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Abstract
Within the model-theoretic framework for supervised learning introduced by Grohe and Turán
(TOCS 2004), we study the parameterized complexity of learning concepts definable in monadic
second-order logic (MSO). We show that the problem of learning an MSO-definable concept from a
training sequence of labeled examples is fixed-parameter tractable on graphs of bounded clique-width,
and that it is hard for the parameterized complexity class para-NP on general graphs.

It turns out that an important distinction to be made is between 1-dimensional and higher-
dimensional concepts, where the instances of a k-dimensional concept are k-tuples of vertices of
a graph. For the higher-dimensional case, we give a learning algorithm that is fixed-parameter
tractable in the size of the graph, but not in the size of the training sequence, and we give a hardness
result showing that this is optimal. By comparison, in the 1-dimensional case, we obtain an algorithm
that is fixed-parameter tractable in both.
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1 Introduction

We study abstract machine-learning problems in a logical framework with a declarative view
on learning, where the (logical) specification of concepts is separated from the choice of
specific machine-learning models and algorithms (such as neural networks). Here we are
concerned with the computational complexity of learning problems in this logical learning
framework, that is, the descriptive complexity of learning [8].

Specifically, we consider Boolean classification problems that can be specified in monadic
second-order logic (MSO). The input elements for the classification task come from a set
X, the instance space. A classifier on X is a function c : X → {+,−}. Given a training
sequence S of labeled examples (x, λ) ∈ X × {+,−}, we want to find a classifier, called a
hypothesis, that explains the labels given in S and that can also be used to predict the labels
of elements from X not given as examples. In the logical setting, the instance space X is a
set of tuples from a (relational) structure, called the background structure, and classifiers are
described by formulas of some logic, in our case MSO, using parameters from the background
structure. This model-theoretic learning framework was introduced by Grohe and Turán [33]
and further studied in [30, 32, 31, 7, 9, 11, 8].

We study these problems within the following well-known settings from computational
learning theory. In the consistent-learning model, the examples are assumed to be generated
using an unknown classifier, the target concept, from a known concept class. The task is to find
a hypothesis that is consistent with the training sequence S, i.e. a function h : X → {+,−}
such that h(x) = λ for all (x, λ) ∈ S. In Haussler’s model of agnostic probably approximately
correct (PAC) learning [35], a generalization of Valiant’s PAC learning model [50], an
(unknown) probability distribution D on X × {+,−} is assumed, and training examples are
drawn independently from this distribution. The goal is to find a hypothesis that generalizes
well, i.e. one is interested in algorithms that return with high probability a hypothesis
with a small expected error on new instances drawn from the same distribution. For more
background on PAC learning, we refer to [37, 41, 46]. In both settings, we require our
algorithms to return a hypothesis from a predefined hypothesis class.

Our Contributions

In this paper, we study the parameterized complexity of the consistent-learning problem
MSO-Consistent-Learn and the PAC-learning problem MSO-PAC-Learn. In both prob-
lems, we are given a graph G (the background structure) and a sequence of labeled training ex-
amples of the form (v̄, λ), where v̄ is a k-tuple of vertices fromG and λ ∈ {+,−}. The goal is to
find a hypothesis of the form hφ,w̄ for an MSO formula φ(x̄; ȳ) and a tuple w̄ with hφ,w̄(v̄) := +
if G |= φ(v̄; w̄) and hφ,w̄(v̄) := − otherwise. For MSO-Consistent-Learn, this hypothesis
should be consistent with the given training examples. For MSO-PAC-Learn, the hypoth-
esis should generalize well. We restrict the complexity of allowed hypotheses by giving a
bound q on the quantifier rank of φ and a bound ℓ on the length of w̄. Both q and ℓ as well
as the dimension k of the problem, that is, the length of the tuples to classify, are part of
the parameterization of the problems. A detailed description of MSO-Consistent-Learn
is given in Section 3. The problem MSO-PAC-Learn is formally introduced in Section 5.

▶ Example 1.1. Assume we are given the graph G depicted in Figure 1, the training sequence
S = ((v1,+), (v3,+), (v4,−), (v5,−)), and k = 1, ℓ = 1, q = 3. Note that k = 1 indicates
that the instances are vertices of the input graph G. Furthermore, ℓ = 1 indicates that
the specification may involve one vertex of the input graph as a parameter. Finally, q = 3
indicates that the formula specifying the hypothesis must have quantifier rank at most 3.
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Figure 1 Graph G for Example 1.1. Positive examples are shown in purple, and negative examples
are shown in orange.

Our choice of a hypothesis h : V (G) → {+,−} consistent with S says that “there is a
bipartite partition of the graph such that all positive instances x are on the same side as v2
and all negative examples are on the other side.” This hypothesis can be formally specified in
MSO as hφ,w̄ for the MSO formula φ(x; y) = ∃Z

(
ψbipartite(Z) ∧Z(x) ∧Z(y)

)
and parameter

setting w̄ = (v2), where ψbipartite(Z) = ∀z1∀z2

(
E(z1, z2) → ¬

(
Z(z1)↔Z(z2)

))
.

For the 1-dimensional case of MSO-Consistent-Learn, called 1D-MSO-Consistent-
Learn, [31, 30] gave algorithms that are sublinear in the background structures after a
linear-time pre-processing stage for the case that the background structure is a string or a tree.
This directly implies that 1D-MSO-Consistent-Learn can be solved in time f(ℓ, q) · n
for some function f , that is, in fixed-parameter linear time, if the background structure is a
string or a tree. Here n is the size of the background structure and ℓ, q are the parameters
of the learning problem described above. We generalize the results to labeled graphs of
bounded clique-width. Graphs of clique-width c can be described by a c-expression, that
is, an expression in a certain graph grammar that only uses c labels (see Section 2.1 for
details). In our algorithmic results for graphs of bounded clique-width, we always assume
that the graphs are given in the form of a c-expression. We treat c as just another parameter
of our algorithms. By the results of Oum and Seymour [44], we can always compute a
2O(c)-expression for a graph of clique-width c by a fixed-parameter tractable algorithm.

▶ Theorem 1.2. Let C be a class of labeled graphs of bounded clique-width. Then 1D-MSO-
Consistent-Learn is fixed-parameter linear on C.

Since graphs of bounded tree-width also have bounded clique-width, our result directly
implies fixed-parameter linearity on graph classes of bounded tree-width.

Our proof for Theorem 1.2 relies on the model-checking techniques due to Courcelle,
Makowsky, and Rotics for graph classes of bounded clique-width [23]. To make use of them,
we encode the training examples into the graph as new labels. While this construction works
for k = 1, it fails for higher dimensions if there are too many examples to encode.

