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Abstract
It is well-known that extending the Hilbert axiomatic system for first-order intuitionistic logic with
an exclusion operator, that is dual to implication, collapses the domains of models into a constant
domain. This makes it an interesting problem to find a sound and complete proof system for
first-order bi-intuitionistic logic with non-constant domains that is also conservative over first-order
intuitionistic logic. We solve this problem by presenting the first sound and complete proof system
for first-order bi-intuitionistic logic with increasing domains. We formalize our proof system as
a polytree sequent calculus (a notational variant of nested sequents), and prove that it enjoys
cut-elimination and is conservative over first-order intuitionistic logic. A key feature of our calculus
is an explicit eigenvariable context, which allows us to control precisely the scope of free variables in
a polytree structure. Semantically this context can be seen as encoding a notion of Scott’s existence
predicate for intuitionistic logic. This turns out to be crucial to avoid the collapse of domains and
to prove the completeness of our proof system. The explicit consideration of the variable context
in a formula sheds light on a previously overlooked dependency between the residuation principle
and the existence predicate in the first-order setting, which may help to explain the difficulty in
designing a sound and complete proof system for first-order bi-intuitionistic logic.
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1 Introduction

Propositional bi-intuitionistic logic (BIP), also referred to as Heyting-Brouwer logic [33], is a
conservative extension of propositional intuitionistic logic (IP), obtained by adding the binary
connective (referred to as exclusion)1 among the traditional intuitionistic connectives.
This logic has proven relevant in computer science, having a formulae-as-types interpretation
in terms of first-class coroutines [7] and where modal extensions have found import in image
processing [38]. While in intuitionistic logic the connectives ∧ and → form a residuated pair,

1 Also referred to as pseudo-difference [33], subtraction, and co-implication [13].
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41:2 Taking Bi-Intuitionistic Logic First-Order

i.e. (φ∧ψ) → χ is valid iff φ → (ψ → χ) is valid iff ψ → (φ → χ) is valid, in bi-intuitionistic
logic the connectives ∨ and also form a residuated pair, i.e. φ → (ψ ∨ χ) is valid iff
(φ ψ) → χ is valid iff (φ χ) → ψ is valid.2 To put it succinctly, BIP is a bi-intuitionistic
extension of IP that is (1) conservative and (2) has the residuation property, i.e. (∧,→) and
( ,∨) form residuated pairs.

When extending first-order intuitionistic logic (IQ) to its bi-intuitionistic counterpart, a
“natural” axiomatization seems to be one obtained by adding the universal axioms (Ax1)
∀xφ → φ(t/x), (Ax2) ∀x(ψ → φ) → (ψ → ∀xφ) (where x is not free in ψ), and the rule
(Gen) φ/∀xφ to the axioms of BIP. This extension, which we refer to as the logic BIQ(CD),
turns out not to be conservative over first-order intuitionistic logic IQ, as it allows one to
prove the quantifier shift axiom ∀x(φ ∨ ψ) → ∀xφ ∨ ψ (where x is not free in ψ), which
is not valid intuitionistically. A proof of the quantifier shift axiom is given below, where
MP stands for modus ponens, Res stands for the residuation property described above, and
δ := ∀x((∀x(φ ∨ ψ) ψ) → φ) → ((∀x(φ ∨ ψ) ψ) → ∀xφ).

Ax1∀x(φ ∨ ψ) → (φ ∨ ψ)
Res(∀x(φ ∨ ψ) ψ) → φ

Gen∀x((∀x(φ ∨ ψ) ψ) → φ) Ax2
δ

MP(∀x(φ ∨ ψ) ψ) → ∀xφ
Res∀x(φ ∨ ψ) → ∀xφ ∨ ψ

It is well-known that the quantifier shift axiom characterizes the class of first-order intuition-
istic Kripke models with constant domains [10, 16], thus forcing the models for BIQ(CD) to
satisfy this constraint. Indeed, various works in the literature (e.g., [32, 34]) have shown
that completeness for BIQ(CD) requires the domain to be constant. These works and the
above example strongly suggest that it might not be possible to have a proof system for a
bi-intuitionistic logic with non-constant domains, at least not as a traditional Hilbert system.
As far as we know, there is no prior successful attempt at solving this problem.

In this paper, we provide the first sound and complete proof system for first-order
bi-intuitionistic logic with increasing domains, which we refer to here as BIQ(ID). With
some minor modifications, the proof system for BIQ(ID) can be converted into a proof
system for BIQ(CD). A key insight in avoiding the collapse of domains in BIQ(ID) is to
consider the universal quantifier as implicitly carrying an assumption about the existence
of the quantified variable. Proof theoretically, this could be done by introducing a notion
of an existence predicate, first studied by Scott [35]. An existence predicate such as E(x)
postulates that x exists in the domain under consideration. By insisting that all universally
quantified variables be guarded by an existence predicate, i.e. universally quantified formulae
would have the form ∀x(E(x) → φ(x)), the quantifier shift axiom can be rewritten as:
∀x(E(x) → (φ ∨ ψ)) → (∀x(E(x) → φ) ∨ ψ). Attempting a bottom-up construction of a
derivation similar to our earlier example for this rewritten axiom, we get stuck at the the
top-most residuation rule, which is in fact not a valid instance of Res:

E(x) → [∀x(E(x) → (φ ∨ ψ)] → (φ ∨ ψ)
Res

E(x) → [(∀x(E(x) → (φ ∨ ψ)) ψ] → φ
Gen∀x(E(x) → [∀x(E(x) → (φ ∨ ψ)) ψ] → φ) · · ·

MP[∀x(E(x) → (φ ∨ ψ)) ψ] → ∀x(E(x) → φ)
Res∀x(E(x) → (φ ∨ ψ)) → (∀x(E(x) → φ) ∨ ψ)

2 However, they are not logically equivalent, e.g., [φ → (ψ ∨ χ)] → [(φ ψ) → χ] is not valid.
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For the proof construction to proceed, we would have to somehow discharge the assumption
E(x) in the premise of Gen before applying the residuation rule. In the logic of constant
domains BIQ(CD), E(x) is equivalent to ⊤ (i.e. the interpretation of any term in the logic is
an object that exists in all worlds in the underlying Kripke model). So the version of the
quantifier shift axiom with the existence predicate is provably equivalent to the original one
in BIQ(CD). This is not the case, however, in the logic of increasing domains BIQ(ID), since
the assumption E(x) cannot always be discharged. What this example highlights is that a
typical proof-theoretical argument used to show the provability of the quantifier shift axiom
(and hence the collapse of domains) implicitly depends on an existence assumption on objects
in the domains in the underlying Kripke model. What we show here is that by making this
dependency explicit and by carefully managing the use of the existence assumptions in proofs,
we are able to obtain a sound and complete proof system for BIQ(ID).

One issue with the existence predicate is that it is not clear how it should interact with the
exclusion operator. Semantically, a formula like ∀x[E(x) → ((p(x) ∃y(E(y) ∧p(y))) → ⊥)]
asserts that, if an object x exists in the current domain, then postulating that p(x) holds in a
predecessor world should imply that x exists as well in that predecessor world. This is valid
in our semantics, but it was not at all obvious how a proof system that admits this tautology,
and does not also degenerate into a logic with constant domains, should be designed. We
shall come back to this example later in Section 3. Additionally, the existence predicate
poses a problem when proving conservativity over first-order intuitionistic logic that does
not feature this predicate. We overcome this remaining hurdle by enriching sequents with an
explicit variable context, which can be seen as essentially encoding the existence predicate,
while avoiding introducing it explicitly in the language of formulae.

The proof systems for BIQ(ID) and BIQ(CD) are both formalized using polytree se-
quents [5], which are connected binary graphs whose vertices are traditional Gentzen sequents
and which are free of (un)directed cycles. Polytree sequents are a restriction of traditional
labeled sequents [37, 41] and are notational variants of nested sequents [3, 18, 2]. (NB. For
details on the relationship between polytree and nested sequents, see [5].) Nested sequents
were introduced independently by Bull [3] and Kashima [18] and employ trees of Gentzen
sequents in proofs. Both polytree sequents and nested sequents allow for simple formulations
of proof systems for various non-classical logics that enjoy important proof theoretical prop-
erties such as cut-elimination and subformula properties. Such systems have also found a
range of applications, being used in knowledge integration algorithms [24], serving as a basis
for constructive interpolation and decidability techniques [21, 25, 40], and even being used
to solve open questions about axiomatizability [17]. We make use of polytree sequents in our
work as they admit a formula interpretation (at least in the intuitionistic case), which can
be leveraged for direct translations of proofs into sequent calculus or Hilbert calculus proofs.

The calculi for BIQ(ID) and BIQ(CD) are based on these richly structured sequents, which
internalize the existence predicate into syntactic components, called domain atoms, present
in each node of the sequent. The rich structure of these sequents is exploited by special
rules within our calculi called reachability rules, which traverse paths in a polytree sequent,
propagating and/or consuming data. We demonstrate that our calculi enjoy the height-
preserving invertibility of every rule, and show that a wide range of novel and useful structural
rules are height-preserving admissible, culminating in a non-trivial proof of cut-elimination.

Outline of Paper. In Section 2, we define a semantics for first-order bi-intuitionistic logic
with increasing domains BIQ(ID) and constant domains BIQ(CD). In Section 3, we define
our polytree sequent calculi showing them sound and complete relative to the provided
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semantics. In Section 4, we establish admissibility and invertibility results as well as prove a
non-trivial cut-elimination theorem. We conclude and discuss future work in Section 5. Due
to space constraints, most proofs have been deferred to the online appended version [26].

