
33rd EACSL Annual Conference
on Computer Science Logic

CSL 2025, February 10–14, 2025, Amsterdam, Netherlands

Edited by

Jörg Endrullis
Sylvain Schmitz

LIPIcs – Vo l . 326 – CSL 2025 www.dagstuh l .de/ l i p i c s

Editors

Jörg Endrullis
Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
j.endrullis@vu.nl

Sylvain Schmitz
Université Paris Cité, CNRS, IRIF, Paris, France
schmitz@irif.fr

ACM Classification 2012
Theory of computation → Logic

ISBN 978-3-95977-362-1

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-362-1.

Publication date
February, 2025

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.CSL.2025.0

ISBN 978-3-95977-362-1 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-2554-8270
mailto:j.endrullis@vu.nl
https://orcid.org/0000-0002-4101-4308
mailto:schmitz@irif.fr
https://www.dagstuhl.de/dagpub/978-3-95977-362-1
https://www.dagstuhl.de/dagpub/978-3-95977-362-1
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.CSL.2025.0
https://www.dagstuhl.de/dagpub/978-3-95977-362-1
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université Paris Cité, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University, Brno, CZ)
Meena Mahajan (Chair, Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (Nanyang Technological University, SG)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)
Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

CSL 2025

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Jörg Endrullis and Sylvain Schmitz . 0:ix

Ackermann Award

The Ackermann Award 2024
Maribel Fernández and Prakash Panangaden . 1:1–1:5

Invited Talks

On the Probabilistic and Statistical Verification of Infinite Markov Chains
Patricia Bouyer . 2:1–2:2

Synthetic Mathematics for the Mechanisation of Computability Theory and Logic
Yannick Forster . 3:1–3:2

Playing with Modalities
Elaine Pimentel, Carlos Olarte, Timo Lang, Robert Freiman, and
Christian G. Fermüller . 4:1–4:20

Modal Automata: Analysing Modal Fixpoint Logics, One Step at a Time
Yde Venema . 5:1–5:5

Regular Papers

Equi-Rank Homomorphism Preservation Theorem on Finite Structures
Benjamin Rossman . 6:1–6:17

Extension Preservation on Dense Graph Classes
Ioannis Eleftheriadis . 7:1–7:21

The Parameterized Complexity of Learning Monadic Second-Order Logic
Steffen van Bergerem, Martin Grohe, and Nina Runde . 8:1–8:19

On Homogeneous Models of Fluted Languages
Daumantas Kojelis . 9:1–9:20

The Complexity of Second-Order HyperLTL
Hadar Frenkel and Martin Zimmermann . 10:1–10:23

On the Expansion of Monadic Second-Order Logic with Cantor-Bendixson Rank
and Order Type Predicates

Thomas Colcombet and Alexander Rabinovich . 11:1–11:26

First-Order Logic with Equicardinality in Random Graphs
Simi Haber, Tal Hershko, Mostafa Mirabi, and Saharon Shelah 12:1–12:17

Computational Complexity of the Weisfeiler-Leman Dimension
Moritz Lichter, Simon Raßmann, and Pascal Schweitzer . 13:1–13:22

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Finite Variable Counting Logics with Restricted Requantification
Simon Raßmann, Georg Schindling, and Pascal Schweitzer . 14:1–14:23

On the VC Dimension of First-Order Logic with Counting and Weight Aggregation
Steffen van Bergerem and Nicole Schweikardt . 15:1–15:17

Undefinability of Approximation of 2-To-2 Games
Anuj Dawar and Bálint Molnár . 16:1–16:21

Description Complexity of Unary Structures in First-Order Logic with Links to
Entropy

Reijo Jaakkola, Antti Kuusisto, and Miikka Vilander . 17:1–17:20

Reachability for Multi-Priced Timed Automata with Positive and Negative Rates
Andrew Scoones, Mahsa Shirmohammadi, and James Worrell . 18:1–18:13

Two-Way One-Counter Nets Revisited
Shaull Almagor, Michaël Cadilhac, and Asaf Yeshurun . 19:1–19:20

Boundedness of Cost Register Automata over the Integer Min-Plus Semiring
Andrei Draghici, Radosław Piórkowski, and Andrew Ryzhikov . 20:1–20:23

The Algebras for Automatic Relations
Rémi Morvan . 21:1–21:21

On the Minimisation of Deterministic and History-Deterministic Generalised
(Co)Büchi Automata

Antonio Casares, Olivier Idir, Denis Kuperberg, Corto Mascle, and Aditya Prakash 22:1–22:18

Permissive Equilibria in Multiplayer Reachability Games
Aline Goeminne and Benjamin Monmege . 23:1–23:17

Propositional Logics of Overwhelming Truth
Thibaut Antoine and David Baelde . 24:1–24:19

Exponential Lower Bounds on Definable Fixed Points
Konstantinos Papafilippou and David Fernández-Duque . 25:1–25:19

The Complexity of Deciding Characteristic Formulae in Van Glabbeek’s
Branching-Time Spectrum

Luca Aceto, Antonis Achilleos, Aggeliki Chalki, and Anna Ingólfsdóttir 26:1–26:18

A Complete Diagrammatic Calculus for Automata Simulation
Thibaut Antoine, Robin Piedeleu, Alexandra Silva, and Fabio Zanasi 27:1–27:22

Strong Induction Is an Up-To Technique
Filippo Bonchi, Elena Di Lavore, and Anna Ricci . 28:1–28:21

Correspondences Between Codensity and Coupling-Based Liftings, a Practical
Approach

Samuel Humeau, Daniela Petrisan, and Jurriaan Rot . 29:1–29:18

A Complete Inference System for Probabilistic Infinite Trace Equivalence
Corina Cîrstea, Lawrence S. Moss, Victoria Noquez, Todd Schmid, Alexandra Silva,
and Ana Sokolova . 30:1–30:23

Contents 0:vii

Simple Types for Probabilistic Termination
Willem Heijltjes and Georgina Majury . 31:1–31:21

A Mixed Linear and Graded Logic: Proofs, Terms, and Models
Victoria Vollmer, Danielle Marshall, Harley Eades III, and Dominic Orchard 32:1–32:21

Quantitative Graded Semantics and Spectra of Behavioural Metrics
Jonas Forster, Lutz Schröder, Paul Wild, Harsh Beohar, Sebastian Gurke,
Barbara König, and Karla Messing . 33:1–33:21

The Lambda Calculus Is Quantifiable
Valentin Maestracci and Paolo Pistone . 34:1–34:23

A Kleene Algebra with Tests for Union Bound Reasoning About Probabilistic
Programs

Leandro Gomes, Patrick Baillot, and Marco Gaboardi . 35:1–35:19

Kleene Algebra with Commutativity Conditions Is Undecidable
Arthur Azevedo de Amorim, Cheng Zhang, and Marco Gaboardi 36:1–36:25

Finite Relational Semantics for Language Kleene Algebra with Complement
Yoshiki Nakamura . 37:1–37:23

A Complete Graphical Language for Linear Optical Circuits with
Finite-Photon-Number Sources and Detectors

Nicolas Heurtel . 38:1–38:23

A Strictly Linear Subatomic Proof System
Victoria Barrett, Alessio Guglielmi, and Benjamin Ralph . 39:1–39:22

Completeness of First-Order Bi-Intuitionistic Logic
Dominik Kirst and Ian Shillito . 40:1–40:19

Taking Bi-Intuitionistic Logic First-Order: A Proof-Theoretic Investigation via
Polytree Sequents

Tim S. Lyon, Ian Shillito, and Alwen Tiu . 41:1–41:23

Unifying Sequent Systems for Gödel-Löb Provability Logic via Syntactic
Transformations

Tim S. Lyon . 42:1–42:23

Linear Realisability over Nets: Multiplicatives
Adrien Ragot, Thomas Seiller, and Lorenzo Tortora de Falco . 43:1–43:21

Classical Linear Logic in Perfect Banach Lattices
Pedro H. Azevedo de Amorim, Leon Witzman, and Dexter Kozen 44:1–44:21

Insights from Univalent Foundations: A Case Study Using Double Categories
Nima Rasekh, Niels van der Weide, Benedikt Ahrens, and Paige Randall North . . 45:1–45:18

Coslice Colimits in Homotopy Type Theory
Perry Hart and Kuen-Bang Hou (Favonia) . 46:1–46:20

A Rewriting Theory for Quantum λ-Calculus
Claudia Faggian, Gaetan Lopez, and Benoît Valiron . 47:1–47:22

CSL 2025

0:viii Contents

Quantum and Classical Markovian Graphical Causal Models and Their
Identification

Jonathan Barrett, Isaac Friend, and Aleks Kissinger . 48:1–48:23

Minimality in Finite-Dimensional ZW-Calculi
Marc de Visme and Renaud Vilmart . 49:1–49:22

Preface

This volume contains the papers presented at CSL 2025, the 33rd meeting in the conference
series Computer Science Logic (CSL), the annual conference of the European Association for
Computer Science Logic (EACSL). CSL 2025 was held from the 10th to 14th of February
2025 in Amsterdam, the Netherlands.

CSL started as a series of international workshops, and became an international conference
in 1992. Previous instalments of CSL were held in Naples (2024), Warsaw (2023), Göttingen
(2022, on-line), Ljubljana (2021, on-line), Barcelona (2020), Birmingham (2018), Stockholm
(2017), Marseille (2016), Berlin (2015), Vienna (2014), Torino (2013), Fontainebleau (2012),
Bergen(2011), Brno (2010), Coimbra (2009), Bologna (2008), Lausanne (2007), Szeged (2006),
Oxford (2005), Karpacz (2004), Vienna (2003), Edinburgh (2002), Paris (2001), Munich
(2000), Madrid (1999), Brno (1998), Aarhus (1997), Utrecht (1996), Paderborn (1995),
Kazimierz (1994), Swansea (1993) and San Miniato (1992).

CSL is an interdisciplinary conference, spanning both basic and application-oriented
research in mathematical logic and computer science. It is a forum for the presentation
of research on all aspects of logic and its applications, including automated deduction
and interactive theorem proving, constructive mathematics and type theory, equational
logic and term rewriting, automata and games, game semantics, modal and temporal logic,
logical aspects of computational complexity, finite model theory, computational proof theory,
logic programming and constraints, lambda calculus and combinatory logic, domain theory,
categorical logic and topological semantics, database theory, specification, extraction and
transformation of programs, logical aspects of quantum computing, logical foundations of
programming paradigms, verification and program analysis, linear logic, higher-order logic,
and non-monotonic reasoning.

The conference received 130 abstracts, of which 113 were followed up by full-paper blind
submissions, one of which was later retracted. The programme committee selected 44 papers
for presentation at the conference. Each paper was overseen by at least three members of
the programme committee, with the crucial help of 161 external reviewers who contributed
178 of the total 350 reviews. The submission and reviewing process, programme committee
discussion, and author notifications were all handled through the Easychair conference
management system.

In addition to the contributed papers, there were four invited talks, by: Patricia Bouyer-
Decitre (CNRS, ENS Paris-Saclay, France), Yannick Forster (Inria Paris, France), Elaine
Pimentel (University College London, UK), and Yde Venema (Universiteit van Amsterdam,
the Netherlands). We thank the invited speakers for their stimulating talks and papers,
which greatly contributed to the success of the conference.

One of the major regular events at CSL conferences is the presentation of the Ackermann
Award: the annual EACSL award for an outstanding dissertation in the area of logic in
computer science. The recipients of the award are selected by jury from a field of international
nominees, and the recipients receive their award at a ceremony at which they give a prize
lecture on their dissertation. This year, the jury elected to give the Ackermann Award
2024 jointly to Gaëtan Douéneau-Tabot for the PhD thesis entitled Optimization of String
Transducers, completed at University Paris-Cité, France, in 2023, under the supervision of
Olivier Carton and Emmanuel Filiot, and to Aliaume Lopez for the PhD thesis entitled
First Order Preservation Theorems in Finite Model Theory: Locality, Topology, and Limit

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Preface

Constructions, completed at École Normale Supérieure Paris-Saclay, France, in 2023, under
the supervision of Jean Goubault-Larrecq and Sylvain Schmitz. The award was presented
during the conference. The citation for the award is included in the proceedings.

Another significant event at CSL 2025 was the presentation of the Helena Rasiowa Award,
named after the eminent Polish mathematician and logician Helena Rasiowa (1917–1994)
whose work had an essential impact on the emerging field of logic in computer science. The
Helena Rasiowa Award, presented for the first time at CSL 2022, is given to the best paper,
as decided by the programme committee, that is written solely by students or to which
students were the main contributors. There was a strong field of candidates for this award
edition, with 7 of the accepted papers reported as eligible by their authors. From these,
the programme committee selected two recipients for the Helena Rasiowa Award: Ioannis
Eleftheriadis for the paper entitled Extension Preservation on Dense Graph Classes, and
Daumantas Kojelis for the paper entitled On Homogeneous Models of Fluted Languages.
Ioannis Eleftheriadis is a PhD student at the Computer Laboratory of the University of
Cambridge under the supervision of Anuj Dawar, and Daumantas Kojelis is a PhD student
at the University of Manchester under the supervision of Ian Pratt-Hartmann.

CSL 2025 also had two affiliated workshops: the Logic Mentoring Workshop (LMW@CSL)
and the Workshop on Learning and Logic (LeaLog@CSL).

We are very grateful to all the members of the CSL 2025 programme committee and
external reviewers for their careful and efficient evaluation of the submitted papers. We
would also like to thank the members of the organisation committee – Wan Fokkink and
Emma Triesman – for taking care to ensure a smooth-running and enjoyable conference. It
was, as always, a pleasure to work with Maribel Fernandez who, as the EACSL president,
provided excellent guidance. The proceedings of CSL 2025 are published as a volume in the
LIPIcs series. We thank Michael Wagner and all the Dagstuhl/LIPIcs team for their ongoing
support and for the high quality preparation of these proceedings. Last, but not least, we are
very grateful to the Theoretical Computer Science group at the Vrije Universiteit Amsterdam
and ILLC at the University of Amsterdam for supporting the organisation of this conference.

Jörg Endrullis and Sylvain Schmitz November 29, 2024

Program Committee Members

Bahareh Afshari (University of Gothenburg, Sweden)
Sandra Alves (University of Porto, Portugal)
Camille Bourgaux (CNRS, ENS Paris, France)
Laura Bozzelli (Universita Napoli Federico II, Italy)
Paul Brunet (Université Paris-Est Créteil, France)
Corina Cîrstea (University of Southampton, UK)
Laure Daviaud (City University London, UK)
Anuj Dawar (University of Cambridge, UK)
Jörg Endrullis (Vrije Universiteit Amsterdam, the Netherlands)
Natasha Fernandes (Macquarie University, Sydney, Australia)
Dana Fisman (Ben-Gurion University, Israel)
Moses Ganardi (MPI-SWS Kaiserslautern, Germany)
Rob J. van Glabbeek (UNSW, Sydney, Australia)
Julien Grange (Université Paris-Est Créteil, France)
Robert Harper (Carnegie Mellon University, USA)
Antti Kuusisto (Tampere University, Finland)
Ugo Dal Lago (University of Bologna, Italy)
Assia Mahboubi (Inria Nantes, France)
Alessio Mansutti (IMDEA Software Institute, Spain)
Dale Miller (Inria Saclay, France)
Shankara Narayanan Krishna (IIT Bombay, India)
Davide Sangiorgi (University of Bologna, Italy)
Sylvain Schmitz (Université Paris Cité, France)
Mahsa Shirmohammadi (CNRS, IRIF, France)
Alwen Tiu (Australian National University, Australia)
Takeshi Tsukada (Chiba University, Japan)
Benoît Valiron (CentraleSupélec, France)
Thomas Zeume (Ruhr University Bochum, Germany)
Standa Živný (University of Oxford, UK)

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

External Reviewers

Beniamino Accattoli
Matteo Acclavio
Antonis Achilleos
Robin Adams
Veeti Ahvonen
Shaull Almagor
Mario S. Alvim
Kazuyuki Asada
Steve Awodey
Arthur Azevedo de Amorim
Miriam Backens
Guillermo Badia
João Barbosa
Bartosz Bednarczyk
Massimo Benerecetti
Manuel Bodirsky
Alberto Bombardelli
Florian Bruse
Wojciech Buszkowski
Silvia Butti
Michaël Cadilhac
Silvio Capobianco
Marco Carmosino
Kostia Chardonnet
Vincent Cheval
Peter Cholak
Lorenzo Ciardo
Lorenzo Clemente
Gianluca Curzi
Tiziano Dalmonte
Luc Dartois
Maurizio De Nino
Dario Della Monica
Ivan Di Liberti
Sylvain Douteau
Andrej Dudenhefner
Thomas Ehrhard
Sebastian Enqvist
Marco Faella
Claudia Faggian
Chris Fermüller
Masood Feyzbakhsh Rankooh
Mário Florido
Jakub Gajarský
Zeinab Galal

Pierre Ganty
Han Gao
Francesco Gavazzo
Luca Geatti
Fatemeh Ghasemi
Nicola Gigante
Marianna Girlando
Silvio Gonnet
Rajeev Gore
Harrison Grodin
Giulio Guerrieri
Shibashis Guha
Ashutosh Gupta
Amar Hadzihasanovic
Masahito Hasegawa
Lauri Hella
Luisa Herrmann
Kengo Hirata
Nao Hirokawa
Piotr Hofman
Justin Hsu
Rosalie Iemhoff
Noa Izsak
Jean Christoph Jung
Benjamin Lucien Kaminski
Mamadou Moustapha Kanté
Shin-Ya Katsumata
Sayeh Khaniha
Emanuel Kieronski
Bartek Klin
Barbara König
Clemens Kupke
Dietrich Kuske
Stepan Kuznetsov
Ori Lahav
Alberto Larrauri
Karoliina Lehtinen
Ondrej Lengal
Marina Lenisa
Meven Lennon-Bertrand
Bert Lindenhovius
Kerkko Luosto
Kerkko Luosto
Marcin Łyczak
Ian Mackie

Florent Madelaine
Konstantinos Mamouras
Enrico Marchioni
Annabelle McIver
Brett McLean
Arne Meier
Samuel Mimram
Joshua Moerman
Fabio Mogavero
Sean Moss
Gopalan Nadathur
Tamio-Vesa Nakajima
Aleks Nanevski
Jakub Opršal
Magdalena Ortiz
Leonardo Pacheco
Anantha Padmanabha
Ludovic Patey
Adriano Peron
Frank Pfenning
Paolo Pistone
Andrew Pitts
Boldizsár Poór
Damien Pous
John Power
Cécilia Pradic
M. Praveen
Wojtek Przybyszewski
Loïc Pujet
Vineet Rajani
Miguel Ramos
Yann Ramusat
Colin Riba
Dino Rossegger
Jurriaan Rot
Sasha Rubin
Ken Sakayori
Pietro Sala
David Sanan
Alexis Saurin
Todd Schmid
Johannes Schmidt
Daniyar Shamkanov
Ian Shillito
Viorica Sofronie-Stokkermans

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xiv External Reviewers

Ana Sokolova
Giannos Stamoulis
Jonathan Sterling
Xin Sun
Jacobo Torán

Dmitriy Traytel
Felix Tschirbs
Iris van der Giessen
Vincent van Oostrom
Daniele Varacca

Fabian Vehlken
Miikka Vilander
Nils Vortmeier
James Worrell

The Ackermann Award 2024
Maribel Fernández #

Department of Informatics, King’s College London, UK

Prakash Panangaden #

McGill University, Canada

Abstract
Report on the 2024 Ackermann Award.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Finite Model Theory; Theory of computation → Proof theory; Theory of computation
→ Transducers

Keywords and phrases finite automaton, string transducer, class membership problem, first-order
logic, preservation theorem, finite model theory

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.1

Category Ackermann Award

Introduction

The Ackermann Award is the EACSL Outstanding Dissertation Award for Logic in
Computer Science. It is presented at CSL, the annual conference of the EACSL (European
Association for Computer Science Logic). This year the 20th Ackermann Award is presented
at CSL 2025 in Amsterdam, The Netherlands.

A call for nominations was issued in February 2024, open to any PhD dissertation (on
any topic represented at the annual CSL and LICS conferences) formally accepted by a
degree-granting institution in fulfilment of the PhD degree between 1 January 2023 and 31
December 2023.

The Jury received ten nominations, which came from a number of different countries
around the world: the nominees obtained their doctorates at institutions in Belgium, Canada,
Czech Republic, France, Poland and the United Kingdom. The topics covered a wide range
of areas in Logic and Computer Science.

This year we received a particularly strong set of nominations. All the nominated
PhD theses contained significant contributions to their particular fields. On behalf of the
Ackermann Jury, we extend our warmest congratulations to all the nominated candidates for
their outstanding work.

All the submissions were evaluated by the Jury, and after two phases of reviewing and
extensive discussion, the jury decided to grant the 2024 Ackermann Award jointly to (in
alphabetic order):

Gaëtan Douéneau-Tabot for the PhD thesis entitled Optimization of string transducers,
completed at University Paris-Cité, France, in 2023;
Aliaume Lopez for the PhD thesis entitled First Order Preservation Theorems in Finite
Model Theory: Locality, Topology, and Limit Construction, completed at University
Paris-Saclay, France, in 2023.

© Maribel Fernández and Prakash Panangaden;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 1; pp. 1:1–1:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Maribel.Fernandez@kcl.ac.uk
https://orcid.org/0000-0001-8325-5815
mailto:prakash.panangaden@mcgill.ca
https://doi.org/10.4230/LIPIcs.CSL.2025.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 The Ackermann Award 2024

Citation for Gaëtan Douéneau-Tabot

Gaëtan Douéneau-Tabot shares the 2024 Ackermann Award of the European Association of
Computer Science Logic for the PhD thesis

Optimization of string transducers,

which solves open class membership problems for various transducer models, providing
effective membership procedures that give rise to program optimization techniques. To
achieve this goal, the thesis develops an extensive toolbox for solving class membership
problems for transducers, including new characterisations of transducer behaviours.

Background to the thesis

This thesis deals with transducer models, that is, finite automata extended with string
outputs, which define functions from strings to strings. String transducers are finite-state
devices that represent programs with bounded memory. They are used in language processing
tools, compilers, streaming algorithms and model-checkers, amongst others.

Various transducer models have been defined as extensions of the basic model by adding
features to increase their expressive power. A natural question then arises: what is the
expressive power of each class of transducers? This can be rephrased as a class membership
problem: given a transducer with complex features, is there a simpler transducer that has
the same behaviour? Such a question can be interpreted as a program optimisation problem:
given a program, can we build an equivalent program that requires less resources?

Class membership problems in this context are known to be challenging. In his PhD
thesis, Douéneau-Tabot solves multiple instances of the problem, obtaining new results that
characterise various classes of transducer models and help understand their relationships.

Contributions of the thesis

The thesis solves open class membership problems for various transducer models. In each
case the membership procedure is effective, in the sense that it builds a more efficient
transducer whenever one exists, thus providing program optimisation techniques in the
setting of transducers. In particular, the techniques can be applied to automatically remove
recursion or nested loops for specific classes of programs.

In addition, the thesis provides new computation models and new characterisations that
capture pre-existing classes of transductions. These results provide new insights on the
expressive power of different kinds of transducers.

The proof techniques introduced are also valuable as a generic toolbox for solving other
class membership problems in transducer models, and more generally in automata theory.

Biographical sketch

Gaëtan Douéneau-Tabot carried out his PhD studies at University Paris-Cité, under the
supervision of Olivier Carton and Emmanuel Filiot, from 2020 to 2023. During his PhD he
(co)-authored papers published in the proceedings of conferences such as ICALP 2023, LICS
2023, FoSSaCS 2023, MFCS 2022, ICALP 2022, MFCS 2021, MFCS 2020. His MFCS 2022
and ICALP 2022 papers won “best student paper” awards.

M. Fernández and P. Panangaden 1:3

Citation for Aliaume Lopez

Aliaume Lopez shares the 2024 Ackermann Award of the European Association of Computer
Science Logic for the PhD thesis

First Order Preservation Theorems in Finite Model Theory: Locality, Topology, and
Limit Constructions,

which presents a systematic approach to investigating preservation theorems in Finite Model
Theory, providing tools to explain when and why some classes of structures are well-behaved
with respect to preservation theorems. The approach provides a compositional theory for
preservation theorems that was previously lacking.

