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Abstract
Category theory unifies mathematical concepts, aiding comparisons across structures by incorporating
not just objects, but also morphisms capturing interactions between objects. Of particular importance
in some applications are double categories, which are categories with two classes of morphisms,
axiomatizing two different kinds of interactions between objects. These have found applications in
many areas of mathematics and theoretical computer science, for instance, the study of lenses, open
systems, and rewriting.

However, double categories come with a wide variety of equivalences, which makes it challenging
to transport structure along equivalences. To deal with this challenge, we propose the univalence
maxim: each notion of equivalence of categorical structures has a corresponding notion of univalent
categorical structure which induces that notion of equivalence. We also prove corresponding
univalence principles, which allow us to transport structure and properties along equivalences. In
this way, the usually informal practice of reasoning modulo equivalence becomes grounded in an
entirely formal logical principle.

We apply this perspective to various double categorical structures, such as (pseudo) double
categories and double bicategories. Concretely, we characterize and formalize their definitions in Coq
UniMath up to chosen equivalences, which we achieve by establishing their univalence principles.
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1 Introduction

The advancement of mathematics has resulted in ever more intricate structures, which come
with various commonly used identifications, weakening set-theoretic equalities. For instance,
groups have one common type of identification: isomorphisms. Two groups have the same
group-theoretic properties if and only if they are isomorphic. Hence, structures on, and
properties of, groups can be transported along isomorphisms. Already in this first example
we can witness the challenge of dealing with equivalences in set-theoretic foundations. Indeed,
one needs to prove every time that a suitable structure or property can be transported along
isomorphisms of groups, as only transport along equalities would come for free.

If we generalize groups, we encounter one of the first examples of a structure with
more than one important type of sameness: categories. Indeed, it comes with two major
identifications, isomorphisms and categorical equivalences. Here, our choice depends on
whether we study objects of a category up to equality, as is often done in the study of
syntax [5, 12], in which case we use isomorphisms; or whether we study objects up to
isomorphism, the more common choice, in which case we use categorical equivalences. Hence,
we now need suitable results regarding transporting structures and properties both for
isomorphisms and categorical equivalences [10, 17, 24], which is significantly more challenging
given the amount of data an equivalence entails. At least we can still benefit from the fact
that categorical equivalences generalize isomorphism, meaning it often suffices to restrict to
the case of categorical equivalences.

The situation becomes untenable when we further generalize to higher categories, and
particularly double categories, a structure that is a key ingredient in the study of lenses [11, 13],
rewriting [9, 8], open systems [7, 6], and programming language theory [28, 14]. Double
categories come with objects, two classes of morphisms, known as horizontal and vertical
morphisms, and suitable data detailing how they interact, known as squares. This additional
structure enables a wide range of configurations and identifications. In particular we can
employ the squares to relax the associativity and unitality of the composition of horizontal
or vertical morphisms. Also, we can use the intricate structure to define a wide range of
equivalences, with the fascinating observation that none of them is more general than all the
others.

As a result, a significant part of the double categorical literature has exclusively focused
on one type of equivalences, called horizontal equivalence (Section 5), which prioritizes hori-
zontal morphisms and hence ignores the natural symmetry between horizontal and vertical
morphisms inherent to the definition of a double category. Examples include the work on
limits [20], adjunctions [21], formal category theory [31], lenses [13] and open systems [6]. At
the same time, symmetric notions of equivalences, such as gregarious equivalences (Section 9),
have received far less attention, even though they are the natural context for other important
double categorical constructions, such as the square functor [16]. The square functor is
already conjecturally applied to modern aspects of algebraic geometry [18], with other anti-
cipated applications currently hindered by insufficient theoretical advances in this direction.
Addressing this situation requires the ability to adjust our definition of double categories
based on the equivalence of interest, which can then be employed in the aforementioned
examples.

Beyond mathematics, the fact that double categories do not come with a distinguished
notion of equivalence also complicates any effort formalizing double category theory in
intensional type theories via proof assistants. Indeed, we would like to have suitable principles
that permit transporting results regarding double categories along equivalences. However, as
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there are several incomparable equivalences in the literature, it is not possible to only have
one principle. We would rather need one such transport principle, and corresponding notion
of double category, for each equivalence.

The Univalence Maxim. In this paper, we propose the univalence maxim to resolve
the aforementioned challenges and to provide suitable transport principles, formally. Our
univalence maxim takes place in univalent type theory, a variant of Martin-Löf type theory
with the univalence axiom.

In type theory, Martin-Löf’s identity type is a fundamental concept, capturing formally
when two objects are considered “the same”. The univalence axiom adds extensionality
principles, postulating that the identity type of types coincides with the type of equivalences
between these types. That is, two types are identified if we have an equivalence between
them, and thus equivalent types have the same properties. This perspective also extends to
structures. Indeed, in univalent foundations, each notion of structure comes with a notion of
equivalence such that identity of structures corresponds to equivalence. For instance, one can
prove that identity of algebraic structures, such as groups, corresponds to isomorphism. The
correspondence between identity and equivalence for structures is known as the structure
identity principle. Such principles allow us to prove directly that structure and properties
can be transported along equivalences.

The univalence maxim we propose says the following: for every chosen equivalence of
a given categorical structure, there exists a tailored definition for which identity precisely
coincides with the chosen notion of equivalence. We can already witness manifestations of
the maxim for categories, which, as we discussed, can be considered up to isomorphism or up
to categorical equivalence. Indeed, in the univalent setting we have two notions of categories,
namely setcategories, whose properties are automatically invariant under isomorphisms,
and univalent categories, whose properties are automatically invariant under categorical
equivalences. See Section 2 for further details.

While we can already apply the univalence maxim to categories, its true power manifests
in the more complicated framework of double categories. Indeed, beyond obtaining precise
transport principles which assist formalization, by establishing a correspondence between
various double categorical equivalences and suitably defined double categories, we are for
the first time able to structure the existing zoo of double categorical notions that can be
found in the literature, the results of which we summarized in the Diagrammatic Summary
below. Having such principles available also helps with the formalization of double categories,
because it allows us to view equivalences via the usual Martin-Löf identity type.