As far as we are aware, all previous results for learning MSO formulas are restricted to
the one-dimensional case of the problem. We give the first results for k > 1, presenting two
different approaches that yield tractability results in higher dimensions.

As we discuss in Section 5, for the PAC-learning problem MSO-PAC-Learn in higher
dimensions, we can restrict the number of examples to consider to a constant. In this way,
we obtain fixed-parameter tractability results for learning MSO-definable concepts in higher
dimensions, similar to results for first-order logic on nowhere dense classes [9, 8].

▶ Theorem 1.3. Let C be a class of labeled graphs of bounded clique-width. Then MSO-PAC-
Learn is fixed-parameter linear on C.

In the second approach to higher-dimensional tractability, and as the main result of this
paper, we show in Section 6 that a consistent hypothesis can be learned on graphs of bounded
clique-width with a quadratic running time in terms of the size of the graph.

CSL 2025
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▶ Theorem 1.4. There is a function g : N5 → N such that, for a Λ-labeled graph G of clique-
width cw(G) ≤ c and a training sequence S of size |S| = m, the problem MSO-Consistent-
Learn can be solved in time

O
(
(m+ 1)g(c,|Λ|,q,k,ℓ)|V (G)|2

)
.

While this is not strictly a fixed-parameter tractability result, since we usually do not
consider m to be part of the parameterization, we show in Section 7 that this bound is
optimal. Technically, this result is much more challenging than Theorems 1.3 and 1.2. While
we still use an overall dynamic-programming strategy that involves computing MSO types,
here we need to consider MSO types over sequences of tuples. The number of such sequence
types is not constantly bounded, but exponential in the length of the sequence. The core of
our argument is to prove that the number of relevant types can be polynomially bounded.
This fundamentally distinguishes our approach from typical MSO/automata arguments,
where types are from a bounded set (and they correspond to the states of a finite automaton).

Lastly, we study MSO-Consistent-Learn on arbitrary classes of labeled graphs. Anal-
ogously to the hardness of learning FO-definable concepts and the relation to the FO-
model-checking problem discussed in [9], we are interested specifically in the relation of
MSO-Consistent-Learn to the MSO-model-checking problem MSO-Mc. We show that
MSO-Mc can already be reduced to the 1-dimensional case of MSO-Consistent-Learn,
even with a training sequence of size two. This yields the following hardness result that we
prove in Section 4.

▶ Theorem 1.5. 1D-MSO-Consistent-Learn is para-NP-hard under fpt Turing reduc-
tions.

Related Work

The model-theoretic learning framework studied in this paper was introduced in [33]. There,
the authors give information-theoretic learnability results for hypothesis classes that can be
defined using first-order and monadic second-order logic on restricted classes of structures.

Algorithmic aspects of the framework were first studied in [32], where it was proved that
concepts definable in first-order logic can be learned in time polynomial in the degree of the
background structure and the number of labeled examples the algorithm receives as input,
independently of the size of the background structure. This was generalized to first-order
logic with counting [7] and with weight aggregation [11]. On structures of polylogarithmic
degree, the results yield learning algorithms running in time sublinear in the size of the
background structure. It was shown in [31, 7] that sublinear-time learning is no longer
possible if the degree is unrestricted. To address this issue, in [31], it was proposed to
introduce a preprocessing phase where, before seeing any labeled examples, the background
structure is converted to a data structure that supports sublinear-time learning later. This
model was applied to monadic second-order logic on strings [31] and trees [30].

The parameterized complexity of learning first-order logic was first studied in [9]. Via a
reduction from the model-checking problem, the authors show that on arbitrary relational
structures, learning hypotheses definable in FO is AW[∗]-hard. In contrast to this, they show
that the problem is fixed-parameter tractable on nowhere dense graph classes. This result
has been extended to nowhere dense structure classes in [8]. Although not stated as fpt
results, the results in [31, 30] yield fixed-parameter tractability for learning MSO-definable
concepts on strings and trees if the problem is restricted to the 1-dimensional case where the
tuples to classify are single vertices.
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The logical learning framework is related to, but different from the framework of inductive
logic programming (see, e. g., [21, 42, 43]), which may be viewed as the classical logic-learning
framework. In the database literature, there are various approaches to learning queries from
examples [6, 5, 34, 36, 38, 13, 49, 1, 2, 14, 48, 17]. Many of these are concerned with active
learning scenarios, whereas we are in a statistical learning setting. Moreover, most of the
results are concerned with conjunctive queries or queries outside the relational database model,
whereas we focus on monadic second-order logic. Another related subject in the database
literature is the problem of learning schema mappings from examples [3, 15, 18, 19, 29]. In
formal verification, related logical learning frameworks [20, 25, 28, 40, 52] have been studied
as well. In algorithmic learning theory, related works study the parameterized complexity of
several learning problems [4, 39] including, quite recently, learning propositional CNF and
DNF formulas and learning solutions to graph problems in the PAC setting [16].

2 Preliminaries

We let N denote the set of non-negative integers. For m,n ∈ N, we let [m,n] := {ℓ ∈ N |
m ≤ ℓ ≤ n} and [n] := [1, n]. For a set V , we let 2V := {V ′ | V ′ ⊆ V }.

2.1 Clique-Width
In this paper, graphs are always undirected and simple (no loops or parallel edges); we view
them as {E}-structures for a binary relation symbol E, and we denote the set of vertices
of a graph G by V (G). A label set is a set Λ of unary relation symbols, and a Λ-graph or
Λ-labeled graph is the expansion of a graph to the vocabulary {E} ∪ Λ. A labeled graph is a
Λ-graph for any label set Λ.

In the following, we define expressions to represent labeled graphs. A base graph is a
labeled graph of order 1. For every base graph G, we introduce a base expression β that
represents G. Moreover, we have the following operations.
Disjoint union: For disjoint Λ-graphs G1, G2, we define G1 ⊎G2 to be the union of G1 and

G2. If G1 and G2 are not disjoint, then G1 ⊎G2 is undefined.
Adding edges: For a Λ-graph G and unary relation symbols P,Q ∈ Λ with P ̸= Q, we

let ηP,Q(G) be the Λ-graph obtained from G by adding an edge between every pair of
distinct vertices v ∈ P (G), w ∈ Q(G). That is, E

(
ηP,Q(G)

)
:= E(G) ∪

{
(v, w), (w, v)

∣∣
v ∈ P (G), w ∈ Q(G), v ̸= w

}
.

Relabeling: For a Λ-graph G and unary relation symbols P,Q ∈ Λ with P ̸= Q, we
let ρP,Q(G) be the Λ-graph obtained from G by relabeling all vertices in P by Q,
that is, V (ρP,Q(G)) := V (G), P (ρP,Q(G)) := ∅, Q(ρP,Q(G)) := Q(G) ∪ P (G), and
R(ρP,Q(G)) := R(G) for all R ∈ Λ \ {P,Q}.

