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Abstract
We present a subatomic deep-inference proof system for a conservative extension of propositional
classical logic with decision trees that is strictly linear. In a strictly linear subatomic system, a single
linear rule shape subsumes not only the structural rules, such as contraction and weakening, but also
the unit equality rules. An interpretation map from subatomic logic to propositional classical logic
recovers the usual semantics and proof theoretic properties. By using explicit substitutions that
indicate the substitution of one derivation into another, we are able to show that the unit-equality
inference steps can be eliminated from a subatomic system for propositional classical logic with only
a polynomial complexity cost in the size of the derivation, from which it follows that the system
p-simulates Frege systems, and we show cut elimination for the resulting strictly linear system.
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1 Introduction

A change of formalism can provide us with a new lens on the proof theory of familiar logics,
allowing for certain proof-theoretic properties that might be unachievable in more established
systems [7, 20]. One of the main motivations behind the deep-inference [13] methodology is
the pursuit of locality, allowing us to check the correctness of inference steps in constant
time. Therefore, many deep-inference proof systems consist of inference rules that are either
atomic or linear [5, 6, 8, 9]. Examples of atomic and linear rules for propositional classical
logic are, respectively, the atomic contraction and the medial rule, shown here:

a ∨ a
c

a

(A ∧B) ∨ (C ∧D)
m

(A ∨ C) ∧ (B ∨D)

One way that locality has been used to benefit the proof theory of classical logic is via the
normalisation mechanisms employing atomic flows [3, 14, 15], which use the fact that all
rules are either atomic or linear to trace the flow of atoms in a derivation. A proof system
with atomic structural rules also allows for finer control of compression mechanisms such
as contraction, giving fully lazy sharing when translated into the lambda calculus through
a Curry-Howard interpretation [16]. However, the notion of linearity used in such proof
systems only applies to atoms. In this work, we define and pursue a more extreme form of
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39:2 A Strictly Linear Subatomic Proof System

linearity, strict linearity, in which we require not only linearity with respect to the units
instead of the atoms in a derivation. By introducing another proof compression mechanism
that has been studied in deep-inference settings [12, 19], explicit substitutions, into our
proof system, we can define a sound and complete proof system with strictly linear rules,
while keeping a handle on proof complexity.

To achieve strict linearity, we further develop the subatomic logic approach [1, 2], where
atoms are treated as non-commutative self-dual connectives whose arguments are their truth
values. Subatomic logics necessitate a deep-inference proof system, since cut elimination for
logics with non-commutative self-dual connectives are not possible in Gentzen systems [20].
While the syntax of subatomic logic may seem obscure, semantically they can be understood
as the integration of binary decision trees into the the standard language of propositional
classical logic [4].

When translated into subatomic logic, both linear and non-linear inference rules can be
encoded by a common linear shape, called the subatomic shape:

(A α B) β (C α D)
(A β C) α (B β D)

,

Deep-inference proof systems using the subatomic shape are able to capture a range of logics,
including those that cannot be expressed in a Gentzen formalism such as BV, and characterise
their normalisation in a common way across these different logics [1].

Indeed, although translating a deep-inference proof system into subatomic logic results in
a larger space of proofs, normalisation is simplified because there is only a single rule shape,
and so the number of possible interactions is limited. Therefore, to ensure the preservation
of standard proof-theoretic results such as cut elimination we can take a standard, non-
subatomic derivation, translate it to subatomic logic to perform the standardised proof
theoretic procedure in a system with only a single rule shape, before projecting back to the
standard level.

This paper takes the principles underlying subatomic proof theory even further. In
previous work in subatomic logic, the structural rules are subsumed by the subatomic rule
shape but inference rules obtained from unit equalities are left intact. However, because
the interpretation map from subatomic logic to a non-subatomic logic can collapse these
unit equalities itself, there is a redundancy here and a natural question arises: can the rules
obtained from unit equalities be eliminated from subatomic proof systems? In this paper we
show that the answer is positive.

We call a proof system strictly linear if it contains only rules of the subatomic shape.

Inference rules based on unit equalities such as
A ∧ t
A

are not strictly linear, because they are

not linear in the units. We have two main motivations for studying such systems.
The first concerns normalisation. With only a single rule shape, normalisation procedures

can be simplified yet further, and interference caused by unit-equality inference steps can be
eliminated.

The second concerns semantics and complexity. Factorising proofs using explicit substi-
tutions allows for the compression of proofs and the elimination of an unnecessary form of
“bureaucracy” [19]. More speculatively, this work provides a theoretical foundation for the
development of a proof system with explicit substitutions that retains locality, and without
having to exclude derivations containing cycles between cuts and identities [3, 18]. Having
defined explicit substitutions for strictly linear proofs and begun to explore how they impact
complexity and normalisation, we can in the future lift this to the standard, non-subatomic
level using the interpretation from subatomic to standard logic.
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In summary, the central contribution of this work is to show that a strictly linear system
for the subatomic version of propositional classical logic can be obtained. We do so by
showing that a subatomic proof with unit-equality rules can be transformed into one with
no unit-equality rules but with explicit substitutions, with only a polynomially-bounded
increase in the size of the proof. In doing so, this work furthers the tradition of using the
compositional freedom offered by deep-inference formalisms to regularise and homogenise
proof systems and normalisation procedures, entirely eliminating all structural variety and
non-locality from inference rules.

Outline
In Section 2 we define the preliminaries necessary for the paper: we introduce explicit
substitutions and describe the ways in which derivations containing them can be composed,
we introduce the proof systems that we will use in this work, in particular we introduce
subatomic and strictly linear systems for classical logic.

In Section 3 we introduce the technical machinery that we will use to prove the results in
the later chapter, in particular, the Eversion Lemma.

In Section 4 we show that the unit-equality inference steps can be eliminated from a
subatomic system for propositional logic. From this result, we can obtain a strictly linear
system that is complete for classical logic. In particular, we show that, by using eversion and
explicit substitutions, we can achieve this with only a polynomial complexity cost in the size
of the derivation.

In Section 5 we show that the cut rule can be eliminated from the strictly linear system
in a way that is preserved by interpretation to the standard, non-subatomic level.

2 Preliminaries

▶ Definition 1. We have the following mutually disjoint countable sets of atoms, connectives,
units and variables:

A = {a, b, c, . . . }, C = {∧,∨}, U = {0, 1}, V = {x, y, z, w, . . . }

The set of formulae, F is defined in the following way:

F ::= V | U | F A F | F C F | ⟨F|V⟩ F

Note that, since we are working with subatomic logic, atoms are binary connectives rather
than atomic formulae. We also can compose formulae by explicit substitution, where
⟨A|x⟩B denotes the explicit substitution of A for a variable x in B.