Contributions. In this paper we apply the univalence maxim to categories, 2-categories and
double categories. More specifically,
1. in Section 4 we define (pseudo) double setcategories and prove that they are invariant

under isomorphisms;
2. we provide a further generalization to double bicategories (Section 7) and univalent double

bicategories invariant under gregarious equivalences (Section 9).
3. we also develop the theory of double bicategories, such as companions (Section 8) and

computationally feasible methods to establish univalence (Section 10).

We review univalent categories and 2-categories following [3, 2] in Section 2 and univalent
pseudo double categories in Section 5 following our previous work in [34].

CSL 2025
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Diagrammatic Summary. We can summarize our major double categorical notions and their
relations diagrammatically. Here a dashed arrow represents an inclusion that only respects
the categorical structure (i.e. only holds in classical setting), whereas a solid arrow indicates
an inclusion that respects categorical structure and univalence conditions. Moreover, an
arrow labeled V denotes the underlying vertical 2-category or bicategory (Definitions 3.7
and 7.1), whereas an arrow labeled H is the underlying horizontal 2-category or bicategory
(Definitions 3.7 and 7.1).

Strict Dbl Setcat (4.1) Ps Dbl Setcat (4.1) 2-Setcat (2.4)

Weak Dbl Setcat (7.7) Bisetcat (2.4)

Univ Ps Dbl Cat (5.1) Univ 2-Cat (2.6)

Univ Weak Dbl Cat (9.4) Univ Dbl Bicat (9.4) Univ Bicat (2.8)

HV

V

H

HV

V

H

HV

HV

Formalization. The main results have been formalized using the Coq proof assistant and
the UniMath library. Links to the corresponding identifier in the code are in blue.

There are two differences between the formalization and the definitions presented in the
paper. While in the paper, we present strict double categories as a special instance of pseudo
double categories (Definition 3.1), we use an unfolded approach in the formalization. Second,
here we define Verity double bicategories (Definition 7.1) using two bicategories whose types
of objects are equal. This is not so in the formalization, where instead a more unfolded
approach is used.

Related Work. The study of (higher) categories in univalent foundations has a rich history.
Indeed, a study of univalent categories was commenced by Ahrens, Kapulkin, and Shulman
in [3], and later extended by Ahrens, Frumin, Maggesi, Veltri, and Van der Weide to a
study of univalence for 2-categories and bicategories in [2]. Both these works are reviewed
more carefully in Section 2. This existing work on (2-)categories motivated us to pursue
univalence principles for double categorical structures. This first commenced with [34], where
we focused on univalence principles for horizontal equivalences, given their centrality in
the current double categorical literature. In that paper we introduced univalent pseudo
double categories and proved that their identities correspond to horizontal equivalences.
Further details regarding our past work can be found in Section 5. The current paper is a
natural continuation of that effort, generalizing from horizontal equivalences to gregarious
equivalences and from double categories to double bicategories. This effort was also motivated
by work in [4], where Ahrens, North, Shulman, and Tsementzis established a very broad
univalence principle, which in particular applies to univalent double (bi)categories and hence
establishes the basis for our work in Section 9.

Double categories acquired some attention from the formalization community, and several
libraries on formalized mathematics contain double categories. Murray, Pronk, and Szyld [27]
worked towards defining double categories in the Lean proof assistant1. In 1lab [32], internal

1 https://github.com/leanprover-community/mathlib/pull/18204

https://github.com/leanprover-community/mathlib/pull/18204
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categories are defined, and thus double categories are also defined as category objects in
the category of setcategories. Finally, in the library by Hu and Carette [22] a definition of
double category has been implemented2. Each of these formalization only considers strict
double categories, whereas we also consider weaker notions. In addition, our formalization
contains a study of various univalence principles.

2 (2-)Categories in Univalent Foundations

In this section we realize the vision of the univalence maxim for categories and bicategories,
based on work done in [2, 3]. More precisely, we analyze two notions of equivalences for
categories (isomorphisms, equivalences) and three notions of equivalences for 2-categories
and bicategories (isomorphisms, equivalences, biequivalences). For each of these notions, we
define a categorical structure whose identities correspond to that notion of equivalence.

We start with categories. In classical mathematics a category is defined as a class of
objects and a set of morphisms, depending on two objects, with a unital and associative
composition of morphisms. In univalent foundations, categories are defined to have a type
of objects and a set of morphisms [3, Definition 3.1]. Here a type is called a set if any two
identities between two terms are equal.

Note that categories have two important notions of equivalences: isomorphisms and equi-
valences. Categories that are invariant under isomorphism, are also known has setcategories.
The other notion of interest, univalent categories, are categories that are invariant under
equivalence. These notions are defined as follows.

▶ Definition 2.1. A category is said to be a setcategory if its type of objects is a set. A
category C is said to be univalent if for all objects x, y : C the map idtoisox,y, which sends
identities p : x = y to isomorphisms idtoisox,y(p) : x ∼= y, is an equivalence of types.

The univalence condition implies that equalities of categories are precisely categorical
equivalences [3, Theorem 6.17], giving us the desired invariance property. Univalent categories
provide us with an alternative way to characterize the fact that setcategories are invariant
under isomorphisms:

▶ Proposition 2.2. The category of setcategories and functors is univalent.

Unfortunately, we cannot repeat the argument and incorporate the equivalence invariance
of univalent categories into the construction of a univalent category, as the type of equivalences
between two univalent categories is generally too complex and does not form a set. However,
we can in fact construct a univalent bicategory of univalent categories [2, Proposition 3.19].

▶ Proposition 2.3. The bicategory of univalent categories, functors, and natural transforma-
tions is univalent.

