ 1H = aG(w), we have x = y − 1 and ay = a.

Thus by ψX
ay,1

(Uy−1, Uy−1,Uy, Uy), we have δJa (Ux) ⊆ Uy.
∗ Case a ̸∈ X: By aH = aG(w), we have x = y − 1 and ay = a. By the form of JSX

with ¬ψXay,1(Uy−1, Uy−1,Uy, Uy) (since ay ̸∈ X), we have ψX
ay,1

(Uy−1, Uy−1,Uy, Uy).
Hence, δJa (Ux) ⊆ Uy.

∗ Case ⟨x, y⟩ ∈ 1H and a ∈ X: By the similar argument as Case a = 1, we have
Ux = Uy (by ⟨x, y⟩ ∈ 1H) and δJa (Ux) ⊆ Ux (by a ∈ X). Thus, δJa (Ux) ⊆ Uy. ◀
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