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Abstract
We provide a succinct and verified completeness proof for first-order bi-intuitionistic logic, relative to
constant domain Kripke semantics. By doing so, we make up for the almost-50-year-old substantial
mistakes in Rauszer’s foundational work, detected but unresolved by Shillito two years ago. Moreover,
an even earlier but historically neglected proof by Klemke has been found to contain at least local
errors by Olkhovikov and Badia, that remained unfixed due to the technical complexity of Klemke’s
argument. To resolve this unclear situation once and for all, we give a succinct completeness proof,
based on and dualising a standard proof for constant domain intuitionistic logic, and verify our
constructions using the Coq proof assistant to guarantee correctness.
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1 Introduction

In the 1970s, Cecylia Rauszer provided foundations for bi-intuitionistic logic (first studied by
Moisil [34]), an extension of intuitionistic logic with a binary operator called exclusion, dual
to the intuitionistic implication →. Her work spanned over most approaches to non-classical
logics, ranging from algebras [43, 45], Kripke semantics [44, 46, 47], sequent calculus [42], to
Hilbert systems [43, 42]. The impressiveness and exhaustiveness of Rauszer’s study of bi-
intuitionistic logic is not only measured by the variety of fields she introduced bi-intuitionistic
in, but by the analysis in each case of both the propositional and first-order logic.

Unfortunately, through time several mistakes were detected in Rauszer’s work. First, her
sequent calculus for propositional bi-intuitionistic logic was shown by Pinto and Uustalu [38]
not to admit cut, contradicting her claim [42, Result 2.3]. To correct this, they provided a
calculus based on sequents with richer structure, which they proved to admit cut. Secondly,
a confusion around the status of the deduction theorem led Goré and Shillito [18] to notice
the conflation in Rauszer’s work of two different propositional bi-intuitionistic logics. This
conflation resulted in an incorrect completeness proof for the propositional case, ultimately
resolved by Goré and Shillito. Finally, the errors contained in the propositional case continue
being present in Rauszer’s work on the first-order case as noted by Shillito [50], who failed to
fix the proof in this setting. So, to date, no completeness proof for first-order bi-intuitionistic
logic (FOBIL) along the lines of Rauszer’s argument is known.

© Dominik Kirst and Ian Shillito;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 40; pp. 40:1–40:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dominik.kirst@inria.fr
https://orcid.org/0000-0003-4126-6975
mailto:ian.shillito@anu.edu.au
https://orcid.org/0009-0009-1529-2679
https://doi.org/10.4230/LIPIcs.CSL.2025.40
https://github.com/ianshil/FOBiInt
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


40:2 Completeness of First-Order Bi-Intuitionistic Logic

To our knowledge, the only other candidate proof was given by Klemke in 1971 [30],
thereby in fact predating Rauszer’s work. He attributes the semantics of the logic to
Grzegorczyk [19] and uses a Henkin-style argument to construct a universal model. However,
its correctness is questioned by Olkhovikov and Badia [35], who write:

“Incidentally, there is an alternative completeness argument by Klemke, where
bi-intuitionistic predicate logic is studied possibly for the first time in print (and, as
far as we know, independently from Rauszer’s work) and that contains other errors.”

As his proof strategy is technically involved and, being written in fairly old style (and German
language), the presentation is rather inaccessible to a broader audience, it is hard to assess
whether these errors are locally fixable or as substantially unfixable as Rauszer’s.

We therefore opt for an alternative route to settle the completeness of FOBIL once and
for all: we present a succinct proof based on standard techniques, coming in a modern (and
English) presentation for easy assessment, and use the Coq proof assistant to verify our
argument, therefore leaving no room for ambiguity and error.

In that vein, our formal investigation finally establishes solid foundations for FOBIL,
and simultaneously tightly connects the provability of the constant domain axiom in this
logic with constant domain models. That is, contrarily to the propositional case, first-order
bi-intuitionistic logic is known not to be a conservative extension of first-order intuitionistic
logic [48, p.56][32, 50]: it derives the constant domain axiom (CD), displayed below, which
is not provable in the purely intuitionistic counterpart [16].

∀x(φ(x) ∨ ψ) → (∀xφ(x) ∨ ψ) (CD)

Here, the variable x is required not to occur freely in ψ. As the name suggests, this
axiom characterises the constant domain property on models in the Kripke semantics for
the intuitionistic language [19, 16, 36]. Rauszer suggested that this connection between the
axiom and the property on models should also hold in the bi-intuitionistic setting [44, 48].
The first-order Kripke semantics she developed uses frames for intuitionistic logic satisfying
the constant domain property, thus capturing the semantics for FOCDIL, i.e. first-order
intuitionistic logic extended with the (CD) axiom. Our results provide a confirmation of
Rauszer’s suggestion by showing FOBIL complete relative to the constant domain semantics,
notably settling the logic as a conservative extension of FOCDIL [48, p.57][5].

In fact, our presented completeness proof for bi-intuitionistic logic mostly follows the
textbook proof of Gabbay, Shehtman, and Skvortsov [17] for FOCDIL. As our only actually
novel idea, we observe that their use of a custom Lindenbaum lemma exploiting the (CD)
axiom to obtain successor worlds in a universal model can be dualised, namely, to obtain
also predecessor worlds, exploiting a dualisation of the (CD) axiom presented below.

(∃xφ(x) ∧ ψ) ∃x(φ(x) ∧ ψ) (DCD)

While (CD) is used as a theorem, i.e. ⊤ ⊢ (CD), we exploit the contradictory nature of
(DCD) in our custom lemma, as it satisfies (DCD) ⊢ ⊥. The remaining argument is also
streamlined to dispose of the usual Henkin-style syntax extensions to obtain a particularly
succinct presentation that is feasible to verify in Coq with little technical overhead.

In summary, the contributions of the present paper are as follows:
We give a succinct completeness proof for FOBIL based on standard techniques, closing a
gap in the literature not featuring a single unquestionably correct proof.
We illustrate the tight connection of FOBIL and FOCDIL, in that our completeness proof
of the former extends and dualises the one of the latter.
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We provide a Coq mechanisation verifying all definitions and results in the paper for
absolute clarity and correctness, hyperlinked within this paper via clickable icons.
As a by-product, we contribute, to the best of our knowledge, the first mechanisation of
the completeness of FOCDIL and the conservativity of FOBIL over FOCDIL.

After some preliminary remarks on our meta-theory based on constructive type theory
in Section 2, we recall the syntax, deduction system, and semantics of FOBIL in Section 3,
including a dedicated discussion of the different constant domain axioms. In Section 4, we
then prove the three versions of Lindenbaum lemmas needed to establish completeness and
conservativity in Section 5. We end with remarks on the Coq development as well as related
and future work in Section 6.

2 Preliminaries

The forthcoming mathematical development can be performed in any standard meta-
theoretical foundation. To be formally precise and close to the mechanisation, we work in the
calculus of inductive constructions (CIC) [4, 37] underlying the Coq proof assistant [53] and
briefly sketch the key features we need. The core of the system is a predicative hierarchy of
computational types closed under the usual type formers like (dependent) function types and
(dependent) pair types. CIC further comes with an impredicative universe P of propositions in
which the above type formers take common logical notation. Inductive types and predicates
can be formed via a general scheme, for instance to accommodate the types N of natural
numbers, B of boolean values, and of finite lists X∗ over a given type X.

The logic represented in P is constructive but also agnostic, so in particular the excluded
middle (∀P : P.P ∨ ¬P ) is not provable but it can be assumed consistently. As in this paper
we are aiming at a minimalistic proof directed to an audience not necessarily interested in
questions of constructivism, we in fact assume the excluded middle globally and highlight its
uses in the most crucial cases. Moreover, we assume the axiom of unique choice to freely
identify total functional relations X → Y → P with functions X → Y where convenient.
That is, we effectively simulate a traditional foundation based on classical set-theory to make
the text as accessible as possible to readers unfamiliar with constructive type theory.

3 Basics of Bi-intuitionistic Logic

We present the basics of first-order bi-intuitionistic logic: its syntax, axiomatic proof system,
constant domain Kripke semantics, and known facts of relevance, mostly following the
presentations in [50] and [51].