Deleting labels: For a Λ-graph G and a unary relation symbol P ∈ Λ, we let δP (G) be the
restriction of G to Λ \ {P}, that is, the (Λ \ {P})-graph obtained from G by removing
the relation P (G).

We also introduce a modification of the disjoint-union operator, namely the ordered-disjoint-
union operator ⊎<, which is used in Section 6 to simplify notations.
Ordered disjoint union: To introduce this operator, we need two distinguished unary relation

symbols P<
1 and P<

2 . For disjoint Λ-graphs G1, G2, where we assume P<
1 , P

<
2 ̸∈ Λ, we

let G1 ⊎< G2 be the (Λ ∪ {P<
1 , P

<
2 })-expansion of the disjoint union G1 ⊎ G2 with

P<
1 (G1 ⊎<G2) := V (G1) and P<

2 (G1 ⊎<G2) := V (G2). By deleting the relations P<
1 , P

<
2

immediately after introducing them in an ordered disjoint union, we can simulate a
standard disjoint-union by an ordered disjoint union, that is, G1 ⊎G2 = δP <

1
(δP <

2
(G1 ⊎<

G2)).

CSL 2025
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A Λ-expression is a term formed from base expressions β, whose label set is a subset of Λ,
using unary operators ηP,Q, ρP,Q, δP for P,Q ∈ Λ with P ̸= Q, and the binary operator
⊎. We require Λ-expressions to be well-formed, that is, all base expressions represent base
graphs with mutually distinct vertices, and the label sets fit the operators.

Every Λ-expression Ξ describes a Λ′-graph GΞ for some Λ′ ⊆ Λ. Note that there is a
one-to-one correspondence between the base expressions in Ξ and the vertices of GΞ. Actually,
we may simply identify the vertices of GΞ with the base expressions in Ξ. We let VΞ := V (GΞ)
be the set of these base expressions. We may then view an expression Ξ as a tree where
VΞ is the set of leaves of this tree. We let |Ξ| be the number of nodes of the tree. We
have |GΞ| = |VΞ| ≤ |Ξ|. In general, we cannot bound |Ξ| in terms of |GΞ|, but for every
Λ-expression Ξ, we can find a Λ-expression Ξ′ such that GΞ′ = GΞ and |Ξ′| ∈ O(

∣∣Λ2
∣∣ · |GΞ|).

Each subexpression Ξ′ of Ξ describes a labeled graph GΞ′ on a subset VΞ′ ⊆ VΞ consisting
of all base expressions in Ξ′. Note that, in general, GΞ′ is not a subgraph of GΞ.

For c ∈ N, a c-expression is a Λ-expression for a label set Λ of size |Λ| = c. It is easy to
see that every labeled graph of order n is described by an n-expression. The clique-width
cw(G) of a (labeled) graph G is the least c such that G is described by a c-expression.

We remark that our notion of clique-width differs slightly from the one given by Courcelle
and Olariu [24], since we allow vertices to have multiple labels, and we also allow the deletion
of labels. Thus, our definition is similar to the definition of multi-clique-width [27]. However,
for our algorithmic results, the definitions are equivalent, since we have cw(G) ≤ cw′(G)
and cw′(G) ∈ 2O(cw(G)) for every (labeled) graph G, where cw′ is the notion of clique-width
from [24].

▶ Lemma 2.1 ([44]). For a graph G with n vertices and clique-width c′ := cw(G), there is
an algorithm that outputs a c-expression for G where c = 23c′+2 − 1. The algorithm has a
running time of O(n9 logn).

2.2 Monadic Second-Order Logic

We consider monadic second-order (MSO) logic, which is a fragment of second-order logic
where we only quantify over unary relations (sets). In MSO, we consider two kinds of free
variables, which we call set variables (uppercase X,Y,Xi) and individual variables (lowercase
x, y, xi). The quantifier rank qr(φ) of a formula φ is the nesting depth of its quantifiers.

Let τ be a relational vocabulary and q ∈ N. By MSO(τ, q), we denote the set of all
MSO formulas of quantifier rank at most q using only relation symbols in τ , and we let
MSO(τ) :=

⋃
q MSO(τ, q). By MSO(τ, q, k, s), we denote the set of all MSO(τ, q) formulas

with free individual variables in {x1, . . . , xk} and free set variables in {X1, . . . , Xs}. In
particular, MSO(τ, q, 0, 0) denotes the set of sentences. Moreover, it will be convenient
to separate the free individual variables into instance variables (x1, x2, . . .) and parameter
variables (y1, y2, . . .). For this, we let MSO(τ, q, k, ℓ, s) denote the set of all MSO(τ, q) formulas
with free instance variables in {x1, . . . , xk}, free parameter variables in {y1, . . . , yℓ}, and free
set variables in {X1, . . . , Xs}. Furthermore, we write φ(x̄, ȳ, X̄) to denote that the formula
φ has its free instance variables among the entries of x̄, its free parameter variables among
the entries ȳ, and its free set variables among the entries X̄.

We normalize formulas such that the set of normalized formulas in MSO(τ, q, k, ℓ, s) is
finite, and there is an algorithm that, given an arbitrary formula in MSO(τ, q, k, ℓ, s), decides
if the formula is normalized, and if not, computes an equivalent normalized formula. In the
following, we assume that all formulas are normalized.
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In this paper, all structures we consider will be labeled graphs for some label set Λ. In
notations such as MSO(τ, . . . ), it will be convenient to write MSO(Λ, . . . ) if τ = {E} ∪ Λ.
For a Λ-labeled graph G and a tuple v̄ ∈ (V (G))k, the q-type of v̄ in G is the set tpG

q (v̄) of
all formulas φ(x̄) ∈ MSO(Λ, q, k, 0) such that G |= φ(v̄).

2.3 VC Dimension
For q, k, ℓ ∈ N, a formula φ(x̄, ȳ) ∈ MSO(Λ, q, k, ℓ, 0), a Λ-labeled graph G, and a tuple
w̄ ∈ (V (G))ℓ, we let

φ(G, w̄) :=
{
v̄ ∈ (V (G))k

∣∣ G |= φ(v̄, w̄)
}
.

For a set X ⊆ (V (G))k, we let

Hφ(G,X) :=
{
X ∩ φ(G, w̄)

∣∣ w̄ ∈ (V (G))ℓ
}
.

We say that X is shattered by φ if Hφ(G,X) = 2X . The VC dimension VC(φ,G) of φ on G
is the maximum d ∈ N such that there is a set X ⊆ V (G)k of cardinality |X| = d that is
shattered by φ. In this paper, we are only interested in finite graphs, but for infinite G, we
let VC(φ,G) := ∞ if the maximum does not exist. For a class C of Λ-labeled graphs, the
VC dimension of φ over C, VC(φ,C), is the least d such that VC(φ,G) ≤ d for all G ∈ C if
such a d exists, and ∞ otherwise.

