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Abstract
Preservation theorems provide a direct correspondence between the syntactic structure of first-order
sentences and the closure properties of their respective classes of models. A line of work has explored
preservation theorems relativised to combinatorially tame classes of sparse structures [Atserias et al.,
JACM 2006; Atserias et al., SiCOMP 2008; Dawar, JCSS 2010; Dawar and Eleftheriadis, MFCS
2024]. In this article we initiate the study of preservation theorems for dense classes of graphs. In
contrast to the sparse setting, we show that extension preservation fails on most natural dense classes
of low complexity. Nonetheless, we isolate a technical condition which is sufficient for extension
preservation to hold, providing a dense analogue to a result of [Atserias et al., SiCOMP 2008].
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1 Introduction

The early days of finite model theory were considerably guided by attempts aiming to
relativise theorems and techniques of classical model theory to the finite realm. While many
of these were trivially shown to admit no meaningful relativisation, others were extended in a
way that broadened their applicability and rendered them extremely useful tools in the study
of finite models. Preservation theorems were at the heart of this approach. Most notably,
the Łoś-Tarski preservation theorem which asserts that a first-order formula is preserved
by extensions between all structures if and only if it is equivalent to an existential formula,
was shown to fail in the finite from early on [28, 22]. On the contrary, the homomorphism
preservation theorem asserting that a formula is preserved by homomorphisms if and only
if it is existential-positive, was open for several years until it was surprisingly shown to
extend to finite structures [27], leading to applications in constraint satisfaction problems
and database theory.

Still, considering all finite structures allows for combinatorial complexity, giving rise
to wildness from a model-theoretic perspective, and intractability from a computational
perspective. Indeed, problems which are hard in general become tractable when restring
to classes of finite structures which are, broadly-speaking, tame [12]. In the context of
preservation theorems, restricting on a subclass weakens both the hypothesis and the
conclusion, therefore leading to an entirely new question. A study of preservation properties
for such restricted classes of finite structures was initiated in [4] and [3] for homomorphism
and extension preservation respectively. This investigation led to the introduction of different
notions of wideness, which allow for arguments based on the locality of first-order logic.
However, as it was recently realised [14], these arguments require slightly restrictive closure
assumptions which are not always naturally present. In particular, it was shown that
homomorphism preservation holds over any hereditary quasi-wide class which is closed under
amalgamation over bottlenecks.
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7:2 Extension Preservation on Dense Graph Classes

Quasi-wideness is a Ramsey-theoretic condition which informally says that in any large
enough structure in the class one can remove a bounded number of elements, called bottleneck
points, so that there remains a large set of pairwise far-away elements. Here, the number of
bottleneck points is allowed to dependent on the choice of distance. Hereditary quasi-wide
classes were later identified with nowhere dense classes [24]. Over the years, a successful
program was developed aiming to understand the combinatorial and model-theoretic features
of nowhere dense classes, and exploit them for algorithmic purposes [25]. The culmination of
this was the seminal result that first-order model checking is fixed-parameter tractable on
nowhere dense classes [21].

In recent years, the focus has shifted towards extending this well understood theory to
more general, possibly dense, well-behaved classes, which fall out of the classification provided
by the sparsity program. In these efforts, the model-theoretic notions of monadic stability
and monadic dependence have played central roles. Monadic stability, initially introduced
by Baldwin and Shelah [5] in the context of classification of complete first-order theories,
prohibits arbitrarily large definable orders in monadic expansions. In the language of first-
order transductions, a class is monadically stable whenever it does not transduce the class of
finite linear orders. More generally, a class is monadically dependent if it does not transduce
the class of all graphs. In the context of monotone classes of graphs, Adler and Adler [1]
first observed that the above notions coincide with nowhere density, a result which was also
extended to arbitrary relational structures [7]. The generalisation of sparsity theory to dense
classes eventually led to the result that first-order model checking is fixed-parameter tractable
on all monadically stable graph classes [15], which in particular include transductions of
nowhere dense classes. It is conjectured that the above result extends to all monadically
dependent classes, while a converse was recently established for hereditary graph classes
(under standard complexity-theoretic assumptions) [18].

The purpose of the present article is to initiate the investigation of preservation theorems
on tame dense graph classes. Much like nowhere dense classes are equivalently characterised
by quasi-wideness, monadically stable and monadically dependent graph classes also admit
analogous wideness-type characterisations. In the case of monadic stability, the relevant
condition is known as flip-flatness [17]; this may be viewed as a direct analogue of quasi-
wideness which replaces the vertex deletion operation by flips, i.e. edge-complementations
between subsets of the vertex set. For monadically dependent classes the relevant condition,
known as flip-breakability [18], allows to find two large sets such that elements in one are far
away from elements in the other, again after performing a bounded number of flips. However,
unlike quasi-wideness which was introduced in the context of preservation and then shown
to coincide with nowhere density, these conditions were introduced purely for the purpose
of providing combinatorial characterisations of monadic stability and monadic dependence
respectively. The immediate question thus becomes whether these conditions, or variants
thereof, can be used to obtain preservation in restricted tame dense classes, in analogy to
the use of wideness in [3, 4, 13, 14].

The first observation is that the arguments for homomorphism preservation are not
directly adaptable in this context due to the nature of flips. Indeed, while the vertex-deletion
operation respects the existence of a homomorphism between two structures, the flip operation
is not at all rigid with respect to homomorphisms precisely because the latter do not reflect
relations, e.g. the graph K1 +K1 homomorphically maps to K2, but (K1 +K1) = K2 does
not map to K2 = K1 + K1. This issue evidently disappears if one considers embeddings.
As it was observed in [14, Corollary 2.3], the extension preservation property implies the
homomorphism preservation property in hereditary classes of finite structures, so considering
extension preservation is more general for our purposes.
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However, this generality comes at a cost. Indeed, the argument for extension preservation
from [3] requires that the number of vertex-deletions is independent of the choice of radius, a
condition known as almost-wideness. This is a more restrictive assumption which therefore
applies to fewer sparse classes. It is not known whether extension preservation is obtainable
for quasi-wide classes. At the same time, unlike [14, Theorem 4.2] whose proof is essentially
a direct application of Gaifman’s locality theorem based on an argument of Ajtai and
Gurevich [2], the proof of extension preservation [3, Theorem 4.3] is admittedly much more
cumbersome. One explanation for this is that the homomorphism preservation argument
relies on the fact that the disjoint union operation endows the category of graphs and
homomorphisms with coproducts, i.e. for any graphs A,B,C if there are homomorphisms
f : A → C and g : B → C then there is a homomorphism f + g : A + B → C whose
pre-compositions with the respective inclusion homomorphisms ιA : A → A + B and
ιB : B → A+B are equal to f and g respectively. On the other hand, no construction satisfies
the above property in the category of graphs with embeddings; in fact coproducts do not
even exist in the category of graphs with strong homomorphisms (see [23, Corollary 4.3.15]).

Our first contribution is negative, showing that extension preservation can fail on tame
dense classes of low complexity. In particular, we show that extension preservation fails
on the class of all graphs of (linear) cliquewidth at most k, for all k ≥ 4. This answers
negatively a question of [14]. This is contrary to the sparse picture, where it was shown
that extension preservation holds in the class of graphs of treewidth at most k, for every
k ∈ N [3, Theorem 5.2]. Interestingly, extension preservation holds for the class of all graphs
of cliquewidth 2 as this class coincides with the class of cographs which is known to be
well-quasi-ordered [11]. Our construction is based on the encoding of linear orders via the
neighbourhoods of certain vertices. Orders are also central to the original counterexample
for the failure of extension preservation in the finite due to Tait [28]. There, the orders
are crucially presented over a signature with two relation symbols and one constant, which
does not allow for a direct translation to undirected graphs. Sadly, the fact that orders
appear to provide counterexamples rules out the possibility of using an argument based on
flip-breakability to establish preservation.

The second contribution of the article is positive. In particular, we provide a dense
analogue to [3, Theorem 4.3]. For this, we introduce strongly flip-flat classes, i.e. those
flip-flat classes such that the number of flips is independent of the choice of radius. Moreover,
we formulate the dense analogue of the amalgamation construction, which we call the flip-sum,
whose existence in the class is necessary for the argument to be carried out. The main theorem
(Theorem 18 below) may thus be formulated as saying that extension preservation holds
over any hereditary strongly flip-flat class which is closed under flip-sums over bottleneck
partitions.

2 Preliminaries

We assume familiarity with the standard notions of finite model theory and structural graph
theory, and refer to [19] and [25] for reference. In this article, graphs shall always refer to
simple undirected graphs i.e. structures over the signature τE = {E} where E is interpreted
as a symmetric and anti-reflexive binary relation. For a graph G we write V (G) for its
domain (or vertex set), and E(G) for its edge set. In general, for a τ -structure A and a
relation symbol R ∈ τ of arity r ∈ N we write RA ⊆ Ar for the interpretation of R in A. We
shall abuse notation and not distinguish between structures and their respective domains.

CSL 2025



7:4 Extension Preservation on Dense Graph Classes

Given two structures A,B in the same relational signature τ , a homomorphism f : A → B

is a map that preserves all relations, i.e. for all R ∈ τ and tuples ā from A we have
ā ∈ RA =⇒ f(ā) ∈ RB. A strong homomorphism is a homomorphism f : A → B

that additionally reflects all relations, i.e. f(ā) ∈ RB =⇒ ā ∈ RA. An injective strong
homomorphism is called an embedding or extension.