3.1 Syntax
As mentioned above, first-order bi-intuitionistic logic is expressed in the language of first-order
intuitionistic logic extended with the exclusion operator ˙ . More formally:

▶ Definition 1 ( ). Fix a countable signature S of function symbols f and predicate symbols
P , denoting their arities by |f| and |P |, respectively. Let V be the countable type of variables
x, y, z : V .

The term and formula language for bi-intuitionistic logic is defined as follows:

T ::= x | f(t1, . . . , t|f |)

F ::= P (t1, . . . , t|P |) | ⊥̇ | φ ∧̇φ | φ ∨̇φ | φ →̇φ | φ ˙ φ | ∀̇xφ | ∃̇xφ

CSL 2025
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We call a formula of the shape P (t1, . . . , t|P |) an atomic formula. Here we use dots
to distinguish the object-level connectives and quantifiers of bi-intuitionistic logic from the
meta-level connectives and quantifiers of the ambient meta-logic. We define ⊤̇ := (⊥̇ →̇ ⊥̇),
as well as the abbreviations ¬̇φ := (φ →̇ ⊥̇) and ∼̇φ := (⊤̇ ˙ φ), respectively called negation
and weak negation.

The added binary operator φ ˙ ψ is intended to be the dual of φ →̇ψ and is usually read
as “φ excludes ψ”. Consequently, ∼̇ is also defined dually to ¬̇.

In the following, we use t, t0, t1, . . . for terms the greek letters φ,ψ, χ, δ, . . . for formulas
and Γ,∆,Φ,Ψ . . . for sets or lists of formulas, depending on the context. When Γ refers to a
set of formulas, we write Γ, φ or φ,Γ to mean Γ ∪ {φ}. For a set of formulas Γ, we define Γ
as {φ : φ ̸∈ Γ}, where φ ̸∈ Γ means ¬(φ ∈ Γ).

For a formula φ we denote its set of free variables, i.e. under the scope of a corresponding
quantifier by FV (φ), and say that it is closed if FV (φ) = ∅. A set of formulas is closed if all
formulas in Γ are closed. We denote by φ[t/x] the substitution of the free occurrences of the
variable x in φ by the term t. We sometimes stress that x is free in φ by using the notation
φ(x) and in such a context just writing ψ is meant to suggest that x is not free in ψ. In that
regard, our convention for quantifier scopes is that ∀̇xφ →̇ψ refers to (∀̇xφ) →̇ψ and not to
∀̇x(φ →̇ψ).

Finally, note that our language is built on countable sets of variables, function symbols
and predicate symbols. In consequence, the set of formulas is recursively enumerable.

3.2 Axiomatic Calculus

The generalised Hilbert calculus FOBIH [50] ( ) for FOBIL extends the one for intuitionistic
logic, containing the axioms A1 to A9 (for the propositional basis, implicit here) and A14
to A16 (for the first-order basis), with the axioms A10 to A13 and the rule (wDN), shown
in Figure 1. There, A in the rule (Ax) refers to the set of all instances of axioms. In the
following we write Γ ⊢ φ to mean that the syntactic expression Γ ⊢ φ, called a consecution,
is provable in FOBIH, i.e. there is a tree of consecutions built using the rules in Figure 1 with
instances of (Ax) and (El) as leaves. We also abbreviate ¬(Γ ⊢ φ) by Γ ̸⊢ φ. We formally
define the logic FOBIL as the set {(Γ, φ) : Γ ⊢ φ}.

Note that our calculus FOBIH is the calculus FOwBIH of [50].1 In his work, he also
considers a stronger system called FOsBIH, obtained by modifying the premise of the rule
(wDN) to Γ ⊢ φ. As the letters w and s are only used to distinguish the two calculi, we drop
w in this paper for simplicity.

The name of the rule (Gen) stands for Generalisation, while the name of the rule (EC)
stands for for Existential Conditionalisation.

3.3 Basic Proof-Theoretic Results

Next, we present basic proof-theoretic results from the mechanisation of Shillito [50]. They
express properties of the proof system FOBIH, some of which we use to prove completeness.

1 More precisely, FOBIH is the calculus FOwBIH minus the axiom φ →̇ ⊤. This deletion is caused by the
fact that ⊤ is not a primitive connective of our language.

https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_GHC.html#FOBIH_prv
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A10 φ →̇ (ψ ∨̇ (φ ˙ ψ)) ∅ ⊢ φ

Γ ⊢ ¬̇∼̇φ
(wDN)

A11 (φ ˙ ψ) →̇ ∼̇(φ →̇ψ)
A12 ((φ ˙ ψ) ˙ χ) →̇ (φ ˙ (ψ ∨̇χ)) Γ ⊢ φ

Γ ⊢ ∀̇xφ
(Gen)A13 ¬̇(φ ˙ ψ) →̇ (φ →̇ψ)

A14 ∀̇x(ψ →̇φ) →̇ (ψ →̇ ∀̇xφ)
A15 ∀̇xφ →̇φ[t/x] Γ ⊢ φ →̇ψ

Γ ⊢ ∃̇xφ →̇ψ
(EC)

A16 φ[t/x] →̇ ∃̇xφ

φ ∈ A
Γ ⊢ φ

(Ax)
φ ∈ Γ
Γ ⊢ φ

(El)
Γ ⊢ φ Γ ⊢ φ →̇ψ

Γ ⊢ ψ
(MP)

Figure 1 Generalised Hilbert calculus FOBIH, where x is free in ψ and Γ in A14, (Gen) and (EC).

Unsurprisingly, we can prove that FOBIL is a finitary logic: it satisfies identity ( ),
monotonicity ( ), compositionality ( ), structurality ( ), and finiteness ( ) [12, 31]. These
properties are expressed below, where σ is a function substituting atomic formulas by
composite formulas satisfying some properties2 and ⊆f is the finite subset relation.

Identity φ ∈ Γ → Γ ⊢ φ

Monotonicity Γ ⊆ Γ′ → Γ ⊢ φ → Γ′ ⊢ φ

Compositionality Γ ⊢ φ → (∀γ ∈ Γ.(∆ ⊢ γ)) → ∆ ⊢ φ

Structurality Γ ⊢ φ → Γσ ⊢ φσ

Finiteness Γ ⊢ φ → ∃Γ′ ⊆f Γ.(Γ′ ⊢ φ)

To present the next results in an elegant way, we introduce helpful derived notions.

▶ Definition 2. Let ∆ be a list of formulas. We define
∨̇

: F∗ → F recursively on the structure
of ∆ by

∨̇
[] := ⊥̇ and

∨̇
(φ :: ∆′) := φ ∨̇ (

∨̇
∆′) ( ). Analogously, we define

∧̇
: F∗ → F by∧̇

[] := ⊤̇ and
∧̇

(φ :: ∆′) := φ ∧̇ (
∧̇

∆′) ( ).

The function
∨̇

essentially creates the disjunction of all members of a list of formulas,
with an additional disjunct ⊥̇, the neutral element of ∨̇ . Using

∨̇
, we can bring consecutions

Γ ⊢ φ to a fully symmetric setting via pairs of the shape [Γ | ∆], constituted of a left and
right context.

▶ Definition 3. We define the following:
1. ⊢ [Γ | ∆] if Γ ⊢

∨̇
∆′ for some ∆′ ⊆f ∆ ( );

2. ̸⊢ [Γ | ∆] if ¬(⊢ [Γ | ∆]), in which case we say that [Γ | ∆] is relative consistent.

Note that the symmetry in our pairs is only simulated, as it ultimately relies on the
asymmetry of consecutions Γ ⊢ φ which we hide via a derived notion. A similar illusion
could be obtained by defining an axiomatic system on symmetric consecutions φ ⊢ ∆ as
first-class citizens, and define ⊢ [Γ | ∆] as the existence of Γ′ ⊆f Γ with

∧̇
Γ ⊢ ∆. It would be

interesting to see what a truly symmetric axiomatic calculus based on pairs would look like.
While our pairs are crucially used in the completeness proof, as we shall see, they are

already convenient to express interesting properties of FOBIH.

