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Abstract
Graphical languages are powerful and useful to represent, rewrite and simplify different kinds of
processes. In particular, they have been widely used for quantum processes, improving the state of
the art for compilation, simulation and verification. In this work, we focus on one of the main carrier
of quantum information and computation: linear optical circuits. We introduce the LOfi-calculus,
the first graphical language to reason on the infinite-dimensional photonic space with circuits only
composed of the four core elements of linear optics: the phase shifter, the beam splitter, and auxiliary
sources and detectors with bounded photon number. First, we study the subfragment of circuits
composed of phase shifters and beam splitters, for which we provide the first minimal equational
theory. Next, we introduce a rewriting procedure on those LOfi-circuits that converge to normal
forms. We prove those forms to be unique, establishing both a novel and unique representation of
linear optical processes. Finally, we complement the language with an equational theory that we
prove to be complete: two LOfi-circuits represent the same quantum process if and only if one can
be transformed into the other with the rules of the LOfi-calculus.
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1 Introduction

Quantum computing is a paradigm for processing information [41, 45] that performs computa-
tion with quantum states, instead of the classical states of bits. This computational paradigm
allows specific computational problems to be solved with quadratic [24] or even exponential
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speedup [50, 26] compared to their classical counterparts. To encode that quantum data,
many technologies have been pursued, such as superconducting circuits [32], trapped ions [8]
and cold atoms [23].

One of the prominent candidates for quantum computation is linear optics [36, 42, 47],
where the logical information is encoded into the quantum states of photons, the particles
of light. For quantum computation, the logical states are encoded onto the modes of the
photons, i.e. their degrees of freedom like their positions in the circuit, and the desired logical
operations are performed with optical components. All scalable quantum computations with
linear optics [34, 53, 40, 7, 6, 17] encoding with the positions of the photons use predominantly
these following elements.

Sources: they generate the quantum state, i.e. a vector in a Hilbert space,
Phase shifters: they change the quantum state by adding a phase to the light passing
through them1,
Beam splitters: they alter the quantum state by causing photons on two different paths
to interfere with each other2,
Detectors: they project the quantum state on a subspace.

As ubiquitous as the circuits made of those components are in linear optical quantum
computation schemes, as illustrated in Figure 1 and 2, many unanswered questions persist
regarding optimality, minimality and an efficient use of those components. We wish to have
a framework finding the most appropriate implementation for the desired computation or
protocol. The purpose of this work is therefore to propose a formal framework to model and
manipulate generic circuits composed of the four previous elements.

State of the art. Some main formal frameworks to study, develop or optimize quantum
processes are graphical languages [2, 49, 3, 43], representing processes with diagrams and
equations between those diagrams. These formalisms have been shown to be very useful
for addressing quantum processes in general, such as ZX-diagrams [13] with applications in
compilation [29, 5, 51], simulation [31, 30, 35] and verification [19, 21]. To completely capture
the processes those diagrams model, [28, 25] have introduced a complete set of equations:
two equivalent ZX-diagrams can always be transformed from one to the other with those
equations.

Recently, some works have modeled optical processes with diagrams [4, 12, 39], including
notably LOv [10], a complete graphical language for linear optical circuits with vacuum
sources and detectors, and QPath [15], a graphical language to compute amplitudes. Re-
markably, both have also led to results beyond the optical realm, as a subfragment of the first
led to derive the first complete equational theory for quantum circuits [11], while the second
introduced a functor from the ZX-calculus [15] and led to a more generic language [16].

However, those two frameworks don’t completely capture linear optical circuits with
sources and detection schemes. In particular, LOv lacks a many-photon semantics and can
only cover the single-photon case, while QPath uses sums of diagrams in the rewriting
process along with generators that are not linear optical components. For instance, we would
like to be able to model the photonic implementation of the CZ gate [34, 33], a prominent
logical quantum gate, and rewrite it to equivalent forms, as illustrated in Figure 1.

1 They are typically implemented using thermo-optic components, where the refractive index of the
waveguide is changed by heating the material.

2 In integrated circuits, beam splitters are implemented using waveguides that split and combine light
paths.
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Figure 1 Optical circuits implementing the CZ two-qubit logic gate with auxiliary sources and
detectors. On the left is the original circuit3 of [33]. There are two auxiliary photon generated on
the bottom left: if exactly one photon is detected for each of the two last wires on the bottom right,
then we know we have performed the operation |11⟩ 7→ − |11⟩ on the two first wires. This event has
a probability 2

27 to occur. On the right is an equivalent representation in the LOfi-calculus, where
f and g are two-photon states and linear forms.
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Figure 2 Linear optical circuit generating with a 1
9 probability the Bell state

∣∣Φ+〉
= |1010⟩ +

|0101⟩, with the use of auxiliary sources and detectors. On the left is the original3 circuit of [20], on
the right is an equivalent and modular description. Both are equivalent circuits in the LOfi-calculus.

Challenges. In seeking to develop a graphical language for modeling linear optical circuits
with a many-photon semantics, there are two main challenges. First, the bosonic Fock space,
representing all the states that photons can be in, is an infinite-dimensional Hilbert space: the
bosonic Fock space. In particular, some properties and generators of graphical languages with
finite-dimensional theories [44, 52, 18] cannot be used. Second, the interaction of photons,
even without bringing auxiliary modes and detections into the picture, is described by the
permanents of matrices [48, 1], making cumbersome explicit expression and manipulation of
all the involved terms.

Contributions. In this paper, we propose such a framework, and introduce the LOfi-
calculus, the first graphical language defined on the bosonic Fock space, with circuits
composed of four core elements of linear optics: the phase shifter, the beam splitter, and
auxiliary finite-photon-number sources and detectors. Our main contributions are the
following.

A complete equational theory for circuits with phase shifters and beam splitters which is
simpler than the one in [10], and that we prove to be minimal (Section 2).

3 Some phases have been added to take into account the different conventions for the semantics of the
beam splitters.

CSL 2025



38:4 The LOfi-Calculus

A new sound and complete equational theory for linear optical circuits that allows all
auxiliary finite-photon-number states and detections (Section 3).
A unique and compact universal form for optical circuits of this kind, obtained through a
deterministic rewriting procedure and proven to be unique with new techniques (Section 4).

All the notation introduced in the paper is summarized in Table 1.

2 LOPP: Linear optical quantum circuits with single-photon semantics

A linear optical quantum circuit consists of spatial modes through which photons pass –
which may be physically instantiated by optical fibers, waveguides in integrated circuits, or
simply by paths in free space (bulk optics) – and operations that act on those spatial modes,
including in particular beam splitters ( θ ), and phase shifters ( φ ).

2.1 Syntax and single-photon semantics

Similarly to [10], in order to formalize linear optical circuits with diagrams, we use the
formalism of PROPs [38]. A PRO is a strict monoidal category whose monoid of objects is
freely generated by a single X: the objects are all of the form X ⊗X ⊗ · · · ⊗X, and simply
denoted by n, the number of occurrences of X. PROs are typically represented graphically
as circuits: each copy of X is represented by a wire and morphisms by boxes on wires, so
that ⊗ is represented vertically and morphism composition ◦ is represented horizontally.
For instance, D1 and D2 represented as D1 and D2 can be horizontally composed
as D2 ◦D1, represented by D1 D2 , and vertically composed as D1 ⊗D2, represented

by
D1

D2

. A PROP is the symmetric monoidal analogue of PRO, so it is equipped with

a swap. It means the circuits are equivalent through wire deformations and that only the
connectivity matters.

▶ Definition 1. LOPP4 is the PROP of LOPP-circuits generated by:

φ : 1 → 1 θ : 2 → 2

with φ ∈ R and θ ∈ R.

The convention is to go through from left to right, meaning the inputs (resp. outputs) are
on the left (resp. right), and from top to bottom, meaning the first (resp. last) input is the
top (resp. last) wire. The identity, the swap and the empty diagrams are noted as follows:

, , .

▶ Example 2. Here are two examples of LOPP-circuits, that are equivalent up to deformation
with the rules of PROPs:

φ2
θ2

θ1

φ1

= φ2
θ2θ1

φ1

4 The PROP version of LOPP has first been defined in [9], as [10] defined LOPP as a PRO.
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The semantics of linear optical components are usually described by their behavior
when there is one single photon passing through those components. Given a circuit of m
wires, the single photon can be in a superposition of the m different positions, so its state
is a vector in Cm. We consider the standard orthonormal basis {|ei⟩ , i ∈ [1,m]} where
ei = |0, . . . , 0, 1, 0, . . . , 0⟩ with a 1 at the ith component. The object of our PROP is therefore
X = C, and the vertical composition is interpreted as the direct sum [10, 11]. The semantics
is defined as follows.