2 Logical Preliminaries

In this section, we introduce the language, models, and semantics for first-order bi-
intuitionistic logic with increasing domains, dubbed BIQ(ID), and with constant domains,
dubbed BIQ(CD). Let Var := {x, y, z, . . .} be a countably infinite set of variables and
Fun = {f, g, h, . . .} be a countably infinite set of function symbols containing countably many
function symbols of each arity n ∈ N. We let ar(f) = n denote that the arity of the function
symbol f is n and let a, b, c, . . . denote constants, which are function symbols of arity 0.
For a set X ⊆ Var, we define the set Ter(X) of X-terms to be the smallest set satisfying
the following two constraints: (1) X ⊆ Ter(X), and (2) if f ∈ Fun, f is of arity n, and
t1, . . . , tn ∈ Ter(X), then f(t1, . . . , tn) ∈ Ter(X). The complete set of terms Ter is defined
to be Ter(Var). We use t, s, . . . (potentially annotated) to denote (X-)terms and let V T (t)
denote the set of variables occurring in the term t. We will often write a list t1, . . . , tn of
terms as t⃗, and define V T (⃗t) = V T (t1) ∪ · · · ∪ V T (tn).

We let Pred := {p, q, . . .} be a countably infinite set of predicates containing countably
many predicates of each arity n ∈ N. We denote the arity of a predicate p as ar(p) and refer
to predicates of arity 0 as propositional atoms. An atomic formula is a formula of the form
p(t1, . . . , tn), obtained by prefixing a predicate p of arity ar(p) = n to a tuple of terms of
length n. We will often write atomic formulae p(t1, . . . , tn) as p(⃗t).

▶ Definition 1 (The Language L). The language L is defined to be the set of formulae
generated via the following grammar in Backus-Naur form:

φ ::= p(⃗t) | ⊥ | ⊤ | φ ∧ φ | φ ∨ φ | φ φ | φ → φ | ∃xφ | ∀xφ

where p ranges over Pred, the terms t⃗ = t1, . . . , tn range over Ter, and x ranges over the set
Var. We use φ, ψ, χ, . . . to denote formulae.

The occurrence of a variable x in φ is defined to be free given that x does not occur
within the scope of a quantifier binding x. We let FV (φ) denote the set of all free variables
occurring in the formula φ and use φ(x1, . . . , xn) to denote that FV (φ) = {x1, . . . , xn}. We
let φ(t/x) denote the formula obtained by replacing each free occurrence of the variable x
in φ by t, potentially renaming bound variables to avoid unwanted variable capture; e.g.
(∀yp(x, y))(y/x) = ∀zp(y, z). The complexity of a formula φ, written |φ|, is recursively
defined as follows: (1) |p(t1, . . . , tn)| = |⊥| = |⊤| := 0, (2) |Qxφ| := |φ| + 1 for Q ∈ {∀,∃},
and (3) |φ ◦ ψ| := |φ| + |ψ| + 1 for ◦ ∈ {∨,∧,→, }.

Following [32], we give a Kripke-style semantics for BIQ(ID), defining the models used
first, and explaining how formulae are evaluated over them second.

▶ Definition 2 (ID-Frame). An ID-frame (or, frame) is a tuple F = (W,≤, U,D) such that:
W is a non-empty set {w, u, v, . . .} of worlds;
≤ ⊆ W ×W is a reflexive and transitive binary relation;
U is a non-empty set referred to as the universe;
D : W → P(U) is a domain function mapping each w ∈ W to a non-empty set D(w) ⊆ U

with U =
⋃

w∈W D(w), which satisfies the increasing domain condition: (ID) If w ≤ u,
then D(w) ⊆ D(u).
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▶ Definition 3 (ID-Model). We define an ID-Model (or, model) M to be an ordered triple
(F, I1, I2) such that:

F = (W,≤, U,D) is a frame;
I1 is a function interpreting each function symbol f ∈ Fun such that ar(f) = n by a
function I1(f) : Un → U , satisfying two conditions: (C1) For each w ∈ W and constant
a, I1(a) ∈ D(w), and (C2) For each w ∈ W , a⃗ ∈ D(w)n iff I1(f)(⃗a) ∈ D(w).
I2 is a function interpreting, in each w ∈ W , each predicate p ∈ Pred such that ar(p) = n

by a set I2(w, p) ⊆ D(w)n, satisfying the following monotonicity condition: (M) If w ≤ u,
then I2(w, p) ⊆ I2(u, p).

▶ Definition 4 (M -assignment). Let M = (F, I1, I2) be a model. We define an M -assignment
to be a function α : Var → U . We note α[a/x] is the function α modified in x such that
α[a/x](x) = a and α[a/x](y) = α(y) if y ̸= x. Given an M-assignment α, we define the
interpretation of t in M given α, denoted α(t), inductively as follows: α(x) := α(x) and
α(f(t1, ..., tn)) := I1(f)(α(t1), ..., α(tn)).

▶ Definition 5 (Semantics). Let M = (W,≤, U,D, I1, I2) be a model with w ∈ W and α an
M -assignment. The satisfaction relation ⊩ is defined as follows:

M,w,α ⊩ p(t1, . . . , tn) iff (α(t1), . . . , α(tn)) ∈ I2(w, p);
M,w,α ̸⊩ ⊥;
M,w,α ⊩ ⊤;
M,w,α ⊩ φ ∨ ψ iff M,w,α ⊩ φ or M,w,α ⊩ ψ;
M,w,α ⊩ φ ∧ ψ iff M,w,α ⊩ φ and M,w,α ⊩ ψ;
M,w,α ⊩ φ ψ iff there exists a u ∈ W such that u ≤ w, M,u, α ⊩ φ, and M,u, α ̸⊩ ψ;
M,w,α ⊩ φ → ψ iff for all u ∈ W , if w ≤ u and M,u, α ⊩ φ, then M,u, α ⊩ ψ;
M,w,α ⊩ ∃xφ iff there exists an a ∈ D(w) such that M,w,α[a/x] ⊩ φ;
M,w,α ⊩ ∀xφ iff for all u ∈ W and all a ∈ D(u), if w ≤ u, then M,u, α[a/x] ⊩ φ.

For a set Γ ⊆ L of formulae, we write Γ ⊩ φ iff for all models M , M-assignments α, and
worlds w in M , if M,w,α ⊩ ψ for each ψ ∈ Γ, then M,w,α ⊩ φ. A formula φ is valid iff
∅ ⊩ φ. Finally, we define the logic BIQ(ID) to be the set {φ | ∅ ⊩ φ} of all valid formulae.

Note that here we define logics as sets of formulae, and not consequence relations. While
this is fit for our purpose, the reader should be warned that historical confusions emerged
around this distinction in the case of propositional bi-intuitionistic logic [15, 36], notably
pertaining to the deduction theorem.

▶ Proposition 6. Let M = (W,≤, U,D, I1, I2) be a model with α an M -assignment. For any
φ ∈ L, if M,w,α ⊩ φ and w ≤ u, then M,u, α ⊩ φ.

▶ Remark 7. We define a CD-model to be a model satisfying the constant domain condition:
(CD) If w, u ∈ W , then D(w) = D(u). If we impose the (CD) condition on models, then
first-order bi-intuitionistic logic with constant domains, dubbed BIQ(CD), can be defined as
the set of all valid formulae over the class of CD-models. In what follows, we let ID denote
the class of ID-models and CD denote the class of CD-models.

▶ Example 8. Consider the formula ∀x((p(x) ∃yp(y)) → ⊥), discussed in the introduction,
but with the existence predicate removed. In the semantics with increasing domains, this
formula is valid. To see this, suppose otherwise, i.e. that there exists a world w where the
formula is false. Thus, there is a successor w ≤ u such that ᾱ(x) ∈ D(u) and p(x) ∃yp(y)
is true, for some assignment α. The latter implies that for some u′ such that u′ ≤ u, p(x) is
true (i.e. α(x) ∈ IP (u′, p)), but ∃yp(y) is false. The former implies that α(x) ∈ D(u′), so by
the semantic clause for the ∃ quantifier, ∃yp(y) must be true – contradiction.

CSL 2025
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3 Polytree Sequent Systems

Let Lab = {w, u, v, . . .} be a countably infinite set of labels. For a formula φ ∈ L and label
w ∈ Lab, we define w : φ to be a labeled formula. We use Γ, ∆, Σ, . . . to denote finite
multisets of labeled formulae, and let w :Γ denote a multiset of labeled formulae all labeled
with w. A relational atom is an expression of the form wRu and a domain atom is an
expression of the form w : x, where w, u ∈ Lab and x ∈ Var. Intuitively, the domain atom
formalizes an existence predicate: w : x can be interpreted as saying that the interpretation
of x exists at world w. We use R and T (and annotated versions thereof) to denote finite
multisets of, respectively, relational atoms and domain atoms. Also, we define w :V T (t) =
w : x1, . . . , w : xn with V T (t) = {x1, . . . , xn}, define w :V T (⃗t) = w : V T (t1), . . . , w : V T (tn)
with t⃗ = t1, . . . , tn, and let w : x⃗ = w : x1, . . . , w : xn for x⃗ = x1, . . . , xn. For multisets X
and Y of labeled formulae, relational atoms, and/or domain atoms, we let X,Y denote the
multiset union of X and Y , and Lab(X) denote the set of labels occurring in X.

▶ Definition 9 (Polytree Sequent). We define a polytree sequent to be an expression of
the form R, T ,Γ ⊢ ∆ such that (1) if R ≠ ∅, then Lab(T ,Γ,∆) ⊆ Lab(R) and if R = ∅,
then |Lab(T ,Γ,∆)| = 1, and (2) R forms a polytree, i.e. the graph G = (V,E) such that
V = Lab(R) and E = {(w, u) | wRu ∈ R} is connected and free of both directed and
undirected cycles. We refer to R, T ,Γ as the antecedent and ∆ as the consequent of a
polytree sequent. We will often refer to polytree sequents more simply as sequents.

