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Abstract
In recent years, researchers have proposed various models of linear logic with strong connections
to measure theory, with probabilistic coherence spaces (PCoh) being one of the most prominent.
One of the main limitations of the PCoh model is that it cannot interpret continuous measures.
To overcome this obstacle, Ehrhard has extended PCoh to a category of positive cones and linear
Scott-continuous functions and shown that it is a model of intuitionistic linear logic. In this work
we show that the category PBanLat1 of perfect Banach lattices and positive linear functions of
norm at most 1 can serve the same purpose, with some added benefits. We show that PBanLat1 is
a model of classical linear logic (without exponential) and that PCoh embeds fully and faithfully
in PBanLat1 while preserving the monoidal and ∗-autonomous structures. Finally, we show how
PBanLat1 can be used to give semantics to a higher-order probabilistic programming language.
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1 Introduction

Recent work has shown that linear logic has deep connections to the semantics of probabilistic
programming languages [8, 13, 10, 12, 11, 25, 9, 19, 7]. By using monoidal closed categories
instead of cartesian closed categories, linear logic provides an alternative categorical framework
for higher-order functions. This was foreshadowed in early work on probabilistic semantics
[20] in which bounded linear operators on Banach lattices were used to interpret a first-order
imperative probabilistic programming language. This can be seen as evidence that a linear
approach might be a natural alternative to cartesian closed categories.
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44:2 Classical Linear Logic in Perfect Banach Lattices

Since then, many probabilistically-flavored models of linear logic have appeared. For
instance, the connection between the early work of Kozen [20] and linear logic has been
recently made precise by Dahlqvist and Kozen [7], where the category of regular ordered
Banach spaces and regular maps (RoBan) was used to extend the semantics of Kozen [20]
with higher-order functions. They also showed that RoBan is a model of intuitionistic linear
logic.

An appealing aspect of the RoBan model is that ordered Banach spaces are mathematic-
ally well-understood objects with a well-developed classical theory, thus providing a plethora
of useful theorems to reason about programs. This is illustrated by Dahlqvist and Kozen [7]
by using results from ergodic theory to prove the correctness of a Gibbs sampling algorithm
implemented in a higher-order language. However, the programming model supported by
the semantics is somewhat brittle, in that the soundness of the system depends on a tricky
interaction between three different type grammars with several syntactic restrictions.

A different approach was taken by Ehrhard and Danos [8], in which a category PCoh
was defined and shown to be a model of classical linear logic. The model was used to
interpret a version of PCF extended with discrete probabilities [13]. Although this category
handles discrete probabilities very nicely, it cannot interpret continuous distributions such as
the normal distribution over R, a severe limitation for real-world applications. To remedy
this, a category of positive cones with measurability paths and linear Scott-continuous
functions CLinm has recently been introduced and shown to be a conservative extension of
the intuitionistic fragment of PCoh [6].

From a programming point of view, the language of Ehrhard et al. [12] is an extension of
the simply typed λ-calculus with recursion, making it a simple and expressive programming
model. However, the definition of positive cone with measurability paths deviates from
standard objects from the probability literature and thus would require a large amount of
mathematical effort to rephrase useful theorems that could be used to reason about programs.

Although these previous approaches are valuable contributions to our understanding
of higher-order probabilistic programming through linear logic, missing up to now is a
comprehensive model that embodies the following desirable aspects:

extends PCoh to admit continuous measures;
is a model of classical (not just intuitionistic) linear logic, thus allowing it to handle other
computational interpretations of linear logic such as session types;
has a simple and expressive programming model that can handle higher-order computation;
is based on well-understood classical structures from measure theory and functional
analysis.

In this paper we propose such a model. Our model extends PCoh with continuous probabil-
ities and satisfies all of the properties above. Our model is based on complete normed vector
lattices, called Banach lattices. To accommodate the second point, we work with spaces with
an involutive linear negation, the so-called perfect spaces.

Compared to previous models, our model has simpler tensor product, which we believe
lead to a more perspicuous and theoretically satisfying generalization of PCoh. For example,
we invite a comparison with CLinm, where the construction rely on categorical machinery
which, though elegant, are indirect.

Most importantly, Banach lattices can be seen as an abstraction of ordinary measure
spaces and are well-studied in functional analysis, with many results from measure theory
holding for certain classes of Banach lattices. There is a vast literature on the subject; see
Fremlin [14] for a thorough introduction.
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In order to justify the viability of our model, we show that it can be used to interpret a
recently introduced higher-order probabilistic calculus [2], and we extend the core calculus
with recursion.

Summary of contributions
In §3, we define the category PBanLat1 of perfect Banach lattices and order-continuous
positive linear operators with norm at most 1 and show that it is a model of classical
linear logic.
In §4, we show that there is a full and faithful monoidal closed functor PCoh →
PBanLat1. This is a more adequate extension than the model CLinm proposed by
Ehrhard [11], since it also accommodates the classical aspects of the linear structure of
PCoh.
In §5, we show that PBanLat1 is isomorphic to a category of lattices of positive complete
cones.
In §6, we show that PBanLat1 is a model to the recently defined calculus by Azevedo
de Amorim [2].

Our work contributes both to the study of quantitative models of linear logic as well as to
a deeper understanding of higher-order probability theory, shedding light on the importance
of linear logic as a vehicle to interpret higher-order programs without cartesian closure.

2 Riesz spaces

Our model depends on technical definitions and constructions from the vector lattice literature.
This section contains a brief self-contained presentation of the subject. We point the interested
reader to introductory texts [1, 26] for good presentations of much of the material presented
in this section.

Although we are primarily interested in Banach lattices – normed vector lattices with a
completeness property – we start by defining the objects in the general unnormed case.

▶ Definition 1. Let R+ = {a ∈ R | a ≥ 0}. A Riesz space is a partially-ordered vector space
(V, ≤) over R such that

if x ≤ y, then x + w ≤ y + w;
if x ≤ y, then αx ≤ αy for α ∈ R+; and
it is an upper semilattice with respect to ≤ with join operation ∨.

It follows that the space is also a lattice with meet operation x ∧ y = −(−x ∨ −y).

Many standard vector spaces are Riesz spaces.

▶ Example 2. The following are Riesz spaces:
Rn with the pointwise ordering;
the set of bounded sequences of real numbers with pointwise ordering;
the set of signed measures on a measurable space;
the set of bounded measurable functions on a measurable space.

Unlike the real numbers, there are elements that are neither negative nor positive, but
a notable characteristic of Riesz spaces is that every element decomposes uniquely into its
positive and negative parts.

▶ Definition 3. For v an element of a Riesz space, define v+ = v ∨ 0, v− = (−v) ∨ 0 and
|v| = v ∨ −v = v+ + v−.