A τ -structure B is said to be a weak substructure of a τ -structure A if B ⊆ A and the
inclusion map ι : B ↪→ A is a homomorphism. Likewise, B is an induced substructure of A
if the inclusion map is an embedding; we write B ≤ A for this. Given a structure A and a
subset S ⊆ A we write A[S] for the unique induced substructure of A with domain S. An
induced substructure B of A is said to be proper if B ⊊ A; we write B ⪇ A for this. We say
that a class of structures in the same signature is hereditary if it is closed under induced
substructures. Moreover a class is called addable if it is closed under taking disjoint unions,
which we denote by A+B.

By the Gaifman graph of a structure A we mean the undirected graph Gaif(A) with
vertex set A such that two elements are adjacent if, and only if, they appear together in some
tuple of a relation of A. Given a structure A, r ∈ N, and a ∈ A, we write NA

r (a) for the
r-neighbourhood of a in A, that is, the set of elements of A whose distance from a in Gaif(A)
is at most r. We shall often abuse notation and write NA

r (a) for the induced substructure
A[NA

r (a)] of A. For a set C ⊆ A we define NA
r (C) :=

⋃
a∈C N

A
r (a). A set S ⊆ A is said to

be r-independent if b /∈ NA
r (a) for any a, b ∈ S.

For r ∈ N, let dist(x, y) ≤ r be the first-order formula expressing that the distance
between x and y in the Gaifman graph is at most r, and dist(x, y) > r its negation. Clearly,
the quantifier rank of dist(x, y) ≤ r is at most r. A basic local sentence is a sentence

∃x1, . . . , xn(
∧
i ̸=j

dist(xi, xj) > 2r ∧
∧

i∈[n]

ψNr(xi)(xi)),

where ψNr(xi)(xi) denotes the relativisation of ψ to the r-neighbourhood of xi, i.e. the formula
obtained from ψ by replacing every quantifier ∃x θ with ∃x(dist(xi, x) ≤ r ∧ θ), and likewise
every quantifier ∀x θ with ∀x(dist(xi, x) ≤ r → θ). We call r the locality radius, n the width,
and ψ the local condition of ϕ. Recall the Gaifman locality theorem [19, Theorem 2.5.1].

▶ Theorem 1 (Gaifman Locality). Every first-order sentence of quantifier rank q is equivalent
to a Boolean combination of basic local sentences of locality radius 7q.

A class C of structures is said to be quasi-wide if for every r ∈ N there exist kr ∈ N
and fr : N → N such that for all m ∈ N and all A ∈ C of size at least fr(m) there exists
S ⊆ A such that A \ S contains an r-independent set of size m. Moreover, if kr := k ∈ N is
independent of r, then C is said to be almost-wide. Finally, we say that a class C is uniformly
quasi-wide (uniformly almost-wide respectively) if the hereditary closure of C is quasi-wide
(almost-wide respectively).

For a graph G and a pair of disjoint vertex subsets U and V , the subgraph semi-induced
by U and V is the bipartite graph with sides U and V that contains all edges of G with one
endpoint in U and second in V . By the half-graph of order n we mean the bipartite graph
with vertices {ui, vi : i ∈ [n]} and edges {(ui, vj) : i ≤ j}.

For first-order formulas δ(x) and ϕ(x, y) the interpretation Iδ,ϕ is defined to be the
operation that maps a graph G to the graph H := Iδ,ϕ(G) with vertex set V (H) :=
{v ∈ V (G) : G |= δ(v)} and edge set

E(H) :=
{

(u, v) ∈ V (H)2 : u ̸= v ∧G |= (ϕ(u, v) ∨ ϕ(v, u))
}
.
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For a graph class C, we write Iδ,ϕ(C) := {Iδ,ϕ(G) : G ∈ C}. We say that a class C is an
interpretation of a class D, or that D interprets C, if there is some Iδ,ϕ such that C ⊆ Iδ,ϕ(D).
We say that C is a transduction of a class D, or D transduces C, if there are k ∈ N and unary
predicates P1, . . . , Pk and formulas δ(x) and ϕ(x, y) over the signature τE ∪{P1, . . . , Pk} such
that C ⊆ Iδ,ϕ(Dk), where Dk is the class of all τE ∪ {P1, . . . , Pk}-structures whose τE-reducts
are in D. A graph class C is monadically dependent if C does not transduce the class of all
graphs. C is moreover monadically stable if C does not transduce the class of all half-graphs.

We say that a formula ϕ is preserved by extensions over a class of structures C if for all
A,B ∈ C such that there is a embedding from B to A, B |= ϕ implies that A |= ϕ. We say that
a class of structures C has the extension preservation property if for every formula ϕ preserved
by extensions over C there is an existential formula ψ such that M |= ϕ ⇐⇒ M |= ψ

for all M ∈ C. We analogously define the homomorphism preservation property, replacing
“embeddings” with “homomorphisms” and “existential” with “existential positive” in the
above.

Given a formula ϕ and a class of structures C, we say that M ∈ C is a minimal induced
model of ϕ in C if M |= ϕ and for any proper induced substructure N of M with N ∈ C
we have N ̸|= ϕ. The relationship between minimal models and extensions preservation is
highlighted by the following folklore lemma. We provide a proof for completeness.

▶ Lemma 2. Let C be a hereditary class of finite structures. Then a sentence preserved by
extensions in C is equivalent to an existential sentence over C if and only if it has finitely
many minimal induced models in C.

Proof. Suppose that ϕ has finitely many minimal induced models in C, say M1, . . . ,Mn. For
each i ∈ [n], let ψi be the primitive sentence inducing a copy of Mi and write ψ :=

∨
i∈[n] ψi;

evidently ψ is existential. We argue that ϕ is equivalent to ψ over C. Indeed, if A ∈ C
models ϕ then A contains a minimal induced model B of ϕ as an induced substructure. By
hereditariness B ∈ C and so B is isomorphic to some Mi. Since there is clearly an embedding
B → A it follows that A |= ψ. On the other hand if A |= ψ, then A |= ψi for some i ∈ [n]
and so some Mi embeds into A. Since Mi |= ϕ and ϕ is preserved by extensions this implies
that A |= ϕ as required.

Conversely, assume that ϕ is equivalent to an existential sentence over C. In particular,
ϕ is equivalent to some disjunction

∨
i∈[n] ψi where each ψi is primitive. It follows that

each ψi is the formula inducing one of finitely many structures M i
1, . . . ,M

i
ki

. Now, if A is a
minimal induced model of ϕ then in particular A |= ψi for some i ∈ [n], i.e. there is some
j ∈ [ki] and an embedding h : M i

j → A. If h is not surjective, then A[h[M i
j ]] is a proper

induced substructure of A, which is in C by hereditariness, and models ϕ; this contradicts
the minimality of A. Hence, the size of every minimal induced model of ϕ in C is bounded
by maxi∈[n] maxj∈[ki] |M i

j |. It follows that ϕ can have only finitely many minimal induced
models in C. ◀

3 Failure of preservation on graphs of cliquewidth 4

One consequence of Lemma 2 is that extension preservation holds over any class C that is
well-quasi-ordered by the induced substructure relation, i.e. classes for which there exists no
infinite collection of members which pairwise do not embed into one another. In particular,
this applies to the class of cographs [11], which are precisely the graphs of cliquewidth 2
(see [9] for background on cliquewidth). Hence, one may reasonably inquire whether extension
preservation is generally true for the class CWk of all graphs of cliquewidth at most k. This

CSL 2025



7:6 Extension Preservation on Dense Graph Classes

would in particular reflect an analogous phenomenon that is true in the sparse setting, that
is, that extension preservation holds over the class T Wk of all graphs of treewidth at most k
[3, Theorem 5.2].

Classes of bounded cliquewidth are not monadically stable, as even the class of cographs
contains arbitrarily large semi-induced half-graphs, but they are monadically dependent. In
fact, their structural properties imply tame behaviour going much beyond the context of
first-order logic (see [10] for a survey). Still, as it turns out, extension preservation fails even
at the level of cliquewidth 4. To show this, we produce a formula ϕ preserved by extensions
over the class of all finite undirected graphs, which admits infinitely many minimal models
of cliquewidth 4. In particular, Lemma 2 implies that extension preservation fails on any
class that includes these minimal models. Our idea is based on encoding two interweaving
linear orders on the two parts of a semi-induced graph. Two vertices on the same part are
comparable in this ordering whenever their neighbourhoods in the other part are set-wise
comparable. This effectively forces a semi-induced half-graph.

Our formula is in the form of an implication, proceeded by a primitive part which
induces a gadget corresponding to the beginning and end of the two linear orders. The
antecedent of the implication first makes sure that the above relation is a pre-ordering
on each side of the semi-induced graph, while it imposes that the vertices of the gadget
corresponding to the minimal and maximal elements are indeed minimal and maximal in this
pre-ordering. Moreover, it essentially ensures that successors, i.e. vertices of the same part
whose neighbourhoods over the other part differ by a single element, are adjacent on one
part and non-adjacent on the other. The consequent then imposes that any vertex on the
first side has an adjacent successor, while every vertex on the other side has a non-adjacent
successor. Because each one of the two pre-orders precisely compares neighbourhoods over
the other part, this forces the pre-orders to be anti-symmetric, and thus the two parts to
have the same number of vertices.

Finally, two additional vertices are also added on one side of the semi-induced bipartite
graph, which are part of the gadget and serve no role in this ordering. These make sure that
our intended minimal models form an anti-chain in the embedding relation, as they crucially
result in the existence of a unique embedding of the gadget into the models (Lemma 5 below).