▶ Definition 3 (Semantics of LOPP). The single photon semantics of LOPP is inductively
defined as follows: JC1 ⊗ C2K1 = JC1K1 ⊕ JC2K1, JC2 ◦ C1K1 = JC2K1 ◦ JC1K1 and:

J K1 : C → C := |1⟩ 7→ |1⟩r
φ

z

1
: C → C := |1⟩ 7→ eiφ |1⟩

r z

1
: C2 → C2 := |1, 0⟩ 7→ |0, 1⟩

|0, 1⟩ 7→ |1, 0⟩
r

θ
z

1
: C2 → C2 := |1, 0⟩ 7→ cθ |1, 0⟩ + isθ |0, 1⟩

|0, 1⟩ 7→ isθ |1, 0⟩ + cθ |0, 1⟩
where cθ = cos(θ) and sθ = sin(θ).

▶ Remark 4. It is also usual to represent those linear operators as matrices, with

JC1K1⊕ JC2K1 =
(

JC1K1 0
0 JC2K1

)
and for instance

r
θ

z

1
=

(
cθ isθ

isθ cθ

)
.

2.2 Simpler equational theory of LOPP
Two distinct LOPP-circuits may represent the same quantum evolution. For instance,
shifting the phase of a photon by two phase shifters of phase φ1 and φ2 is the same as shifting
it with one phase φ1 + φ2. In order to characterize those equivalences, an equational theory
of LOPP has been introduced in [10]. In this section, we provide a simpler set of equations
in Figure 3. Some of the old equations, given in Figure 4, have been removed, while two
Equations (oE2) and (oE3) of Figure 4 have been replaced by the two Equations (E2) and
(E3), respectively representing Euler rotations with two and three axes. Previously, those old
Euler equations were not directly reversible; while the angles of the right-hand side (RHS)
could be uniquely determined by those of the left-hand side (LHS), the inverse was true
only with non-trivial constraints, making the equations hardly reversible and not explicitly
constructive. More specifically, we made the following simplifications:

The Equations (b0), (p0) and (pp-b) have been derived and removed from the equational
theory.
A phase has been added in Equation (oE2), so now the LHS can also represent any
element of the unitary group U(2). Now the angles of the LHS can be straightforwardly
derived without any constraints from the RHS.
All the phases of Equation (oE3) have been removed. The formulae of the equations are
now far simpler, and the equation is now both symmetrical and reversible.

▶ Definition 5 (LOPP-calculus). Two LOPP-circuits D, D′ are equivalent according to
the rules of the LOPP-calculus, denoted LOPP ⊢ D = D′, if one can transform D into
D′ using the equations given in Figure 3. More precisely, LOPP ⊢ · = · is defined as the
smallest congruence which satisfies the equations of Figure 3 and the axioms of PROP.

▶ Proposition 6 (Soundness of LOPP). For any LOPP-circuits D and D′, if LOPP ⊢ D =
D′ then JDK1 = JD′K1.

CSL 2025
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2π = (p2π)
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π
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− π
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(swap)

φ2φ1 = φ1+φ2 (p-p)

α2

α1 α3
α0

=
β0β2

β3β1

(E2)

γ1

γ2

γ3

=

δ2

δ3δ1
(E3)

Figure 3 New and minimal equational theory of the LOPP-calculus. For any angle of the
LHS (resp. RHS) of the Equation (E2) and (E3), there exist angles for the RHS (resp. LHS) such
that the equations are sound. The angles of are unique if we restrict α0, α2, β0, β1, β3 ∈ [0, 2π),
α1 ∈ [0, π

2 ), α3 ∈ [0, π), β2 ∈ [0, π
2 ], and by taking α1 = 0 if α0 − α2 = 0 mod π and β1 = 0 if

β2 ∈
{

0, π
2

}
. The rotations associated with Equations (E2) and (E2) are detailed in the proof of

Proposition 6.

Proof. Since semantic equality is a congruence, it suffices to check that for every equation of
Figure 3. The soundness of Equations (swap), (p2π) and (p-p) are direct consequences of

Definition 3. We can notice that RX(−2θ) =
r

θ
z

1
and ei φ

2 RZ(φ) =
s

φ

{

1
, where

RX (resp. RZ) is the rotation operator about the x̂ axis (resp. ẑ axis) of the Bloch sphere [41].
Any unitary of U(2) can be decomposed into ei·RX(·)RZ(·)RX(·) (resp. ei·RZ(·)RX(·)RZ(·)),
giving the LHS (resp. RHS) angles of (E2). By transforming the iY -axis into the Y -axis,
the three rotations of the LHS (resp. RHS) of (E3) can be seen as three real rotations along
the z − x − z real axes (resp. x − z − x). The angles are therefore given by the Euler
angles [22]. ◀

▶ Theorem 7 (Completeness of LOPP). For any two LOPP-circuits D and D′, if JDK1 =
JD′K1 then LOPP ⊢ D = D′.

Proof. The equational theory of Figure 4 has been proven to be complete in [10]. All
equations of Figure 4 can be derived by those of Figure 3. ◀

▶ Theorem 8 (Minimality). The equational theory of Figure 3 is minimal for LOPP-circuits,
i.e. none of its equations can be derived from the others.

Proof. We define an alternative interpretation which satisfies all the equations aside from
the one we prove to be necessary. In particular:

(p2π) is the only rule on one wire that changes the sum of the phases.
(p-p) is the only rule on one wire that can reduce the number of phases different from 2π.
(swap) is the only rule changing the parity of the number of SWAPs.
(E2) is the only rule changing the parity of (number of beam splitter + number of SWAPs).

For (E3), here is the sketch of the proof:
We define an equivalence relation ∼φ on three-wire LOPP-circuits.
We introduce a confluent rewriting procedure that is conserving the relation ∼φ, and
that is converging to normal forms.
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Figure 4 Old axioms of the LOPP-calculus that are not in Figure 3. In Equations (oE2) and
(oE3), the LHS circuit has arbitrary parameters which uniquely determine the parameters of the
RHS circuit. For any αi ∈ R, there exist βj ∈ [0, 2π) such that Equation (oE2) is sound, and for any
γi ∈ R, there exist δj ∈ [0, 2π) such that Equation (oE3) is sound. We can ensure that the angles βj

are unique by assuming that β1, β2 ∈ [0, π) and if β2 ∈ {0, π
2 } then β1 = 0, and we can ensure that

the angles δj are unique by assuming that δ1, δ2, δ3, δ4, δ5, δ6 ∈ [0, π). If δ3 ∈ {0, π
2 } then δ1 = 0, if

δ4 ∈ {0, π
2 } then δ2 = 0, if δ4 = 0 then δ3 = 0, and if δ6 ∈ {0, π

2 } then δ5 = 0. The existence and
uniqueness of such βj and δj are given by Lemmas 10 and 11 of [10].

All the rules of the PROP, (p0), (swap), (p-p) and (E2) also conserve the relation ∼φ.
We conclude that (E3) is necessary, because the LHS and RHS are different normal forms,
and therefore can’t be transformed from one to the other without (E3). ◀

2.3 Useful triangular forms
In this subsection, we introduce three classes of LOPP-circuits, with the following inclusions:
ñ♢n ⊂ ñ△m̃ ⊂ △. Their shape and properties are illustrated and summarized in Table 2.
They are of particular interest as △-circuits are the normal forms of the LOPP-calculus [10],
ñ△m̃-circuits will be used in the normal forms of the LOfi-calculus (Definition 36), and
their uniqueness will be proved thanks to use of ñ♢n-circuits (Section 4).

▶ Definition 9 (△-circuits). A △-circuit is a LOPP-circuit with the following shape:

θ1,2

θ1,1

θ2,1

φ1,1

θ2,2

θ1,n−1

θ1,n−2

θ2,n−2 θn−2,2

θn−2,1

θn−1,1

φ1,2

φ1,n−1

φ1,n φ2,n−1

φ2,2

φn−2,3 φn−1,2

φn−2,2

φ2,1

φn−2,1

φn−1,1

φn,1

with φi,j ∈ [0, 2π), θi,j ∈ [0, π
2 ] and the following conditions: θi,j = 0 ⇒ (∀j′ > j, φi,j′ =

θi,j′ = 0) and θi,j = π
2 ⇒ φi,j = 0. θi,j is on the ith right (resp. jth left) diagonal, and on

the (i+ j − 1)th row of beam splitters.

