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Abstract
We provide a new realisability model based on orthogonality for the multiplicative fragment of linear
logic, both in presence of generalised axioms (MLL✠) and in the standard case (MLL). The novelty
is the definition of cut elimination for generalised axioms. We prove that our model is adequate and
complete both for MLL✠ and MLL.
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Introduction

Since the inception of Linear Logic (LL), proofs are represented as graphs that naturally live
in a wider space of agents called proof structures (nets in this paper) that can freely interact.
These nets were introduced by J.Y. Girard in [7], together with the desequentialisation: a
simple process transforming proof trees from the sequent calculus of LL into nets. However,
not every net is the desequentialisation of a proof: it is impossible to extract a proof tree
from a net that “contains” cycles or disconnections [5]. Nets can therefore present forms of
(what we call) geometrical incorrectness, and geometrically correct nets are (representants
of) proof trees of LL. More recently, J.Y. Girard proposed Ludics, an interpretation of LL
given in terms of “desseins”: proof trees of the LL sequent calculus with the addition of the
daimon (✠) rule, a generalised axiom allowing to prove any sequent. Ludics introduces a new
kind of incorrectness that we call provability incorrectness: dessein are geometrically correct
(they are proof trees) but can be provably incorrect. In the standard theory of proof nets
geometrical and provability correctness coincide; it is the presence of daimons that allows to
distinguish between provability correctness and geometrical correctness.

Understanding the relationship between correctness and computational behavior is (one
of) the goal(s) of realisability, which, restricted to LL, will be our focus in this paper. We
briefly sum up the existing works on linear realisability1 by positioning them with respect to
Table 1. We also recall if these models enjoy completeness or not. Two lines of research on
realisability of LL can be identified.

1 We use the expression linear realisability in the sense of [20] i.e. realisability models for LL.
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43:2 Linear Realisability over Nets: Multiplicatives

Table 1 Presence of incorrectness, restricted to multiplicative linear logic, for realisability models.

MLL MLL✠

Proof Nets no incorrectness provability incorrectness
Nets geometrical incorrectness geometrical and provability incorrectness

One was initiated by V. De Paiva Dialectica Interpretation [6] and led to P. Oliva’s
adequate and complete realisability model of first order LL [14] where realisers are proof
trees (with standard axioms) from a decorated sequent calculus of LL. As a consequence
realisers are typed and are “by construction” geometrically and provably correct (placing this
model in the top left corner of Table 1).

The other originates in the work of J.Y. Girard: Ludics [10], whose “desseins” are
geometrically correct but can be provably incorrect (top right corner of Table 1), which
enjoys completeness. E. Beffara proposed adequate models in a concurrent π-calculus [2]
and conjunctive structure [3]. T. Seiller’s interaction graphs (inspired by Girard’s Geometry
of Interaction [8]) model various LL fragments adequately [15–19]. Beffara’s and Seiller’s
approaches exhibit both geometrical and provability incorrectness (bottom-right corner of
Table 1), but contain no completeness result.

We give the first complete realisability model of the multiplicative fragment of linear
logic in terms of nets, essentially the well–known untyped proof–structures of LL [9] with
daimons, as in the work of P.L. Curien [4]: this places us in the bottom–right corner of
Table 1. The main tool we use in our approach to realisability is LL cut elimination: we
interpret formulas as types, sets of nets closed under bi–orthogonality, where the notion of
orthogonality is defined via the rewriting rules of nets induced by cut elimination. We prove
completeness for MLL✠, multiplicative LL with generalised axioms, meaning our model can
capture geometrical correctness. As a byproduct we obtain completeness for the standard
multiplicative fragment of linear logic (MLL), thus capturing provability correctness.

Although not expressed in the terms of realisability, a completeness result for MLL✠ (in
the atomic case) using a notion of orthogonality is already apparent in the work of P.L.
Curien [4], where the partitions involved in the Danos Regnier criterion [5] are encoded using
daimons. More precisely, one can test the geometrical correctness of a net by confronting
it against carefully chosen opponents (which as in the work of Béchet [1] are geometrically
correct nets). However the method in [4] does not allow to derive a completeness result for
MLL. By contrast, we use geometrically incorrect opponents to prove completeness for MLL
(Remark 87).

The novelty is the cut elimination of non-homogenous cuts (a generalised axiom against
a connective – say a tensor): unlike in Ludics 2 [10] our daimon is the “perfect” oppon-
ent/evaluation context; it never stops responding during computation and never prevents
proof search to go on (Figure 4 and Remark 24). These new cut elimination steps are key
to interactively identify provability correctness and so to obtain our completeness result for
MLL (Remark 86). The computational behavior of the daimon also differs from Krivine’s
continuations involved in classical realisability [12]: they restore a previously stored context
while our daimon rather behaves like an adaptive evaluation context.
The general aim is to understand the computational content of proofs and of (incorrect) nets,
following a “purely interactive approach to logic” (to quote [10]). We follow the approach
initiated with Ludics, we present a framework in which proofs and refutations are objects

2 In Ludics, the daimon means the end of the game, or the end of the proof search.
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of the same nature that can freely interact: a proof–object proves a formula A whenever it
“defeats” all the refutations of A. The correctness of an object is evaluated using a dynamic
criterion (we make an object interact with each of its refutations) rather than a static one
(such as a typing discipline).

Outline. In Section 1, we give a detailed introduction of nets that we define as ordered
hypergraphs. In Section 2, we recall the elementary notions of multiplicative linear logic,
we introduce the ✠-links and we formulate the criterion of Danos Regnier [5] in our setting.
In Section 3, we define orthogonality between two nets as “successful interaction” through
cut elimination (Definition 42); this leads to the notion of type: a set of nets closed under
bi–orthogonality. We then show how to perform the usual multiplicative constructions
in the framework of types. In Section 4, we define our realisability model interpreting
formulas as types and we prove its adequacy: a net representing a proof of A is a realiser
of A (Theorem 64). In Section 5, we relate correctness criteria with orthogonality. The
Danos-Regnier criterion applied to a cut-free net with conclusion A yields a set of nets called
tests (Definition 74). We prove that the tests of A are proofs of A⊥ (Theorem 77) and that
the interaction between a net π with conclusion A and its tests allows to determine whether
or not π is indeed a proof: we thus extend to our framework a result of Béchet [1]. In
Section 6, we prove the completeness of our realisability model: if a net S realises A (in every
basis), then S is a proof of A in MLL✠ (Theorem 85). Finally we show that completeness of
MLL✠ implies that of MLL (Theorem 88).

1 Untyped nets

We introduce the framework of nets in which our construction takes place. Nets are a special
kind of directed hypergraphs together with an order of some of their vertices which will come
in play later on to define the notion of orthogonality. These hypergraphs enjoy a natural
notion of sum (Definition 6). In subsection 1.2, we define our “realisers” that we call nets
and their computational rules, the cut elimination procedure as known for multiplicative
proof structures [9] but with a novelty: the generalised axiom or daimon–link (✠) which
behave like an adaptative evaluation context.

1.1 Directed hypergraphs
Given a set X we will let P≤(X) denote the set of totally ordered finite subsets of X. An
element of P≤(X) is equivalently a finite sequence of elements of X but, without repetitions.

▶ Definition 1. Suppose given a set L of labels. A directed (L-labelled) hypergraph is a tuple
(V, E, s, t, ℓ) where V is a finite set of positions and E is a finite set of links, s : E → P≤(V )
is the source map, t : E → P≤(V ) is the target map and ℓ : E → L is the labelling map.

Given a link e ∈ E, since the finite sets t(e) and s(e) are totally ordered, to support
readability we will represent them as sequences: they are respectively called the target and
the source sets of e. A source (resp. target) of e is an element of its source (resp. target) set
s(e) (resp.t(e)). The set of targets and sources of e is the domain of the link e. We will use
superscripts to denote sequences of positions (p, q, u, . . .). A link is a loop when its target set
and source set are not disjoint.

Convention. Along this work we assume all the hypergraphs to be loop–free i.e. containing
only links which are not loops.

CSL 2025



43:4 Linear Realisability over Nets: Multiplicatives

Given an hypergraph H with E as its set of links, we denote s(H) (resp. t(H)) the set of
all positions which are source (resp. target) of at least one link:

s(H) =
⋃

e∈E

s(e), t(H) =
⋃

e∈E

t(e).