We sometimes use S, S0, S1, . . . to denote sequents, and for S = R, T ,Γ ⊢ ∆, we define
Lab(S) = Lab(R, T ,Γ,∆). A flat sequent is an expression of the form T ,Γ ⊢ ∆ such that
|Lab(T ,Γ,∆)| = 1, i.e. all labeled formulae and domain atoms share the same label. Polytree
sequents encode certain binary graphs whose nodes are flat sequents and such that if you
ignore the orientation of the edges, the graph is a tree (cf. [5]). For example, the sequent

S = u′Rw, uRw,wRv︸ ︷︷ ︸
R

, u′ : x, u : x, u : y, w : z, v : y,︸ ︷︷ ︸
T

w : φ,w : ψ, v : θ︸ ︷︷ ︸
Γ

⊢ u′ : τ, u : χ, v : ξ︸ ︷︷ ︸
∆

can be graphically depicted as the polytree pt(S), shown below:

w

w : z, w : φ,w : ψ ⊢
77 OO

''
u

u : x, u : y ⊢ u : χ
u′

u′ : x ⊢ u′ : τ
v

v : y, v : θ ⊢ v : ξ

▶ Remark 10. To simplify the proofs of our results in Section 4, we assume w.l.o.g. that
sequents with isomorphic polytree representations are mutually derivable from one another.

3.1 Semantics and Proof Systems
The following definition specifies how to interpret sequents. In essence, we lift the semantics
of L to sequents by means of “M -interpretations”, mapping sequents into models.

▶ Definition 11 (Sequent Semantics). Let M = (W,≤, U,D, I1, I2) be a model and α an M -
assignment. We define an M -interpretation to be a function ι mapping every label w ∈ Lab
to a world ι(w) ∈ W . The satisfaction of multisets R, T , and Γ are defined accordingly:

M, ι, α |= R iff for all wRu ∈ R, ι(w) ≤ ι(u);
M, ι, α |= T iff for all w : x ∈ T , α(x) ∈ D(ι(w));
M, ι, α |= Γ iff for all w : φ ∈ Γ, M, ι(w), α ⊩ φ.
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(ax)†1

R, T ,Γ, w :p(⃗t) ⊢ ∆, u :p(⃗t)
(⊥L)

R, T ,Γ, w :⊥ ⊢ ∆
R, T ,Γ ⊢ ∆, w :φ,w :ψ (∨R)
R, T ,Γ ⊢ ∆, w :φ ∨ ψ

(⊤R)
R, T ,Γ ⊢ ∆, w :⊤

R, T ,Γ, w :φ,w :ψ ⊢ ∆ (∧L)
R, T ,Γ, w :φ ∧ ψ ⊢ ∆

R, T , w :y,Γ, w :φ(y/x) ⊢ ∆
(∃L)†2

R, T ,Γ, w :∃xφ ⊢ ∆

R, T ,Γ, w :φ ⊢ ∆ R, T ,Γ, w :ψ ⊢ ∆ (∨L)
R, T ,Γ, w :φ ∨ ψ ⊢ ∆

R, T ,Γ ⊢ ∆, w :φ R, T ,Γ ⊢ ∆, w :ψ (∧R)
R, T ,Γ ⊢ ∆, w :φ ∧ ψ

R, uRw, T ,Γ, u :φ ⊢ ∆, u :ψ
( L)†3

R, T ,Γ, w :φ ψ ⊢ ∆
R, wRu, T ,Γ, u :φ ⊢ ∆, u :ψ

(→R)†3
R, T ,Γ ⊢ ∆, w :φ → ψ

R, T , w :V T (⃗t),Γ, w :p(⃗t) ⊢ ∆
(ds)

R, T ,Γ, w :p(⃗t) ⊢ ∆
R, T ,Γ ⊢ ∆, w :∃xφ,w :φ(t/x)

(∃R)†4
R, T ,Γ ⊢ ∆, w :∃xφ

R, T ,Γ, w :φ → ψ ⊢ ∆, u :φ R, T ,Γ, w :φ → ψ, u :ψ ⊢ ∆
(→L)†1

R, T ,Γ, w :φ → ψ ⊢ ∆

R, T ,Γ ⊢ ∆, u :φ ψ,w :φ R, T ,Γ, w :ψ ⊢ ∆, u :φ ψ
( R)†1

R, T ,Γ ⊢ ∆, u :φ ψ

R, T ,Γ, w :∀xφ, u :φ(t/x) ⊢ ∆
(∀L)†5

R, T ,Γ, w :∀xφ ⊢ ∆
R, wRu, T , u :y,Γ ⊢ ∆, u :φ(y/x)

(∀R)†6
R, T ,Γ ⊢ ∆, w :∀xφ

Side Conditions:

†1 := w ↠∗
R u

†2 := y is fresh
†3 := u is fresh
†4 := A(t,Xw,R, T )

†5 := w ↠∗
R u and A(t,Xu,R, T )

†6 := u and y are fresh

Figure 1 The System LBIQ(ID).

We define a sequent S = R, T ,Γ ⊢ ∆ to be satisfied on M with ι and α, written M, ι, α |= S,
iff if M, ι, α |= R, and M, ι, α |= T , as well as M, ι, α |= Γ, then there exists a w : ψ ∈ ∆
such that M, ι, α |= w : ψ. We write M, ι, α ̸|= S when a sequent S is not satisfied on M with
ι and α. A sequent S is defined to be valid iff for every model M , every M -interpretation ι,
and every M-assignment α, we have M, ι, α |= S; otherwise, we say that S is invalid and
write M, ι, α ̸|= S.

Given a sequent S = R, T ,Γ ⊢ ∆, we define the term substitution S(t/x) to be the
sequent obtained by replacing (1) every labeled formula w : φ in Γ,∆ by w : φ(t/x) and (2)
T by T (t/x) := (T \ {w :x | w :x ∈ T }) ∪ {w :y | w :x ∈ T and y ∈ V T (t)}. For example, if
S = wRu,w :x, u :x, u :y, w :p(x) ⊢ u :∀yq(x, y), then

S(f(y, z)/x) = wRu,w :y, w :z, u :y, u :z, u :y, w :p(f(y, z)) ⊢ u :∀x′q(f(y, z), x′)

where the bound variable y in ∀yq(x, y) was renamed to x′ to avoid capture. We now define
two reachability relations ↠+

R and ↠∗
R as well as the notion of availability [9, 22] – all of

which are required to properly formulate certain inference rules in our calculi.

▶ Definition 12 (↠+
R, ↠∗

R). Let R be a finite multiset of relational atoms such that
w, u ∈ Lab(R). We say that u is strictly reachable from w, written w ↠+

R u, iff there exist
v1, . . . , vn ∈ Lab(R) such that wRv1, . . . , vnRu ∈ R with n ∈ N. We say that u is reachable
from w, written w ↠∗

R u, iff w ↠+
R u or w = u. We write w ̸↠∗

R u if w ↠∗
R u does not hold.
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π = (ax)
R, w′ : x, u : ∀x(p ∨ r(x)), u : p, v : q ⊢ u : p, w′ : r(x)

π
(ax)

R, w′ : x, u : ∀x(p ∨ r(x)), u : r(x), v : q ⊢ u : p, w′ : r(x)
(∨L)

wRu, uRv, vRw′, w′ : x, u : ∀x(p ∨ r(x)), u : p ∨ r(x), v : q ⊢ u : p, w′ : r(x)
(∀L)

wRu, uRv, vRw′, w′ : x, u : ∀x(p ∨ r(x)), v : q ⊢ u : p, w′ : r(x)
(∀R)

wRu, uRv, u : ∀x(p ∨ r(x)), v : q ⊢ u : p, v : ∀xr(x)
(→R)

wRu, u : ∀x(p ∨ r(x)) ⊢ u : p, u : q → ∀xr(x)
(∨R)

wRu, u : ∀x(p ∨ r(x)) ⊢ u : p ∨ (q → ∀xr(x))
(→R)

⊢ w : ∀x(p ∨ r(x)) → (p ∨ (q → ∀xr(x)))

Figure 2 An example proof in LBIQ(CD) for bi-intuitionistic logic with constant domains.

▶ Definition 13 (Available). Let S = R, T ,Γ ⊢ ∆ be a sequent with w ∈ Lab(S). We define
a term t to be available for w in R, T , written A(t,Xw,R, T ), iff t ∈ Ter(Xw) such that

Xw = {x | u :x ∈ T and u↠∗
R w for some u ∈ Lab(S)}.

Our polytree calculus LBIQ(ID) for BIQ(ID) is shown in Figure 1. The (ax), (⊥L),
and (⊤R) rules serve as initial rules, the domain shift rule (ds) encodes the fact that
I2(p, w) ⊆ D(w)n in any model. We define the principal formula in an inference rule to be
the one explicitly mentioned in the conclusion, the auxiliary formulae to be the non-principal
formulae explicitly mentioned in the premises, and an active formula to be either a principal
or auxiliary formula. For example, w : ∃xφ is principal, w : φ(t/x) is auxiliary, and both
are active in (∃R). Note that all rules of our calculus preserve the property of being a
polytree-structured sequent. We define a proof and its height as usual [39]. Two unique
features of our calculi are the inclusion of reachability rules and the domain shift rule (ds),
which we elaborate on next.

3.2 Reachability Rules
A unique feature of our calculi is the inclusion of reachability rules (introduced in [20]), a
generalization of propagation rules (cf. [4, 8, 14]), which are not only permitted to propagate
formulae throughout a polytree sequent when applied bottom-up, but may also check to see
if data exists along certain paths. The rules (ax), (→L), ( R), (∃R), and (∀L) serve as our
reachability rules. The side conditions of our reachability rules are listed at the bottom of
Figure 1. Moreover, we define a label u or a variable y to be fresh in a rule application (as
in the (∃L) and (∀R) rules) iff it does not occur in the conclusion of the rule.
▶ Remark 14. If we set †4 := “t ∈ Ter”, †5 := “w ↠∗

R u and t ∈ Ter”, and remove the (ds)
rule, then we obtain a polytree calculus, dubbed LBIQ(CD), for the constant domain version
of the logic BIQ(CD). We also note that in the constant domain setting, domain atoms are
unnecessary and can be omitted from sequents.

To provide intuition, we give an example showing the operation of a reachability rule.