Background to the thesis

Preservation theorems in first-order logic are a collection of results derived from classical
model theory, which establish a direct correspondence between the semantic properties of
formulas and the constraints imposed on their syntax.

These theorems have a practical impact in computer science, where they can be used for
example to characterise syntactic classes of database queries for which the termination and
correctness of database algorithms are guaranteed. Unfortunately preservation theorems are
notably challenging when focusing on finite models – the models considered in computer
science applications. Identifying well-behaved classes has been an active domain of research
for the last sixty years, with a series of negative results as well as some positive ones, which
motivated the quest for a systematic approach to the problem.

Contributions of the thesis

This thesis presents a systematic approach to investigating preservation theorems within the
realm of Finite Model Theory. The traditional ad-hoc proofs are replaced with a theoret-
ical framework that generalises techniques based on locality, and introduces a topological
presentation of preservation theorems called logically presented pre-spectral spaces.

Introducing these topological spaces enables the development of a compositional theory
for preservation theorems. Additionally, this thesis develops a methodology to systematically
examining preservation theorems across inductively defined classes of finite structures, by
proving a generic fixed point theorem for a topological restriction of logically presented
pre-spectral spaces: Noetherian spaces, which are topological spaces in which every open set
is compact.

Biographical sketch

Aliaume Lopez carried out his PhD studies under the supervision of Jean Goubault-Larrecq
(École Normale Supérieure Paris-Saclay) and Sylvain Schmitz (University Paris-Cité). The
thesis is built around three articles published at CSL 2021, LICS 2022 and FoSSaCS 2023
(he published other papers during his PhD unrelated with the thesis). He is the winner of
the E.W. Beth Dissertation Prize 2024. Currently he is a postdoctoral researcher at the
University of Warsaw.

CSL 2025

1:4 The Ackermann Award 2024

Jury

The jury for the Ackermann Award 2024 consisted of nine members, two of them ex officio,
namely, the president and the vice-president of EACSL. In addition, the jury also included a
representative of SIGLOG (the ACM Special Interest Group on Logic and Computation).

The members of the jury were:
Albert Atserias (Technical University of Catalonia);
Christel Baier (Technical University Dresden);
Andrej Bauer (University of Ljubljana);
Maribel Fernández (King’s College London), president of EACSL;
Joost-Pieter Katoen (RWTH Aachen University), ACM SIGLOG representative;
Delia Kesner (IRIF, University Paris Cité);
Slawomir Lasota (University of Warsaw);
Florin Manea (University of Göttingen), vice-president of EACSL;
Prakash Panangaden (McGill University);

Previous winners

Previous winners of the Ackermann Award were
2005, Oxford:

Mikołaj Bojańczyk from Poland,
Konstantin Korovin from Russia, and
Nathan Segerlind from the USA.

2006, Szeged:
Balder ten Cate from the Netherlands, and
Stefan Milius from Germany.

2007, Lausanne:
Dietmar Berwanger from Germany and Romania,
Stéphane Lengrand from France, and
Ting Zhang from the People’s Republic of China.

2008, Bertinoro:
Krishnendu Chatterjee from India.

2009, Coimbra:
Jakob Nordström from Sweden.

2010, Brno:
no award given.

2011, Bergen:
Benjamin Rossman from USA.

2012, Fontainebleau:
Andrew Polonsky from Ukraine, and
Szymon Toruńczyk from Poland.

2013, Turin:
Matteo Mio from Italy.

2014, Vienna:
Michael Elberfeld from Germany.

2015, Berlin:
Hugo Férée from France, and
Mickael Randour from Belgium.

M. Fernández and P. Panangaden 1:5

2016, Marseille:
Nicolai Kraus from Germany.

2017, Stockholm:
Amaury Pouly from France.

2018, Birmingham:
Amina Doumane from France.

2019, Barcelona (conference in 2020):
Antoine Mottet from France.

2020, Ljubljana (conference online in 2021)
Benjamin Kaminski from Germany.

2021, Göttingen (conference online in 2022)
Marie Fortin from France, and
Sandra Kiefer from Germany.

2022, Warsaw (conference in 2023)
Alexander Bentkamp from The Netherlands.

2023, Naples (conference in 2024)
Gabriele Vanoni from Italy.

Detailed reports on their work appeared in the CSL proceedings and are also available on
the EACSL homepage.

CSL 2025

On the Probabilistic and Statistical Verification of
Infinite Markov Chains
Patricia Bouyer #

Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles,
91190 Gif-sur-Yvette, France

Abstract
The verification of infinite-state Markov chains is a challenging problem, even when those chains
are described by structured high-level models. In 2007, Abdulla et al introduced the concept of
decisiveness [1], and showed that a natural approximation scheme could be applied to infinite Markov
chains that are decisive. This was, up to our knowledge, the unique generic scheme that could be
widely applied to (decisive) infinite Markov chains providing guarantees on the computed values
(under some mild assumptions for effectiveness). On the other hand, statistical model-checking is
a very efficient method that can be used for estimating probabilities in stochastic systems [8, 7].
We explain in this talk that decisiveness is also a key concept that allows to apply such statistical
methods to infinite Markov chains.

While decisiveness is a crucial property, not all Markov chains are decisive, and it is therefore
desirable to propose methods to analyze non-decisive Markov chains. Importance sampling [6] is a
method which has been proposed to improve efficiency of statistical model-checking, in particular
for estimating probabilities of rare events in stochastic systems. The idea is to biase the original
chain, and to estimate the probabilities in the biased chain; guarantees can sometimes be given, as
studied for instance in [5].

In this talk, we will explain how we use the importance sampling idea to turn a non-decisive
Markov chain into a biased decisive Markov chain, in which we can estimate probabilities (with
guarantees). We apply the general approach to a class of probabilistic pushdown automata. Our
algorithms have been implemented in the tool Cosmos [2], and we discuss the methodology for
experiments as well as our (partial) conclusions.

2012 ACM Subject Classification Mathematics of computing → Markov processes; Theory of
computation → Concurrency

Keywords and phrases Markov Chains, Infinite state systems, Numerical and statistical Vverification

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.2

Category Invited Talk

Related Version A preliminary work on this topic appeared in [3], whose extended version is [4].
Full Version: https://arxiv.org/abs/2409.18670 [4]

Funding This work has been partly supported by ANR projects MAVeriQ (ANR-20-CE25-0012)
and BisoUS (ANR-22-CE48-0012).

Acknowledgements I am thankful to Benoît Barbot and Serge Haddad for introducing me to the
world of statistical model-checking.

© Patricia Bouyer;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 2; pp. 2:1–2:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:patricia.bouyer@lmf.cnrs.fr
https://orcid.org/0000-0002-2823-0911
https://doi.org/10.4230/LIPIcs.CSL.2025.2
https://arxiv.org/abs/2409.18670
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 On the Probabilistic and Statistical Verification of Infinite Markov Chains

References
1 P. A. Abdulla, N. B. Henda, and R. Mayr. Decisive Markov chains. Logical Methods in

Computer Science, 3(4), 2007. doi:10.2168/LMCS-3(4:7)2007.
2 P. Ballarini, B. Barbot, M. Duflot, S. Haddad, and N. Pekergin. HASL: A new approach for

performance evaluation and model checking from concepts to experimentation. Performance
Evaluation, 90:53–77, 2015. doi:10.1016/j.peva.2015.04.003.

3 B. Barbot, P. Bouyer, and S. Haddad. Beyond decisiveness of infinite Markov chains. In Proc.
44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS’24), volume 323 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 8:1–8:21, 2024.

4 B. Barbot, P. Bouyer, and S. Haddad. Beyond decisiveness of infinite Markov chains. CoRR
arXiV, 2024. doi:10.48550/arXiv.2409.18670.

5 B. Barbot, S. Haddad, and C. Picaronny. Coupling and importance sampling for statistical
model checking. In 18th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’12), volume 7214 of LNCS, pages 331–346. Springer, 2012.
doi:10.1007/978-3-642-28756-5_23.

6 H. Kahn and T. E. Harris. Estimation of particle transmission by random sampling. National
Bureau of Standards applied mathematics series, 12:27–30, 1951.

7 H. L. S. Younes, E. M. Clarke, and P. Zuliani. Statistical verification of probabilistic properties
with unbounded until. In 13th Brazilian Symposium on Formal Methods (SBMF’10), volume
6527 of LNCS, pages 144–160. Springer, 2010. doi:10.1007/978-3-642-19829-8_10.

8 H. L. S. Younes and R. G. Simmons. Statistical probabilistic model checking with a focus
on time-bounded properties. Information and Computation, 204(9):1368–1409, 2006. doi:
10.1016/J.IC.2006.05.002.

https://doi.org/10.2168/LMCS-3(4:7)2007
https://doi.org/10.1016/j.peva.2015.04.003
https://doi.org/10.48550/arXiv.2409.18670
https://doi.org/10.1007/978-3-642-28756-5_23
https://doi.org/10.1007/978-3-642-19829-8_10
https://doi.org/10.1016/J.IC.2006.05.002
https://doi.org/10.1016/J.IC.2006.05.002

Synthetic Mathematics for the Mechanisation of
Computability Theory and Logic
Yannick Forster #

Inria Paris, France

Abstract
Mathematical practice in most areas of mathematics is based on the assumption that proofs could
be made fully formal in a chosen foundation in principle. This assumption is backed by partial
attempts at formalisation and by full mechanisation of various areas of mathematics in various proof
assistants and various foundations. Areas that have been largely neglected for computer-assisted
and machine-checked proofs are computability theory and logic: Fundamental results like Gödel’s
second incompleteness theorem in its stronger forms due to Kleene and Rosser, Löb’s theorem, Post’s
theorem connecting the arithmetical hierarchy and Turing jumps, or the Friedberg-Muĉnik theorem
solving Post’s problem have not or only very recently been re-produced in proof assistants. This is
due to the fact that making these arguments formal is several orders of magnitude more involved
than formalising other areas of mathematics, due to the amount of invisible mathematics (a term
coined by Andrej Bauer) involved.

In computability theory, invisible arguments occur mainly behind proofs that a certain intuitively
sketched procedure is computable in – citing Emil Post – “forbidding, diverse and alien formalisms in
which this [...] work of Gödel, Church, Turing, Kleene, Rosser [...] is embodied.”. For instance, there
have been various approaches of formalising Turing machines, all to the ultimate dissatisfaction of
the respective authors, and none going further than constructing a universal machine and proving
the halting problem undecidable. Professional computability theorist and teachers of computability
theory thus rely on the informal Church Turing thesis to carry out their work and only argue the
computability of described algorithms informally.

For computability theory, a way out was proposed in the 1980s by Fred Richman and developed
during the last decade by Andrej Bauer: Synthetic computability theory, where one assumes axioms
in a constructive foundation which essentially identify all (constructively definable) functions with
computable functions. A drawback of the approach is that assuming such an axiom on top of the
axiom of countable choice - which is routinely assumed in this branch of constructive mathematics
and computable analysis - is that the law of excluded middle, i.e. classical logic, becomes invalid.
Computability theory is however, as all mainstream branches of mathematics, making routine use of
the axiom of excluded middle.

In the case of logic, the invisible mathematics usually is either centered around encoding formulas
and proofs as numbers using Gödel or similar encodings or about provability arguments that certain
results can be proved in restricted proof systems such as Peano arithmetic. In several settings,
synthetic computability arguments can be employed to mechanise these proofs.

We observe that a slight foundational shift rectifies the situation: By basing synthetic computab-
ility theory in the Calculus of Inductive Constructions, the type theory underlying amongst others
the Coq and Lean proof assistants, where countable choice is independent and thus not provable,
axioms for synthetic computability are compatible with the law of excluded middle. This insight
can be used to finally mechanise computability theory and logic, in an elegant, concise way where
invisible arguments stay invisible: with Felix Jahn I have mechanised arguments related to many-one
and truth-table reduction theory (published at CSL ’23), Dominik Kirst and Benjamin Peters have
presented Gödel’s first incompleteness theorem in this style (at CSL ’23), and in collaboration with
Dominik Kirst and Niklas Mück I have given a proof of Post’s hierarchy theorem (at CSL ’24).

In this invited talk, I will give a broader overview of this line of research investigating a mechanised
synthetic approach to logic and computability theory. In particular, I will discuss a Coq library of
undecidability proofs, results in the theory of reducibility degrees, constructive reverse analysis of
theorems, as well as generalised incompleteness results such as Löb’s theorem.

© Yannick Forster;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 3; pp. 3:1–3:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yannick.forster@inria.fr
https://orcid.org/0000-0002-8676-9819
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Synthetic Mathematics for the Mechanisation of Computability Theory and Logic

2012 ACM Subject Classification Theory of computation → Constructive mathematics

Keywords and phrases Synthetic mathematics, computability theory, logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.3

Category Invited Talk

Supplementary Material
Software: https://github.com/uds-psl/coq-synthetic-computability/
Software: https://github.com/uds-psl/coq-library-fol

Acknowledgements Joint work with Dominik Kirst, Gert Smolka, Felix Jahn, Niklas Mück, Janis
Bailitis, Haoyi Zeng, and the contributors of the Coq Library of Undecidability Proofs.

https://doi.org/10.4230/LIPIcs.CSL.2025.3
https://github.com/uds-psl/coq-synthetic-computability/
https://github.com/uds-psl/coq-library-fol

Playing with Modalities
Elaine Pimentel1 # Ñ

Computer Science Department, University College London, UK

Carlos Olarte # Ñ

LIPN, CNRS UMR 7030, Université Sorbonne Paris Nord, France

Timo Lang # Ñ

Computer Science Department, University College London, UK

Robert Freiman #

TU Wien, Austria

Christian G. Fermüller # Ñ

TU Wien, Austria

Abstract
In this work, we will explore modalities through dialogical game lenses. Games provide a powerful
tool for bridging the gap between intended and formal semantics, often offering a more conceptually
natural approach to logic than traditional model-theoretic semantics.

We begin by exploring substructural calculi from a game semantic perspective, driven by intuitions
about resource-consciousness and, more specifically, cost-sensitive reasoning. The game comes into
full swing as we introduce cost labels to assumptions and a corresponding budget. Different proofs
of the same end-sequent are interpreted as strategies for a player to defend a claim, which vary in
cost. This leads to a labelled calculus, which can be viewed as a fragment of subexponential linear
logic. We conclude this first part with a discussion of cut-admissibility for the proposed system.

In the second part, we show that our games offer an interesting insight also into modal logics.
More precisely, we will focus on the modal logic PNL, characterised by Kripke frames with two
types of disjoint and symmetric reachability relations. This framework is motivated by the study of
group polarisation, where the opinions or beliefs of individuals within a group become more extreme
or polarised after interaction. Our approach to reasoning about group polarisation is based on PNL
and highlights a different aspect of formal reasoning about the corresponding models – using games
and proof systems. We conclude by outlining potential directions for future research.

2012 ACM Subject Classification Theory of computation → Linear logic; Theory of computation
→ Modal and temporal logics; Theory of computation → Proof theory

Keywords and phrases Linear logic, modal logic, proof theory, game semantics

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.4

Category Invited Talk

Funding Elaine Pimentel: Pimentel has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant agreement Number
101007627 and by the Leverhulme Project ECUMENICAL (RPG-2024-196).
Carlos Olarte: The work of Olarte has been partially supported by the SGR project PROMUEVA
(BPIN 2021000100160) under the supervision of Minciencias (Ministerio de Ciencia Tecnología e
Innovación, Colombia). Olarte acknowledges also support from the NATO Science for Peace and
Security Programme through grant number G6133 (project SymSafe).

1 Corresponding author.

© Elaine Pimentel, Carlos Olarte, Timo Lang, Robert Freiman, and Christian G. Fermüller;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 4; pp. 4:1–4:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:e.pimentel@ucl.ac.uk
https://sites.google.com/site/elainepimentel/
https://orcid.org/0000-0002-7113-0801
mailto:olarte@lipn.univ-paris13.fr
https://sites.google.com/site/carlosolarte/
https://orcid.org/0000-0002-7264-7773
mailto:timo.lang@ucl.ac.uk
https://www.timolang.com/
https://orcid.org/0000-0002-8257-968X
mailto:robert@logic.at
https://orcid.org/0000-0001-8251-4272
mailto:chrisf@logic.at
https://www.logic.at/staff/chrisf/home.html
https://orcid.org/0000-0003-2932-5477
https://doi.org/10.4230/LIPIcs.CSL.2025.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Playing with Modalities

1 Introduction

Modalities, both as formal constructs and as tools for reasoning, have been central to the
development of logic and proof theory. In this work, we explore modalities through the lens
of dialogical games, emphasising their potential to bridge the gap between formal semantics
and conceptual intuition. Games not only offer a dynamic perspective on logical systems
but also serve as a unifying framework for analysing the structure of proofs and resource
management in a variety of logical settings.

We begin by examining substructural calculi, inspired by resource-sensitive reasoning. We
introduce the concept of prices for resources (represented by formulas) into the game using
the unary operator !a, a ∈ R+, which shares some characteristic features with subexponentials
in linear logic LL (SELL [14, 32]). Intuitively, a formula !aA represents a permanent resource:
from !aA, we can derive A as many times as needed, paying the price a each time.

We extend our game to this enriched language by incorporating a budget into the game
states, which decreases whenever a price is paid. Different strategies for proving the same
end-sequent can then be evaluated based on the budget required to execute them safely,
i.e., without incurring debt. This approach to resource-consciousness not only enhances the
game but also translates naturally into a sequent system, where cost bounds for proofs are
expressed as labels attached to sequents. By associating costs with proof steps, we provide a
fine-grained analysis of proof strategies and their computational bounds.

We note that, up to this point, the content summarises the work presented in [28], where
resources were considered only in assumptions. In this setting, sequents are restricted by
limiting the occurrences of the modality !a negatively, thereby eliminating the need for a
promotion rule.

In Section 2.2, we introduce new perspectives by allowing modalities in positive contexts.
This includes the addition of “worse costs,” linearisation of the cut formula, and tracking the
use of contraction during the cut-elimination process.

In the second part of this paper, we present an overview of our work in [22], going beyond
resource-awareness, and showing how games can illuminate modal logics. Specifically, we
focus on the positive-negative modal logic (PNL [47]), characterised by Kripke frames with
two disjoint and symmetric reachability relations. In PNL, individuals in a social network
are identified with worlds of the frame, and the associated relations represent either “friends”
(positive) or as “enemies” (negative). These relationships can be understood in different
ways: Instead of genuine friendship or enduring enmity, they may simply mean agreement
or disagreement on a particular issue. Our interest in PNL stems from its application in
modelling phenomena such as group polarisation, where interactions amplify the extremity of
opinions within a network. We show how the dialogical game lenses lead to both a semantic
game and a provability game for (hybrid) extensions of PNL.

In semantic games [25], each instance is played over a formula F and a model M by two
players, traditionally called I (or Me) and You. At every point in the game, one player acts
as the proponent (P), while the other acts as the opponent (O) of the current formula. The
set of actions at each stage is determined by the main connective of the current formula.

In contrast, provability games [29] do not concern truth in a specific model but rather
logical validity. These games are also played by two participants, Me and You, and involve
attacking assertions of formulas made by the other player and defending against these attacks.

We conclude this summary by showing how to transform the semantic game over single
models into a provability game that characterises logical validity. This transformation led
to the first Gentzen-style systems for variants of PNL, which modularly adapt to different
frame properties by faithfully capturing the rules for elementary games.

E. Pimentel, C. Olarte, T. Lang, R. Freiman, and C. G. Fermüller 4:3

Each part concludes with a discussion of future research directions and methodologies for
combining and adapting the frameworks presented here to other logics and systems.

2 A game model for costs

Our starting point is a calculus for affine intuitionistic linear logic (aILL) [24]. Formulas in
aILL are built from the grammar

A ::= p | 0 | 1 | A1 & A2 | A1 ⊕ A2 | A1 ⊗ A2 | A1 −◦ A2 | ! A.

with a denumerable infinite set of propositional variables {p, q, r, . . .}, the units {0, 1},
the binary connectives for additive conjunction and disjunction {&, ⊕}, the multiplicative
conjunction ⊗, the linear implication −◦, and the exponential !.

Similar to modal connectives, the exponential ! in linear logic is not canonical, in the sense
that, even having the same scheme for introduction rules, marking the exponentials with
different labels does not preserve equivalence. That is, if i ̸= j then !iA ̸≡ !jA. Intuitively,
this means that we can mark the exponential with labels taken from a set I organized in
a pre-order ⪯ (i.e., a reflexive and transitive relation), obtaining (possibly infinitely-many)
exponentials !i for i ∈ I. These are called subexponentials [14], and the respective proof
system for linear logic with subexponentials is called SELL [33]. As in multi-modal systems,
the pre-order determines the provability relation: for a general formula A, !bA implies !aA iff
a ⪯ b. Pre-ordering the labels (together with an upward closeness requirement) guarantees
cut-elimination in SELL [14].

The algebraic structure of subexponentials, combined with their intrinsic structural
properties (weakening and contraction) allow for the proposal of rich linear logic based
frameworks. This opened a venue for proposing different multi-modal substructural logical
systems [46], that encountered a number of different applications (see [37] for a survey).

In this paper, we will use subexponentials to model the notion of costs. We will start by
considering the particular case where labels will be elements of R+, the set of non-negative
real numbers, with the usual pre-order ≤. Formally, we substitute in aILL the exponential !
by the unary modal operators !a for each a ∈ R+.

We shall use A, B, C (resp. Γ, ∆) to range over formulas (resp. multisets of formulas).
Sequents have the form Γ ⇒ C where subformulas !aA will have a restriction to occur only
negatively in the sequent.2 We denote by !Γ a set of formulas prefixed with !a for some (not
necessarily the same) a ∈ R+.

The rules for the system C(R+) are depicted in Figure 1. Note that the cut rule is not
included in our presentation of C and that weakening is present only implicitly, via the
context Γ in the initial sequents. Furthermore, in rule init, p is a propositional variable and
there is no right rule for ! in C(R+) since this connective only appears in negative polarity.
We shall write ⊢C(R+) S if the sequent S is provable in C(R+).

2 The notion of polarity is the standard one: A subformula occurrence in the antecedent of a sequent is
negative if it occurs in the scope of an even number (including 0) of contexts ([·] −◦ B), and otherwise
it is positive. For occurrences of a subformula in the consequent, one replaces “even” by “odd”. The
reason for this restriction will be made clear in Section 2.2.

CSL 2025

4:4 Playing with Modalities

Γ, A, B ⇒ C

Γ, A ⊗ B ⇒ C
⊗L

!Γ, ∆1 ⇒ A !Γ, ∆2 ⇒ B

!Γ, ∆1, ∆2 ⇒ A ⊗ B
⊗R

!Γ, ∆1 ⇒ A !Γ, ∆2, B ⇒ C

!Γ, ∆1, ∆2, A −◦ B ⇒ C
−◦L

Γ, A ⇒ B

Γ ⇒ A −◦ B
−◦R

Γ, !aA, A ⇒ C

Γ, !aA ⇒ C
!L

Γ, Ai ⇒ B

Γ, A1 & A2 ⇒ B
&Li

Γ ⇒ A Γ ⇒ B
Γ ⇒ A & B

&R
Γ, A ⇒ C Γ, B ⇒ C

Γ, A ⊕ B ⇒ C
⊕L

Γ ⇒ Ai

Γ ⇒ A1 ⊕ A2
⊕Ri

Γ, p ⇒ p
init Γ ⇒ 1 1R Γ, 0 ⇒ C

0L

Figure 1 The sequent system C(R+).

2.1 Playing with subexponentials
We shall characterize C(R+) proofs as winning strategies (w.s.) in a two-player game, the
players denoted P and O. As usual, we will interpret bottom-up proof search in sequent
systems as a game where, at any given state, player P first chooses a formula of a sequent
and, in the next step:

if the rule has only one premise: P moves to the premise sequent of the corresponding
introduction rule;
if the rule has two premises either

(i) player O chooses a premise sequent in which the game continues; or
(ii) the game splits into independent subgames, where P has to win all of them if she

wants to win the game.
The choice between (i) and (ii) depends on the nature of the rule: branching in additive
rules is modelled as choices made by O, while branching in multiplicative rules involves P
splitting the context into two disjoint parts, which then serve as the corresponding contexts
for two subgames played in parallel. Consequently, the state of the game is represented by a
multiset of sequents, with each sequent belonging to a distinct subgame.

