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—— Abstract

Markov categories allow formalization of probabilistic and causal reasoning in a general setting that

applies uniformly to many different kinds of classical probabilistic processes. It has so far been
challenging, however, to generalize these techniques to reasoning about quantum processes, as the
quantum no-cloning theorem forbids “copy” maps of the sort that have been used to axiomatize
conditional independence, and the related notions of complete common causes and Markovianity, in
classical Bayesian networks. Here, we introduce a new categorical notion of Markovian causal model,
according to which a distinguished subcategory of “common cause” maps plays a similar role to that
of “copy” maps in the categorical formulation of Bayesian networks. Moreover, defining causal models
as second-order processes yields a clean and flexible formulation of interventions. Our formalism is
both rich enough to handle “complete common cause” assumptions and general enough to encompass
not only standard classical causal identification scenarios, but also quantum causal scenarios and
new kinds of classical causal identification based on imperfect observations. Furthermore, we show
that one can reason uniformly across all of these cases using string-diagrammatic techniques.
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1 Introduction

Within the study of probabilistic reasoning, causal inference involves discerning from data
the causal relationships responsible for generating them, and hence the effects of hypothetical
interventions. Many researchers in quantum information and the foundations of quantum
theory have tried to adapt concepts from causal inference to a setting in which, roughly,
quantum systems replace random variables as causal relata, and quantum channels replace
functions or stochastic maps as causal mechanisms [15, 17, 19, 1, 12]. A natural approach to
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studying quantum generalizations of probabilistic reasoning is to start from the literature on
categorical probability theory (e.g., [14, 11]), and simply replace a category of probabilistic
processes with a category of quantum processes, which one hopes satisfies enough axioms
to support analogous calculations to the classical case. But we quickly run into a major
obstacle: an important axiom used in categorical probability to define Markov categories,
and slight variations such as CD and CDU categories, is the existence of “copy” maps for all
objects. Such maps are the basis of abstract formulations of conditional independence, and
hence the Markov condition for Bayesian networks. When Bayesian networks are understood
as causal models as in the work of Pearl [16], Markovianity sometimes involves a variable
being “copied” and the copies distributed to other parts of the network that depend on the
variable. The Markov condition for causal Bayesian networks is central to classical causal
inference.

Such “copy” maps are forbidden for quantum processes, however, as famously shown
by the quantum no-cloning [20] and no-broadcasting [2] theorems. While it is possible to
define complete common causes, and hence Markovianity, in the quantum setting in several
equivalent ways [1, 3], the absence of an explicit representation of copying as a well-defined
quantum process in its own right limits the translation of standard causal inference techniques
to the quantum setting. The present work solves this problem by introducing an abstract,
categorical notion of Markovian causal model that can be instantiated in either a quantum
or a classical setting!. As in prior work on categorical causal inference [13] (which depended
on “copy” structure and did not include quantum models), a causal model involves two
symmetric monoidal categories: a syntactic category, whose morphisms encode an abstract
causal structure as a formal composition of “black boxes,” and a semantic category, in
which the abstract causal structure is functorially interpreted as a particular data-generating
process, e.g., by filling in the black boxes with concrete stochastic matrices. Generalizing [13],
we will provide a notion of abstract causal structure that can be interpreted in either a
classical or a quantum semantic category. In particular, this framework subsumes ordinary
classical Bayesian networks.

After defining the basic framework, we will describe how our formalism handles interven-
tions, and pose the causal identification problem to which we will apply our mathematical
technology. Causal identification is a type of causal inference problem for which the effects of
counterfactual interventions are to be inferred from a combination of qualitative hypotheses
(represented by a graph) and observational data. Our formulation of causal models lets
us treat the statistics from a very restricted class of interventions as “observational data”
available for inference. The precise class of interventions we choose is treated as a parameter
in our framework, so different classes of interventions yield different kinds of causal identifi-
cation problems. This flexibility is needed in the quantum case, where there is no standard
notion of “passive observation,” but is also useful in the classical case, where we can now
study inference tasks whose input data have been obtained via imperfect procedures.

In classical causal inference, the assumption that an unknown causal model is a Markovian
model based on a known graph, amounting to the assumption that there are no latent variables
influencing multiple observed variables (i.e., no latent confounders), greatly expands the
class of causal queries that can be answered with observational data. In particular, with
this assumption, one can identify from the graph and the observational data the response
of the model to arbitrary interventions. We demonstrate that a certain Markovianity

1 The resulting notion of quantum Markovian causal model, specifically (CPM, Unitary, )-valued Marko-
vian model, is closely related to proposals in [8] and [1, 3].
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assumption formulated in our new framework is similarly powerful in the quantum setting,
allowing the identification of the entire data-generating process from only very limited
probing operations. We simultaneously demonstrate that for classical causal identification,
noisy and disturbing observations can sometimes serve in place of ordinary perfect passive
observations. The uniform handling of the classical and quantum cases is made possible by
the string-diagrammatic calculus for (compact) symmetric monoidal categories.

2 Process theories

Throughout the paper, we will use process theoretic terminology, following, e.g., [5], to discuss
morphisms in a symmetric monoidal category. Namely, we will refer to symmetric monoidal
categories (C,®,I) as process theories and the morphisms therein as processes. Because of
their physical interpretation, we also introduce special terminology for morphisms into and
out of the monoidal unit I. In a process theory, morphisms of the form p: I — A are called
states, and morphisms of the form 7 : A — I are called effects. Morphisms of the form
A I — I are called numbers or scalars.

We will focus on process theories equipped with distinguished families of discarding maps
da : A — I, one map for each object A, satisfying dagp = da ® dp and d; = 1;. The main
utility of discarding maps is allowing us to say when a process is causal, which in the classical
and quantum settings imposes a normalization constraint.

» Definition 1. A process f: A — B is called causal if dgo f =d4.

» Example 2. The process theory Mat[R ] has as objects natural numbers and as processes
M :m — n the n x m matrices whose entries are non-negative real numbers {M ; | 1<

i <n,1 <j < m}. The monoidal product is given by tensor product of matrices (a.k.a.