We now turn to formal definitions. Let I(v1, v2, v3, v4, v5, v6, u1, u2, u3, u4, u5, u6, a, b) be
the formula that induces the graph of Figure 1 below. In the following, we treat the free
variables of I as constants for simplicity. The notation ∀(x ∈ U) will denote the relativisation
of the universal quantifier to the neighbours of v1 that are not v2, i.e. ∀(x ∈ U) ψ(x) is
shorthand for ∀x(E(x, v1) ∧ x ̸= v2 → ψ(x)). Likewise, the notation ∀(x ∈ V ) denotes the
relativisation of the universal quantifier to the non-neighbours of v1 that are not a or b, i.e.
∀(x ∈ V ) ψ(x) is shorthand for ∀x(¬E(x, v1)∧x ̸= a∧x ̸= b → ψ(x)). Existential quantifiers
relativised to U and V are defined analogously. Consider the auxiliary formulas:

x ≤V y := ∀(z ∈ U)[E(z, x) → E(z, y)];

x <V y := x ≤V y ∧ ¬(y ≤V x);

χ1 := ∀(x ∈ V )∀(y ∈ V )[x ≤V y ∨ y ≤V x];

χ2 := ∀(x ∈ U)[E(x, v6) → x = u6];

χ3 := ∀(x ∈ V )∀(y ∈ V )[x <V y ∧ E(x, y) → ∃!(z ∈ U)(E(y, z) ∧ ¬E(x, z))].

In analogy, we define:

x ≤U y := ∀(z ∈ V )[E(z, x) → E(z, y)];
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x <U y := x ≤U y ∧ ¬(y ≤U x);

ξ1 := ∀(x ∈ U)∀(y ∈ U)[x ≤U y ∨ y ≤U x];

ξ2 := ∀(x ∈ V )[E(x, u1) → x = v1];

ξ2∗ := ∀(x ∈ V ) E(x, u6);

ξ3 := ∀(x ∈ U)∀(y ∈ U)[x <U y ∧ ¬E(x, y) → ∃!(z ∈ V )(E(y, z) ∧ ¬E(x, z))].

We then define:

ϕ1 := χ1 ∧ χ2 ∧ χ3;

ϕ2 := ∀(x ∈ V )[x ̸= v1 → ∃(y ∈ V )(E(x, y) ∧ x <V y)];

ψ1 := ξ1 ∧ ξ2 ∧ ξ2∗ ∧ ξ3;

ψ2 := ∀(x ∈ U)[x ̸= u6 → ∃(y ∈ U)(¬E(x, y) ∧ x <U y)].

Putting the above together we finally define:

ϕ := ∃v̄, ū, a, b(I(v̄, ū, a, b) ∧ [ϕ1(v̄, ū, a, b) ∧ ψ1(v̄, ū, a, b) → ϕ2(v̄, ū, a, b) ∧ ψ2(v̄, ū, a, b)])

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5 v6

a b

Figure 1 The gadget induced by I(v̄, ū, a, b).

▶ Proposition 3. The formula ϕ is preserved by extensions over the class of all finite graphs.

Proof. Let G,H be two graphs such that G embeds into H, and G |= ϕ. Without loss of
generality we assume that V (G) ⊆ V (H) and that the identity map is an embedding. We
shall argue that H |= ϕ.

Since G |= ϕ, we may fix (tuples of) vertices v̄, ū, a, b ∈ V (G) such that G |= I(v̄, ū, a, b).
Evidently, H also models I(v̄, ū, a, b). If H ̸|= (ϕ1(v̄, ū, a, b) ∧ ψ1(v̄, ū, a, b)) then H |= ϕ; we
may therefore assume that H |= (ϕ1(v̄, ū, a, b)∧ψ1(v̄, ū, a, b)). Let U := NH(v1)\{v2} ⊆ V (H)
be the neighbours of v1 in H that are not v2, and V := V (H) \ (U ∪ {a, b}) ⊆ V (H) be
the non-neighbours of v1 that are not a or b (in particular v1 ∈ V ). We call the vertices
x ∈ V V -elements. For each V -element x we write Ux := {y ∈ U : H |= E(x, y)} for the
U -neighbourhood of x. We similarly define U -elements and V -neighbourhoods. From each of
the conjuncts χi of ϕ1 we deduce that in H:

CSL 2025



7:8 Extension Preservation on Dense Graph Classes

χ1: V -elements have pairwise comparable U -neighbourhoods;
χ2: the only member of Uv6 is u6;
χ3: if two adjacent V -elements x, y satisfy Ux ⊊ Uy then |Uy| = |Ux| + 1.

We shall argue that items (1)-(3) are still true within G, replacing V with V ′ := V ∩V (G)
and U with U ′ := U ∩ V (G), and so G |= ϕ1(v̄, ū, a, b). We write U ′

x := Ux ∩ V (G) for the
relativised U ′-neighbourhoods. Clearly, items (1) and (2) are still true in G. For item (3),
suppose that x, y ∈ V ′ are two adjacent V ′-elements, such that V ′

x ⊊ V ′
y . Since V -elements

in H have pairwise comparable U -neighbourhoods, we deduce that Vx ⊊ Vy and therefore
that |Vy| = |Vx| + 1 as H satisfies χ3. In particular, it follows that |V ′

y | = |V ′
x| + 1 as required,

and so G models χ3(v̄, ū, a, b) and consequently ϕ1(v̄, ū, a, b).
Similarly, from each of the conjuncts ξi of ψ1 we deduce that in H:

ξ1: U -elements have pairwise comparable V -neighbourhoods;
ξ2: the only element of Vu1 is v1;
ξ2∗ : Vu6 is equal to V ;
ξ3: if two non-adjacent U -elements satisfy Vx ⊊ Vy then |Vy| = |Vx| + 1.

Arguing as before, we obtain that G |= ψ1(v̄, ū, a, b). Since G |= ϕ and G |= (ϕ1(v̄, ū, a, b)∧
ψ1(v̄, ū, a, b)) we deduce that G |= (ϕ2(v̄, ū, a, b) ∧ ψ2(v̄, ū, a, b)), i.e. the following are true
in G:
ϕ2: every V ′-element that is not v1 is adjacent to a V ′-element of strictly greater U ′-

neighbourhood;
ψ2: every U ′-element that is not u6 is non-adjacent to a U ′-element of strictly greater

V ′-neighbourhood.

We proceed to show that the above implies that V = V ′ and U ′ = U , and hence G = H.
In particular, this implies that H |= ϕ as claimed.

Since G is finite and satisfies ϕ2 we obtain some n ∈ N and a sequence of distinct
elements α1 := v6, α2, . . . , αn := v1 of V ′ such that U ′

αi
⊊ U ′

αi+1
and G |= E(αi, αi+1) for all

i ∈ [n− 1]. In particular, Uαi
⊊ Uαi+1 and H |= E(αi, αi+1) for all i ∈ [n]. As H satisfies

χ3 we obtain that |Uαi+1 | = |Uαi
| + 1 for all i. Moreover, since H satisfies χ2 and every

element of U is adjacent to v1, we obtain that Uα1 = {u6} and Uαn
= U . In particular,

we deduce that n = |U | ≤ |V ′|. Symmetrically, we obtain some k ∈ N and a sequence of
elements β1 := u1, β2, . . . , βk := u6 of U ′ such that V ′

βi
⊊ V ′

βi+1
and G |= ¬E(βi, βi+1) for all

i ∈ [k − 1]. Hence, Vβi ⊊ Vβi+1 and H |= ¬E(βi, βi+1) for all i ∈ [k − 1]. Once again, since
H satisfies ξ2, ξ2∗ , and ξ3 we obtain that Vβ1 = {v1}, Vβn

= V , and |Vβi+1 | = |Vβi
| + 1. It

thus follows that k = |V | ≤ |U ′|. Putting the above together we have that

|U | ≤ |V ′| ≤ |V | ≤ |U ′| ≤ |U |.

Consequently, n = k while V = V ′ = {α1, . . . , αn} and U = U ′ = {β1, . . . , βn} as
needed. ◀

We now define the intended minimal induced models of our formula ϕ.

▶ Definition 4. For n ≥ 7 we define the graph Hn with vertex and edge set

V (Hn) := {v1, . . . , vn} ∪ {u1, . . . , un} ∪ {a} ∪ {b};

E(Hn) := {(vi, uj) : i ≤ j} ∪ {(vi, vj) : j = i+ 1} ∪ {(ui, uj) : j ̸= i+ 1}
∪ {(a, ui) : i ≥ 2} ∪ {(b, ui) : i ≥ n− 1} ∪ {(a, v2), (b, vn−1)},

respectively. We also write In for the subgraph of Hn induced on the set

V (In) := {v1, v2, v3, vn−2, vn−1, vn, u1, u2, u3, un−2, un−1, un, a, b} ⊆ V (Hn).
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Figure 2 The graph H7.

We aim to establish that the graphs Hn are all minimal induced models of ϕ. Towards this,
we first argue that the only embedding of In in Hn is the inclusion map. While this lemma
is not conceptually difficult, it requires analysing and ruling out different cases corresponding
to potential images of the gadget. Its proof may be found in Section A.

▶ Lemma 5. Let n ≥ 7 and f : In → Hn be an embedding. Then f is the inclusion map.

▶ Proposition 6. For each n ≥ 7 the graphs Hn are minimal induced models of ϕ.