Next we look at bicategories, and 2-categories, which are bicategories with identity
associators and unitors. As bicategories not only have objects and 1-morphisms, but also
2-morphisms between 1-morphisms, the number of relevant equivalences increases significantly.
Here we focus in particular on three equivalences: isomorphisms of bicategories, equivalences
of bicategories (equivalences of the underlying 1-categories that are isomorphisms of 2-
morphisms), and biequivalences. Our goal is to construct for each type of equivalence a
bicategory (2-category) such that their identities correspond to the chosen equivalence.

2 https://github.com/agda/agda-categories/blob/36abe6bff98be027bd4fcc3306d6dac8b2140079/
src/Categories/Double/Core.agda
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https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.CategoryTheory.Core.Setcategories.html#setcategory
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.CategoryTheory.Core.Univalence.html#is_univalent
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.CategoryTheory.Categories.CategoryOfSetCategories.html#is_univalent_cat_of_setcategory
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.Core.Examples.BicatOfUnivCats.html#univalent_cat_is_univalent_2
https://github.com/agda/agda-categories/blob/36abe6bff98be027bd4fcc3306d6dac8b2140079/src/Categories/Double/Core.agda
https://github.com/agda/agda-categories/blob/36abe6bff98be027bd4fcc3306d6dac8b2140079/src/Categories/Double/Core.agda
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For the first kind of equivalence, taking Definition 2.1 as motivation we analogously
impose appropriate set level restrictions to obtain isomorphism invariance.

▶ Definition 2.4. A bicategory (2-category) is said to be a bisetcategory (2-setcategory)
if its type of objects and of 1-morphisms are sets.

▶ Proposition 2.5. The two categories given by bisetcategories and functors, and by 2-
setcategories and functors are univalent.

For the second kind of equivalence, we combine Proposition 2.2 and Proposition 2.3.

▶ Definition 2.6. A 2-category is said to be univalent if the underlying 1-category is
univalent and the 2-morphisms form a set.

▶ Proposition 2.7. Identities of univalent 2-categories correspond to equivalences.

Finally, we want a 2-categorical structure invariant under biequivalence. In light of
Proposition 2.3, all hom categories need to be univalent, which we call the local univalence
condition. Moreover, we also need a global univalence condition, stating that identities of
objects correspond to equivalences in the 2-category. In general this means that objects
form a 2-type and compositions of 1-morphisms is generally not strictly associative or unital.
Hence, this univalence condition only applies to bicategories.

▶ Definition 2.8. A bicategory is univalent if it is globally and locally univalent.

See [2, Definition 3.1] for a more explicit description of its definition. Finally, univalent
bicategories do exhibit the anticipated invariance property; see [4, Example 9.1].

▶ Proposition 2.9. Identities of univalent bicategories correspond to biequivalences.

3 Definition of Pseudo Double Categories

In the previous section, we reviewed (bi)categories and showed how imposing additional
conditions in univalent foundations lead to (bi)categories up to a desired notion of sameness.
For the rest of this paper, we conduct a similar analysis for double categorical structures. As
mentioned in the introduction, defining a double category is more complex and involves more
data, providing a wider range of examples and equivalences. Consequently, our analysis is
more challenging and valuable, and more relevant to the broader literature.

In this transitional section we commence with a review of a general definition of pseudo
double categories and explicate our examples. Then, in the next two sections we show how
imposing additional conditions result in the desired equivalences.

▶ Definition 3.1. A pseudo double category consists of
1. a category C called the vertical category;
2. for all objects x : C and y : C, a type x y of horizontal morphisms;
3. for every object x : C a horizontal identity idx : x x;
4. for all horizontal morphisms h : x y and k : y z, a horizontal composition

h⊙ k : x z;
5. for all horizontal morphisms h : x1 y1 and k : x2 y2 and vertical morphisms

vx : x1 x2 and vy : y1 y2, a set
(
vx

h
k vy

)
of squares;

6. for all horizontal morphisms h : x y, we have a vertical identity idvsq(h) :
(
idx h

h idy
)
;

7. for all τ1 :
(
v1

h
k w1

)
and τ2 :

(
v2

k
l w2

)
, a square τ1 ·sq τ2 :

(
v1 · v2

h
l w1 · w2

)
;

https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.Core.Strictness.html#bisetcat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.CategoryTheory.Core.TwoCategories.html#univalent_two_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.Core.Univalence.html#is_univalent_2
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Core.DoubleCats.html#double_cat
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8. for all v : x y, we have a horizontal identity idhsq(v) :
(

v idx

idy
v
)

;

9. for all τ1 :
(

v1
h1
k1

v2

)
and τ2 :

(
v2

h2
k2

v3

)
, a square τ1 ⊙sq τ2 :

(
v1

h1⊙h2
k1⊙k2

v3

)
;

10. for all h : x y, we have a left unitor λh :
(

idx idx⊙h
h idy

)
;

11. for all h : x y, we have a right unitor ρh :
(

idx h⊙idy

h idy
)

;
12. for all h1 : w x, h2 : x y, and h3 : y z, we have an associator

α(h1,h2,h3) :
(

idw h1⊙(h2⊙h3)
(h1⊙h2)⊙h3

idz
)

.

This data is required to satisfy several laws, which are found in the literature [34].
A strict double category is a pseudo double category in which horizontal morphisms

form a set and in which the unitors and associators are identities.

We now give precise definitions of the four major classes of examples that play a prominent
role throughout this paper: squares, spans, structured cospans and profunctors.

▶ Example 3.2. Let C be a category. Then we define a pseudo double category Sq(C) of
squares . The objects are objects in C and the horizontal and vertical morphisms are
morphisms in C. The type of squares

(
v1

h1
h2

v2

)
is defined to be h1 · v2 = v1 · h2.