2 This function needs to commute with substitution of variables ( ), but we omit these details as they
are not in the scope of this paper.
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▶ Theorem 4. We have the following:
1. ⊢ [∅ | φ ∨̇ ∼̇φ]
2. ⊢ [∅ | (φ ˙ ψ) →̇χ] ↔ ⊢ [∅ | φ →̇ (ψ ∨̇χ)]
3. ⊢ [Γ, φ | ψ] ↔ ⊢ [Γ | φ →̇ψ]
4. ⊢ [φ | ψ,∆] ↔ ⊢ [φ ˙ ψ | ∆]

5.
⊢ [φ | ∆] ⊢ [ψ ˙ φ | ∆]

⊢ [ψ | ∆]
(DMP)

(1) above shows that a bi-intuitionistic version of the law of excluded-middle holds in
FOBIL ( ). (2) is a syntactic analogue of the algebraic dual residuation property below ( ).

a ≤ b ∨ c

a ˙ b ≤ c

(3) is the deduction-detachment theorem for FOBIL ( , ), while (4) is its dual deduction-
detachment theorem ( , ). (5) is the Dual Modus Ponens rule ( ), which acts as (MP) but
on the left-hand side of pairs and using ˙ instead of →̇ .

3.4 Constant Domain Axioms
Early on, Rauszer noticed the provability in FOBIL of the constant domain axiom (CD), as
shows the proof below on the left ( ), where we rely on the commutativity of ∨̇ ( ).

⊢ (∀̇x(φ(x) ∨̇ψ)) →̇ (φ(x) ∨ ψ)
(Ax)

(∀̇x(φ(x) ∨̇ψ)) ⊢ ψ ∨ φ(x)
Det. T hm

∀̇x(φ(x) ∨̇ψ) ˙ ψ ⊢ φ(x)
Dual Ded. T hm.

(∀̇x(φ(x) ∨̇ψ)) ˙ ψ ⊢ ∀̇xφ(x)
(Gen)

∀̇x(φ(x) ∨̇ψ) ⊢ ∀̇xφ(x) ∨̇ψ
Dual Det. T hm.

⊢ ∀̇x(φ(x) ∨̇ψ) →̇ (∀̇xφ(x) ∨̇ψ)
Ded. T hm.

⊢ (φ(x) ∧̇ψ) →̇ ∃̇x(φ(x) ∧̇ψ)
(Ax)

⊢ φ(x) →̇ψ →̇ ∃̇x(φ(x) ∧̇ψ)
Currying

⊢ ∃̇xφ(x) →̇ψ →̇ ∃̇x(φ(x) ∧̇ψ)
(EC)

∃̇xφ(x) ⊢ ψ →̇ ∃̇x(φ(x) ∧̇ψ)
Det. T hm.

∃̇xφ(x) ∧̇ψ ⊢ ∃̇x(φ(x) ∧̇ψ)
Det. T hm.

(∃̇xφ(x) ∧̇ψ) ˙ ∃̇x(φ(x) ∧̇ψ) ⊢ ⊥̇
Dual Ded. T hm.

Moreoever, the bi-intuitionistic language enhances expressivity as it contains both connectives
or quantifiers and their duals. This allows us to dualise formulas: recursively replace any
connective or quantifier by its dual, and swap the formula on the left of an implication or
exclusion by the one on the right. Therefore, we can dualise the axiom (CD) to obtain the
dual constant domain dual-axiom (DCD). While the former is a theorem as it is provable
from an empty left-context, equivalent to ⊤̇, the latter is a contradiction as it proves the
empty right-context, i.e. ⊥̇, as shown above on the right ( ). We suspect that (DCD) plays
a role to enforce constant domains in first-order dual intuitionistic logic, which is expressed
in the language of FOBIL without →̇ .

Both (CD) and (DCD) will be of crucial use in our completeness proof.

3.5 Constant Domain Kripke Semantics
We proceed to define a Kripke semantics for FOBIL which extends the one for FOCDIL with
an interpretation of ˙ . Note that the interpretation we use here is not the traditional
one [48] formalised in [50], but an alternative put forward in [51].

Both the traditional semantics and ours are defined using (Kripke) models which are
identical to the ones of FOCDIL, as shown below.
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https://ianshil.github.io/FOBiInt/FObiint.FOBIH_properties.html#dual_residuation
https://ianshil.github.io/FOBiInt/FObiint.FOBIH_properties.html#gen_FOBIH_Deduction_Theorem
https://ianshil.github.io/FOBiInt/FObiint.FOBIH_properties.html#gen_FOBIH_Detachment_Theorem
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https://ianshil.github.io/FOBiInt/FObiint.FOBIH_properties.html#gen_FOBIH_Dual_Detachment_Theorem
https://ianshil.github.io/FOBiInt/FObiint.FOBIH_properties.html#dual_MP
https://ianshil.github.io/FOBiInt/FObiint.FOBIH_properties.html#Constant_Domain_Ax
https://ianshil.github.io/FOBiInt/FObiint.FOBIH_properties.html#comm_Or
https://ianshil.github.io/FOBiInt/FObiint.FOBIH_properties.html#Dual_Constant_Domain
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▶ Definition 5 ( ). A model M is a tuple (W,≤, D,F ,P), where (W,≤) is a peordered set,
D is a non-empty set called the domain, F is a function interpreting each function symbol f
of arity n by a function F(f) : Dn → D, and P is a function interpreting, in each w ∈ W ,
each predicate symbol P of arity n by a set P(w,P ) ⊆ Dn such that:

∀w ≤ v.∀P.∀d0, . . . , dn ∈ D. ((d0, . . . , dn) ∈ P(w,P ) → (d0, . . . , dn) ∈ P(v, P ))

An assignment α on D is a function α : V → D, and α[d/x] is the assignment α modified
in x to output d. An assignment α is extended to the interpretation α(t) of a term ( )
recursively: α(t) = α(x) if t = x, and α(t) = F(f)(α(t0), . . . , α(tn)) if t = f(t0, . . . , tn).

Our Kripke semantics extends the usual forcing relation of first-order intuitionistic logic
to incorporate ˙ as follows.

▶ Definition 6 ( ). Given a model M = (W,≤, D,F ,P) and an assignment α for M, we
define the forcing relation M, w, α ⊩ φ between a world w ∈ W and a formula recursively by:

M, w, α ⊩ P (t0, . . . , tn) := (α(t0), . . . , α(tn)) ∈ P(w,P )
M, w, α ⊩ ⊥̇ := ⊥
M, w, α ⊩ φ ∧̇ψ := M, w, α ⊩ φ ∧ M, w, α ⊩ ψ

M, w, α ⊩ φ ∨̇ψ := M, w α ⊩ φ ∨ M, w, α ⊩ ψ

M, w, α ⊩ φ →̇ψ := ∀v ≥ w.(M, v, α ⊩ φ → M, v, α ⊩ ψ)
M, w, α ⊩ φ ˙ ψ := ¬(∀v ≤ w.(M, v, α ⊩ φ → M, v, α ⊩ ψ))
M, w, α ⊩ ∀̇xφ := ∀d ∈ D.M, w, α[d/x] ⊩ φ

M, w, α ⊩ ∃̇xφ := ∃d ∈ D.M, w, α[d/x] ⊩ φ

We abbreviate ¬(M, w, α ⊩ φ) by M, w, α ̸⊩ φ.

Crucially, while the semantic clause for →̇ looks forward on the relation ≤, the clause
for ˙ looks backwards. This circumstance shows that FOBIL shares similarities with tense
logic [39, 40, 41]. Additionally, observe that the use of constant domain models allows us
to localise the interpretation of ∀̇ in a single point, in contrast with the case of first-order
intuitionistic logic where it is interpreted on all successors.

Note that our semantic clause for ˙ is intuitionistically weaker but classically equivalent
to the traditional clause for instance used by Rauszer [48]:

∃v ≤ w.(M, v, α ⊩ φ ∧ M, v, α ̸⊩ ψ)

Two points motivate this clause. First, to our eyes the duality between →̇ and ˙ is more
visibly expressed in our clause. Indeed, it is obtained in two steps by negating the clause
for →̇ , and by reversing the order between v and w, witnessing the tense logic flavour
of ˙ . Secondly, our analysis led us to believe that the strength of the traditional clause
more readily forces one to use non-constructive principles, notably in the proof of the Truth
lemma (Lemma 17).

The main feature of the Kripke semantics for intuitionistic logic, i.e. persistence, is
preserved in our semantics for FOBIL.

▶ Lemma 7 (Persistence ). Let M = (W,≤, D,F ,P) be a model. The following holds.

