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Abstract
We present and investigate a general framework for studying modal fixpoint logics and some related
versions of monadic second-order logic, by means of certain finite automata that operate on Kripke
structures. Characteristic of these modal automata is that the co-domain of their transition function
is a set of formulas of a so-called one-step logic. The motivation for taking this perspective is that if
a logic is characterised by a class of modal automata, many of its properties are already determined
at the level of the much simpler one-step logic.
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1 Modal automata

There is a long tradition in theoretical computer science connecting the research fields of
automata theory and logic. This link becomes particularly strong when automata are used
to classify (possibly) infinite objects like streams, trees or graphs. Interestingly, this research
area has provided not only fundamental theoretical results, such as Rabin’s decidability
theorem, but also quite concrete applications in computer science, such as tools for the
automatic verification of reactive systems.

Building on this tradition, and in particular on the work by Janin & Walukiewicz [8, 9] and
D’Agostino & Hollenberg [3] on the modal µ-calculus, we present and investigate a general
framework for studying modal fixpoint logics, and some versions of monadic second-order
logic, by means of certain finite automata that operate on Kripke structures.

▶ Definition 1. Let Q be a set of proposition letters. A (Kripke) structure over Q is a triple
S = (S, R, κ) where S is a set of objects called points or worlds, R ⊆ S × S is a binary
relation and κ is a Q-marking or colouring on S, that is, a map κ : S → ℘(Q). Given a state
s, the set {t ∈ S | (s, t) ∈ R} of its successors is denoted as R[s]. A pointed structure is a
pair (S, s) where s is a point in S, and a query is a class of pointed structures.

Characteristic of the modal automata that we are about to introduce is that the co-domain
of their transition function is a set of formulas in a simple formalism that we call a one-step
logic. The concept of a one-step logic was developed by several authors, including Cîrstea,
Pattinson and Schröder, in the setting of coalgebraic modal logic.

▶ Definition 2. A one-step model over a set A of monadic predicates is a pair (D, m) where
m : D → ℘(A) is a A-marking on D.

A one-step logic is a pair (L,⊩1) where L is a one-step language, that is, a map L assigning
to any set A a collection L(A) of objects called one-step formulas; and ⊩1 is a truth relation
between one-step formulas and one-step models. If we have (D, m) ⊩1 ϕ we will say that ϕ is
true of (D, m) or that (D, m) satisfies ϕ.

We will require every one-step formula ϕ to be monotone; that is: (D, m) ⊩1 ϕ implies
(D, m′) ⊩1 ϕ whenever m′ is an extension of m (that is, m(d) ⊆ m′(d) for every d ∈ D).
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5:2 Modal Automata

In addition to the monotonicity requirement, we impose some natural coherence conditions
on one-step logics; for instance, we require that L(A) ⊆ L(B) if A ⊆ B, that the truth relation
is invariant under isomorphism, etc. We will usually blur the distinction between one-step
logics and one-step languages, since the semantics of one-step formulas is generally fixed.

▶ Example 3. The one-step language FOE1(A) of first-order logic with equality on a set of
predicates A is given by the sentences (formulas without free variables) generated by the
following grammar, where a ∈ A and x, y are individual variables:

ϕ ::= a(x) | x = y | x ̸= y | ∃x.ϕ | ∀x.ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ (1)

We use FO1 for the equality-free fragment of FOE1, where we omit the clauses x = y and
x ̸= y, and we write FOE∞

1 for the extension of FOE1 with the infinity quantifiers ∃∞ and ∀∞.
The semantics of these languages is the obvious one.

▶ Definition 4. Let L and Q be, respectively, a one-step language and a set of proposition
letters. An L-automaton over Q is a quadruple A = (A, Θ, Ω, aI) where A is a finite set of
objects called states; Θ : A × ℘(Q) → L(A) is its transition map; Ω : A → ω is its priority
function; and aI is its initial state.

We will use the term “modal automaton” as a generic name for L-automata for some
one-step logic L. The operational semantics of these automata is given in terms of parity
games.

▶ Definition 5. Let L and Q be, respectively, a one-step language and a set of proposition
letters. Furthermore, let S = (S, R, κ) and A = (A, Θ, Ω, aI) be, respectively, a Kripke
structure and an L-automaton over Q.

The acceptance game A(A,S) is given as the two-player game of which the set of positions,
as well as their owners, admissible moves and priorities are given in the table below:

Position Player Admissible moves Priority
(a, s) ∈ A × S ∃ {m : S → ℘(A) | R[s], m ⊩1 Θ(a, κ(s))} Ω(a)
m : S → ℘(A) ∀ {(b, t) | b ∈ m(t)} 0

Explained in words, the acceptance game A(A,S) proceeds in rounds, each round moving
from one basic position (a, s) ∈ A × S to the next. At such a basic position, it is ∃’s task
to turn the set R(s) of successors of s into the domain of a one-step model for the formula
Θ(a, κ(s)) ∈ L(A). That is, she needs to come up with a marking m : R[s] → ℘(A) such that
(R[s], m) ⊩1 Θ(a, κ(s)) (and if she cannot find such a valuation, she looses immediately). One
may think of the set {(b, t) | b ∈ m(t)} as a collection of witnesses to her claim that, indeed,
the one-step formula Θ(a, κ(s)) is true of (R[s], m). The round ends with ∀ picking one of
these witnesses, which then becomes the basic position at the start of the next round. (Unless,
of course, ∃ managed to satisfy the formula Θ(a, κ(s)) with the empty set of witnesses, in
which case ∀ gets stuck and looses immediately.)