CSL 2025



44:4 Classical Linear Logic in Perfect Banach Lattices

Then v+ and v− are the unique positive elements such that v = v+ − v− and v+ ∧ v− = 0.
Thus Riesz spaces are completely characterized by their positive elements. This often
simplifies constructions, as one can often prove a property for the positive elements, then
extend to the entire space using this decomposition.

Given a Riesz space V , let V + denote the set of positive elements of V . Using the
decomposition property mentioned above, it follows that V = V + − V +, where − applied to
sets denotes elementwise subtraction.

2.1 Order convergence

Every topology gives rise to a notion of convergence. For normed spaces, one usually studies
convergence in the norm topology. However, ordered spaces also carry an order topology.

▶ Definition 4. Let D be a directed set and V a Riesz space. A net {vα}α∈D is a function
D → V . We say that the net is increasing (respectively, decreasing) and write {vα}↑
(respectively, {vα}↓) if α ≤D β implies vα ≤V vβ (respectively, vα ≥V vβ).

▶ Definition 5. Given a decreasing net {xα}, we write {xα} ↓ 0 if inf{xα} = 0.

▶ Definition 6 (Order convergence). We say that a net {xα} converges in order to x and
write xα

o−→ x if there is a decreasing net {yα} ↓ 0 such that for all α, |xα − x| ≤ yα.

In general, this notion of convergence is neither weaker nor stronger than convergence in
the norm topology. However, when a net converges in both order and norm, it converges to
the same value in both. When it is clear from the context, we will denote order convergence
as →.

2.2 Riesz subspaces, solids, ideals and bands

In the theory of Riesz spaces, there are classes of subspaces that have many interesting
properties that will be used in our constructions.

▶ Definition 7. A subset S of a Riesz space is
solid if x ∈ S and |y| ≤ |x| implies y ∈ S,
an ideal if it is a solid linear subspace,
a band if it is an ideal and closed under existing suprema.

▶ Definition 8. We say that a Riesz space V is Archimedean if for every v ∈ V +, {v/n}n∈N ↓
0. Furthermore, if every bounded subset of V admits a supremum, then we say that V is
Dedekind complete.

▶ Proposition 9. Every band in a Dedekind complete Riesz space is Dedekind complete.

▶ Definition 10. A Riesz subspace A ⊆ V is said to be order dense if for every element
0 < v ∈ V there is an element a ∈ A such that 0 < a ≤ v.

▶ Theorem 11 ([1, Theorem 1.34]). A Riesz subspace A is order dense in an Archimedean
Riesz space V iff for every v ∈ V +,

{a ∈ A | 0 ≤ a ≤ v} ↑ v.
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2.3 Order-continuous functions
As usual when studying vector spaces with extra structure, we care only about linear maps
that interact nicely with the extra structure. In our case, the linear functions will have to
respect the partial order.

We call a linear function f : V → W positive if it maps positive elements of V to positive
elements of W ; that is, it restricts to a function V + → W +. A linear function is regular if it
can be written as the difference of two positive functions.

▶ Definition 12. A linear function T : V → W between Riesz spaces V and W if Tvα
o−→ Tv

whenever {vα} is an increasing net with supremum v.

We can also characterize the positive order-continuous functions as those that preserve
existing suprema and infima.

Order continuity interacts well with order density. Indeed, it is possible to show using
Theorem 11 the following lemma

▶ Lemma 13. If V is an Archimedian Riesz space and f, g : V → W are two linear
order-continuous functions that agree on an order-dense subset of V , then f = g.

This lemma will come in handy when constructing our model. Furthermore, the space
of order-continuous linear functions on certain Riesz spaces are well-behaved subsets of the
regular linear functions.

▶ Theorem 14 ([1, Theorem 1.57]). If W is Dedekind complete, then the set of order-
continuous linear functions V → W is a band in the space of regular functions, thus forms a
Dedekind-complete Riesz space.

Proof. The Riesz space structure is given by Theorem 1.18 of Aliprantis and Burkinshaw [1].
◀

▶ Definition 15. A Riesz space is separated if for every distinct pair v1, v2 ∈ V , there exists
an order-continuous linear functional f : V → R such that f(v1) ̸= f(v2).

2.4 Normed Riesz spaces
Now we will introduce normed Riesz spaces. In the context of probabilistic semantics, the
norm plays an important role, as it can be used to distinguish between arbitrary measures
and (sub)-probability distributions, the measures with norm at most 1.

▶ Definition 16. Let V be a real vector space. A norm is a function ∥ · ∥ : V → R+ such that:
∥v∥ = 0 iff v = 0
∥αv∥ = |α| ∥v∥
∥v + u∥ ≤ ∥v∥ + ∥u∥.

For Riesz spaces, we require the norm to satisfy the additional property

|v| ≤ |u| implies ∥v∥ ≤ ∥u∥.

If the Riesz space is also complete with respect to the norm, we call it a Banach lattice. In
vector space models of linear logic, the norm is typically used to distinguish between the
product & and the coproduct ⊕, as they both have the same underlying set, but distinct
norms. However, in the context of program semantics, the norm also has the extra role of
allowing the interpretation of recursive programs.

CSL 2025



44:6 Classical Linear Logic in Perfect Banach Lattices

▶ Example 17. The set M(R) of signed measures over the Borel σ-algebra on R is a Riesz
space (cf. Section 2.6). We can equip it with the total variation norm ∥µ∥ = µ+(R) + µ−(R).

Theorem 14 shows that by assuming the right amount of structure on the Riesz space, the
set of order-continuous linear functions between Riesz spaces also has a lattice structure. It is
not immediately clear whether this result generalizes to the normed case. Luckily, Dedekind
completeness is once again enough.

▶ Example 18. Let V and W be normed Riesz spaces with W Dedekind complete. The set
of order-continuous linear functions V → W can be equipped with the regular norm

∥T∥r = sup
∥x∥V ≤1

∥|T |(x)∥W

where |T | is given by Theorem 14 and Definition 3.

▶ Definition 19. Let V be a normed Riesz space. The closed unit ball of V is the set
B(V ) = {v ∈ V | ∥v∥ ≤ 1}.

Banach lattices
Banach lattices are normed Riesz spaces that are also Banach spaces. In the usual categorical
study of Banach spaces, the relevant morphisms are the norm-continuous linear functions.

▶ Definition 20. A linear function f between normed Riesz spaces V and W is said to be
norm-continuous (or norm-bounded) if supv∈B(V ) ∥f(v)∥ is finite.

Since we are interested in spaces with two distinct structures, a partial order and a norm,
it is not immediately clear which class of morphisms one should care about. In general, the
space of all norm-continuous linear functions between Banach lattices is not a Banach lattice,
making them unable to give semantics to linear implication.

Normed Riesz spaces are also problematic, as not every order-continuous function is norm-
continuous, making it unclear how one would equip the space of order-continuous functions
with a norm. However, if the codomain is a Banach lattice, then every order-continuous
linear function is also norm-continuous [1]. This suggests that one should work with Banach
lattices but only use order-continuous linear functions.