Now, to capture the notion of costs, game states include a budget (modelled as a real
number) that decreases whenever the rule !L is applied. This implies a cost a is incurred
during dereliction, i.e., when unpacking a formula stored within the modality !a. Formally
we have the following.

▶ Definition 1 (The game GC(R+)). GC(R+) is a game of two players, P and O. Game
states are tuples (H, b), where H is a finite multiset of sequents and b ∈ R is a “budget”.
GC(R+) proceeds in rounds, initiated by P’s selection of a sequent S from the current game
state. The successor state is determined according to rules that fit one of the two following
schemes:
(1) (G ∪ {S}, b) ⇝ (G ∪ {S′}, b′)
(2) (G ∪ {S}, b) ⇝ (G ∪ {S1} ∪ {S2}, b)
A round proceeds as follows: After P has chosen a sequent S ∈ H among the current game
state, she chooses a rule instance r of C(R+) such that S is the conclusion of that rule.
Depending on r, the round proceeds as follows:
1. If r is a unary rule different from !L with premise S′, then the game proceeds in the game

state (G ∪ {S′}, b).
2. Budget decrease: If r = !L with premise S′ and principal formula !aA, then the game

proceeds in the game state (G ∪ {S′}, b − a).

E. Pimentel, C. Olarte, T. Lang, R. Freiman, and C. G. Fermüller 4:5

3. Parallelism: If r is a binary rule with premises S1, S2 pertaining to a multiplicative
connective, then the game proceeds as (G ∪ {S1} ∪ {S2}, b).

4. O-choice: If r is a binary rule with premises S1, S2 pertaining to an additive connective,
then O chooses S′ ∈ {S1, S2} and the game proceeds in the game state (G ∪ {S′}, b).

A winning state (for P) is a game state (H, b) such that all S ∈ H are initial sequents of
C(R+) and b ≥ 0.

▶ Definition 2 (Plays and strategies). A play of GC(R+) on a game state (H, b) is a sequence
(H1, b1), (H2, b2), . . . , (Hn, bn) of game states, where (H1, b1) = (H, b) and each (Hi+1, bi+1)
arises by playing one round on (Hi, bi). A strategy (for P) on a game state (H, b) is defined as
a function telling P how to move in any given state. A strategy on (H, b) is a winning strategy
(w.s.) if all plays following it eventually reach a winning state. We write |=GC(R+) (H, b) if P
has a w.s. in the GC(R+)-game starting on (H, b).

The intuitive reading of |=GC(R+) (H, b) is: The budget b suffices to win the game H.

▶ Example 3. Consider the following well-known riddle:

You have white and black socks in a drawer in a completely dark room. How many
socks do you have to take out blindly to be sure of having a matching pair?

We can model the matching pair by the disjunction (w ⊗ w) ⊕ (b ⊗ b), and the act of drawing
a random sock by the labelled formula !1(w ⊕ b). The above question then becomes:

What is the least budget n such that |=GC(R+) (!1(w ⊕ b) ⇒ (w ⊗ w) ⊕ (b ⊗ b), n)?

The following play illustrates that n = 3 suffices, where F = (w⊗w)⊕(b⊗b) and G = !1(w⊕b):
1. ({G ⇒ F}, 3)
2. ({G, w ⊕ b, w ⊕ b, w ⊕ b ⇒ F}, 0) (P plays !1L 3×, budget decrease)
3. ({G, w, w ⊕ b, w ⊕ b ⇒ F}, 0) (O chooses w)
4. ({G, w, b, w ⊕ b ⇒ F}, 0) (O chooses b)
5. ({G, w, b, b ⇒ F}, 0) (O chooses b)
6. ({G, w, b, b ⇒ b ⊗ b}, 0) (P plays ⊕R2)
7. ({G, w, b ⇒ b} ∪ {G, b ⇒ b}, 0) (P plays ⊗R, parallelism)
The other possible choices for O are similar or simpler, and show that n = 2 is not enough
for winning the game.

We note that it is not necessary to consider all possible strategies in GC(R+): For example, P
never needs to take the budget into account when deciding the next move. Also, it is easy to
see that a C(R+)-proof Ξ of a sequent S translates to a w.s. in ({S}, b) for some sufficiently
large budget b. Taking these observations together, one can prove the following.

▶ Theorem 4 (Weak adequacy for GC(R+) [28]). Let S be a sequent. Then

∃b
(

|=GC(R+) ({S}, b)
)

iff ⊢C(R+) S

This is a weak adequacy since information about the budget b is lost in the proof theoretic
representation. In other words, the game GC(R+) is more expressive than the calculus C(R+).

To overcome this discrepancy, we introduce a labelled extension of C(R+) that we call
Cℓ(R+). A Cℓ(R+)-proof is build from labelled sequents b : Γ ⇒ A where Γ ⇒ A is a sequent
and b ∈ R+. The complete system is given in Figure 2. Now we can prove the desired
correspondence.

CSL 2025

4:6 Playing with Modalities

labelled sequent system for Cℓ(R+)

b : Γ, A, B ⇒ C

b : Γ, A ⊗ B ⇒ C
⊗L

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2 ⇒ B

a + b : !Γ, ∆1, ∆2 ⇒ A ⊗ B
⊗R

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2, B ⇒ C

a + b : !Γ, ∆1, ∆2, A −◦ B ⇒ C
−◦L

b : Γ, A ⇒ B

b : Γ ⇒ A −◦ B
−◦R

b : Γ, Ai ⇒ B

b : Γ, A1 & A2 ⇒ B
&Li

a : Γ ⇒ A b : Γ ⇒ B
max{a, b} : Γ ⇒ A & B

&R

a : Γ, A ⇒ C b : Γ, B ⇒ C

max{a, b} : Γ, A ⊕ B ⇒ C
⊕L

b : Γ ⇒ Ai

b : Γ ⇒ A1 ⊕ A2
⊕Ri

c : Γ, !aA, A ⇒ C

c + a : Γ, !aA ⇒ C
!aL

0 : Γ, p ⇒ p
init 0 : Γ ⇒ 1 1R 0 : Γ, 0 ⇒ A

0L
a : Γ ⇒ A
b : Γ ⇒ A

wℓ(b ≥ a)

Figure 2 The labelled sequent system Cℓ(R+).

▶ Theorem 5 (Strong adequacy for GC(R+) [28]). |=GC(R+) ({Γ ⇒ A}, b) iff ⊢Cℓ(R+) b :
Γ ⇒ A.

This result can be further strengthened. In fact, proofs (and games) can be assigned a
minimal budget, referred to as the cost: given a proof Ξ of a sequent, one can assign the
label 0 to all initial sequents of Ξ and propagate the labels downward according to the rules
of Cℓ(R+). However, the broader implications are even more interesting, as illustrated in the
following example.

▶ Example 6. Suppose that a printer costs $500 and it produces copies for $0.1. Which is
the budget needed for making 2 copies?

Since buying a printer and making a copy can be modelled as !500(!0.1C), the goal is to
find possible budgets for

b : !500(!0.1C) ⇒ C ⊗ C

Now, there are many ways of proving this sequent in Cℓ(R+). For example, the proof below
has a cost $500.20:

0 : C, C ⇒ C ⊗ C
⊗, init

0.20 : !0.1C ⇒ C ⊗ C
!0.10 × 2

500.20 : !500(!0.1C) ⇒ C ⊗ C
!500

This proof corresponds to purchasing one printer and producing two copies from it.

E. Pimentel, C. Olarte, T. Lang, R. Freiman, and C. G. Fermüller 4:7

Alternatively, one could overprice the scenario by purchasing two printers and making
one copy with each, incurring a cost of $1,000.20.

0 : C, C ⇒ C ⊗ C
⊗, init

0.20 : !0.1C, !0.1C ⇒ C ⊗ C
!0.10

1, 000.20 : !500(!0.1C) ⇒ C ⊗ C
!500 × 2

Hence, different proofs of the same sequent can lead to different costs. Nevertheless, cost-
optimal strategies exist for all provable sequents, as the following result shows.3

▶ Theorem 7 (Cost-optimal proofs [28]). If ⊢C(R+) Γ ⇒ A, then there exists a smallest b

such that ⊢Cℓ(R+) b : Γ ⇒ A.

2.2 About cut-admissibility
We begin by noting that establishing cut-admissibility in Cℓ(R+) critically relies on the ability
to define a computable function f that relates the cost of the end-sequent to the labels of
the premises in the cut rule. Given that exponentials only occur negatively in Cℓ(R+), no
cut steps involve banged formulas. This allows us to demonstrate that f(a, b) = a + b is the
minimal such function.

▶ Theorem 8 (Negative-cut [28]). For f(a, b) = a + b, the following cut rule is admissible in
Cℓ(R+):

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2, A ⇒ C

f(a, b) : !Γ, ∆1, ∆2 ⇒ C
cutℓ

Moreover, whenever cutℓ is admissible w.r.t. a given f ′, then a + b ≤ f ′(a, b).

It turns out that extending cost-conscious reasoning to modalities occurring positively in
sequents is far from trivial. While an intuitive game-theoretic interpretation of promotion
could be provided in the style of [16], this does not align with a proof-theoretic notion of
cut-admissibility. This is due to the inherent difficulty in defining a functional notion of the
cut-label, as demonstrated below.

Let CPℓ(R+) be the system resulting from Cℓ(R+) by adding the following labelled
promotion rule

b : Γ≤!a ⇒ A
b : Γ ⇒ !aA

!aR

where Γ≤!a denotes all formulas in Γ which are of the form !cB and a ≥ c.
The question that arises is whether the cut-admissibility result can be extended to

CPℓ(R+). To address this, consider the following derivation:

b1 : ⇒ A

b1 : ⇒ !aA
!aR

b2 : ∆, !aA, A ⇒ C

b2 + a : ∆, !aA ⇒ C
!aL

b1 + b2 + a : ∆ ⇒ C
cut

3 We note that the proof of this result is non-constructive!

CSL 2025

4:8 Playing with Modalities

This is usually reduced to

b1 : ⇒ A

b1 : ⇒ !aA b2 : ∆, !aA, A ⇒ C

b1 + b2 : ∆, A ⇒ C
cut

2b1 + b2 : ∆ ⇒ C
cut

where the upper cut has a smaller rank, and the lower cut has a smaller degree than the
original cut. However, this approach fails in the labelled setting because, whenever a < b1,
the label increases.

Although alternative reduction methods could be explored, the following result shows that
it is impossible to define a labelled cut rule for CPℓ(R+) where the label of the conclusion
depends solely on the labels of the premises. We include the proof, as it is highly insightful.

▶ Theorem 9 (Impossible-cut [28]). There is no function f : R+ × R+ → R+ such that the
rule

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2, A ⇒ C

f(a, b)!Γ, ∆1, ∆2 ⇒ C
cut

is admissible in CPℓ(R+).

Proof. Let p, q be different propositional variables, and let A⊗n denote the n-fold multiplic-
ative conjunction of a formula A. The sequents

a : !1/kp ⇒ !1/kp⊗(k·a) and b : !1/kp⊗(k·a) ⇒ p⊗(k·k·a·b)

are provable in CPℓ(R+) for all natural numbers a, b, k. The smallest label f which makes
their cut conclusion f : !1/kp ⇒ p⊗(k·k·a·b) provable in CPℓ(R+) is k · a · b, which is not a
function on the premise labels a, b. ◀

The theorem above indicates that, to find an admissible labelled cut rule, we must either:
1. restrict the form of the cut formula;
2. allow the labelling function f to incorporate more information from the premises than

just their labels;
3. keep track of the use of contraction in the cut-elimination process.

We shall explore next different fragments and (admissible) cut-like rules that can be
proposed for CPℓ(R+).

2.2.1 Infinite costs
We start by observing that the inclusion of “worse costs” entails a trivial labelling that makes
cut admissible. Let R+

∞ be the completion of R+ with ∞ and CPℓ(R+
∞) the corresponding

labeled proof system with decreasing for b ≤ a being defined as follows:
If a, b ̸= ∞, a − b is defined as usual;
If a = ∞, then a − b = ∞.

In the following theorem, the cut formula A is an arbitrary formula (containing, possibly,
positive and/or negative occurrences of the modality !a).

▶ Theorem 10 (Infinite-cut). The following rule is admissible in CPℓ(R+
∞)

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2, A ⇒ C

∞ : !Γ, ∆1, ∆2 ⇒ C
cut∞

E. Pimentel, C. Olarte, T. Lang, R. Freiman, and C. G. Fermüller 4:9

The proof follows the same steps of the cut-elimination proof for SELL [14, 33], using natural
extensions of invertibility and permutability of rules to the labelled case.

But this still does not define a computable function relating the labels of the premises
and the conclusion of the cut rule.

2.2.2 Linearity
Now we show cases where the cut formula is restricted, starting with the case where the cut
formula is !-free.

▶ Theorem 11 (Linear-cut). Let A be a formula with no occurrences of !a. Then, the following
rule is admissible in CPℓ(R+)

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2, A ⇒ C

a + b : !Γ, ∆1, ∆2 ⇒ C
cutL

Moreover, if a : Γ ⇒ C is provable using cutL, then there is a cut-free proof of a′ : Γ ⇒ C

with a ≥ a′.

The proof uses a standard cut-reduction strategy for SELL, observing in each case that the
reduction of the label is possible.

Still, forcing cut formulas to be linear seems to be a very severe restriction to impose.
We will now consider another, and less limiting, syntactic restriction on the cut formula.

▶ Definition 12. A formula of the form !aA is simply exp-labelled if a ̸= 0 and A is bang-free.

Since the formulas used in the proof of Theorem 9 can be simply exp-labelled, it is
clear that we cannot expect to find an admissible cut rule for all simply exp-labelled cut
formulas where the labelling depends solely on the labels of the premises. However, we can
also incorporate the information from the label a in the simply exp-labelled formula !aA, as
follows.

▶ Theorem 13 (Exp-labelled-cut [27]). For any simply exp-labelled formula !aA, the following
cut rule is admissible in CPℓ(R+):

b1 : !Γ, ∆1 ⇒ !aA b2 : !Γ, ∆2, !aA ⇒ C

f(b1, b2, a) : !Γ, ∆1, ∆1 ⇒ C
cutel

where f(b1, b2, a) = b2 + ⌊b2/a⌋ · b1.

The intuition behind this labelling is as follows: if the right subproof R of the cutel ends
with the label b2, then the formula !aA can be unpacked at most ⌊b2/a⌋ times within a
multiplicative subtree of R. Therefore, we can assume that the rule !aL is applied only ⌊b2/a⌋
times on such a subtree.

2.2.3 Accumulated costs
We will end the part of substructural modalities with a new approach towards cut-admissibility,
where we keep track of the use of contraction in the cut-elimination process. The idea is that,
if proving A costs b, then any use of A must pay this “extra cost”. For that, we introduce
the following notation.

CSL 2025

4:10 Playing with Modalities

▶ Definition 14. Let E = {ab | a, b ∈ R+} be such that
1. ab +E cd = a + b + c + d.
2. ab ≥E ac (i.e., the ordering ≥E ignores the subindices).
3. ab >E cd iff a > c.
For any formula A ∈ CPℓ(R+), we define [A]c as the formula that substitutes any modality
!ab with !ab+c .

Hence CPℓ(R+) can be slightly modified so that sequent labels belong to R+, while modal
labels belong to E . Due to the ordering above, the promotion of !a0 has the same effect/con-
straints that the promotion of !ab . However, the dereliction of the latter requires a greater
budget (a + b instead of a). Moreover, the equivalence !abA ≡ !acA can be proven, each
direction requiring a different budget. Finally, note that E0 = {a0 | a ∈ R+} ≃ R+, that is,
each element a ∈ R+ can be seen as the equivalence class of a0 in R+ × R+ modulo R+. We
will abuse of the notation and continue representing the resulting system by CPℓ(R+), also
unchanging the representation of sequents.

The following lemma has a straightforward proof.

▶ Lemma 15. If b : Γ, [A]c ⇒ C then b′ : Γ, A ⇒ C with b ≥ b′. More generally, if
b : Γ, [A]c ⇒ C and c ≥ c′ then b′ : Γ, [A]c′ ⇒ C with b ≥ b′.

The next definition restricts the occurrence of unbounded modalities only under linear
implication.

▶ Definition 16. We say that A is −◦-linear if for all subformulas of the form B −◦ C in A,
B is bang-free.

The following result presents the admissibility of an extended form of the cut rule, where the
budget information from the left premise is passed to the cut-formula in the right premise.
Observe that the label of the conclusion is now a function of the labels of the premises.
Moreover, the cut-reduction is label preserving, meaning that the budget monotonically
decreases in the cut-elimination process.

▶ Theorem 17 (−◦-linear-cut). The following rule is admissible

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2, [A]a ⇒ C

a + b : !Γ, ∆1, ∆2 ⇒ C
cutLL A is a −◦-linear formula

Moreover, if b : Γ ⇒ C is provable using cutLL, then there is a cut-free proof of b′ : Γ ⇒ C

with b ≥ b′.

Proof. We will illustrate some cases.
Note that: [!abA]c = !ab+c [A]c; the promotion of !abA, bottom-up, results in a context of
! formulas (that can be contracted at will); and the dereliction of !ab [A]c decreases the
budget in a + b. Hence,

c : (!Γ)≤!ab ⇒ A

c : !Γ, ∆1 ⇒ !abA

d : !Γ, ∆2, [A]c, !ab+c [A]c ⇒ C

a + b + c + d : !Γ, ∆2, !ab+c [A]c ⇒ C

a + b + 2c + d : !Γ, ∆1, ∆2 ⇒ C

reduces to

c : (!Γ)≤!ab ⇒ A

c : !Γ ⇒ !abA d : !Γ, !ab+c [A]c, ∆2, [A]c ⇒ C

c + d : !Γ, ∆2, [A]c ⇒ C

2c + d : !Γ, ∆1, ∆2 ⇒ C

where the “extra cost” ab disappears after the reduction.

E. Pimentel, C. Olarte, T. Lang, R. Freiman, and C. G. Fermüller 4:11

Note that [A ⊗ B]c = [A]c ⊗ [B]c. Here, let c = c1 + c2:

c1 : !Γ, ∆′
1 ⇒ A c2 : !Γ, ∆′′

1 ⇒ B

c : !Γ, ∆1 ⇒ A ⊗ B

b : !Γ, ∆2, [A]c, [B]c ⇒ C

b : !Γ, ∆2, [A ⊗ B]c ⇒ C

b + c : !Γ, ∆1, ∆2 ⇒ C

reduces to

c1 : !Γ, ∆′
1 ⇒ A

c2 : !Γ, ∆′′
1 ⇒ B b : !Γ, ∆2, [A]c1 , [B]c2 ⇒ C

b + c2 : !Γ, ∆′′
1 , ∆2, [A]c1 ⇒ C

b + c : !Γ, ∆1, ∆2 ⇒ C

It is worth noticing that in the first derivation, the cost c = c1 + c2 is “charged” to A ⊗ B

(in the formula [A ⊗ B]c) while in the second one, in a finer way, the cost c1 is charged to
A and c2 to B.
The case of implication explains the restriction we impose. Here b = b1 + b2:

c : !Γ, ∆1, A ⇒ B

c : !Γ, ∆1 ⇒ A −◦ B

b1 : !Γ, ∆′
2 ⇒ [A]c b2 : !Γ, ∆′′

2 , [B]c ⇒ C

b : !Γ, ∆2, [A −◦ B]c ⇒ C

c + b : !Γ, ∆1, ∆2 ⇒ C

reduces to

b1 : !Γ, ∆′
2 ⇒ A

c : !Γ, ∆1, [A]b1 ⇒ B b2 : !Γ, ∆′′
2 , [B]c ⇒ C

c + b2 : !Γ, ∆1, ∆′′
2 , [A]b1 ⇒ C

c + b : !Γ, ∆1, ∆2 ⇒ C

Note that the reduction above is correct since A does not have occurrences of !a and then
[A]c = [A]b1 = A. ◀

2.3 Discussion – part I

This research line offers at least three promising directions for future exploration.
First, the work initiated in [28] highlights that our games and systems provide more

precise control over resources appearing negatively in sequents, unlocking new opportunities
for analysing the problem of comparing proofs. For instance, studying proof costs in
labelled calculi could reveal deeper links between labels and computational bounds [2].
Similarly, examining the interplay between resource budgets and the complexity of the
cut-elimination process, particularly within the multiplicative-(sub)exponential fragment,
presents considerable opportunities [40, 41].

Second, there is substantial value in investigating how the dialogue games we have
developed align with the framework of concurrent games [1, 15, 13]. Understanding these
connections could enrich our framework and provide new perspectives on resource management
in proof theory.

Lastly, an essential direction involves addressing compositionality in dialogue games
governed by the cut rule. Regardless of the specific approach taken to achieve cut-admissibility,
ensuring compositionality remains a critical and promising challenge [34].

CSL 2025

4:12 Playing with Modalities

3 A game model for polarisation

We now turn to the study of modalities in the classical setting, focusing on the positive-
negative modal logic PNL with nominals [47, 35]. This logic is based on Kripke frames with
two disjoint and symmetric reachability relations. Here we will outline the construction of
an adequate semantic game for PNL, its transformation into a provability game, and the
derivation of a corresponding sequent system. This opens a discussion on how to generalise
this method to other modal systems.

We begin with a brief discussion of games for modal logics and the motivation for hybrid
extensions. As studied in [9] and further developed in [19], extending Hintikka games [25]
dialogue game to modal logic is conceptually straightforward: in addition to the current roles
of the players and the current formula F , one only has to keep track of the current world
w in the model. However, this extension introduces an unfortunate drawback: the game
trees, i.e., labelled trees whose nodes are game states, are no longer determined solely by the
syntax of the formula, but instead depend on the relational structure of the model. This
is in stark contrast to semantic games for propositional logic, where semantic information
is required only at the final stage to determine the winner. The loss of uniformity in game
trees across all models is a significant limitation of this approach.

As in [9, 18], we address this problem by turning to hybrid logic [10, 12, 11], allowing
explicit references to worlds and the accessibility relation within the object language.

Let A = {a, b, . . .} be a non-empty set of agents, At = {p, q, . . .} be a countable set of
propositional variables, and N = {i, j, . . .} be a countable set of nominals. The language of
PNL is generated by the following grammar

F ::= p | ¬F | F1 ∧ F2 | F1 ∨ F2 | R+(i, j) | R−(i, j) | ♢+F | ♢−F | [A]F

where p ∈ At, and i, j ∈ N . Formulas of the form p, R+(i, j), or R−(i, j) are called elementary.
We shall use F, G, H to range over formulas. The propositional connectives ⊤, ⊥, →, and
the (dual) modalities ⊞ and ⊟ can be obtained in the usual way.

Intuitively, nominals are used as names for worlds of the model, while the propositions
R±(i, j) state that agent i is a friend/enemy (or, more generally, agrees/disagrees) with j.
The formula ♢+F (resp. ♢−F) states that F holds for a friend (resp. an enemy). The global
modality [A]F states that F holds for all the agents. We use R± to denote either R+ or R−,
and ♢± to denote either ♢+ or ♢−.

A model M is a tuple ⟨A, R+, R−, V, g⟩ where A is a set (of agents), g : N → A is called
denotation function, R+, R− ⊆ A × A, and V : At → P(A). A model is a PNL-model if:

g is surjective, i.e., every agent has a name;
R+ is reflexive; and
R+ and R− are both symmetric and non-overlapping, i.e., for all a, b ∈ A, (a, b) /∈ R+ or
(a, b) /∈ R−.

The Kripke semantics of PNL is in Figure 3. A formula F is true over M, written M ⊩ F iff
M, a ⊩ F , for all agent a ∈ A. For a set of formulas ∆, we write M |= ∆ iff M ⊩ ∆ for all
F ∈ ∆. A formula F is valid iff M ⊩ F for every PNL-model M. For a class of models M,
we write ∆ |=M F iff M ⊩ F for every model M ∈ M with M |= ∆.