Proof. We fix some n ≥ 7. We first argue that Hn |= ϕ for every n ≥ 7. Indeed, we clearly
have that

Hn |= I(v1, v2, v3, vn−2, vn−1, vn, u1, u2, u3, un−2, un−1, un, a, b).

Moreover, the set U := {u1, . . . , un} ⊆ V (Hn) is precisely the set of neighbours of v1 which
are not v2, while the set V := {v1, . . . , vn} ⊆ V (Hn) is precisely the set of non-neighbours
of v1 which are not a or b. Evidently, we then have that for every vertex vi ∈ V \ {v1} the
vertex vi−1 ∈ V is adjacent to vi and its neighbourhood over U strictly contains that of
vi. Consequently Hn |= ϕ2(v̄, ū, a, b). Likewise, for every vertex ui ∈ U \ {un} the vertex
ui+1 ∈ U is non-adjacent to ui and its neighbourhood over V strictly contains that of ui. It
follows that Hn |= ψ2(v̄, ū, a, b), and so Hn |= ϕ as required.

Now, suppose that H is a proper induced subgraph of Hn, and assume for a contradiction
that H |= ϕ, i.e. there are vertices x1, . . . , x6, y1, . . . , y6, α, β of H

H |= (I(x̄, ȳ, α, β) ∧ [ϕ1(x̄, ȳ, α, β) ∧ ψ1(x̄, ȳ, α, β) → ϕ2(x̄, ȳ, α, β) ∧ ψ2(x̄, ȳ, α, β)]).

Since these vertices induce a copy of In, it follows by Lemma 5 that

(x1, x2, x3, x4, x5, x6, y1, y2, y3, y4, y5, y6, α, β) =
(v1, v2, v3, vn−2, vn−1, vn, u1, u2, u3, un−2, un−1, un, a, b),

and so In ≤ H ⪇ Hn. Moreover, letting U ′ := U ∩ V (H) and V ′ := V ∩ V (H) we see that
the elements in V ′ have pairwise comparable neighbourhoods over U ′, and the elements
of U ′ have pairwise comparable neighbourhoods over V ′;
the only neighbour of vn in U ′ is un, and the only neighbour of u1 in V ′ is v1;
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un is adjacent to every element of V ;
if x, y ∈ V ′ are adjacent and the U ′-neighbours of y are strictly more than the U ′-
neighbours of x then there is some i ∈ [n− 1] such that y = vi and x = vi+1, and there is
a unique vertex in U ′ that is adjacent to y and not adjacent to x, namely ui;
if x, y ∈ U ′ are adjacent and the V ′-neighbours of y are strictly more than the V ′-
neighbours of x then there is some i ∈ [n− 1] such that y = vi+1 and y = vi, and there is
a unique vertex in V ′ that is adjacent to y and not adjacent to x, namely vi.

It follows that H |= (ϕ1(v̄, ū, a, b) ∧ ψ1(v̄, ū, a, b)). Since H |= ϕ this implies that H |=
(ϕ2(v̄, ū, a, b) ∧ ψ2(v̄, ū, a, b)). However, since V (H) ⊊ V (Hn), there is some i ∈ [4, n − 3]
such that vi /∈ V (H) or ui /∈ V (H). Assume the former, and let i ∈ [4, n− 3] be maximal
such that vi /∈ V (H). It follows that there is no vertex in x ∈ V ′ that is adjacent to
vi+1 and its neighbourhood over U ′ is strictly greater than that of vi+1, contradicting that
H |= ψ1(v̄, ū, a, b). By a symmetric argument we obtain a contradiction if ui /∈ V (H), and
thus follows that H ̸|= ϕ. ◀

▶ Theorem 7. Extension preservation fails on any hereditary graph class containing the
graphs Hn for arbitrarily large n ∈ N.

Proof. Let C be a class of graphs containing the graphs Hn for arbitrarily large n. Since the
formula ϕ is preserved under extensions over the class of all finite graphs, it is in particular
preserved under extensions over C. Since C is hereditary and ϕ has infinitely many minimal
induced models in C, namely the graphs Hn, it follows by Lemma 2 that ϕ is not equivalent
to an existential formula over C. ◀

Finally, we observe that the graphs Hn have bounded cliquewidth, which is easily seen to
be at most 4. For this, we crucially use the fact that successive pairs are adjacent on one side
and non-adjacent on the other. One could simplify the construction, e.g. by using adjacency
to denote succession on both sides, but this would slightly increase the cliquewidth.

▶ Observation 8. The graphs Hn have (linear) cliquewidth 4.

▶ Corollary 9. Extension preservation fails on CWk for every k ≥ 4.

As witnessed by the above, orders appear to provide strong counterexamples to extension
preservation. In the next section we explore preservation in certain monadically stable classes,
where no such issues are expected to arise.

4 Extension preservation on strongly flip-flat classes

Local information on dense graphs can be as complicated as global information, as for
instance is the case with cliques. This fact seemingly renders locality useless in the context
of dense graph classes. Nonetheless, our understanding of tame classes indicates that it is
still possible to recover meaningful local information, after possibly “sparsifying” our graphs
in a controlled manner. The flip operation, which is central to the emerging theory of dense
graph classes, plays precisely this role. We introduce it in the following definition.

▶ Definition 10. Let G be a graph and k ∈ N. A k-partition P of G is a partition of the
vertex set into k labelled parts P1, . . . , Pk, i.e. V (G) =

⋃
i∈[k] Pi and Pi ∩ Pj = ∅ for i ̸= j.

By a k-flip F we denote a symmetric subset of [k]2, i.e. a set of tuples F = {(i, j) : i, j ∈ [k]}
such that (i, j) ∈ F ⇐⇒ (j, i) ∈ F . Given a k-partition P of G and a k-flip F we define
the graph G△FP on the same vertex set as G and on the edge set

E(G△FP ) := E(G)△{(u, v) : u ̸= v, u ∈ Pi, v ∈ Pj , and (i, j) ∈ F}.

where △ denotes the symmetric difference operation.
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We note that the notation for flips existing in the literature uses the notation ⊕ rather
than △ (e.g. in [17]); here we have opted for the latter as the symbol ⊕ was used in [3]
and [14] to denote the amalgamation operation. Moreover, instead of partitioning our graph,
we may define k-flips by applying a sequence of at most k atomic operations, each one
switching the edges and non-edges between two arbitrary subsets A,B of our vertex set.
Evidently, these definitions are equivalent up to blowing up the number of flips by a value
that only depends on k, while we have opted for the partition definition here to simplify our
construction in Definition 14 below.

▶ Definition 11. We say that a hereditary class of graphs C is flip-flat1 if for every r ∈ N
there exist kr ∈ N and a function fr : N → N satisfying that for every m ∈ N and every
G ∈ C of size at least fr(m) there is a kr-partition P of G, a kr-flip F ⊆ [kr]2, and a set
A ⊆ V (G) of size at least m which is r-independent in G△FP . If in the above kr := k ∈ N
does not depend on r, then we say that C is strongly flip-flat.

It was established in [17, Theorem 1.3] that a hereditary class of graphs is flip-flat if, and
only if, it is monadically stable. In particular, every transduction of a quasi-wide class is
flip-flat. The qualitative difference between strong flip-flatness and flip-flatness is precisely
the same as that of almost-wideness and quasi-wideness. We make this idea precise in
the following straightforward proposition, which establishes that every transduction of a
uniformly almost-wide class is strongly flip-flat. For this, we use the following lemma from
[29, Lemma H.3], which follows easily from Gaifman’s locality theorem.

▶ Lemma 12 (Flip transfer lemma, [29]). There exists a (computable) function Ξ : N3 → N
satisfying the following. Fix k, c, q ≥ 1 and Tδ,ϕ a transduction involving c colours and
formulas of quantifier rank at most q. Let G,H be graphs such that H ∈ Tδ,ϕ(G). Then
for every k-partition P of G and k-flip F there exists a Ξ(k, c, q)-partition PH of H and a
Ξ(k, c, q)-flip FH such that for all u, v ∈ V (H):

distG△F P (u, v) ≤ 2q · distH△FH
PH

(u, v).

▶ Proposition 13. Every transduction of a uniformly almost-wide graph class is strongly
flip-flat.

Proof. Let C be a uniformly almost-wide graph class and fix kC ∈ N witnessing this, so that
for every r,m ∈ N there is fr(m) ∈ N satisfying that every G of size at least fr(m) in the
hereditary closure of C contains an r-independent set of size m after removing at most kC
elements. Let D a class such that there is a transduction Tδ,ϕ satisfying D ⊆ Tδ,ϕ(C). Let
c ∈ N be the number of unary predicates used by T , and q be the maximum of the quantifier
ranks of δ and ϕ. We argue that D is strongly flip-flat with k := Ξ(2kC , c, q).