Kronecker product), whose unit is the 1 x 1 matrix [1] : 1 — 1. Discarding maps d,, : n — 1
are the 1 X n matrices (i.e., row vectors) consisting of all 1s. Composing with d,, corresponds
to summing over an output index (i.e., marginalization). Consequently, causal states are
column vectors of positive numbers whose entries sum to 1 (i.e., probability distributions), and
causal processes are matrices whose columns each sum to 1 (i.e., stochastic maps, equivalent
to conditional probability distributions with P(i|j) := Mj}).

» Example 3. The process theory CPM has as objects finite-dimensional Hilbert spaces
H, K, ... and as morphisms completely positive maps ® : L(H) — L(K), where L(H) is the
algebra of operators H — H. The monoidal product is again given by tensor product, whose
unit is the identity map on L(C) = C. Discarding maps are trace maps. A state p : C — L(H)
is fixed by a single positive operator p(1) € L(#), and causal states correspond to trace-1
positive operators. More generally, causal processes are the trace-preserving completely
positive maps.

Since both matrices of positive numbers and completely positive maps are closed under
sums, both Mat[R,] and CPM are additively enriched. We will first use this fact in
Definition 4 to define instruments.

The presentation will use string diagram notation, with processes depicted as boxes and
objects as wires in diagrams read from bottom to top. A process theory’s monoidal unit
object I and the identity process I — I are both depicted by empty space, and other identity
processes are depicted as wires. Discarding, which will later serve as a counit for an internal
comonoid structure, is depicted with a black dot.
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A
B p:l—A ~
fiASB o~ da:A—T  ~ fA

A T A>T C’F
A

Diagrammatically, the causality condition for a process f : A — B from Definition 1 is

- (1)

3 Causal Bayesian networks

The usual notion of a joint probability distribution being Markov compatible with a directed
acyclic graph (DAG) is that it factorizes in such a way that each variable (labeling a node of
the graph) is independent when conditioned on its parents. For example, a joint distribution
P(ABCDE) is Markov compatible with DAG

(o) (®
Gi= 9.@ (2)
@

precisely when P(ABCDE) = P(A)P(B|A)P(C|A)P(D|BC)P(E|C).

We now recall the string-diagrammatic formulation of Markov compatibility of a joint
probability distribution with a DAG G, given, e.g., in [13]. First, we introduce for each object
X in Mat[R,] a “copy” map X — X ® X, whose composition with a point distribution
¥ : I — X (i.e., a column vector with a single 1 entry and Os elsewhere) is ¢ ® 1. With
“copy” as comultiplication—depicted by a black dot with one input and two output wires—and
discarding as counit, each object in Mat[R,] is given a cocommutative comonoid structure:

T

A symmetric monoidal category equipped with a compatible family of “copy” and discard
maps for all objects is called a CD category. If in addition we impose the causality condition
of Definition 1 on all maps, the category is called a Markov category. The copy and
discard maps above endow Mat[R, ] with the structure of a CD category; the subcategory
Stoch C Mat[R,] of stochastic (i.e., causal) maps is a Markov category.

We can form the string diagram associated with a DAG G by introducing a box a :
X1®...@ X, — A for every node A in G with parents {X7,..., X, }. We compose these
boxes by connecting each output A to the output of the overall diagram, as well as to the
inputs of each of the children of A in G, introducing copy maps where necessary. A state
being Markov with respect to G then means simply that it factorizes according to that
diagram, for some choice of stochastic matrices a, b, ¢, ... For example, a state w is Markov
with respect to the graph G from (2) when it can be decomposed as follows:
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‘A ‘B ‘C ‘D ‘b

w =

This diagrammatic condition corresponds precisely to the usual factorization of P(ABCDE)
given before, where P(ABCDE) is the joint probability distribution given by the state w.

The right-hand side of (4) may be said to represent w as a Bayesian network. While
Bayesian networks can in general just be seen as an efficient way to represent joint probability
distributions, we can additionally provide them with a causal interpretation, using them to
model how a certain scenario would respond to possible interventions. To model the effects
of interventions using a Bayesian network, we interpret each of the boxes a,b,c, ... as some
actual (e.g., physical) mechanism that determines (stochastically) the value of its output,
given any value of its input. One introduces a concept of local intervention whereby, for
example, a change can be made at the input to box ¢ while the rest of the network is left
unchanged. In [13], local intervention is represented by endofunctors that “cut” diagrams
like the one in Eq. 4. Such an intervention results in a different overall state from w (the
new state is sometimes called a “do-conditional” in the causal inference literature [16]).
A Bayesian network representation of a state that is Markov compatible with DAG G,
interpreted causally in this way, is called a Markovian G-based causal model.

In a causal inference problem, one is given a state like w together with certain qualitative
assumptions about how the state is generated, and the task is to determine further proper-
ties of the data-generating process and compute how w would change under hypothetical
interventions. One sort of qualitative assumption is that w is generated by a Markovian
causal model based on a certain DAG. Such an assumption turns out quite powerful for
inference: with it, one can evaluate the results of essentially any hypothetical intervention.
Discussions of “quantum causal modeling” naturally suggest the question of whether a
“quantum Markovianity assumption” might provide similar inferential power in quantum
causal scenarios. We therefore seek to formulate quantum Markovian causal models based
on DAGs, and an associated inference problem.