▶ Example 18. Consider the following models (omitting self loops for R+):

I

+

M1

I

−

M2

−

I

+

M3

−

I

+

M4

+

{p}

E. Pimentel, C. Olarte, T. Lang, R. Freiman, and C. G. Fermüller 4:13

M, a ⊩ p iff a ∈ V(p) M, a ⊩ ¬F iff M, a ̸⊩ F

M, a ⊩ F ∧ G iff M, a ⊩ F and M, a ⊩ G M, a ⊩ F ∨ G iff M, a ⊩ F or M, a ⊩ G

M, a ⊩ R±(i, j) iff (g(i), g(j)) ∈ R±

M, a ⊩ ♢±F iff there is j ∈ N such that M, g(j) ⊩ R±(i, j) and M, g(j) ⊩ F

M, a ⊩ [A]F iff M, g(j) ⊩ F, for all j ∈ N.

Figure 3 Kripke semantics for PNL.

The following holds:
M1: I have a friend where ¬p: M1, I ⊩ ♢+¬p;
M2: All my enemies do not believe in p: M2, I ⊩ ⊟¬p;
M3: I have an enemy: M3, I ⊩ ♢−⊤;
M4: Everybody has a friend where p: M4, a ⊩ [A]♢+p for any agent a.

3.1 Playing with models
Before starting playing, remember that in a PNL-model M, every agent a has a name i,
i.e., there exists i ∈ N s.t. g(i) = a. Hence, from now on, we will internalise the nominals,
identifying an agent a with its respective nominal i.

The semantic game is played over a PNL-model M = (A, R+, R−, V, g) by two players,
Me (or I) and You, who argue about the truth of a formula F at an agent i. At each stage
of the game, one player acts as proponent, while the other acts as opponent of the claim that
F is true at i.

We represent the situation where I am the proponent (and You are the opponent) by the
game state P, i : F , and the situation where I am the opponent (and You are the proponent)
by O, i : F .

We call a game state elementary if its involved formula is elementary. For a game state g,
we denote the game starting at g over the model M by GM(g).

The game over a PNL-model M proceeds by reducing the involved formula F to an
elementary formula by following the rules described in Figure 4.4

In general, every two-person, zero-sum, win-lose game is usually represented by a game
tree. In our case, the root of the game tree representing the game GM(g) is g. The children
of each node in the game tree are exactly the possible choices of the corresponding player.
For instance, if h = P, i : F1 ∧ F2 appears in the game tree, then its children are P, i : F1 and
P, i : F2. Each node in the tree is labelled either “I”, or “Y”, depending on which player is to
move in the corresponding game state, and we label the nodes P, i : ¬F and O, i : ¬F with
“I” (even though there is no choice involved in these game states). For instance, the node
corresponding to the game state h above is “Y”, since it is Your choice in P : F1 ∧ F2. The
leaves of the tree receive the label of the winning player. A run of the game is a maximal
path through the game tree.

Now we are ready to define winning strategies and state the main result of this section:
the adequacy of the proposed game semantics with respect to the Kripke semantics for PNL.

▶ Definition 19. A strategy for Me in the game GM(g) is a subtree σ of the associated game
tree such that: (1) g ∈ σ, (2) if h ∈ σ is a node labelled “Y”, then all children of h are in
σ, (3) if h ∈ σ is a node labelled “I”, then exactly one child of h is in σ. The strategy σ is
called winning if all leaves in the tree σ are labelled “I”. (Winning) strategies for You are
defined dually.

4 The outcome of the game state Q, k : R±(i, j) is independent of k (it only depends on the underlying
model M). Hence, we write Q, _ : R±(i, j) instead of Q, k : R±(i, j).

CSL 2025

4:14 Playing with Modalities

(P∧) At P, i : F1 ∧ F2, You choose between P, i : F1 and P, i : F2 to continue the game.

(O∧) At O, i : F1 ∧ F2, I choose between O, i : F1 and O, i : F2 to continue the game.

(P∨) At P, i : F1 ∨ F2, I choose between P, i : F1 and P, i : F2 to continue the game.

(O∨) At O, i : F1 ∨ F2, You choose between O, i : F1 and O, i : F2 to continue the game.

(P¬) At P, i : ¬F , the game continues with O, i : F .

(O¬) At O, i : ¬F , the game continues with P, i : F .

(P♢±) At P, i : ♢±F , I choose a nominal j, and You decide whether the game ends in the
state P, _ : R±(i, j) or continues with P, j : F .

(O♢±) At O, i : ♢±F , You choose j, and I choose between O, _ : R±(i, j) and O, j : F .

(P[A]) At P, i : [A]F , You choose a nominal j and the game continues with P, j : F .

(O[A]) At O, i : [A]F , I choose a nominal j, and the game continues with O, j : F .

(Pel) Let Fe be an elementary formula. I win and You lose at P, i : Fe iff M, i |= Fe.
Otherwise, You win and I lose.

(Oel) At O, i : Fe, I win and You lose iff M, i ̸|= Fe. Otherwise, You win and I lose.

Figure 4 Semantic game given a PNL-model M.

▶ Theorem 20 (Adequacy - semantic games [22]). Let M be a PNL-model, a an agent with
nominal i, and F a formula.
(1) I have a winning strategy for GM(P, i : F) iff M, a |= F .
(2) You have a winning strategy for GM(P, i : F) iff M, a ̸|= F .

▶ Example 21 ([22]). Let (4B) = ((♢+♢+p∨♢−♢−p) → ♢+p)∧((♢+♢−p∨♢−♢+p) → ♢−p). This formulas
specifies local balance [35] and captures the idea that “the enemy of my enemy is my friend”,
“the friend of my enemy is my enemy”, and “the friend of my friend is my friend”. I have a
winning strategy for the game P, a : 4B on M1 while You have a winning strategy for the
same game on M2 where (omitting self-loops for R+):

M1 =
a

b

c

+
−
−

{p}

M2 =
a

b

c

+
+

−
{p}

For M1, in the first conjunct, I pick (P∨) ♢+p and then b in (P♢+); for the second conjunct,
I pick the first disjunction in F = (♢+♢−p ∨ ♢−♢+p) → ♢−p) where, in any of Your choices (P¬
followed by O∨ and O♢±), I win all the elementary states. For M2, I do not have a winning
strategy for the second conjunct: I can neither win ♢−p (no R− successor), nor the first
disjunct in F above since, after P¬, You choose (O∨) ♢+♢−p and select c and then b (O♢±)
where p holds and You win. See the complete game in our tool [23].

3.2 Playing all models
We now leverage semantic games to PNL-provability games. The key observation is that
the rules of the semantic game remain independent of the underlying model, except at the
level of elementary game states.

E. Pimentel, C. Olarte, T. Lang, R. Freiman, and C. G. Fermüller 4:15

(Dupl) If no state in D is underlined, I can choose a non-elementary g ∈ D and the game
continues with D

∨
g.

(Sched) If no state in D = D′ ∨
g is underlined, and g is non-elementary, I can choose to

continue the game with D′ ∨
g.

(Move) If D = D′ ∨
g then the player who is to move in the semantic game G(g) at g makes

a legal move to the game state g′ and the game continues with D′ ∨
g′.

(End) The game ends if there are no non-elementary game states left in D, or if no game state
is underlined and I win according to Definition 22. Otherwise, I must move according to
(Dupl) or (Sched).

Figure 5 Rules for the provability game.

The provability game DG(P, i : F) can be thought of as Me and You playing all semantic
games G(P, i : F) over all PNL-models M simultaneously. We point out that the rules of
the semantic game do not depend on the structure of M but merely on F . Truth degrees are
only needed at the atomic level to determine who wins the particular run of the game. This
allows us to require players to play “blindly”, i.e., without explicitly referencing a model M.
Clearly, if I have a winning strategy in such a game, then I can win in GM(P, i : F), for
every M, making this strategy an adequate witness of logical validity.

Provability game states are finite multisets of the game states defined in Section 3.1.
We denote by g1

∨
...

∨
gn the provability game state {g1, ..., gn}. We write D1

∨
D2 for the

multiset sum D1 + D2 and D
∨

g for D + {g}. A provability state is called elementary if all
its game states are elementary. We use DG(D) to denote the provability game starting at D.

▶ Definition 22. Let Del denote the provability state consisting of the elementary game
states of D. I win and You lose at D if for every PNL-model there is a game state in Del

where I win the corresponding semantic game.

In the provability game, I additionally take the role of a scheduler, deciding which game
is to be played next. We signal the chosen game state by underlining it as in g.

▶ Definition 23. The rules of the provability game are in Figure 5. Infinite runs, and runs
that end in elementary provability states where I do not win according to Definition 22,
are winning for You and losing for Me. (Dupl) is referred to as the duplication rule and
(Sched) as the scheduling, or underlining rule.

▶ Theorem 24 (Adequacy - provability games [22]). I have a winning strategy in DG(D) iff
for every PNL-model M, there is some g ∈ D such that I have a winning strategy in GM(g).

▶ Corollary 25. The formula F is PNL-valid iff I have a winning strategy in DG(P, i : [A]F).

▶ Example 26. Consider the game P, i : p ∨ ¬p. I duplicate the game state in the first
round and the game continues with the provability state P, i : p ∨ ¬p

∨
P, i : p ∨ ¬p.

Now I move to P, i : p in the first subgame and to P, i : ¬p in the second. After a role
switch in the second subgame, the final state is P, i : p

∨
O, i : p, where I win regardless of

the underlying model.

CSL 2025

4:16 Playing with Modalities

3.3 From games to proofs
Theorems 20 and 24 establish that winning strategies for Me in the provability game
correspond to the validity of formulas. In this section, we extend this result to proof systems
by introducing a sequent calculus, DS, where proofs correspond to My’s winning strategies
in the provability game.

Labelled nominal formulas are either labelled formulas of the form i : F or relational atoms
of the form R(i, j), where i and j are nominals and F is a PNL formula.5 Labelled sequents
have the form Γ ⇒ ∆, where Γ, ∆ are multisets containing labelled nominal formulas.

Starting with sequents, every provability state of the form

O, i1 : F1
∨

. . .
∨

O, in : Fn

∨
P, j1 : G1

∨
. . .

∨
P, jm : Gm

can be rewritten as the labelled sequent Γ ⇒ ∆ where Γ = {i1 : F1, . . . , in : Fn} and ∆ =
{j1 : Gi, . . . , jm : Gm}. In what follows, we will not distinguish between provability states
and their corresponding labelled sequent. For example, the provability game state O, i :
(♢+♢+p ∨ ♢−♢−p)

∨
P, i : ♢+p will be identified with the sequent i : (♢+♢+p ∨ ♢−♢−p) ⇒ i : ♢+p.

The inference rules must be tailored in such a way that proofs in the sequent system
match exactly My winning strategies in the provability game. This means that the user of the
proof system takes the role of Me, scheduling game states and choosing moves in P-states.
Moreover, provability in the proof system should correspond to validity in the game. For
that, it is crucial to establish the formal relationship between elementary game states and
logical axioms.

▶ Lemma 27 ([22]). Let Γ ⇒ ∆ be composed of elementary game states only. I win the
provability game in Γ ⇒ ∆ iff one of the following holds6

i. R−(i, i) ∈ Γ or R+(i, i) ∈ ∆ for some i;
ii. {R+(i, j), R−(i, j)} ⊆ Γ for some i ̸= j;
iii. Γ ∩ ∆ ̸= ∅.

Figure 6 presents the labelled sequent systems DS with the standard initial axiom and
structural/propositional rules. The modal rules and the relational rules sym and ref±
coincides with the modal rules originally presented by Viganò in [45], adapted to multi-
relational modal logics. It is routine to show that the rule no in Figure 6 correspond to the
non-overlapping axiom ∀i, j.¬(R+(i, j) ∧ R−(i, j)).

The following result immediately implies that the provability game DG is adequate with
respect to the calculus DS.

▶ Theorem 28 (Adequacy - sequent system [22]). I have a winning strategy in the provability
game DG(Γ ⇒ ∆) iff Γ ⇒ ∆ is provable in DS.

Let us write |=PNL Γ ⇒ ∆ iff for every PNL-model there is some i : F ∈ Γ such that
M, g(i) ̸|= F , or there is some i : G ∈ ∆ such that M, g(i) |= G. We have the following
consequence of Theorems 20, 24, and 28:

▶ Corollary 29. Let Γ, ∆ be multisets of labelled formulas. Then |=PNL Γ ⇒ ∆ iff there is a
proof of Γ ⇒ ∆ in DS. In particular, F is PNL-valid iff there is a proof of ⇒ F in DS.

5 Observe that here we are abusing the notation, identifying k : R(i, j) with R(i, j) – see Footnote 4.
6 Since relations are symmetric, we will identify R±(i, j) with R±(j, i).

E. Pimentel, C. Olarte, T. Lang, R. Freiman, and C. G. Fermüller 4:17

Axiom and Structural Rules
init

Γ, i : Fel ⇒ ∆, i : Fel

Γ, i : F, i : F ⇒ ∆
(Lc)

Γ, i : F ⇒ ∆
Γ ⇒ i : F, i : F, ∆

(Rc)
Γ ⇒ i : F, ∆

Propositional Rules

Γ ⇒ i : F, ∆
(L¬)

Γ, i : ¬F ⇒ ∆
Γ, i : F ⇒ ∆

(R¬)
Γ ⇒ i : ¬F, ∆

Γ, i : F ⇒ ∆ Γ, i : G ⇒ ∆
(L∨)

Γ, i : F ∨ G ⇒ ∆
Γ ⇒ i : F, ∆

(R1
∨)

Γ ⇒ i : F ∨ G, ∆
Γ ⇒ i : G, ∆

(R2
∨)

Γ ⇒ i : F ∨ G, ∆

Γ, i : F ⇒ ∆
(L1

∧)
Γ, i : F ∧ G ⇒ ∆

Γ, i : G ⇒ ∆
(L2

∧)
Γ, i : F ∧ G ⇒ ∆

Γ ⇒ i : F, ∆ Γ ⇒ i : G, ∆
(R∧)

Γ ⇒ i : F ∧ G, ∆

Modal Rules

Γ, R±(i, j) ⇒ ∆
(L♢±)1

Γ, i : ♢±F ⇒ ∆
Γ, j : F ⇒ ∆

(L♢±)2
Γ, i : ♢±F ⇒ ∆

Γ ⇒ R±(i, j), ∆ Γ ⇒ j : F, ∆
(R♢±)

Γ ⇒ i : ♢±F, ∆
Γ, j : F ⇒ ∆

(L[A])Γ, i : [A]F ⇒ ∆
Γ ⇒ j : F, ∆

(R[A])Γ ⇒ i : [A]F, ∆

Relational Rules

Γ ⇒ ∆, R±(j, i)
sym

Γ ⇒ ∆, R±(i, j)
ref+

Γ ⇒ ∆, R+(i, i)

ref−
Γ, R−(i, i) ⇒ ∆

Γ ⇒ ∆, R+(i, j) Γ ⇒ ∆, R−(i, j)
no

Γ ⇒ ∆

Figure 6 The proof system DS. In the rule init, Fel denotes an elementary formula. In the rules
(L♢±)1, (L♢±)2, and (R[A]), the nominal j is fresh. The rule R♢− has the proviso that i ̸= j.

Proving cut-admissibility of labelled systems can be cumbersome due to the presence
of relational rules. In [30], a systematic procedure for transforming axioms into rules
was presented, based on focusing and polarities [5]. This procedure not only allows for
generalizing different approaches for transforming axioms into sequent rules present in the
literature [39, 45, 31], but it also provides a uniform way of proving cut-admissibility for the
resulting systems.

The cut-admissibility result for DS is a particular instance of the general result in [30].

▶ Theorem 30 (PNL-cut). The following cut rule is admissible in DS

Γ ⇒ ∆, i : F i : F, Γ ⇒ ∆
Γ ⇒ ∆ cut

As a consequence, DS is consistent, since the only rule that can be applied in an empty
sequent is no, and it is routine to show that it does not trivialise derivations.

3.4 Discussion – part II
This work opens up several promising directions for future exploration.

It would be interesting to explore extensions of PNL that relax symmetry assumptions,
enabling the representation of scenarios where an agent a can influence the opinion of agent
b, but not vice versa. Another potential direction involves incorporating the concept of
a “budget,” as introduced in the game discussed in the first part of this paper, to model

CSL 2025

4:18 Playing with Modalities

situations where proponents and opponents operate under a limited amount of political
capital. In such scenarios, adding or modifying relations (i.e., making new friends, making
enemies to reconcile, etc) could reduce this capital. Preferences on how to “expend” the
political capital could be expressed through a combination of PNL with a suitable choice
logic – a framework where preferences are explicitly definable at the object level. Semantic
games for choice logics have been explored in [20], and the extension of game-induced choice
logic (GCL) to a provability game and proof system was proposed in [21]. Exploring these
dynamics within our framework offers a compelling direction for future research.

Another particularly interesting avenue is extending the semantic-provability-proof system
approach to other logics characterised by Kripke semantics. For instance, it would be
worthwhile to investigate games for logics that involve model-change modalities [44, 36] or
dynamic modalities [42]. Initial progress in this direction was made in [22], where we showed
how the global link-adding and local link-changing modalities from [35] (inspired by sabotage
modal logic [6, 7, 43]) can be incorporated into our framework.

We are also interested in exploring the application of this framework to develop games for
constructive and intuitionistic modal logics [17, 38, 39, 8]. The constructive logic CK stands
out as a promising candidate due to its intuitive semantics and straightforward sequent
system. The main challenge lies in adapting the classical approach presented here to an
intuitionistic setting.

Finally, building on ideas from [4, 3], we aim to establish a correspondence between
winning innocent strategies in games played on Hyland-Ong arenas [26] and proofs in
these constructive logics. This correspondence would deepen the connection between game
semantics and constructive modal reasoning, opening new avenues for further study.

References
1 Samson Abramsky and Paul-André Melliès. Concurrent games and full completeness. In 14th

Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999, pages
431–442. IEEE Computer Society, 1999. doi:10.1109/LICS.1999.782638.

2 Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. Tight typings and split
bounds, fully developed. J. Funct. Program., 30:e14, 2020. doi:10.1017/S095679682000012X.

3 Matteo Acclavio and Davide Catta. Lorenzen-style strategies as proof-search strategies. In
Vadim Malvone and Aniello Murano, editors, EUMAS 2023, volume 14282 of LNCS, pages
150–166. Springer, 2023. doi:10.1007/978-3-031-43264-4_10.

4 Matteo Acclavio, Davide Catta, and Lutz Straßburger. Game semantics for constructive modal
logic. In Anupam Das and Sara Negri, editors, TABLEAUX, volume 12842 of Lecture Notes
in Computer Science, pages 428–445. Springer, 2021. doi:10.1007/978-3-030-86059-2_25.

5 Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. Log. Comput.,
2(3):297–347, 1992. doi:10.1093/LOGCOM/2.3.297.

6 Carlos Areces, Raul Fervari, and Guillaume Hoffmann. Relation-changing modal operators.
Log. J. IGPL, 23(4):601–627, 2015. doi:10.1093/JIGPAL/JZV020.

7 Guillaume Aucher, Johan van Benthem, and Davide Grossi. Modal logics of sabotage revisited.
J. Log. Comput., 28(2):269–303, 2018. doi:10.1093/LOGCOM/EXX034.

8 Gavin M. Bierman and Valeria de Paiva. On an intuitionistic modal logic. Stud Logica,
65(3):383–416, 2000. doi:10.1023/A:1005291931660.

9 Patrick Blackburn. Modal logic as dialogical logic. Synthese, 127:57–93, 2001. doi:10.1023/A:
1010358017657.

10 Patrick Blackburn and Jerry Seligman. Hybrid languages. J. Log. Lang. Inf., 4(3):251–272,
1995. doi:10.1007/BF01049415.

11 Torben Braüner. Hybrid logic and its proof-theory, volume 37. Springer Science & Business
Media, 2010. doi:10.1007/978-94-007-0002-4.

https://doi.org/10.1109/LICS.1999.782638
https://doi.org/10.1017/S095679682000012X
https://doi.org/10.1007/978-3-031-43264-4_10
https://doi.org/10.1007/978-3-030-86059-2_25
https://doi.org/10.1093/LOGCOM/2.3.297
https://doi.org/10.1093/JIGPAL/JZV020
https://doi.org/10.1093/LOGCOM/EXX034
https://doi.org/10.1023/A:1005291931660
https://doi.org/10.1023/A:1010358017657
https://doi.org/10.1023/A:1010358017657
https://doi.org/10.1007/BF01049415
https://doi.org/10.1007/978-94-007-0002-4

E. Pimentel, C. Olarte, T. Lang, R. Freiman, and C. G. Fermüller 4:19

12 Torben Braüner and Valeria de Paiva. Intuitionistic hybrid logic. J. Appl. Log., 4(3):231–255,
2006. doi:10.1016/J.JAL.2005.06.009.

13 Simon Castellan, Pierre Clairambault, Silvain Rideau, and Glynn Winskel. Games and
strategies as event structures. Log. Methods Comput. Sci., 13(3), 2017. doi:10.23638/
LMCS-13(3:35)2017.

14 Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. The structure of exponentials:
Uncovering the dynamics of linear logic proofs. In Georg Gottlob, Alexander Leitsch, and
Daniele Mundici, editors, KGC, volume 713 of Lecture Notes in Computer Science, pages
159–171. Springer, 1993. doi:10.1007/BFB0022564.

15 Claudia Faggian and François Maurel. Ludics nets, a game model of concurrent interaction.
In LICS, pages 376–385. IEEE Computer Society, 2005. doi:10.1109/LICS.2005.25.

16 Christian G. Fermüller and Timo Lang. Interpreting sequent calculi as client-server games. In
Renate A. Schmidt and Cláudia Nalon, editors, TABLEAUX, volume 10501 of LNCS, pages
98–113. Springer, 2017. doi:10.1007/978-3-319-66902-1_6.

17 F. B. Fitch. Intuitionistic modal logic with quantifiers. Portugaliae Mathematicae, 7:113–118,
1948. doi:doi:10.2307/2269275.

18 Robert Freiman. Games for hybrid logic - from semantic games to analytic calculi. In Alexandra
Silva, Renata Wassermann, and Ruy J. G. B. de Queiroz, editors, WoLLIC 2021, volume
13038 of LNCS, pages 133–149. Springer, 2021. doi:10.1007/978-3-030-88853-4_9.

19 Robert Freiman. From Semantic Games to Analytic Calculi. PhD thesis, Technische Universität
Wien, 2024.

20 Robert Freiman and Michael Bernreiter. Truth and preferences - A game approach for qualitat-
ive choice logic. In Sarah A. Gaggl, Maria V. Martinez, and Magdalena Ortiz, editors, JELIA,
volume 14281 of LNCS, pages 547–560. Springer, 2023. doi:10.1007/978-3-031-43619-2_37.

21 Robert Freiman and Michael Bernreiter. Validity in choice logics - A game-theoretic investiga-
tion. In Helle Hvid Hansen, Andre Scedrov, and Ruy J. G. B. de Queiroz, editors, WoLLIC 2023,
volume 13923 of LNCS, pages 211–226. Springer, 2023. doi:10.1007/978-3-031-39784-4_13.

22 Robert Freiman, Carlos Olarte, Elaine Pimentel, and Christian Fermüller. Reasoning about
group polarization: From semantic games to sequent systems. In Nikolaj Bjorner, Marijn
Heule, and Andrei Voronkov, editors, LPAR, volume 100 of EPiC Series in Computing, pages
70–87. EasyChair, 2024. doi:10.29007/wptz.

23 Robert Freiman, Carlos Olarte, Elaine Pimentel, and Christian G. Fermüller. Reasoning
about group polarization: From semantic games to sequent systems. Technical report and
tool available at https://github.com/promueva/PNL-game.git, 2024.

24 Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987. doi:10.1016/
0304-3975(87)90045-4.

25 Jaakko Hintikka. Logic, language-games and information, Kantian themes in the philosophy
of logic. Revue Philosophique de la France Et de l’Etranger, 163:477–478, 1973.

26 J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: i, ii, and III. Inf. Comput.,
163(2):285–408, 2000. doi:10.1006/INCO.2000.2917.

27 Timo Lang. Games, modalities and analytic proofs in nonclassical logics. PhD thesis, Technische
Universität Wien, 2021. doi:10.34726/hss.2021.92047.