Formulae containing no explicit substitutions are called flat formulae. Given a formula
A, we write flA, the flat expansion of A, for the formula where all the explicit substitution
terms ⟨C|x⟩D appearing in A are applied, i.e. each instance of the variable x in D is replaced
by C, and flA is the (unique) formula so obtained. We denote by A ≡ B the syntactic identity
of A and B modulo renaming of variables bound by explicit substitution.

▶ Definition 2. Let the two operations down-saturation and up-saturation on atoms
and connectives be defined as q∧ = q∨ = ∨, p∧ = p∨ = ∧ and pa = qa = a for each a ∈ A.

This definition can be extended to formulae by replacing each atom and connective by its
up- or down-saturation respectively.

CSL 2025



39:4 A Strictly Linear Subatomic Proof System

▶ Definition 3. The set of derivations D, denoted by ϕ, ψ, χ, ω, . . . , is defined by the
grammar:

D ::= V | U

| D C D | D A D composition by connective or atom,∣∣∣∣∣∣ D
::

D
composition by expansion,

∣∣∣∣∣∣ D
r

D
composition by inference or inference step,

∣∣ ⟨D|V⟩ D composition by explicit substitution,

We say that ⟨ϕ|x⟩ψ is the explicit substitution of ϕ into a variable x of ψ. We define free
and bound variables in the usual way: in particular every occurrence of x in ψ is bound
in ⟨ϕ|x⟩ψ and if a variable occurrence is not bound it is free. We do not consider the
substitution variable x in ⟨ϕ|x⟩ to be an occurrence of the variable x so it is neither free nor
bound. We denote by ϕ the set of free variables appearing in the derivation ϕ.

We say that a derivation is open if it contains no units (so that its every leaf is a free
variable that can be substituted into) and that it is flat if it contains no explicit substitutions.
Explicit substitution terms such as ⟨ϕ|x⟩ can be denoted by π, ρ, σ, τ , and so on. We may
drop parentheses and boxes when there is no ambiguity. We denote by ϕ ≡ ψ the syntactic
identity of ϕ and ψ modulo renaming of bound variables and associativity of compositions by
expansion and inference.

▶ Definition 4. The size |ϕ| of a derivation ϕ is the number of occurrences of variables and
units appearing in it, not counting the substitution variables in explicit substitution terms,
i.e. |⟨ϕ|x⟩ψ| = |ϕ| + |ψ|.

▶ Definition 5. The two maps premise and conclusion, pr, cn : D → F and the two maps
width and height, w, h : D → N are so defined:

If ϕ ∈ F , then pr ϕ ≡ cnϕ ≡ ϕ and w ϕ = |ϕ| and hψ = 0
If ϕ ≡ ψ α χ, then

pr ϕ ≡ prψ α prχ w ϕ = wψ + wχ
cnϕ ≡ cnψ α cnχ hϕ = max(hψ, hχ)

If ϕ ≡ ⟨ψ|x⟩χ, then

pr ϕ ≡ ⟨prψ|x⟩ prχ w ϕ = wψ + wχ
cnϕ ≡ ⟨cnψ|x⟩ cnχ hϕ = max(hψ, hχ)

if ϕ ≡
ψ

χ
or ϕ ≡

ψ
::

χ
, then

pr ϕ ≡ prψ w ϕ = max(wψ,wχ)
cnϕ ≡ cnχ hϕ = hψ + hχ+ 1
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In Definition 3, we give the definition of a derivation abstracted from any particular
proof system, with no correctness criteria given for composition by expansion or inference.
However, to be able to identify correct derivations for a specific deep-inference proof system,
we need to define what it means to be a correct instance of an inference rule. Furthermore,
in order to define proof systems equipped with explicit substitutions, we need to show that

the correctness of an instance of composition by expansion
A
::

B
can be decided in polynomial

time on the size of A and B. Proposition 7 adapts Paterson and Wegman’s algorithm for
linear unification [17] to this problem, in the style of [10].

▶ Definition 6. An inference rule is a relation on formulae decidable in polynomial time on
the size of its arguments. A proof system is a finite set of unit equality and subatomic-linear
rules. Given a proof system S, an inference step such that (cnψ, prχ) ∈ r ∈ S, for some

rule r, is called an instance of r and is denoted as
ψ

r

χ
.

In this paper, we only discuss proof systems with two types of inference rules, unit-
equality rules and subatomic rules. We can therefore specify the unit-equality and
subatomic rules of a proof system S by S= and Ssa respectively.

▶ Proposition 7. Given formulae A and B, the identity flA ≡ flB can be decided in linear
time with respect to the size of the formulae, by comparing the flat expansions of A and B
without actually performing the substitutions.

Proof. Let us call a normal representation of A a formula

C ≡ ⟨Cn|xn⟩ · · · ⟨C1|x1⟩C0

such that, for n ≥ 0, x1, . . . , xn are fresh, distinct variables, C0, . . . , Cn are flat, C0 /∈
{x1, . . . , xn}, each of C1, . . . , Cn contains one and only one connective and flC ≡ flA; C
can be obtained from A in linear time on |A|. Let

D ≡ ⟨Dm|ym⟩ · · · ⟨D1|y1⟩D0

be a normal representation of B; we can check flA ≡ flB by the following recursive procedure
invoked as p(C0, D0):

Procedure p(Ci, Dj).
1. if Ci ≡ Dj , return success;
2. otherwise, if Ci ≡ xih ∈ {x1, . . . , xn} and Dj ≡ yjh

∈ {y1, . . . , ym} and p(Cih , Djh
)

succeeds, then return success;
3. otherwise, if Ci ≡ Ci1 α Ci2 and Dj ≡ Dj1 α Dj2 and, for h = 1, 2, p(Cih , Djh

) succeeds,
then return success;

4. otherwise, return failure.
To convert the formula A into its normal representation is linear: we transform every
subformula A1 αA2 to ⟨A1|z⟩ ⟨A2|z′⟩(z α z′); the number of such transformations is bounded
by the number of connectives in A. To satisfy the constraint that each Ci, i > 1 contains
exactly one connective, explicit substitutions of the form ⟨A|x⟩ for A ∈ U ∪ V are applied
without increasing the size of the formula.

Where we are comparing formulae ⟨Ci|xi⟩K{xi} and ⟨Dj |yj⟩K{yj}, the procedure
p(Ci, Dj) need only be performed once, so the comparison is linear on the size of the original
formulae. ◀

CSL 2025



39:6 A Strictly Linear Subatomic Proof System

▶ Definition 8. Given a proof system S, we say that a derivation ϕ in D is a derivation
in S if every inference step in ϕ is an instance of some rule of S and for each composition

by expansion
ψ
::

χ
we have fl cnψ ≡ fl prχ. One way to denote such a derivation is

A
ϕ S

B
, where

A and B are the premise and conclusion of ϕ. We note that by Proposition 7 establishing
the correctness of composition by expansion is decidable in linear time.