Two obstacles arise. First, it is unclear what quantity constitutes the quantum analog of
the state (w in Eq. 4) that is an input in classical inference. That state carries “observational
data,” i.e., the probability distribution generated by the causal model when variables
are merely observed rather than intervened on. In operational quantum theory, there
is no standard notion of passive observation as distinct from more “active” intervention.
Our solution makes no such distinction in principle, and instead simply allows any set
of interventions to be declared the “accessible” ones whose outcome distributions will be
available for inference. The second obstacle is the absence of copy maps in quantum theory.
The assumption that observational data are generated by a process like the one on the
right-hand side of Eq. 4 is useful for inference because copy maps guarantee, for example,
that any randomness shared between the inputs to b and c is accounted for by variable A.
(The Bayesian network representation in Eq. 4 also uses copy maps to produce an observed
output for each variable while allowing the variable’s value to be fed forward, undisturbed,
to the rest of the network.) Our solution here allows any subtheory of maps in a process
theory to take the role typically played by copy maps in distributing “information” from
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the output of one box to the inputs of other boxes. With such a general framework, there
remains the question of which choices of parameters in the quantum setting give a specific
notion of “Markovian causal model” that is especially useful for inference. The answer, in
Section 7, depends on a theorem showing how unitary quantum maps (more generally, what
are called “autonomous” quantum channels) mimic the “function-maps” in Mat[R,].

4  Generalized causal models

4.1 Combs and instruments

The interventional causal models studied in this paper will involve second-order processes,
or combs [4], taking first-order processes as input and producing other first-order processes
(usually numbers, i.e. processes I — I). We will represent second-order processes as first-
order ones by invoking the (self-dual) compact structures in the process theories Mat[R, ] and
CPM: every object A is equipped with a pair of maps Ug : I > A® Aand Ny : AQA — I,
called “cups” and “caps” respectively, satisfying the so-called yanking equations, which are
depicted in string diagram notation as follows:

S R R

In Mat[R, ], cups and caps are given by Kronecker delta matrices, with the two indices
treated as either inputs or outputs: U¥ = Nij = di5. In CPM, Uy is given by the un-
normalized maximally entangled state Zij li7) (57| and Ny is its associated effect, seen as a
completely positive map from L(H) ® L(H) to C.

Using this structure, we can, for example, represent a process that takes processes of
type A — A’ and produces processes of type B — B’ as a normal, first-order process
f:B® A — A® B’. We then indicate its higher-order interpretation by drawing f as a box
with a “hole” in it, often called a comb, and use cups and caps to define “plugging” another
box into that hole:

A B
~
B A

As in [9, 10], a classical or quantum causal model will involve a comb in Mat[R,] or
CPM, respectively, encoding the stable mechanisms governing a repeated causal scenario.
The “holes” in the comb will represent loci of intervention, where one can interact with the

B
A

data-generating process in various ways, e.g., by implementing a causal map (a classical or
quantum channel), or observing the value of a random variable and then feeding forward a
certain state. An intervention procedure at a “hole” in a classical or quantum comb will be
represented mathematically by an instrument.

» Definition 4. An instrument of type A — A’ valued in Mat[R,] or CPM is a finite set
of maps {¢; : A — A'}; whose sum Y, ¢; is a causal map. Each map ¢; is called a branch
of the instrument.

Branches correspond to possible outcomes of the intervention procedure. The probabilities of
these outcomes are determined by the branches and by the process in which one is intervening.
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» Example 5. The preparation of a causal state is represented by an instrument branch
{p : I — A}. A demolition measurement on a quantum system is represented by an
instrument whose branches are effects {¢; : A — I};. The only causal effect is the discarding
map da, so the instrument condition says ), ¢; = da. For a causal state p, the probability
of getting outcome i is P(i|p) := ¢; o p. From the instrument condition, it follows that

> Plilp)=>,piop=daop=1.

If fin Eq. 5 is a causal process in Mat[R ] or CPM, and one selects instruments I — B,
A — A’ and B’ — I, then f will map each possible triple of branches to a probability,
understood as the probability of realizing this triple when probing f with the selected
instruments. Causal inference in general consists in using such probabilities-imagined to
have been learned experimentally over many trials—to compute properties of f, whose value
is initially unknown, and thereby predict how f would respond to other combinations of
instruments.

This paper focuses on a kind of causal inference problem called causal identification,
for which certain properties of the comb, namely its “shape,” are assumed in advance, and
those assumptions used together with the probabilities just described to compute the further

properties of interest. The assumption we will formalize and use for inference is Markovianity.

We will now give a process-theoretic definition of Markovian causal model that can be
instantiated in either Mat[R|-where we recover a standard definition of Markovian causal
model-or CPM.

4.2 Abstract and concrete causal structures

We extend the recipe from [13] where a directed acyclic graph is used to generate a process
theory whose morphisms are abstract causal structures encoding qualitative assumptions
that will be used for inference. For a finite directed acyclic graph G = (Vg, E¢) with vertex
set Vo and edge set Eg, let Gy be a free symmetric monoidal category whose objects are
generated by the set Vg W Eg and whose morphisms are generated by discarding maps for
all objects and two additional kinds of maps:

rieg®...0e —- X Ax : X 5 el ®...Qe¢; (7)
for each X € Vi, where {e1,...,e;} are the in-edges of X and {€],...,e}} are the out-edges
of X.

From the free category Gg, we form the “syntactic” process theory G by additionally
imposing the causality equation (1) for every generating map. In particular, for Z a vertex
with no out-edges, Az = dz.

We then associate to the graph G a process cg : X1 ®...0 X, > X1 ®...® X, in
G, called the abstract causal structure associated with G, by taking each of the generators
from (7) and plugging each input wire labeled by an edge to the unique associated output
wire. The inputs and outputs of ¢ are all labeled by vertices, each vertex labeling exactly
one input and one output wire. Each input/output pair is depicted as a hole in a wire and
labeled by the corresponding vertex in Vg.

» Example 6. The directed graph G indicates the abstract causal structure cg:
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The graph is one of the inputs for the causal inference problem we will be studying. Just
as in [13] being given the graph in (2) would let an agent assume that the observed probability
distribution is generated by a process conforming to (4), being given the three-node graph in
this example will let an agent assume that the unknown causal scenario is represented by a
comb conforming to cg. A class of interventional causal models respecting this abstract causal
structure is defined relative to a pair of process theories (C,C..), where C.. is a subtheory of
C called the “common-cause” subtheory. (The common-cause subtheory is a parameter in the
framework; specifying the common-cause subtheory is part of defining a causal identification
problem. We will study the consequences of various choices of common-cause subtheory.)