28 Timo Lang, Carlos Olarte, Elaine Pimentel, and Christian G. Fermüller. A game model for
proofs with costs. In Serenella Cerrito and Andrei Popescu, editors, TABLEAUX, volume
11714 of LNCS, pages 241–258. Springer, 2019. doi:10.1007/978-3-030-29026-9_14.

29 Paul Lorenzen and Kuno Lorenz, editors. Dialogische Logik. Wissenschaftliche Buchgesellschaft,
[Abt. Verl.], Darmstadt, 1978.

30 Sonia Marin, Dale Miller, Elaine Pimentel, and Marco Volpe. From axioms to synthetic
inference rules via focusing. Ann. Pure Appl. Log., 173(5):103091, 2022. doi:10.1016/j.apal.
2022.103091.

31 Sara Negri. Proof analysis in modal logic. J. Philosophical Logic, 34(5-6):507–544, 2005.
doi:10.1007/s10992-005-2267-3.

CSL 2025

https://doi.org/10.1016/J.JAL.2005.06.009
https://doi.org/10.23638/LMCS-13(3:35)2017
https://doi.org/10.23638/LMCS-13(3:35)2017
https://doi.org/10.1007/BFB0022564
https://doi.org/10.1109/LICS.2005.25
https://doi.org/10.1007/978-3-319-66902-1_6
https://doi.org/doi:10.2307/2269275
https://doi.org/10.1007/978-3-030-88853-4_9
https://doi.org/10.1007/978-3-031-43619-2_37
https://doi.org/10.1007/978-3-031-39784-4_13
https://doi.org/10.29007/wptz
https://github.com/promueva/PNL-game.git
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1006/INCO.2000.2917
https://doi.org/10.34726/hss.2021.92047
https://doi.org/10.1007/978-3-030-29026-9_14
https://doi.org/10.1016/j.apal.2022.103091
https://doi.org/10.1016/j.apal.2022.103091
https://doi.org/10.1007/s10992-005-2267-3

4:20 Playing with Modalities

32 Vivek Nigam and Dale Miller. Algorithmic specifications in linear logic with subexponentials.
In António Porto and Francisco Javier López-Fraguas, editors, PPDP, pages 129–140. ACM,
2009. doi:10.1145/1599410.1599427.

33 Vivek Nigam and Dale Miller. A framework for proof systems. J. Autom. Reason., 45(2):157–
188, 2010. doi:10.1007/S10817-010-9182-1.

34 Catarina Dutilh Novaes and Rohan French. Paradoxes and structural rules from a dialogue
perspective. Philosophical Issues, 28:129–158, 2018. doi:10.1111/phis.12119.

35 Mina Young Pedersen, Sonja Smets, and Thomas Ågotnes. Modal logics and group polarization.
J. Log. Comput., 31(8):2240–2269, 2021. doi:10.1093/logcom/exab062.

36 Elise Perrotin and Fernando R. Velázquez-Quesada. A semantic approach to non-prioritized
belief revision. Log. J. IGPL, 29(4):644–671, 2021. doi:10.1093/JIGPAL/JZZ045.

37 Elaine Pimentel, Carlos Olarte, and Vivek Nigam. Process-as-formula interpretation: A
substructural multimodal view (invited talk). In Naoki Kobayashi, editor, FSCD, volume
195 of LIPIcs, pages 3:1–3:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPICS.FSCD.2021.3.

38 Gordon D. Plotkin and Colin P. Stirling. A framework for intuitionistic modal logic. In J. Y.
Halpern, editor, 1st Conference on Theoretical Aspects of Reasoning About Knowledge. Morgan
Kaufmann, 1986. doi:10.2307/2274559.

39 Alex K. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis,
College of Science and Engineering, School of Informatics, University of Edinburgh, 1994.

40 Lutz Straßburger. MELL in the calculus of structures. Theor. Comput. Sci., 309(1-3):213–285,
2003. doi:10.1016/S0304-3975(03)00240-8.

41 Lutz Straßburger and Alessio Guglielmi. A system of interaction and structure IV: the
exponentials and decomposition. ACM Trans. Comput. Log., 12(4):23:1–23:39, 2011. doi:
10.1145/1970398.1970399.

42 Johan van Benthem, Sujata Ghosh, and Fenrong Liu. Modelling simultaneous games in
dynamic logic. Synth., 165(2):247–268, 2008. doi:10.1007/S11229-008-9390-Y.

43 Johan van Benthem, Lei Li, Chenwei Shi, and Haoxuan Yin. Hybrid sabotage modal logic. J.
Log. Comput., 33(6):1216–1242, 2023. doi:10.1093/LOGCOM/EXAC006.

44 Fernando R. Velázquez-Quesada. Reliability-based preference dynamics: lexicographic upgrade.
J. Log. Comput., 27(8):2341–2381, 2017. doi:10.1093/LOGCOM/EXX019.

45 Luca Viganò. Labelled Non-Classical Logics. Kluwer Academic Publishers, 2000.
46 Bruno Xavier, Carlos Olarte, and Elaine Pimentel. A linear logic framework for multimodal

logics. Math. Struct. Comput. Sci., 32(9):1176–1204, 2022. doi:10.1017/S0960129522000366.
47 Zuojun Xiong and Thomas Ågotnes. On the logic of balance in social networks. J. Log. Lang.

Inf., 29(1):53–75, 2020. doi:10.1007/S10849-019-09297-0.

https://doi.org/10.1145/1599410.1599427
https://doi.org/10.1007/S10817-010-9182-1
https://doi.org/10.1111/phis.12119
https://doi.org/10.1093/logcom/exab062
https://doi.org/10.1093/JIGPAL/JZZ045
https://doi.org/10.4230/LIPICS.FSCD.2021.3
https://doi.org/10.2307/2274559
https://doi.org/10.1016/S0304-3975(03)00240-8
https://doi.org/10.1145/1970398.1970399
https://doi.org/10.1145/1970398.1970399
https://doi.org/10.1007/S11229-008-9390-Y
https://doi.org/10.1093/LOGCOM/EXAC006
https://doi.org/10.1093/LOGCOM/EXX019
https://doi.org/10.1017/S0960129522000366
https://doi.org/10.1007/S10849-019-09297-0

Modal Automata: Analysing Modal Fixpoint
Logics, One Step at a Time
Yde Venema # Ñ

Institute for Logic, Language and Computation, Universiteit van Amsterdam, The Netherlands

Abstract
We present and investigate a general framework for studying modal fixpoint logics and some related
versions of monadic second-order logic, by means of certain finite automata that operate on Kripke
structures. Characteristic of these modal automata is that the co-domain of their transition function
is a set of formulas of a so-called one-step logic. The motivation for taking this perspective is that if
a logic is characterised by a class of modal automata, many of its properties are already determined
at the level of the much simpler one-step logic.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases modal logic, parity automata, fixpoint logic, one-step logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.5

Category Invited Talk

1 Modal automata

There is a long tradition in theoretical computer science connecting the research fields of
automata theory and logic. This link becomes particularly strong when automata are used
to classify (possibly) infinite objects like streams, trees or graphs. Interestingly, this research
area has provided not only fundamental theoretical results, such as Rabin’s decidability
theorem, but also quite concrete applications in computer science, such as tools for the
automatic verification of reactive systems.

Building on this tradition, and in particular on the work by Janin & Walukiewicz [8, 9] and
D’Agostino & Hollenberg [3] on the modal µ-calculus, we present and investigate a general
framework for studying modal fixpoint logics, and some versions of monadic second-order
logic, by means of certain finite automata that operate on Kripke structures.

▶ Definition 1. Let Q be a set of proposition letters. A (Kripke) structure over Q is a triple
S = (S, R, κ) where S is a set of objects called points or worlds, R ⊆ S × S is a binary
relation and κ is a Q-marking or colouring on S, that is, a map κ : S → ℘(Q). Given a state
s, the set {t ∈ S | (s, t) ∈ R} of its successors is denoted as R[s]. A pointed structure is a
pair (S, s) where s is a point in S, and a query is a class of pointed structures.

Characteristic of the modal automata that we are about to introduce is that the co-domain
of their transition function is a set of formulas in a simple formalism that we call a one-step
logic. The concept of a one-step logic was developed by several authors, including Cîrstea,
Pattinson and Schröder, in the setting of coalgebraic modal logic.

▶ Definition 2. A one-step model over a set A of monadic predicates is a pair (D, m) where
m : D → ℘(A) is a A-marking on D.

A one-step logic is a pair (L,⊩1) where L is a one-step language, that is, a map L assigning
to any set A a collection L(A) of objects called one-step formulas; and ⊩1 is a truth relation
between one-step formulas and one-step models. If we have (D, m) ⊩1 ϕ we will say that ϕ is
true of (D, m) or that (D, m) satisfies ϕ.

We will require every one-step formula ϕ to be monotone; that is: (D, m) ⊩1 ϕ implies
(D, m′) ⊩1 ϕ whenever m′ is an extension of m (that is, m(d) ⊆ m′(d) for every d ∈ D).

© Yde Venema;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 5; pp. 5:1–5:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:y.venema@uva.nl
https://staff.fnwi.uva.nl/y.venema
https://doi.org/10.4230/LIPIcs.CSL.2025.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Modal Automata

In addition to the monotonicity requirement, we impose some natural coherence conditions
on one-step logics; for instance, we require that L(A) ⊆ L(B) if A ⊆ B, that the truth relation
is invariant under isomorphism, etc. We will usually blur the distinction between one-step
logics and one-step languages, since the semantics of one-step formulas is generally fixed.

▶ Example 3. The one-step language FOE1(A) of first-order logic with equality on a set of
predicates A is given by the sentences (formulas without free variables) generated by the
following grammar, where a ∈ A and x, y are individual variables:

ϕ ::= a(x) | x = y | x ̸= y | ∃x.ϕ | ∀x.ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ (1)

We use FO1 for the equality-free fragment of FOE1, where we omit the clauses x = y and
x ̸= y, and we write FOE∞

1 for the extension of FOE1 with the infinity quantifiers ∃∞ and ∀∞.
The semantics of these languages is the obvious one.

▶ Definition 4. Let L and Q be, respectively, a one-step language and a set of proposition
letters. An L-automaton over Q is a quadruple A = (A, Θ, Ω, aI) where A is a finite set of
objects called states; Θ : A × ℘(Q) → L(A) is its transition map; Ω : A → ω is its priority
function; and aI is its initial state.

We will use the term “modal automaton” as a generic name for L-automata for some
one-step logic L. The operational semantics of these automata is given in terms of parity
games.

▶ Definition 5. Let L and Q be, respectively, a one-step language and a set of proposition
letters. Furthermore, let S = (S, R, κ) and A = (A, Θ, Ω, aI) be, respectively, a Kripke
structure and an L-automaton over Q.

The acceptance game A(A, S) is given as the two-player game of which the set of positions,
as well as their owners, admissible moves and priorities are given in the table below:

Position Player Admissible moves Priority
(a, s) ∈ A × S ∃ {m : S → ℘(A) | R[s], m ⊩1 Θ(a, κ(s))} Ω(a)
m : S → ℘(A) ∀ {(b, t) | b ∈ m(t)} 0

Explained in words, the acceptance game A(A, S) proceeds in rounds, each round moving
from one basic position (a, s) ∈ A × S to the next. At such a basic position, it is ∃’s task
to turn the set R(s) of successors of s into the domain of a one-step model for the formula
Θ(a, κ(s)) ∈ L(A). That is, she needs to come up with a marking m : R[s] → ℘(A) such that
(R[s], m) ⊩1 Θ(a, κ(s)) (and if she cannot find such a valuation, she looses immediately). One
may think of the set {(b, t) | b ∈ m(t)} as a collection of witnesses to her claim that, indeed,
the one-step formula Θ(a, κ(s)) is true of (R[s], m). The round ends with ∀ picking one of
these witnesses, which then becomes the basic position at the start of the next round. (Unless,
of course, ∃ managed to satisfy the formula Θ(a, κ(s)) with the empty set of witnesses, in
which case ∀ gets stuck and looses immediately.)

If ∃ and ∀ play the acceptance game A(A, S) and neither of them gets stuck, the resulting
match π will take infinitely long. In this case we use the parity condition to assign a winner
to π: we consider the set Inf(π) of states that occur infinitely often in π, and declare ∃ to be
the winner of π if the maximal priority of the states in Inf(π) is even, and ∀ if this maximum
priority is odd.

▶ Definition 6. Let A = (A, Θ, Ω, aI) be some modal automaton. In case the pair (aI , s) is
a winning position for ∃ in the game A(A, S), we say that A accepts the pointed structure
(S, s) and we write S, s ⊩ A. A query is recognized by an automaton A if it contains exactly
those pointed structures that are accepted by A.

Y. Venema 5:3

We say that a logic is characterised by a class of modal automata if for every formula of
the logic we can find an equivalent automaton n the class, and vice versa. Some well-known
logics are of this kind.

▶ Example 7. Any one-step logic L naturally induces a fixpoint logic µL which is characterised
by the class Aut(L). The modal µ-calculus µML is characterised by the class Aut(FO1), and
various fragments of µML, including the alternation-free fragment and computational tree
logic (CTL), correspond to natural subclasses of Aut(FO1). The same applies to propositional
dynamic logic (PDL), if we consider a multi-sorted version of FO1.

Furthermore, if we restrict attention to tree-based structures, monadic second-order logic
is characterised by the class Aut(FO1), and weak monadic second-order logic is characterised
by a natural fragment of Aut(FOE∞

1).

2 Some results

The motivation for studying logics from the perspective of modal automata is that much of
their sometimes complex behaviour is already determined at the far simpler one-step level.
This means that, in order to establish some property of a class of modal automata – or of
the logic it characterises – it may suffice to prove a similar result for the one-step logic(s)
underlying the automata. Here are some examples, where L and L′ represent arbitrary
one-step logics.

Closure properties of recognisable queries If L is closed under taking, respectively, disjunc-
tions, conjunctions and boolean duals, then the class of Aut(L)-recognizable queries is
closed under taking union, intersection, and complementation.

Bisimulation invariance We say that a one-step formula ϕ is invariant under quotients if we
have (D, m) ⊩1 ϕ iff (D′, m′) ⊩1 ϕ, whenever (D′, m′) is a quotient of (D, m).
If L is the quotient-invariant fragment of L′ (in some strong sense), then Aut(L) is the
bisimulation-invariant fragment of Aut(L′). This result lies at the heart of the proof of the
Janin-Walukiewicz Theorem, which identifies the modal µ-calculus as the bisimulation-
invariant fragment of monadic second-order logic.

Nondeterminism Modal automata are generally alternating in nature, but there is a natural
notion of nondeterminism as well: we call a modal automaton A nondeterministic if in
any of its acceptance games, the role of ∀ is essentially reducible to that of a pathfinder.
At the level of one-step logic, we introduce the notion of a disjunctive formula; roughly
the idea is that if a disjunctive formula holds of some model then we can also satisfy it
in a related model where the marking assigns to each element of the domain either the
empty set or some singleton. It is easy to see that a modal automaton A = (A, Θ, Ω, aI)
is nondeterministic if the codomain of Θ consists of disjunctive formulas.

Disjunctive bases and simulation Assume that L′ ⊆ L and that L′ consists of disjunctive
formulas and is closed under disjunctions. If L and L′ satisfy some natural distributive
laws we call L a disjunctive basis for L.
If L has a disjunctive basis L′ then every (alternating) L–automaton can be simulated
by an equivalent (nondeterministic) L′-automaton. Furthermore, the fixpoint logic
characterised by L has several nice properties, such as the finite model property and
uniform interpolation. This is how D’Agostino and Hollenberg established this property
for the modal µ-calculus.

CSL 2025

5:4 Modal Automata

Coalgebraic generalisations

The concept of a modal automaton, and all applications in the theory of fixpoint logics and
monadic second-order logics that we mentioned above, can be generalised to the setting of
universal coalgebra. This means that the concept and the results become available for other
coalgebraic modal (fixpoint) logics, such as graded, monotone, or probabilistic modal logic. A
further result that we didn’t mention above concerns the transfer of axiomatic completeness.

Disjunctive bases and axiomatic completeness Any one-step axiomatisation H for L nat-
urally induces an axiom system µH for the µ-calculus µL induced by L. If H is sound and
complete for L and L has a disjunctive basis, then µH is sound and complete for the set
of valid µL-formulas. By this result, which generalises Walukiewicz’ completeness result
for the modal µ-calculus [12], one may for instance obtain complete axiomatisations for
the graded and the monotone modal µ-calculus.

Here are some pertinent publications in which the theory of modal automata has been
developed: [2, 1, 4, 5, 6, 7, 10, 11]

References
1 Facundo Carreiro, Alessandro Facchini, Yde Venema, and Fabio Zanasi. The power of the

weak. ACM Trans. Comput. Log., 21(2):15:1–15:47, 2020. doi:10.1145/3372392.
2 Facundo Carreiro and Yde Venema. PDL inside the µ-calculus: A syntactic and an automata-

theoretic characterization. In Rajeev Goré, Barteld P. Kooi, and Agi Kurucz, editors, Advances
in Modal Logic 10, invited and contributed papers from the tenth conference on "Advances in
Modal Logic," held in Groningen, The Netherlands, August 5-8, 2014, pages 74–93. College
Publications, 2014. URL: http://www.aiml.net/volumes/volume10/Carreiro-Venema.pdf.

3 Giovanna D’Agostino and Marco Hollenberg. Logical questions concerning the µ-calculus:
Interpolation, lyndon and los-tarski. J. Symb. Log., 65(1):310–332, 2000. doi:10.2307/
2586539.

4 Sebastian Enqvist, Fatemeh Seifan, and Yde Venema. An expressive completeness theorem
for coalgebraic modal mu-calculi. Log. Methods Comput. Sci., 13(2), 2017. doi:10.23638/
LMCS-13(2:14)2017.

5 Sebastian Enqvist, Fatemeh Seifan, and Yde Venema. Completeness for µ-calculi: A coalgebraic
approach. Ann. Pure Appl. Log., 170(5):578–641, 2019. doi:10.1016/J.APAL.2018.12.004.

6 Sebastian Enqvist and Yde Venema. Disjunctive bases: normal forms and model theory for
modal logics. Log. Methods Comput. Sci., 15(1), 2019. doi:10.23638/LMCS-15(1:30)2019.

7 Gaëlle Fontaine and Yde Venema. Some model theory for the modal µ-calculus: syntactic
characterisations of semantic properties. Log. Methods Comput. Sci., 14(1), 2018. doi:
10.23638/LMCS-14(1:14)2018.

8 David Janin and Igor Walukiewicz. Automata for the modal µ-calculus and related results. In
Jirí Wiedermann and Petr Hájek, editors, Mathematical Foundations of Computer Science 1995,
20th International Symposium, MFCS’95, Prague, Czech Republic, August 28 - September 1,
1995, Proceedings, volume 969 of Lecture Notes in Computer Science, pages 552–562. Springer,
1995. doi:10.1007/3-540-60246-1_160.

9 David Janin and Igor Walukiewicz. On the expressive completeness of the propositional
µ-calculus with respect to monadic second order logic. In Ugo Montanari and Vladimiro
Sassone, editors, CONCUR ’96, Concurrency Theory, 7th International Conference, Pisa,
Italy, August 26-29, 1996, Proceedings, volume 1119 of Lecture Notes in Computer Science,
pages 263–277. Springer, 1996. doi:10.1007/3-540-61604-7_60.

10 Johannes Marti, Fatemeh Seifan, and Yde Venema. Uniform interpolation for coalgebraic
fixpoint logic. In Lawrence S. Moss and Pawel Sobocinski, editors, 6th Conference on
Algebra and Coalgebra in Computer Science, CALCO 2015, June 24-26, 2015, Nijmegen, The

https://doi.org/10.1145/3372392
http://www.aiml.net/volumes/volume10/Carreiro-Venema.pdf
https://doi.org/10.2307/2586539
https://doi.org/10.2307/2586539
https://doi.org/10.23638/LMCS-13(2:14)2017
https://doi.org/10.23638/LMCS-13(2:14)2017
https://doi.org/10.1016/J.APAL.2018.12.004
https://doi.org/10.23638/LMCS-15(1:30)2019
https://doi.org/10.23638/LMCS-14(1:14)2018
https://doi.org/10.23638/LMCS-14(1:14)2018
https://doi.org/10.1007/3-540-60246-1_160
https://doi.org/10.1007/3-540-61604-7_60

Y. Venema 5:5

Netherlands, volume 35 of LIPIcs, pages 238–252. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2015. doi:10.4230/LIPICS.CALCO.2015.238.

11 Yde Venema. Expressiveness modulo bisimilarity: A coalgebraic perspective. In Alexandru
Baltag and Sonja Smets, editors, Johan van Benthem on Logic and Information Dynamics,
pages 33–65. Springer, 2014. doi:10.1007/978-3-319-06025-5_2.

12 Igor Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional µ-calculus.
Inf. Comput., 157(1-2):142–182, 2000. doi:10.1006/INCO.1999.2836.

CSL 2025

https://doi.org/10.4230/LIPICS.CALCO.2015.238
https://doi.org/10.1007/978-3-319-06025-5_2
https://doi.org/10.1006/INCO.1999.2836

Equi-Rank Homomorphism Preservation Theorem
on Finite Structures
Benjamin Rossman #

Duke University, Durham, NC, USA

Abstract
The Homomorphism Preservation Theorem (HPT) of classical model theory states that a first-order
sentence is preserved under homomorphisms if, and only if, it is equivalent to an existential-positive
sentence. This theorem remains valid when restricted to finite structures, as demonstrated by the
author in [33, 34] via distinct model-theoretic and circuit-complexity based proofs. In this paper, we
present a third (and significantly simpler) proof of the finitary HPT based on a generalized Cai-
Fürer-Immerman construction. This method establishes a tight correspondence between syntactic
parameters of a homomorphism-preserved sentence (quantifier rank, variable width, alternation
height) and structural parameters of its minimal models (tree-width, tree-depth, decomposition
height). Consequently, we prove a conjectured “equi-rank” version of the finitary HPT. In contrast,
previous versions of the finitary HPT possess additional properties, but incur blow-ups in the
quantifier rank of the equivalent existential-positive sentence.

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases finite model theory, preservation theorems, quantifier rank

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.6

Acknowledgements I thank Deepanshu Kush, William He and Ken-ichi Kawarabayashi for stim-
ulating conversions that prompted me to revisit the topic of this paper. Anuj Dawar provided
helpful comments on a preliminary draft of this paper. I am grateful to the anonymous referees
for numerous suggestions that improved the clarity of this paper. This paper was partially written
during a visit to the National Institute of Informations in Tokyo, Japan.

1 Introduction

A first-order sentence φ is said to be preserved under homomorphisms if, for any model
A |= φ and any structure B such that there exists a homomorphism A → B, it holds that
B |= φ. One class of first-order sentences that are always preserved under homomorphisms
are the existential-positive sentences, which are built from atomic formulas (of the form
x1 = x2 and R(x1, . . . , xr) where R is an r-ary relation symbol) via conjunction φ1 ∧ φ2,
disjunction φ1 ∨ φ2, and existential quantification ∃xφ (that is, without negation ¬φ or
universal quantification ∀xφ).1

The Homomorphism Preservation Theorem (HPT) of classical model theory, attributed
to Łoś, Lyndon and Tarski [30, 39, 31], states that existential-positive sentences are – up to
logical equivalence – the only first-order sentences that are preserved under homomorphisms.2

▶ Theorem 1.1 (HPT). A first-order sentence is preserved under homomorphisms if, and
only if, it is equivalent to an existential-positive sentence.

1 A sentence is a formula with no free variables. Although the definition of preserved under homomorphisms
extends to formulas with free variables, we speak of sentences for simplicity sake. We further restrict
attention to relational languages (without functions or constant symbols), even though most definitions
and results in this paper extend to general first-order languages.

2 Here the semantic notions of logical equivalence and preserved under homomorphisms are with respect
to all (finite or infinite) structures.