▶ Definition 9. We define a set of subatomic rules generated by the following scheme

(x pα y) β (z α w)
pαβ

(x β z) α (y β w)
(x α y) β (z pα w)

βpα

(x β z) α (y β w)

(x α y) β (z α w)
qβα

(x qβ z) α (y β w)
(x α y) β (z α w)

αqβ

(x β z) α (y qβ w)

where α, β ∈ C ∪ A. We define the set of subatomic rules KDT to be every rule generated by

this scheme together with the mix rule
A ∧B

q∧
A ∨B

.

We define a set of unit-equality rules Keq as follows:

x
=1
x ∨ 0

x ∨ 0
=2

x

x
=3

0 ∨ x

0 ∨ x
=4

x

0
=5

0 α 0
0 α 0

=6
0

where α ∈ {∧,a, b, c, . . . }

x
=7
x ∧ 1

x ∧ 1
=8

x

x
=9

1 ∧ x

1 ∧ x
=10

x

1
=11

1 β 1
1 β 1

=12
1

where β ∈ {∨,a, b, c, . . . }

We now define two proof systems by specifying their unit-equality and subatomic rules:
KDTS, where KDTS= = ∅ and KDTSsa = KDT.
KDTeq, where KDTeq= = Keq and KDTeqsa = KDT.

We say that a derivation in KDTS or KDTeq is a proof if its premise is equal to 1 with
respect to the unit equalities given in Keq.

▶ Remark 10. Is shown in [4] that the system KDTeq employed in a formalism without explicit
substitutions is sound and complete for standard non-subatomic propositional classical logic
conservatively extended by decision trees.

Therefore, in this paper, we will only work with KDTeq derivations that are flat, i.e.
without any explicit substitutions and we will refer to the logic this system corresponds to as
subatomic propositional classical logic.

▶ Definition 11. Let ψ and χ be two derivations such that cnψ ≡ prχ. We define a derivation
called the synchronal composition of ψ and χ, denoted as

ψ
...
χ

;

we do so by structural induction, as follows:
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1. if ψ is a formula, then
ψ
...
χ

≡ χ; similarly, if χ is a formula, then
ψ
...
χ

≡ ψ;

2. if ψ ≡ α(ψ1, . . . , ψn) and χ ≡ α(χ1, . . . , χn), then
ψ
...
χ

≡ α

 ψ1....
χ1

, . . . ,
ψn....
χn

;

3. if ψ ≡ ⟨ψ1|x⟩ψ2 and χ ≡ ⟨χ1|x⟩χ2, then
ψ
...
χ

≡ ⟨ ψ1....
χ1

∣∣∣∣∣∣x⟩ ψ2....
χ2

;

4. if ψ ≡
ψ1
::

ψ2
, then

ψ
...
χ

≡

ψ1
:::

ψ2....
χ

; similarly, if χ ≡
χ1
::

χ2
, then

ψ
...
χ

≡
ψ
....
χ1
:::

χ2

;

5. if ψ ≡
ψ1

ψ2
, then

ψ
...
χ

≡

ψ1

ψ2....
χ

; similarly, if χ ≡
χ1

χ2
, then

ψ
...
χ

≡
ψ
....
χ1

χ2

.

▶ Definition 12. A section of a derivation ϕ is any formula A such that

ϕ ≡
ψ
...
A
...
χ

,

for some derivations ψ and χ; in the above derivation, each section of ψ is said to be above
each section of χ and each section of χ is said to be below each section of ψ.

▶ Definition 13. Formula contexts are used to indicate formulae with one or more holes,
and are denoted A{ } · · · { }, or with other letters as necessary, often H and K. The holes
can be filled by derivations as well as formulae. When unambiguous, we write A{B} to
indicate the formula A where the location of its subformula B has been singled out.

▶ Definition 14. We denote an actual substitution that maps x to A and leaves all other
variables unchanged by [A|x]. Actual substitutions can be applied to derivations and [A|x]ϕ
stands for the derivation obtained by replacing every free occurrence of x in ϕ by the formula
A and we say that this substitutes A for x in ϕ. In the specific case where we are substituting
into a formula, we can extend this notion to allow for the actual substitution of a derivation
into a formula, where [ψ|x]B is obtained by replacing every free occurrence of x in the
formula B by the derivation ψ. Note that [A|x]B{x} ≡ B{A} if x does not appear free in
B{ }.

We abbreviate the simultaneous actual substitution [B1|x1, . . . , Bn|xn]A as [Bi|xi]1...nA.
Given a set of variables S = {x1, . . . , xn}, we write [Bi|xi]S A for [B1|x1, . . . , Bn|xn]A; we
might also write [Bv|v]S A to stand for [Bx1 |x1, . . . , Bxn

|xn]A. We denote both individual
and simultaneous actual substitutions by π, ρ, σ and τ , and so on.

We extend the conventions on simultaneous actual substitutions to explicit substi-
tutions and derivations. Therefore, we might indicate with ⟨Bv|v⟩A ϕ the substitution
⟨Bx1 |x1, . . . , Bxn |xn⟩ϕ, where A = {x1, . . . , xn} is the set of free variables of A (see Defini-
tion 1).

CSL 2025
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The notation [Bv|v]AA is at risk of being ambiguous because the enumeration of the
variables is arbitrary. For example, if A = {v1, v2} and B1 = v2 then [B1|v1] [B2|v2]A ̸≡
[B2|v2] [B1|v1]. We take care to use this notation only when it is unambiguous and there is
no dependency between substitutions.

3 The Merge and Eversion Lemmas

We are now ready to first prove the Merge Lemma, and then its generalisation the Eversion
Lemma, which enables the proof of the main results of this paper. As we explained in the
introduction, we want to be able to eliminate all the non-linear equality rules from KDTeq to
produce a strictly linear proof in KDTS. Using the Eversion Lemma, we are able to transform
the derivation on the left into the derivation on the right:

πϕ
.......................

πK

{
A

A ∨B

}
.......................

πψ

−→

π[x ∨B|x]Aϕ..........................................

πK



[x ∨B|x]AA

A ∨
[B|x]A qA[
qAy

∣∣∣y]
B
B


..........................................

π
[

qAy
∣∣∣y]

B
ψ

,

where we assume that A and B are open formulae and that qAy is obtained from A by
replacing every variable by y and every connective with its down-saturation. By doing this
transformation, the inference step becomes strictly linear. This propagates substitutions up
and down the derivation but does not affect its structure.

Before stating and proving the full Eversion Lemma, we state and prove the Merge
Lemma, a version of it restricted to a substitution with a single connective or atom.

▶ Proposition 15 (Merge Lemma). Let A be an open formula with variables {x1, . . . , xn}
and let β ∈ C ∪ A. Then there exist KDTS derivations:

[yi β zi|xi]AA

[yi|xi]AA β [zi|xi]A qA

[yi|xi]AA β [zi|xi]A pA

[yi β zi|xi]AA
.