» Definition 7. A G-based, (C,C..)-valued Markovian interventional causal model consists
of a discarding-preserving functor of process theories (i.e., a discarding-preserving symmetric
monoidal functor) F' : G — C such that F(Ax) is in Cee for every X € Vg.

The process F(cg) is a concrete causal structure, i.e., it is a morphism in C, such as a
stochastic matrix (in the classical case) or a quantum channel, that assigns probabilities
to outcomes of intervention procedures implemented at intervention loci (loci for short)
represented by the input/output pairs that form the “holes” in the abstract and concrete
causal structures. We will consider scenarios in which F' is initially unknown, and we will try
to compute elements in F’s image from those probabilities.

In these scenarios, the process theories C and C,., like the graph G, are given in advance.
A process F(Ax) in the common-cause subtheory C.. distributes information from locus X
toward the loci labeled by X’s children in G. The common-cause subtheory determines what
it means to assume (ultimately for the purpose of inference) that a locus is the complete
common cause of the loci labeled by its children in G. There are no conditions on C.. a priori,
except that it should contain the family of discarding processes. In particular, we could
have C.. = C, in which case the notion of “complete common cause” is trivialized. However,
for some classes of models below, C.. will be a subtheory of processes that we think of as
disallowing confounding between their outputs due to latent variables/systems. In this case,
any observed correlations are thought of as arising entirely from the causal dependency of
multiple output variables/systems on some input. We will formulate this concept for relevant
subtheories of classical and quantum processes, where it will bestow significant inferential
power. The basic idea is simple: if one wishes to infer the value of a process known to
decompose according to a certain string diagram, then knowing that certain boxes are valued
in a smaller subtheory will tend to make the task easier. We will show that certain classical
and quantum subtheories are particularly useful in this regard, for mathematical reasons that
are precisely analogous between the two settings. Nevertheless, it is important to understand
that the term “Markovian” is used in Def. 7 in a new and abstract sense.
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The causal models studied in this paper are valued in the process theories Mat[R, |
and CPM. Denote by Func the subtheory of Mat[R.] consisting of function-maps, i.e.,
stochastic maps whose columns each contain precisely one 1. This theory is equivalent to
the theory of finite sets and functions: associate with each matrix M in Func the unique
function f with M} :=1 if and only if f(j) = . Relevant subtheories of CPM include the
theories Unitary and Isom of unitary and isometric quantum channels, i.e. completely
positive maps of the form U(p) := U o poUT for U a unitary or an isometry. For a subtheory
D of a process theory C with discarding, the theory D, is formed by adjoining discarding
maps for all objects. Thus we have, e.g., Func, = Func, and Unitary, is the theory of
what are called autonomous quantum channels [18].

4.3 Recovering classical causal Bayesian networks

One reason for our use of the term “Markovian” in a manner specific to the new framework
we are introducing is that this framework subsumes ordinary Markovian causal Bayesian
networks. The key to establishing the relationship is the following property of function-maps
in Mat[R ]2

» Proposition 8. For any (Mat[R], Func,)-valued model of directed acyclic graph G, the
state in Mat[R,] derived by plugging a copy map into each locus (as in the left-hand side
of Eq. 9) is Markov compatible with G in the standard sense used in probabilistic graphical
modeling. Conversely, any Bayesian network based on DAG G is derivable from some G-based,
(Mat[R.], Func, )-valued causal model by this prescription.

Proof. A state like the one in Eq. 4 is a G-based, (Mat[R], Func,)-valued model composed
with copy maps at all loci. The common-cause functions following the loci happen also to
be copy maps, which are indeed morphisms in Func,. On the other hand, starting from a
(Mat[R, ], Func, )-valued model with generic common-cause functions also yields a state of
this form, thanks to Eq. 8 for functions:

2 In synthetic probability based on Markov categories [11], Eq. 8 defines conditional independence of a
map’s outputs (conditioned on its input).
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We have now shown using Eq. 8 how some of the copy maps in classical Bayesian
networks emerge in our framework when Func, is the common-cause subtheory. In the
next section, after posing the general identification problem, we will show how standard
“observational data” can be extracted from our classical interventional models via what we
call perfect passive observation instruments, which do not involve copy maps. We will then
have recovered the standard notion of classical causal identification as just one case on the
same footing as quantum and new classical problems.

5 Interventions and the identification problem

» Definition 9. For a given abstract causal structure, a semantic process theory C, and
an object A in C for each locus in the abstract causal structure, a local intervention regime
assigns to each A an instrument in C of type A — A.

For a fixed local intervention regime and a fixed classical or quantum model of the abstract
causal structure, “implementing” the intervention regime for one iteration of the causal
scenario results in the joint realization of a combination of maps at all the loci: at each locus,
one branch of the instrument assigned to that locus is realized. The joint probability of this
combination of local outcomes is the number resulting from plugging the maps into their loci.
The problem of causal identification is to use such probabilities from a limited set of local
intervention regimes, together with the shape of the abstract causal structure (equivalently,
the graph), to infer probabilities of outcome combinations under other local intervention
regimes.

The set of local intervention regimes whose outcome statistics are to be used for inference
is constructed as follows: for each locus A, an accessible set Z4 of instruments A — A is given.
These accessible sets of instruments define a set of accessible local intervention regimes.

» Definition 10. Given an accessible set To of instruments for each locus A in an abstract
causal structure, an accessible local intervention regime assigns to each A an instrument
from Z4.

The probabilities available for inference are the probabilities that can be “learned” from
accessible local intervention regimes. That is, for each accessible local intervention regime,
the joint probability of each combination of branches will be considered known.

Note that we will always assume every accessible set Z4 contains the identity instrument
of the appropriate type. An identity instrument has one branch, an identity process, depicted
by a wire. Assuming the universal availability of identity instruments is a way of assuming
that given any allowed local intervention regime, one can also choose to “do nothing” at one
of the loci, keeping the same instruments at all other loci3.