▶ Example 15. Let S = R, T ,Γ ⊢ ∆ such that R = uRw,wRv, T = w : x, u : y, v : z,
Γ = w : ∀xp(x), w : p(f(y)), w : p(z), and ∆ = u : q(x) q(x), v : r(y). A representation of
S as a polytree is shown below. We explain (in)valid applications of the (∀L) reachability rule.

u

u : y ⊢ u : q(x) q(x) //
w

w : x,w : ∀xp(x), w : p(f(y)), w : p(z) ⊢ //
v

v : z ⊢ v : r(y)
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The term f(y) is available for w in S since u↠∗
R w, namely there is an edge from u to w,

and f(y) ∈ Ter(Xw) since Xw = {x, y}. Therefore, we may (top-down) apply the (∀L) rule
to delete w : p(f(y)) and derive the sequent S′ = R, T ,Γ′ ⊢ ∆ with Γ′ = w : ∀xp(x), w : p(z).
By contrast, w : p(z) cannot be deleted via an application of (∀L) because the term z is not
available for w in S (observe that w is not reachable from v) meaning z ̸∈ Ter(Xw).

▶ Remark 16. We note that for any set X ⊆ Var, Ter(X) ̸= ∅ since all constants are contained
in Ter(X) by definition. This means that bottom-up applications of (∃R) and (∀L) may
instantiate existential and universal formulae with any constant.

The reachability rules (ax), (→L) and ( R) are important to ensure completeness for
both LBIQ(CD) and LBIQ(ID). The reachability rules for (∃R) and (∀L) are relevant only for
LBIQ(ID) to ensure that the domains in the model do not collapse into a constant domain.
We illustrate the importance of these reachability rules with a couple of examples.

▶ Example 17 (An Intuitionistic Formula Valid in Constant Domain Models). Consider the
intuitionistic formula ∀x(p ∨ r(x)) → (p ∨ (q → ∀xr(x))). This formula was adapted from an
example in [27], which was used to illustrate the difficulty of obtaining a sound and complete
sequent system for intuitionistic logic with constant domains. A proof of this formula in
LBIQ(CD) is shown in Figure 2 and crucially relies on reachability rules. In the figure, the
relational atoms R = wRu, uRv, vRw′ in the instances of (ax) allow us to conclude that
u↠∗

R u and u↠∗
R w′, justifying the left and right instances of (ax), respectively.

▶ Example 18 (Non-Provability of the Quantifier Shift Axiom in the Increasing Domain Setting).
Let us consider again the quantifier shift axiom ∀x(φ ∨ ψ) → (∀xφ ∨ ψ) and an attempt to
construct a proof (bottom-up) of one of its instances in LBIQ(ID).

wRu, uRv, v : x, u : ∀x(p(x) ∨ q) ⊢ v : p(x), u : q
(∀R)

wRu, u : ∀x(p(x) ∨ q) ⊢ u : ∀xp(x), u : q
(∨R)

wRu, u : ∀x(p(x) ∨ q) ⊢ u : ∀xp(x) ∨ q
(→R)

⊢ w : ∀x(p(x) ∨ q) → (∀xp(x) ∨ q)

It is obvious that to finish this proof, we would need to instantiate the ∀x quantifier in the
labeled formula u : ∀x(p(x) ∨ q) with x by applying the (∀L) rule. However, to do so, we
would need to demonstrate that the world u is reachable from v where the domain atom
v : x resides. Yet, u is not reachable from v, so x is not available at u to be used by (∀L).

3.3 The Domain Shift Rule (ds)
Although the reachability rules for the quantifiers prevent the quantifier shift axiom from being
proved, it turns out that they are not sufficient to ensure the completeness of LBIQ(ID) with
respect to the sequent semantics for the logic BIQ(ID). Interestingly, this incompleteness only
arises when the exclusion connective is involved – if one considers the intuitionistic fragment
of LBIQ(ID), these reachability rules are sufficient to prove completeness (see Lemma 26 in
Section 3.5). To see this incompleteness issue, consider the formula in Example 8, which is
semantically valid, and the following attempt at a (bottom-up) construction of a proof:

wRu, uRv, u′Rv, u : x, u′ : p(x) ⊢ u′ : ∃yp(y), v : ⊥
( L)

wRu, uRv, u : x, v : p(x) ∃yp(y) ⊢ v : ⊥
(→R)

wRu, u : x ⊢ u : (p(x) ∃yp(y)) → ⊥
(∀R)

⊢ w : ∀x((p(x) ∃yp(y)) → ⊥)
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We have so far applied only invertible rules, so the original sequent is provable iff the top
sequent in the above derivation also is. To proceed with the proof construction, one needs to
instantiate the existential quantifier ∃y with x. However, the only domain atom containing x
is located at the world u, which is not available to u′ where the existential formula is located.

It is not so obvious how the reachability rules for quantifiers could be amended to allow
this example to be proved. Looking at the above derivation, it might be tempting to augment
the calculus with a rule that allows a backward reachability condition for domain atoms,
e.g., making u : x available to u′ for when u′ ↠∗

R u under certain admissibility conditions,
but this could easily lead to a collapse of the domains if one is not careful. Instead, our
approach here is motivated by the semantic clause for predicates: when p(x) holds in a world,
its interpretation requires that x is also defined in that world. Proof theoretically, we could
think of this as postulating an axiom such as ∀x(p(x) → E(x)) where E(x) is an existence
predicate (which, as we recall, was behind the semantics of the domain atoms). Translated
into our calculus, this gives us the (ds) rule as shown in Figure 1. Using the (ds) rule, the
above derivation can now be completed to a proof:

(ax)
R, u : x, u′ : x, u′ : p(x) ⊢ u′ : p(x), u′ : ∃yp(y), v : ⊥

(∃R)
R, u : x, u′ : x, u′ : p(x) ⊢ u′ : ∃yp(y), v : ⊥

(ds)
wRu, uRv, u′Rv, u : x, u′ : p(x) ⊢ u′ : ∃yp(y), v : ⊥

Note that the (ds) rule can only be applied to atomic predicates, but not arbitrary formulae,
which rules out unsound instances. It may be possible to relax the restriction to atomic
predicates by imposing some positivity conditions on the occurrences of x, but we did not
find this necessary – neither for completeness, nor for cut-elimination.
▶ Remark 19. The (ds) rule can be removed without affecting the cut-elimination result for
LBIQ(ID). This raises the possibility of defining a first-order bi-intuitionistic logic strictly
weaker than BIQ(ID). It is unclear what the semantics for such a logic would look like.

3.4 Soundness and Completeness
▶ Theorem 20 (Soundness). Let S be a sequent. If S is provable in LBIQ(ID) (LBIQ(CD)),
then S is (CD-)valid.

Proof. By induction on the height of the given proof; see Appendix A for details. ◀

The completeness of our polytree calculi (see Theorem 22 below) is shown by taking
a sequent of the form w : x⃗ ⊢ w : φ(x⃗) as input and showing that if the sequent is not
provable, then the calculus can be used to construct an infinite derivation from which a
counter-model of the end sequent can be extracted. We note that completeness only holds
relative to sequents of the form w : x⃗ ⊢ w : φ(x⃗), which includes a domain atom for each free
variable in φ(x⃗). This restriction is needed because quantifier rules can only (bottom-up)
instantiate quantified formulae with the free variables x⃗ of φ(x⃗) if such free variables occur
as domain atoms, and such free variables must be accessible to quantifier rules to properly
extract a counter-model of the end sequent (see [23] for a relevant discussion).

Below, we outline the cut-free completeness proof for LBIQ(ID) as the proof for LBIQ(CD)
is similar; the complete proof can be found in the online, appended version [26]. Our proof
outline makes use of various new notions, which we now define. A pseudo-derivation is defined
to be a (potentially infinite) tree whose nodes are sequents and where every parent node
corresponds to the conclusion of a rule in LBIQ(ID) with the children nodes corresponding
to the premises. We remark that a proof in LBIQ(ID) is a finite pseudo-derivation where all
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top sequents are instances of (ax), (⊥L), or (⊤R). A branch B is defined to be a maximal
path of sequents through a pseudo-derivation, starting from the conclusion. The following
lemma is useful in proving completeness.

▶ Lemma 21. Let C ∈ {ID, CD}. For each i ∈ {0, 1, 2}, let Si = Ri, Ti,Γi ⊢ ∆i be a sequent.
1. If w ↠∗

R u holds for the conclusion of a rule (r) in LBIQ(C), then w ↠∗
R u holds for the

premises of (r);
2. If w : p(⃗t) ∈ Γ0,∆0 and S0 is the conclusion of a rule (r) in LBIQ(C) with S1 (and S2)

the premise(s) of (r), then w : p(⃗t) ∈ Γ1,∆1 (and w : p(⃗t) ∈ Γ2,∆2, resp.);
3. If w : x ∈ T0 and S0 is the conclusion of a rule (r) in LBIQ(C) with S1 (and S2) the

premise(s) of (r), then w : x ∈ T1 (and w : x ∈ T2, resp.).

The lemma tells us that propagation paths, the position of atomic formulae, and the
position of terms are bottom-up preserved in rule applications.

▶ Theorem 22 (Completeness). If w : x⃗ ⊢ w : φ(x⃗) is (CD-)valid, then w : x⃗ ⊢ w : φ(x⃗) is
provable in LBIQ(ID) (LBIQ(CD)).

Proof (Outline). We assume that S = w : x⃗ ⊢ w : φ(x⃗) is not provable in LBIQ(ID) and
show that a model M can be defined which witnesses that S is invalid. To prove this, we
first define a proof-search procedure Prove that bottom-up applies rules from LBIQ(ID) to
w : x⃗ ⊢ w : φ(x⃗). Second, we show how a model M can be extracted from failed proof-search.
We now describe the proof-search procedure Prove and let ≺ be a well-founded, strict linear
order over the set Ter of terms.

Prove. Let us take w : x⃗ ⊢ w : φ(x⃗) as input and continue to the next step. We show some
key steps; the complete Prove procedure can be found in the online appended version [26].

(ax), (⊥L), and (⊤R). Suppose B1, . . . ,Bn are all branches occurring in the current
pseudo-derivation and let S1, . . . , Sn be the top sequents of each respective branch. For each
1 ≤ i ≤ n, we halt the computation of Prove on each branch Bi where Si is of the form (ax),
(⊥L), or (⊤R). If Prove is halted on each branch Bi, then Prove returns True because a
proof of the input has been constructed. However, if Prove did not halt on each branch Bi

with 1 ≤ i ≤ n, then let Bj1 , . . . ,Bjk
be the remaining branches for which Prove did not halt.