▶ Lemma 2.2 ([33, Theorem 17]). There is a function g : N5 → N such that the following
holds. Let Λ be a label set, let C be the class of all Λ-graphs of clique-width at most c, and
let q, k, ℓ ∈ N. Then VC(φ,C) ≤ g(c, |Λ| , q, k, ℓ) for all φ ∈ MSO(Λ, q, k, ℓ, 0).

2.4 Parameterized Complexity
A parameterization κ is a function mapping the input x of a problem to a natural number
κ(x) ∈ N. An algorithm A is an fpt algorithm with respect to κ if there is a computable
function f : N → N and a polynomial p such that for every input x the running time of A is
at most f(κ(x)) · p(|x|).

A parameterized problem is a tuple (Q, κ). We say (Q, κ) ∈ FPT or (Q, κ) is fixed-
parameter tractable if there is an fpt algorithm with respect to κ for Q, and we say (Q, κ) is
fixed-parameter linear if the polynomial in the running time of the fpt algorithm is linear.
We say (Q, κ) ∈ para-NP if there is a nondeterministic fpt algorithm with respect to κ for Q.
If the parameterization is clear from the context, then we omit it.

For two parameterized problems (Q, κ), (Q′, κ′), an fpt Turing reduction from (Q, κ)
to (Q′, κ′) is an algorithm A with oracle access to Q′ such that A decides Q, A is an fpt
algorithm with respect to κ, and there is a computable function g : N → N such that on
input x, κ′(x′) ≤ g

(
(κ(x)

)
for all oracle queries with oracle input x′.

For additional background on parameterized complexity, we refer to [26].

3 Tractability for One-Dimensional Training Data on Well-Behaved
Classes

We start by formalizing the parameterized version of the problem MSO-Consistent-Learn
described in the introduction. For a training sequence S, a graph G, and a hypothesis hφ,w̄,
we say hφ,w̄ is consistent with S on G if for every positive example (v̄,+) ∈ S, we have
G |= φ(v̄, w̄), and for every negative example (v̄,−) ∈ S, we have G ̸|= φ(v̄, w̄).

CSL 2025



8:8 The Parameterized Complexity of Learning Monadic Second-Order Logic

MSO-Consistent-Learn

Instance: Λ-labeled graph G, q, k, ℓ ∈ N, training sequence S ∈ (V (G)k ×{+,−})m

Parameter: κ := |Λ| + q + k + ℓ

Problem: Return a hypothesis hφ,w̄ consisting of
a formula φ ∈ MSO(Λ, q, k, ℓ, 0) and
a parameter setting w̄ ∈ V (G)ℓ

such that hφ,w̄ is consistent with the training sequence S on G, if such a hypothesis
exists. Reject if there is no consistent hypothesis.

The problem 1D-MSO-Consistent-Learn refers to the 1-dimensional version of the
problem MSO-Consistent-Learn where the arity k of the training examples is 1. The
tractability results for 1D-MSO-Consistent-Learn are significantly more straightforward
than those for the higher-dimensional problem. This is due to the fact that the full training
sequence can be encoded into the graph by only adding two new labels, and a parameter
setting can be encoded with ℓ more new labels.

As discussed in Section 2.2, there is a function f : N4 → N such that |MSO(Λ, q, k, ℓ, 0)| ≤
f(|Λ| , q, k, ℓ). Therefore, to solve 1D-MSO-Consistent-Learn, we can iterate over all
formulas φ ∈ MSO(Λ, q, k, ℓ, 0) and focus on finding a parameter setting w̄ ∈ V (G)ℓ such that
hφ,w̄ is consistent with S on G. Moreover, if the model-checking problem on a graph class
with additional labels is tractable, then finding a consistent parameter setting is tractable as
well by performing model checking on the graph with the encoded training sequence.

▶ Lemma 3.1. Let C be a class of labeled graphs, let Ci be the class of all extensions of
graphs from C by i additional labels for all i ∈ N, let f : N → N be a function, and let c ∈ N
such that the MSO-model-checking problem on Ci can be solved in time f(|φ|) · |V (G)|c for all
i ∈ N, where φ is the MSO sentence and G ∈ Ci is the labeled graph given as input. There is
a function g : N3 → N such that 1D-MSO-Consistent-Learn can be solved on C in time
g(|Λ| , q, ℓ) · |V (G)|c+1.

The formal proof of this result can be found in the full version [10]. If the input graph is
given in the form of a c-expression, then the MSO model-checking problem is fixed-parameter
linear on classes of bounded clique-width [23]. Therefore, Lemma 3.1 implies that there
is a function g : N4 → N such that 1D-MSO-Consistent-Learn can be solved in time
g(cw(G), |Λ| , q, ℓ) · |G|2.

Theorem 1.2 improves this bound for classes of graphs of bounded clique-width even
further, showing that the problem 1D-MSO-Consistent-Learn can be solved in time
linear in the size of the graph. This can be done by again encoding the training sequence into
the graph, but then extracting a consistent parameter setting directly, following techniques
similar to the ones used by Courcelle and Seese for the corresponding model-checking problem
on graphs of bounded clique-width. The full proof of Theorem 1.2 can be found in [10].

Since graphs of tree-width ct have a clique-width of at most 3 · 2ct−1 [22], Theorem 1.2
implies that for classes of graphs of bounded tree-width, 1D-MSO-Consistent-Learn
is fixed-parameter linear as well. Moreover, although all background structures we con-
sider in this paper are labeled graphs, we remark that the result for classes of bounded
tree-width also holds on arbitrary relational structures and a corresponding version of
1D-MSO-Consistent-Learn.



S. van Bergerem, M. Grohe, and N. Runde 8:9

4 Hardness for One-Dimensional Training Data

Previously, we restricted the input graph of the MSO-learning problem to certain well-behaved
classes. Now, we consider the problem MSO-Consistent-Learn without any restrictions.
Van Bergerem, Grohe, and Ritzert showed in [9] that there is a close relation between
first-order model checking (FO-Mc) and learning first-order formulas. The fpt-reduction
in [9] from model checking to learning yields AW[∗]-hardness for learning first-order formulas
on classes of structures that are not nowhere dense. It is simple to show (and not surprising)
that MSO-Consistent-Learn is at least as hard as FO-Mc. The more interesting question
is whether MSO-Consistent-Learn is at least as hard as the model-checking problem for
MSO sentences (MSO-Mc), which is defined as follows.