Indeed, fix r,m ∈ N and a graph H ∈ D of size at least f2q·r(m). It follows that there
exists some G ∈ C such that H ∈ Tδ,ϕ(G), and since f2q·r(m) ≤ |V (H)|, we obtain by uniform
almost-wideness that G[V (H)] contains a (2q · r)-independent set of size m after removing
a set of size at most kC. In particular, there is a 2kC -partition P of G and a 2kC -flip F

such that (G△FP )[V (H)] contains an (2q · r)-independent subset of size m; call this set A.
Consequently, Lemma 12 implies that there is a k-partition P of H and a k-flip F such that

1 The original definition of flip-flatness in [17] is the uniform variant of the definition we have provided
here. A simple analysis of the obstructions to monadic stability from [16], reveals that these definitions
are equivalent for hereditary classes of graphs.
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for all a, b ∈ A ⊆ V (H)

r = 2q · r
2q

≤ distG△F P (a, b)
2q

≤ distH△FH
PH

(a, b),

i.e. A is an r-independent set of size m in H△FH
PH . It follows that D is strongly flip-flat. ◀

In particular, transductions of bounded degree classes, classes of bounded shrub-depth [20],
and transductions of proper minor-closed classes [4, Theorem 5.3] are all strongly flip-flat.
However, obtaining preservation via locality and wideness in the style of [3, 4, 13, 14]
additionally requires subtle closure assumptions. The proofs of the above articles are
essentially structured into two parts. The first part argues via locality that for every formula
ϕ preserved by extensions (or homomorphisms in the case of [4, 13, 14]) over a class C closed
under substructures and disjoint unions there exist r,m ∈ N such that no minimal induced
model of ϕ in C can contain an r-independent set of size m. In the second part, wideness
is used to bound the size of minimal models of ϕ, as large enough models would have to
contain r-independent sets of size m, under the proviso that a bounded number of bottleneck
points have been removed. To account for the removal of these points, we have to work
with an adjusted formula ϕ′ in an expanded vocabulary, together with suitably adjusted
structures ([2] called these plebian companions) on which we apply the argument of the first
part. Working with ϕ′, however, has translated the requirement of closure under disjoint
unions to closure under a more involved operation which depends on the choice of bottlenecks.
Consequently, preservation can fail on natural tame classes which do not satisfy this closure
condition, e.g. for planar graphs [14, Theorem 5.8].

In the context of vertex deletions, the corresponding operation was amalgamation over
bottlenecks [14, Theorem 4.2]. Here, we must formulate a different operation to account for
the fact that flips are required to witness wideness. This is precisely the construction below.

▶ Definition 14. Given k ∈ N, a graph G, a k-partition P of G, and a k-flip F ⊆ [k2] we
write G ⋆(F,P ) G for the graph whose vertex set V (G ⋆(F,P ) G) := V (G+G) is the same as
the disjoint union of two copies of G, and whose edge set is

E(G ⋆(F,P ) G) := E(G + G) ∪ {(u, v) : u, v are in distinct copies of G, u ∈ Pi, v ∈ Pj , (i, j) ∈ F }

We call this the flip-sum of G over (F, P ).

Figure 3 The graph H ⋆(F,P ) H, where H is the half-graph of order 4, P is the partition into red
(top) and blue (bottom) vertices and F = {(1, 2), (2, 1)}.

We now introduce the relevant translation for the formulas.

▶ Definition 15. Given a k-flip F ⊆ [k]2, consider the formula

EF (x, y) := E(x, y) △(i,j)∈F (Pi(x) ∧ Pj(y)).

over the signature τk
E := τE ∪{P1, . . . , Pk}, where △(i,j)∈F denotes the consecutive application

of the XOR operator over all tuples (i, j) ∈ F . Given a τE-formula ϕ, we define the τk
E-formula
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ϕk obtained from ϕ by replacing every atom E(x, y) with the formula EF (x, y). Moreover, for
every graph G and k-partition P we write G(F,P ) for the {P1, . . . , Pk}-expansion of G△FP

where each predicate is interpreted by the respective part of P . It is then clear from the
definitions and the fact that the flip operation is involutive that

G |= ϕ ⇐⇒ G(F,P ) |= ϕk.

Our goal in Theorem 18 is to start with a strongly flip-flat class and a formula ϕ and apply
the argument of [3, Theorem 4.3] to the formula ϕk and the structures G(F,P ). However,
as previously explained, ϕk is not necessarily preserved under embeddings over C. We can
nonetheless use the following easy lemma in case that the class is closed under the desired
flip-sums, which will be sufficient for our purposes.

▶ Lemma 16. Let C be a hereditary class of graphs and ϕ a formula preserved under
extensions over C. Fix a graph G ∈ C, a k-partition P of G, and a k-flip F ⊆ [k]2. If
G ⋆(F,P ) G ∈ C then

G(F,P ) |= ϕk =⇒ G(F,P ) +G(F,P )[S] |= ϕk

for any S ⊆ V (G).

Proof. Fix C, ϕ,G, P, F as in the statement above, and let S ⊆ V (G). Write G∗ for the
subgraph of G ⋆(F,P ) G induced on the vertex set of G + G[S]; it follows that G∗ ∈ C by
hereditariness. As G(F,P ) |= ϕk we obtain that G |= ϕ, and since G∗ contains an induced
copy of G and ϕ is preserved by extensions over C it follows that G∗ |= ϕ. Let P ∗ be the
natural k-partition of G∗ inherited from G, i.e. for each i ∈ [k] the i-th part P ∗

i of P ∗

contains the union of the i-th parts of G and G[S]. It follows from the definitions that the
structure G∗

(F,P ∗) is isomorphic to G(F,P ) +G(F,P )[S]. Finally, since G∗ |= ϕ we obtain that
G∗

(F,P ∗) |= ϕk and so G(F,P ) +G(F,P )[S] |= ϕk as claimed. ◀

We shall also make use of the following observation, which simply says that the induced
substructures of G(F,P ) are the same as expansions of flips of induced substructures of G.

▶ Observation 17. Let G be a graph, P a k-partition of G, and F a k-flip. Then for every
S ⊆ V (G) the structure G(F,P )[S] is equal to G[S](F,PS), where PS is the k-partition of G[S]
obtained by restricting each part of P on S.

We are now ready to state the main theorem of this section.

▶ Theorem 18. Fix a hereditary class of graphs C. Suppose that there is some k ∈ N such
that for all r ∈ N there is a function fr : N → N satisfying that for every m ∈ N and every
G ∈ C of size at least f(m) there is a k-partition P of V (G), some k-flip F , and A ⊆ V (G)
such that
1. |A| ≥ m;
2. A is r-independent in G△FP ;
3. G ⋆(F,P ) G ∈ C.

Then extension preservation holds over C.

The proof of Theorem 18 is an adaptation of the proof of [3, Theorem 4.3], which
established that extension preservation holds over any class closed under weak substructures
and disjoint unions which is wide, i.e. for every r ∈ N there exists fr : N → N such that for
every m ∈ N every structure with at least fr(m)-many elements contains an r-independent

CSL 2025



7:14 Extension Preservation on Dense Graph Classes

set of size m. Here, we replace wideness by strong flip-flatness by working with the formula
ϕk of Definition 15. Moreover, as previously explained, addability is replaced by assumption
3 above. Preservation is then ensured by Lemma 22. Finally, going from closure under weak
substructures to closure under induced substructures follows by analysing [3, Theorem 4.3].
The detailed proof can be found in Section B.

▶ Example 19. For d ∈ N, write Dd be the class of all graphs G such that the maximum
degree of G is at most d, or the maximum degree of G, i.e. the complement graph of G, is
at most d. Let fr(m) = (m − 1)(d + 1)r + 1 and consider a graph G ∈ Dd of size at least
fr(m). If G has maximum degree d, then G must contain an r-independent set of size m.
Consequently, letting P = {V (G)} and F = ∅, we see that G ⋆(F,P ) G is simply the disjoint
union of two copies of G, which still has maximum degree d and is therefore in Dd. On the
other hand if G has maximum degree d, then for P = {V (G)} and F = {(1, 1)}, we see that
Ḡ = G△FP has an r-independent set of size m. Since G ⋆(F,P ) G is the complement of the
disjoint union of two copies of G and so G ⋆(F,P ) G has maximum degree d, it follows that
G ⋆(F,P ) G ∈ Dd. Consequently, extension preservation holds over Dd by Theorem 18.

As mentioned above, Lemma 2 implies that any well-quasi-ordered class has the extension
preservation property. In particular, this applies to classes of bounded shrubdepth [20,
Corollary 3.9]. Still, in the following example we indirectly show that the class of all graphs of
SC-depth at most k has extension preservation by showing that it satisfies the requirements of
Theorem 18, as an illustration that, although closure under flip-sums is a technical condition,
it can be present in interesting tame dense classes.

▶ Definition 20 ([20], Definition 3.5). We inductively define the class SC(k) as:
SC(0) = {K1};
If G1, . . . , Gn ∈ SC(k), H := G1 + · · · + Gn and X ⊆ V (H), then H

X := H△FP ∈
SC(k + 1) for P1 := X,P2 := V (H) \X and F = {(1, 1)}, i.e. HX is the graph obtained
from H by flipping the edges within X.