▶ Remark 10 (Coefficients of J△K1). The coefficient ti,j of J△K1 is determined by the sum
of all the paths from the jth input wire to the ith output wire, where for each path we
multiply by a cos (resp. sin) term when the photon is reflected on (resp. transmitted through)

CSL 2025
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a beam splitter, and by a phase when the path crosses a phase shifter. For instance,
t1,2 = cos(θ1,2)eiφ1,2i sin(θ1,1)eiφ1,1 . More generally, we have ti,j = eiφi,j cos(θi,j) × qi,j + ri,j

where qi,j , ri,j are terms depending uniquely on the angles with lower indexes.

▶ Proposition 11 (Universality and Uniqueness of T ). For any LOPP-circuit D, there exists
a unique circuit T in triangular form of Definition 9 such that JDK1 = JT K1.

Proof. The existence is a direct consequence of [46] or the Proposition 26 of [10]. The
uniqueness is a consequence of Remark 10 by sequentially showing the uniqueness of (φi,j , θi,j)
in ti,j , and by noticing that for any z with 0 < |z| ≤ 1, there are unique φ, θ ∈ [0, 2π) × [0, π

2 )
such that eiφcθ = z, with φ, θ = (0, 0) for the special case of z = 0. More details are provided
in Appendix B. ◀

▶ Remark 12. A generic △-circuit T : n → n has n(n−1)
2 beam splitters and n(n+1)

2 phase
shifters, having a total of n2 different angles, the dimension of the unitary group U(n).

▶ Definition 13 (ñ△m̃-circuits). A LOPP-circuit △̃ : n+ ñ → m+ m̃ is a ñ△m̃-circuit if:
1. △̃ is a △-circuit as defined in Definition 9,
2. there is no beam splitter or phase shifter fully and directly connected to the ñ last input

wires, ie. φi,j = θi,j = 0 if rowi,j = i+ j − 1 > n and there doesn’t exist (k, ℓ) such that
k + ℓ− 1 = rowi,j − 1, k < i and θk,ℓ ̸= 0,

3. there is no beam splitter or phase shifter fully and directly connected to the m̃ last output
wires, ie. φi,j = θi,j = 0 if rowi,j = i+ j − 1 > m and there doesn’t exist (k, ℓ) such that
k + ℓ− 1 = rowi,j − 1, k ≥ i and θk,ℓ ̸= 0, and

4. there exists one nonzero θi,j for each of the last max(ñ, m̃) rows.

The Property 4 is an additional constraint that appears in the normal forms defined
in Definition 36. Property 2 and 3 imply the only nonzero angles have indexes (i ≤ m, j ≤
n), leading to the following proposition, direct consequence of Remark 10 and the proof
of Proposition 11.

▶ Proposition 14 (Uniqueness of ñ△m̃-circuits on their m × n submatrix). For any ñ△m̃-
circuits △,△′ : n + ñ → m + m̃, if J△K1 (1 : m, 1 : n) = J△′K1 (1 : m, 1 : n) then △ = △′,
where M(1 : k, 1 : ℓ) is the k × ℓ matrix composed of the first k rows and ℓ columns of M .

▶ Definition 15 (ñ♢n-circuits). A ñ△m̃-circuit △̃ : n+ ñ → m+ m̃ is a ñ♢n-circuit if m̃ = n.

▶ Remark 16. As m̃ = n, ñ♢n-circuits have exactly ñ × n beam splitters shaped like in
Table 2. Furthermore, their angles are necessarily nonzero, as one zero would imply the
rest of the right-diagonal to be zero with Definition 9, contradicting the Property 4. That
particular shape and those nonzero properties will be useful in the proofs of Section 4.

3 LOfi-calculus

3.1 Fock space
As described in Section 2.1, the state space of one photon with m spatial modes is Cm, as it
can be on a superposition of all the different positions. Photons are particles that can bunch
and share the same state, so each mode can be occupied by many photons. Furthermore,
to observe quantum effects like interferences, we need the photons to be indistinguishable,
meaning we can’t know which photon is in which state.
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For those two reasons, the usual way to represent a state with indistinguishable photons
is by using the occupation number representation, where we indicate “how many photons are
there in each state”. We consider the basis states Φm := {|n1, n2, . . . , nm⟩ , (n1, n2, . . . , nm) ∈
Nm} [1], denoted as Fock states. The state |n1, n2, . . . , nm⟩ represents a configuration where
ni photons occupy the ith mode. The space of possible many-photon states over m modes,
the bosonic (symmetrical) Fock space and denoted as Bm, is defined as follows.

▶ Definition 17 (Fock space). We define the Hilbert space Bm as the Hilbert completion
ℓ2(Φm) equipped with the bra-ket inner product ⟨·|·⟩, with the convention B0 = C.

▶ Remark 18. B1 contains states that are an infinite superposition of basis states, like the
coherent states |α⟩ = e− |α|2

2
∑∞

k=0
αk

k! |k⟩. We can note that Bm is isomorphic to ℓ2(Nm).
To describe the space of the auxiliary sources, we consider a sub vector space of Bm.

▶ Definition 19 (Subspace of the Fock space: Bpre
m ). We define the pre-Hilbert space Bpre

m

as the linear span of Φm equipped with the bra-ket inner product ⟨·|·⟩, with the convention
Bpre

0 = C.

▶ Remark 20. Bpre
m only contain states that are finite linear combination of the Fock basis

states. In particular, the coherent states are not included. We can note that Bpre
1 is isomorphic

to c00, i.e. the space of eventually zero sequences.

▶ Definition 21 (B∗pre
m̃ ). We define the pre-Hilbert space B∗pre

m̃ as the linear span of
{⟨n1, . . . , nm̃| , (n1, . . . , nm̃) ∈ Nm̃}.

3.2 Syntax and many-photon semantics
▶ Definition 22 (LOfi-calculus). LOfi is the PROP of LOfi-circuits generated by

φ : 1 → 1 θ : 2 → 2 f ñ : 0 → ñ gm̃ : m̃ → 0

where φ, θ ∈ R, and f (resp. g) is a state in Bpre
ñ (resp. in B∗pre

m̃ ) with ñ, m̃ ∈ N+.

▶ Remark 23. In string diagrams, a process 0 → ñ (resp. m̃ → 0) is called a state (resp. an
effect). We will keep the source (resp. detector) terms to be consistent with their physical
representation. A process 0 → 0 is called a scalar.
▶ Remark 24. The choice of those generators is discussed in Appendix C.

▶ Definition 25 (Conventions for the notations). Bold terms will always be vectors. In
particular f ,fk (resp. g, gℓ) will always represent a ket (resp. a bra). Bold integers k (resp.
ℓ) will represent |k⟩ (resp. ⟨ℓ|) in the sources (resp. detectors). The summation term

∑
will often be omitted, the index being implicitly the sum index. Note that for clarity, the
summation term won’t be omitted in Figure 6, and for conciseness, they will be omitted
in Figure 5. For instance f =

∑
k∈K |fk⟩ |k⟩ will simply be noted as fk ⊗ k. |.⟩ (resp. ⟨.|)

represents an arbitrary ket (resp. bra) on one mode. |...⟩ (resp. ⟨...|) represents an arbitrary
ket (resp. bra) for an arbitrary number of modes, representing an arbitrary scalar when the
number of modes is zero. Those are used to omit terms when the specific value of those terms
are not of interest, as in some equations of Figure 5. For the zero vector f = 0 (resp. g = 0),
as there is no term in the sum, we chose to represent it with ∅ (resp. an empty detector

∅ ). Note it is different from 0 (resp. 0 ) representing the nonzero vector |0⟩
(resp. ⟨0|).
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▶ Definition 26. Let C: n → m a LOfi-circuit, let JCK : Bn → Bm be the linear map
inductively defined as JC2 ◦ C1K = JC2K ◦ JC1K, JC1 ⊗ C2K = JC1K ⊗ JC2K and:

s
f ñ

{
0 → Bñ f ∈ Bpre

ñ

s
gm̃

{
Bm̃ → 0 g ∈ B∗pre

m̃

J K B1 → B1 |k⟩ 7→ |k⟩
r

φ
z

B1 → B1 |k⟩ 7→ Pφ(|k⟩)
r z

B2 → B2 |k1, k2⟩ 7→ |k2, k1⟩
r

θ
z

: B2 → B2 |k1, k2⟩ 7→ Bθ(|k1, k2⟩)

where Bθ(|k1, k2⟩) :=
∑

ℓ1+ℓ2=k1+k2

√
ℓ1!ℓ2!
k1!k2!

∑
p+q=ℓ1
δ=p−q

(
k1
p

)(
k2
q

)
ck2+δ

θ (isθ)k1−δ |ℓ1, ℓ2⟩ and

Pφ(|k⟩) := eikφ |k⟩, with the convention
(

k
k′

)
= 0 for k < k′.