MSO-Mc

Instance: Λ-labeled graph G, MSO(Λ) sentence φ
Parameter: |φ|
Problem: Decide whether G |= φ holds.

We give a positive answer, which even holds for the MSO-learning problem with only
one-dimensional training data where we restrict the training sequence to contain at most
two training examples.

▶ Lemma 4.1. The model-checking problem MSO-Mc is fpt Turing reducible to 1D-MSO-
Consistent-Learn where we restrict the training sequence S given as input to have length
at most 2.

MSO-Mc is para-NP-hard under fpt Turing reductions as even for some fixed sentence
φ, the corresponding model-checking problem can be NP-hard (for example for a formula
defining 3-Colorability, see [26] for details). Hence, Lemma 4.1 proves Theorem 1.5. We
give a proof sketch for Lemma 4.1. The full proof can be found in [10].

Proof sketch of Lemma 4.1. We describe an fpt algorithm solving MSO-Mc using access
to a 1D-MSO-Consistent-Learn oracle. Let G be a Λ-labeled graph, and let φ be an
MSO(Λ) sentence. We decide whether G |= φ holds recursively by decomposing the input
formula. While handling negation and Boolean connectives is easy, the crucial part of the
computation is handling quantification. Thus, we assume that φ = ∃xψ or φ = ∃Xψ for some
MSO formula ψ. For both types of quantifiers, we use the 1D-MSO-Consistent-Learn
oracle to identify a small set of candidate vertices or sets such that ψ holds for any vertex
or set if and only if it holds for any of the identified candidates. Then, since the number
of candidates will only depend on |ψ|, we can check recursively whether ψ holds for any of
them and thereby decide MSO-Mc with an fpt algorithm.

More specifically, using the 1D-MSO-Consistent-Learn oracle, we partition the ver-
tices and sets based on their qr(ψ)-type, and we only check one candidate for each class
of the partition. Intuitively, for every pair of vertices, we call the oracle with one vertex
as a positive example and the other vertex as a negative example. The oracle returns a
hypothesis if and only if the types of the two vertices differ. When partitioning the sets of
vertices, we encode the two sets to check into the graph before calling the oracle. Moreover,
instead of calling the oracle for every pair of sets (which would lead to a running time that is
exponential in the size of the graph), we group the sets based on their size, start by finding
a small family of candidate sets of size 1, and we use these candidates iteratively to find a
small family of sets with one additional vertex. With this technique, the number of oracle
calls is only quadratic in the size of the graph. ◀
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5 PAC Learning in Higher Dimensions

So far, we considered the consistent-learning setting, where the goal is to return a hypothesis
that is consistent with the given examples. In this section, we study the MSO-learning
problem in the agnostic PAC-learning setting. There, for an instance space X, we assume
an (unknown) probability distribution D on X × {+,−}. The learner’s goal is to find a
hypothesis h : X → {+,−}, using an oracle to draw training examples randomly from D,
such that h (approximately) minimizes the generalization error

errD(h) := Pr
(x,λ)∼D

(
h(x) ̸= λ

)
.

For every Λ-labeled graph G and q, k, ℓ ∈ N, let Hq,k,ℓ(G) be the hypothesis class

Hq,k,ℓ(G) :=
{
hφ,w̄

∣∣ φ ∈ MSO(Λ, q, k, ℓ, 0), w̄ ∈ (V (G))ℓ
}
.

Formally, we define the MSO PAC-learning problem as follows.

MSO-PAC-Learn

Instance: Λ-labeled graph G, numbers k, ℓ, q ∈ N, δ, ε ∈ (0, 1), oracle access to
probability distribution D on (V (G))k × {+,−}
Parameter: κ := |Λ| + k + ℓ+ q + 1/δ + 1/ε
Problem: Return a hypothesis hφ,w̄ ∈ Hq,k,ℓ(G) such that, with probability of at
least 1 − δ over the choice of examples drawn i.i.d. from D, it holds that

errD(hφ,w̄) ≤ min
h∈Hq,k,ℓ(G)

errD(h) + ε.

The remainder of this section is dedicated to the proof of Theorem 1.3, that is, we want
to show that MSO-PAC-Learn is fixed-parameter linear on classes of bounded clique-width
when the input graph is given as a c-expression. To solve the problem algorithmically, we can
follow the Empirical Risk Minimization (ERM) rule [51, 46], that is, our algorithm should
minimize the training error (or empirical risk)

errS(h) := 1
|S|

· |{(v̄, λ) ∈ S | h(v̄) ̸= λ}|

on the training sequence S of queried examples. Roughly speaking, an algorithm can solve
MSO-PAC-Learn by querying a sufficient number of examples and then following the
ERM rule. To bound the number of needed examples, we combine a fundamental result of
statistical learning [12, 46], which bounds the number of needed examples in terms of the
VC dimension of a hypothesis class, with Lemma 2.2, a result due to Grohe and Turán [33],
which bounds the VC dimension of MSO-definable hypothesis classes on graphs of bounded
clique-width. Together, they imply the following result. See the full version [10] for details.

▶ Lemma 5.1. There is a computable function m : N5 × (0, 1)2 → N such that any algorithm
that proceeds as follows solves the problem MSO-PAC-Learn. Given a Λ-labeled graph G
of clique-width at most c, numbers k, ℓ, q ∈ N, δ, ε ∈ (0, 1), and oracle access to a probability
distribution D on (V (G))k × {+,−}, the algorithm queries at least m(c, |Λ| , q, k, ℓ, δ, ε) many
examples from D and then follows the ERM rule.

Using this lemma, we can now give a proof sketch for Theorem 1.3, showing that
MSO-PAC-Learn is fixed-parameter linear on classes of bounded clique-width if the input
graph is given as a c-expression, even for dimensions k > 1. The full proof can be found
in [10].
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Proof sketch of Theorem 1.3. Let G be a Λ-labeled graph, let k, ℓ, q ∈ N, δ, ε ∈ (0, 1), and
assume we are given oracle access to a probability distribution D on (V (G))k × {+,−}.
Moreover, let c ∈ N and let Ξ be a c-expression given as input that describes G.