▶ Definition 21. The category BanLat1 has separated Banach lattices as objects and
order-continuous positive linear functions of norm at most one as morphisms.

These objects have been widely studied in functional analysis, being influential in the
linear operator approach to measure theory [14]. A subtlety when working with a norm
and a partial order is that there are two distinct notions of convergence in play that on the
surface appear only tenuously related. However, a useful property has been identified in the
literature that brings some harmony between the two.

▶ Definition 22. A normed Riesz space is said to satisfy the (sequential) weak Fatou property
if every norm-bounded monotone (sequence) net has a supremum.

In the context of program semantics, the sequential version of this property has been
used before to interpret recursive programs [8, 12].

▶ Lemma 23. Let f : V → V be a positive order-continuous function (not necessarily linear)
such that f(B(V )) ⊆ B(V ). If V satisfies the weak Fatou property, then f admits a fixpoint.
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Proof. It can be directly shown that the limit of the ω-chain {fn(0)}n∈N is a fixpoint of f .
Note that when f is linear, the theorem is trivially true, since f(0) = 0. ◀

▶ Lemma 24 ([14, Lemma 354B(d)]). Every band in a Banach lattice is a Banach lattice.

▶ Theorem 25. If V and W are Banach lattices, then the set of order-continuous linear
functions between V and W is a Banach lattice.

Proof. The proof is a direct consequence of Banach lattices being Dedekind complete – e.g.
Fremlin [14, Proposition 354E(e)] – and the space of order-continuous being a band in the
space of regular linear functions. ◀

2.5 Dualities
The category BanLat1 seems to be a good candidate in which to interpret intuitionistic
linear logic. However, since the linear negation connective (−)⊥ is usually interpreted as the
linear dual V ⊸ R in models of linear logic based on vector spaces over R, BanLat1 would
not be able to model classical linear logic, since there are examples of Banach lattices that
are not isomorphic to their bidual, e.g. summable real sequences.

A recurring challenge in models of linear logic is to make an involutive linear negation –
typical of finite-dimensional spaces – coexist with !V , which requires infinite-dimensional
spaces. Since we are interested in defining a model of classical linear logic, we should only
work with Riesz spaces that are isomorphic to their bidual.

▶ Definition 26. Let V σ denote the space of order-continuous functionals V ⊸ R. A Riesz
space V is said to be perfect if the map σV = λxf .f(x) : V ⊸ V σσ is an isomorphism.

We will write σ for σV when V is clear from context.

▶ Definition 27. The category PBanLat1 has perfect Banach lattices as objects and positive
order-continuous linear functions of norm at most one as morphisms.

Although the definition of perfect spaces is simple, it is difficult to manipulate in practice.
The following theorems provide some alternative characterisations, both in the normed and
unnormed cases:

▶ Theorem 28 ([21, Theorem 41.4, Volume XIII]). Let V be a separated normed Riesz space.
Then V is perfect and Banach iff V has the weak Fatou property.

▶ Theorem 29 ([1, Theorem 1.71]). A Riesz space V is perfect iff
it is separated;
whenever 0 ≤ {xα}α:D↑ and supα:D{f(xα)}α:D < ∞ for all positive f ∈ V σ and directed
set D, there exists x ∈ V such that 0 ≤ {xα}α:D ↑ x.

▶ Corollary 30. Bands of perfect Riesz spaces are also perfect.

▶ Lemma 31. Every perfect Riesz space is Dedekind complete.

Proof. The proof follows from the second condition of Theorem 29. ◀

▶ Lemma 32. Every Riesz space of the form V σ is perfect.

CSL 2025



44:8 Classical Linear Logic in Perfect Banach Lattices

Proof. To show the first point of Theorem 29, assume that f1 ≠ f2 ∈ V σ. Then there is
v ∈ V such that f1(v) ̸= f2(v). Using the fact that λf .f(v) is an element of V σσ, we can
conclude that V σ is separated. For the second point, let us assume that 0 ≤ {fα}↑ and that
for all F ∈ V σσ, if F ≥ 0, then supα F (fα) < ∞. From this hypothesis, it follows that for
all v ∈ V , if v ≥ 0, then supα fα(v) = supα σ(x)(fα) < ∞. This means that the function
f(x) = supα fα(x) is well-defined, linear, and order-continuous. By Lemma 1.18 in Aliprantis
and Burkinshaw [1], V σ is Dedekind complete and f bounds fα. ◀

An interesting fact that is not obvious from the definitions is that the bidual of Riesz spaces
can be seen as a sort of completion procedure. We formalize this claim using adjunctions,
but first we need a lemma.

▶ Lemma 33 ([1, Theorem 1.70]). Let V be an Archimedean Riesz space. The set σ(V ) is
an order-dense Riesz subspace of V σσ.

▶ Theorem 34. The functor (−)σσ : BanLat1 → PBanLat1 is left adjoint to the forgetful
functor U .

Proof. We observe that if f : V ⊸ W , then σ−1 ◦ fσσ : V σσ ⊸ W . In the other direction,
if we have a function f : V σσ ⊸ W , we can consider its restriction f ↾ V : V ⊸ W . To show
that these operations are inverses, we use Theorem 11 and Lemma 33, which allow us to
show that if two order-continuous functions agree on σ(V ), then they agree everywhere. ◀

Note that this implies that PBanLat1 is a reflective subcategory of BanLat1, which
means that it is closed under the same (co)limits that exists in BanLat1, c.f. Borceux [3,
Section 3.5].

2.6 Signed measures as Riesz spaces
Measures are usually defined as countably additive, nonnegative real-valued functions on a
σ-algebra. Signed measures provide a slight generalization by dropping the requirement of
nonnegativity.

▶ Definition 35. Let (X, Σ) be a measurable space. A signed measure is a function µ : Σ → R
such that µ(∅) = 0 and µ(

⋃
i∈N

Ai) =
∑
i∈N

µ(Ai) for disjoint sets (Ai)i∈N. The infinite series on

the right hand side must converge absolutely.

An important difference between ordinary measures and signed measures is that signed
measures come equipped with a natural vector space structure. Indeed, it can be shown that
signed measures are perfect Riesz spaces.

▶ Lemma 36. Let (X, Σ) be a measurable space. The space M(X, Σ) of signed measures is
a normed Riesz space.

Proof. The vector space structure is defined pointwise with lattice structure defined by
µ∨ν = (µ−ν)+ +ν using the Hahn-Jordan decomposition and the norm is the total-variation
norm. ◀

When a measure µ is positive, its total variation norm is its total mass µ(X).

▶ Theorem 37. Let (X, Σ) be a measurable space. The space M(X, Σ) of signed measures
with the total variation norm is a perfect Banach lattice.