∀α.∀v, w ∈ W. ∀φ. (w ≤ v → M, w, α ⊩ φ → M, v, α ⊩ φ)

Finally, we define the (local) consequence relation Γ ⊨ φ on our semantics ( ):

Γ ⊨ φ if ∀M.∀α.∀w. (M, w, α ⊩ Γ → M, w, α ⊩ φ)

CSL 2025

https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Kripke_sem.html#kmodel
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Kripke_sem.html#eval
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Kripke_sem.html#ksat
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Kripke_sem.html#ksat_mon
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Kripke_sem.html#loc_conseq


40:8 Completeness of First-Order Bi-Intuitionistic Logic

Here M, w, α ⊩ Γ means ∀γ ∈ Γ.M, w, α ⊩ γ. We then also abbreviate ¬(Γ ⊨ φ) by Γ ̸⊨ φ.
Crucially using classical reasoning, soundness of FOBIH is straightforwardly obtained.

▶ Lemma 8 (Soundness ). If Γ ⊢ φ then Γ ⊨ φ.

Proof. We show Γ ⊨ φ by induction on a given derivation of Γ ⊢ φ. The validity of the
inference rules holds constructively using routine arguments and so does the validity of all
axioms but A10, A12, and A13, which rely on the excluded middle. We here only present the
case of A10 for illustrative purposes.

In this case, we need to show that assuming M, w, α ⊩ φ we have either M, w, α ⊩ ψ or
M, w, α ⊩ φ ˙ ψ. To proceed, we classical reasoning to distinguish whether M, w, α ⊩ ψ or
M, w, α ̸⊩ ψ. In the former case we are done, in the latter case we show M, w, α ⊩ φ ˙ ψ,
so for a contradiction we assume that M, v, α ⊩ φ implies M, v, α ⊩ ψ for all predecessors
v ≤ w. For the choice v := w we thus obtain M, w, α ⊩ ψ, in contradiction to the assumption
M, w, α ̸⊩ ψ. ◀

4 A Forest of Lindenbaum Lemmas

In this section we are interested in the generation of Henkin prime theories, defined below.

▶ Definition 9. We say that a set of formulas Γ is:
consistent if Γ ̸⊢ ⊥ ( );
deductively closed if Γ ⊢ φ implies φ ∈ Γ ( );
a theory if it is consistent and deductively closed;
prime if φ ∨̇ψ ∈ Γ implies φ ∈ Γ ∨ ψ ∈ Γ ( );
∃̇-Henkin if ∃̇xφ ∈ Γ then one can compute some k ∈ V such that φ[k/x] ∈ Γ ( );
∀̇-Henkin if ∀̇xφ ̸∈ Γ then one can compute some k ∈ V such that φ[k/x] ̸∈ Γ ( );
Henkin if it is ∃̇-Henkin and ∀̇-Henkin.

Note that we deviate from the standard presentation of the Henkin properties by observing
that they actually carry computational content. Later on we use Henkin prime theories as
worlds of the canonical model we define to prove completeness.

Traditionally, this proof technique via canonical model construction requires us to connect
any set Γ such that Γ ̸⊢ φ to a point in the canonical model, i.e. a Henkin prime theory,
extending Γ and not containing φ. We call this result the standard Lindenbaum lemma.

Additionally, on the way to completeness we are required to show that if a point in
the canonical model does not contain φ →̇ψ then we can find an extension of this point
containing φ but not ψ. We call this result the constant domain Lindenbaum lemma.

Similarly, we also need to prove that the presence of φ ˙ ψ in such a point entails the
existence of a restriction of this point containing φ but not ψ. We call this result the dual
constant domain Lindenbaum lemma.

In the remainder of this section, we prove these three flavours of Lindenbaum lemma,
employing classical logic to describe the underlying extension processes via case distinctions.

4.1 Standard Lindenbaum Lemma
The standard lemma acts on pairs ̸⊢ [Γ | ∆] of closed sets of formulas, which allows us to
treat Γ ̸⊢ φ as special case. The sets Γ and ∆ are required to be closed as we need enough
“safe” variables to witness quantifiers throughout the enumeration.
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▶ Lemma 10 (Standard Lindenbaum Lemma ). For closed Γ and ∆ such that ̸⊢ [Γ | ∆],
there is a Henkin prime theory Γ′ ⊇ Γ such that ̸⊢ [Γ′ | ∆].

Proof. We construct Γ′ by iteratively extending the pair [Γ | ∆], starting from Γ0 := Γ and
∆0 := ∆ ( ) and using an enumeration φn of formulas with the additional property that the
n-th variable is not free in φk for all k ≤ n.

[Γn+1 | ∆n+1] :=



[Γn | ∃̇xψ,∆n] if φn = ∃̇xψ and ⊢ [∃̇xψ,Γn | ∆n]
[ψ[n/x], ∃̇xψ,Γn | ∆n] if φn = ∃̇xψ and ̸⊢ [∃̇xψ,Γn | ∆n]
[Γn | ψ[n/x], ∀̇xψ,∆n] if φn = ∀̇xψ and ⊢ [∀̇xψ,Γn | ∆n]
[∀̇xψ,Γn | ∆n] if φn = ∀̇xψ and ̸⊢ [∀̇xψ,Γn | ∆n]
[φn,Γn | ∆n] if ̸⊢ [φn,Γn | ∆n]
[Γn | φn,∆n] if ⊢ [φn,Γn | ∆n]

We then set Γ′ :=
⋃

n:N Γn and name ∆′ :=
⋃

n:N ∆n ( ). We observe Γ′ ⊇ Γ and ∆′ ⊇ ∆ by
construction ( ). Before turning to the remaining properties one-by-one, note that ̸⊢ [Γn | ∆n]
is preserved inductively ( ), ensuring that ̸⊢ [Γ′ | ∆] ( ) and hence the consistency of Γ′ ( ).

For deductive closure ( ), assume that Γ′ ⊢ φ. This entails that when φ is considered at n
in the enumeration of formulae, then it must be added to Γn+1: indeed, we can prove that
̸⊢ [φ,Γn | ∆n], as ⊢ [φ,Γn | ∆n] implies ⊢ [Γ′ | ∆′], a contradiction, via compositionality
as we have that Γ′ ⊢ ψ for all ψ ∈ Γn, φ (via the rule (El) or via assumption).
For primeness ( ), we assume that φ ∨̇ψ ∈ Γ′. We make case distinctions on whether
χ ∈ Γ′ or χ ̸∈ Γ′ for χ ∈ {φ,ψ}. Clearly, in the case where we have φ ∈ Γ′ or ψ ∈ Γ′

we are done. So, we are left to consider the case where φ ̸∈ Γ′ and ψ ̸∈ Γ′. From these
assumptions, we obtain that φ ∈ ∆′ and ψ ∈ ∆′. Obviously, combined with φ∨̇ψ ∈ Γ′

the two last statements entail the contradiction ⊢ [Γ′ | ∆′]: We have that the list [φ;ψ]
is such that all its elements are in ∆′, and Γ′ ⊢

∨̇
([φ;ψ]) as

∨̇
([φ;ψ]) = φ ∨̇ψ ∨̇ ⊥̇ is

equivalent to φ ∨̇ψ ∈ Γ′.
To show that Γ′ is ∃̇-Henkin ( ), we assume that ∃̇xφ ∈ Γ′. When ∃̇xφ is considered at n
in the enumeration of formulae, then it must be added to Γn+1 as well as φ[n/x]: indeed,
we can prove that ̸⊢ [∃̇xφ,Γn | ∆n], as ⊢ [∃̇xφ,Γn | ∆n] implies ∃̇xφ ∈ ∆n+1 ⊆ ∆′, hence
⊢ [Γ′ | ∆′], a contradiction.
To show that Γ′ is ∀̇-Henkin ( ), we assume that ∀̇xφ ̸∈ Γ′. When ∀̇xφ is considered at n
in the enumeration of formulae, then it must be added to ∆n+1 as well as φ[n/x]: indeed,
we can prove that ⊢ [∃̇xφ,Γn | ∆n], as ̸⊢ [∀̇xφ,Γn | ∆n] implies ∀̇xφ ∈ Γn+1 ⊆ Γ′, hence
⊢ [Γ′ | ∆′], a contradiction. ◀

We now have sufficient machinery to generate a Henkin prime theory from a consistent
closed theory. Next, we turn to the generation of prime Henkin theories from prime Henkin
theories, via extension and restriction.