The width and height of each derivation are bounded by 2|A|.

Proof. We consider the derivation on the left and proceed by induction on the structure
of A.

If A ≡ xi then we take the derivation yi β zi.
If A ≡ C α D then we build:

[yi β zi|xi]CC

[yi|xi]CC β [zi|xi]C qC
α

[yi β zi|xi]DD

[yi|xi]DD β [zi|xi]D qD
βqα (

[yi|xi]CC α [yi|xi]DD
)
β

(
[zi|xi]C qC qα [zi|xi]D qD

) .



V. Barrett, A. Guglielmi, and B. Ralph 39:9

If A ≡ ⟨C|w⟩D then we build:

⟨ [yi β zi|xi]CC

[yi|xi]CC β [zi|xi]C qC

∣∣∣∣∣∣∣w⟩ [yi β zi|xi]DD

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::

⟨[yi|xi]CC
∣∣∣w′⟩ ⟨[zi|xi]C qC

∣∣∣w′′⟩
[yi β zi|xi]D [w′ β w′′|w]D

[yi|xi]D [w′|w]D β [zi|xi]D [w′′|w] qD
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::

⟨[yi|xi]CC
∣∣∣w⟩ [yi|xi]DD β ⟨[zi|xi]C qC

∣∣∣w⟩ [zi|xi]D qD

.

That is, we perform a merge on C and then, with the first composition by expansion, we
replace all occurrences w in D by w′ β w′′, the minimal amount of structure needed to
perform the merge on D. The second composition by expansion then rearranges this to
the desired structure.

The width of the derivation is at most 2|A|; note that
∣∣∣[yi β zi|xi]AA∣∣∣ < 2|A| if there are

explicit substitutions in A.
For each connective in A there is a corresponding instance of composition by rule in the

constructed derivation; and for each explicit substitution in A, there are two corresponding
instances of composition by expansion. Therefore the height of the derivation is at most 2|A|,
the worst scenario being a formula only composed of explicit substitutions, each of which is
of size 1. ◀

We call the derivations on the left in Proposition 15 down-merges, and the derivations on
the right up-merges.

We can use the Merge Lemma to simulate unit-equality inference steps, without affecting
the value or the structure of the rest of the derivation. For example, the unit-equality

inference step
A

=
A ∧ 1

becomes
[w ∧ 1|w]AA

A ∧ [1|x]A qA
. This propagates w ∧ 1 upwards through the

derivation in place of w, for each variable w occurring in A, and propagates [1|w]A qA, which
is equal to 1 for any formula A, downwards through the derivation in place of this occurrence
of 1.

A naïve approach to eliminating the unit-equality inference steps in this way will blow
up the size of the derivation exponentially. To see this, we can consider the following
transformation, in which π substitutes a unit onto the variable x and we assume that in each
section of ψ, x occurs exactly once, so that the two inference steps shown form a pair:

π

ϕ
.......................

K

{
A

=
A α x

}
.......................

ψ
.......................

H

{
B β x

=
B

}
.......................

χ

−→ π

[v β x|v]H{ }[w α x|w]Aϕ
.....................................................

[v β x|v]H{ }K


[w α x|w]AA

A α qAx


.....................................................

[v β x|v]H{ }

[
qAx

∣∣∣x]
ψ

..........................................

[v β x|v]H{ }H
{
B β qAx

}
H{B}
..........
χ

β [x|v]
|H{ }

qH{ qAx}

CSL 2025



39:10 A Strictly Linear Subatomic Proof System

Eliminating the two unit-equality inference steps in the way described above would result
in a substitution

[
pBx

∣∣∣x]
being propagated up, and a substitution

[
qAx

∣∣∣x]
being propagated

down (where Ax and Bx stand for the result of substituting the variable x onto every leaf of
A and B respectively). Therefore, in order to eliminate both unit-equality inference steps,
the entire context around one of them must be duplicated, resulting in something like the
derivation above. This doubles the width of the derivation, leading to an exponential blow-up
in the size when eliminating all unit-equality inference steps in succession.

By iterating the Merge Lemma in a certain way, we derive the Eversion Lemma and can
use this to avoid this exponential blow-up.

▶ Lemma 16 (Eversion Lemma). Let A and B be open formulae with their free variables
denoted A = {w1, . . . , wn} and B = {y1, . . . , ym} respectively. Then there exist KDTS
derivations:[

pB
∣∣∣wi]

A

qA

[
qAyj

∣∣∣yj]
B

pB

[
pBwi

∣∣∣wi]
A

qA

[
qA
∣∣∣yj]

B

pB

,

where Bwi ≡ [wi|yj ]BB and Ayj ≡ [yj |wi]AA. Both the width and the height of these
derivations are O(|A||B|).

Proof. We consider the derivation on the left and proceed by induction on the structure
of B.

If B ≡ yj then we take the derivation qAyj .
If B ≡ E β F then we build:[

pE pβ pF
∣∣∣wi]

A

qA

χ[
pE

∣∣∣wi]
A

qA

ϕ[
qAyj

∣∣∣yj]
E

pE

pβ

[
pF

∣∣∣wi]
A

qA

ψ[
qAyj

∣∣∣yj]
F

pF

,

where the derivations ϕ and ψ are obtained by induction and the derivation χ is obtained
via the Merge Lemma 15.
If B ≡ ⟨E|z⟩F then we build:[

⟨ pE
∣∣∣z⟩ pF

∣∣∣wi]
A

qA
::::::::::::::::::::::::::

⟨ pE
∣∣∣z⟩

[
pF

∣∣∣wi]
A

qA

ϕ[
qAyj

∣∣∣yj]
F\{z}

[
qAz

∣∣∣z] pF

:::::::::::::::::::::::::::::

⟨
[

pE
∣∣∣z] qAz

ψ[
qAz

∣∣∣yj]
E

pE

∣∣∣∣∣∣∣∣z⟩ [
qAyj

∣∣∣yj]
F\{z}

pF

,

where the derivations ϕ and ψ are obtained by induction.
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The width of the derivations generated in each case are all O(|A||B|). The worst-case
scenario for the height is when B is composed by connective, in which case the height
increases by at most 2|A| in the merge χ. The number of iterations is O(|B|), so the height
is O(|A||B|). ◀

We call the derivations in Lemma 16 eversions.

▶ Example 17. Returning to the example of exponential blow-up above, the pair of unit-
equality inference steps in the above example can then be eliminated by the following
transformation:

π

ϕ
.......................

K

{
A

=
A α x

}
.......................

ψ
.......................

H

{
B β x

=
B

}
.......................

χ

−→ π

⟨ pBx
∣∣∣x⟩ [w α x|w]Aϕ

............................................

⟨ pBx
∣∣∣x⟩K


[w α x|w]AA

A β qAx


............................................