▶ Example 3.3. Let C be a category with pullbacks. Then we define a pseudo double
category Span(C) of spans . The objects are objects in C and the vertical morphisms are
morphisms in C. The horizontal morphisms are spans, which are diagrams of the form
x

φ←− z
ψ
− y; and Given morphisms f : x1 x2 and g : y1 y2, then a square with

f and g as vertical sides and spans x1
φ1←− z1

ψ1− y1 and x2
φ2←− z2

ψ2− y2 as horizontal
sides is a morphism h : z1 z2 such that the following diagram commutes.

x1 z1 y1

x2 z2 y1

φ1

φ2

ψ1

ψ2

f gh

Even if C is a setcategory, Span(C) is generally only a pseudo double category. This
is because composition of spans is given by pullbacks, which is only weakly unital and
associative. Note that spans have been used in the study of rewriting systems [9, 8].

▶ Example 3.4. Suppose that we have a functor L : C1 C2. We define the double
category StructCospan(L) of structured cospans . The objects are objects in C1 and
the vertical morphisms are morphisms in C1. The horizontal morphisms are structured
cospans, which are diagrams of the form L(x)

φ
− z

ψ←− L(y); Given two structured cospans
L(x1)

φ1− z1
ψ1←−− L(y1) and L(x2)

φ2− z2
ψ2←−− L(y2), and two morphisms f : x1 x2

and g : y1 y2, a square consists of a morphism h : z1 z2 such that the following
diagram commutes

L(x1) z1 L(y1)

L(x2) z2 L(y1)φ2

ψ1

ψ2

L(f) L(g)h

φ1

Note that structured cospans are used to study open systems [7, 6].

CSL 2025

https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Core.StrictDoubleCats.html#strict_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.SquareDoubleCat.html#strict_square_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.SquareDoubleCat.html#strict_square_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.SpansDoubleCat.html#spans_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.StructuredCospansDoubleCat.html#structured_cospans_double_cat
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▶ Example 3.5. We define the pseudo double category Prof of profunctors . The objects
are small setcategories and the vertical morphisms are functors. The horizontal morphisms
are profunctors from a category C to D, meaning functors of the form Dop × C Set,
and given profunctors P : C1 D1 and Q : C2 D2 and functors F : C1 C2 and
G : D1 D2, we define squares

(
F P

Q G
)

to be natural transformations P ⇒ (F ×G) ·Q.
Again, this pseudo double category will not be a strict double category, as profunctors do
not compose strictly. Note that profunctors are important in the study of lenses [11, 13].

Note that the composition of profunctors is defined as a colimit in the category of sets.
To guarantee that the desired colimit exists, we require that the involved categories are small.

▶ Example 3.6 (Gradual type theory, [28, Definition 5.2]). Let C be a 2-category. We define a
pseudo double category Coreflect(C) of coreflections . The objects are objects in C, the
vertical morphisms are morphisms in C, and the horizontal morphisms are adjunctions in C
whose unit is an equality (i.e., coreflections). The squares are given by 2-cells in C.

Double categories include the data of several (2-)categories. These are known as the
underlying 2-categories, and they are defined as follows.

▶ Definition 3.7. Given a pseudo double category C, we define a strict 2-category Ver(C),
which we call the underlying vertical 2-category as the 2-category whose objects are
objects in C, whose 1-cells are vertical morphisms in C, and whose 2-cells are squares with
horizontal identity sides.

In addition, we define a bicategory Hor(C), which we call the underlying horizontal
bicategory , as the bicategory whose objects are objects in C, whose 1-cells are horizontal
morphisms in C, and whose 2-cells are squares with vertical identity sides.

4 (Pseudo) Double Set-categories

Having defined strict and pseudo double categories, we now impose conditions to obtain
isomorphism invariant definitions, following the vision of the univalence maxim. Concretely,
we first construct isomorphism invariant notions of (pseudo) double categories and then
study several classes of examples. Following Section 2 and Definition 2.1, we need to impose
a set level condition to obtain isomorphism invariance, motivating the following definitions.

▶ Definition 4.1. A strict double setcategory is a strict double category whose objects
form a set. In addition, a pseudo double setcategory is a double category whose objects
and horizontal morphisms form a set.

Using similar ideas to the one used in Proposition 2.2, we confirm their desired invariance.

▶ Theorem 4.2. The category of strict double setcategories, with objects being strict double
setcategories and morphisms being strict double functors, is univalent.

▶ Theorem 4.3. The category of pseudo double setcategories, with objects being pseudo
double setcategories and morphisms being strict double functors, is univalent.

We now review our motivating examples in light of this invariance property.

▶ Proposition 4.4. Let C be a setcategory. Then Sq(C) is a strict double setcategory.

▶ Proposition 4.5. For a setcategory C with pullbacks, Span(C) is a pseudo double setcategory.

https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.ProfunctorDoubleCat.html#strict_profunctor_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.Coreflections.html#coreflections_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Underlying.VerticalTwoCategory.html#underlying_vert_two_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Underlying.HorizontalBicategory.html#horizontal_bicat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Underlying.HorizontalBicategory.html#horizontal_bicat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Core.StrictDoubleCats.html#strict_double_cat
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▶ Proposition 4.6. Suppose that C1 and C2 are setcategories and that C2 has pushouts. Then
StructCospan(L) is a pseudo double setcategory.

▶ Proposition 4.7. Let C be a 2-setcategory. Then Coreflect(C) as defined in Example 3.6 is
a pseudo double setcategory.

The previous examples are very consistent with our intuition that an isomorphism invariant
category should indeed result in isomorphism invariant double categories of squares, (co)spans,
coreflections, or polynomials. Observe the class of examples of profunctors, Example 3.5, is
in fact not a pseudo double setcategory. See Proposition 5.7 for a more detailed discussion.
Let us instead present one further example coming from 2-category theory.

▶ Example 4.8. For a bisetcategory B we define the pseudo double setcategory B̂ , whose
objects are objects in B. Vertical morphisms are morphisms in B, and horizontal morphisms
x y are identities x = y. Squares

(
f p

q g
)

are 2-cells f · idtoiso(q)⇒ idtoiso(p) · g.