4.2 Constant Domain Lindenbaum Lemma
For this subsection and for the next, we generate new Henkin prime theories from previous
Henkin prime theories. Here, we take a Henkin prime theory Γ and two formulas ψ1 and ψ2
and assume that Γ, ψ1 ̸⊢ ψ2. We aim at generating a Henkin prime theory Γ′ which extends
Γ ∪ {ψ1} and does not contain ψ2. We use this result in the Truth lemma, when assuming
that ψ1 →̇ψ2 ̸∈ Γ or equivalently Γ ̸⊢ ψ1 →̇ψ2 or yet Γ, ψ1 ̸⊢ ψ2.
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We cannot use the standard Lindenbaum lemma 10 to extend Γ ∪ {ψ1}, as it requires
closed formulas. Given that Γ is Henkin, we are prima facie not ensured to have enough safe
variables to extend it. However, we can extend Γ ∪ {ψ1} using a trick relying on the (CD)
axiom and the very fact that Γ is Henkin. This trick can be found in the book of Gabbay,
Shehtman and Skvortsov [17, Section 7.2], where they use it for superintuitionistic logics
based on the constant domain axiom.

We first establish a proof-theoretic lemma which isolates the use of the (CD) axiom.

▶ Lemma 11. Let Γ be a ∀̇-Henkin set of formulas and φ(x), ψ1, ψ2 be formulas.
1. If Γ ̸⊢ (∃̇xφ(x) ∧̇ψ1) →̇ψ2, then one can compute k such that (φ[k/x] ∧̇ψ1) →̇ψ2 ̸∈ Γ ( ).
2. If Γ ̸⊢ ψ1 →̇ (∀̇xφ(x) ∨̇ψ2), then one can compute k such that ψ1 →̇ (φ[k/x] ∨̇ψ2 ̸∈ Γ) ( ).

Proof. We give both proofs in detail, noting that only (2) relies on the (CD) axiom.
1. It is sufficient to show that ∀̇x((φ(x) ∧̇ψ1) →̇ψ2) ̸∈ Γ. Indeed, as Γ is ∀̇-Henkin, one can

then compute k with ((φ(x) ∧̇ψ1) →̇ψ2)[k/x] ̸∈ Γ and therefore (φ[k/x] ∧̇ψ1) →̇ψ2 ̸∈ Γ.
So suppose ∀̇x((φ(x) ∧̇ψ1) →̇ψ2) ∈ Γ, so in particular Γ ⊢ ∀̇x((φ(x) ∧̇ψ1) →̇ψ2). From
there we can derive Γ ⊢ (∃̇xφ(x) ∧̇ψ1) →̇ψ2 in contradiction to the assumption using
standard proof rules as follows: assuming φ(x0) for some particular x0 together with ψ1,
we simply instantiate ∀̇x((φ(x) ∧̇ψ1) →̇ψ2) to x0 and obtain ψ2.

2. It is sufficient to show that ∀̇x(ψ1 →̇ (φ(x) ∨̇ψ2)) ̸∈ Γ, which again leverages the fact that
Γ is ∀̇-Henkin. So suppose ∀̇x(ψ1 →̇ (φ(x) ∨̇ψ2)) ∈ Γ and hence Γ ⊢ ∀̇x(ψ1 →̇ (φ(x) ∨̇ψ2)),
we this time derive Γ ⊢ ψ1 →̇ (∀̇xφ(x) ∨̇ψ2) for a contradiction. So assuming ψ1 and
then applying the (CD) axiom, it remains to show ∀̇x(φ(x) ∨̇ψ2), so φ(x0) ∨̇ψ2 for some
arbitrary x0. This follows directly from instantiating ∀̇(ψ1 →̇ (φ(x) ∨̇ψ2)) to x0. ◀

We can then show how to perform the extension of Γ as Henkin theory.

▶ Lemma 12 (CD Lindenbaum Lemma ). For any Henkin theory Γ and formulas ψ1, ψ2
such that Γ, ψ1 ̸⊢ ψ2, there is a Henkin prime theory Γ′ ⊇ Γ with ψ1 ∈ Γ′ and ψ2 ̸∈ Γ′.

Proof. We construct Γ′ by iteratively constructing pairs [Γn | ∆n], using any enumeration
φn of formulas and letting Γ0 := {ψ1} and ∆0 := {ψ2} ( ):

[Γn+1 | ∆n+1] :=



[Γn | ∃̇xψ,∆n] if φn = ∃̇xψ and ⊢ [∃̇xψ,Γ,Γn | ∆n]
[ψ[k/x], ∃̇xψ,Γn | ∆n] if φn = ∃̇xψ and ̸⊢ [∃̇xψ,Γ,Γn | ∆n]

and k as obtained from (1) of Lemma 11
[∀̇xψ,Γn | ∆n] if φn = ∀̇xψ and ⊢ [Γ,Γn | ∀̇xψ,∆n]
[Γn | ψ[k/x], ∀̇xψ,∆n] if φn = ∀̇xψ and ̸⊢ [Γ,Γn | ∀̇xψ,∆n]

and k as obtained from (2) of Lemma 11
[φn,Γn | ∆n] if ̸⊢ [φn,Γ,Γn | ∆n]
[Γn | φn,∆n] if ⊢ [φn,Γ,Γn | ∆n]

We then set Γ′ :=
⋃

n:N Γn ( ) and name ∆′ :=
⋃

n:N ∆n. For this choice, Γ′ ⊇ Γ ∪ {ψ1} is by
construction ( , ) and ψ2 ̸∈ Γ′ ( ), or equivalently Γ′ ̸⊢ ψ2, follows since ̸⊢ [Γ,Γn | ∆n] ( )
and thus ̸⊢ [Γ′ | ∆n] is preserved inductively ( ). The remaining properties of Γ′ being a
Henkin prime theory are established mostly as in Lemma 10.

For deductive closure ( ) and primeness ( ), one can follow analogous arguments as in
the respective claims of Lemma 10.
To show that Γ′ is ∃̇-Henkin ( ), we assume that ∃̇xφ ∈ Γ′. When ∃̇xφ is considered at
n in the enumeration of formulae, then it must be added to Γn+1 as ̸⊢ [Γ, ∃̇xφ,Γn | ∆n]
follows from ̸⊢ [Γ′ | ∆n]. But then Γn+1 by construction also contains φ[k/x] for k
obtained from (1) of Lemma 11 for the choice of ψ1 :=

∧̇
Γn and ψ2 :=

∨̇
∆n.
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To show that Γ′ is ∀̇-Henkin ( ) one can use an analogous argument, this time relying on
(2) of Lemma 11. ◀

Note that we do not need primeness of the input theory Γ as it is obtained as a side-product
of the iterative construction.

4.3 Dual Constant Domain Lindenbaum Lemma
Now, we aim at restricting a Henkin prime theory Γ containing ψ1 ˙ ψ2 into another such
theory Γ′ with ψ1 but not ψ2. This result is now motivated by the case of ˙ in the Truth
lemma. Note that once more we cannot use the standard Lindenbaum lemma 10.

While we easily imagine how to extend theories, as in Lemma 12, the restriction of a
Henkin prime theory into a smaller one appears as a tricky and rather mysterious operation
to perform. However, its familiarity is regained once seen as an extension, not of a theory
but of the complement of a theory. Indeed, as Γ′ ⊆ Γ ↔ Γ ⊆ Γ′ we restrict Γ by extending Γ.

The next lemma, again isolating the use of constant domain axioms, relies on this insight,
by involving the complement of a theory and exploiting the symmetry of our pairs [Φ | Ψ] by
operating on their left.

▶ Lemma 13. Let Γ be a ∃̇-Henkin set of formulas and φ(x), ψ1, ψ2 be formulas.
1. If ̸⊢ [(∃̇xφ(x) ∧̇ψ1) ˙ ψ2 | Γ], then one can compute k with (φ[k/x] ∧̇ψ1) ˙ ψ2 ∈ Γ ( ).
2. If ̸⊢ [(ψ1 ˙ ∀̇xφ(x)) ˙ ψ2 | Γ], then one can compute k with (ψ1 ˙ φ[k/x]) ˙ ψ2 ∈ Γ ( ).