Proof. The proof follows by applying Theorem 28, the lemma above and observing that since
the order of measures is given pointwise, you can define their suprema pointwise as well. ◀



P. H. Azevedo de Amorim, L. Witzman, and D. Kozen 44:9

3 Models of linear logic

The categorical semantics of linear logic is very well understood; see Mellies [22] for an
overview. In this section, we show that PBanLat1 is a model of classical linear logic.

3.1 Symmetric Monoidal Closed Structure
In order for PBanLat1 to interpret the multiplicative fragment of linear logic, i.e. give
semantics to a linear λ-calculus with tensors, it must be a symmetric monoidal closed category.
Concretely, it needs a monoidal product ⊗ such that for every object A, the functor A ⊗ −
has a right adjoint A ⊸ −, known as linear implication.

For models based on vector spaces, the monoidal product is typically given by the tensor
product. For such models, linear implication has a natural interpretation in terms of linear
functions. Furthermore, since our spaces are perfect, we have an involutive linear negation
A⊥ defined as the space A ⊸ R, and, in models of classical linear logic, the equation
A ⊗ B = (A ⊸ B⊥)⊥ holds. Thus the tensor product ⊗ can be defined in terms of linear
implication ⊸ and negation ⊥ in such models.

Note that this circumvents one of the main complications with the model of Ehrhard [11],
where the existence of a suitable monoidal product is established non-constructively using a
categorical density argument.

3.1.1 Internal Homs
Since the category PBanLat1 has order-continuous linear functions with norm at most 1
as morphisms, it makes sense to define the internal hom object V ⊸ W as the space of
order-continuous linear functions between perfect Banach lattices V and W . This definition
is justified by the following theorem.

▶ Lemma 38 (c.f. Section B). If V and W are perfect Riesz spaces, then the set of order
continuous linear functions V ⊸ W is a perfect Riesz space.

From Theorem 25 and the theorem above, it follows that if V and W are perfect Banach
lattices, then so is V ⊸ W . By using standard techniques from the literature on vector
models of linear logic, we have

▶ Theorem 39. The operation ⊸ : PBanLat1
op × PBanLat1 → PBanLat1 is functorial.

3.1.2 Monoidal structure
As mentioned above, the monoidal structure on vector space models of linear logic is usually
defined as a tensor product, and monoidal closure is obtained from the universal property of
tensor products. The usual recipe for defining tensor products is to use a free construction
modulo the tensor product equations. When working with infinite-dimensional spaces, a
completion procedure may be required as well.

Indeed, this is the approach taken by Fremlin [15], in which a tensor product is defined for
perfect Riesz spaces via a more traditional construction using the completion of the algebraic
tensor product. It is also shown by Fremlin [15] that V ⊗ W ∼= (V ⊸ W ⊥)⊥, meaning that
their construction is isomorphic to ours.

In contrast, our construction starts with the definition V ⊗ W ≜ (V ⊸ W σ)σ, as required
by the laws of linear logic. We then show that it satisfies the expected universal property of
tensor products: for every biliear function f : V × W → Y , there is a unique linear function
f̂ : V ⊗ W → Y such that f̂ ◦ ι = f , where ι : V × W → Y is the bilinear inclusion function.

CSL 2025



44:10 Classical Linear Logic in Perfect Banach Lattices

We show this using the fact that the internal hom can be used to classify bilinear functions
using V ⊸ (W ⊸ Y ), then showing that this space is isomorphic to V ⊗ W ⊸ Y .

▶ Lemma 40. V ⊗ W ⊸ Y ∼= V ⊸ W ⊸ Y .

Proof. If V and W are perfect Riesz spaces, then V ⊸ W ∼= W σ ⊸ V σ. Then

V ⊗ W ⊸ Y = (V ⊸ W σ)σ ⊸ Y

∼= Y σ ⊸ (V ⊸ W σ) ∼= V ⊸ Y σ ⊸ W σ

∼= V ⊸ W ⊸ Y. ◀

▶ Theorem 41. V ⊗ W , defined as (V ⊸ W σ)σ, satisfies the universal property of tensor
products.

Proof. Observe that the set of (norm bounded) bilinear order-continuous functions V ×W →
Y is (isometrically, in the normed case) isomorphic to V ⊸ W ⊸ Y . We must now show
V ⊗ W ⊸ Y ∼= V ⊸ W ⊸ Y . This is exactly Lemma 40. ◀

Using the universal property of tensor products and the (easy to prove) facts that
V ⊗ (W ⊗ Y ) ∼= (V ⊗ W ) ⊗ Y and V ⊗ W ∼= W ⊗ V , we can conclude:

▶ Theorem 42. PBanLat1 is a symmetric monoidal closed category.

It is difficult in general to give an intuitive characterization of the elements of a tensor
product. This is also the case with our construction. Nevertheless, in the context of measures,
we can give some intuition for the elements of M(A) ⊗ M(B). Let µA and µB be probability
distributions on measurable spaces A and B, respectively. The product distribution µA ⊗ µB

is the joint probability distribution on A×B with marginals µA and µB obtained by sampling
µA and µB independently. This is an element of M(A)⊗M(B), but there are also other joint
distributions in M(A) ⊗ M(B) that do not represent independent samples. For example,
let A = B = {0, 1} and consider the joint distribution 1

2 (δ0 ⊗ δ0 + δ1 ⊗ δ1). Sampling this
distribution returns (0, 0) or (1, 1), each with probability 1/2, so the two components are
clearly not independent.

In general, not every joint distribution is an element of the tensor product, as explained
by Dahlqvist and Kozen [7]. From a programming point of view, the universal property of
tensor products says that the behavior of a program taking inputs of type M(A) ⊗ M(B) is
fully characterized by independent distributions over A and B.

3.2 ∗-autonomous categories
Classical linear logic differs from its intuitionistic variant by requiring that linear negation
be involutive, that is, A⊥⊥ = A for every formula A. Categorically, this is modeled by
∗-autonomous categories, symmetric monoidal closed categories C with a functor (−)∗ :
Cop → C such that every object A is naturally isomorphic to A∗∗ and for every three objects
A, B, C, there is a natural bijection Hom(A ⊗ B, C∗) ∼= Hom(A, (B ⊗ C)∗). Equivalently, a
∗-autonomous category is a symmetric monoidal closed category C equipped with a dualizing
object ⊥ such that for every object A, the unit ∂A : A → (A ⊸ ⊥) ⊸ ⊥ is an isomorphism.

In our case, the dualizing object is R, the unit is the linear function σV : V → V σσ, and
the isomorphism holds by assumption.

▶ Theorem 43. PBanLat1 is a ∗-autonomous category.
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3.3 Cartesian and co-Cartesian structure
Cartesian and co-Cartesian structure are useful in the formation of product and sum types.
In models of linear logic, these are represented by linear conjunction & and disjunction ⊕,
respectively. In PBanLat1, both operations have V × W as their underlying set with lattice
operations defined componentwise. In the normed case, we can distinguish them by choosing
different norms.