We can check that Pφ and Bθ are unitary operators [1] and are therefore well-defined on
the Hilbert space by continuity and linearity. One can also look at [36] for a more physical
interpretation of where the formulas come from.
▶ Remark 27 (Hermitian conjugate). We have P †

φ = P−φ and B†
θ = B−θ, where † is the

Hermitian conjugate. Therefore, ⟨ℓ|Pφ = (P−φ |ℓ⟩)† and ⟨ℓ1, ℓ2|Bθ = (B−θ |ℓ1, ℓ2⟩)†.

3.3 Equational theory of LOfi

Similarly to Section 2.2, we introduce an equational theory for LOfi in Figure 5.

▶ Definition 28 (LOfi-calculus). Two LOfi-circuits C,C ′ are equivalent according to the
rules of the LOfi-calculus, denoted LOfi ⊢ C = C ′, if one can transform C into C ′ using
the equations given in Figure 5.

▶ Remark 29. The Equation (p-p) is not present for it can be derived with the Equations (p2π),
(E2) and (s0-0d), alongside with Equation (b0), that can be derived with the rules of the
PROP, and the Equations (swap) and (E2). Note that the Equaiton (h2) can be considered
an equation of diagrams with holes.

▶ Proposition 30 (Soundness). For any two LOfi-circuits C and C ′, if LOfi ⊢ C = C ′

then JCK = JC ′K.

Proof. Since semantic equality is a congruence, it suffices to check the soundness for every
equation of Figure 5, which follows from Proposition 6 and Definition 26. Informally,
Axiom (zero) means that if there is the scalar5 0, then the semantics of all the circuit
(X ⊗ 0 = 0) is the null function. We can therefore nullify the other wires with the zeros

∅ and ∅ . This rule is specifically used for Remark 38. Axiom (s-0d) means we
can either (from LHS to RHS) project on |0⟩ on the last mode or (from right to left) add
any states fk ⊗ |k⟩ with k ̸= 0 as they are trivially orthogonal and cancelling. Axiom (h2)
means we can shift any function h : Bpre

2 → Bpre
2 from left to right where there are identity

wires, direct consequence of the associativity: ⟨ℓ1, ℓ2| (h |k1, k2⟩) = (⟨ℓ1, ℓ2|h) |k1, k2⟩. The
rules (dd), (b-d), (p-d) and (s0-d) are respectively the duals of (ss), (s-b), (s-p) and (s-0d). ◀

5 0 1 is an impossible event and is one way to represent the scalar 0 = ⟨1|0⟩ =
r

0 1
z

.
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2π = (p2π) =
π
2

− π
2

− π
2

(swap)

α2

α1 α3
α0

=
β0β2

β3β1

(E2)

γ1

γ2

γ3

=

δ2

δ3δ1
(E3)

0 0 = (s0-0d)
0 1

=
0

∅ ∅

1
(zero)

f

f ′

= f⊗f ′ (ss) |.⟩ñ⊗ k1k2⊗|...⟩
θ

ñ

= |.⟩ñBθ(k1k2)|...⟩

ñ

(s-b)

fk⊗ k
0

= f0 (s-0d) |.⟩ñ⊗ k ⊗|...⟩ φ

ñ

= |.⟩ñ Pφ(k) |...⟩

ñ

(s-p)

g

g′

= g⊗g′ (dd) ⟨.|ñ⊗ ℓ1ℓ2⊗⟨...|
θ

ñ

= ⟨.|ñ(ℓ1ℓ2)Bθ⟨...|

ñ

(b-d)

gℓ⊗ ℓ
0

= g0 (s0-d) ⟨.|ñ⊗ ℓ ⊗⟨...|φ

ñ

= ⟨.|ñ (ℓ)Pφ ⟨...|

ñ

(p-d)

|...⟩⊗h(k1k2) ⟨...|⊗ ℓ1ℓ2 = |...⟩⊗ k1k2 ⟨...|⊗(ℓ1ℓ2)h (h2)

Figure 5 Axioms of the LOfi-calculus. The angles of (E2) and (E3) are the same as in the
axioms of the LOPP-calculus (Figure 3). h is any linear function Bpre

2 → Bpre
2 . The conventions for

{∅, |.⟩ , |...⟩ , ⟨.| , ⟨...|}, and the omitted sums are detailed in Definition 25. The interpretations of the
axioms are given in Proposition 30.
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▶ Theorem 31 (Completeness). For any two LOfi-circuits C and C ′, if JCK = JC ′K then
LOfi ⊢ C = C ′.

Proof. The proof is in Section 4.4, direct consequence of the uniqueness of the normal forms
of Section 4. ◀

4 Unique normal forms leading to the completeness of the
LOfi-calculus

We introduce a set of oriented rewriting rules in Section 4.1, that converge to a set of
LOfi-circuits with specific shape and properties, defined in Section 4.2. The proof of their
uniqueness is summarised in Section 4.3. As a direct collorary of the uniqueness of the
normal forms, we prove the completeness of the LOfi-calculus in Section 4.4.

4.1 Deterministic rewriting procedure
A strongly normalising rewriting system, i.e. terminating to normal forms, has been introduced
in [10] for LOPP-circuits. We mainly reuse all the rules, alongside additional rules to now
take into account the sources and the detectors.

▶ Definition 32 (Rewriting system). Our rewriting system is defined on the PRO6 of LOfi-
circuits with the rules of Figure 6.

We can check that all the rules are sound, and have the following meaning:
The rules 1-11 are either the same or just slightly different from the rules described in [10].
With those rules, the LOPPP RO-circuits will converge to the triangular △-circuits defined
in Section 2.3.
The rule 12 removes any vector |fk′⟩ ⊗ |k′⟩ in the sources that is trivially cancelling with
the detector on the connected last wire, meaning that ⟨gk′ | = 0, i.e. that k′ /∈ L.
The rule 13 removes any ⟨gℓ′ | ⊗ ⟨ℓ′| in the detectors that is trivially cancelling with the
source on the connected last wire, meaning that |fℓ′⟩ = 0, i.e. that ℓ′ /∈ K.
The rule 14 allows, without changing the semantics, to transfer the generic coefficients
from the detectors to the sources. Specifically, any term of the form

∑
ℓ ξℓ ⟨Nm̃(L)| ⟨ℓ|

will be rewritten to ⟨Nm̃(L)| ⟨L|. The coefficients ξ will be in the source, as |fL⟩ |L⟩ will
be rewriten to

(∑
i∈K ξi |fi⟩

)
|L⟩. At the end and by repeating this rule, there won’t

be any degree of freedom in the detectors, and g =
∑

ℓ∈L ⟨Nm̃(ℓ)| ⟨ℓ|. The condition
(ξL ̸= 1) ∨ (∃ℓ ̸= L, ξℓ ≠ 0) is there to ensure that the rule is only used once for each L,
and only when it’s necessary.
The rule 15 uses the bijection N2 : N → N2 to remove one identity wire, by just relabelling
the indexes in the sources and detectors. Note that one identity wire will always remain
at the end.
The oriented rule (from left to right) coming from the axioms (ss) and (dd) merge all the
sources and detectors together.
The oriented rule (from left to right) coming from the axioms (s-b), (s-p), (b-d) and (p-d)
reduce the number of phase shifters and beam splitters as much as possible, by making
them be absorbed into the sources and detectors.