Proof. We give both proofs in detail, noting that (1) relies on the (DCD) dual-axiom and
(2) relies on the (CD) axiom.
1. It is sufficient to show that ∃̇x((φ(x) ∧̇ψ1) ˙ ψ2) ∈ Γ. Indeed, as Γ is ∃̇-Henkin, we can

thus compute k such that ((φ(x) ∧̇ψ1) ˙ ψ2)[k/x] ∈ Γ i.e. ((φ[k/x] ∧̇ψ1) ˙ ψ2) ∈ Γ. So,
we assume for reductio ad absurdum that ∃̇x((φ(x) ∧̇ψ1) ˙ ψ2) ̸∈ Γ. We show that the
latter implies ⊢ [(∃̇xφ(x) ∧̇ψ1) ˙ ψ2 | Γ], contradicting our initial assumption. By the
dual deduction Theorem 4 it suffices to show ⊢ [∃̇x(x)φ ∧̇ψ1 | ψ2,Γ], proved as follows.

⊢ [∃̇x(φ(x) ∧̇ψ1) | ψ2,Γ] ⊢ [(∃̇xφ(x) ∧̇ψ1) ∃̇x(φ(x) ∧̇ψ1) | ψ2,Γ]
⊢ [∃̇xφ(x) ∧̇ψ1 | ψ2,Γ]

(DMP)

The right premise is nothing but an instance of the (DCD) dual-axiom, so we are left to
prove the left premise. All we need to do is to apply the dual detachment Theorem 4
to reduce our goal to ⊢ [∃̇x(φ(x) ∧̇ψ1) ˙ ψ2 | Γ], which obviously holds as we have
∃̇x((φ(x) ∧̇ψ1) ˙ ψ2) ∈ Γ by our assumption ∃̇x((φ(x) ∧̇ψ1) ˙ ψ2) ̸∈ Γ.

2. It is sufficient to show that ∃̇x((ψ1 ˙ φ(x)) ˙ ψ2) ∈ Γ, which again leverages the
fact that Γ is ∃̇-Henkin, i.e. ((ψ1 ˙ φ[k/x]) ˙ ψ2) ∈ Γ. So, we assume for reductio
that ∃̇x((ψ1 ˙ φ(x)) ˙ ψ2) ̸∈ Γ and show ⊢ [(ψ1 ˙ ∀̇xφ(x)) ˙ ψ2 | Γ], a contradic-
tion. More precisely, we show (ψ1 ˙ ∀̇xφ(x)) ˙ ψ2 ⊢ ∃̇x((ψ1 ˙ φ(x)) ˙ ψ2), noting
that ∃̇x((ψ1 ˙ φ(x)) ˙ ψ2) ∈ Γ. By the dual deduction theorem it is sufficient to show
ψ1 ⊢ ∀̇xφ(x) ∨̇ (ψ2 ∨ ∃̇x((ψ1 ˙ φ(x)) ˙ ψ2)).
We use the (CD) axiom to reduce our goal to ψ1 ⊢
∀̇x(φ(x) ∨̇ (ψ2 ∨̇ ∃̇x((ψ1 ˙ φ(x)) ˙ ψ2))), as x is not free in ψ2 and ∃̇x((ψ1 ˙ φ(x)) ˙ ψ2).
We obtain a proof of the latter applying the rule (Gen), leaving us to prove
ψ1 ⊢ φ(x) ∨̇ (ψ2 ∨̇ ∃̇x((ψ1 ˙ φ(x)) ˙ ψ2)). This can easily be proved using the dual
detachment theorem as (ψ1 ˙ φ(x)) ˙ ψ2 ⊢ ∃̇x((ψ1 ˙ φ(x)) ˙ ψ2) holds. ◀
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Turning back to the restriction of Γ, we note that ψ1 ˙ ψ2 ∈ Γ is equivalent to ̸⊢ [ψ1 ˙ ψ2 |
Γ] by consistency of Γ, and in turn to ̸⊢ [ψ1 | ψ2,Γ]. So, to restrict Γ in a way that preserves
ψ1 but excludes ψ2, we extend Γ using ̸⊢ [ψ1 | ψ2,Γ] as a stepping stone.

▶ Lemma 14 (DCD Lindenbaum Lemma ). For any Henkin prime theory Γ and formulas
ψ1, ψ2 with ̸⊢ [ψ1 | ψ2,Γ], there is a Henkin prime theory Γ′ ⊆ Γ with ψ1 ∈ Γ′ and ψ2 ̸∈ Γ′.

Proof. We construct Γ′ by iteratively constructing pairs [Γn | ∆n], using any enumeration
φn of formulas and letting Γ0 := {ψ1} and ∆0 := {ψ2} ( ):

[Γn+1 | ∆n+1] :=



[Γn | ∃̇xψ,∆n] if φn = ∃̇xψ and ⊢ [∃̇xψ,Γn | Γ,∆n]
[ψ[k/x], ∃̇xψ,Γn | ∆n] if φn = ∃̇xψ and ̸⊢ [∃̇xψ,Γn | Γ,∆n]

and k as obtained from (1) of Lemma 13
[∀̇xψ,Γn | ∆n] if φn = ∀̇xψ and ⊢ [Γn | ∀̇xψ,Γ,∆n]
[Γn | ψ[k/x], ∀̇xψ,∆n] if φn = ∀̇xψ and ̸⊢ [Γn | ∀̇xψ,Γ,∆n]

and k as obtained from (2) of Lemma 13
[φn,Γn | ∆n] if ̸⊢ [φn,Γn | Γ,∆n]
[Γn | φn,∆n] if ⊢ [φn,Γn | Γ,∆n]

We then set Γ′ :=
⋃

n:N Γn ( ). For this choice, ψ1 ∈ Γ′ ( ) holds by construction and
ψ2 ̸∈ Γ′ ( ) follows since ̸⊢ [Γn | ∆n,Γ] ( ) is preserved inductively and ψ2 ∈ ∆n. We also
have that Γ′ ⊆ Γ ( ), as if there is a χ ∈ Γ′ but χ ̸∈ Γ we get that at the point n in the
enumeration where χ is added to form Γn+1 we have ⊢ [Γn+1 | ∆n+1,Γ], a contradiction. As
Γ′ can be shown to be a prime theory ( , ) as in Lemma 12, we focus on its being Henkin.

To show that Γ′ is ∃̇-Henkin ( ), we assume that ∃̇xφ ∈ Γ′. When ∃̇xφ is considered at
n in the enumeration of formulae, then it must be added to Γn+1 as ̸⊢ [∃̇xφ,Γn | Γ,∆n]
follows from ̸⊢ [Γ′ | Γ,∆n]. But then Γn+1 by construction also contains φ[k/x] for k
obtained from (1) of Lemma 13 for the choice of ψ1 :=

∧̇
Γn and ψ2 :=

∨̇
∆n.

To show that Γ′ is ∀̇-Henkin ( ) one can use an analogous argument, this time relying on
(2) of Lemma 13. ◀

5 Completeness and Conservativity

Using the Lindenbaum lemmas of the previous section, we now first turn to the completeness
of FOBIL relative to our constant domain semantics.

▶ Theorem 15 (Completeness ). If Γ ∪ {φ} is closed and Γ ⊨ φ then Γ ⊢ φ.

We rely on a canonical model construction based on Henkin prime theories, defined below.

▶ Definition 16 ( ). The canonical model Mc = (W c,≤c, Dc,Fc,Pc) is defined as follows:
1. W c = {Γ : Γ is a Henkin prime theory};
2. Γ1 ≤c Γ2 if Γ1 ⊆ Γ2;
3. Dc = T ;
4. Fc(f)(t0, . . . , t|f |) = f(t0, . . . , t|f |) ;
5. Pc(w,P )(t0, . . . , t|P |) = {(t0, . . . , t|P |) | P (t0, . . . , t|P |) ∈ w}.

The canonical assignment αc is defined as αc(x) = x.

Note that the interpretation of terms in Mc through the canonical assignment αc is the
identity function: αc(t) = t follows from a simple induction on t ( ).