A conclusion/output (resp. a premise/input) of a directed hypergraph H is a position which
is the source (resp. target) of no link in H, i.e. an element of V \ s(H) (resp. of V \ t(H)).
The set of conclusions (resp. premises) of an hypergraph H is denoted out(H) (resp. in(H)).
A position p is isolated in an hypergraph H if p is both an output and an input of H, i.e.
p /∈ s(H) ∪ t(H). The size of a directed hypergraph is the number of its links. There is a
unique empty hypergraph H = (V, E, s, t, ℓ) with V = E = s = t = ∅.

An isomorphism of hypergraphs f : (V1, E1, s1, t1, ℓ1) → (V2, E2, s2, t2, ℓ2) is a pair of
functions (fV , fE) such that fV : V1 → V2 and fE : E1 → E2 are bijections, fE preserve labels
i.e. ℓ(fE(e)) = ℓ(e), and fE preserves the target and source of a link, i.e. s2(fE(e)) = f∗

V (s1(e))
and t2(fE(e)) = f∗

V (t1(e)), where f∗
V is the natural extension of fV to sequences of positions.

Along this work we work with hypergraphs up to isomorphism.

▶ Notation 2. We denote ⟨u ▷l v⟩ the hypergraph (V, E, s, t, ℓ) such that E = {e}, V =
s(e) ∪ t(e), s(e) = u, t(e) = v and ℓ(e) = l (an example of such a single–link hypergraph is
found in Figure 1a). In the sequel ⟨u ▷l v⟩ will denote both the described hypergraph and
its unique link.

▶ Notation 3. We write u · v the concatenation of sequences. Given u = (u1, . . . , un) a
sequence of elements of a set X and an integer i ∈ {1, . . . , n}, we denote by u<i (resp. u>i)
the sequence (u1, . . . , ui−1) (resp. (ui+1, . . . , un)). Moreover, given two – potentially empty –
sequences u and v we denote by u[i← v] the sequence u<i · v · u>i.

A link is initial (resp. final) when it has no input (resp. no output). A position is
initial (resp. final) when it is an output (resp. input) of an initial (resp. final) link. In an
hypergraph H, a link e is terminal when every target of e is a conclusion of H – thus a final
link is a terminal link.

▶ Example 4. For instance a link ⟨▷ℓ a, b, c⟩ is an initial link and the positions a, b and c

are initial, on the other hand a link ⟨a, b ▷ℓ c⟩ is not initial and neither are the positions a, b

or c.

Hypergraphs enjoy a natural notion of sum based on the disjoint union of the set of links.

▶ Notation 5. Given two sets X0 and X1 we denote X0 ⊎X1 the set X0 ∪X1 whenever X0
and X1 are disjoint. Given two functions f : X0 → E and g : X1 → E with disjoint domains
we denote f ⊎g the function which takes an element x of X0⊎X1, and returns f(x) if x ∈ X0
and g(x) if x ∈ X1.

▶ Definition 6. Given two hypergraphs H1 = (V1, E1, t1, s1, ℓ1) and H2 = (V2, E2, t2, s2, ℓ2)
such that E1 ∩ E2 = ∅. The sum of H1 and H2 is defined as:

H1 +H2 = (V1 ∪ V2, E1 ⊎ E2, t1 ⊎ t2, s1 ⊎ s2, ℓ1 ⊎ ℓ2).

▶ Remark 7. Whenever H1 = (V1, E1, t1, s1, ℓ1) and H2 = (V2, E2, t2, s2, ℓ2) are such that
E1 ∩ E2 ̸= ∅, we will abusively write their sum as H1 +H2 = (V1 ∪ V2, E1 ⊎ E2, t1 ⊎ t2, s1 ⊎
s2, ℓ1⊎ℓ2), since up to renaming the sets of links of two hypergraphs can always be considered
disjoint.



A. Ragot, T. Seiller, and L. Tortora de Falco 43:5
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(a) The representation of
the single–link hypergraph
⟨a, b, c ▷α d, e⟩ (Notation 2).
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a b

c

e

α

β

u

v

(b) The sum of two single link
hypergraphs ⟨a, b, c ▷α d, e⟩
and ⟨b, u ▷β v⟩ (Definition 6).

d

a b c

e

α β

u

v

b′

(c) The parallel sum of the
two single link hypergraphs
⟨a, b, c ▷α d, e⟩ and ⟨b, u ▷β v⟩
(Definition 11).

Figure 1 Hypergraphs can naturally be represented in a graphical way, we illustrate the notation
of a hypergraph containing a single link, the sum of hypergraphs and the parallel sum of hypergraphs.
In Figure 1c The position b is present in both hypergraphs therefore we rename it in one of the two
hypergraphs: thus ⟨a, b, c ▷α d, e⟩ ∥ ⟨b, u ▷β v⟩ equals ⟨a, b, c ▷α d, e⟩ ∥ ⟨b′, u ▷β v⟩ (that is, upto
isomorphism).

▶ Remark 8. Vertices may overlap in a sum (as we take the union of vertex sets rather than
the disjoint union). As a consequence, a position may be input (or output) of several distinct
links (Figure 1b). We can describe hypergraphs as sums of simple hypergraphs; namely those
that contain only one link. Indeed using Notation 2, an hypergraph consisting of two links
⟨a ▷ℓ b⟩ and ⟨c ▷ℓ′ d⟩ is in fact equal to the sum of the single-link hypergraphs ⟨a ▷ℓ b⟩ and
⟨c ▷ℓ′ d⟩. By induction on the number of links, this shows that any hypergraph H without
isolated positions can be written as H =

∑
e∈E⟨s(e) ▷ℓ(e) t(e)⟩.

▶ Example 9. In the hypergraph ⟨▷ℓ1 a, b, c⟩+ ⟨a ▷ℓ2 d⟩+ ⟨▷ℓ3 e⟩+ ⟨e ▷ℓ4⟩ the set of initial
positions is {a, b, c, e}, while e is the only final position of the hypergraph, and it belongs to
the domain of the unique final link ⟨e ▷ℓ4⟩.

▶ Remark 10. The sum of hypergraphs enjoys the properties of an abelian monoid; associ-
ativity, commutativity, and a neutral element which is the empty hypergraph.

We will also use extensively the notion of parallel composition or parallel sum of hyper-
graphs, an analogue of the union–graph of two simple graphs.

▶ Definition 11. Given H1 = (V1, E1, t1, s1, ℓ1) and H2 = (V2, E2, t2, s2, ℓ2) two hypergraphs
such that V1 ∩ V2 = E1 ∩ E2 = ∅, we define their parallel sum as: H1 ∥ H2 = (V1 ⊎ V2, E1 ⊎
E2, t1 ⊎ t2, s1 ⊎ s2, ℓ1 ⊎ ℓ2).

▶ Remark 12. The parallel sum of two hypergraphs H1 and H2 corresponds to a regular sum
whenever the sets of vertices are disjoint. Just like the sum, parallel composition can always
be performed between two hypergraphs (up to a renaming, see Figure 1c).

A hypergraph H = (V, E, t, s, ℓ) is: (1) target–surjective whenever t(H) = V , (2) source–
disjoint if the sets s(e) for e ∈ E are pairwise disjoint, (3) target–disjoint if the sets t(e) for
e ∈ E are pairwise disjoint (Figure 2). A module is an hypergraph which is target–disjoint
and source–disjoint, which means that for each position p there exists at most one link e

such that s(e) (resp. t(e)) contains p. Any single–link hypergraph is a module. Uncarefully
summing two modules does not necessarily result in a module; for instance the single link
hypergraphs e = ⟨▷ℓ a⟩ and e′ = ⟨▷ℓ′ a⟩ are both modules but their sum isn’t as a is the
target of the two links e and e′.

CSL 2025
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(a) The sum of two single link
hypergraphs ⟨a, b, c ▷α d, e⟩ +
⟨b, u ▷β v⟩. The hypergraph
is target–disjoint, but because
b belongs to the source of both
links it is not source–disjoint,
it is also not target surjective.

d

a b c

e

α

β

u

v

(b) The sum of two single
link hypergraphs ⟨a, b, c ▷α

d, e⟩+ ⟨e, u ▷β v⟩. The hyper-
graph is target–disjoint and
source–disjoint, however it is
not target surjective.

d

a b c

e

α

β

u

v

γ

δ

(c) The sum of four single link
hypergraphs ⟨a, b, c ▷α d, e⟩ +
⟨e, u ▷β v⟩ + ⟨▷γ a, b⟩ + ⟨▷δ

c, u⟩. The hypergraph is target–
disjoint, source–disjoint, and tar-
get surjective.