6 This is similar to [10], to prevent any deformation of the form = .
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ψ → ψ mod 2π (1)

ψ
→

ψ mod 2π
(2)

φ2φ1 → φ1+φ2 (3)

0 → (4)

0
→ (5)

θ
φ

→
θ

−φ

φ

φ

(6)

π
2

φ

→
π
2

φ

(7)

θ4
→

π − θ4

π

π

(8)

θ5
→

θ5 − π

π

π

(9)

θ1

θ2

θ3

φ1
∗ →

δ3

δ4

δ6

δ2

δ1 δ5

δ7

δ8

δ9

(10)

θ1

φ1

θ2

∗
→

β0β2

β3β1

(11)

fk⊗k + fk′ ⊗k′ gℓ⊗ℓ

k′ /∈ L ℓ ∈ L

→ fk⊗k gℓ⊗ℓ

ℓ ∈ L

(12)

fk⊗k gℓ⊗ℓ + gℓ′ ⊗ℓ′

k ∈ L ℓ′ /∈ K

→ fk⊗k gℓ⊗ℓ

k ∈ L

(13)

fL⊗L
∑
ℓ∈L

ξℓNm̃(L)⊗ℓ
m̃

(ξL ̸= 1) ∨ (∃ℓ ̸= L, ξℓ ̸= 0)

g′
ℓ ⊥ Nm̃(L)

∑
k ̸=L

fk⊗k
∑
ℓ̸=L

g′
ℓ⊗ℓ++

→ ∑
k ̸=L

fk⊗k
∑
ℓ ̸=L

g′
ℓ⊗ℓ

m̃

(∑
i∈K

ξifi

)
⊗L Nm̃(L)⊗L

++ (14)

fk1,k2⊗ k1k2 gℓ1,ℓ2⊗ ℓ1ℓ2 → fk⊗k gℓ⊗ℓ

ℓ = N −1
2 (ℓ1, ℓ2)k = N −1

2 (k1, k2)

(15)

Figure 6 Rewriting system of the LOfi-calculus, alongside with the oriented version, from
the LHS to the RHS, of the axioms (ss), (s-b), (s-p), (dd), (b-d), and (p-d). ψ ∈ R \ [0, 2π),
φ,φ1, φ2 ∈ (0, 2π), θ4 ∈ ( π

2 , π), θ5 ∈ [π, 2π), θ, θ1, θ2, θ3 ∈ (0, π). φ
∗

denotes either φ or
. The angles of the RHS of (11) and (10) are given by [10]. Nm : N → Nm is a bijection

arbitrary chosen to be N −1
m := N −1

2 ◦ N −1
m−1 for m > 2, where N −1

2 (ℓ, ℓ′) := 1
2 (ℓ+ ℓ)(ℓ+ ℓ′ + 1) + ℓ′

is the Cantor pairing function and N1 is the identity. By convention, the summation index is k ∈ K
for the sources and ℓ ∈ L for detectors, aside from the rule (14) where the sum is explicit for clarity.
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38:14 The LOfi-Calculus

▶ Definition 33 (Inputs of the rewriting system). For convenience, the inputs of the rewriting
procedures are LOfi-circuits with at least one identity wire connecting sources and generators,
and where all the sources (resp. detectors) are on the bottom left (resp. right).

▶ Remark 34. Note that choice is not restrictive, as the identity wire can always be added
with Axiom (s0-0d), and the sources and detectors can be placed at the desired position,
without changing the semantics, with the rules of PROP and by adding SWAPs.

▶ Lemma 35. If C1 rewrites to C2 using the rules of Figure 6, then LOfi ⊢ C1 = C2.

Proof. As an illustration, we show how we can derive the rule (14) in Appendix D. ◀

4.2 Normal forms of the LOfi-calculus
Formally with the rules of Figure 6 and informally with their meaning described in Section 4.1,
we can show that an irreducible form is a LOfi-circuit defined as follows:

▶ Definition 36 (Normal form). The normal forms of any nonzero LOfi-circuits are denoted
N(T,f) : n → m and are of the form:

f g

T
n m }

m̃+ 1ñ+ 1

{

where:
f is a nonzero generic state of Bpre

ñ+1.
g =

∑
ℓ∈K ⟨Nm(ℓ)| ⊗ ⟨ℓ|, where Nm : N → Nm is a bijection defined in Figure 6 and K

is the nonempty finite set {k ∈ N | fk ̸= 0} of f =
∑

k∈K fk ⊗ |k⟩, with the convention
K = {0} if ñ = 0 or m̃ = 0.
T : n+ ñ → m+ m̃ is a ñ△m̃-circuit as defined in Definition 13.

▶ Remark 37. If ñ = m̃ = 0, then the normal form is a normal form of LOPP (can be
for n = m = 0) tensored with the scalar α|0⟩ ⟨0| which has the semantics of a global
scalar α ∈ C.

▶ Remark 38. We could also consider the particular case of f = 0, i.e. K = ∅, where
JNK : Bn → Bm is the null function. In that case, N : n → m can be written to ( ∅ )⊗m ◦
( ∅ )⊗n, which is a more fitted form for representing the null function.

▶ Lemma 39 (Strongly normalising). The rewriting system of Figure 6 is strongly normalising.

Proof. We introduce a ranking function (x1, . . . , x6) ∈ N6, where each component of the
tuple is determined by properties of the circuit, like the number of beam splitter with angles
out of [0, 2π), the number of sources and detectors, or the number of identity wires connecting
them. One nontrivial component is x6, that we explicit here.

Let note the generic terms in the sources as f =
∑
αk1,...,kñ+1 |k1, . . . , kñ+1⟩ and in the

detectors as g =
∑
βℓ1,...,ℓm̃+1 |ℓ1, . . . , ℓm̃+1⟩. We define:

x6 :=
∑

f∈sources
C1(f) +

∑
g∈detectors

(2C2(g) − C3(g))
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with C1(f) := #{αk1,...,kñ+1 ̸= 0}, C2(g) := #{βℓ1,...,ℓm̃+1 ̸= 0}, and C3(g) := #{βNm̃(L),L =
1, L ∈ N}. The proof to show that the rule (14) strictly decreases x6 is the following. Let us
consider the two cases: (ξL ̸= 1) ∧ (∀ℓ ≠ L, ξℓ = 0) and (ξL = 1) ∧ (∃ℓ ̸= L, ξℓ = 0). The first
case doesn’t change C1 and C2, but the term −C3 strictly decreases by 1. The second case
doesn’t change C3, and the increase of C1, i.e. the amount of new terms in f , is bounded
by #{ξi ̸= 0, i ̸= L}, the number of terms removed in g, which is the exact decrease of C2.
Therefore, C1 + 2C2 decreases by at least #{ξi ̸= 0, i ≠ L} > 0. We can conclude that the
rule (14) strictly decreases x6. ◀

Now that the normal forms are well-defined, it remains to prove their uniqueness, which
is the purpose of the Section 4.3.

▶ Lemma 40 (Uniqueness of the Normal Forms). If two LOfi-circuits N and N ′ in normal
forms are such that JNK = JN ′K, then N = N ′.

4.3 The normal forms are unique: sketch of the proof
Let N(T,f) be a normal form. In order to prove the uniqueness of T and f , we proceed
with the following steps.
1. We first show that T is unique.
2. We introduce a set of operators Ωi,j(T ), such that JNK =

∑
i,j ωi,jΩi,j(T ). We show the

ωi,j to be canonically and uniquely associated with the coefficients of f .
3. We introduce a set of operators ∆u,v(T ), that have very convenient properties and that

we show to be linearly independent.
4. We give an isomorphism between the Ω and ∆ operators, therefore proving the linear

independence of the Ωi,j(D), and proving the uniqueness of the coefficients of f .

▶ Lemma 41 (Uniqueness of T ). For any two normal forms N(T,f) and N ′(T ′,f ′), if
JNK = JN ′K then T = T ′.

Proof. For any nonzero W =

u

w
v

φ
θ

f g

}

�
~ and W ′ =

t
φ′

θ′

f ′ g′

|

, we first

show that:

(θ, φ) ̸= (θ′, φ′) ⇒ ∃k ∈ N, lim
n→∞

⟨n+ k|W |n⟩
⟨n+ k|W ′ |n⟩

̸= 1.

As W = W ′, the limit of the ratio is necessarily equal to 1; the parameters
can’t be different and are therefore equal. The proof relies purely on the semantics
defined in Definition 26. We then prove the uniqueness of D by induction on the
min (number of inputs,number of outputs). ◀

▶ Definition 42 (Ω and ∆ morphisms). For any LOPP-circuit D, (i, j,u,v) ∈
(Nñ,Nm̃,Nm̃,Nm) we define Ωi,j(D) : n → m and ∆u,v(D) as:

Ωi,j(D) :=

u

wwww
v D

n m

i1

iñ jm̃

j1

}

����
~

pre

∆u,v(D) :=

u

wwww
v

D

n m

0

0 vn

v1

a†

a†

u1

um

}

����
~

pre

where â† : |k⟩ 7→
√
k + 1 |k + 1⟩ is the creation operator and J·Kpre := J·K |pre is the restriction

of J·K to Bpre.
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▶ Remark 43. All the proofs regarding the Ω and ∆ morphisms only consider the semantics
on J.Kpre. That ensures the soundness of the proofs involving the unbounded operator â†, as
now all sums will be finite.

We give here two propositions that are the core of the proofs.

▶ Proposition 44 (Unique Ω-decomposition of the normal forms). For any ñ△m̃-circuit
T : n+ ñ → m+ m̃ and finite set

{
ωi,j , (i, j) ∈ (Nñ,Nm̃)

}
, there exists an unique normal

form N(T,f) : n → m, such that JNKpre =
∑

i,j∈(I,J ) ωi,jΩi,j(T ).