▶ Example 21. Fix k ∈ N and let G ∈ SC(k). Consider an SC-decomposition tree of G, i.e.
a labelled tree T of height k+ 1 whose leaves are labelled by the vertices of G, every non-leaf
node is labelled by the graph (G1 + . . . Gn)

X
where Gi are the labels of its children, X is

a subset of
⋃

i∈[n] V (Gi), and the root ρ is labelled by G. Let f(m) = mk+1, and suppose
that |G| > f(m). Since T has height k + 1 and its leaves correspond to the vertices of G,
there must exist some vertex t of T with at least m children. Let t1 := ρ, t2, . . . , tℓ := t

be the unique path from the root of T to t, and for each i ∈ [ℓ] let Xi ⊆ V (G) be the set
coming from the label of ti. Letting P the partition of V (G) into 2ℓ parts depending on the
membership of a vertex within each of X1, . . . , Xℓ and F ⊆ [2ℓ]2 be the flip that corresponds
to complementing each of X1, . . . , Xℓ, it follows that G△FP contains at least m distinct
connected components. Let T ′ be the tree obtained from T by the following operation. We
first create a copy of each subtree of T rooted at a child of tℓ and connect them to tℓ. The
labels are naturally carried from each original subtree to the copy. If the label of tℓ in T
was (G1 + · · · +Gm)

X
, then its label in T ′ is (G1 +G′

1 + · · · +Gm +G′
m)

X∪X′

where each
G′

i corresponds to the copy of Gi, and X ′ corresponds to the set of copies of the vertices
in X. From there, we perform the same operation for i = ℓ − 1, . . . , 1, this time copying
only the children of ti that are not ti+1. This completes the construction of T ′. It is easy
to then see than the root of T ′ corresponds to the graph G ⋆(F,P ) G, thus witnessing that
G ⋆(F,P ) G ∈ SC(k). It follows that the class SC(k) satisfies the requirements of Theorem 18,
and thus extension preservation holds over this class.
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5 Conclusion

We conclude with some questions and remarks. Firstly, it would be of independent interest
to provide a characterisation of strongly flip-flat classes, akin to the characterisation of
almost-wide classes via shallow minors given in [24, Theorem 3.21]. This could either be a
characterisation via excluded induced subgraphs occurring in flips, in analogy to the one of
monadic stability provided in [15], or in terms of shallow vertex minors, in analogy to the
one in [8].

Moreover, it is unclear whether one can produce a formula preserved by extensions with
minimal induced models of cliquewidth 3. The issue with interweaving definable orders is that
one simultaneously requires for two sets to semi-induce a half-graph while (non-)adjacency is
used to mark successors; this requires to keep track of at least four colours classes in a clique
decomposition. We therefore leave the question of whether extension preservation holds over
graphs of cliquewidth 3 open. It is also easily seen that the structures Hn have twin-width 2
(see [6] for definitions). The status of extension preservation on the class of all graphs of
twin-width 1 is also unknown.

The role of orders was crucial in our construction in Section 3. In the context of undirected
graphs, orders are instantiated through half-graphs. It natural to then inquire if, for every
fixed k, ℓ ∈ N, the class of all graphs of cliquewidth at most k which omit semi-induced
half-graphs of size larger than ℓ has the extension preservation property. Every such class
is known to be equal to a transduction of a class of bounded treewidth by [26], and so by
Proposition 13, it is strongly flip-flat. It would therefore be interesting to provide a direct
combinatorial argument witnessing this, so as to be able to verify if such classes satisfy the
closure requirements of Theorem 18.

References
1 Hans Adler and Isolde Adler. Interpreting nowhere dense graph classes as a classical notion

of model theory. European Journal of Combinatorics, 36:322–330, 2014. doi:10.1016/j.ejc.
2013.06.048.

2 Miklos Ajtai and Yuri Gurevich. Datalog vs first-order logic. Journal of Computer and System
Sciences, 49(3):562–588, 1994. 30th IEEE Conference on Foundations of Computer Science.
doi:10.1016/S0022-0000(05)80071-6.

3 Albert Atserias, Anuj Dawar, and Martin Grohe. Preservation under extensions on well-
behaved finite structures. SIAM Journal on Computing, 38(4):1364–1381, 2008. doi:10.1137/
060658709.

4 Albert Atserias, Anuj Dawar, and Phokion G Kolaitis. On preservation under homomorphisms
and unions of conjunctive queries. Journal of the ACM (JACM), 53(2):208–237, 2006. doi:
10.1145/1131342.1131344.

5 John T Baldwin and Saharon Shelah. Second-order quantifiers and the complexity of theories.
Notre Dame Journal of Formal Logic, 26(3):229–303, 1985. doi:10.1305/NDJFL/1093870870.

6 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable fo model checking. ACM Journal of the ACM (JACM), 69(1):1–46, 2021. doi:
10.1145/3486655.

7 Samuel Braunfeld, Anuj Dawar, Ioannis Eleftheriadis, and Aris Papadopoulos. Monadic nip in
monotone classes of relational structures. In 50th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2023). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023.

8 Hector Buffière, Eun Jung Kim, and Patrice Ossona de Mendez. Shallow vertex minors,
stability, and dependence. arXiv preprint arXiv:2405.00408, 2024.

9 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1):77–114, 2000. doi:10.1016/S0166-218X(99)00184-5.

CSL 2025

https://doi.org/10.1016/j.ejc.2013.06.048
https://doi.org/10.1016/j.ejc.2013.06.048
https://doi.org/10.1016/S0022-0000(05)80071-6
https://doi.org/10.1137/060658709
https://doi.org/10.1137/060658709
https://doi.org/10.1145/1131342.1131344
https://doi.org/10.1145/1131342.1131344
https://doi.org/10.1305/NDJFL/1093870870
https://doi.org/10.1145/3486655
https://doi.org/10.1145/3486655
https://doi.org/10.1016/S0166-218X(99)00184-5


7:16 Extension Preservation on Dense Graph Classes

10 Konrad K. Dabrowski, Matthew Johnson, and Daniël Paulusma. Clique-width for hereditary
graph classes, pages 1–56. London Mathematical Society Lecture Note Series. Cambridge
University Press, 2019. doi:10.1017/9781108649094.002.

11 Peter Damaschke. Induced subgraphs and well-quasi-ordering. Journal of Graph Theory,
14(4):427–435, 1990. doi:10.1002/JGT.3190140406.

12 Anuj Dawar. Finite model theory on tame classes of structures. In International Symposium
on Mathematical Foundations of Computer Science, pages 2–12. Springer, 2007. doi:10.1007/
978-3-540-74456-6_2.

13 Anuj Dawar. Homomorphism preservation on quasi-wide classes. Journal of Computer and
System Sciences, 76(5):324–332, 2010. doi:10.1016/J.JCSS.2009.10.005.

14 Anuj Dawar and Ioannis Eleftheriadis. Preservation theorems on sparse classes revisited. arXiv
preprint arXiv:2405.10887, 2024. doi:10.48550/arXiv.2405.10887.

15 Jan Dreier, Ioannis Eleftheriadis, Nikolas Mählmann, Rose McCarty, Michał Pilipczuk, and
Szymon Toruńczyk. First-order model checking on monadically stable graph classes. arXiv
preprint arXiv:2311.18740, 2023.

16 Jan Dreier, Nikolas Mählmann, and Sebastian Siebertz. First-order model checking on
structurally sparse graph classes. In STOC 2023, pages 567–580. ACM, 2023. doi:10.1145/
3564246.3585186.

17 Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, and Szymon Toruńczyk. Indiscernibles and
Flatness in Monadically Stable and Monadically NIP Classes. In Kousha Etessami, Uriel Feige,
and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and
Programming (ICALP 2023), volume 261 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 125:1–125:18, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. doi:10.4230/LIPIcs.ICALP.2023.125.

18 Jan Dreier, Nikolas Mählmann, and Szymon Toruńczyk. Flip-breakability: A combinatorial
dichotomy for monadically dependent graph classes. In Proceedings of the 56th Annual ACM
Symposium on Theory of Computing, pages 1550–1560, 2024. doi:10.1145/3618260.3649739.

19 H-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2nd edition, 1999.
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A The proof of Lemma 5

Here we provide a proof of Lemma 5, which we now restate.

▶ Lemma 5. Let n ≥ 7 and f : In → Hn be an embedding. Then f is the inclusion map.

This is achieved in two steps. First, we consider the subgraph I ′ of Hn induced on
{v1, v2, v3, u1, u2, u3, a}. Evidently, the map gn : I ′ → Hn sending

(v1, v2, v3, u1, u2, u3, a) 7→ (vn−2, vn−1, vn, un−2, un−1, un, b)

is an embedding. We argue that this is the only non-trivial embedding of I ′ in Hn.

▶ Lemma 22. Let n ≥ 7 and f : I ′ → Hn be an embedding. Then f is either the inclusion
map or equal to gn.

Proof. As before, we write V := {v1, . . . , vn} ⊆ V (Hn) and U := {u1, . . . , un} ⊆ V (Hn).
We shall consider the possible images of the vertex v2. Suppose that f(v2) = ui for some
i ∈ [n]. Clearly, since the vertices v1, v3, a are pairwise non-adjacent, we cannot have
f [{v1, v3, a}] ⊆ U . We hence distinguish cases.
1. Suppose that v1, v3, a are all mapped to vertices in V under f . Since these are non-

adjacent, we must have f [{v1, v3, a}] = {vm, vr, vℓ} for some m+ 2 < r+ 1 < ℓ ≤ i. Now,
consider f(u1); this must be some vertex in Hn which is adjacent to only one of vm, vr, vℓ

and not adjacent to ui. This necessarily implies that f(u1) = vi+1, f(v1) = vℓ while ℓ = i.
Consider f(u2); this must be a vertex non-adjacent to vi+1, and adjacent to ui, vi and
exactly one of {vm, vr}. From this we deduce that f(u2) = vi−1, f(a) = vr, and r = i− 2.
Finally, the vertex f(u3) must be adjacent to vm, vi−2, vi, ui, vi+1 and non-adjacent to
vi−1; obviously no such vertex exists in Hn, and we thus obtain a contradiction.