Figure 2 Properties of hypergraphs: source–disjoint, target–disjoint and target–surjective hyper-
graphs.

An arrangement of a directed hypergraph H is a total order <a on its set of conclusions;
equivalently the order may be identified as a bijection a : {1, . . . , card(out(H))} → out(H).
An ordered hypergraph is a pair (H, a) of an hypergraph H together with an arrangement a
of H. Given an ordered hypergraph (H, a) with n conclusions for an integer 1 ≤ i ≤ n, we
denote a(i) by H(i) whenever there is no ambiguity. The arrangement a is denoted a(H),
and we might refer to H as the unordered hypergraph underlying (H, a).

For n, m ∈ N we denote by [n; m] the set of integers i such that n ≤ i ≤ m. Given two
functions f : [1; n] → E and g : [1; m] → E we denote f ⊔+ g : [1; m + n] → E the function
such that f ⊔+ g(i) = f(i) when 1 ≤ i ≤ n and f ⊔+ g(i) = g(i− n) when n + 1 ≤ i ≤ n + m.
This operation is not commutative. The parallel sum of two ordered hypergraph (H1, a1) and
(H2, a2) naturally yields an ordered hypergraph as (H1 ∥ H2, a1 ⊔+ a2) (note that however
this is not a commutative operation).

1.2 Multiplicative nets
Up to this point we have allowed any kind of link to occur in a hypergraph. We now consider
untyped multiplicative nets in which only some specific kinds of links occur. We fix the set
of labels as the set made of the daimon (✠) the tensor (⊗) the par (`) and the cut (cut)
symbol. Furthermore we fix a family of links, namely ✠-labelled links that have no inputs
(they are initial links), cut-labelled links that have exactly two inputs and no outputs (they
are final links), ⊗- and `-labelled links that have exactly two inputs and one output. As a
consequence, the hypergraphs considered will closely resemble to multiplicative linear logic
proof structures, with two important points of divergence: the absence of typing and the
presence of generalised axioms, a standard MLL axiom link can be seen as daimon link with
two conclusions 3.

Formally we fix a countable set Pos of positions and a family of links L defined as:

L ≜ {⟨p1, p2 ▷⊗ p⟩, ⟨p1, p2 ▷` p⟩, ⟨p1, p2 ▷cut⟩ | p1, p2, p ∈ Pos} ∪ {⟨▷✠ p1, . . . , pn⟩ | n ∈ N, p1, . . . , pn ∈ Pos}.

3 To be precise one should say that an atomic standard MLL axiom link is a daimon link with two
conclusions (Remark 29).
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qj

✠

qj−1· · ·q1 qj+1 · · · qk

cut

pi

✠

pi−1· · ·p1 pi+1 · · · pn

⟨▷✠ p⟩ + ⟨pi, qj ▷cut⟩ + ⟨▷✠ q⟩

→ · · · · · ·qj−1q1 qj+1 qkpi−1p1 pi+1 pn· · · · · ·

✠

⟨▷✠ p[i ← ϵ], q[j ← ϵ]⟩

p1 p2

p

`
q1 q2

q

⊗

cut

⟨p1,p2▷`p⟩+⟨p,q▷cut⟩+⟨q1,q2▷⊗q⟩

→
p1 q1

cut

p2 q2

cut

⟨p1,q1▷cut⟩+⟨q2,q2▷cut⟩

Figure 3 Rewriting defining the homogeneous cut elimination. We provide a representation of
each hypergraph involved above its expression. In the step of the glueing cut we assume the two
daimons to be distinct i.e. the cut is acyclic. In this figure p = p1, . . . , pn while q = q1, . . . , qk.

▶ Definition 13. A multiplicative module is an ordered hypergraph M = (|M | , a(M)) where
|M | is a sum of links of L which is a module.

A multiplicative net is a multiplicative module S = (|S| , a(S)) where |S| is target–
surjective.

From now on we will omit the word multiplicative but a module (resp. net) will always be
a multiplicative module (resp. net). For a module M (resp. a net S) we refer to |M | (resp.
|S|) as the unordered hypergraph underlying M (resp. S). An unordered module (resp. net)
is the unordered hypergraph underlying a module (resp. net).
▶ Remark 14. For two nets S1 = (V1, E1, s1, t1, ℓ1) and S2 = (V2, E2, s2, t2, ℓ2), if S1 + S2
remains a net then S1 + S2 = S1 ∥ S2. Indeed, by Definition 6, E1 ∩ E2 = ∅. Then, by
target–disjointness t(S1) ∩ t(S2) = ∅; and finally because S1 and S2 are target surjective we
have V1 ∩ V2 = t(S1) ∩ t(S2) = ∅, so that Definition 11 applies.
▶ Notation 15. Given an integer n we denote by ✠n any multiplicative net consisting of a
single daimon link with n outputs, i.e. isomorphic to ⟨▷✠ p1, . . . , pn⟩.

▶ Definition 16. Given a multiplicative net S the type of a cut link c = ⟨p, q ▷cut⟩ occurring
in S is the multiset of the two labels of the links of output p and q; for readability we write
these multisets as ordered pairs. Thus there are six types of cuts (up to symmetry). More
precisely, we distinguish: multiplicative cuts, of type (⊗/`); clash cuts, of type (⊗/⊗) or
(`/`); glueing cuts, of type (✠/✠); non–homogeneous cuts, of type (⊗/✠) or (`/✠), which
are respectively called reversible and irreversible cuts. In a net S, a cut ⟨p, q ▷cut⟩ is cyclic
whenever p and q are targets of the same link.

▶ Remark 17. Each cut link occurring in a net S has a type since a net is target–surjective.
However in a module this isn’t true: for instance in the module ⟨p, q ▷cut⟩ consisting of a
single cut link, the type of the cut link is not defined.
▶ Remark 18. The inputs of a cut link ⟨p, q ▷cut⟩ are ordered, making the two links ⟨p, q ▷cut⟩
and ⟨q, p ▷cut⟩ distinct. However (up to isomorphism) this plays no role during cut elimination.

Multicative nets comes with their notion of computation called cut elimination: it is a
rewriting on nets and more precisely it rewrites a redex (that is a sub–net made of a single
cut link and two non–cut links) into redexes or daimons (in the very specific case of glueing
cuts). Up to isomorphism, how a redex is rewritten depends solely on its type (Definition 16).

▶ Definition 19. The relation of homogeneous cut elimination on unordered nets is denoted
by →h and it is the rewriting relation defined as the contextual closure (with respect to the
sum) of the relation defined in Figure 3.

CSL 2025
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q1 q2

q

`

pan· · ·a1 bm· · ·b1

✠

cut

⟨q1, q2 ▷` q⟩ + ⟨q, p ▷cut⟩ + ⟨▷✠ a, p, b⟩

→
q1 p1

✠

aσ(k)· · ·aσ(1)q2

✠

aσ′(k′)· · ·aσ′(1)bτ(h)· · ·bτ(1) b′
τ ′(h′)· · ·b′

τ ′(1)p2

cut

cut

⟨q1, p1 ▷cut⟩ + ⟨q2, p2 ▷cut⟩ + ⟨▷✠ σ(a), p1, τ(b)⟩ + ⟨▷✠ σ′(a), p2, τ′(b)⟩

p1 p2

p

⊗

qqi· · ·q1 qn· · ·qi+1

✠

cut

⟨p1, p2 ▷⊗ p⟩ + ⟨p, q ▷cut⟩ + ⟨▷✠ q<i, q, q>i⟩

→
p1 p2 q1qi· · ·q1 qn· · ·qi+1

✠

cut

cut

q2

⟨p1, q1 ▷cut⟩ + ⟨p2, q2 ▷cut⟩ + ⟨▷✠ q<i, q1, q2, q>i⟩

Figure 4 Rules defining the non–homogeneous cut elimination. In the elimination of the (`/✠)
cut - first row - a = (a1, . . . , an) and b = (b1, . . . , bm) while σ(a) = (aσ(1), . . . , aσ(k)) , σ′(a) =
(aσ′(1), . . . , aσ′(k′)) , τ(b) = (bτ(1), . . . , bτ(h)) , τ ′(b) = (bτ ′(1), . . . , bτ ′(h′)) (with n = k + k′ and m =
h + h′) are sequences that define a partition of {a1, . . . , an, b1, . . . , bn} more precisely {a1, . . . , an} =
{aσ(1), . . . , aσ(k), aσ′(1), . . . , aσ′(k′)} and {b1, . . . , bn} = {bτ(1), . . . , bτ(h), bτ ′(1), . . . , bτ ′(h′)}, and
σ, σ′, τ, τ ′ are permutations. Furthermore p1, p2, q1, q2 are fresh positions. The figure is slightly
misleading: q1 and q2 may be elements of a or b (in the first row) while p1 and p2 may be elements
of q1, . . . , qi−1, qi+1, . . . , qn (in the second row), these cases are illustrated in Figure 13. This has an
important consequence: a cut can belong to a cycle and still be reducible (Remark 28).