⟨
[

pBx
∣∣∣x]

qA[
qAx

∣∣∣x]
pB

∣∣∣∣∣∣∣∣x⟩ψ

..........................................

⟨ qAx
∣∣∣x⟩H

 B β pBx

[y β x|y]BB


..........................................

⟨ qAx
∣∣∣x⟩ [y β x|y]Bχ

.

This increases the width of the derivation by O(|A||B|) at the widest point, which is the
eversion in the explicit substitution, and increases the height by at least O(|A|) +O(|B|) due
to the merges, and in the worst case by O(|A||B|), again due to the eversion.

The premise of the transformed derivation is π ⟨ pBx
∣∣∣x⟩ [w α x|w]A pr ϕ. This is equal to the

premise π pr ϕ of the original derivation because x = pBx for any formula B and π(wαx) = πw

for every variable w appearing in A, since π
A

=
A α x

is a unit-equality inference step and

therefore either α ∈ C and πx is the unit of α or α ∈ A and πA ≡ πx.
Similarly, the conclusion becomes π ⟨ qAx

∣∣∣x⟩ [y β x|y]B cnχ, and this is equal to the original
conclusion π cnχ.

4 Strict Linearity

Using the Eversion Lemma, we can design a procedure that avoids most causes of exponential
blow-up when eliminating the unit-equality rules. However, when performing this elimination
we must pay attention to the size of the substitutions that are propagated up or down the
derivation. These accumulated substitutions can also lead to an exponential blow-up in the
size of the derivation when the elimination is iterated. To observe this, consider the following
example:
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▶ Example 18.

π

ψ1........................

K1

{
A

=
A α x

}
........................

ψ2..............................

K2

{
B{x}

=
B{x} β y

}
..............................

ψ3....................................

K3

{
C{x}{y}

=
C{x}{y} γ z

}
....................................

ψ4

−→ π

σ3σ2σ1ψ1................................

σ3σ2K1


σ1A

A α qAx


................................

σ3σ2

[
qAx

∣∣∣x]
ψ2

..............................................

σ3K2

 σ2B{ qAx}

B{ qAx} β qBy{ qAy}


..............................................

σ3

[
qAx

∣∣∣x] [
qBy{ qAy}

∣∣∣y]
ψ3

............................................................................

K3

 σ3C{ qAx}{ qBy{ qAy}}

C{ qAx}{ qBy{ qAy}} γ qCz{ qAz}{ qBz{ qAz}}


............................................................................[

qAx
∣∣∣x] [

qBy{ qAy}
∣∣∣y] [

qCz{ qAz}{ qBz{ qAz}}
∣∣∣z]ψ4

This shows a case where we have three unit-equality inference steps, and the substitutions
accumulate as we eliminate them, because the units introduced get into other unit-equality
inference steps. Crucially, we see that in the conclusion, z is replaced by qC{ qAz}{ qBz{ qAz}},
which contains two copies of qAz: one inherited from x occurring in B{x} and one from x

occurring in C{x}{y}. This pattern will lead to exponential blow-up for the size of the
derivation, but it can be controlled with explicit substitutions. In the elimination procedure
we describe below, we will factor out the repeated instances of qAz and instead replace z by
⟨ qAz

∣∣∣x⟩ ⟨ qBz{x}
∣∣∣y⟩ qCz{x}{y}, which has size |A| + |B| + |C|.

We are now ready to state the main theorem of the paper, that we can convert a flat
derivation in KDTeq to a derivation in KDTS, i.e. we convert a derivation with unit-equality
rules but no explicit substitutions to one that is strictly linear with explicit substitutions,
without exponential blow-up in the size of the proof.

▶ Definition 19. Let
A′

ϕ

B′
be a derivation in KDTeq. We call π

A

B
a unit factorisation of ϕ,

if A′ = πA and B′ = πB, A and B are open formulae in which no variable occurs more than
once, and π is a simultaneous actual substitution of all the units that occur in A′ and B′.

Note that a derivation can have multiple unit factorisations, but for the purposes of this
paper it does not matter which we select.

▶ Theorem 20. Let
A′

ϕ

B′
be a flat derivation in KDTeq and π

A

B
a unit factorisation of ϕ.

We can build a derivation ϕ′ ≡ π
σA

τB
in KDTS such that the size of ϕ′ is polynomial in the

size of ϕ and πA = πσA and πB = πτB.
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Proof (Sketch, full proof is in Appendix A). We eliminate the unit-equality inference steps
in two phases. In the first phase, we eliminate all those unit-equality inference steps that
propagate a unit downwards through a derivation, those that are labelled by =1, =3, =5, =7,
=9 or =11; in the second we eliminate the others, which propagate a unit upwards through a
derivation.

In the first phase, we replace the inference steps by down-merges, taking care to factor out
the accumulating substitutions as described in Example 18, and propagating the resulting
substitutions through the derivation.

In the second phase, we replace the remaining inference steps by up-merges, again
factoring out the accumulating substitutions, and we reconcile the propagated structures via
eversions, as described in Example 17, to obtain the strictly linear derivation ϕ′.

Let w be the width of ϕ and let h be its height. The number of unit-equality inference
steps eliminated in each phase is bounded by wh. After the first phase, the maximum width
occurs before factoring out the accumulated substitutions and is O(w3h2); the height is
similarly O(w3h2) as this is the most that it increases by for any step. After the second
phase, the maximum width again occurs before factoring out the accumulated substitutions
and is O(w7h5); again this represents the greatest increase of height in any step. Therefore
the height and width of ϕ′ are each O(w7h5). ◀

This result shows that the strictly linear system KDTS is complete for propositional
classical logic. In addition, it follows from results shown in [2] and [5] that KDTS p-simulates
Frege systems [11].

5 Cut Elimination

We now consider the normalisation of strictly linear proofs by showing a cut elimination
procedure. As we mention in the introduction, we are motivated to develop a theory of strict
linearity because this combines a theoretical foundation for explicit substitutions with simple
normalisation procedures. We would like to be able to take a proof in any standard system
(not necessarily subatomic), translate it to a strictly linear system, normalise inside that
system, and then project back to the original system without too much difficulty.

We do this by applying the method from [4] of eliminating cuts in subatomic logic via
projections, adapting it to be strictly linear.

▶ Definition 21. A cut on a in KDTeq is any instance of the rule

(A aB) ∧ (C aD)
∧pa

(A ∧ C) a (B ∧D)

such that A = 0 = D and B = 1 = C, or A = 1 = D and B = 0 = C. In the system
KDTS, we take explicit substitutions in the context into account, and so a cut on a is any

subderivation K

{
A

∧pa

B

}
inside a derivation such that flK{A} and flK{B} when vertically

composed form a cut on a.

We restrict the procedure that we define here to those proofs that do not exhibit too
much nesting of atoms inside themselves; this is sufficient to capture a translation of any
proof in the standard deep inference system for propositional classical logic, SKS.