We end this section by observing that the set condition is preserved by taking underlying
bicategories. This results supports the intuitive fact that taking underlying 2-categories
preserves isomorphism invariance.

▶ Proposition 4.9. If C is a strict double setcategory, then Ver(C) is a strict 2-setcategory.

▶ Proposition 4.10. If C is a pseudo double setcategory, then Ver(C) is a strict 2-setcategory.

▶ Proposition 4.11. If C is a pseudo double setcategory, then Hor(C) is a bisetcategory.

5 Univalent Pseudo Double Categories

In the previous section we focused on isomorphism invariance. In this section we continue
realizing our univalence maxim, this time studying pseudo double categories invariant under
vertical equivalences, which are characterized by inducing equivalences on the underlying
vertical category and for any two objects x, y inducing equivalences on the category given by
horizontal morphisms x y and squares with trivial vertical sides. Our analysis relies on
our previous work done in [34]. We then end this section analyzing several examples.

Following Definition 2.1, we would expect a univalence condition for these two underlying
categories. This, however, implies that the underlying horizontal category is neither univalent
nor has a set of objects, meaning horizontal composition cannot be strict. Thus we have to
work with pseudo double categories, resulting in the following definition.

▶ Definition 5.1. A pseudo double category C is said to be univalent if its underlying
vertical category is univalent and if for all x, y : C the category whose objects are horizontal
morphisms x y and whose morphisms are squares with vertical identity sides, is univalent.

Building on our insights in Proposition 2.3, we similarly construct a univalent bicategory
of univalent pseudo double categories [34].

▶ Theorem 5.2. The bicategory of univalent pseudo double categories with lax double functors
is univalent.

Note that we use lax double functors in Theorem 5.2 whereas we use strict double functors
in Theorems 4.2 and 4.3. As the univalence condition is motivated by vertical equivalences, it
is not symmetric. For examples identities of objects only correspond to vertical isomorphisms,
and identities of horizontal morphisms correspond to isomorphisms of squares (composed
vertically). However, some double categories satisfy a stronger univalence condition that is
in fact symmetric.
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▶ Definition 5.3. A pseudo double category C is said to be symmetrically univalent if
the horizontal morphisms form a set, C is univalent, the category of objects and horizontal
morphisms is univalent, and for all x, y : C the category of vertical morphisms x y and
squares with horizontal identity sides, is univalent.

Let us present a variety of examples of univalent and symmetrically univalent pseudo
double categories. Again we focus on our three classes of interest, namely squares, spans and
profunctors [34], but we also provide additional examples.

▶ Proposition 5.4. If C is a univalent category, then Sq(C) is a symmetrically univalent
pseudo double category.

▶ Proposition 5.5. Let C be a univalent category with pullbacks. Then the pseudo double
category Span(C), is univalent, but not symmetrically univalent.

▶ Proposition 5.6. If C1 and C2 are univalent categories such that C2 has pushouts, then
StructCospan(L) is a univalent pseudo double category.

▶ Proposition 5.7. The pseudo double category of profunctors is univalent.

▶ Proposition 5.8. If C is a univalent 2-category. Then Coreflect(C) is a univalent pseudo
double category.

In the later sections, we analyze enriched versions of double categories of profunctors
benefiting from appropriately defined weak double categories (Example 7.5). However, if we
focus on categories enriched over a poset, which includes quantales and has found applications
in automata theory [1, 30] and fuzzy logic [15], we do get stricter double categories.

▶ Proposition 5.9. Suppose that V is a complete and cocomplete symmetric monoidal category
and suppose that V is a poset. Then we have a univalent pseudo double category whose
objects are univalent categories enriched over V, vertical morphisms are enriched functors,
horizontal morphisms are enriched profunctors, and whose squares are given by enriched
natural transformations.

▶ Remark 5.10. Note we cannot construct a univalent pseudo double category given by
univalent categories, functors and profunctors. Indeed, the type of univalent categories is a
2-type as it includes all 1-types, by [33, Example 9.9.6] and [2, Example 2.18], and hence
cannot be the objects of a univalent category, which is at most a 1-type ([3, Lemma 3.8]).

In the last section we observed that double setcategories (both pseudo and strict) preserve
isomorphism invariance when taking underlying bicategories. We might hence anticipate
similar results for univalent pseudo categories. Unfortunately we only have a partial result.
Indeed, vertical equivalences are preserved by taking the underlying vertical 2-category,
confirmed by the following result.

▶ Proposition 5.11. If D is univalent, then so is Ver(D).

However, it is generally untrue that univalent pseudo double categories will induce globally
univalent underlying horizontal bicategories. Indeed, the underlying horizontal bicategory of
the pseudo double category Prof is given by small setcategories, profunctors and 2-morphisms,
and we already observed in Proposition 5.7 that profunctors can be an isomorphism without
the underlying categories being isomorphic. However, not all hope is lost and we do recover
a local univalence condition.

▶ Proposition 5.12. If D is a univalent, then Hor(D) is locally univalent.

Note that Hor(D) is not necessarily univalent. This necessitates a double categorical
notion that accommodates biequivalences of bicategories.

https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Core.SymmetricUnivalent.html#symmetric_univalent
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6 Motivating Verity Double Bicategories

Pseudo-double categories only exhibit non-strict compositions in the horizontal direction and
are hence unable to incorporate all relevant examples (Remark 5.10) or biequivalences as an
invariant (Proposition 5.12). We hence require a notion of a doubly weak double category
with non-strict compositions in both directions. However, providing a direct definition similar
to Definition 3.1 results in a fully faithful embedding from pseudo double-categories that
does not preserve vertical equivalences. In univalent foundations, in addition to the non-
preservation of equivalences, this embedding also does not preserve univalence. Concretely,
due to the strictness of vertical compositions, identities in the type of objects correspond to
vertical isomorphisms, whereas the weak vertical composition and symmetric nature of
weak double categories demands that identities correspond to a pair of horizontal and vertical
equivalences which interact well with each other, i.e. form a companion pair (Section 8).
Hence, a univalent pseudo double category results in a non-univalent weak double category.