In causal identification, what one is trying to identify is the image of some map in the
syntactic process theory G under F. Knowing such an image might allow one to determine
how the model would respond to certain local intervention regimes. For instance, if one
were confronted with an unknown model of the abstract causal structure in Example 6,
inferring the value of F(y o Ax) would allow one to predict the outcome probabilities for a

3 The reason identity interventions are usually not discussed in classical causal inference literature is that
they can be simulated from perfect passive observational data, by “marginalization.” This is no longer
the case, however, when we move beyond classical perfect passive observation. For example, performing
a quantum measurement and then marginalizing over the outcome will not in general lead to the same
statistics on the remaining loci as not doing the measurement at all.
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local intervention regime consisting of an identity instrument at Z and arbitrary instruments
at X and Y. However, one is initially given only limited access to the functor F', namely
the probabilities associated with accessible local intervention regimes applied to the whole
data-generating process F(cg). For simplicity, we will focus on the problem of inferring
F(cg) itself, from which one can compute the outcome probabilities for arbitrary local
intervention regimes. In general, however, we might only be interested in predicting the
results of interventions at certain loci, in which case we might be able to focus on a simpler
problem.

In full, the causal identification problem we will study is defined by the following in each
instance: a directed acyclic graph G, specifying an abstract causal structure cg € G; a
semantic process theory C (either Mat[R ] or CPM) and a subtheory C..; a G-based, (C, C..)-
valued Markovian interventional causal model F'; and an accessible set Z4 of instruments for
each locus A.

The inputs for the identification task are the (labeled) graph G, the pair of concrete process
theories (C,C..), the accessible set of instruments for each locus A, and the data generated by
F(ce) under each accessible local intervention regime (i.e., the joint probabilities of realizing
combinations of branches). The task is to compute F(cg). If this task is possible, we will
say G-based (C,C,.)-valued models are identifiable from the accessible sets of instruments.

For the kinds of classical and quantum causal scenarios we are studying, there always
exist finite sets of local instruments that, if declared accessible, suffice for identification
regardless of the common-cause subtheory®. In contrast, we will consider how accessible sets
that do not suffice for identification of models with one common-cause subtheory become
sufficient when the common-cause subtheory is further restricted.

A typical example in the case of C = Mat[R] is for the accessible set of instruments at
each locus to consist of the “perfect passive observations.” Note that when reasoning in both
the classical and quantum process theories simultaneously, we draw generic states and effects
as asymmetric triangles, reserving symmetric triangles for Mat[R | alone.

» Definition 11. For object A in Mat[R,], the perfect passive observation instrument of
type A — A has branches

I
F

where the state labeled i is given by the column vector with 1 in row ¢ and all other entries 0,
and the effect labeled i is the matriz transpose of that column vector.

Knowing which branch of a perfect passive observation instrument has been implemented
means being certain of the value a random variable has taken, and certain that the variable
retains that value as it is input to subsequent causal mechanisms.

In the previous section, we saw that any (Mat[R ], Func, )-valued model can be translated
diagrammatically into a Bayesian network by plugging “copy” maps into all loci. This
procedure is equivalent to considering such a model with perfect passive observations at
each locus. We can see this by noting that the probability of any particular joint outcome
associated with a joint state w such as the one in (4) can be obtained by plugging in the
effect associated to that outcome, e.g.:

4 See p. 107 of [9] for a way to construct such sets, and explanation of how the construction represents the
idea of controlled experiments, from which we expect to be able to deduce any data-generating process.
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R CaGacAT

P(A=a,B=b,C=¢,D=d,E=¢) =

Then, we can apply the following equation satisfied by the copy and any effect associated
with a unit vector:

o

to obtain a perfect passive observation at every locus; e.g.,

Hence, knowing the state w is the same as knowing the probabilities associated with perfect
passive observations.

We now study what kinds of classical models can be identified from perfect passive
observations.

» Proposition 12. Perfect passive observation instruments do not suffice for identifying
(Mat[R ], Mat|R ])-valued Markovian models.

The proposition means that for some graphs G, there are multiple G-based,
(Mat[R, ], Mat[R,])-valued Markovian models that behave identically under all local in-
tervention regimes involving only perfect passive observation instruments, but differently
under other local intervention regimes. It should not surprise readers familiar with causal
inference; if the common-cause maps can be arbitrary stochastic matrices, they can essen-
tially introduce confounding. The modifier “Markovian” would not ordinarily be applied
to generic instances of what we are calling (Mat[R. ], Mat[R,])-valued Markovian models.
It would, however, describe what we call (Mat[R,|, Func,)-valued Markovian models. For
these models, where common-cause maps are restricted to functions, there are no hidden
confounders and identification from perfect passive observation is always possible.

» Proposition 13. (Mat[R, ], Func,)-valued Markovian models are identifiable from perfect
passive observation instruments.

In the proof in Appendix A, the last rewriting step uses the fact that the classical “copy”
map literally copies the state that leaves a locus after a perfect passive observation. In
quantum inference, and in classical inference with generalized observation, this calculation
will be unavailable, and a new technique will be introduced to take its place.
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5.1 Quantum and generalized classical observation

In some classical causal scenarios, observational data are noisy®. After one learns the result
of a test, one’s credences about the possible values of the variable are given by a probability
distribution. Furthermore, one’s credences about the possible values being fed forward may
be different—one may understand that the procedure whereby one learns about the variable’s
value tends to change the value. We now study causal identification in such situations
and in quantum scenarios by process-theoretically generalizing perfect passive observation
instruments to kinds of classical and quantum instruments that may be “noisy” rather
than “perfect,” and “disturbing” rather than “passive,” but are consistent with the idea of
observational instruments as those for which the state leaving a locus is determined by the
effect that has been realized there, and not by the experimenter’s further choice. Quantum
causal identification with, e.g., projective measurement instruments turns out similar to
classical causal identification with noisy and disturbing instruments.

The generalized observations that will constitute the accessible sets of instruments are
such that when one learns an outcome, one models the observation as having implemented
an effect followed by a state.

» Definition 14. A process of type A — A’ is called o-separable if it consists of an effect
A — I followed by a state I — A’.

» Definition 15. An instrument of type A — A’ is o-separable if each of its branches is a
o-separable process.