2. Suppose that two of v1, v3, a are mapped to vertices in V and one is mapped to a
vertex in U . In this case we must have that f [{v1, v3, a}] = {um, vr, vℓ} for some
m+ 1 < r + 1 < ℓ ≤ i. Consider f(u1); this must be non-adjacent to vi and adjacent to
exactly one of um, vr, vℓ. This further results in two distinct cases. If f(u1) = vi+1, then
we have f(v1) = vℓ and ℓ = i, which leads to a contradiction with an analogous argument
to the above. If f(u1) = ui−1, then necessarily f(v1) = vr while m = i− 2, r = i− 1, ℓ = i.
Considering f(u2), we now see that this vertex must be non-adjacent to ui−1 and adjacent
to ui, vi−1 and exactly one of {ui−2, vi}; evidently there is no such vertex in Hn and we
thus obtain a contradiction.

3. Suppose that exactly one of v1, v3, a is mapped to a vertex in V and two are mapped to
vertices of U . This forces that f [{v1, v3, a}] = {um−1, um, vℓ} for some m < ℓ ≤ i and
m + 1 < i. Again, consider f(u1); this is non-adjacent to ui and adjacent to exactly
one of {um, um+1, vℓ}. Once again this leads to two options. If f(u1) = vi+1, then we
have f(v1) = vℓ and ℓ = i, which leads to a contradiction as in Case 1. On the other
hand, if f(u1) = ui−1 then we necessarily obtain that f(v1) = um−1 while m = i − 2
and ℓ = i. The vertex f(u2) ∈ Hn must then be non-adjacent to ui−1 and adjacent to
ui−1, ui and exactly one of ui−2, vi; since there is no such vertex in Hn we once again
obtain a contradiction.

4. Suppose that one of v1, v3, a is mapped to a or b under f . Since u3 is adjacent to all of
v1, v2, v3, a it must necessarily be that f(u3) = um for some m > i+ 1. The vertex f(u2)
must then be non-adjacent to um, and adjacent to ui and exactly two of f(v1), f(v3), f(a).
As no such vertex exists in this case, we obtain a contradiction.
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Since the above cases lead to a contradiction, we see that f(v2) /∈ U . Since no vi for
i ∈ [n] \ {2, n− 1} has three neighbours which induce an independent set, this necessarily
implies that f(v2) is equal to v2 or vn−1. Assume that f(v2) = v2. Again, since v1, v3, a

share no edges, we must necessarily have f [{v1, v3, a}] = {v1, v3, a}. Since u3 is adjacent to
all of v1, v2, v3, a we see that f(u3) = um for some m ≥ 3. As u2 is non-adjacent to u3 and
adjacent to v2 to exactly two of v1, v3, a, we see that f(u3) = u3 and f(u2) = u2, which in
turn ensure that f is the inclusion map. By similar reasoning, we deduce that if f(v2) is
equal to vn−1 then f = gn as required. ◀

Proof of Lemma 5. Let f : In → Hn be an embedding. It follows by Lemma 22 that either
f is the inclusion map, or it is the map given by swapping the two induced copies of I ′, i.e.
the map

(v1, v2, v3, u1, u2, u3, a) 7→ (vn−2, vn−1, vn, un−2, un−1, un, b);

(vn−2, vn−1, vn, un−2, un−1, un, b) 7→ (v1, v2, v3, u1, u2, u3, a).

Since un−2 is adjacent to v2, the latter case would imply that u1 is adjacent to vn−1, which
is a contradiction. Hence, f is the inclusion map as claimed. ◀

B The proof of Theorem 18

Before proceeding with Theorem 18 we introduce some relevant definitions. Fix a relational
signature τ and q, d ∈ N, and let A be a τ -structure. By the (q, d)-type of some a ∈ A we
shall mean the set containing all the MSO formulas θ(x) of quantifier rank2 at most q, up
to logical equivalence, such that NA

d (a) |= θ(a). When we speak of a (q, d)-type t over τ ,
without reference to a particular element in a structure, we shall mean a (q, d)-type of some
element in some τ -structure. We say that an element a ∈ A realises a (q, d)-type t whenever
NA

d (a) |= θ(a) for all θ(x) ∈ t. Evidently, the number of (q, d)-types is bounded by some
p ∈ N depending only on τ and q. Given a τ -structure A, a set C ⊆ A, and a (q, d)-type t,
we say that t is covered by C in A if all a ∈ A realising t satisfy NA

d (a) ⊆ C. For n ∈ N we
also say that t is n-free over C in A if there is a 2d-independent set S ⊆ A of size n such
that each a ∈ S realises t and NA

d (a) ∩ C = ∅.

▶ Lemma 23. Fix a relational signature τ and q, d ∈ N. Let p be the number of (q, d)-types
over τ . Then for every τ -structure A and n ∈ N, there exists a radius e ≤ 2dp and a set
D ⊆ A of at most (n− 1)p points such that each (q, d)-type is either covered by NA

e (D) or is
n-free over over NA

e (D).

Proof. Fix an enumeration t1, . . . , tp of all (q, d)-types over τ . We shall define D and e

inductively starting at D0 = ∅ and e0 = 0. Assuming Di and ei have been defined, we let
C = NA

ei
(Di). If all types are covered by C or are n-free over C then we are done; otherwise,

we let j ∈ [p] be minimal such that tj is neither covered by C nor n-free over C. We then
define a set E ⊆ A inductively, starting with E0 := ∅ and at step ℓ + 1 adding to Eℓ a
realisation a ∈ A \ NA

2d(C ∪ Eℓ) of tj if there exists one; this iteration must stop within
n − 1 steps, as otherwise tj would be n-free over C. In particular, |E| ≤ n − 1 and tj is
covered by NA

ei+2d(Di ∪ E). We subsequently let Di+1 = Di ∪ E and ei+1 = ei + 2d. It
follows that the construction must stop within at most p steps, since at each step we cover a
previously uncovered type, which in addition, remains covered for the rest of the construction.
Consequently, |D| ≤ (n− 1)p and e ≤ 2dp as claimed. ◀

2 Here both first-order and second-order quantifiers contribute to the quantifier rank.
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▶ Theorem 18. Fix a hereditary class of graphs C. Suppose that there is some k ∈ N such
that for all r ∈ N there is a function fr : N → N satisfying that for every m ∈ N and every
G ∈ C of size at least f(m) there is a k-partition P of V (G), some k-flip F , and A ⊆ V (G)
such that
1. |A| ≥ m;
2. A is r-independent in G△FP ;
3. G ⋆(F,P ) G ∈ C.

Then extension preservation holds over C.

Proof. Fix C as above, and let ϕ be a formula preserved by extensions overs C. We shall
obtain a bound on the size of the minimal induced models of ϕ, by arguing that any large
enough model of ϕ contains a proper induced substructure which also models ϕ. We can
then conclude that ϕ is equivalent to an existential formula over C using Lemma 2.

Letting k ∈ N be as the in the statement of Theorem 18, we consider the formula ϕk from
Definition 15. Using Gaifman’s locality theorem we rewrite ϕk into a boolean combination of
basic local sentences, i.e. we may assume that there is some ℓ ∈ N and τk

E-sentences ψi for
i ∈ [ℓ] such that

ϕk =
∨
i∈ℓ

ψi and ψi =
∧

j∈Ai

χij ∧
∧

j∈Bi

¬χij ,

where each χij is a basic local sentence. We henceforth fix the following constants:
ρ is the maximum over all the locality radii of the χij ;
s is the sum of all widths of the χij ;
γ is the maximum over all the quantifier ranks of the χij ;
q := γ + 3ρ+ 3;
d := 2(ρ+ 1)(ℓ+ 1)s+ 6ρ+ 2;
p is the number of (q, d)-types over the signature τk

E ;
n := (ℓ+ 2)s;
m := (n− 1)q + s+ ℓs+ 1;
r := 4dp+ 2ρ+ 1.

Our goal is to establish that any minimal induced model of ϕ in C must have size less than
fr(m), where f is as in the statement of Theorem 18. So, assume that some G |= ϕ has size
at least fr(m). It follows by assumption that there is a k-partition P and a k-flip F such
that G△FP contains an r-independent set of size m. We henceforth work with the structure
G∗ := G(F,P ), i.e. the expansion of G△FP with unary predicates corresponding to the parts
of P . By definition, we have that G∗ |= ϕk.

By Lemma 23 we obtain a radius e ≤ 2dp and a set D ⊆ V (G∗) of at most (n−1)p vertices
such that each (q, d)-type in G∗ is either covered by NG∗

e (D) or is n-free over NG∗

e (D); we
henceforth refer to types of the former kind as rare, and to types of the latter kind as frequent.

We proceed to inductively construct increasing sequences of sets S0 ⊆ S1 ⊆ · · · ⊆ V (G∗),
C0 ⊆ C1 ⊆ · · · ⊆ V (G∗), and I0 ⊆ I1 ⊆ · · · ⊆ I which satisfy the following conditions for
every i:
1. Si ⊆ NG∗

ρ (Ci);
2. |Ci| ≤ is;
3. |Ii| = i;
4. no disjoint extension of G∗[Si] satisfies

∨
j∈Ii

ψj ;
5. NG∗

e (D) and NG∗

d (Ci) are disjoint.
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Clearly, this construction must terminate within ℓ steps. Indeed, assume for a contradiction
that we have constructed Sℓ, Cℓ, and Iℓ satisfying conditions 1-5 above. If so, then Iℓ = I

while G∗ +G∗[Sℓ] is a disjoint extension of G∗[Sℓ] which satisfies ϕk =
∨

i∈I ψi by Lemma 16,
therefore contradicting condition 4. At the end of the construction we will obtain some
N < ℓ and some SN ⊊ V (G∗) satisfying G∗[SN ] |= ϕk. Combining Definition 15 with
Observation 17, this will imply that G[SN ] |= ϕ, and hence that G cannot be a minimal
model of ϕ as required.