© Benjamin Rossman;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 6; pp. 6:1–6:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:benjamin.rossman@duke.edu
https://orcid.org/0009-0001-0247-5208
https://doi.org/10.4230/LIPIcs.CSL.2025.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Equi-Rank Homomorphism Preservation Theorem on Finite Structures

The closely related Łoś-Tarski and Lyndon Preservation Theorems state that a first-order
sentence that is preserved under embeddings (respectively: surjective homomorphisms) if,
and only if, it is equivalent to an existential sentence (respectively: positive sentence). In each
of these classical preservation theorems, the “if” direction follows directly from the semantics
of first-order logic, while the “only if” direction was originally proved non-constructively
using the Compactness Theorem.

A line of work in finite model theory initiated by Gurevich [20] studies the question
of which theorems of classical model theory remain valid, and which become false, when
restricted to finite structures. For example, the Compactness Theorem is easily seen to be
false on finite structures. Counterexamples in [38, 20] witness the failure on finite structure
of the Łoś-Tarski and Lyndon Theorems (on preservation under embeddings and surjective
homomorphisms). In contrast, previous work of the author [33, Theorem 1.7] and [34,
Theorem 6] showed that the classical HPT remains valid when restricted to finite structures.

▶ Theorem 1.2 (HPT on finite structures). Every first-order sentence that is preserved
under homomorphisms on finite structures is equivalent on finite structures to an
existential-positive sentence.

Articles [33, 34] provide two entirely different proofs of Theorem 1.2, which we discuss in
§2.1 and §2.2. Unfortunately, both proofs incur large blow-ups from the quantifier rank r of
a homomorphism-preserved first-order sentence φ to the quantifier rank r∃+ (≫ r) of the
equivalent existential-positive sentence φ∃+. The blow-up in [33] is non-elementary: r∃+ is a
tower-of-exponentials of height r. (With respect to the length of φ and φ∃+, a non-elementary
blow-up is necessary [33, Theorem 6.1].) The method of [34] improved the quantifier rank
blow-up to merely polynomial: r∃+ = O(r3 log r).

At the same time, an additional result of [33, Theorem 1.6] showed the classical HPT
(Theorem 1.1) requires no blow-up at all in quantifier rank:

▶ Theorem 1.3 (Equi-rank HPT). Every first-order sentence that is preserved under ho-
momorphisms (on all structures) is equivalent to an existential-positive sentence with the
same quantifier rank.

The proof of Theorem 1.3 avoids the non-constructive Compactness Theorem, using
instead a method of ∃+-saturated co-retracts (see the discussion in §2.1). It was left as an
open question whether Theorem 1.3 remains valid on finite structures. The main result of
the present paper answers this question in the affirmative, finally unifying the finitary and
equi-rank versions of the HPT.

▶ Theorem 1.4 (Equi-rank HPT on finite structures). Every first-order sentence that is
preserved under homomorphisms on finite structures is equivalent on finite structures to an
existential-positive sentence with the same quantifier rank, variable width, and alternation
height.

Theorem 1.4 is simultaneously tight with respect to three different parameters: quantifier
rank, variable width, and alternation height (see §3.2 for definitions). The surprisingly
simple proof utilizes a generalized Cai-Fürer-Immerman construction [6] on finite relational
structures (see §2.3). In particular, we consider two CFI structures Ceven and Codd over a
finite core C (i.e., structure such that every homomorphism C → C is an isomorphism). We
show that

Ceven ⇄ C and Codd → C ̸→ Codd

B. Rossman 6:3

where → denotes the existence of a homomorphism (Lemma 5.5). Theorem 1.4 then follows
from a characterization of existential-positive definability in terms of the minimal cores of a
homomorphism-closed class of finite structures (Lemma 4.6).

Related work
Our proof of Theorem 1.4 combines a few standard techniques that appear in many prior
works. Variants of the Cai-Fürer-Immerman construction have found numerous applications
similar in nature to our main result. In particular, Fürer [16] and Neuen [32] considered
very similar generalization of CFI structures as given in Definition 5.4, only with different
applications in mind.

The correspondence between quantifier rank/variable width, tree-width/tree-depth, and
the # of moves/# of cops parameters of the cops-and-robber game, has been developed in
several works including [1, 3, 12, 15, 19]. Variants of Lemmas 4.6 can be found in many of
these papers.

Anuj Dawar (personal communication) independently identified the “core” homomor-
phism property of CFI structures (Lemma 5.5) in the context of a different problem. It is
perhaps surprising that the application of the CFI construction to prove the Homomorphism
Preservation Theorem remained unrecognized for such an extended period.

Versions of the HPT relativized to various classes of structures have been investigated in
[4, 5, 10, 21] (see also [11], which corrects some claims in articles [5, 10]). Versions of the
HPT for different fragments, as well as extensions, of first-order logic have been studied in
[2, 7, 14].

2 Comparing the three proofs of the finitary HPT

In this section, we discuss both previous proofs of the Homomorphism Preservation Theorem
on finite structures (Theorem 1.2) from articles [33, 34]. We then give a brief overview of
our new proof using the Cai-Fürer-Immerman construction.

2.1 First proof via ∃+-indistinguishable co-retracts
The original proof of the finitary HPT actually establishes the following stronger result.

▶ Theorem 2.1 ([33, Theorem 5.15]). For every finite relational signature σ and integer
r ≥ 0, there exists an integer r∃+ (≥ r) and an operation

A 7−→ Â : { σ-structures} −→ { σ-structures}

with the following properties:
(I) Â is a co-retract of A (i.e., A is a substructure of Â and there is a homomorphism

Â → A that fixes each element of A).
(II) Whenever A is finite, so is Â.

(III) Whenever A and B satisfy the same existential-positive sentences of quantifier rank r∃+,
their co-retracts Â and B̂ satisfy the same first-order sentences of quantifier rank r.

The finitary HPT follows straightforwardly from Theorem 2.1, although inheriting the
same blow-up in quantifier rank from r to r∃+ (a tower-of-exponentials of height r). It is
unknown whether every operation A 7−→ Â satisfying properties (I), (II) and (III) requires a
large blow-up from r to r∃+; the method of the present paper sheds no light on this question.

CSL 2025

6:4 Equi-Rank Homomorphism Preservation Theorem on Finite Structures

An additional result in [33, Theorem 4.11] shows that the optimal value r∃+ = r can be
achieved by sacrificing property (II), that is, allowing Â to be infinite even when A is finite.
This yields the equi-rank version of the classical HPT (Theorem 1.3). In this version of the
hat operation, Â is an (infinite) ∃+-saturated co-retract of A. The manner of “finitizing” this
operation in [33] is responsible for the tower-of-exponentials blow-up in Theorem 2.1.

▶ Remark 2.2. The method of ∃+-saturated co-retracts was recently generalized by Abramsky
and Reggio [2], though the lens of game comonads and arboreal categories. They give general
conditions leading to equi-resource homomorphism preservation theorems, both with respect
to fragments of first-order logic and relativized to classes of structures satisfying certain
axioms. Our proof of Theorem 1.4 does not follow this template, but it would be interesting
to know if a ∃+-saturation proof is possible in the finite setting.

2.2 Second proof via AC0 lower bounds
Subsequent work of the author [34] provides an entirely different proof of the finitary HPT,
with a merely polynomial blow-up in quantifier rank, based on lower bounds in circuit
complexity.

▶ Theorem 2.3 (Main result of [34]). Let C be a homomorphism-closed class of finite
structures.
(1) If membership in C is decidable on structures of size n by non-uniform AC0 formulas of

size O(nr), then C is definable on finite structures (of all sizes) by a single existential-
positive sentence of quantifier rank O(r3 log r).

(2) If membership in C is decidable on structures of size n by non-uniform AC0 circuits of size
O(ns), then C is definable on finite structures (of all sizes) by a single existential-positive
sentence of variable width O(s log s).

The proof of Theorem 2.3 relies on three different lower bounds in circuit complexity
[27, 28, 35], in addition to a result in graph minor theory on the excluded-minor approximation
of tree-depth [9, 25].3 We remark that Theorem 2.3 has an equivalent descriptive complexity
formulation via the well-known correspondence [13, 24] between the non-uniform complexity
class AC0 and the logic FO[Arb] (first-order logic with arbitrary background predicates).

▶ Corollary 2.4. Let C be a homomorphism-closed class of finite structures.
(1) If C is definable on finite structures by an FO[Arb] sentence of quantifier rank r, then

C is definable on finite structures by an existential-positive sentence of quantifier rank
O(r3 log r).

(2) If C is definable on finite structures by an FO[Arb] sentence of quantifier width s, then
C is definable on finite structures by an existential-positive sentence of variable width
O(s log s).

Corollary 2.4 strengthens Theorem 1.2 by expanding the hypothesis from first-order
sentences to the more expressive class of FO[Arb] sentences, while the equivalent existential-
positive sentences remain first-order (without background predicates). The results of the
present paper do not directly improve Corollary 2.4, but do show that improvements would

3 Part (1) of Theorem 2.3 is stated in [34] with a weaker polynomial bound O(r5 log r). The improvement
to O(r3 log r) relies on a subsequent result of Czerwinski, Nadara, and Pilipczuk [9]. Part (2) of Theorem
2.3 is not explicitly stated in [34], but follows by a similar argument to part (1) using the AC0 circuit
lower bound of Li, Razborov and the author [28].

B. Rossman 6:5

follow from strong enough lower bounds on the AC0 complexity of distinguishing “even”
and “odd” CFI structures over any base graph. Recent size-depth tradeoffs for AC0-Frege
refutations of Tseitin formulas [22, 17] might be relevant to this question.

2.3 New proof via the Cai-Fürer-Immerman construction
An influential article of Cai, Fürer and Immerman [6] introduced a construction of non-
isomorphic simple graphs of order n that are indistinguishable by o(n)-variable counting logic
(equivalently, by the o(n)-dimensional Weisfeiler-Leman algorithm). The general construction
associates any 3-regular graph G with a pair of non-isomorphic graphs Geven and Godd, which
are hard to distinguish when the “base graph” G is an expander. The CFI construction is
closely related to 3-XOR-CNF formulas associated with G, studied by Tseitin [40] in the
setting of proof complexity. The Tseitin formulas are a system of linear equations modulo 2,
with a variable Xe for each edge and a constraint for each vertex v (either Xe ⊕Xf ⊕Xg = 0
or Xe ⊕Xf ⊕Xg = 1, where e, f, g are the edges incident to v). This system is satisfiable
if, and only if, the number of inhomogeneous constraints is even. The CFI graphs Geven
and Godd encode the two different (satisfiable and unsatisfiable) Tseitin formulas over G,
corresponding to the 0-homomology classes of G over Z2.

The CFI construction generalizes to arbitrary (non-3-regular, non-connected) simple
graphs G, as well as to abelian coordinate groups other than Z2. Generalizations of Tseitin
formulas and the CFI construction have found numerous applications in finite model theory
and proof complexity. In this paper we consider a natural version of the CFI construction
on finite structures with a fixed relational signature (Definition 5.4). For any finite “base”
structure A, this construction produces a pair of non-isomorphic finite structures Aeven and
Aodd. Like the original CFI graphs, these structures are indistinguishable by first-order
sentences whose quantifier rank / number of variables is less than the tree-depth / tree-width
of A (Lemma 5.6).

Unlike some versions of the CFI construction (such as the original CFI graphs [6]),
structures Aeven and Aodd project homomorphically to the base structure A. In the key
special case of a finite core C (where every homomorphism C → C is an isomorphism), we
show that C admits a homomorphism to Ceven but not to Codd (Lemma 5.5). Our main result,
the equi-rank finitary HPT (Theorem 1.4), then follows by essentially well-known arguments.

3 Preliminaries

This section includes all relevant definitions pertaining to structures, homomorphisms, and
first-order logic. See [29, 24] for additional background on finite model theory.

3.1 Structures and homomorphisms
▶ Definition 3.1. A (relational) signature is a set σ of relation symbols, each with an
associated positive integer “arity”. A σ-structure A consists a set A (called the universe of A)
together with an interpretation RA ⊆ At for each t-ary relation symbol R in σ. A structure
is finite if its signature and universe are both finite.

▶ Definition 3.2 (Homomorphism and isomorphism).
For structures A,B with the same signature, a homomorphism h : A → B is a function
from the universe of A to the universe of B, which maps each tuple in each relation of A
to a tuple in the corresponding relation of B. An isomorphism is a homomorphism h

which is a bijection and whose inverse h−1 is a homomorphism.

CSL 2025

6:6 Equi-Rank Homomorphism Preservation Theorem on Finite Structures

Notation A → B expresses that there exists a homomorphism from A to B. We say that
A and B are homomorphically equivalent, denoted A ⇄ B, if A → B and B → A.
Notation A → ∗ denotes the class of all (finite or infinite) structures B such that A → B.

▶ Definition 3.3 (The core of a finite structure).
A structure C is a core if every homomorphism h : C → C is an isomorphism.
Every finite structure A is homomorphically equivalent to a unique core (up to isomor-
phism), which we call “the” core of A and denote by Core(A). Core(A) is isomorphic to
an induced substructure of A, namely any minimal retract of A [23].

▶ Definition 3.4 (Gaifman graph). The Gaifman graph of a structure A, denoted Gaif(A), is
the simple graph with vertex set V (Gaif(A)) = A (the universe of A) and undirected edge set

E(Gaif(A)) =
{

{v, w} ∈
(
A

2

)
: v, w occur together in any tuple of any relation of A

}
.

3.2 First-order logic
Definitions in this subsection are with respect to an arbitrary fixed relational signature (i.e.,
a finite set of relation symbols, each with an associated positive integer “arity”).

▶ Definition 3.5 (First-order formulas). Formulas of first-order logic (denoted by φ,ψ, θ) are
constructed from

atomic formulas x = y and Rx1 . . . xt (for a t-ary relation symbol R) via
Boolean connectives φ ∧ ψ and φ ∨ ψ and ¬φ and
quantifiers ∃xφ and ∀xφ.

(Here x, y, x1, . . . , xt are arbitrary variable symbols.)
A formula is said to be:
a sentence if it contains no free variables (i.e., if every occurrence of every variable symbol
is bounded by a quantifier),
positive if it contains no negations (¬),
existential-positive if it contains no negations (¬) or universal quantifiers (∀),
primitive-positive if it contains no negations (¬), universal quantifiers (∀) or disjunc-
tion (∨).

In other words, primitive-positive formulas are constructed from atomic formulas via existen-
tial quantification (∃) and conjunction (∧) only; existential-positive formulas additionally
allow disjunction (∨).

▶ Definition 3.6 (Quantifier rank and variable width). Two important parameters of first-order
formulas are:

quantifier rank, defined as the maximum nesting depth of quantifiers, and
variable width, defined as the maximum number of free variables in any subformula.

▶ Definition 3.7 (Alternation height). A first-order formula φ has alternation height 0 iff
it is quantifier-free (i.e., a Boolean combination of atomic formulas). For d ≥ 1, φ has
alternation height at most d iff it is a Boolean combination of finitely many first-order
formulas ψ1, . . . , ψm, each of the form ∃x1 . . . ∃xk θ or ∀x1 . . . ∀xk θ some k ≥ 0 and θ with
alternation height at most d− 1.

▶ Example 3.8. To illustrate various tradeoffs in parameters, we present four different
primitive-positive sentences, all which define the class P⃗9 → ∗ where P⃗9 is the directed path
graph of order 9.

B. Rossman 6:7

(a) quantifier rank 5, variable width 3, alternation height 3

∃x0 ∃x8 ∃x4

 ∃x2

(
∃x1 (Ex0x1 ∧ Ex1x2) ∧ ∃x3 (Ex2x3 ∧ Ex3x4)

)
∧ ∃x6

(
∃x5 (Ex4x5 ∧ Ex5x6) ∧ ∃x7 (Ex6x7 ∧ Ex7x8)

)

(b) quantifier rank 4 (the minimum possible), variable width 3, alternation height 4

∃x4

 ∃x2

(
∃x1 (∃x0 Ex0x1 ∧ Ex1x2) ∧ ∃x3 (Ex2x3 ∧ Ex3x4)

)
∧ ∃x6

(
∃x5 (Ex4x5 ∧ Ex5x6) ∧ ∃x7 (Ex6x7 ∧ ∃x8 Ex7x8)

)

(c) quantifier rank 9, variable width 2 (the minimum possible), alternation height 8

∃x0 ∃x1 (Ex0x1 ∧ ∃x2 (Ex1x2 ∧ ∃x3 (Ex2x3 ∧ · · · ∃x7 (Ex6x7 ∧ ∃x8 Ex7x8) · · ·)))

(d) quantifier rank 9, variable width 9, alternation height 1 (the minimum possible)

∃x0 ∃x1 ∃x2 · · · ∃x7 ∃x8 (Ex0x1 ∧ (Ex1x2 ∧ (Ex2x3 ∧ · · · (Ex6x7 ∧ Ex7x8) · · ·)))

4 Characterization of ∃+ definability via the cops-and-robber game

The main result of this section (Lemma 4.6) provides a useful characterization of the classes
of structures that are definable by existential-positive sentences with a given quantifier
rank r, variable width s, and alternation height d. This characterization uses the well-known
cops-and-robber game, which is also a means of defining the graph parameters tree-width
and tree-depth.

4.1 Cops-and-robber game
Let G = (V,E), E ⊆

(
V
2
)
, be a finite simple graph. Tree-width and tree-depth, denoted by

tw(G) and td(G), are well-studied graphs parameters that are usually defined in terms of
tree-like decompositions of G. Below, we present an alternative definition of these parameters
in terms of a two-player pursuit-evasion game. This “cops-and-robbers” characterization of
tw(G) and td(G) is better suited to our purposes in this paper.

▶ Definition 4.1 (Cops-and-robber game). For any d ≥ 0, the height-d cops-and-robber game
on a graph G is a pursuit-evasion between two players: a team of cops and a sole robber
(each with complete knowledge of the other’s moves). The game is played in a sequence of d
rounds as follows:

Initially, the robber positions himself on any vertex of his choice.
In round 1 of the game, any number of cops take up positions on their choice of vertices.
The robber then moves to any vertex in the same connected component (bypassing any
newly positioned cops that stand in the way). The game ends immediately only if the
robber moves to a position guarded by a cop.
In round 2 of the game, any subset of the assigned cops remain on their stationed vertices,
and any number of (reassigned or additional) cops take up new positions on their choice
of vertices. The robber then moves to any vertex in that reachable via a path that avoids
the stationary cops (but may bypass any newly (re)positioned cops).
The game proceeds in this manner for up to d rounds, ending immediately if the robber
ever occupies the same vertex as a cop at the end of a round. This situation is a win for
the cop team; otherwise the robber wins if not caught after d rounds.

CSL 2025

6:8 Equi-Rank Homomorphism Preservation Theorem on Finite Structures

The team of cops clearly have a winning strategy for any d ≥ 1: in the first round, simply
occupy all vertices in the connected component of the robber. The two questions that concern
us are:

How many distinct cops are required to catch the robber?
How many distinct cop “moves” (i.e., instances of positioning a cop on a vertex) are
required to catch the robber?

When the “height” of the game (i.e., number of rounds) is unbounded, the answers to these
questions respectively characterize the tree-width and tree-depth of G [37, 18].

Taking into account the height d, we get two hierarchies of parameters

tw1(G) ≥ tw2(G) ≥ · · · and td1(G) ≥ td2(G) ≥ · · ·

defined as follows:
twd(G) is the maximum s ≥ 0 such that the robber has a winning strategy in the
height-d ∞-move s-cops-and-robber game on G.
tdd(G) is the minimum r ≥ 1 such that the cops have a winning strategy in height-d
r-move ∞-cops-and-robber game.

Observe that

tw1(G) + 1 = td1(G) = maximum # of vertices in a connected component of G.

Also note that twd(G) + 1 ≤ tdd(G) for all d. Finally, note that tw|V (G)|(G) = tw(G) and
td|V (G)|(G) = td(G).

▶ Example 4.2. With respect to the path graph Pk of order k, it is well-known that
tw(Pk) = 2 and td(Pk) = log2(k) +O(1). Moreover it is not hard to show that

twd(Pk) = k1/d +O(1) and tdd(Pk) = (d+ o(d))k1/d

for all d ≤ log2(k).

In the remainder of this paper, we are not interested in twd(G) and tdd(G) per se, but
rather in tradeoffs among all three parameters in the cops-and-robbers game: the numbers
of cops, cop moves, and height. That is, for any triple of parameters r, s, d, which side has a
winning strategy in the height-d r-move s-cops-and-robber game on G?

▶ Remark 4.3. Tradeoffs between r and s (when d is unbounded) were recently studied
in [15], and monotonicity of an optimal cops strategy in the r-move s-cops-and-robber game
was established in [3]. In both of those articles, the r-move s-cops-and-robber game is called
the “r-round s-cops-and-robber game”. Optimizing s with respect to fixed r characterizes a
parameter called the depth-r tree-width of G.

In the present article, we use terminology “height-d” instead of “d-round” to avoid
confusion with the previous terminology. We propose names height-d tree-width and height-d
tree-depth for parameters twd(G) and tdd(G).

4.2 ∃+ definability of homomorphism-closed classes
We shall now review a well-known characterization of the parameters (quantifier rank and
variable width) required to define the class of structures C → ∗ by a primitive-positive
sentence, for finite core C. In fact, we slightly extend this characterization by including
alternation height as a third parameter.

B. Rossman 6:9

▶ Lemma 4.4. For any finite core C and integer d, r, s ≥ 0, the following statements are
equivalent:

(i) The class C → ∗ is definable by a primitive-positive sentence with quantifier rank r,
variable width s, and alternation height d.

(ii) The cops have a winning strategy in the height-d r-move s-cops-and-robber game on
Gaif(C).

Results very similar to Lemma 4.4, which consider only one or two of the parameters
d, r, s, have appeared before in the literature [1, 3, 12, 15, 18, 19, 37]. Lemma 4.4 may
be used to characterize the parameters of existential-positive sentences that define a given
homomorphism-closed class of finite structures.

▶ Definition 4.5 (Minimal cores of a homomorphism-closed class of finite structures).
A class of finite structures C is homomorphism-closed if

(A ∈ C and A → B) =⇒ B ∈ C

for all finite structures A and B.
A minimal core in C is a core C ∈ C such that

(A ∈ C and A → C) =⇒ A ⇄ C

for all finite structures A.
Note that C is determined by its set of minimal cores: a finite structures A belongs to C if,
and only if, there is a homomorphism to A from at least one minimal core in C.

▶ Lemma 4.6. Let C be a homomorphism-closed class of finite structures. For any d, r, s ≥ 0,
the following statements are equivalent:

(i) C is definable on finite structures by an existential-positive sentence with quantifier
rank r, variable width s, and alternation height d.

(ii) The cops have a winning strategy in the height-d r-move s-cops-and-robber game on
Gaif(C), for every minimal core C in C.

Lemma 4.6 follows from Lemma 4.4 by standard arguments (see [34, Proposition 2.16]).
The only minor subtlety in the proof is a reliance on the fact that, for any given finite
relational signature and r ≥ 0, there are only a finite number of non-isomorphic cores with
tree-depth r [23]. This is required so that the disjunction of primitive-positive sentences
defining C → ∗, over the non-isomorphic minimal cores C in C, constitutes a well-defined
(finite length) existential-positive sentence.

5 Generalized Cai-Fürer-Immerman construction

In this section we present the generalized Cai-Fürer-Immerman construction discussed in
§2.3 and establish its key properties given by Lemmas 5.5 and 5.6.

▶ Notation 5.1. Let Z2 denote the group {0, 1} with addition modulo 2.

We will make use of the following basic lemma of graph homology, stated here over the
coefficient group Z2.

▶ Lemma 5.2. For any graph G = (V,E), E ⊆
(

V
2
)
, and function ξ : V → Z2, the following

statements are equivalent:
(i)

∑
u∈U ξ(u) = 0 for every connected component U ⊆ V .

(ii) ξ is a “1-boundary”, that is, there exists a function ε : E → Z2 such that for every
v ∈ V , we have

∑
e∈E : v∈e ε(e) = ξ(v).

CSL 2025

6:10 Equi-Rank Homomorphism Preservation Theorem on Finite Structures

▶ Notation 5.3. Let A be a structure with Gaifman graph G = (A,E). For an element v ∈ A,
let Ev, Nv and N•

v respectively denote the incident-edge set, neighbor set and 1-neighborhood
of v in G. That is,

Ev :=
{

{v, w} : w ∈ A such that {v, w} is an edge in G
}
,

Nv :=
{
w ∈ A : {v, w} is an edge in G

}
,

N•
v := Nv ∪ {v}.