Let s := m(c, |Λ| , q, k, ℓ, δ, ε), where m is the function from Lemma 5.1. We sample
s examples from D and call the resulting sequence of training examples S. Then, for
every subsequence S′ of S, we make use of the techniques in Section 3 (adapted to higher-
dimensional training data) and compute a hypothesis hS′ ∈ Hq,k,ℓ that is consistent with
S′ if such a hypothesis exists. This can be computed by an fpt-algorithm with parameters
c, |Λ| , k, ℓ, q, δ, and ε. Finally, from all subsequences with a consistent hypothesis, we choose
a subsequence S∗ of maximum length and return hS∗ . Note that this procedure minimizes
the training error on the training sequence S, i. e., errS(hS∗) = minh∈Hq,k,ℓ

errS(h). Hence,
the procedure follows the ERM rule, and, by Lemma 5.1, it solves MSO-PAC-Learn. Since
the number of subsequences to check can be bounded by 2s, all in all, the described procedure
is an fpt-algorithm that solves MSO-PAC-Learn. ◀

6 Consistent Learning in Higher Dimensions

In this section, we consider the problem MSO-Consistent-Learn with dimension k > 1
on labeled graphs of bounded clique-width. A brute-force attempt yields a solution in time
g(c, |Λ| , q, k, ℓ) · (V (G))ℓ+1 · m, where m is the length of the training sequence, for some
g : N5 → N. This is achieved by iterating over all formulas, then iterating over all parameter
assignments, and then performing model checking for each training example. We assume that
the graph G is considerably larger in scale than the sequence of training examples S. Therefore,
Theorem 1.4 significantly improves the running time to O

(
(m+ 1)g(c,|Λ|,q,k,ℓ)|V (G)|2

)
. While

Theorem 1.4 is not a fixed-parameter tractability result in the classical sense, we show that
this is optimal in Section 7. The present section is dedicated to the proof of Theorem 1.4.

Until now, we have viewed the training sequence as a sequence of tuples S ∈ ((V (G))k ×
{+,−})m. In the following, it is useful to split the training sequence into two parts, a sequence
of vertex tuples a ∈ ((V (G))k)m and a function σ : [m] → {+,−} which assigns the corre-
sponding label to each tuple. Let G be a Λ-labeled graph, a = (v̄1, . . . , v̄m) ∈ ((V (G))k)m,
σ : [m] → {+,−}, and φ(x̄, ȳ) ∈ MSO(Λ, q, k, ℓ, 0). We call (G,a, σ) φ-consistent if there is a
parameter setting w̄ ∈ (V (G))ℓ such that for all i ∈ [m], G |= φ(v̄i, w̄) ⇐⇒ σ(v̄i) = +. We
say that w̄ is a φ-witness for (G,a, σ). This notation allows us to state the main technical
ingredient for the proof of Theorem 1.4 as follows.

▶ Theorem 6.1. There is a computable function g : N5 → N and an algorithm that, given
a Λ-graph G of clique-width cw(G) ≤ c, a sequence a = (v̄1, . . . , v̄m) ∈ ((V (G))k)m, a
function σ : [m] → {+,−}, and a formula φ(x̄, ȳ) ∈ MSO(Λ, q, k, ℓ, 0), decides if (G,a, σ) is
φ-consistent in time (m+ 1)g(c,|Λ|,q,k,ℓ)|G|.

Using Theorem 6.1, we can now prove Theorem 1.4.

Proof of Theorem 1.4. Given a Λ-labeled graph G and a training sequence S =
((v̄1, λ1), . . . , (v̄m, λm)) ∈ ((V (G))k × {+,−})m, we let a := (v̄1, . . . , v̄m) ∈ ((V (G))k)m

and σ : [m] → {+,−}, i 7→ λi. We iterate over all formulas φ ∈ MSO(Λ, q, k, ℓ, 0) and use
Theorem 6.1 to check whether (G,a, σ) is φ-consistent. If there is no φ such that (G,a, σ)
is φ-consistent, then we reject the input. Otherwise, let φ ∈ MSO(Λ, q, k, ℓ, 0) be such that
(G,a, σ) is φ-consistent. We compute a φ-witness following the same construction as in
the proof of Lemma 3.1. That is, using a fresh label, we encode the parameter choice of
a single variable into the graph, and then we check whether consistency still holds for the
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corresponding formula φ′ that enforces this parameter choice. In total, we perform up to
ℓ · |V (G)| such consistency checks to compute a φ-witness w̄. The consistent formula φ

together with the φ-witness w̄ can then be returned as a hypothesis hφ,w̄ that is consistent
with S on G and therefore a solution to MSO-Consistent-Learn. ◀

The remainder of this section is dedicated to the proof of Theorem 6.1. We start by
introducing the formal definitions for types and sets of types over sequences of elements.

6.1 Type Definitions
Let G be a Λ-labeled graph and v̄ ∈ (V (G))k. Recall that the q-type of v̄ in G is the set
tpG

q (v̄) of all formulas φ(x̄) ∈ MSO(Λ, q, k, 0) such that G |= φ(v̄). A (Λ, q, k)-type is a
set θ ⊆ MSO(Λ, q, k, 0) such that, for each φ ∈ MSO(Λ, q, k, 0), either φ ∈ θ or ¬φ ∈ θ.
We denote the set of all (Λ, q, k)-types by Tp(Λ, q, k). Note that tpG

q (v̄) ∈ Tp(Λ, q, k). For
a type θ ∈ Tp(Λ, q, k), we write G |= θ(v̄) if G |= φ(v̄) for all φ(x̄) ∈ θ. Observe that
G |= θ(v̄) ⇐⇒ tpG

q (v̄) = θ. We say that a type θ ∈ Tp(Λ, q, k) is realizable if there is some
Λ-labeled graph G and tuple v̄ ∈ (V (G))k such that θ = tpG

q (v̄). We are not particularly
interested in types that are not realizable, but it is undecidable if a type θ is realizable,
whereas the sets Tp(Λ, q, k) are decidable. (More precisely, there is an algorithm that, given
Λ, q, k and a set θ of formulas, decides if θ ∈ Tp(Λ, q, k).) For a (Λ, q, k)-type θ and a
Λ-labeled graph G, we let

θ(G) :=
{
v̄ ∈ (V (G))k

∣∣ G |= θ(v̄)
}
.

If θ(G) ̸= ∅, we say that θ is realizable in G.
As for formulas, we split the variables for types into two parts, so we consider (Λ, q, k, ℓ)-

types θ ⊆ MSO(Λ, q, k, ℓ, 0), and we denote the set of all these types by Tp(Λ, q, k, ℓ). For a
Λ-labeled graph G and tuples v̄ ∈ (V (G))k, w̄ ∈ (V (G))ℓ, we often think of tpG

q (v̄, w̄) as the
q-type of w̄ over v̄ in G. Moreover, we let

θ(v̄, G) := {w̄ ∈ (V (G))ℓ | G |= θ(v̄, w̄)}.

If θ(v̄, G) ̸= ∅, we say that θ is realizable over v̄ in G.
For a vector k̄ = (k1, . . . , km) ∈ Nm and a set V , we let V k̄ be the set of all sequences

a = (v̄1, . . . , v̄m) of tuples v̄i ∈ V ki . Let G be a labeled graph, a = (v̄1, . . . , v̄m) ∈ V k̄ for
some k̄ ∈ Nm, and w̄ ∈ (V (A))ℓ. We define the q-type of w̄ over a in G to be the tuple

tpG
q (a, w̄) :=

(
tpG

q (v̄1, w̄), . . . , tpG
q (v̄m, w̄)

)
.