▶ Remark 20. The (homogeneous) cut elimination procedure on unordered nets leave the
conclusions unchanged. As a consequence the homogeneous cut elimination can be lifted
from unordered nets to nets: whenever two unordered nets are such that S → S′, for any
arrangement a of S we have (S, a)→ (S′, a).

The following result is easily established, in particular since the number of links strictly
decreases during homogeneous cut elimination.

▶ Proposition 21. Homogeneous cut elimination is confluent and strongly normalizing.

▶ Definition 22. The non homogeneous reduction is denoted →nh and it is defined on
unordered nets as the contextual closure of the relation given in Figure 4.

▶ Remark 23. The non–homogeneous reduction preserves the conclusion of the nets, hence it
can be lifted to ordered nets – as in remark 20.

▶ Remark 24. In the framework of Multiplicative Linear Logic (Section 2, Figure 6c), non
homogeneous cut elimination simulates proof search in the sequent calculus:

✠
Γ, A ` B

✠
A⊥, A

✠
B⊥, B

⊗
A⊥ ⊗B⊥, A, B

`
A⊥ ⊗B⊥, A ` B

cut
Γ, A ` B

→∗ ✠
Γ, A, B

`
Γ, A ` B

✠
Γ, A⊗B

✠
A⊥, A

✠
B⊥, B

⊗
A⊥, B⊥, A⊗B

`
A⊥ ` B⊥, A⊗B

cut
Γ, A⊗B

→∗ ✠
Γ1, A

✠
Γ2, B

⊗
Γ, A⊗B

This also illustrates the non determinism of the (✠/`) reduction step which corresponds to
proof search on a formula of the form A⊗B: going from bottom to top the ⊗–introduction
rule splits the context Γ, which is a non deterministic process. A consequence of non
determinism is the loss of confluence for cut elimination (but not of strong normalisation,
Proposition 30); since splitting the context is irreversible, a net can have different normal
forms, like the second net of figure 5b (from left to right) which coincides with the second net
of figure 5c: this same net reduces, following the two figures, to two different normal forms.
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▶ Remark 25. A cyclic cut is a glueing cut. Indeed, given a cyclic cut link ⟨p, q ▷cut⟩ in a
net, because p and q belong to the target of a same link e and the only links which may have
several targets are daimon links it follows that e is a daimon link.

▶ Remark 26. The side condition of Figure 3 entails that a cyclic cut is not reducible: for
example the net ⟨▷✠ p, q⟩+ ⟨p, q ▷cut⟩ is a net in normal form.

▶ Remark 27. A cut link which is not reducible is either a clashing cut or a cyclic glueing
cut. Notice, however, that while clashing cuts never disappear during cut elimination, cyclic
cuts may disappear (see Figure 10b).

▶ Remark 28. In the standard framework of MLL proof structures the cut elimination of an
axiom against a cut is defined as the identification of the two extreme positions, therefore
eliminating such a cut may create loops (Section 1). To avoid loops from occurring during cut
elimination an ad hoc condition is usually added (see for example [13]). In our framework,
this condition is the rather natural side condition of Figure 3.

✠

p1 p2 ⊗ `

cut cut

q r

q1 q2 r1 r2

✠

✠ ✠

→

✠

p1 p1
2

⊗

cut
cut

q

q1 q2

r1 r2

✠

p2
2

cut

✠ ✠

✠

→

✠

p1 ⊗

cut

q

q1 q2

r2

✠

p2
2

cut

✠

✠

→

✠

p1

⊗

cut

q

q1 q2

✠

✠

→

✠

p1
1

cut

q1 q2

✠ ✠

p2
1

cut

→

✠

p1
1

cut

q1

✠

(a) Eliminating first the irreversible cut (✠/`) produces a neta which cannot normalize in ✠0.
a The (✠/`) reduction step is not deterministic but in this very special case any choice yields the same

net.

✠

p1 p2 ⊗ `

cut cut

q r

q1 q2 r1 r2

✠

✠ ✠

→∗

✠

p2

cut

r

q2 p2
1

cut

`
r1 r2

✠ ✠

→

✠

p1
2

cut

q2 r1 r2

✠

p2
1

cut

p2
2

cut

✠

✠

→∗ ✠

(b) Eliminating the reversible cut (✠/⊗) produces a cycle which can be eliminated by the elimination of
the (✠/`) cut remaining, hence that net can normalize in ✠0.

✠

p1
1 p2 `

cut
cut

r

q1 q2

r1 r2

✠

✠

p2
1

cut

✠

→

✠

p2

cut

r

q2 p2
1

cut

`
r1 r2

✠ ✠

→

✠

p1
2

cut

q2 r1 r2

✠

p2
1

cut

p2
2

cut

✠

✠

→

q2 r2

✠

p2
1

cut

p2
2

cut

✠

✠

→
q2

✠

p2
1

cut

✠

(c) Non determinism also comes from the choice of how we reduce (`/✠) cuts, different choices leading to
different normal forms: the “wrong” choice results in a net which cannot normalize to ✠0.

Figure 5 Non homogeneous cut eliminations contains two sources of non–determinism.

▶ Remark 29. Notice that whenever daimons are binary and typed by dual atomic formulas
the cut elimination procedure for MLL✠ defined in Definition 19 is exactly the standard cut
elimination procedure for MLL [7], [13].
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The rewriting rule, denoted →, associated with cut elimination is the union of the
homogeneous and non–homogeneous cut elimination i.e. →h ∪ →nh. We write S

c−→S′, when
S′ is obtained from S by eliminating the cut c. We write by S →mult S′ (resp. S →¬mult S′)
whenever S

c−→S′ and c is multiplicative (resp. not multiplicative). Given two binary relations
R1 and R2 on a set X we denote by R1 ·R2 their composition, i.e. for two x, y ∈ X xR1 ·R2y

if and only if there exists z such that xR1z and zR2y.

▶ Proposition 30. Cut elimination is strongly normalising, furthermore:
1. →∗ can be factorised as →∗

mult · →∗
¬mult.

2. If c is a (`/✠) cut in S; if S
c−→· →∗ S′ then S →∗ · c−→S′.

3. If c is not a (`/✠) cut in S; if S →∗ · c−→S′ then S
c−→· →∗ S′.

A, B ≜ X ∈ Var
| A ` B | A ⊗ B

H1, H2 ≜ A ∈ Form
| H1, H2 | H1 ∥ H2

(a) Grammar defining Form
(first two rows), and grammar
defining Hseq (last two rows).

(A ` B)⊥ = A⊥ ⊗B⊥ (A⊗B)⊥ = A⊥ ` B⊥

(b) De Morgan laws lifting the involution (·)⊥ from Var to Form.

✠
Γ

Γ, A, B
`

Γ, A ` B

Γ, A ∆, B
⊗

Γ, ∆, A⊗B

Γ, A ∆, A⊥
cut

Γ, ∆
Γ, A, B, ∆

ex
Γ, B, A, ∆

ax
A, A⊥

(c) Rules used for constructing the proof trees. The rules
(✠,`, ⊗, cut, ex) define the MLL✠ fragment. Substituting the (✠)–
daimon rule with the (ax)–axiom rule results in the fragment MLL,
that is (ax,`, ⊗, cut, ex).

Figure 6 Grammar of formulas and (hyper)sequent, de Morgan laws and inference rules.

⟨c ▷ℓ a, p1, b⟩ + ⟨p1, p2 ▷` p⟩ →l` ⟨c ▷ℓ a, p, b⟩ ⟨c ▷ℓ a, p2, b⟩ + ⟨p1, p2 ▷` p⟩ →r` ⟨c ▷ℓ a, p, b⟩

Figure 7 The two cases (left and right) defining the switching rewriting. The left reduction →l`
destroys p1 and makes p2 a conclusion; while the right reduction →r` destroys p2 and makes p1 a
conclusion.