For each such branch, copy the top sequent above itself, and continue to the next step.

(ds). Suppose B1, . . . ,Bn are all branches occurring in the current pseudo-derivation and
let S1, . . . , Sn be the top sequents of each respective branch. For each 1 ≤ i ≤ n, we consider
Bi and extend the branch with bottom-up applications of (ds) rules. Let Bk+1 be the current
branch under consideration, and assume that B1, . . . ,Bk have already been considered. We
assume that the top sequent in Bk+1 is of the form

Sk+1 = R, T ,Γ, w : p1(⃗t1), . . . , wℓ : pℓ(⃗tℓ) ⊢ ∆

where all atomic input formulae are displayed in Sk+1 above. We successively consider each
atomic input formula and bottom-up apply (ds), yielding a branch extending Bk+1 with a
top sequent saturated under (ds) applications. After these operations have been performed
for each branch Bi with 1 ≤ i ≤ n, we continue to the next step.
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(∃L). Suppose B1, . . . ,Bn are all branches occurring in the current pseudo-derivation and
let S1, . . . , Sn be the top sequents of each respective branch. For each 1 ≤ i ≤ n, we consider
Bi and extend the branch with bottom-up applications of (∃L) rules. Let Bk+1 be the current
branch under consideration, and assume that B1, . . . ,Bk have already been considered. We
assume that the top sequent in Bk+1 is of the form

Sk+1 = R, T ,Γ, w1 : ∃x1φ1, . . . , wm : ∃xmφm ⊢ ∆

where all existential input formulae wi : ∃xiφi are displayed in Sk+1 above. We consider
each formula wi : ∃xiφi in turn, and bottom-up apply the (∃L) rule. These rule applications
extend Bk+1 such that

R, T ′,Γ, w1 : φ1(y1/x1), . . . , wn : φm(ym/xm) ⊢ ∆

is now the top sequent of the branch with y1, . . . , ym fresh variables and T ′ = T , w1 :
y1, . . . , wm : ym. After these operations have been performed for each branch Bi with
1 ≤ i ≤ n, we continue to the next step.

(∃R). Suppose B1, . . . ,Bn are all branches occurring in the current pseudo-derivation and
let S1, . . . , Sn be the top sequents of each respective branch. For each 1 ≤ i ≤ n, we consider
Bi and extend the branch with bottom-up applications of (∃R) rules. Let Bk+1 be the current
branch under consideration, and assume that B1, . . . ,Bk have already been considered. We
assume that the top sequent in Bk+1 is of the form

Sk+1 = R, T ,Γ ⊢ w1 : ∃x1φ1, . . . , wm : ∃xmφm,∆

where all existential formulae wi : ∃xiφi are displayed in Sk+1 above. We consider each labeled
formula wm : ∃xmφi in turn, and bottom-up apply the (∃R) rule. Let wℓ+1 : ∃xℓ+1φℓ+1 be
the current formula under consideration, and assume that w1 : ∃x1φ1, . . . , wℓ : ∃xℓφℓ have
already been considered. Recall that ≺ is a well-founded, strict linear order over the set Ter
of terms. Choose the ≺-minimal term t ∈ Ter(Xwℓ+1) that has yet to be picked to instantiate
wℓ+1 : ∃xℓ+1φℓ+1 and bottom-up apply the (∃R) rule, thus adding wℓ+1 : φℓ+1(t/xℓ+1). We
perform these operations for each branch Bi with 1 ≤ i ≤ n.

The remaining rules of LBIQ(ID) are processed in a similar fashion. The Prove procedure
will saturate open branches of the pseudo-derivation that is under construction by repeatedly
(bottom-up) applying rules from LBIQ(ID) in a roundabout fashion.

Next, we aim to show that if Prove does not return True, then a model M , M -
interpretation ι, and M -assignment α can be defined such that M, ι, α ̸|= S. If Prove
halts, i.e. Prove returns True, then a proof of S may be obtained by “contracting” all
redundant inferences from the “(ax), (⊥L), and (⊤R)” step of Prove. Therefore, in this case,
since a proof exists, we have obtained a contradiction to our assumption. As a consequence,
we have that Prove does not halt, that is, Prove generates an infinite tree with finite branch-
ing. By König’s lemma, an infinite branch must exist in this infinite tree, which we denote
by B. We define a model M = (W,≤, U,D, I1, I2) by means of this branch as follows: Let
us define the following sets, all of which are obtained by taking the union of each multiset
of relational atoms, domain atoms, antecedent labeled formulae, and consequent labeled
formulae (resp.) occurring within a sequent in B:

RB =
⋃

(R,T ,Γ⊢∆)∈B

R T B =
⋃

(R,T ,Γ⊢∆)∈B

T ΓB =
⋃

(R,T ,Γ⊢∆)∈B

Γ ∆B =
⋃

(R,T ,Γ⊢∆)∈B

∆



T. S. Lyon, I. Shillito, and A. Tiu 41:13

We now define: (1) u ∈ W iff u ∈ Lab(RB, T B,ΓB,∆B), (2) ≤ = {(u, v) | uRv ∈ R}∗

where ∗ denotes the reflexive-transitive closure, (3) t ∈ U iff there exists a label
u ∈ Lab(RB, T B,ΓB,∆B) such that t ∈ Ter(Xu), (4) t ∈ D(u) iff t ∈ Ter(Xu), and
(5) (t1, . . . , tn) ∈ I2(u, p) iff v, u ∈ Lab(RB, T B,ΓB,∆B), v ↠∗

RB u, and v : p(t1, . . . , tn) ∈
ΓB.

It can be shown that M is indeed a model. Let us define α to be the M -assignment
mapping every variable in U to itself and every variable in Var \ U arbitrarily. To finish the
proof of completeness, we now argue the following by mutual induction on the complexity of
the formula ψ: (1) if u : ψ ∈ ΓB, then M,u, α ⊩ ψ, and (2) if u : ψ ∈ ∆B, then M,u, α ̸⊩ ψ.
Let ι to be the M -interpretation such that ι(u) = u for u ∈ W and ι(v) ∈ W for v ̸∈ W .
By the proof above, M, ι, α ̸|= w : x⃗ ⊢ w : φ(x⃗), showing that if a sequent of the form
w : x⃗ ⊢ w : φ(x⃗) is not provable in LBIQ(ID), then it is invalid, that is, every valid sequent
of the form w : x⃗ ⊢ w : φ(x⃗) is provable in LBIQ(ID). ◀

▶ Remark 23. We remark that cut admissibility follows from the soundness of the (cut) rule
(see Figure 3) and the completeness theorem above. However, this method of proof has
two downsides: first, the restriction in the completeness theorem above implies that cut
admissibility only holds for proofs with an end sequent of the form w : x⃗ ⊢ w : φ(x⃗). Second,
this (semantic) method of proof does not define an algorithm showing how instances of (cut)
can be permuted upward and eliminated from a given proof. In Section 4, we will prove that
cut admissibility holds for all proofs and will provide such an algorithm (see Theorem 30).

3.5 Intuitionistic Subsystems
We end this section by discussing two subsystems of LBIQ(ID) and LBIQ(CD) arising from
restricting the connectives to the intuitionistic fragment. In the former case, we obtain a
proof system for the usual first-order intuitionistic logic (with non-constant domains) IQ, and
in the latter, we obtain a proof system for intuitionistic logic with constant domains IQC.

▶ Corollary 24 (Conservativity). Let φ be an intuitionistic formula (i.e. a formula with
no occurrences of ). Then, φ is valid in IQ (IQC) iff ⊢ w : φ is provable in LBIQ(ID)
(respectively, LBIQ(CD)).

The proof of Corollary 24 is straightforward from Definition 11. We show here a stronger
proof-theoretic conservativity result: we can in fact extract a purely intuitionistic fragment
out of LBIQ(ID), where every sequent in the fragment is interpretable in the semantics
without the existence predicate. We prove this via syntactic means, by showing how we can
translate intuitionistic proofs in LBIQ(ID) to proofs in Gentzen’s LJ [11, 12]. A key idea
is to first define a formula interpretation of a polytree sequent, and then show that every
inference rule corresponds to a valid implication in LJ. We start by defining a notion of
intuitionistic (polytree) sequent.

▶ Definition 25. A sequent S = R, T ,Γ ⊢ ∆ is an intuitionistic sequent iff R is a tree rooted
at node u such that

every formula in S is an intuitionistic formula (i.e. it contains no occurrences of ),
for every labeled formula w : φ in S and variable x ∈ V T (φ), x is available for w, and
if w : x and z : x are in T , then w = z.

By NIQ(ID) we denote the restriction to intuitionistic sequents of the proof system
LBIQ(ID) without the (ds) rule. The next lemma states an important property of LBIQ(ID),
called the separation property, which was first discussed in the context of tense logics [14].
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▶ Lemma 26 (Separation). An intuitionistic sequent S is provable in NIQ(ID) iff it is
provable in LBIQ(ID).