▶ Definition 44. Let V and W be normed Riesz spaces. We define
the product V & W = (V × W, ∥−∥sum), where ∥(v, w)∥sum = ∥v∥ + ∥w∥.
the coproduct V ⊕ W = (V × W, ∥−∥max), where ∥(v, w)∥max = max(∥v∥, ∥w∥).

Since convergence for both is defined componentwise, by using Theorem 28 we can show
that if V and W are perfect and Banach, then V & W and V ⊕ W are as well. The unit ⊤
for the product and 0 for the coproduct are both the trivial Riesz space {0}.

▶ Theorem 45. PBanLat1 is (co-)Cartesian.

4 Probabilistic coherence spaces and Banach lattices

Probabilistic coherence spaces (PCS) [8] are a model of linear logic with a vector space
flavor. It has been shown by Ehrhard [11] that its intuitionistic fragment can be fully and
faithfully embedded in a category of positive cones. In this section, we show that Banach
lattices, contrary to previous work [11], extends the ∗-autonomous structure of the category
of probabilistic coherence spaces as well as its symmetric monoidal closed structure. We
make use of the vector space construction presented in the original paper [8].

▶ Definition 46. A Probabilistic Coherence Space (PCS) is a pair (|X|, P(X)), where |X| is
a countable set and P(X) ⊆ |X| → R+ called the web such that:

∀a ∈ |X| ∃εa > 0 εa · δa ∈ P(X), where δa(a′) = 1 iff a = a′ and 0 otherwise;
∀a ∈ |X| ∃λa ∀x ∈ P(X) xa ≤ λa;
P(X)⊥⊥ = P(X), where P(X)⊥ = {x ∈ |X| → R+ | ∀v ∈ P(X)

∑
a∈X xava ≤ 1}.

▶ Definition 47. Let (|X|, P(X)) be a PCS. Its linear negation is the PCS (|X|, P(X)⊥).

▶ Definition 48. Let (|X|, P(X)) and (|Y |, P(Y )) be PCSs. The PCS X ⊸ Y is the pair
(|X| × |Y |, P(X ⊸ Y )), where P (X ⊸ Y )) = {M : |X| × |Y | → R+ | ∀v ∈ P(X) M · v ∈
P(Y )}, where (M · v)(y) =

∑
x:X M(x, y)v(x).

The intuition behind Definition 46 is that the web of every PCS corresponds to the
positive unit ball of a partially-ordered vector space. This idea is used by Ehrhard and
Danos [8] to define a functor that maps every PCS to a Banach space. It is possible to
show that this vector space can be equipped with a Riesz space structure, where the order is
defined pointwise.

▶ Definition 49. Given a PCS (|X|, PX), we define BX = {u ∈ R|X| | |u| ∈ PX} and
eX =

⋃
λ>0

λBX. The pair (eX, u 7→ sup
u′∈PX⊥

⟨|u|, u′⟩) is the normed Riesz space associated

with the PCS (|X|, PX).

It is shown by Ehrhard and Danos [8] that eX is a Banach space. Furthermore, the
lattice structure can be defined pointwise, making eX a Banach lattice. Later in this section
we will show that e can be made into a functor.
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PCoh and duality
In this section we show that the functor e preserves the ∗-autonomous structure of PCoh.

▶ Theorem 50 (c.f. Section C). For every probabilistic coherence space X, there is a natural
isomorphism e(X⊥) ∼= e(X)σ.

▶ Corollary 51. For every PCS (|X|, P(X)) the vector space eX is a perfect Banach lattice.

Since convergence for PCS is defined componentwise, it is possible to use a similar proof
technique to show

▶ Theorem 52. The operation e is monoidal closed and functorial.

Proof. The functoriality of e has been proven in Section 5.1 of Ehrhard and Danos [8]. The
proof of preservation of monoidal closure is similar to the proof of Theorem 50. ◀

Another important theorem which is direct to show is.

▶ Theorem 53. The functor e : PCoh → PBanLat1 is full and faithful.

5 Categories of Cones and PBanLat1

Even though PBanLat1 is a mathematically natural model of linear logic, it relies on tools
from functional analysis not usually familiar to computer scientists. On the other hand, in
recent years, cones have found numerous applications in semantics of programming languages
and logics [12, 6, 23, 18]. In this section we show that PBanLat1 is isomorphic to a category
cones, meaning that computer scientists can translate their intuitions about cones to this
novel setting without having to learn functional analysis.

As it was frequently mentioned throughout this paper, every Banach lattice gives rise to a
positive cone. Furthermore, since every PBanLat1 morphism f : V → W is positive and has
norm at most 1, it restricts to a linear function B(V )+ → B(W )+. With this observations we
state a few definitions from previous work [6, 11], which assume that the cones are separated.

▶ Definition 54 (cf. [12, Definition 4.1]). A cone C is a R+-semimodule with a norm
∥ · ∥ : C → R+ such that it satisfies the cancellation property x + y1 = x + y2 implies y1 = y2,
for every points x, y1 and y2.

Every cone can be equipped with the partial order x ≤ y if and only if there is a z such
that x + z = y, meaning that it is possible to define a partial subtraction operation whenever
x ≤ y, calling y − x the element such that x + (y − x) = y.

A function f : C1 → C2 between cones is linear if it commutes with addition and scalar
multiplication, it is monotonic if it preserves the order relation, and it is Scott-continuous
if for every directed set xα with supremum x, supα f(xα) = f(x). As is the case with
partially-ordered vector spaces, there are different classes of cones where the order and the
norm have particular properties:

▶ Definition 55. A cone C is said to be:
Sequentially complete if every norm-bounded sequence has a least upper bound.
Directed complete if every norm-bounded directed set has a least upper bound.
A lattice cone if the poset structure is a lattice.
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Using this notation, it seems appropriate to imagine that there should be a functor
PBanLat1 → CLat, where CLat is the category of directed complete cone lattices. It is
unclear, however, if there is a mapping on morphisms. Luckily, the lemma below guarantees
that the mapping is well-defined. Its proof follows from the weak Fatou property.

▶ Lemma 56. Let V and W be two perfect Banach lattices and f : V → W a linear,
positive function of norm at most 1. The function f is order-continuous if and only if
supx∈A f(x) = f(v) whenever A ⊆ V + is a non-empty upwards-directed set with supremum v.

Since the mapping on morphisms is basically the identity, the functorial laws hold, which
allows us to conclude that there is a functor PBanLat1 → CLat.

Next, we would like to map every positive cone to a vector space. Let C be a positive cone
and define C − C = {(c1, c2) | c1, c2 ∈ C}/ ∼, where ∼ is the binary relation (c1, c2) ∼ (c3, c4)
iff c1 + c4 = c2 + c3. Intuitively, C − C corresponds to the vector space of formal differences
c1 − c2 of elements in C. The equivalence relation is used to capture the fact that, for
instance, (3, 2) and (4, 3) should represent the same real number, since 3 − 2 = 1 = 4 − 3.