✠
Γ

π1

A, Γ
π2

A⊥, ∆
cut

Γ, ∆

π1

A, Γ
π2

B, ∆
⊗

Γ, ∆, A ⊗ B

π0

A, B, Γ
`

A ` B, Γ

π0

Γ, B, A, ∆
ex

Γ, A, B, ∆
⟨▷✠ p1, . . . , pn⟩ S1 + S2+ S1 + S2+ S0+ (S0, a)

⟨S1(1), S2(1) ▷cut⟩ ⟨S1(1), S2(1) ▷⊗ p⟩ ⟨S0(1), S0(2) ▷` p⟩

Figure 8 Induction defining the relation ≡R. The proof in the first row is represented by a
net below it in the second row. The position p is always supposed fresh. In each case and for
each 0 ≤ i ≤ 2, Si is a net which represent πi i.e. Si ≡R πi. In the case of the exchange rule
we explicitly mention the arrangement i.e. the order of the conclusion and assume (S0, a′) ≡R π0

and a(i) = a′(i) whenever i ≤ |Γ| or |Γ| + 2 < i. On the other hand, a′(|Γ| + 1) = a(|Γ| + 2) and
a′(|Γ| + 2) = a(|Γ| + 1).

2 Multiplicative Linear Logic and proof nets

We define the well–known notion of proof net [7] in our setting: in the presence of the
generalised axiom (✠), proof nets are similar to the paraproof nets of Curien [4] (which
come from Girard Ludics [10]). We then formulate the Danos–Regnier criterion [5]: testing
the acyclicity and connectedness of (several) graphs allows to determine whether a net is a
(para)proof net or not [4].
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We fix a countable set Var of propositional variables. The set Var comes with an (explicit)
involution (·)⊥; for each atomic variable X there exists its dual atomic variable X⊥ in
Var. The set Form of formulas of multiplicative linear logic is defined by the grammar in
Figure 6a. The involution (·)⊥ is lifted from Var to Form as in Figure 6b. The set Hseq of
hypersequents is defined by the grammar in Figure 6a, a sequent is an hypersequent without
the parallel “∥” constructor. The introduction of hypersequents is naturally suggested by the
constructions on types (Section 3): indeed as the interpretation of the `–connective is based
on the interpretation of the “,”–connective, the interpretation of the ⊗–connective relies on
that of the “∥”–connective (Definition 49 and Definition 58). Technically hypersequents are
necessary in our proof of the completeness theorem (Theorem 88).

A proof of MLL (resp. MLL✠) is a tree constructed using the rules (ax,`,⊗, cut, ex) (resp.
(✠,`,⊗, cut, ex)) of Figure 6c.

▶ Definition 31. A net S represents4 a proof π of MLL✠, denoted π ≡R S or S ≡R π,
whenever the relation defined in Figure 8 holds. A net represents a proof of MLL whenever it
represents a proof of MLL✠ where every sequent conclusion of a (✠)–rule has shape A, A⊥

for A ∈ Form. A representation of a proof π is a net S which represents π. A proof net of
MLL✠ (resp. MLL) is a net which represents a proof of MLL✠ (resp. MLL): we say that S is
correct. A net S is correctly typeable5 by a sequent Γ whenever it represents a proof of Γ in
MLL✠.

▶ Notation 32. Let P denote MLL or MLL✠ and let S be a net. We write S ⊢P Γ whenever
there exists a proof π in P such that S is the representation of π. Furthermore we denote
⦃Γ : P⦄ the set of all the nets S such that S ⊢P Γ.

A substitution is a map θ : Var→ Form such that θ(X⊥) = θ(X)⊥ for each X ∈ Var. A
substitution can be lifted to formulas and hypersequents by induction: θ(A⊗B) = θ(A)⊗θ(B)
; θ(A ` B) = θ(A) ` θ(B) ; θ(A ∥ B) = θ(A) ∥ θ(B) ; θ(A, B) = θ(A), θ(B). Given two
hypersequents, we denote ∆ ≤ Γ whenever there exists a substitution θ such that θ∆ = Γ.

▶ Proposition 33. Let Γ and ∆ be two sequents and suppose ∆ ≤ Γ. For any net S: (1) if
S ⊢MLL✠ ∆ then S ⊢MLL✠ Γ and (2) if S ⊢MLL ∆ then S ⊢MLL Γ.

▶ Definition 34. The switching rewriting is defined on unordered nets as the contextual
closure of the rules in Figure 7. A switching of a net S is a normal form of S for the
switching rewriting: we often denote it σS.

▶ Remark 35. The switching rewriting strongly normalizes since every step reduces the
number of links of the net. The rewriting is also non-deterministic and non-confluent, every
normal form is a par–free net. The switching rewriting can be lifted to (ordered) nets; with
the notations of Figure 7 whenever an unordered net |S| with n conclusions is such that
|S| →l` |S′| we define (|S| , a) →l` (|S′| , a′) where a′(i) = a(i) for each 1 ≤ i ≤ n and
a′(n + 1) = p2 i.e. the new conclusion is made last conclusion (similarly we can define it for
the case →r`).

4 In the standard Linear Logic terminology π is a sequentialisation of the proof net S.
5 Notice that with the expressions “correctly typeable” we mean here that the net is both correct (it

represents a proof) and that we can label its conclusions with the formulas of Γ.
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▶ Definition 36. The undirected multigraph6 induced by two partitions P and Q of a set X is
(V, E, brd) denoted G(P, Q) where: (1) V = {1}×P ∪{2}×Q the vertices are the classes of P

and Q (as a disjoint union); (2) E = X; (3) For any edge x in X; brd(x) = {(1, Px), (2, Qx)}
where Px ∈ P is such that x ∈ Px and Qx ∈ Q is such x ∈ Qx.

Two partitions P and Q of a set X are orthogonal if the multigraph G(P, Q) is acyclic
and connected.

▶ Definition 37. In a net S denote p ≥S q the relation which holds whenever there exists
a link e such that p ∈ s(e) and q ∈ t(e). Denote ≥∗

S its reflexive and transitive closure; a
position p is above a position q whenever p ≥∗

S q. Given a position q we denote q ↑i S the
set of initial positions which are above q in S.

▶ Remark 38. Given a cut–free net S with conclusions p1, . . . , pn the sets p1 ↑i S, . . . , pn ↑i S

form a partition of the initial positions of S. We denote this partition ↑i S.
▶ Notation 39. Let S be a net and let {d1, . . . , dn} be the set of daimon links of S. The
partition {t(d1), . . . , t(dn)} on the set of initial positions of S is denoted by P✠(S).

Reformulated in the context of hypergraphs we get the following theorem from [5].

▶ Theorem 40 ([4, 5]). Given a cut–free net S, the following assertions are equivalent:
1. S is a proof net of MLL✠;
2. For every switching σS of S, the partitions P✠(S) and ↑i σS of the set of initial positions

of S are orthogonal;
3. Every switching σS of S is acyclic and connected7.

3 Interaction of nets, orthogonality, and types

We define how nets can interact and if the interaction of two nets leads to the ✠-link with
no outputs (✠0) we say they are orthogonal. This recalls classical realisability proposed by
J.-L. Krivine [12], where (the closure by antireduction of) the set {✠0} will play the role of
the pole. Notice, however, that our setting is fully symmetrical: both the elements of truth
values and falsity values are nets.

The notion of ordered hypergraph and arrangement introduced in Section 1 will now
explicitly come into play as it is necessary for defining the interactions of nets (see Figure 9a).
We will denote by #S the number of outputs of a net S. Given a partial function f : N→ E

with a finite domain of cardinality n and ordered as i1 < i2 < · · · < in, the collapse of f ,
denoted f↓, is the total function with domain [1; n] such that f↓(m) = f(im) for any integer
1 ≤ m ≤ n.

▶ Definition 41. Let S = (|S| , a(S)) and T = (|T | , a(T )) be two nets and k = min(#S, #T ),
we define their interaction S :: T = (|S :: T | , a(S :: T )) as:

|S :: T | ≜ |S|+ |T |+
∑

1≤i≤min(#S,#T )⟨S(i), T (i) ▷cut⟩ a(S :: T ) ≜


∅ when #S = #T

a(S) ↾[k+1;#S] ↓ when #S > #T

a(T ) ↾[k+1;#T ] ↓ when #S < #T

6 Recall that a multigraph is a graph where two vertices may be connected by several edges (not to
be confused with the notion of hypergraph of Definition 1). The function brd maps each edge to its
endpoints.