Proof (Outline). One direction, from NIQ(ID) to LBIQ(ID) is trivial. For the other direc-
tion, suppose π is a proof of S in LBIQ(ID). By induction on the structure of π, it can be
shown that there is a proof π′ in LBIQ(ID) in which every sequent in π′ is almost intuition-
istic – it satisfies all the requirements in Definition 25 except possibly the last condition (due
to the possible use of the (ds) rule). Then, from π′ we can construct another proof π′′ of S
that does not use (ds), by showing that one can always permute the rule (ds) up until it
disappears. Since all the rules of LBIQ(ID), other than (ds), preserve the property of being
an intuitionistic sequent, it then follows that π′′ is a proof in NIQ(ID). ◀

To translate a proof in NIQ(ID) to LJ, we need to interpret a polytree sequent as a
formula. This turns out to be somewhat problematic, due to the difficulty in interpreting
the scopes of domain atoms, when interpreting them as universally quantified variables.
Fortunately, in the case of intuitionistic sequents, the scopes of such variables follow a
straightforward lexical scoping (i.e. their scopes are over formulae in the subtrees). To define
the translation, we first relax the requirement on the domain atoms in intuitionistic sequents:
a quasi-intuitionistic sequent is defined as in Definition 25, except that in the second clause, x
is either available for w, or it does not occur in T . Obviously an intutionistic sequent is also
a quasi-intuitionistic sequent. Given a quasi-intuitionistic sequent S and a label w, we write
Sw to denote the quasi-intuitionistic sub-sequent of S that is rooted in w, i.e. the sequent
obtained from S by removing any relational atoms, domain atoms, and labeled formulae that
mention a world v not reachable from w. Given a multiset of labeled formulae Γ, we denote
with Γu the labeled formulae in Γ that are labeled with u.

▶ Definition 27. Let S = R, T ,Γ ⊢ ∆ be a quasi-intuitionistic sequent. We define its formula
interpretation F (S) recursively on the height of the sequent tree and suppose S is rooted at u.

If S is a flat sequent, then F (X) = ∀x⃗(
∧

Γ →
∨

∆) where x⃗ are all the variables in T ;
otherwise, if u has n successors w1, . . . , wn, then

F (S) = ∀x⃗(
∧

Γu → (
∨

∆u ∨ F (Sw1) ∨ · · · ∨ F (Swn
))).

The following proof-theoretic conservativity result can then be proved using a standard
translation technique for relating nested sequents and traditional Gentzen sequent calculi [6].

▶ Proposition 28. Let S be an intuitionistic sequent. S is provable in NIQ(ID) iff F (S) is
provable in LJ.

Proof (Outline). The proof is tedious, but not difficult and follows a general strategy to
translate nested sequent proofs (which, recall, are notational variants of polytree sequent
proofs) to traditional sequent proofs (with cuts) from the literature, see e.g., the translation
from nested sequent to traditional sequent proofs for full intuitionistic linear logic [6]. For
every inference rule in NIQ(ID) of the form:

S1 · · · Sn

S

we show that the formula F (S1) ∧ · · · ∧ F (Sn) → F (S) is provable in LJ. Then, given
any proof in NIQ(ID), we simulate every inference step with its corresponding implication,
followed by a cut. ◀
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R, T ,Γ ⊢ ∆ (wv)
R, T , w :x,Γ ⊢ ∆

R, T , w :x, u :x,Γ ⊢ ∆
(id)†1

R, T , w :x,Γ ⊢ ∆
R, T ,Γ ⊢ ∆ (iw)

R, T ,Γ,Σ ⊢ ∆,Π

(gax)†1
R, T ,Γ, w :φ ⊢ ∆, u :φ

R, wRv, T ,Γ ⊢ ∆
(brf )†2

R, uRv, T ,Γ ⊢ ∆
R, vRu, T ,Γ ⊢ ∆

(brb)†3
R, vRw, T ,Γ ⊢ ∆

R, T , w :x,Γ ⊢ ∆ (cd)
R, T ,Γ ⊢ ∆

R, T ,Γ, w :φ,w :φ ⊢ ∆ (ctrl)R, T ,Γ, w :φ ⊢ ∆
R, T ,Γ ⊢ ∆, w :φ,w :φ (ctrr)

R, T ,Γ ⊢ ∆, w :φ

R, wRu, T ,Γ ⊢ ∆ (mrg)
R(w/u), T (w/u),Γ(w/u) ⊢ ∆(w/u)

R, T ,Γ ⊢ ∆, w :φ R, T ,Γ, u :φ ⊢ ∆
(cut)†1

R, T ,Γ ⊢ ∆

R, T ,Γ ⊢ ∆ (t/x)
R, T (t/x),Γ(t/x) ⊢ ∆(t/x)

R, T ,Γ ⊢ ∆, w :⊥ (⊥R)
R, T ,Γ ⊢ ∆

R, T ,Γ, w :⊤ ⊢ ∆ (⊤L)
R, T ,Γ ⊢ ∆

R, T ,Γ ⊢ ∆, w :Π
(lwr)†1

R, T ,Γ ⊢ ∆, u :Π
R, T ,Γ, u :Σ ⊢ ∆

(lft)†1
R, T ,Γ, w :Σ ⊢ ∆

Side Conditions:

†1 := w ↠∗
R u

†2 := w ↠∗
R u and u ̸↠∗

R v

†3 := w ↠∗
R u and w ̸↠∗

R v

Figure 3 Admissible rules.

As far as we know, for intuitionistic logic with constant domains IQC, there is no
formalization in the traditional Gentzen sequent calculus that admits cut-elimination. There
is, however, a formalization in prefixed tableaux by Fitting [9], which happens to be a
syntactic variant of the intuitionistic fragment of LBIQ(CD) (shown in [19]).

4 Cut-Elimination

In this section, we show that LBIQ(ID) and LBIQ(CD) satisfy a sizable number of favorable
properties culminating in syntactic cut-elimination. We explain here some key steps; the full
details are available in the online appended version [26].

LBIQ(ID) and LBIQ(CD) can be seen as first-order extensions of Postniece’s deep-nested
sequent calculus for bi-intuitionistic logic DBiInt [31, 13]. Cut-elimination for DBiInt [13] was
proven in two stages. First, cut-elimination was proven for a “shallow” version of the nested
sequent calculus LBiInt, which can be seen as a variant of a display calculus [1]. The cut-
elimination proof for this shallow calculus follows from Belnap’s generic cut-elimination for
display calculi [1]. Second, cut-free proofs in the shallow calculus are shown to be translatable
to proofs in the deep-nested calculus. We do not have the corresponding shallow versions
of LBIQ(ID) and LBIQ(CD), so we cannot rely on Belnap’s generic cut-elimination. It may
be possible to define shallow versions of our calculi, and then follow the same methodology
outlined in [13] to prove cut-elimination, but we find that a direct cut-elimination proof is
simpler, e.g., it avoids the need for proving the admissibility of certain structural rules called
the display postulates [1], which lets one transition from shallow to deep inference systems.

Since our polytree sequents are a restriction of ordinary labeled sequents, another possible
approach to cut-elimination is to apply the methodology for labeled sequent calculi [28]. A
main issue in adapting this methodology is ensuring that the proof transformations needed
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in cut-elimination preserve the polytree structure of sequents. A key proof transformation in
a typical cut-elimination proof for labeled calculi is label substitution: given a proof π1 and
labels u and w, one constructs another proof π2 by replacing u with w everywhere in π1 and
adjusts the inference rules accordingly. This is typically needed in the reduction of a cut
where the last rules in both branches of the cut apply to the cut formula, and where one of
the rules introduces (reading the rule bottom up) a new label and a new relational atom (e.g.,
(→R)). Such a substitution operation may not preserve polytree structures. Another notable
difference between our calculi and traditional labeled calculi is the absence of structural rules
manipulating relational atoms. These differences mean that cut-elimination techniques for
labeled sequent calculi cannot be immediately applied in our setting.

Instead, our cut-elimination proof builds on an approach by Pinto and Uustalu [29, 30],
which deals with a polytree sequent calculus for propositional bi-intuitionistic logic. We thus
provide a series of proof transformations, culminating in the elimination of cuts, which shares
similarities with their work in the propositional case and expands in the first-order direction.
These transformations are captured in proofs of the admissibility of rules shown in Figure 3.
We illustrate some key transformations and why they are needed, through an example of a
cut where (→L) and (→R) are applied to the cut formula. The formal details are available
in the proof of Theorem 30.

Suppose we have the instance of cut shown below left, where π1 is shown below right and
π2 is shown below bottom with w ↠∗

R u.

π1

R, T ,Γ ⊢ w : φ → ψ,∆
π2

R, T ,Γ, w : φ → ψ ⊢ ∆
cutR, T ,Γ ⊢ ∆

π′
1

R, T , wRw′,Γ, w′ : φ ⊢ w′ : ψ,∆ (→R)
R, T ,Γ ⊢ w : φ → ψ,∆

π3
R, T , w : φ → ψ,Γ ⊢ ∆, u : φ

π4
R, T ,Γ, w : φ → ψ, u : ψ ⊢ ∆ (→L)

R, T ,Γ, w : φ → ψ ⊢ ∆

A typical cut reduction strategy would be to cut π1 with π3 and π4 (both with cut formula
φ → ψ), producing the proofs π5 and π6 of R,Γ ⊢ ∆, u : φ and R,Γ, u : ψ ⊢ ∆, respectively.
Next, one would cut π5 with π′

1 (with cut formula φ), producing a proof π7, and then cut
π7 with π6 (with cut formula ψ). There are a couple of issues with this strategy: (1) the
cut formulae in the last two instances of cut have mismatched labels, i.e., w′ on one side
and u on the other ; (2) the label w′ and the relational atom wRw′ are not present in the
conclusions of π5 and π6, so the contexts of the premises of the cuts do not match.

To fix these issues, we first need to transform the proof π′
1 into two proofs π5 and π6, shown

below left and right, respectively. As shown in the cut-elimination proof, a transformation
that we use in this case is one that is represented by the rule (iw). This ensures that the
contexts match the contexts of the concluding sequents in π3 and π4.

π′
1

R, wRw′, T ,Γ, w′ : φ ⊢ w′ : ψ,∆ (→R)
R, T ,Γ ⊢ w : φ → ψ,∆ (iw)

R, T ,Γ ⊢ w : φ → ψ, u : φ,∆

π′
1

R, wRw′, T ,Γ, w′ : φ ⊢ w′ : ψ,∆ (→R)
R, T ,Γ ⊢ w : φ → ψ,∆ (iw)

R, T ,Γ, w : φ → ψ, u : ψ ⊢ ∆

We then cut π3 and π4 with π5 and π6, respectively, which yields proofs π7 and π8 of
R,Γ ⊢ u : φ,∆ and R,Γ, u : ψ ⊢ ∆, respectively. At this stage, we want to cut π7 with π′

1,
and then cut the resulting proof with π8. However, this cut cannot be performed until the
label w′ and its associated relational atom are removed from the conclusion of π′

1. Simply
substituting u for w′ may break the polytree shape of the sequent, e.g., if there is a v such
that wRv and vRu are in R, then replacing u for w′ in wRw′ would break the polytree
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shape of the sequent. So the relational atoms in the sequent also need to be modified. A
transformation that we use in this case is represented by the rule (brf ), which shifts the
relational atom wRw′ “forward” from w to u given that w ↠∗

R u. We also need another
transformation to “merge” the label u with the label w′, deleting the relational atom in the
process, represented as the (mrg) rule.