▶ Definition 5.4 (Generalized Cai-Fürer-Immerman structures Aξ). For any relational structure
A with universe A and any function ξ : A → Z2, we define a structure Aξ (with the same
signature) as follows:

Aξ has universe

Aξ :=
{

⟨v, α⟩ : v ∈ A and α : N•
v → Z2 such that α(v) = 0 and

∑
w∈Nv

α(w) = ξ(v)
}
.

(Here for readability sake we use a distinctive notation ⟨v, α⟩ for the ordered pair (v, α).)
For each t-ary relation R ⊆ At in A, the corresponding relation Rξ ⊆ At

ξ in Aξ is
defined by

Rξ :=
{

(⟨v1, α1⟩, . . . , ⟨vt, αt⟩) ∈ At
ξ :

(v1, . . . , vt) ∈ R and
αi(vj) = αj(vi) for all i, j ∈ {1, . . . , t}

}
.

Note that the projection ⟨v, α⟩ 7→ v is a homomorphism Aξ → A. Also note that this
homomorphism need not be surjective (for instance, if v ∈ A is an isolated vertex in Gaif(A)
and ξ(v) = 1).

Our first key lemma gives a necessary and sufficient condition for the existence of a
homomorphism in the opposite direction in the special case that A is a core.

▶ Lemma 5.5. Let C be a finite core with Gaifman graph G = (C,E), and let ξ : C → Z2.
There exists a homomorphism C → Cξ if, and only if,

∑
u∈U ξ(u) = 0 for each connected

component U of G.

Proof of Lemma 5.5. We first prove the “if” direction. Assume that
∑

u∈U ξ(u) = 0 for
each connected component U of C. By Lemma 5.2, there exists a function ε : E → Z2 such
that for all v ∈ C, we have∑

e∈Ev

ε(e) = ξ(v).

For each v ∈ C, define αv : Nv → Z2 by αv(v) := 0 and αv(w) := ε({v, w}) for
all w ∈ Nv \ {v}. Note that ⟨v, αv⟩ ∈ Cξ. The function h : v 7→ ⟨v, αv⟩ is the desired
homomorphism C → Cξ.

We now prove the “only if” direction. Assume that h is an arbitrary homomorphism
C → Cξ. Consider the projection homomorphism ⟨v, α⟩ 7→ v : Cξ → C that maps ⟨v, α⟩ to v,
and let f be the composition

f = (⟨v, α⟩ 7→ v) ◦ h : C → C.

Since C is a core, f is an isomorphism. In particular, note that f restricts to a bijection from
Nv to Nf(v) for each v ∈ C.

B. Rossman 6:11

For each v ∈ C, we have h(v) = ⟨f(v), αv⟩ for some αv : N•
f(v) → Z2. Since h(v) ∈ Cξ,

we have

αv(f(v)) = 0 and
∑

x∈Nf(v)

αv(x) = ξ(f(v)).

We now define α̃v : N•
v → Z2 by

α̃v(w) := αv(f(w)).

Using the fact that f maps Nv bijectively to Nf(v), we have

α̃v(v) = αv(f(v)) = 0 and
∑

w∈Nv

α̃v(w) =
∑

w∈Nv

αv(f(w)) =
∑

x∈Nf(v)

αv(x) = ξ(f(v)).

Therefore, we have ⟨v, α̃v⟩ ∈ C
ξ̃

where ξ̃ : C → Z2 is the function ξ̃(v) := ξ(f(v)).
Let us next consider the function h̃ : C → C

ξ̃
defined by

h̃(v) := ⟨v, α̃v⟩.

We claim that h̃ is a homomorphism C → C
ξ̃
. (We prove this claim only in order to show

that α̃v(w) = α̃w(v) for all {v, w} ∈ E.) To see why, consider any tuple (v1, . . . , vt) ∈ R in
any relation of C. Since h is a homomorphism C → Cξ, we have

(h(v1), . . . , h(vr)) = (⟨f(v1), αv1⟩, . . . , ⟨f(vt), αvt
⟩) ∈ Rξ.

By definition of Rξ, for all i, j ∈ {1, . . . , t}, we have αvi(f(vj)) = αvj (f(vi)) and hence

α̃vi
(vj) = αvi

(f(vj)) = αvj
(f(vi)) = α̃vj

(vi).

So we see that (by definition of R
ξ̃
)

(h̃(v1), . . . , h̃(vt)) = (⟨v1, α̃v1⟩, . . . , ⟨vt, α̃vt
⟩) ∈ R

ξ̃
.

This argument shows that h̃ is a homomorphism C → C
ξ̃

as claimed.
We now define a function ε : E → Z2 by

ε({v, w}) := α̃v(w).

This is well-defined, since (as established in previous paragraph) we have α̃v(w) = α̃w(v) for
all {v, w} ∈ E (i.e., for all distinct v, w ∈ C that appear together in any tuple of any relation
of C).

For all v ∈ C, we have∑
e∈Ev

ε(e) =
∑

w∈Nv

ε({v, w}) =
∑

w∈Nv

α̃v(w) = ξ(f(v)) = ξ̃(v).

By Lemma 5.2, it follows that
∑

u∈U ξ̃(u) = 0 for each connected component U of C. Since C

is a core, f : C → C restricts to a bijection on each connected component. We conclude that∑
u∈U

ξ(u) =
∑
u∈U

ξ(f(u)) =
∑
u∈U

ξ̃(u) = 0

as required. ◀

CSL 2025

6:12 Equi-Rank Homomorphism Preservation Theorem on Finite Structures

The second key lemma concerns the parameters of first-order sentences that distinguish
any two structures in the class {Aξ : ξ is a function from A to Z2}.

▶ Lemma 5.6. Let A be a finite structure with Gaifman graph G = (A,E). Assume that
the robber has a winning strategy starting on vertex u ∈ A in the height-d r-move s-ccops-
and-robber game on G. Further assume that ξ, ζ : A → Z2 and ε : E → Z2 are functions
satisfying

ξ(v) + ζ(v) +
∑

e∈Ev

ε(e) = 1[v = u] for all v ∈ A.

Then structures Aξ and Aζ are indistinguishable by first-order sentences with quantifier rank r,
variable width s, and alternation height d.

We obtain Lemma 5.6 as the k = 0 case of the following more general lemma, whose
statement is suited for proof by induction on the alternation height d.

▶ Lemma 5.7. Let A be a finite structure with Gaifman graph G = (A,E). Assume that the
robber has a winning strategy in the height-d r-move s-ccops-and-robber game on G with k
(≤ s) cops initially positioned at vertices v1, . . . , vk ∈ A and the robber initially positioned
at vertex u ∈ A \ {v1, . . . , vk}. Further assume that ξ, ζ : A → Z2 and ε : E → Z2 and
αi, βi : N•

vi
→ Z2 are functions satisfying

⟨v1, α1⟩, . . . , ⟨vk, αk⟩ ∈ Aξ,

⟨v1, β1⟩, . . . , ⟨vk, βk⟩ ∈ Aζ ,

αi(w) + βi(w) + ε({vi, w}) = 0 for all i ∈ {1, . . . , k} and w ∈ Nvi ,

ξ(v) + ζ(v) +
∑

e∈Ev

ε(e) = 1[v = u] for all v ∈ A.

Then for every first-order formula φ(x1, . . . , xk) with quantifier rank r, variable width s, and
alternation height d, we have

Aξ |= φ(⟨v1, α1⟩, . . . , ⟨vk, αk⟩) ⇐⇒ Aζ |= φ(⟨v1, β1⟩, . . . , ⟨vk, βk⟩).

Proof. We argue by induction on d. The base case d = 0 is equivalent to showing that Aξ

and Aζ satisfy the same quantifier-free formulas. Here it suffices to consider only the atomic
formulas. That is, we must show

⟨vi, αi⟩ = ⟨vj , αj⟩ ⇐⇒ ⟨vi, βi⟩ = ⟨vj , βj⟩ for all indices i, j ∈ {1, . . . , k}, and
(⟨vi1 , αi1⟩, . . . , ⟨vit

, αit
⟩) ∈ Rξ ⇐⇒ (⟨vi1 , βi1⟩, . . . , ⟨vit

, βit
⟩) ∈ Rζ for every t-ary relation

symbol R and indices i1, . . . , it ∈ {1, . . . , k}.
Both equivalences follow from our assumptions on ξ, ζ, αi, βi, ε. In particular, the second
equivalence follows from the definition of relations Rξ, Rζ and the observation that

αi(vj) = αj(vi) ⇐⇒ αi(vj) + ε({vi, vj}) = αj(vi) + ε({vi, vj}) ⇐⇒ βi(vj) = βj(vi)

for all i, j ∈ {1, . . . , k}.

For the induction step, assume that d ≥ 1. By definition of having alternation height d,
φ(x1, . . . , xk) is a Boolean combination of finitely many first-order formulas ψ(xi1 , . . . , xij

),
each of the form

∃y1 . . . ∃yℓ θ(xi1 , . . . , xij , y1, . . . , yℓ) or ∀y1 . . . ∀yℓ θ(xi1 , . . . , xij , y1, . . . , yℓ)

B. Rossman 6:13

for some j, ℓ ≥ 0 and 1 ≤ i1 < · · · < ij ≤ k and first-order formula θ with quanti-
fier rank (at most) r − ℓ, variable width (at most) s, and alternation depth (at most)
d − 1. Consider any such formula ψ(x1, . . . , xj), without loss of generality of the form
∃y1 . . . ∃yℓ θ(x1, . . . , xj , y1, . . . , yℓ) where (i1, . . . , ij) = (1, . . . , j). It suffices to show that

Aξ |= ψ(⟨v1, α1⟩, . . . , ⟨vj , αj⟩) ⇐⇒ Aζ |= ψ(⟨v1, β1⟩, . . . , ⟨vj , βj⟩).

We will prove the implication =⇒; the reverse implication follows by a symmetric argument.
Assume that Aξ |= ψ(⟨v1, α1⟩, . . . , ⟨vj , αj⟩) and fix a choice of ⟨v̂1, α̂1⟩, . . . , ⟨v̂ℓ, α̂ℓ⟩ ∈ Aξ

such that

Aξ |= θ(⟨v1, α1⟩, . . . , ⟨vj , αj⟩, ⟨v̂1, α̂1⟩, . . . , ⟨v̂ℓ, α̂ℓ⟩).

In the remainder of this proof, we will show that there exist functions β̂i : N•
v̂ℓ

→ Z2 with
⟨v̂i, β̂i⟩ ∈ Aζ (i ∈ {1, . . . , ℓ}) such that

Aζ |= θ(⟨v1, α1⟩, . . . , ⟨vj , αj⟩, ⟨v̂1, β̂1⟩, . . . , ⟨v̂ℓ, β̂ℓ⟩).

It then follows that Aζ |= ψ(⟨v1, β1⟩, . . . , ⟨vj , βj⟩), which establishes the required implication

Aξ |= ψ(⟨v1, α1⟩, . . . , ⟨vj , αj⟩) =⇒ Aζ |= ψ(⟨v1, β1⟩, . . . , ⟨vj , βj⟩).

In order to define suitable functions β̂i, we invoke the robber’s winning strategy in the
height-d r-move s-ccops-and-robber game on G with cops starting at v1, . . . , vk and the robber
starting at u. Suppose that in the round 1 of the game, the first j cops remain at v1, . . . , vj

while the next ℓ cops redeploy to v̂1, . . . , v̂ℓ. There exists û ∈ V \ {v1, . . . , vj , v̂1, . . . , v̂ℓ} and
a path u = p0, p1, . . . , pm = û in G (with m ≥ 0 and {pi−1, pi} ∈ E for all 1 ≤ i ≤ m) such
that {v1, . . . , vj}∩{p0, . . . , pm} = ∅ and the robber has a winning strategy in the d−1-round
r − ℓ-move s-ccops-and-robber game on G with cops starting at v1, . . . , vj , v̂1, . . . , v̂ℓ and the
robber starting at û.

Define ε̂ : E → Z2 and β̂i : N•
v̂i

→ Z2 (i ∈ {1, . . . , ℓ}) by

ε̂(e) := ε(e) +
m∑

i=1
1[e = {pi−1, pi}],

β̂i(w) :=
{

0 if w = v̂i,

α̂i(w) + ε̂({v̂i, w}) if w ∈ Nv̂i
.

We will next show that ξ, ζ, α1, . . . , αj , α̂1, . . . , α̂ℓ, β1, . . . , βj , β̂1, . . . , β̂ℓ and ê satisfy the
conditions of the lemma with respect to v1, . . . , vj , v̂1, . . . , v̂ℓ, û and the first-order formula θ.

First, note that

⟨v1, α1⟩, . . . , ⟨vj , αj⟩, ⟨v̂1, α̂1⟩, . . . , ⟨v̂ℓ, α̂ℓ⟩ ∈ Aξ.

Second, to establish that

⟨v1, β1⟩, . . . , ⟨vj , βj⟩, ⟨v̂1, β̂1⟩, . . . , ⟨v̂ℓ, β̂ℓ⟩ ∈ Aζ ,

CSL 2025

6:14 Equi-Rank Homomorphism Preservation Theorem on Finite Structures

we observe that for each i ∈ {1, . . . , ℓ},∑
w∈Nv̂i

β̂i(w) =
∑

w∈Nv̂i

(
α̂i(w) + ε̂({v̂i, w})

)

=
∑

w∈Nv̂i

(
α̂i(w) + ε({v̂i, w}) +

m∑
i=1

1[{v̂i, w} = {pi−1, pi}]
)

= ξ(v̂i) +
∑

e∈E
v̂i

ε(e) +
∑

w∈Nv̂i

m∑
i=1

1[{v̂i, w} = {pi−1, pi}]

= ζ(v̂i) + 1[v̂i = u] + 1[v̂i = p0] + 1[v̂i = û]

= ζ(v̂i) (since p0 = u and û /∈ {v1, . . . , vj , v̂1, . . . , v̂ℓ}).

Third, by definition of β̂i, we have

α̂i(w) + β̂i(w) + ε̂({v̂i, w}) = 0 for all i ∈ {1, . . . , ℓ} and w ∈ Nv̂i
.

Fourth and finally, for all v ∈ A, we have

ξ(v) + ζ(v) +
∑

e∈Ev

ε̂(e) = ξ(v) + ζ(v) +
∑

e∈Ev

ε(e) +
∑

w∈Nv

m∑
i=1

1[{v, w} = {pi−1, pi}]

= 1[v = u] + 1[v = p0] + 1[v = pm]

= 1[v = ũ].

By the induction hypothesis applied to θ, we conclude that

Aζ |= θ(⟨v1, α1⟩, . . . , ⟨vj , αj⟩, ⟨v̂1, β̂1⟩, . . . , ⟨v̂ℓ, β̂ℓ⟩),

finishing the proof. ◀

6 Proof of the equi-rank finitary HPT

Proof of Theorem 1.4. Let φ be a first-order sentence that is preserved under homomor-
phisms on finite structures. Let r, s and d be the quantifier rank, variable width and
alternation height of φ.

Assume that φ has at least one finite model, since otherwise the theorem is trivial
(allowing ⊥ as a special primitive-positive sentence with no models). Consider any minimal
core C (with universe C) in the class of finite models of φ. By Lemma 4.6, it suffices to show
that the cops have a winning strategy in the height-d r-move s-cops-and-robber game on
Gaif(C), starting from an (adversarial) choice of initial position u ∈ C for the robber.

Let C0 be the CFI structure where 0 stands for the all-zero function C → Z2, and let
C1u be the CFI structure where 1u stands for the function C → Z2 with value 1 at u and 0
elsewhere. Additionally, let ε be the all-zero function E → Z2. Note that

0(v) + 1u(v) +
∑

e∈Ev

ε(e) = 0 + 1[v = u] +
∑

e∈Ev

0 = 1[v = u] for all v ∈ A.

By Lemma 5.5, we have C → C0. Since φ is closed under homomorphisms on finite
structures, it follows that C0 |= φ. Lemma 5.5 also implies C ̸→ C1u . Since C1u → C, our
assumption that C is a minimal core in the class of finite models of φ implies that C1u

̸|= φ.

B. Rossman 6:15

We have established that φ is a first-order sentence with quantifier rank r, variable width
s and alternation height d, which distinguishes the pair of structures C0 and C1u

. Therefore,
by (the contrapositive of) Lemma 5.6, the cops have a winning strategy with the robber
starting on u ∈ C in the height-d r-move s-cops-and-robber game on Gaif(C).

By Lemma 4.6, we conclude that φ is equivalent on finite structures to an existential-
positive sentence with quantifier rank r, variable width s, and alternation height d, as
required. ◀

7 Open questions

As discussed in §2, it remains an open question whether the quantifier-rank blow-up can be
eliminated or significantly reduced in either Theorem 2.1 or 2.3 (the main results of [33, 34]).

Another interesting question is to investigate tradeoffs in Theorems 2.1 or 2.3 involving
alternation depth d. There is a natural correspondence between primitive-positive sentences
and monotone SAC0 circuits (with unbounded

∨
gates and fan-in 2 ∧ gates). For any finite

graph G, this correspondence gives the following upper bounds on the colored G-subgraph
isomorphism problem (equivalent to the G-homomorphism problem when G is a core).

▶ Proposition 7.1. For any finite graph G, the colored G-subgraph isomorphism
problem, as a sequence of monotone Boolean functions {0, 1}|E(G)|·n2 → {0, 1}, is computable
for all d ≥ 1 by both

monotone SAC0 formulas with
∨

-depth d and size ntdd(G)+O(1), and
monotone SAC0 circuits with

∨
-depth d and size ntwd(G)+O(1).

In the arithmetic setting, the corresponding set-multilinear polynomials are computable by
monotone arithmetic SAC0 formulas and circuits with

∑
-depth d and size ntdd(G)+O(1) and

ntwd(G)+O(1), respectively.

It would be interesting to establish lower bounds in circuit complexity that nearly match
the size-depth tradeoffs of Proposition 7.1. Recent work of the author [36] takes a step in
this direction by establishing nΩ(tdd(G)) and nΩ(twd(G)) lower bounds in the case of path
graphs G = Pk. With respect to monotone arithmetic circuits and formulas, even tighter
ntdd(G)−O(1) and ntwd(G)−O(1) lower bounds for general graphs G might be possible using
the technique of Komarath, Pandey and Rahul [26].

References
1 Samson Abramsky, Anuj Dawar, and Pengming Wang. The pebbling comonad in finite model

theory. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1–12. IEEE, 2017. doi:10.1109/LICS.2017.8005129.

2 Samson Abramsky and Luca Reggio. Arboreal categories and equi-resource homomorphism
preservation theorems. Annals of Pure and Applied Logic, 175(6):103423, 2024. doi:10.1016/
J.APAL.2024.103423.

3 Isolde Adler and Eva Fluck. Monotonicity of the Cops and Robber Game for Bounded Depth
Treewidth. In 49th International Symposium on Mathematical Foundations of Computer
Science (MFCS 2024), volume 306, pages 6:1–6:18, 2024. doi:10.4230/LIPICS.MFCS.2024.6.

4 Albert Atserias. On digraph coloring problems and treewidth duality. European Journal of
Combinatorics, 29(4):796–820, 2008. doi:10.1016/J.EJC.2007.11.004.

5 Albert Atserias, Anuj Dawar, and Phokion G. Kolaitis. On preservation under homomorphisms
and unions of conjunctive queries. J. ACM, 53(2):208–237, 2006. doi:10.1145/1131342.
1131344.

CSL 2025

https://doi.org/10.1109/LICS.2017.8005129
https://doi.org/10.1016/J.APAL.2024.103423
https://doi.org/10.1016/J.APAL.2024.103423
https://doi.org/10.4230/LIPICS.MFCS.2024.6
https://doi.org/10.1016/J.EJC.2007.11.004
https://doi.org/10.1145/1131342.1131344
https://doi.org/10.1145/1131342.1131344

6:16 Equi-Rank Homomorphism Preservation Theorem on Finite Structures

6 Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number
of variables for graph identification. Combinatorica, 12(4):389–410, 1992. doi:10.1007/
BF01305232.

7 James Carr. Homomorphism preservation theorems for many-valued structures. arXiv preprint
arXiv:2403.00217, 2024.

8 Hubie Chen. On the complexity of existential positive queries. ACM Transactions on
Computational Logic (TOCL), 15(1):1–20, 2014. doi:10.1145/2559946.

9 Wojciech Czerwinski, Wojciech Nadara, and Marcin Pilipczuk. Improved bounds for the
excluded-minor approximation of treedepth. In 27th Annual European Symposium on Algo-
rithms (ESA 2019). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

10 Anuj Dawar. Homomorphism preservation on quasi-wide classes. Journal of Computer and
System Sciences, 76(5):324–332, 2010. doi:10.1016/J.JCSS.2009.10.005.

11 Anuj Dawar and Ioannis Eleftheriadis. Preservation theorems on sparse classes revisited. In
Proceedings of the 49th International Symposium on Mathematical Foundations of Computer
Science, 2024.

12 Anuj Dawar, Tomáš Jakl, and Luca Reggio. Lovász-type theorems and game comonads. In
2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13.
IEEE, 2021.

13 Larry Denenberg, Yuri Gurevich, and Saharon Shelah. Definability by constant-depth
polynomial-size circuits. Information and control, 70(2-3):216–240, 1986. doi:10.1016/
S0019-9958(86)80006-7.

14 Tomás Feder and Moshe Y. Vardi. Homomorphism closed vs. existential positive. In Proceedings
of the 18th IEEE Symposium on Logic in Computer Science, pages 310–320, 2003. doi:
10.1109/LICS.2003.1210071.

15 Eva Fluck, Tim Seppelt, and Gian Luca Spitzer. Going deep and going wide: Counting logic and
homomorphism indistinguishability over graphs of bounded treedepth and treewidth. In 32nd
EACSL Annual Conference on Computer Science Logic (CSL 2024). Schloss-Dagstuhl-Leibniz
Zentrum für Informatik, 2024.

16 Martin Fürer. On the combinatorial power of the Weisfeiler-Lehman algorithm. In International
Conference on Algorithms and Complexity, pages 260–271. Springer, 2017. doi:10.1007/
978-3-319-57586-5_22.

17 Nicola Galesi, Dmitry Itsykson, Artur Riazanov, and Anastasia Sofronova. Bounded-depth
Frege complexity of Tseitin formulas for all graphs. Annals of Pure and Applied Logic,
174(1):103166, 2023. doi:10.1016/J.APAL.2022.103166.

18 Archontia C Giannopoulou, Paul Hunter, and Dimitrios M Thilikos. LIFO-search: A min–max
theorem and a searching game for cycle-rank and tree-depth. Discrete Applied Mathematics,
160(15):2089–2097, 2012. doi:10.1016/J.DAM.2012.03.015.

19 Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. Journal of the ACM, 54(1):1–24, 2007. doi:10.1145/1206035.1206036.

20 Yuri Gurevich. Toward logic tailored for computational complexity. In M. M. Richter et al.,
editor, Computation and Proof Theory, pages 175–216. Springer Lecture Notes in Mathematics,
1984.

21 Lucy Ham. Relativised homomorphism preservation at the finite level. Studia Logica, 105(4):
761–786, 2017. doi:10.1007/S11225-017-9710-7.

22 Johan Håstad. On small-depth Frege proofs for Tseitin for grids. Journal of the ACM (JACM),
68(1):1–31, 2020. doi:10.1145/3425606.

23 Pavol Hell and Jaroslav Nešetřil. The core of a graph. Discrete Math., 109:117–126, 1992.
doi:10.1016/0012-365X(92)90282-K.

24 Neil Immerman. Descriptive Complexity Theory. Graduate Texts in Computer Science.
Springer, New York, 1999.

https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/BF01305232
https://doi.org/10.1145/2559946
https://doi.org/10.1016/J.JCSS.2009.10.005
https://doi.org/10.1016/S0019-9958(86)80006-7
https://doi.org/10.1016/S0019-9958(86)80006-7
https://doi.org/10.1109/LICS.2003.1210071
https://doi.org/10.1109/LICS.2003.1210071
https://doi.org/10.1007/978-3-319-57586-5_22
https://doi.org/10.1007/978-3-319-57586-5_22
https://doi.org/10.1016/J.APAL.2022.103166
https://doi.org/10.1016/J.DAM.2012.03.015
https://doi.org/10.1145/1206035.1206036
https://doi.org/10.1007/S11225-017-9710-7
https://doi.org/10.1145/3425606
https://doi.org/10.1016/0012-365X(92)90282-K

B. Rossman 6:17

25 Ken-ichi Kawarabayashi and Benjamin Rossman. A polynomial excluded-minor characteriza-
tion of treedepth. In 29th ACM-SIAM Symposium on Discrete Algorithms, pages 234–246,
2018.