Initially, we set S0 = C0 = I0 = ∅. Assume that Si, Ci, and Ii have been defined. Write
H∗ := G∗ +G∗[Si] for the disjoint union of G∗ with its substructure induced on Si. By our
closure assumptions on C and Lemma 16 we deduce that H∗ |= ϕk. In particular, there exists
some i′ ∈ I such that H∗ |= ψi′ , while i′ /∈ Ii due to property 4. We let Ii+1 = Ii ∪ {i′} and
henceforth drop the reference to the index i′ as it will remain fixed for the remaining of the
argument, e.g. by writing ψ and χj instead of ψi′ and χi′j respectively.

As H∗ satisfies ψ = (
∧

j∈A χj ∧
∧

j∈B ¬χj), it satisfies the basic local sentences χj with
j ∈ A. For each j ∈ A, we may thus choose a minimal set Wj ⊆ V (H∗) of witnesses for the
outermost existential quantifiers of the basic local sentence χj , and let W :=

⋃
j∈A Wj be

their union. As s is the sum of the widths of all the χ’s it follows that |W | ≤ s. We partition
W into those witnesses that appear in the disjoint copy of G∗, and those that appear in the
disjoint copy of G∗[Si], and write WG and WH for these respective parts.

Now, suppose that some v ∈ WG satisfies NG∗

ρ+1(Ci) ∩ NG∗

ρ (v) ̸= ∅; we argue that we
may replace v with some witness v′ ∈ V (G∗) such that NG∗

ρ+1(Ci) ∩ NG∗

ρ (v′) = ∅. Indeed,
we first choose some u ∈ Ci such that NG∗

ρ+1(u) ∩NG∗

ρ (v) ̸= ∅. Consequently, we have that
NG∗

ρ (v) ⊆ NG∗

3ρ+1(u) ⊆ NG∗

d (u). Property 5 then ensures that the (q, d)-type t (in G∗) of u
is frequent, and so it has n > (ℓ+ 1)s ≥ |W ∪ Ci| realisations whose d-neighbourhoods are
pairwise disjoint and disjoint from NG∗

e (D). We may thus pick a realisation u′ ∈ V (G∗) of t
such that NG∗

ρ+1(W ∪ Ci) ∩ NG∗

3ρ+1(u′) = ∅. Let τ be the (γ, ρ)-type of v, and consider the
formula

θ(x) := ∃y[∀z(dist(y, z) ≤ ρ → dist(x, z) ≤ 3ρ+ 1) ∧
∧
η∈τ

ηNr(y)(y)].

Clearly, the quantifier rank of θ is bounded by 3ρ+ 3 + γ ≤ q, while NG∗

d (u) |= θ(u) with v

serving as the existential witness. Consequently θ(x) is in t, and as u and u′ have the same
(q, d)-type, it follows that NG∗

d (u′) |= θ(u′). It follows that there is v′ ∈ V (G∗) such that
NG∗

ρ (v′) ⊆ NG∗

3ρ+1(u′) ⊆ NG∗

d (u′), while v and v′ have the same (γ, ρ)-type. In particular,
their ρ-neighbourhoods satisfy the same FO-formulas of quantifier rank ≤ γ. Finally, observe
that NG∗

ρ+1(W ∪ Ci) ∩NG∗

3ρ+1(v′) = ∅ and so NG∗

ρ+1(Ci) ∩NG∗

ρ (v′) = ∅; we may thus replace v
by v′ in WG as a witness.

After replacing all such witnesses in G, we can ensure that

|{v ∈ WG : NG∗

ρ+1(Ci) ∩NG∗

ρ (v) ̸= ∅}| = 0 (⋆)

Consider the induced substructure U∗ := G∗[NG∗

e (D) ∪ NG∗

ρ (WG) ∪ Si]. We claim that
U∗ satisfies

∧
j∈A χj . Indeed, notice that Si ⊆ NG∗

ρ (Ci), while NG∗

ρ+1(Ci) is disjoint from
NG∗

e (D) by property 5 and disjoint from NG∗

ρ (WG) by (⋆). It follows that U∗ is the disjoint
union of G∗[NG∗

e (D) ∪ NG∗

ρ (WG)] and G∗[Si]; thus all the witnesses from W and their
ρ-neighbourhoods can be found in U∗, implying that U∗ |= χj for all j ∈ A as these are basic
local sentences.
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Now, observe that U∗ is a proper induced substructure of G∗. This is because

|D ∪WG ∪ Ci| ≤ (n− 1)p+ s+ ℓs < m;

NG∗

e (D) ∪NG∗

ρ (WG) ∪ Si ⊆ NG∗

2dp+ρ(D ∪WG ∪ Ci) ⊆ NG∗

⌊r/2⌋(D ∪WG ∪ Ci),

and so, unlike G∗, U∗ does not contain an r-independent set of size m. Consequently, if
U∗ |= ϕk then we set SN := NG∗

e (D) ∪NG∗

ρ (WG) ∪ Si and our construction terminates.
We hereafter assume that U∗ ̸|= ϕk, and proceed with the definition of Si+1 and Ci+1.

Since U∗ |=
∧

j∈A χj it must be that U∗ ̸|=
∧

j∈B ¬χj . We can therefore fix some j ∈ B such
that U∗ |= χj . Suppose that

χj = ∃x1, . . . ,∃xs′ [
∧
a̸=b

dist(xa, xb) > 2ρ′ ∧
∧
a

ξNρ′ (xa)(xa)]

for some ρ′ ≤ ρ, s′ ≤ s, and a formula ξ of quantifier rank γ′ ≤ γ. Fix a set V =
{w1, . . . , ws′} ⊆ U∗ of witnesses for the outermost existential quantifier of χj . Notice that if
the (q, d)-type in G∗ of every w ∈ V was rare then NG∗

ρ′ (V ) ⊆ NG∗

e (D) ⊆ V (G∗), implying
that G∗ |= χj and thus H∗ |= χj as H∗ is a disjoint extension of G∗ and χj is a basic
local sentence. We can thus fix some w ∈ V whose (q, d)-type in G∗, say tw, is frequent.
As a result, there is a set Z ⊆ V (G∗) of n realisations of tw whose d-neighbourhoods are
pairwise disjoint and disjoint from NG∗

e (D). Now, since 4ρ + 3 ≤ d, n = (ℓ + 2)s, and
|Ci| ≤ ℓs, there exists a subset Z ′ ⊆ Z of at least s elements which additionally satisfies
NG∗

ρ+1(Ci) ∩NG∗

ρ (Z ′) = ∅.
Consider F := NU∗

ρ′ (w). Evidently, U∗[F ] = G∗[F ] and so G∗[F ] |= ξNρ′ (x)(w). For
a set variable X consider the formula ξNρ′ (x)∩X(x,X) obtained from ξ by simultaneously
relativising the quantifiers of ξ to the r′-neighbourhoods of x and to the set X. Observe
that the quantifier rank of ξNρ′ (x)∩X(x,X) is at most γ′ + ρ′ < q, and moreover G∗ |=
ξNρ′ (x)∩X(w,F ). Since ρ′ < d it follows that the MSO formula ∃XξNρ′ (x)∩X(x,X) is in tw.
As every ω ∈ Z ′ has the same (q, d)-type in G∗ as w, we may find sets Fω ⊆ NG∗

ρ′ (ω) for every
ω ∈ Z ′ such that G∗ |= ξNρ′ (x)∩X(ω, Fω). In particular, this implies that G∗[Fω] |= ξNρ′ (x)(ω).
We finally let:

Ci+1 = Ci ∪ Z ′; Si+1 = Si ∪
⋃

ω∈Z′

Fω.

We argue that these satisfy the properties 1-5. First, observe that |Ci+1| = |Ci|+s ≤ is+s =
(i+ 1)s. Moreover, as Fω ⊆ NG∗

ρ′ (ω), ω ∈ Ci+1, and ρ′ ≤ ρ we have Si+1 ⊆ NG∗

ρ (Ci+1). By
the fact that every ω ∈ Z ′ realises a frequent type we also have that NG∗

e (D)∩NG∗

d (Ci+1) = ∅.
It remains to argue that no disjoint extension of G∗[Si+1] satisfies

∨
j∈Ii+1

ψj .
Towards this, we note that G∗[Si+1] is a disjoint extension of G∗[Si] by the fact that

Si ⊆ NG∗

ρ (Ci) and NG∗

ρ+1(Ci) ∩ NG∗

ρ (Z ′) = ∅. Therefore, no disjoint extension of G∗[Si+1]
satisfies ψj for j ∈ Ii. At the same time, every disjoint extension of G∗[Si+1] contains
witnesses for the outermost existential quantifiers of χi′j , namely the elements ω ∈ Z ′,
which are pairwise at distance at least 2d > 2ρ′ and satisfy G∗[Fω] |= ξNρ′ (x)(ω) and
N

G∗[Si+1]
ρ′ (ω) = Fω, and thus G∗[Si+1] |= ξNρ′ (x)(ω). It follows that every disjoint extension

of G∗[Si+1] satisfies χi′j , and so it cannot satisfy ψi′ as needed. This complete our inductive
construction of Si+1, Ci+1, and Ii+1. ◀

CSL 2025


	1 Introduction
	2 Preliminaries
	3 Failure of preservation on graphs of cliquewidth 4
	4 Extension preservation on strongly flip-flat classes
	5 Conclusion
	A The proof of Lemma 5
	B The proof of Theorem 18