Proof. It follows from the linearity of J.Kpre and that ωi,j = f
iñ

i1

N −1
m̃ (j1, . . . , jm̃)

. ◀

▶ Proposition 45 (Threshold properties of the ∆-morphisms). For any ñ♢n-circuit ♢̃ : n+m →
n+m and (u,v) ∈ (Nn,Nm), ⟨y| ∆u,v(♢̃) |x⟩ is nonzero for (x,y) = (v,u) and is zero if
(x ≺r v) ∨ (y ≺r u), where ≺r is the reverse lexicographical order, i.e. y ≺r v if there exists
k such that yn = vn, . . . , yk+1 = vk+1 and yk < vk.

Proof. It is a consequence of the shape of the ñ♢n-circuits (Definition 15), and the properties
of ∆u,v. As there is no photon in the auxiliary sources, the input needs a certain number of
photons for them to be detected in the auxiliary detectors. Similarly, as we create photons at
the output with the creation operators â†, the output needs a certain number of photons. ◀

The linear independence of ∆ will be a consequence of Proposition 45 and a decomposition
of the Ω with ∆ morphisms will give the independence of the Ω, thus the uniqueness of the
ωi,j , and therefore the uniquess of the normal forms with Proposition 44.

4.4 Completeness of the LOfi-calculus: Proof of Theorem 31
Let C,C ′ two LOfi-circuits such that JCK = JC ′K. They can be rewritten to normal forms
by Lemma 35: LOfi ⊢ C = N and LOfi ⊢ C ′ = N ′. By soundness of LOfi, we have
JNK = JCK = JC ′K = JN ′K thus JNK = JN ′K. By Lemma 35, the normal forms are unique.
Therefore, N = N ′ and we have LOfi ⊢ C = N = N ′ = C ′, thus LOfi ⊢ C = C ′, proving
the completeness of the LOfi-calculus. ◀

5 Outlook

The formalism of the LOfi-calculus helped to find normal forms for linear optical circuits,
and the new operators introduced in Section 4 were particularly relevant for proving their
uniqueness. It is an open problem to know if those normal forms and new operators can have
further applications in simulation, compilation or the synthesis of linear optical circuits, or
even broader reach as the LOPP-calculus had for quantum circuits [11]. As those normal
forms make only sense with finite states, it is also an open problem to determine whether
normal forms exist in the infinite case, let alone their uniqueness.

References
1 Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. In

Proceedings of the 43th Annual ACM Symposium on Theory of Computing (STOC), STOC
’11, pages 333–342, New York, NY, USA, 2011. Association for Computing Machinery. doi:
10.1145/1993636.1993682.

https://doi.org/10.1145/1993636.1993682
https://doi.org/10.1145/1993636.1993682


N. Heurtel 38:17

2 Samson Abramsky and Bob Coecke. A categorical semantics of quantum protocols. In
19th Annual IEEE Symposium on Logic in Computer Science (LICS), pages 415–425, 2004.
doi:10.1109/LICS.2004.1319636.

3 Samson Abramsky and Bob Coecke. Categorical quantum mechanics, 2008. arXiv:0808.1023.
4 Stefan Ataman. A graphical method in quantum optics. Journal of Physics Communications,

2(3):035032, March 2018. doi:10.1088/2399-6528/aab50f.
5 Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, Leo Lobski, and John van de

Wetering. There and back again: A circuit extraction tale. Quantum, 5:421, March 2021.
doi:10.22331/q-2021-03-25-421.

6 Sara Bartolucci, Patrick Birchall, Hector Bombin, Hugo Cable, Chris Dawson, Mercedes
Gimeno-Segovia, Eric Johnston, Konrad Kieling, Naomi Nickerson, Mihir Pant, Fernando
Pastawski, Terry Rudolph, and Chris Sparrow. Fusion-based quantum computation. Nature
Communications, 14(1):912, 2023. doi:10.1038/s41467-023-36493-1.

7 Daniel E. Browne and Terry Rudolph. Resource-efficient linear optical quantum computation.
Phys. Rev. Lett., 95:010501, June 2005. doi:10.1103/PhysRevLett.95.010501.

8 Colin D. Bruzewicz, John Chiaverini, Robert McConnell, and Jeremy M. Sage. Trapped-ion
quantum computing: Progress and challenges. Applied Physics Reviews, 6(2), May 2019.
doi:10.1063/1.5088164.

9 Alexandre Clément, Noé Delorme, and Simon Perdrix. Minimal equational theories for
quantum circuits, 2023. arXiv:2311.07476, doi:10.48550/arXiv.2311.07476.

10 Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix, and Benoît Valiron.
Lov-calculus: A graphical language for linear optical quantum circuits. In Proceedings
of the 47th International Symposium on Mathematical Foundations of Computer Science
(MFCS), volume 241 of Leibniz International Proceedings in Informatics (LIPIcs), pages
35:1–35:16, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.MFCS.2022.35.

11 Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix, and Benoît Valiron.
A complete equational theory for quantum circuits. In Proceedings of the 38th Annual
ACM IEEE Symposium on Logic in Computer Science (LICS), Boston, MA, USA, 2023.
arXiv:2206.10577.

12 Alexandre Clément and Simon Perdrix. PBS-calculus: A graphical language for coherent
control of quantum computations. In Javier Esparza and Daniel Kráľ, editors, Proceedings
of the 45th International Symposium on Mathematical Foundations of Computer Science
(MFCS), volume 170 of Leibniz International Proceedings in Informatics (LIPIcs), pages 24:1–
24:14, Dagstuhl, Germany, August 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.MFCS.2020.24.

13 Bob Coecke and Ross Duncan. Interacting quantum observables: Categorical algebra and
diagrammatics. New Journal of Physics, 13(4):043016, April 2011. doi:10.1088/1367-2630/
13/4/043016.

14 N. Coste, D. A. Fioretto, N. Belabas, S. C. Wein, P. Hilaire, R. Frantzeskakis, M. Gundin,
B. Goes, N. Somaschi, M. Morassi, A. Lemaître, I. Sagnes, A. Harouri, S. E. Economou,
A. Auffeves, O. Krebs, L. Lanco, and P. Senellart. High-rate entanglement between a
semiconductor spin and indistinguishable photons. Nature Photonics, 17(7):582–587, 2023.
doi:10.1038/s41566-023-01186-0.

15 Giovanni de Felice and Bob Coecke. Quantum linear optics via string diagrams. Electronic
Proceedings in Theoretical Computer Science (EPTCS), 394:83–100, November 2023. doi:
10.4204/eptcs.394.6.

16 Giovanni de Felice, Razin A. Shaikh, Boldizsár Poór, Lia Yeh, Quanlong Wang, and Bob
Coecke. Light-matter interaction in the zxw calculus. Electronic Proceedings in Theoretical
Computer Science (EPTCS), 384:20–46, August 2023. doi:10.4204/eptcs.384.2.

CSL 2025

https://doi.org/10.1109/LICS.2004.1319636
https://arxiv.org/abs/0808.1023
https://doi.org/10.1088/2399-6528/aab50f
https://doi.org/10.22331/q-2021-03-25-421
https://doi.org/10.1038/s41467-023-36493-1
https://doi.org/10.1103/PhysRevLett.95.010501
https://doi.org/10.1063/1.5088164
https://arxiv.org/abs/2311.07476
https://doi.org/10.48550/arXiv.2311.07476
https://doi.org/10.4230/LIPIcs.MFCS.2022.35
https://arxiv.org/abs/2206.10577
https://doi.org/10.4230/LIPIcs.MFCS.2020.24
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1038/s41566-023-01186-0
https://doi.org/10.4204/eptcs.394.6
https://doi.org/10.4204/eptcs.394.6
https://doi.org/10.4204/eptcs.384.2


38:18 The LOfi-Calculus

17 Grégoire de Gliniasty, Paul Hilaire, Pierre-Emmanuel Emeriau, Stephen C. Wein, Alexia
Salavrakos, and Shane Mansfield. A spin-optical quantum computing architecture, 2024.
arXiv:2311.05605.

18 Marc de Visme and Renaud Vilmart. Minimality in finite-dimensional zw-calculi, 2024.
arXiv:2401.16225.

19 Ross Duncan and Maxime Lucas. Verifying the steane code with quantomatic. Electronic
Proceedings in Theoretical Computer Science (EPTCS), 171:33–49, December 2014. doi:
10.4204/eptcs.171.4.

20 Suren A. Fldzhyan, Mikhail Yu. Saygin, and Sergei P. Kulik. Compact linear optical
scheme for bell state generation. Physical Review Research, 3(4):043031, 2021. doi:
10.1103/PhysRevResearch.3.043031.