7 We refer to the graph naturally induced by the net σS.
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` ⊗

✠

a b c p q

✠

d r

cut

(a) Representation of the in-
teraction S :: T of two nets
S = ⟨▷✠ a, b, c⟩ + ⟨a, b ▷` d⟩
and T = ⟨▷✠ p, q⟩+⟨p, q ▷⊗ r⟩.

⊗

✠ ✠

p1 p2

p

cut

q

✠

→

✠ ✠

p1 p2q1 q2

✠

cut cut
→

✠

p2q2

✠

cut → ✠

(b) The cut elimination procedure applied to S′ :: T ′ leads to ✠0,
showing that S′ ⊥ T ′. In this figure S′ = ⟨▷✠ q⟩ and T ′ = ⟨▷✠

p1⟩ + ⟨▷✠ p2⟩ + ⟨p1, p2 ▷⊗ p⟩.

Figure 9 The interaction of two nets (Definition 41) and two orthogonal nets (Definition 42).

▶ Definition 42. Two nets S1 and S2 are orthogonal if S1 :: S2 →∗ ✠0
8: when this holds

we write S1 ⊥ S2. For a net S and a set of nets Λ, if for every λ ∈ Λ we have S ⊥ λ we
write S ⊥ Λ.

▶ Remark 43. Since cut links are asymmetric, namely ⟨p, q ▷cut⟩ and ⟨q, p ▷cut⟩ are distinct
nets, the interactions S :: T and T :: S are not the same net. However, this has no consequence
on cut elimination because the reduction steps do not depend on the order of the inputs of a
cut link. Thus S :: T reduces to ✠0 if and only if T :: S does, and as expected the relation of
orthogonality is symmetric.

▶ Definition 44. Given a set A of multiplicative nets, we define the orthogonal of A as
A⊥ = {P | ∀R ∈ A, P ⊥ R}. A type A is a set of multiplicative nets such that A⊥⊥ = A.9

▶ Remark 45. Since cut elimination preserves the conclusions of a net and ✠0 has no output,
two orthogonal nets have the same number of conclusions. Thus, for every type A, for every
R ∈ A and for every S ∈ A⊥, the nets R and S have the same number of conclusions: we
denote by #A the number of conclusions of the nets in A. Obviously #A = #A⊥.

▶ Remark 46. Clash cuts are preserved during cut elimination, thus a net containing such a
cut cannot reduce to ✠0. Hence, there cannot be two nets S and S′ respectively in A and
A⊥ such that their ith conclusions S(i) and S′(i) are both outputs of a `–link (or ⊗–link):
their interaction S :: S′ contains a clash cut and thus the nets cannot be orthogonal.

▶ Remark 47. A net S which is orthogonal to the daimon link with a single output (i.e. ✠1)
has a single conclusion which can be the output of a daimon link, a tensor link or a par
link. For instance the three cut–free nets ⟨▷✠ p⟩, ⟨▷✠ p1⟩+ ⟨▷✠ p2⟩+ ⟨p1, p2 ▷⊗ p⟩ and
⟨▷✠ p1, p2⟩+ ⟨p1, p2 ▷` p⟩ are all orthogonal to ✠1 (one case is proved in Figure 9b).

The following proposition is a key step for proving propositions 51 and 54.

▶ Proposition 48. Given three net S and T and R such that #S ≥ #T +#R: the interaction
S :: (T ∥ R) is equal to (S :: T ) :: R.

In the following definition 49 the side condition #S ≥ #A ensures that whenever a net S

in A � B interacts with a net of T ∈ A⊥ the remaining conclusions of S :: T are conclusions
of S, this will allow to activate Proposition 48.

8 Note that we require the existence of such a reduction, not all reductions need to behave this way.
9 Equivalently, a type is a set A such that A = B⊥ for some set B, see, for instance, [11].
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▶ Definition 49. Given two sets of nets A and B their functional composition denoted
A � B, and their parallel composition denoted A ∥ B are defined as follows:

A � B ≜ {S | for any T ∈ A⊥, S :: T ∈ B and #S ≥ #A} A ∥ B ≜ {S ∥ T | S ∈ A, T ∈ B}⊥⊥

▶ Remark 50 (Density of the parallel composition). For any two types A and B we have
(A ∥− B)⊥ = (A ∥ B)⊥, where A ∥− B = {S ∥ T | S ∈ A, T ∈ B}.

▶ Proposition 51 (Duality). Given two types A and B: (A ∥ B)⊥ = A⊥ � B⊥ and
(A � B)⊥ = A⊥ ∥ B⊥.

▶ Remark 52. The duality of the constructions (Proposition 51) ensures that the set of types
is closed under the ∥ and � operations. Moreover, the intersection of two types is still a type.
This is not the case for the union which needs to be closed under bi–orthogonal.

▶ Remark 53. For two types A and B the unordered nets of A ∥ B and of B ∥ A are the
same, so as the unordered nets of A � B and B � A.

▶ Proposition 54. Given A, B and C three types; (A � B) � C = A � (B � C) and
(A ∥ B) ∥ C = A ∥ (B ∥ C).

▶ Definition 55. Given A and B two types with one conclusion, we define their tensor
product (denoted ⊗) and their compositional product (denoted `):

A⊗B ≜ {S + ⟨S(1), S(2) ▷⊗ p⟩ | S ∈ A ∥ B}⊥⊥ A ` B ≜ {S + ⟨S(1), S(2) ▷` p⟩ | S ∈ A � B}⊥⊥

where p denotes a fresh position.

▶ Proposition 56 (Duality). Given A and B two types with one conclusion, (A⊗B)⊥ =
A⊥ ` B⊥ and (A ` B)⊥ = A⊥ ⊗B⊥.

4 Realisability Model: Adequacy

We introduce our realisability model on untyped nets and prove it is adequate. We identify a
sufficient property of interpretation bases to prove adequacy (Theorem 64): for any basis
B satisfying the property, a net S representing an MLL✠ proof of a sequent Γ is a realiser
of Γ i.e. it belongs to JΓKB. This adequacy result immediately applies to MLL, since a net
representing a proof of MLL represents, in particular, a proof of MLL✠.

We start by giving an interpretation of formulas and hypersequents of multiplicative
linear logic. We provide an interpretation of hypersequents instead of sequents as it turns
out that handling hypersequents is more convenient and proving a result on hypersequents
proves it on sequents too. However, do keep in mind that the proof trees we defined using
Figure 6c are constructed with sequents.

▶ Definition 57. An interpretation basis B is a function that associates with each atomic
proposition X a type JXKB, the interpretation of X, such that:

Each net in JXKB has one conclusion.
For any atomic proposition X, we have JX⊥KB ⊆ JXK⊥

B .
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a b c
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⊗

✠

cut

✠

→

a1 b c

✠

cut

✠

a2

cut
→

a1 b

✠

cut

(a) The elimination of a (✠/⊗) cut preserves cycles in a net.

a b c
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`

✠

cut

✠

→

a1 b c

✠

cut

✠

a2

cut

✠

→

c

✠ ✠
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cut → ✠0

(b) The elimination of a (✠/`) cut may break a cycle in a net.

a b c

d

`

✠

cut

✠

→

a1 b c

✠

cut

✠

a2

cut

✠

→

a1 b

✠

cut

✠

(c) The elimination of a (✠/`) cut can preserve cycles.

Figure 10 The evolution of (switching) cycles and (switching) disconnections during non homo-
geneous cut elimination.

▶ Definition 58. Given an interpretation basis B, the interpretation of MLL formulas and
of hypersequents of MLL is defined by induction:

JA ⊗ BKB ≜ JAKB ⊗ JBKB.
JA ` BKB ≜ JAKB ` JBKB.

JH1, H2KB ≜ JH1KB � JH2KB.
JH1 ∥ H2KB ≜ JH1KB ∥ JH2KB.

▶ Remark 59. Using duality of types (Proposition 56) and the properties of orthogonality
one proves that for an interpretation basis B and an MLL formula A we have JA⊥KB ⊆ JAK⊥

B .

▶ Definition 60. A multiplicative net realises – with respect to an interpretation basis B –
an hypersequent H of MLL formulas whenever it belongs to JHKB.