As foreshadowed, the two custom Lindenbaum lemmas come in action to show that the
canonical model satisfies the crucial Truth lemma, relating elementhood and forcing.

https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#Down_Lindenbaum_lemma
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#Ldext
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#dext
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#Ldext_A0
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#Ldext_B0
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#Ldext_nder
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#dext_el
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#dext_ded_clos
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#dext_prime
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#dext_ex_henk
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#dext_all_henk
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_completeness.html#Completeness
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_completeness.html#Canon_model
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_completeness.html#universal_interp_eval0
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▶ Lemma 17 (Truth lemma ). For every Γ ∈ W c we have ψ ∈ Γ iff Mc,Γ, αc ⊩ ψ.

Proof. By induction on ψ. We consider the most interesting cases, and refer to the appendix
for the remaining cases.

ψ = φ →̇χ: (⇒) Assume φ →̇χ ∈ Γ. To show Mc,Γ, αc ⊩ φ →̇χ, let Γ′ ∈ W c such that
Γ ≤c Γ′, and assume Mc,Γ′, αc ⊩ φ. Then, we obtain φ ∈ Γ′ by induction hypothesis.
Using Γ ≤c Γ′, we get φ →̇χ ∈ Γ ⊆ Γ′. Via deductive closure of Γ′ we thus obtain χ ∈ Γ′,
hence Mc,Γ′, αc ⊩ χ using the induction hypothesis. So, we are done.
(⇐) Assume Mc,Γ, αc ⊩ φ →̇χ. Assume for reductio that φ →̇χ ̸∈ Γ. Then the constant
domain Lindenbaum lemma 12 entails the existence of Γ′ ∈ W c such that Γ ≤c Γ′ and
φ ∈ Γ′ and χ ̸∈ Γ′ ( ). By induction hypothesis we get Mc,Γ′, αc ⊩ φ and Mc,Γ′, αc ̸⊩ χ.
This contradicts Γ ≤c Γ′ and Mc,Γ, αc ⊩ φ →̇χ. So φ →̇χ ∈ Γ.
ψ = φ ˙ χ: (⇒) Assume φ ˙ χ ∈ Γ. The dual constant domain Lindenbaum lemma 14
entails the existence of Γ′ ∈ W c with Γ′ ≤c Γ and φ ∈ Γ′ and χ ̸∈ Γ′ ( ). By
induction hypothesis we get Mc,Γ′, αc ⊩ φ and Mc,Γ′, αc ̸⊩ χ. As Γ′ ≤c Γ we get
Mc,Γ, αc ⊩ φ ˙ χ.
(⇐) Assume Mc,Γ, αc ⊩ φ ˙ χ. Then, there is Γ′ ∈ W c such that Γ′ ≤c Γ and
Mc,Γ′, αc ⊩ φ and Mc,Γ′, αc ̸⊩ χ. By induction hypothesis we obtain that φ ∈ Γ′ and
χ ̸∈ Γ′. Note that Γ′ ⊢ φ →̇ (χ ∨̇ (φ ˙ χ)) using axiom A10. Thus by applying (MP) we
obtain Γ′ ⊢ χ ∨̇ (φ ˙ χ), as we have Γ′ ⊢ φ knowing φ ∈ Γ′. Via deductive closure and
primeness we get χ ∈ Γ′ or φ χ ∈ Γ′. But we know χ ̸∈ Γ′, so we have φ ˙ χ ∈ Γ′. We
finally obtain φ ˙ χ ∈ Γ, as Γ′ ⊆ Γ given Γ′ ≤c Γ.
ψ := ∀̇xφ: (⇒) Assume ∀xφ ∈ Γ. To show Mc,Γ, αc ⊩ ∀̇xφ let d ∈ Dc. We need to show
Mc,Γ, αc[d/x] ⊩ φ. Note that d ∈ T = Dc. Using ∀xφ ∈ Γ and deductive closure we
obtain φ[d/x] ∈ Γ. Thus, we apply the induction hypothesis to obtain Mc,Γ, αc ⊩ φ[d/x].
We finally push the syntactic substitution to a modification of the assignment ( ) to
obtain Mc,Γ, αc[d/x] ⊩ φ.
(⇐) Assume Mc,Γ, αc ⊩ ∀̇xφ. Assume for reductio that ∀xφ ̸∈ Γ. The theory Γ being
∀̇-Henkin, there is a n ∈ N such that φ[n/x] ̸∈ Γ. By induction hypothesis we obtain
Mc,Γ, αc ̸⊩ φ[n/x]. But this is a contradiction as it implies that Mc,Γ, αc[n/x] ̸⊩ φ as
explained above, while we have Mc,Γ, αc[n/x] ⊩ φ from Mc,Γ, αc ⊩ ∀̇xφ.
ψ := ∃̇xφ: (⇒) Assume ∃̇xφ ∈ Γ. The theory Γ being ∃̇-Henkin, there is n ∈ N such
that φ[n/x] ∈ Γ. By induction hypothesis we get Mc,Γ, αc ⊩ φ[n/x]. This implies
Mc,Γ, αc[n/x] ⊩ φ as argued above. Hence Mc,Γ, αc ⊩ ∃̇xφ.
(⇐) Assume Mc,Γ, αc ⊩ ∃̇xφ. Thus there is a d ∈ Dc such that Mc,Γ, αc[d/x] ⊩ φ.
Note that d ∈ T = Dc. We reason as above to get that Mc,Γ, αc ⊩ φ[d/x]. By induction
hypothesis we obtain φ[d/x] ∈ Γ. We thus get ∃̇xφ ∈ Γ by deductive closure. ◀

Employing the Truth lemma we can now deduce completeness, also relying on the standard
Lindenbaum lemma to extend the initial context into a point of the canonical model.

Proof of Theorem 15. Assume that Γ ⊨ φ, and that Γ ̸⊢ φ for reductio. As Γ ∪ {φ} is
closed, the standard Lindenbaum lemma 10 conjointly with our last assumption ensure us
of the existence of Γ′ ∈ W c such that Γ′ ⊇ Γ and φ ̸∈ Γ′ ( ). By the Truth lemma 17 we
obtain both Mc,Γ′, αc ⊢ Γ and Mc,Γ′, αc ̸⊢ φ, hence Γ ̸⊨ φ, a contradiction. ◀

We conclude with two results concerning FOCDIL that illustrate the close connection
to our completeness proof for FOBIL. To this end, we write FCD for the usual syntax of
first-order intuitionistic logic (i.e. F without ˙ ) ( ), ⊢CD for the deduction system of
FOCDIL (i.e. ⊢ without the axioms for ˙ but extended with the (CD) axiom) ( , and ⊨CD
for the semantic consequence relation of FOCDIL (i.e. ⊨ without the clause for ˙ ) ( ). To
avoid redundancy, we just give proof sketches and refer to the Coq code for full detail.
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First, we prove the completeness of FOCDIL simply by a fragment of the proof of FOBIL.

▶ Theorem 18 (CD Completeness ). If Γ ∪ {φ} is closed and Γ ⊨CD φ then Γ ⊢CD φ,
provided that Γ ∪ {φ} ranges over FCD.

Sketch. Following exactly the same strategy as Theorem 15, now only relying on the standard
Lindenbaum lemma 10 and the constant domain Lindenbaum lemma 12. ◀

Secondly, we deduce the conservativity of FOBIL over FOCDIL.

▶ Corollary 19 (Conservativity ). If Γ ∪ {φ} is closed and Γ ⊢ φ then Γ ⊢CD φ, provided
that Γ ∪ {φ} ranges over FCD.

Sketch. By composing soundness of FOBIL (Lemma 8) with completeness of FOCDIL (The-
orem 18), using that obviously Γ ⊨CD φ iff Γ ⊨ φ for Γ ∪ {φ} ranging over FCD. ◀

6 Discussion

In this paper, we provide a succinct and verified completeness proof of FOBIL relative to its
constant domain Kripke semantics. Consequentially, we formally establish the conservativity
of FOBIL over FOCDIL, notably via the analogous completeness of the latter over the same
semantics restricted to the intuitionistic language. We conclude with a brief discussion.

6.1 Coq Development
Our Coq development is based on the design of and is in the process of being integrated3 into
the Coq library for first-order logic [27], which has been developed to unify several projects
concerned with different aspects of first-order logics [13, 14, 28, 26, 24, 23, 29]. It spans roughly
8000 lines of code, with about one half each for the separate FOBIL and FOCDIL developments.
We globally assume a strong form of the excluded middle, namely ∀P : P.P + ¬P , to enable
the definition of functions by logical case distinction (justified by the consistency of the usual
excluded middle and unique choice [56]) and left the particular formula enumeration as a
parameter that will be obtained routinely from the library framework once merged.