Univalent foundations hence can propose a solution to non-preservation of equivalences,
namely by introducing a pre-double categorical structure, whose notion of univalence can
incorporate both univalent pseudo double categories and univalent weak double categories,
which will in particular imply preservation of equivalences. Taking the previous paragraph as
motivation what such a structure should entail is a notion of 2-morphisms divorced from the
2-morphisms induced by squares (as defined in Definition 3.7). By appropriately choosing
the 2-cells we can then restrict to both cases of interest:

If we choose the vertical 2-cells to be identities then equivalences in the vertical 2-category
would be isomorphism, recovering the identities of univalent pseudo-categories;
if we choose the vertical (and horizontal) 2-cells to coincide with 2-cells induced by
squares, then identities of objects correspond to equivalences we expect to see in weak
double categories.

Thus, in order to pursue our study of equivalences of double categories, we first develop
pre-double category theory, whose structure involves objects, horizontal (vertical) morphisms,
horizontal (vertical) 2-morphisms, and squares, along with appropriately coherent compos-
itions. Fortunately, a suitable candidate for such a notion has already been proposed by
Verity , where it is called a double bicategory [35], along with a univalence principle [4].
Hence, for the remainder of the paper the aim is to study and formalize double bicategories,
study its univalence principle, and establish an embedding from univalent pseudo categories
to univalent double bicategories.

7 Verity Double Bicategories

Following the discussion of Section 6 we commence with the definition and formalization of
double bicategories due to Verity [35], and also describe various examples. In Section 9 we
will then pursue its univalence principles.

▶ Definition 7.1. A Verity double bicategory B consists of
1. a bicategory HB whose objects, 1-cells, and 2-cells are called horizontal;
2. a bicategory VB with the same type of objects as HB, and whose objects, 1-cells, and

2-cells are called vertical;
3. for all objects x1, x2, y1, y2 : HB, horizontal 1-cells h1 : x1 x2 and h2 : y1 y2, and

vertical 1-cells v1 : x1 y1 and v2 : x2 y2 a set
(

v1
h1
h2

v2

)
of squares;

4. for all horizontal 1-cells h : x y a square idhsq(h) :
(
idx h

h idy
)
;
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5. for all vertical 1-cells v : x y a square idvsq(v) :
(

v idx

idy
v
)

;
6. for all s1 :

(
v1

h
k w1

)
and s2 :

(
v2

k
l w2

)
, a square s1 ·sq s2 :

(
v1 · v2

h
l w1 · w2

)
;

7. for all s1 :
(

v1
h1
k1

v2

)
and s2 :

(
v2

h2
k2

v3

)
, a square s1 ⊙sq s2 :

(
v1

h1⊙h2
k1⊙k2

v3

)
;

8. for all vertical 2-cells τ : v1 ⇒ v2 and squares s :
(
v2

h
k w

)
, a square τ ◁ s :

(
v1

h
k w

)
;

9. for all vertical 2-cells τ : w1 ⇒ w2 and squares s :
(
v h
k w1

)
, a square τ ▷ s :

(
v h
k w2

)
;

10. for all horizontal 2-cells τ : h1 ⇒ h2 and squares s :
(

v h2
k w

)
, a square τ △ s :

(
v h1
k w

)
;

11. for all horizontal 2-cells τ : k1 ⇒ k2 and squares s :
(
v h
k1

w
)
, a square τ ▽ s :

(
v h
k2

w
)
.

We call HB the underlying horizontal bicategory and VB the underlying vertical
bicategory. In addition to the data explicated here, we have various laws governing their
behavior. See the formalization or [35, Definition 1.4.1] for further details

Let us note that this definition does in fact satisfy all the desired conditions outlined in
Section 6. Indeed, we have independently defined horizontal and vertical 2-cells and compos-
itions of all 1-morphisms are defined weakly, giving us a symmetric definition. Following our
vision, we now define weak double categories by adding an appropriate saturation condition
identifying 2-cells with certain squares.

▶ Definition 7.2. Suppose we have a Verity double bicategory B. For all horizontal 1-
cells h1, h2 : x y we have a map CellToSqH sending 2-cells τ : h1 ⇒ h2 to the square
τ △ idhsq(h2) :

(
idx h1

h2
idy

)
. We say that B is horizontally saturated if CellToSqH is an

equivalence. Similarly, the map CellToSqV sends vertical 2-cells τ : v1 ⇒ v2 to the square
τ ◁ idvsq(v2) :

(
v1

idx

idy
v2

)
, and B is vertically saturated if CellToSqV is an equivalence. A

weak double category is a horizontally and vertically saturated Verity double bicategory.

Our definition of weak double categories by definition comes with an inclusion in Verity
double bicategories. We now establish the second inclusion suggested in Section 6 and show
that every pseudo double category gives rise to a Verity double bicategory.

▶ Example 7.3. Suppose that we have a pseudo double category C. We define a Verity
double bicategory C . Its underlying horizontal bicategory is the discrete bicategory on the
underlying vertical category of C, and the underlying vertical bicategory is the underlying
horizontal bicategory of C. The squares are defined to be squares in C. Note that C is
vertically saturated, but not necessarily horizontally saturated.

Notice that the assignment of the horizontal 2-cells in Example 7.3 is not unique, and
our choice is motivated by the desire to realize our programme, meaning to guarantee
that univalent pseudo-double categories give us univalent Verity double bicategories. See
Remark 10.10 for more details

We now proceed to look at several examples of Verity double bicategories. By Example 7.3,
every pseudo double category results in a Verity double bicategory. So here we focus on
examples giving us weak double categories, again motivated by our three classes of examples
introduced in Section 3, squares, profunctors and spans.