If ∃ and ∀ play the acceptance game A(A,S) and neither of them gets stuck, the resulting
match π will take infinitely long. In this case we use the parity condition to assign a winner
to π: we consider the set Inf(π) of states that occur infinitely often in π, and declare ∃ to be
the winner of π if the maximal priority of the states in Inf(π) is even, and ∀ if this maximum
priority is odd.

▶ Definition 6. Let A = (A, Θ, Ω, aI) be some modal automaton. In case the pair (aI , s) is
a winning position for ∃ in the game A(A,S), we say that A accepts the pointed structure
(S, s) and we write S, s ⊩ A. A query is recognized by an automaton A if it contains exactly
those pointed structures that are accepted by A.
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We say that a logic is characterised by a class of modal automata if for every formula of
the logic we can find an equivalent automaton n the class, and vice versa. Some well-known
logics are of this kind.

▶ Example 7. Any one-step logic L naturally induces a fixpoint logic µL which is characterised
by the class Aut(L). The modal µ-calculus µML is characterised by the class Aut(FO1), and
various fragments of µML, including the alternation-free fragment and computational tree
logic (CTL), correspond to natural subclasses of Aut(FO1). The same applies to propositional
dynamic logic (PDL), if we consider a multi-sorted version of FO1.

Furthermore, if we restrict attention to tree-based structures, monadic second-order logic
is characterised by the class Aut(FO1), and weak monadic second-order logic is characterised
by a natural fragment of Aut(FOE∞

1 ).

2 Some results

The motivation for studying logics from the perspective of modal automata is that much of
their sometimes complex behaviour is already determined at the far simpler one-step level.
This means that, in order to establish some property of a class of modal automata – or of
the logic it characterises – it may suffice to prove a similar result for the one-step logic(s)
underlying the automata. Here are some examples, where L and L′ represent arbitrary
one-step logics.

Closure properties of recognisable queries If L is closed under taking, respectively, disjunc-
tions, conjunctions and boolean duals, then the class of Aut(L)-recognizable queries is
closed under taking union, intersection, and complementation.

Bisimulation invariance We say that a one-step formula ϕ is invariant under quotients if we
have (D, m) ⊩1 ϕ iff (D′, m′) ⊩1 ϕ, whenever (D′, m′) is a quotient of (D, m).
If L is the quotient-invariant fragment of L′ (in some strong sense), then Aut(L) is the
bisimulation-invariant fragment of Aut(L′). This result lies at the heart of the proof of the
Janin-Walukiewicz Theorem, which identifies the modal µ-calculus as the bisimulation-
invariant fragment of monadic second-order logic.

Nondeterminism Modal automata are generally alternating in nature, but there is a natural
notion of nondeterminism as well: we call a modal automaton A nondeterministic if in
any of its acceptance games, the role of ∀ is essentially reducible to that of a pathfinder.
At the level of one-step logic, we introduce the notion of a disjunctive formula; roughly
the idea is that if a disjunctive formula holds of some model then we can also satisfy it
in a related model where the marking assigns to each element of the domain either the
empty set or some singleton. It is easy to see that a modal automaton A = (A, Θ, Ω, aI)
is nondeterministic if the codomain of Θ consists of disjunctive formulas.

Disjunctive bases and simulation Assume that L′ ⊆ L and that L′ consists of disjunctive
formulas and is closed under disjunctions. If L and L′ satisfy some natural distributive
laws we call L a disjunctive basis for L.
If L has a disjunctive basis L′ then every (alternating) L–automaton can be simulated
by an equivalent (nondeterministic) L′-automaton. Furthermore, the fixpoint logic
characterised by L has several nice properties, such as the finite model property and
uniform interpolation. This is how D’Agostino and Hollenberg established this property
for the modal µ-calculus.
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5:4 Modal Automata

Coalgebraic generalisations

The concept of a modal automaton, and all applications in the theory of fixpoint logics and
monadic second-order logics that we mentioned above, can be generalised to the setting of
universal coalgebra. This means that the concept and the results become available for other
coalgebraic modal (fixpoint) logics, such as graded, monotone, or probabilistic modal logic. A
further result that we didn’t mention above concerns the transfer of axiomatic completeness.

Disjunctive bases and axiomatic completeness Any one-step axiomatisation H for L nat-
urally induces an axiom system µH for the µ-calculus µL induced by L. If H is sound and
complete for L and L has a disjunctive basis, then µH is sound and complete for the set
of valid µL-formulas. By this result, which generalises Walukiewicz’ completeness result
for the modal µ-calculus [12], one may for instance obtain complete axiomatisations for
the graded and the monotone modal µ-calculus.

Here are some pertinent publications in which the theory of modal automata has been
developed: [2, 1, 4, 5, 6, 7, 10, 11]
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