▶ Theorem 57 (c.f. Section D). Let C be a directed complete cone lattice. Then C − C is a
perfect Banach lattice.

By linearity, Scott-continuous functions f : C → D with norm at most 1 extend to order-
continuous functions f : (C − C) → (D − D) with norm at most 1 and we can prove that
there is a functor CLat → PBanLat1. With this functor and the positive cone restriction
functor defined, it is a direct calculation to show:

▶ Theorem 58. The categories PBanLat1 and CLat are isomorphic.

Variables x, y, z

Reals r ∈ R
MK Expressions M ::= x | r | uniform | (M1, M2) | π1 M | π2 M

| let x = M in N

LL Expressions t, u ::= x | λx.t | t u | t ⊗ u | let x ⊗ y = t in u

| sample ti as xi in M

Types MK τ ::= R | τ × τ

Types LL τ ::= 1 | Mτ | τ ⊸ τ | τ ⊗ τ

Linear Contexts Γ ::= x1 : τ1, . . . , xn : τn

MK Contexts Γ ::= x1 : τ1, . . . , xn : τn

Figure 1 Terms and Types of λLL
MK .

6 A Probabilistic Calculus

Though it is theoretically interesting understanding how PBanLat1 relates to existing
models of linear logic, we are also interested in using it as a semantic basis for a language
with probabilistic primitives. Being symmetric monoidal closed, it can give semantics to
the linear λ-calculus. This, however, is insufficient from a programming point of view. The
linearity restrictions are severely limiting in terms of which programs one can define in this
language. A frequently used solution to this lack of expressivity is to use the exponential
modality, where the coKleisli category is Cartesian closed, meaning that it can interpret the
λ-calculus.
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However, even though we have not defined a linear logic exponential in PBanLat1, we
can still get non-linear programming by using recent work [2] that proposes a new syntax for
programming with linear operators and Markov kernels. The proposed two-level calculus
allows for non-linear programs to be defined by using a lax-monoidal modality.

The λLL
MK metalanguage

The semantic structure used to interpret the calculus of Azevedo de Amorim [2] is given
by a triple (C, L, M), where C is roughly a category of Markov kernels1, L is a symmetric
monoidal closed category and M : C → L is a lax monoidal functor.

This two-level structure manisfests itself at the syntactic level by having a two-level syntax:
the first level is used to program kernels while the second one serves as a kind of metalanguage
that has access to higher-order functions, both of which are depicted in Figure 1, The linear
language has linear function types, which allows for higher-order programming and, unlike
most languages based on linear logic, it has a modality M, which corresponds to the types
that may be sampled from. The variables bound by the linear context are, roughly speaking,
computations. In the language for kernels there are no linearity restrictions and, therefore,
variables, i.e. samples from distributions, can be freely duplicated and discarded. Under this
perspective, the variables in MK programs should be thought of as values. The intuition
behind this language is that linearity forbids distributions to be sampled more than once,
but once you have the sample in hands, it can be used as many times as you want.

Each layer has its own typing judgement relations ⊢LL and ⊢MK , which we go over in
more detail in Section A. We highlight one of the most interesting rules; it is the rule that
allows programs to be transported between layers:

Sample
x1 : τ1 · · · xn : τn ⊢MK M : τ ∆; Γi ⊢LL ti : Mτi 0 < i ≤ n

∆; Γ1, · · · , Γn ⊢LL sample ti as xi in M : Mτ

Operationally, it samples from n LL programs {ti}i, each sample is bound to the corresponding
variable in {xi}i and finally the continuation M is executed.

We want to model λLL
MK with PBanLat1. For that we still need a CD category and a

lax monoidal functor. For the CD category we will use the category of measurable spaces
and sub-Markov kernels.

▶ Definition 59. The category sStoch has measurable spaces as objects and sub-Markov
kernels as morphisms, i.e. measurable functions between a measurable space and the space of
subprobability distributions over a measurable space.

sStoch is a CD category, which means that it is symmetric monoidal, with the monoidal
product being the product measurable space.

▶ Theorem 60 (c.f. Section E). There is a lax monoidal functor M : sStoch → PBanLat1.

This means that the triple (sStoch, PBanLat1, M) is a λLL
MK model.

7 Related work

There have been a number of semantics of linear logic based on vector space-like objects. Two
important families of such semantics are the ones based on probabilistic coherence spaces
and the ones based on Banach spaces. As we will explain below, we see our model as a nice
synthesis of these two approaches.

1 a CD category, to be more precise
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Positive Cone Semantics of Linear Logic

To overcome the limitation that PCoh cannot represent continuous distributions, Ehrhard
et al. define a cartesian closed category CStabm [12], which uses normed R+-semimodule –
which are in correspondence with positive cones of partially ordered vector spaces – to
interpret a probabilistic variant of PCF with continuous distributions. In a follow-up paper,
Ehrhard [11] has defined a category CLinm of sequentially complete positive cones with
measurability paths and linear Scott continuous maps in which PCoh embeds fully and
faithfully.

A similar approach was taken by Slavnov [24], who defined a category CCones of so-called
coherent cones and linear contractive functions and showed that it is a model of classical
linear logic. These cones come equipped with a different notion of completeness that is
stronger than sequential completeness but weaker than ours.

From a mathematical point of view, the objects of both CCones and CStabm are not
as well understood as Banach lattices, making them not ideal semantic frameworks to reason
about probabilistic programs, since many useful lemmas for reasoning about programs would
have to be reproved. Besides, our model provides a clear mathematical justification for
having Fatou-like properties in the semantics: it is forced upon it by Theorem 28 instead of
being there for denotational reasons, as is the case of CStabm, or in enabling the exponential
construction, as is the case of CCones, showing a kind of canonicity of our model.

Vector Space Semantics of Linear Logic

Dahlqvist and Kozen [7] have defined a category of partially ordered Banach spaces RoBan,
shown that it is a model of intuitionistic linear logic, and used it to interpret a higher-order
imperative probabilistic language with while loops and soft-conditioning.

Their model also uses a mathematically well-understood class of vector spaces. That
being said, by using a more general class of vector spaces than we do, their model has less
structure than ours. A practical consequence of this lack of structure is that in order to
guarantee the soundness of their semantics, they define 6 type grammars that are used for
different program constructs. As an example, in order to interpret conditionals and while
loops the context may only have Dedekind complete types.

Another relevant vector space model is the one based on complex coherent Banach
spaces [17]. However, since they are complex vector spaces, it is unclear if it would be
possible to embed PCoh into them.

Neither RoBan nor CStabm are models of classical linear logic.