21 Liam Garvie and Ross Duncan. Verifying the smallest interesting colour code with quantomatic.
Electronic Proceedings in Theoretical Computer Science (EPTCS), 266:147–163, February 2018.
doi:10.4204/eptcs.266.10.

22 Herbert Goldstein, Charles Poole, and John Safko. Classical Mechanics. Addison Wesley, 3
edition, 2002.

23 Christian Gross and Immanuel Bloch. Quantum simulations with ultracold atoms in optical
lattices. Science, 357(6355):995–1001, 2017. doi:10.1126/science.aal3837.

24 Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the 28th Annual ACM Symposium on Theory of Computing (STOC), STOC ’96, pages
212–219, New York, NY, USA, July 1996. Association for Computing Machinery. doi:
10.1145/237814.237866.

25 Amar Hadzihasanovic, Kang Feng Ng, and Quanlong Wang. Two complete axiomatisations
of pure-state qubit quantum computing. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), LICS ’18, pages 502–511, New York, NY,
USA, 2018. Association for Computing Machinery. doi:10.1145/3209108.3209128.

26 Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems
of equations. Physical Review Letters, 103(15):150502, 2009. doi:10.1103/PhysRevLett.103.
150502.

27 Nicolas Heurtel. A complete graphical language for linear optical circuits with finite-photon-
number sources and detectors, 2024. arXiv:2402.17693, doi:10.48550/arXiv.2402.17693.

28 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A complete axiomatisation of the
ZX-calculus for Clifford+T quantum mechanics. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), LICS ’18, pages 559–568, New York, NY,
USA, 2018. Association for Computing Machinery. doi:10.1145/3209108.3209131.

29 Aleks Kissinger and John van de Wetering. Reducing T-count with the ZX-calculus. Physical
Review A, 102:022406, August 2020. doi:10.1103/PhysRevA.102.022406.

30 Aleks Kissinger and John van de Wetering. Simulating quantum circuits with zx-calculus
reduced stabiliser decompositions. Quantum Science and Technology, 7(4):044001, July 2022.
doi:10.1088/2058-9565/ac5d20.

31 Aleks Kissinger, John van de Wetering, and Renaud Vilmart. Classical simulation of quantum
circuits with partial and graphical stabiliser decompositions. In François Le Gall and Tomoyuki
Morimae, editors, Proceedings of the 17th Conference on the Theory of Quantum Computation,
Communication and Cryptography (TQC), volume 232 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 5:1–5:13, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.TQC.2022.5.

32 Morten Kjaergaard, Mollie E. Schwartz, Jochen Braumüller, Philip Krantz, Joel I.-J. Wang,
Simon Gustavsson, and William D. Oliver. Superconducting qubits: Current state of play.
Annual Review of Condensed Matter Physics, 11(1):369–395, March 2020. doi:10.1146/
annurev-conmatphys-031119-050605.

33 E. Knill. Quantum gates using linear optics and postselection. Physical Review A, 66(5):052306,
2002. doi:10.1103/PhysRevA.66.052306.

https://arxiv.org/abs/2311.05605
https://arxiv.org/abs/2401.16225
https://doi.org/10.4204/eptcs.171.4
https://doi.org/10.4204/eptcs.171.4
https://doi.org/10.1103/PhysRevResearch.3.043031
https://doi.org/10.1103/PhysRevResearch.3.043031
https://doi.org/10.4204/eptcs.266.10
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/3209108.3209128
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://arxiv.org/abs/2402.17693
https://doi.org/10.48550/arXiv.2402.17693
https://doi.org/10.1145/3209108.3209131
https://doi.org/10.1103/PhysRevA.102.022406
https://doi.org/10.1088/2058-9565/ac5d20
https://doi.org/10.4230/LIPIcs.TQC.2022.5
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1103/PhysRevA.66.052306


N. Heurtel 38:19

34 E. Knill, R. Laflamme, and G. J. Milburn. A scheme for efficient quantum computation with
linear optics. Nature, 409(6816):46–52, 2001. doi:10.1038/35051009.

35 Mark Koch, Richie Yeung, and Quanlong Wang. Speedy contraction of zx diagrams with
triangles via stabiliser decompositions, 2023. arXiv:2307.01803.

36 Pieter Kok, W. J. Munro, Kae Nemoto, T. C. Ralph, Jonathan P. Dowling, and G. J. Milburn.
Review article: Linear optical quantum computing. Reviews of Modern Physics, 79(1):135–174,
2007. doi:10.1103/RevModPhys.79.135.

37 J. C. Loredo, C. Antón, B. Reznychenko, P. Hilaire, A. Harouri, C. Millet, H. Ollivier,
N. Somaschi, L. De Santis, A. Lemaître, I. Sagnes, L. Lanco, A. Auffèves, O. Krebs, and
P. Senellart. Generation of non-classical light in a photon-number superposition. Nature
Photonics, 13(11):803–808, 2019. doi:10.1038/s41566-019-0506-3.

38 Saunders Mac Lane. Categorical algebra. Bulletin of the American Mathematical Society,
71:40–106, 1965. doi:10.1090/S0002-9904-1965-11234-4.

39 Paul McCloud. The category of linear optical quantum computing, 2022. arXiv:2203.05958.
40 Michael A. Nielsen. Optical quantum computation using cluster states. Phys. Rev. Lett.,

93:040503, July 2004. doi:10.1103/PhysRevLett.93.040503.
41 Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information.

Cambridge University Press, Cambridge, New York, 10th anniversary edition edition, 2010.
42 Jeremy L. O’Brien, Akira Furusawa, and Jelena Vučković. Photonic quantum technologies.

Nature Photonics, 3(12):687–695, December 2009. doi:10.1038/nphoton.2009.229.
43 Roger Penrose. Angular momentum: an approach to combinatorial space-time. In T. Bastin,

editor, Quantum Theory and Beyond, pages 151–180. Cambridge University Press, Cambridge,
1971.

44 Boldizsár Poór, Quanlong Wang, Razin A. Shaikh, Lia Yeh, Richie Yeung, and Bob Coecke.
Completeness for arbitrary finite dimensions of zxw-calculus, a unifying calculus. In 38th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, June 2023.
doi:10.1109/lics56636.2023.10175672.

45 John Preskill. Quantum computing 40 years later, 2023. arXiv:2106.10522.
46 Michael Reck, Anton Zeilinger, Herbert J. Bernstein, and Philip Bertani. Experimental

realization of any discrete unitary operator. Physical Review Letters, 73:58–61, 1994. doi:
10.1103/PhysRevLett.73.58.

47 Terry Rudolph. Why I am optimistic about the silicon-photonic route to quantum computing.
APL Photonics, 2, 2017. doi:10.1063/1.4976737.

48 Stefan Scheel. Permanents in linear optical networks, 2004.
49 Peter Selinger. Dagger compact closed categories and completely positive maps: (extended

abstract). Electronic Notes in Theoretical Computer Science, 170:139–163, 2007. doi:10.
1016/j.entcs.2006.12.018.

50 Peter W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In
Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS),
pages 124–134, November 1994. doi:10.1109/SFCS.1994.365700.

51 John van de Wetering, Richie Yeung, Tuomas Laakkonen, and Aleks Kissinger. Optimal
compilation of parametrised quantum circuits, January 2024. arXiv:2401.12877.

52 Quanlong Wang, Boldizsár Poór, and Razin A. Shaikh. Completeness of qufinite zxw calculus,
a graphical language for finite-dimensional quantum theory, 2024. arXiv:2309.13014.

53 N. Yoran and B. Reznik. Deterministic linear optics quantum computation with single photon
qubits. Phys. Rev. Lett., 91:037903, July 2003. doi:10.1103/PhysRevLett.91.037903.

CSL 2025

https://doi.org/10.1038/35051009
https://arxiv.org/abs/2307.01803
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1038/s41566-019-0506-3
https://doi.org/10.1090/S0002-9904-1965-11234-4
https://arxiv.org/abs/2203.05958
https://doi.org/10.1103/PhysRevLett.93.040503
https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1109/lics56636.2023.10175672
https://arxiv.org/abs/2106.10522
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1063/1.4976737
https://doi.org/10.1016/j.entcs.2006.12.018
https://doi.org/10.1016/j.entcs.2006.12.018
https://doi.org/10.1109/SFCS.1994.365700
https://arxiv.org/abs/2401.12877
https://arxiv.org/abs/2309.13014
https://doi.org/10.1103/PhysRevLett.91.037903


38:20 The LOfi-Calculus

A Notations

Table 1 Notations used in the paper.

Symbol Meaning
C,C′ LOfi-circuits.