Most notably, in comparison to the paper presentation, where we use named variables
for legibility, the mechanisation is based on a de Bruijn encoding of binding [7] following
the design of the Autosubst 2 tool [52], i.e. variables are replaced by indices referring to the
amount of quantifiers shadowing their relevant binder. For instance, the formula ∀̇x∃̇yP (x, y)
is represented as ∀̇∃̇P (1, 0), as x is bound by the ∀̇ shadowed by the ∃̇, whereas y is bound
by the unshadowed ∃̇. To illustrate just one of the advantages of this approach, in the
representation of the deduction calculus, one can use lifting of de Bruijn indices to simulate
the usual freshness conditions for variables. For example, the rule (Gen) is encoded as:

Γ[↑] ⊢ φ

Γ ⊢ ∀̇φ
(Gen)

By shifting from Γ in the conclusion to Γ[↑] in the premise, we lift any free index n in
Γ to its successor n+ 1. As a consequence, the index 0 made free by the change from ∀̇φ
to φ is not present in Γ[↑], thus creating a canonical “fresh” variable. Using this rule for
instance allows a particularly easy monotonicity proof, as no on-the-fly renaming of variables
is necessary.

3 https://github.com/uds-psl/coq-library-fol/pull/7

https://ianshil.github.io/FOBiInt/FOcdint.FO_CDInt_completeness.html#Completeness
https://ianshil.github.io/FOBiInt/FOcdint.FO_CDInt_Conservativity.html#Conservativity
https://github.com/uds-psl/coq-library-fol/pull/7
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Overall, the use of any proof assistant for our project not only provided the additional
guarantee of correctness of our completeness proof but actually was worthwhile already in
the mathematical development: for instance the dualised Lindenbaum lemma subject to
Section 4.2 was developed incrementally starting from the non-dualised case, with the proof
assistant pointing towards the remaining gaps while some proof scripts could be reused. The
particular choice of Coq allowed to base our code on the design decisions of the existing
library for first-order logic and, implementing a constructive foundation, in principle enables
a constructive analysis extending [51], as described in the future work section.

6.2 Related Work
Bi-intuitionistic logic. As understood in this paper, bi-intuitionistic logic received some
attention in computer science, notably through a formulae-as-types interpretation involving
the notion of first-class coroutines [6] and in the context of image processing via its connection
to mathematical morphology [49]. We mention another line of work [3, 1, 2, 10, 11] initiated
by Wansing [54, 55] on a different bi-intuitionistic logic called 2Int, which is both proof-
theoretically and philosophically motivated. The alternative interpretation of ˙ in this
logic allows for the study of the notions of falsification and verification.

Completeness proofs for FOBIL. Rauszer’s proof of completeness for FOBIL [46] is erroneous
for three main reasons. First, as in the propositional case two logics are conflated. This is
noticed by the joint use of the deduction theorem, an exclusive property of the weak logic
we study here, and of double negation ¬∼ of formulas, an exclusive property of the strong.
Secondly, her canonical model [46, p.66] is rooted, i.e. there is a point-root w for which any
v is such that w ≤ v. However, as noticed by Crolard [5] and confirmed by Shillito [50,
Lemma 8.11.3], bi-intuitionistic logic is not complete relative to the class of rooted models.
Thirdly, in her proof Rauszer relies on a result from Gabbay [15, Lemma 8.11.1] dealing with
the language F without ˙ , ∨̇ and ∃̇. She dually proves it for F without →̇ , ∧̇ and ∀̇, and
proceeds to illegitimately combine them on F, outside of their application range.

In Klemke’s proof strategy [30], the main construction is in Satz 6.1, where the extension
of consistent pairs (M,N) of sets of formulas over an alphabet {x1, x2, . . . } is described. The
extension yields a family of maximal pairs (Ms, Ns) in the extended alphabet {x1, x2, . . . } ∪
{y1, y2, . . . } where s ranges over the partial order (U,Q) of strings over two copies of natural
numbers (N and N∗) such that s ≤ s′ if s and s′ agree on a prefix and from there continue in
the separate copies. This order is called the “universal bush” and a universal model is then
defined over the structure (U,Q, {x1, x2, . . . } ∪ {y1, y2, . . . }), i.e. on the universal bush with
the full alphabet as individuals, interprets variables with the identity and interprets atoms
P (x, y, z . . . ) at s with P (x, y, z . . . ) in Ms. From Satz 6.1 the conclusion to completeness is
standard. To date, we were neither able to identify an explicit use of the constant domain
axioms, nor to confirm or refute the claim by Olkhovikov and Badia [35] concerning errors.

Finally, Shillito [50] tried, but failed, to correct Rauszer’s work in Coq. More precisely,
he gave an incomplete proof of completeness relying on two assumptions corresponding to
our custom Lindenbaum lemmas 12 and 14. We consequently closed the gap in his proof.

Mechanisation of completeness proofs. There is a rather long list of works mechanising
completeness proofs which for the most prominent case of first-order logic is summarised
in [14] and [25]. The only mechanised completeness proofs for (propositional) bi-intuitionistic
logic we are aware of are those by Shillito [50] as well as Shillito and Kirst [51].
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Regarding other formalisms like bi-intuitionistic logic with a modal aspect, we are aware
of the works in Coq of Doczkal and Smolka on CTL [9], Doczkal and Bard on converse
PDL [8], and Hagemeier and Kirst on IEL [21], the work in HOL Light of Maggesi and Perini
Brogi on the provability logic GL [33]. We finally mention the recent formalisation in Lean
of Guo, Chen and Bentzen on propositional intuitionistic logic [20].

6.3 Future Work
While the purpose of this paper is to present the clearest and most minimalistic completeness
proof for FOBIL, which for very natural reasons encompasses classical assumptions, we plan
to continue in the spirit of Shillito and Kirst [51] to analyse which logical strength is exactly
required. In their case of propositional bi-intuitionistic logic, they observe that the principle
WLEMS, identified by Kirst [25] for the case of IEL and applied to first-order logic by
Herbelin and Kirst [22], is equivalent to a weak but natural formulation of completeness.
However, this observation relies on the property that theories obtained from the standard
Lindenbaum lemma are negatively described (i.e. membership of formulas is characterised
by non-derivability), while the custom Lindenbaum lemmas yield also positively described
theories (membership of universally quantified formulas is characterised by derivability).
Therefore it seems unlikely that an exactly analogous analysis is realistic and in fact it might
be that the completeness of FOBIL requires a stronger fragment of classical meta-logic.
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A Appendix

Proof of Truth lemma 17. By induction on ψ, only listing the missing cases:
ψ := P (t0, . . . , t|P |): we have P (t0, . . . , t|P |) ∈ Γ iff (t0, . . . , t|P |) ∈ Pc(Γ, P ) by definition
of the canonical model. The latter is equivalent to Mc,Γ, αc ⊩ P (t0, . . . , t|P |) by definition
and the fact that terms are interpreted as themselves via αc.
ψ = ⊥̇: we have that ⊥̇ ̸∈ Γ by consistency. We also have Mc,Γ, αc ̸⊩ ⊥̇ by definition.
So, we trivially have ⊥̇ ∈ Γ iff Mc,Γ, αc ⊩ ⊥̇.
ψ = φ ∧̇χ: we have that φ ∧̇χ ∈ Γ iff φ ∈ Γ and χ ∈ Γ via deductive closure. By
induction hypothesis this holds if and only if Mc,Γ, αc ⊩ φ and Mc,Γ, αc ⊩ χ. Then
φ ∧̇χ ∈ Γ iff Mc,Γ, αc ⊩ φ ∧̇χ.
ψ = φ ∨̇χ: we have that φ ∨̇χ ∈ Γ iff [φ ∈ Γ or χ ∈ Γ] by primeness and deductive
closure. By induction hypothesis this holds if and only if Mc,Γ, αc ⊩ φ or Mc,Γ, αc ⊩ χ.
Then φ ∨̇χ ∈ Γ iff Mc,Γ, αc ⊩ φ ∨̇χ. ◀
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