π7 (iw)
R, T ,Γ ⊢ u : φ, u : ψ,∆

π′
1

R, wRw′, T ,Γ, w′ : φ ⊢ w′ : ψ,∆ (brf )
R, uRw′, T ,Γ, w′ : φ ⊢ w′ : ψ,∆ (mrg)

R, T ,Γ, u : φ ⊢ u : ψ,∆
cutR, T ,Γ ⊢ u : ψ,∆

If we cut the above proof with π8, we obtain a proof of R, T ,Γ ⊢ ∆. Here we gloss over the
termination arguments, but the details are available in the proof of Theorem 30.

The above example illustrates one among several proof transformations needed in cut-
elimination. These transformations make use of the auxiliary rules in Figure 3. The bulk of
the cut-elimination proof consists of showing these rules (height-preserving/hp-) admissible
and the rules of LBIQ(ID) and LBIQ(CD) height-preserving invertible (i.e., hp-invertible).
(NB. We take the notions of (hp-)admissibility and (hp-)invertibility to be defined as usual.)
All (hp-)admissible rules preserve the polytree structure of sequents, and with the exception
of (gax), (cut), and (cd), all rules in Figure 3 are hp-admissible in both calculi. The (gax)
and (cut) rules are strictly admissible in both calculi, while (cd) is hp-admissible in only
LBIQ(CD) as the availability conditions are not imposed on rules, rendering domain atoms
unnecessary (see Remark 14). We now discuss some of the most interesting rules of Figure 3.

Let us first explain the rules (brf ) and (brb). For some labels w, u, and v, assume w ↠∗
R u

and u ̸↠∗
R v for R := R′, wRv. Then, we know that (1) u and v are on two different paths

passing through w of the polytree generated from R, and (2) there is no vertex between v

and w since otherwise a cycle would be present in R. In this scenario, the rule (brf ) (for
branch f orward) allows one to move the polytree “rooted” at v forward by connecting it to
u instead of w as shown left in the below figure. The rule (brb) has a similar functionality;
for some labels w, u, and v, assume w ↠∗

R u and w ̸↠∗
R v for R := R′, vRu. Then, the rule

(brb) (for branch backward) lets one move the polytree “rooted” at v backward by connecting
it to w instead of u as shown right in the below figure.

w u

v ⇒
w u

v
w u

v

⇒
w u

v

Figure 4 The left and right diagrams demonstrate the functionality of (brf ) and (brb), respectively.

The (mrg) rule merges a label and its direct successor and corresponds to the rules
nodemergeD and nodemergeU of Pinto and Uustalu [29]. The rule (id) reflects the re-
dundancy of a variable labeled by two labels such that one is reachable by the other.
Model-theoretically, this redundancy follows from the fact that if x is interpreted at w, and
u is reachable from w (in a model), then x is interpreted at u as well, showing the domain
atom u : x superfluous in the premise. Note that when the labels w and u are identical, then
the rule represents a contraction on domain atoms; as w ↠∗

R w always holds, we have that
identical domain atoms can always be contracted in sequents. The rules (lwr) and (lft) allow
us to modify the labels of formulae in a sequent by looking at its underlying polytree. More
precisely, reading (lwr) and (lft) bottom-up, if w ↠∗

R u we can both lower the label of u :Π
on the right of the sequent to w, and lift the label of w :Σ on the left of the sequent to u.
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▶ Lemma 29. All non-initial rules in LBIQ(C) are hp-invertible.

Finally, we can prove the admissibility of the (cut) rule. As our proof proceeds via local
transformations of proofs, the proof is constructive and yields a cut-elimination algorithm.

▶ Theorem 30 (Cut-elimination). The (cut) rule is admissible in LBIQ(C).

Proof. We proceed by a primary induction (PIH) on the complexity of the cut formula, and
a secondary induction (SIH) on the sum of the heights of the proofs of the premises of (cut).
Assume that we have proofs of the following form, with w ↠∗

R u.

π1 (r1)
R, T ,Γ ⊢ ∆, w :φ

π2 (r2)
R, T ,Γ, u :φ ⊢ ∆

We argue that there is a proof of R, T ,Γ ⊢ ∆ by a case distinction on (r1) and (r2), the last
rules applied in the above proofs. We focus on some interesting cases; the remaining cases
can be found in the online appended version [26].

(r1) = (ax). Then R, T ,Γ ⊢ ∆, w : φ is of the form R, T ,Γ0, v0 : p(⃗t) ⊢ ∆0, v1 : p(⃗t)
where v0 ↠∗

R v1. If v1 : p(⃗t) is w : φ, then we have that R, T ,Γ, u : φ ⊢ ∆ is of the
form R, T ,Γ0, v0 : p(⃗t), u : p(⃗t) ⊢ ∆ where Γ = Γ0, v0 : p(⃗t). Given that v0 ↠∗

R v1 and
v1 ↠∗

R u, we can apply the hp-admissibility of (lft) on the latter to obtain a proof of
R, T ,Γ0, v0 : p(⃗t), v0 : p(⃗t) ⊢ ∆. Consequently, we obtain a proof of R, T ,Γ0, v0 : p(⃗t) ⊢ ∆,
i.e. of R, T ,Γ ⊢ ∆, using the hp-admissibility of (ctrl). If v1 :p(⃗t) is not w :φ, then we have
that R, T ,Γ ⊢ ∆ is of the form R, T ,Γ0, v0 :p(⃗t) ⊢ ∆0, v1 :p(⃗t) where v0 ↠∗

R v1. The latter
is provable by the admissibility of (gax).

(r1) = (ds). Then R, T ,Γ ⊢ ∆, w :φ is of the form R, T ,Γ0, v :p(⃗t) ⊢ ∆, w :φ and we have
a proof of R, T , v : V T (⃗t),Γ0, v : p(⃗t) ⊢ ∆, w :φ. Consequently, we know that R, T ,Γ ⊢ ∆
is of the form R, T ,Γ0, v : p(⃗t) ⊢ ∆. We also have that R, T ,Γ, u : φ ⊢ ∆ is of the form
R, T ,Γ0, v :p(⃗t), u :φ ⊢ ∆. We can repeatedly apply the hp-admissibility of (wv) on the proof
of the latter to obtain a proof of S := R, T , v :V T (⃗t),Γ0, v :p(⃗t), u :φ ⊢ ∆. Then, we proceed
as follows:

R, T , v :V T (⃗t),Γ0, v :p(⃗t) ⊢ ∆, w :φ S
SIH

R, T , v :V T (⃗t),Γ0, v :p(⃗t) ⊢ ∆
(ds)

R, T ,Γ0, v :p(⃗t) ⊢ ∆

Note that the instance of SIH is justified because the sum of the heights of the proofs of the
premises has decreased.

(r1) = ( L). Then R, T ,Γ ⊢ ∆, w :φ is of the form R, T ,Γ0, v :ψ χ ⊢ ∆, w :φ and we a
have proof of R, v0Rv, T ,Γ0, v0 :ψ ⊢ ∆, w :φ, v0 :χ. Consequently, we know that R, T ,Γ ⊢ ∆
is of the form R, T ,Γ0, v :ψ χ ⊢ ∆. We also have that R, T ,Γ, u :φ ⊢ ∆ is of the form
R, T ,Γ0, v :ψ χ, u :φ ⊢ ∆. We apply Lemma 29 on the proof of the latter sequent to
obtain a proof of R, v0Rv, T ,Γ0, v0 :ψ, u :φ ⊢ ∆, v0 :χ, which we call S. Thus, we proceed
as shown below. Note that the instance of SIH is justified as the sum of the heights of the
proofs of the premises is smaller than that of the original cut.

R, v0Rv, T ,Γ0, v0 :ψ ⊢ ∆, w :φ, v0 :χ S
SIHR, v0Rv, T ,Γ0, v0 :ψ ⊢ ∆, v0 :χ ( L)

R, T ,Γ0, v :ψ χ ⊢ ∆
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(r1) = (∃R). Then there are two cases to consider: in the left premise R, T ,Γ ⊢ ∆, w :φ
of (cut), either (1) w :φ is not the principal formula v : ∃xψ, or (2) w :φ is the principal
formula. In case (1), we have a proof of R, T ,Γ ⊢ ∆1, v :∃xψ, v :ψ(t/x), w :φ, which we call
S, and R, T ,Γ, u :φ ⊢ ∆ is of the form R, T ,Γ, u :φ ⊢ ∆1, v :∃xψ. We proceed as follows.

S

R, T ,Γ, u :φ ⊢ ∆1, v :∃xψ
Lem.29R, T ,Γ, u :φ ⊢ ∆1, v :∃xψ, v :ψ(t/x)
SIHR, T ,Γ ⊢ ∆1, v :∃xψ, v :ψ(t/x)

(∃R)
R, T ,Γ ⊢ ∆1, v :∃xψ

In case (2), we have proof a of R, T ,Γ ⊢ ∆, v :∃xψ, v :ψ(t/x), and R, T ,Γ, u :φ ⊢ ∆ is of the
form R, T ,Γ, u :∃xψ ⊢ ∆. In this case, we need to consider the shape of (r2). If u :∃xψ is not
principal in (r2), then we apply the hp-invertibility of (r2) (Lemma 29) to the left premise
of (cut) and use SIH to cut the result with the premise of (r2), applying (r2) afterward
to reach our goal. If u : ∃xψ is principal in (r2), then the premise of (r2) is of the shape
R, T , v :y,Γ, v :ψ(y/x) ⊢ ∆ where y is fresh. Then, we proceed as follows where π is the first
proof given and x0, . . . , xn are all the variables appearing in t.