» Example 16. A surgical intervention, composed of a discarding map followed by a causal
state preparation, corresponds to a o-separable instrument with one branch.

» Example 17. A classical perfect passive observation instrument is a o-separable instrument.

» Example 18. Any orthonormal basis for a finite-dimensional Hilbert space induces a
o-separable CPM-valued instrument called an ONB measurement (a.k.a. a non-degenerate
von Neumann measurement).

The entities that will serve as well as perfect passive observation instruments for causal
identification are “complete sets of o-separable instruments,” whose definition invokes the
concept of “informational completeness.”

» Definition 19. A set of effects {m; : A — I} is called informationally complete for A if
any state p : I — A is uniquely determined by the set of numbers m; o p. Similarly, a set
of states {p; : I — A} is called informationally complete for A if any effect 71 : A — I is
uniquely determined by the set of numbers 7o p;.

In Mat[R,] and CPM, a set is informationally complete if and only if it spans the relevant
vector space, where the vector space associated with an object A in CPM is the space L(A)
of linear operators on Hilbert space A.

» Definition 20. A set of o-separable instruments of type A — A will be called complete
if (i) the set of all states appearing in the branches of the instruments is informationally
complete for A, and (i) the set of all effects appearing in the branches of the instruments is
informationally complete for A.

5 Hidden Markov models, the standard means of modeling this phenomenon, graphically represent
variables quite differently from causal Bayesian networks, and moreover are not meant for studying
interventions.
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» Example 21. In Mat[R_], a perfect passive observation instrument by itself constitutes a
complete set of o-separable instruments.

» Example 22. For any object in CPM, there is a finite set of ONB measurements forming
a complete set of o-separable instruments. One example is the set of ONB measurements
corresponding to the bases of eigenvectors for the d? generalized Pauli matrices on a Hilbert
space of dimension d.

» Example 23. In Mat[R,], let

6=1[8 9 ¢ =[2 1] V= m V= [ﬂ

The instrument with branches 1) o ¢ and 1)’ o ¢’ constitutes a single-instrument marginally
informationally complete set of o-separable instruments of type 2 — 2. When a locus
representing a binary random variable (with values denoted 1 and 2) is probed with this
instrument, if the variable’s true value is 1, 9 o ¢ is realized with probability .8 and 9’ o ¢’
with probability .2. If the true value of the variable is 2, i o ¢ is realized with probability
.9 and ¢’ o ¢’ with probability .2. If branch 1 o ¢ is realized, the value of the variable fed
forward after the probing is totally randomized. If branch 1)’ o ¢’ is realized, the value fed
forward is 1 with probability .9 and 2 with probability .1. Instruments that are “biased”
toward the realization of certain branches can be thought of as modeling certain kinds of
selection effects, which are an important topic of study both in statistics in general and in
causal identification research [7].

We will show how classical and quantum Markovian causal models with appropriately
restricted common-cause subtheories can be identified when the accessible set of instruments
at each locus is a complete set of o-separable instruments.

6 Quantum common causes and convolution of maps

In this section, we will establish that autonomous quantum channels satisfy a quantum
version of Eq. 8, where the quantum meaning of the “copy” dot will be given. Ultimately Eq.
8 will be exploited for identification of both classical and quantum Markovian causal models.

We pass from CPM to the larger process theory FVect of all linear maps to introduce
super-operators that are not completely positive but will be used for diagrammatic quantum
causal inference. First, we define super-operators

w:L(Ha) @ L(Ha) = L(Ha) 0:L(Ha) = L(Ha) @ L(Ha)
where p corresponds to matrix multiplication, i.e., u(p ® o) := po, and § is its adjoint with

respect to the Hilbert-Schmidt inner product. The latter is easiest to describe concretely by
its action on basis elements written in Dirac’s “bra-ket” notation (see Appendix B):

8(11y (1) =D li)(k| @ |k) (]
k

Now we introduce diagrammatic notation like that used in the classical case. We’ll write:
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It is straightforward to show a few basic identities using these generators, e.g.,

A® B A B

and their (vertical) mirror-images, which imply that § and try, give every object of the form
L(H4) in FVect a comonoid structure. Here, in contrast to the classical case, the comonoid
structure is non-cocommutative, i.e., Eq. 3 does not hold. This structure has been described
in [6].

The classical maps depicted by /L\ and & are the matrix transposes of those depicted

by the already-defined vertical mirror images of the respective diagrams.
The following two definitions are the diagrammatic equivalents of those for the same
terms in Appendix B.

» Definition 24. The convolution ®1 x ®5 of two quantum or classical maps 1,95 : A — B
is po (P ® Py)o0d.

» Definition 25. For both FVect and Mat|R], the convolution inverse of a map, indicated
by that map’s diagram inside {—}~1, satisfies

When this notation is used in calculations for Section 7, one or both of the objects A and B
will be the unit object, i.e., f will be an effect or a number. This notation is consistent with
the use of {—}~! for inverses of positive real numbers in the proof of Prop. 13.

With the quantum semantics for the black dot, the essential similarity between autonomous
quantum channels and function-maps can be stated as follows:

» Theorem 26. Any autonomous quantum channel A satisfies Eq. 8.

The theorem follows from Propositions 31 and 36 in Appendix B. It implies that the common-
cause maps in (CPM, Unitary,)-valued Markovian models can be rewritten just as the
classical common-cause function-maps are, e.g., in the first equality of (9). This rewriting,
together with convolution inverses, will yield an identification technique for (CPM, Unitary,)
models.

7 ldentification

We will study the causal identification problem as described in Section 5, focusing on classical
and quantum cases in which the accessible set of instruments at each locus is a complete
set of o-separable instruments. Specifically, we will show, for the smallest graph in which
two arrows leave a single vertex, that in both the classical and quantum settings, if the
common-cause subtheory C.. is appropriately restrictive, any complete sets of o-separable
instruments at all loci suffice for identification; otherwise, generic such sets do not suffice.