▶ Notation 61. For a hypersequent H, we will often write S ⊩B H instead of S ∈ JHKB, and
sometimes S ⊩ H or S ∈ JHK when there is no ambiguity on the basis B.

From the point of view of cut elimination, a daimon link with n outputs may be thought
as the approximation of a proof net with n outputs. More precisely, by iterating the process
we have seen in Remark 24, every cut–free proof π of a formula C can be obtained by
applying the cut elimination procedure to the daimon link ✠1 (of conclusion C) cut against
the appropriate identities of C, C⊥ (this generalises to a sequent Γ and ✠n). Furthermore
daimon links and proof nets (with the same number of conclusions) are interchangeable
with respect to geometrical correctness (Table 1): in a correct (resp. incorrect) net S,
substituting a daimon link with n outputs by a proof net with n outputs produces a correct
(resp. incorrect) net. However, proof nets and daimons (with the same number of conclusions)
differ on realisability: for instance a proof net ending with a tensor link can never realise a
formula of the form A ` B whereas a daimon link can (Theorem 64). We will thus say that
a daimon link “approximates” a sequent: this suggests Definition 62.
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▶ Definition 62. A type A is approximable if and only if ✠1 ∈ A. A basis B is approximable
if for each X ∈ Var, the type JXKB is approximable.

▶ Remark 63. Because inclusion is preserved by bi–orthogonal closure, a type A is approxim-
able if and only if {✠1}

⊥⊥ ⊆ A which is equivalent to the inclusion A⊥ ⊆ {✠1}⊥.

▶ Theorem 64 (Adequacy). Let B be an approximable basis. For any net S and sequent Γ
S ⊢MLL✠ Γ⇒ S ⊩B Γ.

Proof. The technique is standard in the works on realisability (see [12] or [14]): one proceeds
by induction on the size of a proof π represented by S. For the base case one must show that
✠n realises any sequent Γ with n formulas. To do so one first checks that, for any formula A,
JAKB is approximable (✠1 ∈ JAKB). ◀

▶ Remark 65. An approximable basis yields adequacy, in particular, for MLL. Notice, however,
that there exist bases yielding an interpretation that is adequate for MLL but not for MLL✠.

5 Testability and tests

The partitions involved in the Danos Regnier criterion (Theorem 76) and their orthogonality
with the daimons of a net can be translated as tests; so that for a formula A, a net S testable
by A (definition 66 below) and orthogonal to tests(A) is a correct net (Theorem 76). We
will show that these tests are proofs of MLL✠ (Theorem 77). This means that for realisers
in an approximable basis, testability (Definition 66) and correct typeability (Definition 31)
coincide: this is Proposition 82.

▶ Definition 66 ((Atomic) testable cut–free nets). A formula labelling of a cut–free net S is
a function τ : VS → Form such that:

(Par) When ⟨p1, p2 ▷` p⟩ occurs in S: if τ(p1) = A and τ(p2) = B then τ(p) = A ` B.
(Tens) When ⟨p1, p2 ▷⊗ p⟩ occurs in S: if τ(p1) = A and τ(p2) = B then τ(p) = A⊗B.

A formula labelling of a cut–free net S is atomic when for each daimon link ⟨▷✠ p1, . . . , pn⟩
in S the formula τ(pi) is a propositional variable.

A cut–free net S with n conclusions is testable (resp. atomic testable) by a sequent
Γ = A1, . . . , An, which we denote S |≃ Γ (resp. S |≃at Γ), if there exists a formula (resp. an
atomic formula) labelling τ of S such that τ(S(i)) = Ai for each 1 ≤ i ≤ n.

▶ Remark 67. S |≃ Γ iff S |≃at ∆ and Γ = θ∆ for some substitution θ and sequent ∆.

▶ Remark 68. S |≃at Γ iff S without its ✠–links is the syntactic forest of (the formulas of) Γ.

▶ Remark 69. A cut–free proof net S ⊢✠MLL Γ is in particular testable by that sequent i.e.
S |≃ Γ. However, a net S |≃ Γ which is testable by Γ may not be a proof net because it could
contain cycles or disconnections: the testability condition only provides information on the
multiplicative links constituting the net S. When is S atomic testable by A, orthogonality
with the tests of A coincides with correctness (Proposition 75).

▶ Remark 70. Let S |≃at
A1, . . . , An be a cut–free net. For any nets T1, . . . , Tn cut–free

and atomically testable respectively by A1
⊥, . . . , An

⊥ denoting S0 the normal form of
S :: T1 ∥ · · · ∥ Tn, S0 is obtained by homogeneous cut–elimination, and we have (1) S0 equals
✠0 (2) S0 is equal to the sum of k ≥ 2 daimon without conclusions (S0 =

∑
1≤i≤k ✠0) or (3)

S0 contains a cyclic cut (S0 = R + ⟨▷✠ q⃗, a, r⃗, b, p⃗⟩+ ⟨a, b ▷cut⟩).
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▶ Remark 71. Given a net S = (|S| , a(S)) we denote S✠ = (
∣∣S✠

∣∣ , a(S✠)) the net such that∣∣S✠
∣∣ is the hypergraph consisting of the daimon links occurring in S. The arrangement

a(S✠) is induced by a(S) because above every conclusion of S there is binary tree: each
initial position p can be associated with a sequence ξ = adr(p) of {l,r}∗ and an integer
i = root(p) so that going up from S(i) following the left/right instruction of ξ one reaches
the initial position p. The initial positions of S are then ordered by the lexicographical order
of (root(p), adr(p)) fixing l ≤ r.
▶ Notation 72. Given a net S with n initial positions, and P = {C1, . . . , Ck} a partition of the
initial positions of S we denote by NatS(P ) the partition {a(S✠)−1(C1), . . . , a(S✠)−1(Ck)}
of {1, . . . , n}. We might abusively write Nat(P ) for NatS(P ).

▶ Proposition 73. Let A be a formula, given two cut free nets S |≃at
A and T |≃at

A⊥ the
assertions are equivalent:
1. The nets S and T are orthogonal.
2. The nets S✠ and T✠ are orthogonal.
3. The partition NatS(P✠(S)) and NatT (P✠(T )) are orthogonal.

▶ Definition 74. A cut-free net T is a test of a formula A if T |≃at
A⊥ and there exists a net

S |≃at
A and a switching σS such that NatT (P✠(T )) = NatS(↑i σS). We denote by tests(A)

the set {S | S is a test of A}.

▶ Proposition 75. For S cut–free, S |≃at
A, we have: S ⊢MLL✠ A⇔ S ⊥ tests(A).

A net S with n conclusion can always be transformed in a net with 1 conclusion by
putting a bunch of par–links below its conclusions; this allows to generalise the previous
proposition.

▶ Theorem 76 (Danos–Regnier Tests). Given a cut–free net S |≃at
A1, . . . , An; S ⊢MLL✠

A1, . . . , An if and only if S is orthogonal to tests(A1) ∥ · · · ∥ tests(An).

▶ Theorem 77. Any test T of a formula A is correctly typeable by A⊥, T ⊢MLL✠ A⊥.

Proof. Consider a test T of A then by Theorem 76 any net S ⊢MLL✠ A is orthogonal to T .
By the counter–proof criterion [4] a net N |≃at

A⊥ orthogonal to each proof of A is a proof;
therefore it follows that T is a proof of A⊥. ◀

▶ Remark 78. Theorem 76 is a refinement of the counter–proof criterion of P.L. Curien [4]:
if S |≃at

A and S ⊥ tests(A) then S ⊢MLL✠ A – and every element of tests(A) are proofs of A⊥

(Theorem 77), but the converse does not hold.
From Theorem 76 and Theorem 77 one obtains an “interactive” criterion for the nets of
multiplicative linear logic (MLL). One takes a net of S of MLL (i.e. a net with binary daimons)
and confronts it with the tests of the according formulas (Definition 74). A straightforward
consequence of the Theorem 76 is the reformulation of Béchet’s theorem in our framework.

▶ Corollary 79. Let S |≃at
A1, . . . , An be a cut–free net. If S is not correct then there exists

nets T1 ∈ tests(A1), . . . , Tn ∈ tests(An) such that the normal form of S :: T1 ∥ · · · ∥ Tn is not
correct: we are in case (2) or (3) of Remark 70.