Again, we need an “abstract” notion of type over a sequence. A (Λ, q, k̄, ℓ)-type for a tuple
k̄ = (k1, . . . , km) ∈ Nm is an element of

Tp(Λ, q, k̄, ℓ) :=
m∏

i=1
Tp(Λ, q, ki, ℓ).

Let θ̄ = (θ1, . . . , θm) ∈ Tp(Λ, q, k̄, ℓ). For a labeled graph G, a sequence a = (v̄1, . . . , v̄m) ∈
(V (G))k̄, and a tuple w̄ ∈ (V (G))ℓ, we write G |= θ̄(a, w̄) if G |= θi(v̄i, w̄) for all i ∈ [m].
Note that G |= θ̄(a, w̄) ⇐⇒ tpG

q (a, w̄) = θ̄. For a type θ̄ ∈ Tp(Λ, q, k̄, ℓ), a Λ-labeled graph
G, and a sequence a ∈ (V (G))k̄, we let

θ̄(a, G) :=
{
w̄ ∈ (V (G))ℓ

∣∣ G |= θ(a, w̄)
}
.

If θ̄(a, G) ̸= ∅, we say that θ̄ is realizable over a in G.
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6.2 Computing the Realizable Types
For the proof of Theorem 6.1, we use the following result that allows us to compute the
realizable types of an expression.

▶ Lemma 6.2. There is a computable function f : N4 → N and an algorithm that, given
c, q, k, ℓ,m ∈ N, a vector k̄ = (k1, . . . , km) ∈ Nm with ki ≤ k for all i ∈ [m], a Λ-expression
Ξ with |Λ| ≤ c, and a sequence a ∈ (VΞ)k̄, computes the set of all θ̄ ∈ Tp(Λ, q, k̄, ℓ) that are
realizable over a in GΞ in time

O
(

(m+ 1)f(c,q,k,ℓ) · |Ξ|
)
.

Before proving this result, we first show that it implies Theorem 6.1.

Proof of Theorem 6.1. We assume that the input graph G is given as a c-expression. To
check whether (G,a, σ) is φ-consistent, we compute the set R of all θ̄ ∈ Tp(Λ, q, k̄, ℓ) that
are realizable over a in G, using Lemma 6.2. Then, for each θ̄ = (θ1, . . . , θm) ∈ R we check
if φ ∈ θi ⇐⇒ σ(i) = +. If we find such a θ̄, then (G,a, σ) is φ-consistent; otherwise it
is not. ◀

It remains to prove Lemma 6.2. In a bottom-up algorithm, starting at the leaves of Ξ,
we compute the set of all tuples θ̄ = (θ1, . . . , θm) of (Λ, q, ki, ℓ)-types θi that are realizable
over a in G. This is possible because the realizable tuples of types of an expression can
be computed from the tuples of types of its subexpressions. We formally prove this for the
operators ηP,Q, ρP,Q, δP , and ⊎< in the full version [10].

The difficulty with this approach is that we are talking about m-tuples of types. In
general, the number of such tuples is exponential in m, and hence the size of the set we
aim to compute could be exponentially large. Fortunately, this does not happen in graphs
of bounded clique-width. By Lemma 2.2, we can bound the VC dimension of a first-order
formula over classes of graphs of bounded clique-width. Further, we show in Lemma 6.3 that
this suffices to give a polynomial bound for the number of realizable tuples.

▶ Lemma 6.3. Let d, q, k, ℓ ∈ N, let t := |Tp(Λ, q, k, ℓ)|, and let G be a Λ-labeled graph such
that VC(φ,G) ≤ d for all φ ∈ MSO(Λ, q, k, ℓ, 0). Let a ∈ (V (G))k̄ for some k̄ ∈ {0, . . . , k}m.
Then at most (k+1) · g(d,m)t types in Tp(Λ, q, k̄, ℓ) are realizable over a in G.

The proof of Lemma 6.3 is based on the Sauer–Shelah Lemma [45, 47]. See [10] for proof
details. Based on this, we can now prove Lemma 6.2.

Proof of Lemma 6.2. As argued in Section 2, we may assume that Ξ only contains ordered-
disjoint-union operators and no plain disjoint-union operators.

For every subexpression Ξ′, we let ΛΞ′ be the set of labels of Ξ′, that is, the set of
unary relation symbols such that GΞ′ is a ΛΞ′ -graph. Moreover, let aΞ′ := a ∩ VΞ′ , and let
k̄Ξ′ ⊆ Nm such that aΞ′ ∈ (VΞ′)k̄Ξ′ .

We inductively construct, for every subexpression Ξ′ of Ξ and 0 ≤ ℓ′ ≤ ℓ, the set Rℓ′(Ξ′)
of all types θ̄ ∈ Tp(ΛΞ′ , q, k̄Ξ′ , ℓ′) that are realizable over aΞ′ in GΞ′ .
Case 1: Ξ′ is a base expression. In this case, for each ℓ′ ∈ [ℓ], we can construct Rℓ′(Ξ′)

by brute force in time f1(c, q, k, ℓ) · m for a suitable (computable) function f1. Let
(k′

1, . . . , k
′
m) := k̄Ξ′ . We compute θi by iterating over all formulas φ with k′

i + ℓ′ free
variables and evaluating φ on the single vertex graph GΞ′ .
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Case 2: Ξ′ = ηP,Q(Ξ′′). Let 0 ≤ ℓ′ ≤ ℓ, and let k̄′ = (k′
1, . . . , k

′
m) := k̄Ξ′ = k̄Ξ′′ . As we

show in the full version [10], there is a computable mapping Tη,P,Q : Tp(ΛΞ′) → 2Tp(ΛΞ′′ )

such that Rℓ′(Ξ′) is the set of all θ̄ = (θ1, . . . , θm) ∈ Tp(ΛΞ′ , q, k̄′, ℓ′) such that there is
a θ̄′ = (θ′

1, . . . , θ
′
m) ∈ R(Ξ′′) with θ′

i ∈ Tη,P,Q(θi) for all i ∈ [m]. Moreover, for every
realizable θ′ ∈ Tp(ΛΞ′), we guarantee that there is at most one type θ ∈ Tp(ΛΞ′′) such
that θ′ ∈ Tη,P,Q(θ). To compute the set Rℓ′(Ξ′), we step through all θ̄′ ∈ R(Ξ′′). For
each such θ̄′ = (θ′

1, . . . , θ
′
m), for all i ∈ [m], we compute the unique θi ∈ Tp(ΛΞ′ , q, k′

i, ℓ
′)

such that θ′
i ∈ Tη,P,Q(θi). If for some i ∈ [m], no such θi exists, we move on to the next

θ̄′. Otherwise, we add θ̄ = (θ1, . . . , θm) to R(Ξ′).