8 Conclusion

In this paper we have shown that PBanLat1 is a model of classical linear logic that
conservatively extends PCoh and can be used to give semantics to a recursive probabilistic
calculus. Our model differs from existing extensions of PCoh that only extends PCoh’s
intuitionistic fragment, meaning that they do not have an involutive negation. We believe
that our model is a good fit for formal verification purposes because Riesz spaces have decades
of research and have been extensively used in the formalization of stochastic processes.

For future work, we are interested in showing that PBanLat1 can accommodate expo-
nentials and use this category for reasoning about correctness properties of probabilistic
programs such as inference algorithms.
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A A Metalanguage for Linear Operators and Markov Kernels

In this section we further explain the two-level language λLL
MK and its semantics. The

language MK corresponds to an effectful language with probabilistic primitives and where
free variables are assumed to be values, as opposed to computations. For instance, the
program x : N, y : N ⊢MK x + y : N is interpreted as a deterministic program. This language
is interpreted in a CD category, which can be seen as an abstraction for programming with
commutative effects [16].

▶ Definition 61 ([5, Definition 2.2]). CD categories are symmetric monoidal categories
such that every object A has a commutative comonoid structure copyA : A → A ⊗ A and
deleteA : A → 1 satisfying certain structural properties.

In the context of probabilistic programming, there are many CD categories to choose
from. In particular, for any subprobability monad, its Kleisli category is a CD category.
This is the case for the sStoch category, since it can be characterized as the category of
measurable sets and measurable functions A → G(B), where G is the subprobability monad
over Meas.

The language LL is basically a linear λ-calculus. By itself, linearity limits the expressivity
of the language quite a bit. In the original paper, the author argues that for probabilistic
programming, the linear usage of variables is, semantically, too restrictive, since many linear
probabilistic calculi, in the algebraic sense, may use variables more than once [2]. This
observation led to the introduction of the M modality in the LL language which allows
MK programs to be called from an LL program. Semantically, this is interpreted as a lax
monoidal functor.

▶ Definition 62 ([4, Definition 6.4.1]). Let C and D be monoidal categories. A (lax) monoidal
functor is a functor F : C → D equipped with a natural transformation εA,B : FA ⊗D FB →
F (A ⊗C B) and a morphism ID → F (IC) making certain coherence diagrams commute.

From a programming point of view, types Mτ should be thought of as types that can
be sampled from. Supposing that the language has a primitive uniform for the uniform
distribution over the unit interval the Sample construct can be used to write the program

sample uniform as x in (x + x)

The program above samples from a uniform distribution and adds the result to itself. This
program illustrates why this syntax increases the expressivity of the linear λ-calculus. By
allowing the continuation x + x to be an MK program, variables may be freely reused or
discarded without worrying about syntactic restriction imposed by linearity.

However, once inside the MK language, there is no way of going back to the higher-order
language, meaning that the program sample uniform as x in (sample uniform as y in (x + y)) is
not well-typed. This is mitigated by lax monoidality, which makes it possible to simultaneously
sample from distributions: sample (uniform, uniform) as (x, y) in (x + y).

CSL 2025
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Var

Γ, x : τ ⊢MK x : τ

Const
r ∈ R

Γ ⊢MK r : R

Uniform

Γ ⊢MK uniform : R

Let
Γ ⊢MK t : τ1 Γ, x : τ1 ⊢MK u : τ

Γ ⊢MK let x = t in u : τ

Pair
Γ ⊢MK t : τ1 Γ ⊢MK u : τ2

Γ ⊢MK (t, u) : τ1 × τ2

Proj1
Γ ⊢MK t : τ1 × τ2

Γ ⊢MK π1t : τ1

Proj2
Γ ⊢MK t : τ1 × τ2

Γ ⊢MK π2t : τ2

Axiom

x : τ ⊢LL x : τ

Unit

· ⊢LL unit : 1

Abstraction
Γ, x : τ1 ⊢LL t : τ2

Γ ⊢LL λx.t : τ1 ⊸ τ2

Application
Γ1 ⊢LL t : τ1 ⊸ τ2 Γ2 ⊢LL u : τ1

Γ1, Γ2 ⊢LL t u : τ2

Tensor
Γ1 ⊢LL t : τ1 Γ2 ⊢LL u : τ2

Γ1, Γ2 ⊢LL t ⊗ u : τ1 ⊗ τ2

LetTensor
Γ1 ⊢LL t : τ1 ⊗ τ2 Γ2, x : τ1, y : τ2 ⊢LL u : τ

Γ1, Γ2 ⊢LL let x ⊗ y = t in u : τ

Sample
x1 : τ1 · · · xn : τn ⊢MK M : τ ∆; Γi ⊢LL ti : Mτi 0 ≤ i < n

∆; Γ1, · · · , Γn ⊢LL sample ti as xi in M : Mτ

Figure 2 Typing rules for λLL
MK .

▶ Definition 63. A model of λLL
MK is a triple (C, L, M), where C, a symmetric monoidal

closed category L and M : M → C is a lax monoidal functor.

The typing rules are depicted in Figure 2. They are basically the amalgamation of the
rules for programming with CD categories, i.e. a first-order expression language with pairs,
with symmetric monoidal closed categories, i.e. the linear λ-calculus with tensor types. The
main novelty is the introduction of the lax monoidal modality M and its accompanying
typing rule Sample which connects the MK and LL languages.

Much like the typing rules, the categorical semantics of λLL
MK is the combination of the

categorical semantics of the internal languages of CD categories and the linear λ-calculus
with the exception of the Sample rule that makes use of the functor M. The full semantics
is depicted in Figure 3.

B Proof of Lemma 38

By Theorem 14, V ⊸ W is a Riesz space. Applying Theorem 29, we can also show that it is
perfect. To show separability, let f1, f2 : V ⊸ W be distinct functions. Then there is a point
v ∈ V such that f1(v) ̸= f2(v). Since W is perfect, it is separated, therefore there exists
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Var

τ × Γ idτ ×delΓ−−−−−−→ τ

Let
Γ M−→ τ1 Γ × τ1

N−→ τ2

Γ copy;(id×M);N−−−−−−−−−−→ τ2

× Intro
Γ M−→ τ1 Γ N−→ τ2

Γ copy;M×N−−−−−−−→ τ1 × τ2

× Elimi

Γ M−→ τ1 × τ2

Γ
M ;(idτi

×del)
−−−−−−−−→ τi

Var

τ
idτ−−→ τ

Abstraction
Γ ⊗ τ1

t−→ τ2

Γ cur(t)−−−→ τ1 ⊸ τ2

Application
Γ1

t−→ τ1 ⊸ τ2 Γ2
u−→ τ1

Γ1 ⊗ Γ2
(t⊗u);ev−−−−−→ τ2

⊗ Intro
Γ1

t−→ τ1 Γ2
u−→ τ2

Γ1 ⊗ Γ2
t⊗u−−→ τ1 ⊗ τ2

⊗ Elim
Γ1

t−→ τ1 ⊗ τ2 Γ2 ⊗ τ1 ⊗ τ2
u−→ τ

Γ1 ⊗ Γ2
(id⊗t);u−−−−−→ τ

Sample
τ1 × · · · × τn

M−→ τ Γi
ti−→ Mτi

Γ1 ⊗ · · · ⊗ Γn
t1⊗···⊗tn−−−−−−→ Mτ1 ⊗ · · · ⊗ Mτn

µ−→ M(τ1 × · · · × τn) MM−−−→ Mτ

Figure 3 Categorical Semantics of λLL
MK .

g : W ⊸ R such that g(f1(v)) ̸= g(f2(v)). Then the order-continuous function λf .g(f(v))
separates the points f1 and f2, therefore V ⊸ W is separated.