» Example 27. Strictly positive Markovian models based on the graph G of Example 6 valued
in (Mat[R,], Mat[R.]) or (CPM,Isom,) are not identifiable from arbitrary complete sets
of o-separable instruments.
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For (Mat[R, ], Mat[R_]), the statement follows from Proposition 12. For (CPM, Isom,),
an example of a pair of models that respond differently to some interventions but are
indistinguishable under local projective measurement can be constructed from the example
at the end of Section 3 of [9]. (The labels X and Z are swapped relative to the labeling in
Example 6; the common-cause map Az is the parallel composite of an identity map and the
state u.) Here common-cause maps from Isom, can be thought of as potentially introducing
unseen auxiliary systems that correlate outcomes at multiple loci.

If the common-cause subtheory is restricted to Func, in the classical case or Unitary,
in the quantum case, complete sets of o-separable instruments at all loci become sufficient
for identification.

» Proposition 28. Markovian models based on the graph G of Example 6 wvalued in
(Mat[R,], Func,) or (CPM, Unitary,) are identifiable whenever the accessible set of in-
struments at each locus is a complete set of o-separable instruments.

The proof, in Appendix A, applies Theorem 26 and convolution inverses of quantum and
classical maps.

8 Conclusion

This paper has addressed the problem of defining quantum Markovian graphical causal models
by formulating causal models as combs and replacing the copy maps of categorical probability
by “common cause” maps describing how information may be shared among intervention
loci. The framework allows the formulation of causal inference problems parametrized by
the process theory, common-cause subtheory, and available sets of instruments. When the
quantum common-cause subtheory consists of autonomous quantum channels, Theorem 26
gives the quantum causal models a structure that can be used to identify the models even
when one is given access to only highly restricted probing operations. Meanwhile, the
formalism permits the study of new kinds of classical causal identification problems solvable
when function-maps are taken as the classical common-cause subtheory.
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A Identifiability proofs

In our study of identifiability conditions, we always assume that all models, whether classical
or quantum, are strictly positive in the following sense:

» Definition 29. An interventional causal model based on graph G is called strictly positive
if for each generating map of the formx:e1 ®...®e; — X in G, in the case C = Mat[R,]
the stochastic matriz F(x) has only strictly positive entries, or in the case C = CPM the
quantum channel F(z) has full Choi rank.
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The Choi rank of a quantum channel is defined in terms of the channel’s Choi matrix,
discussed in Appendix B. When a strictly positive classical or quantum model is composed
with any non-zero state and any non-zero effect, the result is a strictly positive real number.
Our strict positivity assumption serves a similar purpose to that of standard requirements of
strictly positive distributions in causal inference, which guarantee that relevant conditional
probabilities are defined; here the guarantee is that scalars inverted in our identification
protocols are in fact non-zero, and more generally that effects have “convolution inverses.”

One common feature of Mat[R,] and CPM that will help with causal identification is
local process tomography.

» Proposition 30. The theories Mat[R.] and CPM have local process tomography: any
process f : A® B — C ® D is determined by numbers

NN

c| D

(10)

V'

where 1,5, k, and | index any informationally complete sets of states or effects for the
appropriate objects.

We will often leave the interpretation functor F' from the syntactic process theory G into
the semantic process theory implicit and use boldface to distinguish abstract processes in G
from their images under F, writing, e.g., « := F'(z). Labels for objects/intervention loci will
be identical between the syntactic and semantic process theories, since the distinction will
already be clear from the labels for processes.

Proof of Proposition 13. The proposition can be proven with techniques from [13], via the
equivalence we have discussed between our (Mat[R, |, Func,)-valued Markovian models
and the causal Bayesian networks formulated in that article. Here, however, we prove the
proposition only for one graph, so that the procedure can be compared directly with the one
in Section 7 for quantum and classical identification from generalized observation.

An unknown (Mat[R, ], Func, )-valued Markovian model based on the graph G in Exam-
ple 6 is a functorial interpretation of the abstract causal structure cg in that example. Since
the common-cause subtheory is Func,, Eq. (8) applies to the common-cause maps, which
can then be absorbed into larger processes y’ and z’, resulting in a new representation for
the unknown model:

Inferring the values of the processes x, y’, and z’ on the right-hand side-which one does by
inferring all their matrix entries—is equivalent to inferring the process F(cq).
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One first computes the processes © and y’ by determining all their matrix entries. For x,
the numbers

are obtained via a local intervention regime consisting of perfect passive observation at locus
X and identity interventions at Y and Z. The process y’ is tomographically determined as
follows:

The desired quantity has been rewritten as the product of a probability obtained via perfect
passive observation at X and Y (and identity intervention at Z) and a number obtainable
from the known value of x.

Finally, z’ is computed from probabilities obtained via a local intervention regime
consisting of perfect passive observation at all three loci, and from inverses of numbers
already determined in previous steps.
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Proof of Proposition 28. As in the demonstration of Prop. 13, but now for both the classical
and quantum cases, Eq. 8 and defining new unknown processes ¢y’ and z’ lead to a
simplification of the unknown model as shown in expression (11). To identify the model, one
proceeds as before to compute the processes « and y’ by determining the probabilities given
by their composition with appropriate informationally complete sets of states and effects.

The union of the accessible set of instruments at a locus, say X, is a set of maps, indexed
by, say, ¢. Each map ¢ is composed of an effect fx(¢) and a state gx(¢), where fx and gx
are functions associated with locus X. Marginal informational completeness of the set of
instruments means that the set {fx(¢)}, of effects and the set {gx(¢)}4 of states are each
informationally complete for system-type X.

One determines x by learning for the informationally complete set of effects fx(¢) the
probability

~eo”

7

The right-hand diagram is a probability learned from probing with o-separable instruments at
locus X and identity instruments elsewhere. In contrast to the case of classical perfect passive
observation, inferring the value of & now might involve more than one local intervention
regime, so that X can be probed with multiple instruments.