▶ Remark 80. The Corollary 79 obviously applies to MLL nets, the main difference with
Béchet’s original result is that his opponents are MLL proof nets (in our framework they are
MLL✠ proof nets). However it is not difficult to adapt our techniques to obtain Béchet’s
result.
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▶ Remark 81. Consider an approximable basis B and a sequent Γ = A1, . . . , An we have
JΓKB = (JA1K⊥

B ∥ · · · ∥ JAnK⊥
B )⊥. By Theorem 64, for any A⊥

i we have ⦃A⊥
i : MLL✠

⦄ ⊆ JA⊥
i KB

while tests(Ai) ⊆ ⦃A⊥
i : MLL✠

⦄ (Theorem 77) thus tests(Ai) ⊆ JA⊥
i KB ⊆ JAiK⊥

B (Remark 59).
Because the ∥–construction preserves inclusions and orthogonality inverts inclusions we derive
that JΓKB ⊆ (tests(A1) ∥ · · · ∥ tests(An))⊥.

Remark 81 combined with the previous theorem (Theorem 76) means that for realisers in
an approximable basis, testability and (correct) typeability collapse.

▶ Proposition 82. Given B an approximable basis10 and a sequent Γ for any cut–free net
S ∈ JΓKB the assertions are equivalent:
1. S |≃ Γ i.e. S |≃at ∆ for some sequent ∆ ≤ Γ.
2. S ⊢MLL✠ Γ.

6 Completeness

Using Proposition 82 we provide a completeness result; we exhibit an approximable basis for
which a net S realising a sequent Γ is testable, and so equivalently S ⊢MLL✠ Γ. This basis,
denoted 1, maps each atomic formula to {✠1}

⊥⊥ .

▶ Proposition 83. For any sequent Γ and any cut–free net S; if S ∈ JΓK1 then S |≃ Γ.

▶ Remark 84. By the Proposition 83 and the Theorem 64 we have that S ∈ JΓK1 iff S ⊢MLL✠ Γ.
Since the base 1 is approximable, Proposition 82 allows to prove:

▶ Theorem 85 (MLL✠ completeness). Given a cut–free net S and a sequent Γ;
If for all basis B we have S ∈ JΓKB, then S ⊢MLL✠ Γ.
S ∈ JΓKB for any approximable basis B iff S ⊢MLL✠ Γ.

▶ Remark 86. The non homogeneous cut elimination allows to distinguish the types JX, X⊥KB
and JX, Y KB for a well chosen basis: for instance for the basis, that we will denote B⟨`⟩,
which maps positive propositional variables to {✠`}⊥ and negative propositional variables
to {✠`}

⊥⊥ , where ✠` denotes the geometrically incorrect net ⟨▷✠ a⟩+ ⟨▷✠ b⟩+ ⟨a, b ▷` c⟩.
In that case, (1) because ✠2 is not orthogonal to ✠` ∥ ✠` (Figure 11) it follows that

✠2 /∈ JX, XKB⟨`⟩ and more generally ✠2 /∈ JX, Y KB⟨`⟩; (2) by the property expressed
in Remark 90 (and illustrated in Figure 12), ✠2 ∈ JX, X⊥KB⟨`⟩; (3) point (1) above is
not in contradiction with the theorem of adequacy (Theorem 64) because, even though
✠2 ⊢MLL✠ X, Y , the basis B⟨`⟩ is not approximable.
▶ Remark 87. The ability to distinguish realisers of the sequents X, X⊥ and X, Y (Remark 86)
allows us to derive the completeness result for MLL (Theorem 88) from the completeness
result for MLL✠ (Theorem 85). In Remark 86, to show that ✠2 /∈ JX, Y KB⟨`⟩ we have used
incorrect nets (specifically ✠`), which explains that the completeness theorem for MLL
(Theorem 88) refers to any basis B (and not only to approximable basis). In the terms of
Table 1, we retrieve provability correctness by using interactions with geometrically incorrect
nets.

▶ Theorem 88 (MLL completeness). Let S be a cut–free net such that each of its daimon
link has exactly two outputs, Γ be a sequent such that S |≃at Γ; if S ∈ JΓKB for any basis B
then, S ⊢MLL Γ.

10 The Proposition 82 actually holds for any “adequate” basis B.
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✠

p1 p2 ` `

cut cut

q r

q1 q2 r1 r2

✠ ✠✠ ✠

→

✠

p1 p1
2

`

cut cut

q

q1 q2

r1 r2

✠ ✠

✠ ✠

p2
2

✠

cut

→

✠

p1 p1
2

`

cut cut

q

q1 q2

r1

✠
✠

✠ ✠

Figure 11 The daimon link ✠2 is not orthogonal to ✠` ∥ ✠`: a disconnected net never reduces
to a connected one (and ✠0 is connected).

a b

g h

✠

cut cut

S Sp1 pn. . . →∗

✠

p1 pn. . .

Figure 12 The interaction of two orthogonal nets S and S with a daimon reduces to a daimon
(with two less outputs).

▶ Remark 89. A result of adequacy for MLL can also be stated: given an interpretation
basis B (not necessarily approximable) such that for each propositional variable X we have
JX⊥KB = JXK⊥

B , for any net S, if S ⊢MLL Γ then S ∈ JΓKB.

▶ Remark 90. The completeness result for MLL (Theorem 88) only identifies cut–free and
atomic proofs (i.e. where axioms introduce sequents of the form X, X⊥). This is because
for any atomic formulas X and Y , and for any basis B such that JX⊥KB = JXK⊥

B , ✠2 ∈
JX`X⊥, Y `Y ⊥KB while X`X⊥ and Y `Y ⊥ are not dual formulas: contrary to the atomic
case we cannot use ✠2 to distinguish JX ` X⊥, Y ` Y ⊥KB⟨`⟩ from JX ` X⊥, X⊥ ⊗XKB⟨`⟩.

The fact that ✠2 ∈ JX ` X⊥, Y ` Y ⊥KB⟨`⟩ (and more generally for any basis B such
that JX⊥KB = JXK⊥

B ) is derived from the fact that, for any integer k and for any two
orthogonal nets S1 and S2 with one conclusion, the interaction ✠k+2 :: (S1 ∥ S2) has
at least one reduction to ✠k by cut elimination (Figure 12). We use this property for
k = 2 and k = 4 to show that ✠2 ∈ JX ` X⊥, Y ` Y ⊥KB. More precisely, we prove that,
✠2 ⊥ JX ` X⊥K⊥

B ∥ JY ` Y ⊥K⊥
B : given S, S and R, R two pairs of orthogonal nets (with one

conclusion), when all nets S, S, R, R have disjoint sets of vertices, we can derive the following:

⟨▷✠ a, b⟩ :: S + S + ⟨S(1), S(1) ▷⊗ q⟩+ R + R + ⟨R(1), R(1) ▷⊗ r⟩
→ · → ⟨▷✠ a1, a2, b1, b2⟩ :: S + S + R + R

→∗ ⟨▷✠ b1, b2⟩ :: R + R

→∗ ✠0
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A Additional Figures

p1 p2

p

⊗
qqi· · · qn· · ·qi+1

✠

cut

q1 → p1 p2 q1qi· · · qn· · ·qi+1

✠

cut

q2

cut

q1 p1 p2

p

⊗

qqi· · · qn· · ·qi+1

✠

cut

q1 → p1 p2 q1qi· · · qn· · ·qi+1

✠

cut

q2

cut
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(a) Extra cases for the elimination of (✠/⊗) cuts, on the left the elimination step when one of the inputs
belongs to the daimon above the cut, on the right the elimination step when both inputs belong to the
daimon above the cut.
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(b) Extra cases for the elimination of (✠/`) cuts: when one of the inputs belongs to the daimon above
the cut.
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q1 q2

q

`
pa1 an· · · b1 bm· · ·

✠

cut

→
q1 p1

✠

aσ(k)· · ·aσ(1)q2

✠

aσ′(k′)· · ·aσ′(1)bτ(h)· · ·bτ(1) b′
τ ′(h′)· · ·b′

τ ′(1)p2

cut cut

q1 q2

q

`
pa1 an· · · b1 bm· · ·

✠

cut

→
q1 p1

✠

aσ(k)· · ·aσ(1) q2

✠

aσ′(k′)· · ·aσ′(1)bτ(h)· · ·bτ(1) b′
τ ′(h′)· · ·b′

τ ′(1)p2

cut cut

(c) Extra cases for the elimination of (✠/`) cuts: when both inputs belong to the daimon above the cut.

Figure 13 Complements to Figure 4 for defining non homogeneous cut elimination (Definition 22).
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