Now let 0 ≤ {fα}↑ be an increasing net such that supα F (fα) < ∞ for all positive
F : (V ⊸ W ) ⊸ R. We can define an f such that fα ↑ f pointwise. Let v ∈ V + and let
F : W ⊸ R be a positive functional. Consider the functional λf .F (f(v)) : (V ⊸ W ) ⊸ R.
By hypothesis, supα(F (fα(v))) < ∞, and since W is perfect and {fα(v)} is a positive net in
W , there exists f(v) ∈ W such that fα(v) ↑ f(v). This defines f on elements of V +, and for
arbitrary v ∈ V we take f(v) = f(v+) − f(v−). Then supα fα = f .

C Proof of Theorem 50

If u ∈ e(X⊥), consider the element fu = λx.⟨u+, x⟩ − ⟨u−, x⟩. It is possible to show that
the function λx.⟨u, x⟩ is positive and Scott-continuous, therefore order-continuous for every
u ∈ P(X). Using this result, it is not hard to show that fu ∈ e(X)σ.

Conversely, consider an element f ∈ e(X)σ. Without loss of generality, we can assume
that f is positive. We want to associate to f an element in e(X⊥). As is shown by Ehrhard
and Danos [8], we can alternatively characterize the space e(X) as

{u ∈ R|X| | ∃λ > 0 ∀u′ ∈ P(X⊥) ⟨|u|, u′⟩ ≤ λ}.
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Consider the function fδ = λx.f(δx). Let us show that fδ ∈ e(X⊥). To do this, we show
that for every u ∈ P(X), ⟨|f ′|, u⟩ is uniformly bounded. Let (uα)α∈Pfin(X) be the ascending
net uα,a = ua if a ∈ α and 0 otherwise. By expanding the definition, we get the equality

⟨|fδ|, uα⟩ =
∑

a∈|X|

|f(δa)|uα,a =

∑
a∈|X|

|f(δauα,a)| =
∑

a∈|X|

f(δauα,a).

We get the last equality from f being a positive function. Since every uα has finite support,
the expression above is well defined.

∑
a∈|X|

f(δauα,a) = f

 ∑
a∈|X|

δauα,a

 = f(uα)

Since f is order-continuous and monotone and {uα} is an increasing net, we can conclude
that ⟨|fδ|, u⟩ ≤ f(u), therefore for every u ∈ P(X), ⟨|fδ|, u⟩ ≤ ∥f∥ and fδ ∈ e(X⊥). If f is
not positive, we decompose it as the difference of two positive maps f = f+ − f− and define
fδ = f+

δ − f−
δ .

A direct calculation shows that this is indeed an isomorphism.

D Proof of Theorem 57

Let C be a directed complete lattice cone. In order to define functions over it we use
the universal property of quotients: it suffices to define it over every pair (c1, c2) while
guaranteeing that the function acts the same over every equivalence class.

For instance, the vector space structure can be simply defined componentwise. Let
(c1, c2), (c3, c4) ∈ C − C then we define

(c1, c2) + (c3, c4) = (c1 + c3, c2 + c4)
α(c1, c2) = (αc1, αc2) for α ≥ 0
α(c1, c2) = (−αc2, −αc1) otherwise

The lattice operations require a bit more ingenuity, and we first observe the equation
u ∨ v = u + (v − u)+ which holds in every Riesz space, reducing the lowest upper bound
operation to addition and the positive part. By doing some algebraic manipulations we get that
if (c1, c2), (c3, c4) ∈ C − C then we define (c1, c2) ∨ (c3, c4) = (c1, c2) − ((c3, c4) − (c1, c2))+ =
(c1, c2) + (c3 + c2 − (c1 + c4) ∧ (c2 + c3), 0) = (c1 + c3 + c2 − (c1 + c4) ∧ (c2 + c3), c2). The
lattice equations such as commutativity and idempotency follow by unfolding the definitions
and from C being a lattice.

Before defining a norm over C − C we first need the following lemma

▶ Lemma 64. (C − C)+ ∼= {(c, 0) | c ∈ C} ∼= C.

Proof. The mapping {(c, 0) | c ∈ C} → (C − C)+ is the injection through the equivalence
class function and the mapping in the other direction can be constructed by observing that
whenever (c1, c2) ≥ (0, 0) it can be shown that c1 ≥ c2 and, therefore, (c1 − c2, 0) = (c1, c2)
and this decomposition is unique, since (c, 0) = (d, 0) implies, by definition of ∼ that c = d.
The second isomorphism is trivial. ◀
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Given a norm over C it is possible to extend it to a norm over C − C. This follows
from the property of normed Riesz spaces, where ∥|v|∥ = ∥v∥ which forces us to define
∥(c1, c2)∥ = ∥|(c1, c2)|∥C . Note that since |(c1, c2)| is a positive element of C − C, by the
lemma above it can be mapped back to an element of C which, in turn, has a norm.

Therefore, we have shown that C − C is a normed Riesz space. Since C has the directed
completeness property it follows that C − C has the weak Fatou property and, therefore, it
is Banach and perfect.

E Proof of Theorem 60

There is a standard functor M that maps measurable sets to the vector space of signed
measures and sub-Markov kernels f : A → MB to the linear function Mf(µ) =

∫
fdµ. The

proof of linearity is standard, but order-continuity requires a few words. Let {µα} ↓ 0 be a
descending arrow, Mf(µα) =

∫
fdµα ≤

∫
1dµα = µα(A) which, as µα goes to zero, so does

µα(A), making f̃ order-continuous. The functorial laws also follows from standard proofs
from the literature.

To show that M is lax monoidal, we need to define a natural transformation µX,Y :
M(X) ⊗ M(Y ) → M(X × Y ) which is easily defined by the universal property of the tensor
product and a morphism ε : R ⊸ M(1) which maps a real number r to the measure rδ{∗},
where ∗ is the only member of the singleton set 1. Showing that the necessary diagrams
commute follows from the universal property of the tensor product.
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