▶ Definition 22. Given a derivation ϕ and an atom a, we say that a is unnested in ϕ if there
is no section whose flat expansion is of the form K{H{A aB} aC} or K{A a {H{B aC}}.

CSL 2025



39:14 A Strictly Linear Subatomic Proof System

▶ Definition 23. For a derivation ϕ in KDTS and an atom a that is unnested in ϕ, we
define the left-projection on a of ϕ, written la ϕ, as follows:

If ϕ ∈ V ∪ U then la ϕ ≡ ϕ.
If ϕ ≡ ψ a χ then la ϕ ≡ ψ.
If ϕ ≡ ψ β χ for β ̸≡ a then la ϕ ≡ la ψ β la χ.
If ϕ ≡ ⟨ψ|x⟩χ then la ϕ ≡ ⟨la ψ

∣∣x⟩ la χ.

If ϕ ≡
ψ
::

χ
then la ϕ ≡

la ψ
:::

la χ
.

If ϕ ≡

ψ
...............................
(A aB) ∧ (C aD)

q∧a

(A ∨ C) a (B ∧D)
...............................

χ

or ϕ ≡

ψ
...............................
(A ∧ C) a (B ∨D)

p∨a

(A aB) ∨ (C aD)
...............................

χ

then la ϕ ≡

la ψ.................
la A ∧ la C

q∧
la A ∨ la C.................

la χ

.

If ϕ ≡

ψ
..............................
(A β B) a (C β D)

qaβ

(A a C) β (B aD)
..............................

χ

or ϕ ≡

ψ
..............................
(A a C) β (B aD)

paβ

(A β B) a (C β D)
..............................

χ

then la ϕ ≡
la ψ......
la χ

, and

similarly for aq∧ and ap∨. Note that here β cannot be a due to the assumption that a is
unnested in ϕ.

If ϕ ≡
ψ

r

χ
in any other case, then la ϕ ≡

la ψ
r

la χ
; note here again that r cannot be aqa

due to the assumption that a is unnested in ϕ.
The right-projection on a is denoted by ra ϕ and defined in exactly the same way, except
for the following case:

If ϕ ≡ ψ a χ then ra ϕ ≡ χ.

▶ Remark 24. For any atom a that is unnested in a derivation ϕ ∈ KDTS, la ϕ and ra ϕ are
uniquely determined. Note that it is not the case that la and ra commute: for example
la ra(0 a 1) ≡ la 1 ≡ 1 and ra la(0 a 1) ≡ ra 0 ≡ 0.

▶ Remark 25. For any derivation ϕ in KDTS and any atom a that is unnested in ϕ, the
projected derivations la ϕ and ra ϕ contain no occurrences of a, and so neither contains any
cuts on a.

It can be the case that eliminating the unit-equality inference steps from a derivation ψ in
KDTeq in which a is unnested can create nesting of this atom. This occurs when a derivation

contains a pair of unit-equality inference steps
A{w a x}

=
A{w a x} α u

and
B{y a z} β u

=
B{y a z}

, so that

A{w a x} and B{y a z} both contain the atom a.
The merge constructions by which we simulate the unit-equality inference steps propagate

upwards a substitution ⟨ qAu{u a u}
∣∣∣u⟩ and downwards a substitution ⟨ qBu{u a u}

∣∣∣u⟩. These

are resolved by an eversion, which produces an inference step
(u a u) a (u a u)

aqa

(u a u) a (u a u)
. That is

to say, we create the logical material of (u a u) twice and substitute one copy into the other.
Therefore we define a slightly looser notion of nestedness that captures derivations produced
in this way.
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▶ Definition 26. Given a derivation ϕ and an atom a, we say that a is shallowly nested
in ϕ if there is no section whose flat expansion is of the form K{H{L{A aB} a C} aD} or

similar, and every instance of the inference rule aqa is of the form
(A aA) a (A aA)

aqa

(A aA) a (A aA)
, for

every atom a ∈ A.
We can extend the definition of left- and right-projection on a to derivations in which a

is shallowly nested as follows:

If ϕ ≡

ψ
..............................
(A aA) a (A aA)

qaβ

(A aA) a (A aA)
..............................

χ

then la ϕ ≡
la ψ.........
A aA
.........
la χ

and ra ϕ ≡
ra ψ.........
A aA
.........
ra χ

.

If an atom is unnested in a derivation ϕ, then that atom will be either unnested or shallowly
nested in a derivation produced by eliminating the unit-equality steps from ϕ via the
construction given in Section 4.
▶ Remark 27. For any derivation ϕ and any atom a that is shallowly nested in ϕ, the
projected derivations la la ϕ, ra la ϕ, la ra ϕ, and ra ra ϕ contain no occurrences of a, and so
none contains any cuts on a. If A = 1 then la A a ra A = 1 for any formula A and any
atom a.

▶ Proposition 28. For every open formula A in which every variable occurs exactly once,
and every atom a, there exists a cut-free derivation in KDTS

χ ≡
la A a ra A

[v a v|v]V A
,

for the set of variables V = A \ (la A ∪ ra A).

Proof. The construction follows the same structure as the Merge Lemma. Cut-freeness
follows from the fact that all inference rules will be of the form αqa, for each connective α
in A. ◀

▶ Theorem 29 (Cut Elimination). For every KDTS proof ϕ in which each atom is either

unnested or shallowly nested and whose unit factorisation is π
A

B
, we can build a cut-free

proof of πσB such that πσB = πB.

Proof. We enumerate the atoms in ϕ on which there is a cut a1, . . . ,an, let A0 ≡ A, B0 ≡ B,

and ϕ0 ≡
A

B
. We then build

Ai
ϕi

Bi

from
Ai−1

ϕi−1

Bi−1

by eliminating any cuts on ai via the following

constructions:
If ai is unnested in ϕi−1 then we build:

ϕi ≡
lai ϕi−1 ai rai

ϕi−1
χi

[v ai v|v]Vi
Bi−1

where χi is the cut-free derivation given by Proposition 28.
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If ai is shallowly nested in ϕi−1 then we build:

ϕi ≡

lai lai ϕi−1 ai rai
lai ϕi−1

χ′
i

[v ai v|v]V ′
i

laiBi−1

ai

lai rai
ϕi−1 ai rai

rai
ϕi−1

χ′′
i

[v ai v|v]V ′′
i

rai
Bi−1

χi

[v ai v|v]Vi
[v ai v|v]V ′

i
[v ai v|v]V ′′

i
Bi−1

where χi, χ′
i, and χ′′

i are the cut-free derivations given by Proposition 28.
Then πϕn contains no cuts on any atom and π cnϕn ≡ πσB where σ is a substitution

that does not change the value of the formula.
If a free variable appears anywhere in a proof it must also appear in its premise. However,

a formula with a free variable cannot be equal to 1, therefore a proof in KDTS cannot contain
any free variable and we have that π pr ϕn = 1. ◀

6 Conclusion

We have shown that a strictly linear subatomic system for propositional classical logic can be
obtained by eliminating all unit-equality rules and controlling the complexity using explicit
substitutions. Furthermore, we have shown that this strictly linear systems allows for a
straightforward cut elimination procedure.