D,D′, T, △̃, ♢̃ LOPP-circuits, cf Table 2 for the specific classes of circuits.
φ, θ Parameters (angles) of phase shifters and beam splitters

n,m, ñ, m̃ Integers used for the number of inputs (n or n+ ñ) and outputs (m or m+ m̃)
i, j, k, ℓ, p, q Integers used for indexing.

s, t,u, v,x,y Fock basis vectors.
S, T ,U ,V Finite set of indexes associated with their lowercase vector. Often omitted in the sums.

Bm Hilbert space of the bosonic Fock space over m modes, cf Definition 17.
Bpre

m Pre-Hilbert space of the bosonic Fock space over m modes, cf Definition 19.
f , f ′ Vectors of Bpre.
g, g′ Vectors of (Bpre)∗, the dual of Bpre.
â†

j Creation operator over the mode j, introduced in Definition 42
Ω·,·,∆·,· Operators defined in Definition 42.
≺r,⪯r Reverse lexicographic order on vectors, cf Proposition 45.∑
,
∏

Finite sums and products when the upper bound or the set of indexes is omitted.

B Properties of the triangular forms of Section 2.3

Proof of Proposition 11
The coefficient ti,j of J△K1 is determined by the sum of all the paths from the jth input wire
to the ith output wire, where for each path, we multiply by a cos (resp. sin) term when the
photon is reflected on (resp. transmitted through) a beam splitter, and by a phase when the
path crosses a phase shifter. For instance:

t1,2 = cos(θ1,2)eiφ1,2i sin(θ1,1)eiφ1,1 and
t2,2 = i sin(θ1,2) cos(θ2,2)eφ2,2i sin(θ2,1)eiφ2,1 + cos(θ1,2)eφ1,2i sin(θ1,1) cos(θ2,1)eφ1,2 .

More generally, we have ti,j = eiφi,j cos(θi,j) × qi,j + ri,j where qi,j , ri,j are terms depending
uniquely on the the angles with lower indexes. We can notice there is at most one path from
the jth input wire to the ith output wire involving θi,j and φi,j and that qi,j ̸= 0 if and only
if all θk<i,j and θi,ℓ<j are nonzero. If one θi,ℓ<j is zero, then we have φi,j = θi,j = 0 by the
properties of the △-circuits. If there are K values of θk<i,j which are zero, then all the K
diagonals θk,ℓ′≥j are zero. By now considersing the path from the (j+K)th input wire to the
ith output wire, we recover the same type of equation with qi,j ̸= 0. Now, we can substract
ri,j and dividing by qi,j , so that we have eiφi,j cos(θi,j) = zi,j with zi,j = (ti,j − ri,j)/qi,j . If
zi,j ≠ 0 then θi,j ∈ [0, π

2 ) and φ ∈ [0, 2π) are uniquely determined. If zi,j = 0, then θi,j = π
2

and by the properties of △-circuits, we have φi,j = 0.

▶ Remark 46. The existence and the uniqueness have been shown in [10] for very similar
circuits that have two minor differences; the phases were on the top left of the beam splitters,
and the range of the thetas and phases, expect the last layer, were all in [0, π). We can
therefore have an alternative proof by changing the strongly normalising and confluent
rewriting system so the thetas are always in [0, π

2 ] and the phases stay on the bottom left
instead of the top left, without restricting their range.
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Table 2 Shapes and properties of classes of triangle LOPP-circuits: n+ ñ → m+ m̃. (∗,◦) are
angles in [0, 2π) × [0, π

2 ] that satisfy the properties of Defitions 9 and 13. We emphasis the nonzero
angles of ♢̃ by noting • an arbitrary angle in (0, π

2 ]. The angles which are necessarily zero for the
property 3 and 4 of Definition 13 are in red. We have n = ñ = 3,m = 4 and m̃ = 2 for the first two
figures, and m̃ = n = 2 and ñ = m = 3 for the third.

Shape Properties
△-circuits (Definition 9)

◦
◦

◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦◦ ◦

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗ ∗ ∗

∗

∗

∗

∗

∗

Uniquely determined by J·K1 (Pro-
position 11).

ñ△m̃-circuits (Definition 13)
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗
00

0

0

0

0

0

0

0
0

0

0

0

Uniquely determined by the sub-
matrix J·K1 (1 : m, 1 : n) (Proposi-
tion 14). Used for the normal forms
of LOfi.

ñ♢n-circuits (Definition 15)

•

•

•

•

•

•

∗

∗

∗

They have exactly ñ × m̃ nonzero
beam splitters, with no identity wire.
They are used in the proofs of Sec-
tion 4.

C Choice of the generators

The sources and detectors of the LOfi-calculus allow any and arbitrary finite support state
on many modes, which may seem to be too powerful or far from the physical implementation.
In that regard, we would like to highlight that:

Some sources can directly generate more generic states such as a coherent superposition
with the vacuum of the 2-photon state [37], or even directly create entangled states [14].

Linear optical circuits are very modular, and each building block is usually used many
times. It would therefore be more convenient to sometimes represent those building blocks
directly by specifying what they do, instead of how they are implemented, as illustrated
in Figure 2.

Optical interactions are very combinatorics, thus being unlikely to have a complete
equational theory with only single mode sources7.

This formalism still allows finding new results for linear optics, like the unique normal
forms Section 4.

7 We can note that [15] bypasses that problem by allowing sums of diagrams

CSL 2025
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D Derivation in LOPP of the rule (14)

First, we show that we can derive a similar rule of (h2) but only on one wire:

|...⟩⊗ h̃(k) ⟨...|⊗ ℓ = |...⟩⊗ k ⟨...|⊗(ℓ)h̃ (h1)

To prove it, we consider a linear function h : Bpre
2 → Bpre

2 such that for every k ∈ N,
h(|k, 0⟩) = h̃(|k⟩) and (⟨k, 0|)h = (⟨k|)h̃.

|...⟩⊗ h̃(k) ⟨...|⊗ ℓ
(s0−0d)=

0 0

⟨...|⊗ ℓ|...⟩⊗ h̃(k)

(ss)= ⟨...|⊗ ℓ 0|...⟩⊗ h̃(k)0

= ⟨...|⊗ ℓ 0|...⟩⊗h(k0)

(h2)= ⟨...|⊗(ℓ 0)h|...⟩⊗ k0

= ⟨...|⊗(ℓ)h̃⊗ 0|...⟩⊗ k0

(ss)=
|...⟩⊗ k ⟨...|⊗(ℓ)h̃

0 0

(s0−0d)= |...⟩⊗ k ⟨...|⊗(ℓ)h̃

▶ Lemma 47. We can derive the equation (14) in the LOfi-calculus:

fL⊗L
∑
ℓ∈L

ξℓNm̃(L)⊗ℓ
m̃

(ξL ̸= 1) ∨ (∃ℓ ̸= L, ξℓ ̸= 0)

g′
ℓ ⊥ Nm̃(L)

∑
k ̸=L

fk⊗k
∑

ℓ̸=L

g′
ℓ
⊗ℓ++

= ∑
k ̸=L

fk⊗k
∑

ℓ ̸=L

g′
ℓ
⊗ℓ

m̃

( ∑
i∈K

ξifi

)
⊗L Nm̃(L)⊗L

++
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Proof. Let ⟨ψL| =
∑

ℓ∈L ξℓ ⟨ℓ|. We have g = ⟨Nm̃(L)| ⟨ψL| +
∑

ℓ∈L\{L} ⟨gℓ| ⟨ℓ|. Let h̃ :
Bpre

1 → Bpre
1 be a linear function which is the identity on |i⟩ for every i ∈ (K ∪ L) \ {L}, such

that ⟨L| h̃ = ⟨ψL|, and zero elsewhere. We can check that h̃ |k⟩ = |k⟩ + ξk |L⟩ for k ̸= L, and
h̃ |L⟩ = ξL |L⟩. We have:

g = ⟨Nm̃(ℓ)| ⟨ψL| +
∑

ℓ∈L\{L} ⟨gℓ| ⟨ℓ|
= ⟨Nm̃(L)| ⟨L| h̃+

∑
ℓ∈L\{L} ⟨gℓ| ⟨ℓ| h̃

The linear function h̃ can therefore be removed with the equation (h1), leading to:

f = |fL⟩ h̃(|L⟩) +
∑

k ̸=L |fk⟩ h̃(|k⟩)
= ξL |fL⟩ |L⟩ +

∑
k ̸=L |fk⟩ (|k⟩ + ξk |L⟩)

=
(∑

i∈K ξi |fi⟩
)

|L⟩ +
∑

k ̸=L |fk⟩ |k⟩

◀
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