▶ Example 7.4. Let B be a bicategory. We define a Verity double bicategory Sq(B) of
squares . The horizontal bicategory HSq(B) is B, and the vertical bicategory VSq(B) is Bco.
The squares

(
v h
k w

)
are defined to be 2-cells h · w ⇒ v · k. Note that Sq(B) is both

horizontally and vertically saturated, meaning it is a weak double category.

In Example 7.4, the 2-cells in the vertical bicategory VSq(B) are reversed. This is necessary
to get the right whiskering operations.

https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.DoubleBicat.CellsAndSquares.html#horizontally_saturated
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https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.DoubleBicat.CellsAndSquares.html#is_weak_double_cat
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▶ Example 7.5. We define a Verity double bicategory Prof of profunctors . The underlying
horizontal bicategory HProf is the bicategory UnivCatco of small univalent categories, and the
objects of VProf are small univalent categories, the 1-cells are profunctors, and the 2-cells are
natural transformations. The squares are defined in the same way as in Example 3.5.

The identity and composition operations for profunctors are defined in the same way as
in Example 3.5. For the details of the whiskering constructions, we refer the reader to the
formalization. Note that Prof is both vertically and horizontally saturated, giving us a weak
double category.

Similarly, we define the Verity double bicategory ProfV of enriched profunctors .
Let V be a complete and cocomplete symmetric monoidal closed category. The underlying
horizontal bicategory HProfV is the bicategory UnivCatco

V of small univalent enriched categories,
and the objects of the underlying vertical VProfV are small univalent categories, 1-cells are
enriched profunctors, and 2-cells are enriched natural transformations. The squares are
defined in a similar way as in Example 3.5.

Identity, composition, and whiskering operations are defined similarly to Example 7.5.
Since ProfV is both vertically and horizontally saturated, it is a weak double category.

Note here we use small categories in Example 7.5 to guarantee that the desired coends
exist, analogous to Example 3.5.

Unlike the previous sections we do not construct a weak double category of spans in a
bicategory, as such a construction would require additional categorical layers; see also [25,
Section 4]. However, we do have one additional example motivated by mate calculus.

▶ Example 7.6 (Mate calculus, [23, Proposition 2.2]). Let B be a bicategory. We define
a Verity double bicategory LAdj(B) . The horizontal bicategory HLAdj(B) is the bicategory
whose objects are objects in B, 1-cells are left adjoints, and 2-cells are mate-pairs, and the
vertical bicategory VLAdj(B) is Bco. Given adjunctions h : x ⊣ y and k : x′ ⊣ y′, and 1-cells
v : x x′ and w; y y’, squares

(
v h
k w

)
are defined to be 2-cells h · w ⇒ v · k.

▶ Remark 7.7. Similar to Section 4, we can impose a set condition on the types of objects
and morphisms to define Verity double bisetcategories and weak double setcategories, whose
identities, analogous to Theorems 4.2 and 4.3, correspond to isomorphisms. However, similar
to the classical setting (Section 6), pseudo double setcategories fully faithfully embeds in weak
double setcategories, hence obviating the need to generalize to any pre-double categorical
notion, such as Verity double bicategories.

Given these similarities, we proceed to the study of univalent Verity double bicategories
and their relation to univalent pseudo categories and univalent weak double categories.

8 Companion Pairs

In the previous section we defined Verity double bicategories and showed that this general
notion includes both pseudo double categories and weak double categories. Our major aim
is to show that these assignments preserves univalence. Due to the symmetric nature of
Verity double bicategories, equivalences of objects are symmetric as well, so they need to be
given by a pair of horizontal and vertical equivalences that interact well with each other. In
this section we provide a precise characterization of the interaction between horizontal and
vertical morphisms, via companion pairs.
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▶ Definition 8.1. Suppose that we have a Verity double bicategory B and a horizontal
morphism h : x y and a vertical morphism v : x y. Then we say that h and v form
a companion pair if we have squares η :

(
v h

idy
idy

)
and ε :

(
idx idx

h v
)

such that the
squares ρ▷ ℓ−1 ◁(ε⊙sq η) and ρ▽ ℓ−1 △(ε ·sq η) are identity squares. Here, ℓ is the left unitor.
We call η the unit and ε the counit.

An alternative approach to the interaction between horizontal and vertical morphisms is
given by conjoints, which are companion pairs in the horizontal dual of B. This notion is
prevalent in formal category theory [29, 37, 38].

Beyond the definition we also need several key properties of companion pairs that we
confirm here. Concretely, we want to know that companion pairs include identities and are
closed under composition. Moreover, companions, if they exist, are unique up to isomorphism.
Finally, companions of equivalences are also equivalences.

▶ Proposition 8.2. Given an object x in a Verity double bicategory B, then the horizontal
identity idx and vertical identity idx form a companion pair.

▶ Proposition 8.3. Given companion pairs h1 : x y and v1 : x y, and h2 : y z

and v2 : y z, then h1 · h2 and v1 · v2 also form a companion pair.

▶ Proposition 8.4. Let B be a Verity double bicategory such that HB and VB are locally
univalent and such that B is vertically saturated. For every horizontal 1-cell h : x y, we
have that all vertical 1-cells v, v′ : x y that form a companion pair with h are equal.

▶ Proposition 8.5. Suppose that we have a Verity double bicategory B such that B is vertically
saturated. Given a horizontal adjoint equivalence l ⊣ r such that l and r have companion
pairs l′ and r′ respectively, then we have a vertical adjoint equivalence given by l′ ⊣ r′.

In many important examples of Verity double bicategories, every horizontal 1-morphism
has a companion, which is a key ingredient towards establishing its univalence condition.
This holds for Sq(B), Prof, and ProfV, whereas if we have a pseudo double category C, then
C has companion pairs if C has.

▶ Proposition 8.6. Let B be a bicategory. Given a 1-cell f : x y in B, then f and f

form a companion pair in Sq(B).