Although we do not define a non-subatomic proof system for propositional classical logic,
using the interpretation map given in [2], we can construct a corresponding proof in KDTS
from a non-subatomic proof and then by Theorem 29, we can eliminate the cuts from that
proof to obtain a cut-free proof that can then be translated, preserving cut-freeness, back
into the non-subatomic system.

One of the strengths of subatomic logic is that it can describe normalisation procedures
that apply to a wide range of logics. However, in this paper we focus almost entirely on
propositional classical logic. This is because our primary investigation is into the complexity
of strictly linear proof systems with explicit substitutions, and by working in classical logic we
are able to compare against the benchmark systems of Frege and substitution Frege [11]. It
is nevertheless our intention that these ideas be extended to a wider range of logics, including
first- and higher-order logics.
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A Omitted proofs

Proof of Theorem 20. We refer to Figures 1 and 2. Given a derivation ϕ that contains
inference steps in System Keq, we extract all the units into a substitution π, i.e. we obtain a
derivation ψ such that ϕ ≡ πψ, where π is an actual substitution and ψ is open, i.e. it does
not contain units. We assume that different occurrences of a unit or variable in each section
of ϕ are assigned by π to different variables, and all variables so created are fresh. Moreover,
π is such that all the inference steps in ψ except for those in System Keq remain valid, i.e.
corresponding units and variables in the premise and the conclusion of a step are assigned
the same variable. To be valid, each equality step of ϕ in Keq needs at least one unit that
does not appear either in the premise or the conclusion, therefore ψ is not necessarily a
derivation in KDTeq.
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ψ ≡

ψ0..........................

K1

{
A1

A1 α1 x1

}
..........................

ψ1
...

ψi−1........................

Ki

{
Ai

Ai αi xi

}
........................

ψi
...

ψm−1..........................

Kn

{
An

An αn xn

}
..........................

ψn

Phase
1

−−→

σn

· · ·σi+1

σi

· · ·σ2

σ1ψ0...........................

K1

 σ1A1
χ1

A1 α1 X1


::::::::::::::

⟨X1|x1⟩ψ1
...

⟨Xl|xl⟩1...i−1 ψi−1
::::::::::::::::::::::::::::

⟨Xl|xl⟩Ui
Ki

 σi ⟨Xl|xl⟩Ti
Ai

χi

⟨Xl|xl⟩Ti
Ai αi Xi


::::::::::::::::::::::::::::

⟨Xl|xl⟩1...i ψi
...

⟨Xl|xl⟩1...n−1 ψn−1
:::::::::::::::::::::::::::::::::::::::

⟨Xl|xl⟩Un
Kn

 σn ⟨Xl|xl⟩Tn
An

χn

⟨Xl|xl⟩Tn
An αn Xn


:::::::::::::::::::::::::::::::

⟨Xl|xl⟩1...n ψn

≡ ψ′

Where:

σi = [v αi xi|v]Ai

qACi ≡ [C|v]Ai\{x1,...,xi−1}
qAi

Xi ≡ ⟨ qAxi
1

∣∣∣x1⟩ · · · ⟨ qAxi
i−1

∣∣∣xi−1⟩ qAxi
i

Ti = {x1, . . . , xi−1} ∩Ai

Ui = {x1, . . . , xi−1} \Ai

χi is given in Figure 3.

Figure 1 Phase 1 of the construction in Theorem 20.
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ψ′ ≡

ψ′
m.............................

Hm

{
Bm βm Ym

Bm

}
.............................

ψ′
m−1
...
ψ′
j.........................

Hj

{
Bj βj Yj

Bj

}
.........................

ψ′
j−1
...
ψ′

1.........................

H1

{
B1 β1 Y1

B1

}
.........................

ψ′
0

Phase
2

−−→

⟨Zl|yl⟩1...m ψ
′
m

::::::::::::::::::::::::::::::::::::::::

⟨Zl|yl⟩Wm
Hm

⟨Zl|yl⟩Vm
Bm βm [Zm|ym]Ym
ωm

τm ⟨Zl|yl⟩Vm
Bm


::::::::::::::::::::::::::::::::::::::::::::::

τm

⟨Zl|yl⟩1...m−1 ψ
′
m−1

...

· · · τj+1

⟨Zl|yl⟩1...j ψ
′
j

::::::::::::::::::::::::::::::::::

⟨Zl|yl⟩Wj
Hj


⟨Zl|yl⟩Vj

Bj βj [Zj |yj ]Yj
ωj

τj ⟨Zl|yl⟩Vj
Bj


::::::::::::::::::::::::::::::::::

τj

⟨Zl|yl⟩1...j−1 ψ
′
j−1

...

· · · τ2

⟨Z1|y1⟩ψ′
1

:::::::::::::::::::

H1

B1 β1 [Z1|y1]Y1
ω1

τ1B1


:::::::::::::::::::

τ1ψ
′
0

≡ ψ′′

Where:

Yj = {yj}

τj = ⟨Yj |yj⟩ [v βj yj |v]Bj

pBCj ≡ [C|v]Bj\{y1,...,yj−1}
pBj

Zj ≡ ⟨ pB
yj

1

∣∣∣y1⟩ · · · ⟨ pB
yj

j−1

∣∣∣yj−1⟩ pB
yj

j

Vj = {y1, . . . , yj−1} ∩Bj

Wj = {y1, . . . , yj−1} \Bj

ωj is given in Figure 3.

Figure 2 Phase 2 of the construction in Theorem 20.
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We first consider the equality steps that are instances of =1, =3, =5, =7, =9 or =11, as
given in the definition of Keq; that is, those unit-equality inference steps which create a unit
travelling downwards in the derivation. Let x1, . . . , xn be the variables in ψ that correspond
to one of the units in those steps, via π. For rules =5 and =11, there are two choices and we
pick one at random. Figure 1 shows x1, . . . , xn to the right of the αis but we assume that
they might be to the left, without prejudice to this proof. Without loss of generality, we
assume that the sections of ψ containing the invalid inference steps are arranged as in the
figure. Under the assumptions on π mentioned above, no variable xi appears in formulae A1,
. . . , Ai, for 1 ≤ i ≤ n; on the other hand, xi might appear in Ai+1, . . . , An.

We build ϕ′ ≡ πψ′′, where ψ′′ is obtained from ψ in two phases. Phase 1 and Phase 2
perform similar operations on all the invalid inference steps of ψ: in Phase 1 we fix some
of them via down-merges and in Phase 2 we fix the remaining ones via up-merges. Both
phases produce substitutions that are propagated through the derivation. Some of these
substitutions might conflict; indeed, consider the following situation:

ψ ≡ π

ψ1...........................