Case 3: Ξ′ = ρP,Q(Ξ′′). Analogous to Case 2, again based on results from the full ver-
sion [10].

Case 4: Ξ′ = δP (Ξ′′). Analogous to Case 2, based on results from [10].

Case 5: Ξ′ = Ξ1 ⊎< Ξ2. Let Λ′ := ΛΞ′ , V ′ := VΞ′ , k̄′ = (k′
1, . . . , k

′
m) := k̄Ξ′ , and a′ :=

(v̄′
1, . . . , v̄

′
m) := aΞ′ = a ∩ V ′. For j = 1, 2, let Λj := ΛΞj

, Vj := VΞj
, k̄j :=

(kj1, . . . , kjm) := k̄Ξj
, and for all i ∈ [m], let Kji ⊆ [kji] such that v̄′

i ∩ Vj = (v̄i)Kji
. Let

0 ≤ ℓ′ ≤ ℓ.
For all L1, L2 ⊆ [ℓ′] such that L2 = [ℓ′] \ L1, we let RL1,L2 be the set of all θ̄ =
(θ1, . . . , θm) ∈ Tp(Λ′, q, k̄′, ℓ′) such that for j = 1, 2, we have

θ̄j :=
(
T⊎,j,Lj ,Kj1(θ1), . . . , T⊎,j,Lj ,Kjm

(θm)
)

∈ R|Lj |(Ξj),

where T⊎,j,Lj ,Kji : Tp(Λ′) → Tp(Λj) for i ∈ [m] is a computable mapping that we give in
the full version [10]. Then, as we also show in [10],

Rℓ′(Ξ′) =
⋃

L1⊆[ℓ′]
L2=[ℓ′]\L1

RL1,L2 .

To compute RL1,L2 , we iterate over all θ̄1 = (θ11, . . . , θ1m) ∈ R|L1|(Ξ1). For all i ∈ [m]
we compute the unique θi ∈ Tp(Λ′, q, k′

i, ℓ
′) such that T⊎,1,L1,K1i(θi) = θ1i. If, for some

i ∈ [m], no such θi exists, then we move on to the next θ̄1. Otherwise, we compute

θ̄2 =
(
T⊎,2,L2,K21(θ1), . . . , T⊎,2,L2,K2m

(θm)
)

and check if θ̄2 ∈ R|L2|(Ξ2). If it is, we add θ̄ to RL1,L2 . Otherwise, we move on to the
next θ̄1.

This completes the description of our algorithm. To analyze the running time, let

r := max
Ξ′

|RΞ′ |,

where Ξ′ ranges over all subexpressions of Ξ. By Lemmas 2.2 and 6.3, there is a computable
function f2 : N4 → N such that

r ≤ (m+ 1)f2(c,q,k,ℓ).

The running time of each step of the constructions can be bounded by f3(c, q, k, ℓ) · r for a
suitable computable function f3. We need to make |Ξ| steps. Thus, overall, we obtain the
desired running time. ◀
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7 Hardness of Checking Consistency in Higher Dimensions

The following result shows, under the assumption FPT ̸= W[1], that Theorem 6.1 can not be
improved to an fpt-result.

▶ Theorem 7.1. There is a q ∈ N such that the following parameterized problem is W[1]-hard.

Instance: graph G of clique-width at most 2, sequence a = (ā1, . . . , ām) ∈(
(V (G))2)m, function σ : [m] → {+1,−1}, formula φ(x̄, ȳ) ∈ MSO(Λ, q, 2, ℓ, 0)

Parameter: ℓ
Problem: decide if (G,a, σ) is φ-consistent.

Proof sketch. We prove this by a reduction from the W[1]-complete weighted satisfiability
problem for Boolean formulas in 2-conjunctive normal form [26]. The weight of an assignment
to a set of Boolean variables is the number of variables set to 1.

WSat(2-CNF)

Instance: Boolean formula Φ in 2-CNF
Parameter: ℓ
Problem: decide if Φ has a satisfying assignment of weight ℓ.

Given a 2-CNF formula Φ =
∧m

i=1(Li,1 ∨ Li,2) in the variables {X1, . . . , Xn} and ℓ ∈ N,
we construct an instance (G,a, σ, φ) of the consistency problem from Theorem 7.1 where
the graph G is a forest that encodes Φ. Moreover, a, φ, and σ are chosen to verify that
a φ-witness w̄ ∈ (V (G))ℓ for (G,a, σ) encodes exactly ℓ variables among X1, . . . , Xn that
can be set to 1 to satisfy Φ. Hence, there is a φ-witness for (G,a, σ) if and only if Φ has
a satisfying assignment of weight ℓ. Details on the construction can be found in the full
version [10]. ◀

8 Conclusion

Just like model checking and the associated counting and enumeration problems, the learning
problem we study here is a natural algorithmic problem for logics on finite structures. All
these problems are related, but each has its own challenges requiring different techniques.
Where model checking and enumeration are motivated by automated verification and database
systems, we view our work as part of a descriptive complexity theory of machine learning [8].

The first problem we studied is 1D-MSO-Consistent-Learn, where the instances to
classify consist of single vertices, and we extended the previous fixed-parameter tractability
results for strings and trees [31, 30] to (labeled) graphs of bounded clique-width. Moreover,
on general graphs, we showed that the problem is hard for the complexity class para-NP.

For MSO-learning problems in higher dimensions, we presented two different approaches
that yield tractability results on graphs of bounded clique-width. For the agnostic PAC-
learning problem MSO-PAC-Learn, we described a fixed-parameter tractable learning
algorithm. Furthermore, in the consistent-learning setting for higher dimensions, we gave an
algorithm that solves the learning problem and is fixed-parameter tractable in the size of
the input graph. However, the algorithm is not fixed-parameter tractable in the size of the
training sequence, and we showed that this is optimal.

In the learning problems considered so far, hypotheses are built using MSO formulas and
tuples of vertices as parameters. We think that the algorithms presented in this paper for
the 1-dimensional case could also be extended to hypothesis classes that allow tuples of sets
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as parameters. Finally, utilizing the full power of MSO, one could also consider a learning
problem where, instead of classifying tuples of vertices, we are interested in classifying sets
of vertices. That is, for a graph G, we are given labeled subsets of V (G) and want to find a
hypothesis h : 2V (G) → {+,−} that is consistent with the given examples. It is easy to see
that the techniques used in our hardness result also apply to this modified problem, proving
that it is para-NP-hard. However, it remains open whether our tractability results could also
be lifted to this version of the problem.
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