R, T ,Γ ⊢ ∆, v :∃xψ, v :ψ(t/x)
R, T ,Γ, u :∃xψ ⊢ ∆ (iw)

R, T ,Γ, u :∃xψ ⊢ ∆, v :ψ(t/x)
SIHR, T ,Γ ⊢ ∆, v :ψ(t/x)

π

R, T , v :y,Γ, v :ψ(y/x) ⊢ ∆
(t/y)

R, T , v :x0, . . . , v :xn,Γ, v :ψ(t/x) ⊢ ∆
(id)

R, T ,Γ, v :ψ(t/x) ⊢ ∆
PIHR, T ,Γ ⊢ ∆

Note that the step involving (id) is justified as t is available for v, meaning for each xi ∈ V T (t),
there exists a domain atom ui : xi such that ui ↠∗

R v, showing (id) applicable. ◀

5 Concluding Remarks

Our analysis indicates that there may be two interesting and possibly distinct first-order
extensions of bi-intuitionistic logic that may be worth exploring. The first is to consider
a logic with decreasing domains, i.e., if w ≤ u then D(u) ⊆ D(w) in the Kripke model.
Semantically, this logic is easy to define, but its proof theory is not at all obvious. We are
looking into the possibility of formalizing a notion of “non-existence predicate,” which is
dual to the existence predicate, suggested by Restall [34]. This non-existence predicate may
play a similar (but dual) role to the existence predicate in LBIQ(ID). The other extension is
motivated from a proof-theoretic perspective. As mentioned in Remark 19, it seems that
one can obtain a subsystem of LBIQ(ID) without the domain-shift rule (ds) that satisfies
cut-elimination. As discussed in Section 3, the (ds) rule is crucial to ensure the completeness
of BIQ(ID) in the presence of the exclusion operator, and so, a natural question to ask is
what the semantics of such a logic would look like.
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A Soundness

▶ Theorem 20 (Soundness). Let S be a sequent. If S is provable in LBIQ(ID) (LBIQ(CD)),
then S is (CD-)valid.

Proof. We argue the claim by induction on the height of the given derivation and consider
the LBIQ(ID) case as the LBIQ(CD) case is similar.

Base case. It is straightforward to show that any instance of (⊥L) or (⊤R) is valid; hence,
we focus on (ax) and show that any instance thereof is valid. Let us consider the following
instance of (ax), where w ↠∗

R u due to the side condition imposed on (ax), that is, there
exist v1, . . . , vn ∈ Lab(R) such that wRv1, . . . , vnRu ∈ R.

(ax)
R, T ,Γ, w :p(⃗t) ⊢ ∆, u :p(⃗t)

Let us suppose R, T ,Γ, w :p(⃗t) ⊢ ∆, u :p(⃗t) is invalid, i.e., a model M = (W,≤, U,D, I1, I2),
M -interpretation ι, and M -assignment α exist such that the following hold: ι(w) ≤
ι(v1), . . . , ι(vn) ≤ ι(u), M, ι(w), α ⊩ p(⃗t), and M, ι(u), α ̸⊩ p(⃗t). By the monotonicity
condition (M) (see Definition 3), it must be that M, ι(u), α ⊩ p(⃗t), giving a contradiction.
Thus, every instance of (ax) must be valid.

Inductive step. We prove the inductive step by contraposition, showing that if the conclusion
of the last inference in the given proof is invalid, then at least one premise of the final inference
must be invalid. We make a case distinction based on the last rule applied in the given
derivation.
(ds). Suppose R, T ,Γ, w :p(⃗t) ⊢ ∆ is invalid with t⃗ = t1, . . . , tn. Then, there exists a model

M , M -interpretation ι, and M -assignment α such that M, ι(w), α ⊩ p(⃗t). Therefore,
(α(t1), . . . , α(tn)) ∈ I2(w, p), and since I2(w, p) ⊆ D(w)n, we have that α(ti) ∈ D(ι(w))
for 1 ≤ i ≤ n. By the (C1) and (C2) conditions, we know that M, ι, α |= w : V T (⃗t).
Therefore, R, T , w :V T (⃗t),Γ, w :p(⃗t) ⊢ ∆ is invalid as well.

(∧L). If we assume that R, T ,Γ, w : φ ∧ ψ ⊢ ∆ is invalid, then there exists a model M ,
M -interpretation ι, and M -assignment α such that M, ι(w), α ⊩ φ ∧ ψ, implying that
M, ι(w), α ⊩ φ and M, ι(w), α ⊩ ψ, showing that the premise R, T ,Γ, w :φ,w :ψ ⊢ ∆ is
invalid as well.

(∧R). Let us suppose that R, T ,Γ ⊢ ∆, w :φ ∧ ψ is invalid. Then, there exists an model
M , M -interpretation ι, and M -assignment α such that M, ι(w), α ̸⊩ φ∧ ψ. Hence, either
M, ι(w), α ̸⊩ φ or M, ι(w), α ̸⊩ ψ. In the first case, the left premise of (∧R) is invalid,
and in the second case, the right premise of (∧R) is invalid.

(∨L). Similar to the (∧R) case.
(∨R). Similar to the (∧L) case.
(→L). Assume R, T ,Γ, w : φ → ψ ⊢ ∆ is invalid and w ↠∗

R u, i.e. a sequence
wRv1, . . . , vnRu of relational atoms exist in R. By our assumption, there exists a
model M , M -interpretation ι, and M -assignment such that ι(w) ≤ ι(v1), . . . , ι(vn) ≤ ι(u)
and M, ι(w), α ⊩ φ → ψ. Because M, ι(w), α ⊩ φ → ψ and ≤ is transitive, we know that
either M, ι(u), α ̸⊩ φ or M, ι(u), α ⊩ ψ. In the first case, the left premise of (→L) is
invalid, and in the second case, the right premise of (→L) is invalid.

(→R). Assume that R, T ,Γ ⊢ ∆, w :φ → ψ is invalid. Then, there exists a model M , an
M -interpretation ι, and an M -assignment α such that M, ι(w), α ̸⊩ φ → ψ. Hence, there
exists a world u such that ι(w) ≤ u, M,u, α ⊩ φ, and M,u, α ̸⊩ ψ. Let ι′(v) = ι(v) for
all labels v ̸= u and ι′(u) = u otherwise. Then, M , ι′, and α falsify the premise of (→R),
showing it invalid.
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( L). Similar to the (→R) case above.
( R). Similar to the (→L) case above.
(∃L). Suppose that S = R, T ,Γ, w : ∃xφ ⊢ ∆ is invalid. Then, there exists a model M ,

an M -interpretation ι, and an M -assignment α such that M, ι(w), α ⊩ ∃xφ. Therefore,
there exists an a ∈ D(ι(w)) such that M, ι(w), α[a/y] ⊩ φ(y/x) with y not occurring in
S. Then, as y is fresh, M , ι, and α[a/y] falsify the premise of (∃L), showing it invalid.

(∃R). Suppose that S = R, T ,Γ ⊢ ∆, w :∃xφ is invalid. Then, there exists a model M , and
M -interpretation ι, and M -assignment such that M, ι(w), α ̸⊩ ∃xφ. By the side condition
on (∃R), we know that A(t,Xw,R, T ), meaning there exist labels u1, . . . , un ∈ Lab(S)
such that u1 : x1, . . . , un : xn ∈ T , V T (t) = {x1, . . . , xn}, and u1 ↠∗

R w, . . . , un ↠∗
R w. It

follows that ι(u1) ≤ ι(w), . . . , ι(un) ≤ ι(w) and α(x1) ∈ D(ι(u1)), . . . , α(xn) ∈ D(ι(un)).
By the increasing domain condition (ID), we have that α(x1) ∈ D(ι(w)), . . . , α(xn) ∈
D(ι(w)). Therefore, by the (C1) and (C2) conditions, we know that α(t) ∈ D(ι(w)),
showing that M, ι(w), α ̸⊩ φ(t/x), and thus, the premise is invalid.

(∀L). Suppose that S = R, T ,Γ, w : ∀xφ ⊢ ∆ is invalid. Then, there exists a model M ,
and M -interpretation ι, and M -assignment α such that M, ι(w), α ⊩ ∀xφ. By the side
condition on (∀L), we know that w ↠∗

R u and A(t,Xw,R, T ). By the latter fact, there
exist labels v1, . . . , vn ∈ Lab(S) such that v1 : x1, . . . , vn : xn ∈ T , V T (t) = {x1, . . . , xn},
and v1 ↠∗

R w, . . . , vn ↠∗
R w. It follows that ι(v1) ≤ ι(w), . . . , ι(vn) ≤ ι(w) and α(x1) ∈

D(ι(v1)), . . . , α(xn) ∈ D(ι(vn)). By the increasing domain condition (ID), we have that
α(x1) ∈ D(ι(w)), . . . , α(xn) ∈ D(ι(w)). Therefore, by the (C1) and (C2) conditions
and our assumption, we know that α(t) ∈ D(ι(w)), showing that M, ι(w), α ⊩ φ(t/x).
By the fact that w ↠∗

R u, we know ι(w) ≤ ι(u) and α(t) ∈ D(ι(u)), showing that
M, ι(u), α ⊩ φ(t/x) by Proposition 6. Thus, the premise is invalid.

(∀R). Let us assume that R, T ,Γ ⊢ ∆, w :∀xφ is invalid. Then, there exists a model M , an
M -interpretation ι, and an M -assignment α such that M, ι(w), α ̸⊩ ∀xφ. Thus, there
exists a world u ∈ W such that ι(w) ≤ u, a ∈ D(u), and M,u, α[a/y] ̸⊩ φ(y/x). We
define ι′(v) = ι(v) if v ̸= u and ι′(u) = u. Then, M , ι′, and α[a/y] falsify the premise
R, w ≤ u, T , u :y,Γ ⊢ ∆, u :φ(y/x), showing it invalid. ◀
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