K

{
Ai

=
Ai αi xi

}
...........................

ψ2...........................

H

{
Bj βj xi

=
Bj

}
...........................

ψ3

.

Here, xi would be assigned an instance of qAi for a down-merge at the top and an instance
of pBj for an up-merge at the bottom. By Lemma 16, these conflicting substitutions can be
reconciled via the eversion construction[

pBj

∣∣∣v]
Ai

qAi

[
qAi

∣∣∣v]
Bj

pBj

.

This eversion is implemented in Phase 2 (although it could have been implemented in
Phase 1).

Phase 1. Each invalid inference step is replaced by an KDTS derivation χi, for 1 ≤ i ≤ n,
shown in Figure 3. Each variable xi is replaced by a formula Xi, whose purpose is to make a
down-merge of Ai via Ai and αi possible. Xi is constituted by the formula qAi whose variables
are to be replaced by formulae only containing the variable xi. The idea is that the original
variable xi is expanded into a formula, Xi, whose structure matches the surroundings (to be
amenable to a merge) but whose value remains that of xi. Those variables of qAi that are
not in {x1, . . . , xi−1} are set to xi, in qAxi

i . The other variables of qAi must be replaced by
substitutions that could match the formulae generated by the χ1, . . . , χi−1 above χ1 in the
derivation; those formulae are qAx1

1 , . . . , qA
xi−1
i−1 and are matched by qAxi

1 , . . . , qAxi
i−1. At its top,

χi generates the substitution σi, which does not change the value of the variables it applies
to, and is propagated upwards in the derivation. At its bottom, χi generates the substitution
⟨Xi|xi⟩, which is propagated downwards in the derivation and also does not change values
because πXi = πxi. The rest of the construction in Figures 1 and 2 is bookkeeping, mainly
relying on having maximally renamed apart all variables so that we can move substitutions
without capturing any.
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χi ≡

[v αi xi|v]Ai
⟨Xl|xl⟩Ti

Ai

χ′
i

⟨Xl|xl⟩Ti
Ai α

⟨⟨ qAxi
1

∣∣∣x1⟩ · · · ⟨ qAxi

l−1

∣∣∣xl−1⟩ qAxi

l

∣∣∣xl⟩
Ti

qAxi
i

::::::::::::::::::::::::::::::::

⟨ qAxi
1

∣∣∣x1⟩ · · · ⟨ qAxi
i−1

∣∣∣xi−1⟩ qAxi
i

ωj ≡

⟨Zl|yl⟩Vj
Bj βj

[
⟨ pB

yj

1

∣∣∣y1⟩ · · · ⟨ pB
yj

j−1

∣∣∣yj−1⟩ pB
yj

j

∣∣∣yj]Yj
ω′′

j

[Yj |yj ]
⟨ pB

yj

1

∣∣∣y1⟩ · · · ⟨ pB
yj

j−1

∣∣∣yj−1⟩ pB
yj

j
::::::::::::::::::::::::::::::::

⟨⟨ pB
yj

1

∣∣∣y1⟩ · · · ⟨ pB
yj

l−1

∣∣∣yl−1⟩ pB
yj

l

∣∣∣yl⟩
Vj

pB
yj

j

ω′
j

[v βj Yj |v]Bj
⟨Zl|yl⟩Vj

Bj
::::::::::::::::::::::::::

⟨Yj |yj⟩ [v βj yj |v]Bj
⟨Zl|yl⟩Vj

Bj

Figure 3 Auxiliary derivations for Phases 1 and 2 in Theorem 20.

Phase 2. Let us call ψ′ the derivation produced in Phase 1. We operate on it in a similar
way to Phase 1 but in the other direction. The equality steps to fix are those labelled =2,
=4, =6, =8, =10 and =12 in the definition of Keq; that is, those unit-equality inference steps
that create a unit travelling upwards in the derivation. For 1 ≤ j ≤ m, Bj takes the place of
Ai and Yj that of xi. One difference is that now Yj might be one of the formulae Xis, and
not just a variable. That said, each Yj still only contains one variable (potentially in multiple
copies), say yj , and we note that yj does not appear in B1, . . . , Bj and might appear in
Bj+1, . . . , Bm. In Phase 2, each formula Zj plays the same role as Xi in Phase 1, and the
derivation ωj , shown in Figure 3, plays the same role as χi. There, ω′

j is an up-merge and ω′′
j

the eversion that we outlined above in this proof. The substitution τj is propagated below
ωj ; unlike σi, τj contains an additional substitution ⟨Yj |yj⟩ but for the rest its role is similar.
The result of Phase 2 is a derivation ψ′′ in KDTS.

Complexity. We establish upper bounds for the width and height of ψ′. The width of ϕ,
say w, dominates the size of A1, . . . , An, and its height, say h, is such that wh dominates n
and m. The maximum section width w′ of ψ′ occurs in the conclusion of some down-merge
χ′
i, let us say χ′

n (see also Lemma 15). Therefore,

w′ = wψ′ ≤
∣∣⟨Xl|xl⟩Un

Kn{ }
∣∣ + 2

∣∣⟨Xl|xl⟩Tn
An

∣∣
≤ |Kn{ }| + 2

∣∣∣∣⟨⟨ qAxl
1

∣∣∣x1⟩ · · · ⟨ qAxl

l−1

∣∣∣xl−1⟩ qAxl

l

∣∣∣xl⟩
1...n−1

An

∣∣∣∣
≤ w + 2(w + 2w + · · · + (n− 1)w + w)
= O(w3h2) .
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Because of Lemma 15, the height of χ′
n also is O(w3h2), therefore the height h′ of ψ′ is

O(w3h2). Similarly, the maximum section width w′′ of ψ′′ occurs in the premise of some
up-merge ω′

j , let us say ω′
m. Therefore,

w′′ = wψ′′ ≤
∣∣⟨Zl|yl⟩Wm

Hm{ }
∣∣ +

∣∣⟨Zl|yl⟩Vm
Bm

∣∣ +
∣∣∣[Ym|v]Bm

⟨Zl|yl⟩Vm

pBm

∣∣∣
≤ |Hm{ }| + (1 + |Ym|)

∣∣∣∣⟨⟨ qByl

1

∣∣∣y1⟩ · · · ⟨ qByl

l−1

∣∣∣yl−1⟩ qByl

l

∣∣∣xl⟩
1...m−1

Bm

∣∣∣∣
≤ w′ + (1 + w′)(w′ + 2w′ + · · · + (m− 1)w′ + w′)
= O((w′)2(wh)2)
= O(w7h5) ,

and this is the width of ϕ′. Because of Lemmas 15 and 16, the height of ωj is also O(w7h5),
which dominates h′, therefore the height of ϕ′ is O(w7h5). ◀
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