Next, one proceeds to determine ¢y’ tomographically as in the proof of Prop. 13, but in
general collating data from multiple local intervention regimes:

At this point, in the case of classical perfect passive observation, the computation of
z in the proof of Prop. 13 uses the fact that the classical “copy” map literally copies the
pure states that leave a locus after a perfect observation. For quantum measurements, even
maximally informative projective measurements, and for generalized classical observation,
the state leaving the first locus is not copiable, and hence this calculation isn’t available.
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In this general case, once one has computed the values of x and y’, one can tomographically
determine the value of the process

which one can learn for informationally complete sets of states gx(¢) and effects fz(w).
Knowing also the value of y’, one can compute for each v the convolution inverse of
fy () oy’, and compose it with the process (12) as follows:

One now knows the latter process for an informationally complete set of states gx (), and
hence obtains the value of the process z’. The known processes x, y’, and z’ can now be
composed to form the entire data-generating process in expression (11), completing the
causal inference. |
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B Choi-Jamiotkowski isomorphism and channel convolution

The Choi-Jamiotkowski isomorphism gives a bijective correspondence between linear super-
operators £ : L(H ) — L(Hp) and linear maps pf : Hp @ H* — Hp @ HY. The linear map
o€, called the Choi matriz of £, can be defined explicitly in terms of a basis {|i)4} C Ha
and its dual basis {|¢) 4~} C HY as follows:

25 alil) @ i) a- (] (13)

Here we have used Dirac’s “bra-ket” notation to write operators/matrices as products of
basis vectors (“kets” |i)4) and their associated dual vectors (“bras” 4 ().

The Choi-Jamiotkowski isomorphism states that £ is completely positive if and only if p©
is positive. Now, for a quantum channel ® : L(H4) — L(Hp) ® L(H¢) define the following
three positive operators:

ppcia = p® pBa = Do @ tra () poja =D, @ tra, (p°)  (14)

We can regard each of these as an operator on Hp ® He @ H (note that we have suppressed
“swap” maps above).

Theorem 2 in [1] implies the following, which will be used to establish Eq. 8 for autonomous
quantum channelsS.

» Proposition 31. If ® is an autonomous quantum channel, then it satisfies

PBC|A = PB|APC|A (15)

We therefore proceed to study channels satisfying Eq. 15.

B.1 Channel convolution

Satisfying Eq. 15 will be shown equivalent to decomposing in a certain way with respect
to the following convolution operation for superoperators. For (not necessarily completely
positive) linear maps ®1, Py : L(Ha) — L(Hp), let @1 %« Py : L(Ha) — L(Hp) be a new
linear map defined on basis elements |i)(j| € L(H) as follows:

Dy x Dy([i Z‘I’ ) (k) ®2(|E) (7))

First, we show that the Choi-Jamiotkowski isomorphism carries this operation to matrix
multiplication.

» Lemma 32. Let p®1, p®2, and p®1*®2 be the Choi matrices of the super-operators ®, ®,,
and ®1 * @y, respectively. Then p®ipP2 = pP1*Pz,

Proof. Unroll (13) and simplify. <

Although the convolution of an arbitrary pair of completely positive maps need not be
completely positive, the convolution of a pair of completely positive maps that commute
under convolution is completely positive:

5 Theorem 2 in [1] is used in that article to motivate a definition of quantum Markovianity based on
the idea that directed edges in a graph should indicate signaling relations between input and output
systems of a unitary quantum channel.
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» Corollary 33. For completely positive maps ®1, P2 : L(Ha) — L(Hp), the super-operator

D1 x Oy is completely positive if and only if ®1 x Py = Do *x Pq.

Proof. Suppose ®; x &5 = @y * ®;. Then, using Theorem 32, we have: p®1p®2 = pP1*P2 =
Doxdy _ Dy

P =p

and hence positive itself. Therefore ®; * ®5 is completely positive. Conversely, if ®; * ®5 is

completely positive then p®1*®2 is positive. Hence, by Theorem 32, p®1p®2 is also positive,

p®1. So p®1*®2 is the product of commuting positive operators p®t and p®2,

which is only possible if the positive operators p®* and p®2 commute. This in turn implies
that p®1*®2 = p®2*®1_ By an inverse application of the Choi-Jamiotkowski isomorphism, we
conclude that ®; * &5 = &y x 0. <

Now, we can get a fully channel-based version of Eq. 15. For Hilbert spaces H 4, Hp, we
define the (un-normalized) depolarizing channel as follows for all states p € L(H ):

da,B(p) = tr(p)Iny

This channel is equivalent to the identity operator under the Choi-Jamiotkowski isomorphism,
S0 it behaves as a unit for channel convolution.

For a channel ®pc|4 := ®, we define the reduced channels ® 4 and ®¢ |4 simply by
applying d to the appropriate output:

Ppja = (1yy ®@dy,)o® Poja = (dyp ® 1)o@

One can straightforwardly check that the Choi matrices of these channels are the reduced
states in (14). From that fact and Lemma 32, we can immediately conclude:

» Lemma 34. A channel ® : L(HA) — L(Hp) ® L(Hc) has Choi matrices satisfying Eq. 15
if and only if Ppcja = Ppja * Poya-

» Definition 35. The convolution inverse of a completely positive map ® is a linear map
®V satisfying ® + D = dD x & = dy p.

A completely positive map has a convolution inverse if and only if its associated Choi
matrix pg is invertible; in that case, the convolution inverse is the linear map defined by the
usual matrix inverse pgl under the Choi-Jamiolkowski isomorphism. For classical positive
matrices, we can define the convolution inverse similarly, and it is given concretely by the
positive matrix whose elements are (M(=Y); ; := 1/M, ;.

From the graphical rules for convolution in Section 6, we can derive the condition for a
quantum map to satisfy Eq. 8:

» Proposition 36. The Choi matriz of channel ® : L(Ha) — L(Hp) ® L(Hc) factors
according to Eq. 15 if and only if

Proof. Writing ® as ®c|a, we apply Lemma 34, then simplify:

|5 1© 5_|© (/N
‘ ‘I)BC\A ‘ = ‘ ‘I)B\A * ‘P(,‘\A ‘ = =
[ L
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