▶ Proposition 8.7. Suppose that we have a functor F : C1 C2. Note that F gives rise to
a profunctor repℓ(F ) : C1 C2 that sends objects x : C1 and y : C2 to the set of morphisms
F (y) x. Then F and repℓ(F ) form a companion pair.

9 Univalent Double Bicategories

In this section we use companion pairs introduced in Section 8 to present a univalence
principle for double bicategories (Section 7), further advancing our general maxim. Given
the amount data a Verity double bicategory involves, we split up the univalence condition
into two parts. The first one is a local conditions imposed on the hom-categories in the
underlying horizontal and vertical bicategories.

▶ Definition 9.1. A Verity double bicategory B is said to be locally univalent if both HB
and VB are locally univalent.

The second univalence condition is global and focuses on the type of objects in Verity
double bicategories. Here we use companion pairs.
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▶ Definition 9.2. A gregarious equivalence from x to y in a Verity double bicategory
B consists of a horizontal adjoint equivalence h : x y, a vertical adjoint equivalence
v : x y such that h and v form a companion pair.

▶ Proposition 9.3. Given an object x in a Verity double bicategory, then the horizontal
identity idx and the vertical identity idx form a gregarious equivalence.

Following [4], we define gregarious univalence using gregarious equivalences.

▶ Definition 9.4. Given a Verity double bicategory and objects x and y, we define the map
IdToGregEqx,y sending identities x = y to gregarious equivalences using path induction and
the fact that the identity is a gregarious equivalence (Proposition 9.3). A Verity double
bicategory is said to be gregarious univalent if the map IdToGregEqx,y is an equivalence
of types for all x and y.

Following the univalence principle in [4, Example 9.3], identities of gregarious univalent
Verity double bicategories are equivalent to the type of gregarious equivalences between them.
Finally, by Definition 7.2, a weak double category is univalent if it is univalent as a double
bicategory, confirming our intuition presented in Section 6.

10 Univalence and Weak Horizontal Invariance

In this final section we tie up our discussion of univalent double categorical structures,
by establishing the following two facts. First, there is a large class of univalent double
bicategories, such as Sq(B), Prof, and ProfV. Second, every univalent pseudo double category
gives rise to a univalent Verity double bicategory.

To deal with the complicated nature of gregarious univalence, we use a more conceptual
approach. We define a notion of weakly horizontally invariant double bicategory and show
that in this case (with some minor conditions) gregarious univalence reduces to horizontal
univalence. We end this section with checking these two properties for our cases of interest.

Let us start with the definition of weak horizontal invariance.

▶ Definition 10.1. A Verity double bicategory is weakly horizontally invariant if every
horizontal adjoint equivalence has a companion pair.

▶ Proposition 10.2. Let B be a Verity double bicategory such that HB is globally univalent.
Then B is weakly horizontally invariant.

This is because the horizontal identity has a companion, and to construct companions for
arbitrary adjoint equivalence, we use induction on adjoint equivalences. Proving the main
theorem requires the following proposition, which characterizes gregarious equivalences.

▶ Proposition 10.3. Let B be a weakly horizontally invariant Verity double bicategory
such that B is vertically saturated and such that HB and VB are locally univalent. Then a
horizontal morphism h : x y is an adjoint equivalence if and only if we have a vertical
1-cell v : x y such that h and v are a gregarious equivalence.

▶ Theorem 10.4. Let B be a locally univalent, vertically saturated, and weakly horizontally
invariant Verity double bicategory. Then B is gregarious univalent if and only if the bicategory
HB is globally univalent.

We now apply Theorem 10.4 to our cases of interest.
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▶ Proposition 10.5. Let B be a univalent bicategory. Then Sq(B) is weakly horizontally
invariant and univalent.

▶ Proposition 10.6. Prof is weakly horizontally invariant and univalent.

▶ Proposition 10.7. ProfV is weakly horizontally invariant and univalent.

▶ Proposition 10.8. If B be a univalent bicategory, then LAdj(B) is weakly horizontally
invariant and univalent.

▶ Proposition 10.9. Suppose that we have a univalent pseudo double category C. Then the
double bicategory C is weakly horizontally invariant and univalent.

▶ Remark 10.10. The choice of 2-cells in Example 7.3 was not unique, and our choice was
motivated by Proposition 10.9. To obtain gregarious univalence, the horizontal 2-morphisms
need to be trivial so that identities are given by isomorphisms. For instance, in the univalent
pseudo-double category of setcategories, functors and profunctors, the resulting Verity double
bicategory is univalent because the 2-cells are identities.

Let us end by observing that weak horizontal invariance has already been employed to
study equivalences of double categories, however, from a categorical perspective [26].

11 Conclusion

In this paper we presented a connection between equivalences of categorical structures and
formalizations thereof in UniMath. More specifically, we introduced the univalence maxim for
categorical structures, which says that every notion of equivalence comes with a corresponding
notion of univalent categorical structure, whose identity type corresponds to the given notion
of equivalence. We studied the maxim for many different examples, namely categories,
2-categories, and double categories.

As a result of the maxim, we realize that the univalent setting is the appropriate framework
to articulate and formalize (higher) categorical definitions and results, as it provides direct
access to valuable transport principles along (higher) categorical equivalences of interest,
by transforming categorical equivalences into identities (Proposition 2.9 and Theorem 5.2).
Moreover, the univalence maxim empowers us to compare and contrast different double
categorical notions, tying together disparate results in the double categorical literature and
facilitating a holistic approach to all double categorical notions. Concretely, in the univalent
setting, we can compare double categories that differ in their strictness properties, for example
strict vs. pseudo double categories, and double categories that differ in their chosen notion
of sameness, for example pseudo double categories up to isomorphism vs. pseudo double
categories up to horizontal equivalence. Here we note that the second type of comparison is
not possible in set theoretical foundations.

Finally, let us note that in several cases we obtained a univalence principle by establishing
the univalence of an appropriately defined (bi)category. One future aim is to generalize this
approach to bicategories and Verity double bicategories, which would require developing
tricategory theory [19].
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