26 Balagopal Komarath, Anurag Pandey, and Chengot Sankaramenon Rahul. Monotone arithmetic
complexity of graph homomorphism polynomials. Algorithmica, 85(9):2554–2579, 2023. doi:
10.1007/S00453-023-01108-0.

27 Deepanshu Kush and Benjamin Rossman. Tree-depth and the formula complexity of subgraph
isomorphism. SIAM Journal on Computing, 52(1):273–325, 2023. doi:10.1137/20M1372925.

28 Yuan Li, Alexander Razborov, and Benjamin Rossman. On the AC0 complexity of subgraph
isomorphism. SIAM Journal on Computing, 46(3):936–971, 2017.

29 Leonid Libkin. Elements of Finite Model Theory. Springer-Verlag, 2004.
30 Jerzy Łoś. On the extending of models (I). Fundamenta Mathematicae, 42:38–54, 1955.
31 Roger C. Lyndon. Properties preserved under homomorphism. Pacific J. Math., 9:129–142,

1959.
32 Daniel Neuen. Homomorphism-distinguishing closedness for graphs of bounded tree-width.

In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.

33 Benjamin Rossman. Homomorphism preservation theorems. Journal of the ACM, 55(3):15,
2008.

34 Benjamin Rossman. An improved homomorphism preservation theorem from lower bounds in
circuit complexity. In 8th Innovations in Theoretical Computer Science, volume 67 of LIPIcs,
pages 27:1–17, 2017. doi:10.4230/LIPICS.ITCS.2017.27.

35 Benjamin Rossman. Formulas versus circuits for small distance connectivity. SIAM Journal
on Computing, 47(5):1986–2028, 2018. doi:10.1137/15M1027310.

36 Benjamin Rossman. Formula size-depth tradeoffs for iterated sub-permutation matrix multi-
plication. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, pages
1386–1395, 2024. doi:10.1145/3618260.3649628.

37 Paul D Seymour and Robin Thomas. Graph searching and a min-max theorem for tree-width.
Journal of Combinatorial Theory, Series B, 58(1):22–33, 1993. doi:10.1006/JCTB.1993.1027.

38 William W. Tait. A counterexample to a conjecture of Scott and Suppes. J. Symbolic Logic,
24:15–16, 1959. doi:10.2307/2964569.

39 Alfred Tarski. Contributions to the theory of models. I. In Indagationes Mathematicae
(Proceedings), volume 57, pages 572–581. Elsevier BV, 1954.

40 Grigori S Tseitin. On the complexity of derivation in propositional calculus. Automation of
reasoning: 2: Classical papers on computational logic 1967–1970, pages 466–483, 1983.

CSL 2025

https://doi.org/10.1007/S00453-023-01108-0
https://doi.org/10.1007/S00453-023-01108-0
https://doi.org/10.1137/20M1372925
https://doi.org/10.4230/LIPICS.ITCS.2017.27
https://doi.org/10.1137/15M1027310
https://doi.org/10.1145/3618260.3649628
https://doi.org/10.1006/JCTB.1993.1027
https://doi.org/10.2307/2964569

Extension Preservation on Dense Graph Classes
Ioannis Eleftheriadis # Ñ

Department of Computer Science and Technology, University of Cambridge, UK

Abstract
Preservation theorems provide a direct correspondence between the syntactic structure of first-order
sentences and the closure properties of their respective classes of models. A line of work has explored
preservation theorems relativised to combinatorially tame classes of sparse structures [Atserias et al.,
JACM 2006; Atserias et al., SiCOMP 2008; Dawar, JCSS 2010; Dawar and Eleftheriadis, MFCS
2024]. In this article we initiate the study of preservation theorems for dense classes of graphs. In
contrast to the sparse setting, we show that extension preservation fails on most natural dense classes
of low complexity. Nonetheless, we isolate a technical condition which is sufficient for extension
preservation to hold, providing a dense analogue to a result of [Atserias et al., SiCOMP 2008].

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases Extension preservation, finite model theory, dense graphs, cliquewidth

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.7

Funding The author is supported by a George and Marie Vergottis Scholarship awarded through
Cambridge Trust, an Onassis Foundation Scholarship, and a Robert Sansom Studentship.

1 Introduction

The early days of finite model theory were considerably guided by attempts aiming to
relativise theorems and techniques of classical model theory to the finite realm. While many
of these were trivially shown to admit no meaningful relativisation, others were extended in a
way that broadened their applicability and rendered them extremely useful tools in the study
of finite models. Preservation theorems were at the heart of this approach. Most notably,
the Łoś-Tarski preservation theorem which asserts that a first-order formula is preserved
by extensions between all structures if and only if it is equivalent to an existential formula,
was shown to fail in the finite from early on [28, 22]. On the contrary, the homomorphism
preservation theorem asserting that a formula is preserved by homomorphisms if and only
if it is existential-positive, was open for several years until it was surprisingly shown to
extend to finite structures [27], leading to applications in constraint satisfaction problems
and database theory.

Still, considering all finite structures allows for combinatorial complexity, giving rise
to wildness from a model-theoretic perspective, and intractability from a computational
perspective. Indeed, problems which are hard in general become tractable when restring
to classes of finite structures which are, broadly-speaking, tame [12]. In the context of
preservation theorems, restricting on a subclass weakens both the hypothesis and the
conclusion, therefore leading to an entirely new question. A study of preservation properties
for such restricted classes of finite structures was initiated in [4] and [3] for homomorphism
and extension preservation respectively. This investigation led to the introduction of different
notions of wideness, which allow for arguments based on the locality of first-order logic.
However, as it was recently realised [14], these arguments require slightly restrictive closure
assumptions which are not always naturally present. In particular, it was shown that
homomorphism preservation holds over any hereditary quasi-wide class which is closed under
amalgamation over bottlenecks.

© Ioannis Eleftheriadis;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 7; pp. 7:1–7:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ie257@cam.ac.uk
https://www.cst.cam.ac.uk/people/ie257
https://orcid.org/0000-0003-4764-8894
https://doi.org/10.4230/LIPIcs.CSL.2025.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Extension Preservation on Dense Graph Classes

Quasi-wideness is a Ramsey-theoretic condition which informally says that in any large
enough structure in the class one can remove a bounded number of elements, called bottleneck
points, so that there remains a large set of pairwise far-away elements. Here, the number of
bottleneck points is allowed to dependent on the choice of distance. Hereditary quasi-wide
classes were later identified with nowhere dense classes [24]. Over the years, a successful
program was developed aiming to understand the combinatorial and model-theoretic features
of nowhere dense classes, and exploit them for algorithmic purposes [25]. The culmination of
this was the seminal result that first-order model checking is fixed-parameter tractable on
nowhere dense classes [21].

In recent years, the focus has shifted towards extending this well understood theory to
more general, possibly dense, well-behaved classes, which fall out of the classification provided
by the sparsity program. In these efforts, the model-theoretic notions of monadic stability
and monadic dependence have played central roles. Monadic stability, initially introduced
by Baldwin and Shelah [5] in the context of classification of complete first-order theories,
prohibits arbitrarily large definable orders in monadic expansions. In the language of first-
order transductions, a class is monadically stable whenever it does not transduce the class of
finite linear orders. More generally, a class is monadically dependent if it does not transduce
the class of all graphs. In the context of monotone classes of graphs, Adler and Adler [1]
first observed that the above notions coincide with nowhere density, a result which was also
extended to arbitrary relational structures [7]. The generalisation of sparsity theory to dense
classes eventually led to the result that first-order model checking is fixed-parameter tractable
on all monadically stable graph classes [15], which in particular include transductions of
nowhere dense classes. It is conjectured that the above result extends to all monadically
dependent classes, while a converse was recently established for hereditary graph classes
(under standard complexity-theoretic assumptions) [18].

The purpose of the present article is to initiate the investigation of preservation theorems
on tame dense graph classes. Much like nowhere dense classes are equivalently characterised
by quasi-wideness, monadically stable and monadically dependent graph classes also admit
analogous wideness-type characterisations. In the case of monadic stability, the relevant
condition is known as flip-flatness [17]; this may be viewed as a direct analogue of quasi-
wideness which replaces the vertex deletion operation by flips, i.e. edge-complementations
between subsets of the vertex set. For monadically dependent classes the relevant condition,
known as flip-breakability [18], allows to find two large sets such that elements in one are far
away from elements in the other, again after performing a bounded number of flips. However,
unlike quasi-wideness which was introduced in the context of preservation and then shown
to coincide with nowhere density, these conditions were introduced purely for the purpose
of providing combinatorial characterisations of monadic stability and monadic dependence
respectively. The immediate question thus becomes whether these conditions, or variants
thereof, can be used to obtain preservation in restricted tame dense classes, in analogy to
the use of wideness in [3, 4, 13, 14].

The first observation is that the arguments for homomorphism preservation are not
directly adaptable in this context due to the nature of flips. Indeed, while the vertex-deletion
operation respects the existence of a homomorphism between two structures, the flip operation
is not at all rigid with respect to homomorphisms precisely because the latter do not reflect
relations, e.g. the graph K1 +K1 homomorphically maps to K2, but (K1 +K1) = K2 does
not map to K2 = K1 + K1. This issue evidently disappears if one considers embeddings.
As it was observed in [14, Corollary 2.3], the extension preservation property implies the
homomorphism preservation property in hereditary classes of finite structures, so considering
extension preservation is more general for our purposes.

I. Eleftheriadis 7:3

However, this generality comes at a cost. Indeed, the argument for extension preservation
from [3] requires that the number of vertex-deletions is independent of the choice of radius, a
condition known as almost-wideness. This is a more restrictive assumption which therefore
applies to fewer sparse classes. It is not known whether extension preservation is obtainable
for quasi-wide classes. At the same time, unlike [14, Theorem 4.2] whose proof is essentially
a direct application of Gaifman’s locality theorem based on an argument of Ajtai and
Gurevich [2], the proof of extension preservation [3, Theorem 4.3] is admittedly much more
cumbersome. One explanation for this is that the homomorphism preservation argument
relies on the fact that the disjoint union operation endows the category of graphs and
homomorphisms with coproducts, i.e. for any graphs A,B,C if there are homomorphisms
f : A → C and g : B → C then there is a homomorphism f + g : A + B → C whose
pre-compositions with the respective inclusion homomorphisms ιA : A → A + B and
ιB : B → A+B are equal to f and g respectively. On the other hand, no construction satisfies
the above property in the category of graphs with embeddings; in fact coproducts do not
even exist in the category of graphs with strong homomorphisms (see [23, Corollary 4.3.15]).

Our first contribution is negative, showing that extension preservation can fail on tame
dense classes of low complexity. In particular, we show that extension preservation fails
on the class of all graphs of (linear) cliquewidth at most k, for all k ≥ 4. This answers
negatively a question of [14]. This is contrary to the sparse picture, where it was shown
that extension preservation holds in the class of graphs of treewidth at most k, for every
k ∈ N [3, Theorem 5.2]. Interestingly, extension preservation holds for the class of all graphs
of cliquewidth 2 as this class coincides with the class of cographs which is known to be
well-quasi-ordered [11]. Our construction is based on the encoding of linear orders via the
neighbourhoods of certain vertices. Orders are also central to the original counterexample
for the failure of extension preservation in the finite due to Tait [28]. There, the orders
are crucially presented over a signature with two relation symbols and one constant, which
does not allow for a direct translation to undirected graphs. Sadly, the fact that orders
appear to provide counterexamples rules out the possibility of using an argument based on
flip-breakability to establish preservation.

The second contribution of the article is positive. In particular, we provide a dense
analogue to [3, Theorem 4.3]. For this, we introduce strongly flip-flat classes, i.e. those
flip-flat classes such that the number of flips is independent of the choice of radius. Moreover,
we formulate the dense analogue of the amalgamation construction, which we call the flip-sum,
whose existence in the class is necessary for the argument to be carried out. The main theorem
(Theorem 18 below) may thus be formulated as saying that extension preservation holds
over any hereditary strongly flip-flat class which is closed under flip-sums over bottleneck
partitions.

2 Preliminaries

We assume familiarity with the standard notions of finite model theory and structural graph
theory, and refer to [19] and [25] for reference. In this article, graphs shall always refer to
simple undirected graphs i.e. structures over the signature τE = {E} where E is interpreted
as a symmetric and anti-reflexive binary relation. For a graph G we write V (G) for its
domain (or vertex set), and E(G) for its edge set. In general, for a τ -structure A and a
relation symbol R ∈ τ of arity r ∈ N we write RA ⊆ Ar for the interpretation of R in A. We
shall abuse notation and not distinguish between structures and their respective domains.

CSL 2025

7:4 Extension Preservation on Dense Graph Classes

Given two structures A,B in the same relational signature τ , a homomorphism f : A → B

is a map that preserves all relations, i.e. for all R ∈ τ and tuples ā from A we have
ā ∈ RA =⇒ f(ā) ∈ RB. A strong homomorphism is a homomorphism f : A → B

that additionally reflects all relations, i.e. f(ā) ∈ RB =⇒ ā ∈ RA. An injective strong
homomorphism is called an embedding or extension.

A τ -structure B is said to be a weak substructure of a τ -structure A if B ⊆ A and the
inclusion map ι : B ↪→ A is a homomorphism. Likewise, B is an induced substructure of A
if the inclusion map is an embedding; we write B ≤ A for this. Given a structure A and a
subset S ⊆ A we write A[S] for the unique induced substructure of A with domain S. An
induced substructure B of A is said to be proper if B ⊊ A; we write B ⪇ A for this. We say
that a class of structures in the same signature is hereditary if it is closed under induced
substructures. Moreover a class is called addable if it is closed under taking disjoint unions,
which we denote by A+B.

By the Gaifman graph of a structure A we mean the undirected graph Gaif(A) with
vertex set A such that two elements are adjacent if, and only if, they appear together in some
tuple of a relation of A. Given a structure A, r ∈ N, and a ∈ A, we write NA

r (a) for the
r-neighbourhood of a in A, that is, the set of elements of A whose distance from a in Gaif(A)
is at most r. We shall often abuse notation and write NA

r (a) for the induced substructure
A[NA

r (a)] of A. For a set C ⊆ A we define NA
r (C) :=

⋃
a∈C N

A
r (a). A set S ⊆ A is said to

be r-independent if b /∈ NA
r (a) for any a, b ∈ S.

For r ∈ N, let dist(x, y) ≤ r be the first-order formula expressing that the distance
between x and y in the Gaifman graph is at most r, and dist(x, y) > r its negation. Clearly,
the quantifier rank of dist(x, y) ≤ r is at most r. A basic local sentence is a sentence

∃x1, . . . , xn(
∧
i̸=j

dist(xi, xj) > 2r ∧
∧

i∈[n]

ψNr(xi)(xi)),

where ψNr(xi)(xi) denotes the relativisation of ψ to the r-neighbourhood of xi, i.e. the formula
obtained from ψ by replacing every quantifier ∃x θ with ∃x(dist(xi, x) ≤ r ∧ θ), and likewise
every quantifier ∀x θ with ∀x(dist(xi, x) ≤ r → θ). We call r the locality radius, n the width,
and ψ the local condition of ϕ. Recall the Gaifman locality theorem [19, Theorem 2.5.1].

▶ Theorem 1 (Gaifman Locality). Every first-order sentence of quantifier rank q is equivalent
to a Boolean combination of basic local sentences of locality radius 7q.

A class C of structures is said to be quasi-wide if for every r ∈ N there exist kr ∈ N
and fr : N → N such that for all m ∈ N and all A ∈ C of size at least fr(m) there exists
S ⊆ A such that A \ S contains an r-independent set of size m. Moreover, if kr := k ∈ N is
independent of r, then C is said to be almost-wide. Finally, we say that a class C is uniformly
quasi-wide (uniformly almost-wide respectively) if the hereditary closure of C is quasi-wide
(almost-wide respectively).

For a graph G and a pair of disjoint vertex subsets U and V , the subgraph semi-induced
by U and V is the bipartite graph with sides U and V that contains all edges of G with one
endpoint in U and second in V . By the half-graph of order n we mean the bipartite graph
with vertices {ui, vi : i ∈ [n]} and edges {(ui, vj) : i ≤ j}.

For first-order formulas δ(x) and ϕ(x, y) the interpretation Iδ,ϕ is defined to be the
operation that maps a graph G to the graph H := Iδ,ϕ(G) with vertex set V (H) :=
{v ∈ V (G) : G |= δ(v)} and edge set

E(H) :=
{

(u, v) ∈ V (H)2 : u ̸= v ∧G |= (ϕ(u, v) ∨ ϕ(v, u))
}
.

I. Eleftheriadis 7:5

For a graph class C, we write Iδ,ϕ(C) := {Iδ,ϕ(G) : G ∈ C}. We say that a class C is an
interpretation of a class D, or that D interprets C, if there is some Iδ,ϕ such that C ⊆ Iδ,ϕ(D).
We say that C is a transduction of a class D, or D transduces C, if there are k ∈ N and unary
predicates P1, . . . , Pk and formulas δ(x) and ϕ(x, y) over the signature τE ∪{P1, . . . , Pk} such
that C ⊆ Iδ,ϕ(Dk), where Dk is the class of all τE ∪ {P1, . . . , Pk}-structures whose τE-reducts
are in D. A graph class C is monadically dependent if C does not transduce the class of all
graphs. C is moreover monadically stable if C does not transduce the class of all half-graphs.

We say that a formula ϕ is preserved by extensions over a class of structures C if for all
A,B ∈ C such that there is a embedding from B to A, B |= ϕ implies that A |= ϕ. We say that
a class of structures C has the extension preservation property if for every formula ϕ preserved
by extensions over C there is an existential formula ψ such that M |= ϕ ⇐⇒ M |= ψ

for all M ∈ C. We analogously define the homomorphism preservation property, replacing
“embeddings” with “homomorphisms” and “existential” with “existential positive” in the
above.

Given a formula ϕ and a class of structures C, we say that M ∈ C is a minimal induced
model of ϕ in C if M |= ϕ and for any proper induced substructure N of M with N ∈ C
we have N ̸|= ϕ. The relationship between minimal models and extensions preservation is
highlighted by the following folklore lemma. We provide a proof for completeness.

▶ Lemma 2. Let C be a hereditary class of finite structures. Then a sentence preserved by
extensions in C is equivalent to an existential sentence over C if and only if it has finitely
many minimal induced models in C.

Proof. Suppose that ϕ has finitely many minimal induced models in C, say M1, . . . ,Mn. For
each i ∈ [n], let ψi be the primitive sentence inducing a copy of Mi and write ψ :=

∨
i∈[n] ψi;

evidently ψ is existential. We argue that ϕ is equivalent to ψ over C. Indeed, if A ∈ C
models ϕ then A contains a minimal induced model B of ϕ as an induced substructure. By
hereditariness B ∈ C and so B is isomorphic to some Mi. Since there is clearly an embedding
B → A it follows that A |= ψ. On the other hand if A |= ψ, then A |= ψi for some i ∈ [n]
and so some Mi embeds into A. Since Mi |= ϕ and ϕ is preserved by extensions this implies
that A |= ϕ as required.

Conversely, assume that ϕ is equivalent to an existential sentence over C. In particular,
ϕ is equivalent to some disjunction

∨
i∈[n] ψi where each ψi is primitive. It follows that

each ψi is the formula inducing one of finitely many structures M i
1, . . . ,M

i
ki

. Now, if A is a
minimal induced model of ϕ then in particular A |= ψi for some i ∈ [n], i.e. there is some
j ∈ [ki] and an embedding h : M i

j → A. If h is not surjective, then A[h[M i
j]] is a proper

induced substructure of A, which is in C by hereditariness, and models ϕ; this contradicts
the minimality of A. Hence, the size of every minimal induced model of ϕ in C is bounded
by maxi∈[n] maxj∈[ki] |M i

j |. It follows that ϕ can have only finitely many minimal induced
models in C. ◀

3 Failure of preservation on graphs of cliquewidth 4

One consequence of Lemma 2 is that extension preservation holds over any class C that is
well-quasi-ordered by the induced substructure relation, i.e. classes for which there exists no
infinite collection of members which pairwise do not embed into one another. In particular,
this applies to the class of cographs [11], which are precisely the graphs of cliquewidth 2
(see [9] for background on cliquewidth). Hence, one may reasonably inquire whether extension
preservation is generally true for the class CWk of all graphs of cliquewidth at most k. This

CSL 2025

7:6 Extension Preservation on Dense Graph Classes

would in particular reflect an analogous phenomenon that is true in the sparse setting, that
is, that extension preservation holds over the class T Wk of all graphs of treewidth at most k
[3, Theorem 5.2].

Classes of bounded cliquewidth are not monadically stable, as even the class of cographs
contains arbitrarily large semi-induced half-graphs, but they are monadically dependent. In
fact, their structural properties imply tame behaviour going much beyond the context of
first-order logic (see [10] for a survey). Still, as it turns out, extension preservation fails even
at the level of cliquewidth 4. To show this, we produce a formula ϕ preserved by extensions
over the class of all finite undirected graphs, which admits infinitely many minimal models
of cliquewidth 4. In particular, Lemma 2 implies that extension preservation fails on any
class that includes these minimal models. Our idea is based on encoding two interweaving
linear orders on the two parts of a semi-induced graph. Two vertices on the same part are
comparable in this ordering whenever their neighbourhoods in the other part are set-wise
comparable. This effectively forces a semi-induced half-graph.

Our formula is in the form of an implication, proceeded by a primitive part which
induces a gadget corresponding to the beginning and end of the two linear orders. The
antecedent of the implication first makes sure that the above relation is a pre-ordering
on each side of the semi-induced graph, while it imposes that the vertices of the gadget
corresponding to the minimal and maximal elements are indeed minimal and maximal in this
pre-ordering. Moreover, it essentially ensures that successors, i.e. vertices of the same part
whose neighbourhoods over the other part differ by a single element, are adjacent on one
part and non-adjacent on the other. The consequent then imposes that any vertex on the
first side has an adjacent successor, while every vertex on the other side has a non-adjacent
successor. Because each one of the two pre-orders precisely compares neighbourhoods over
the other part, this forces the pre-orders to be anti-symmetric, and thus the two parts to
have the same number of vertices.

Finally, two additional vertices are also added on one side of the semi-induced bipartite
graph, which are part of the gadget and serve no role in this ordering. These make sure that
our intended minimal models form an anti-chain in the embedding relation, as they crucially
result in the existence of a unique embedding of the gadget into the models (Lemma 5 below).

We now turn to formal definitions. Let I(v1, v2, v3, v4, v5, v6, u1, u2, u3, u4, u5, u6, a, b) be
the formula that induces the graph of Figure 1 below. In the following, we treat the free
variables of I as constants for simplicity. The notation ∀(x ∈ U) will denote the relativisation
of the universal quantifier to the neighbours of v1 that are not v2, i.e. ∀(x ∈ U) ψ(x) is
shorthand for ∀x(E(x, v1) ∧ x ̸= v2 → ψ(x)). Likewise, the notation ∀(x ∈ V) denotes the
relativisation of the universal quantifier to the non-neighbours of v1 that are not a or b, i.e.
∀(x ∈ V) ψ(x) is shorthand for ∀x(¬E(x, v1)∧x ̸= a∧x ̸= b → ψ(x)). Existential quantifiers
relativised to U and V are defined analogously. Consider the auxiliary formulas:

x ≤V y := ∀(z ∈ U)[E(z, x) → E(z, y)];

x <V y := x ≤V y ∧ ¬(y ≤V x);

χ1 := ∀(x ∈ V)∀(y ∈ V)[x ≤V y ∨ y ≤V x];

χ2 := ∀(x ∈ U)[E(x, v6) → x = u6];

χ3 := ∀(x ∈ V)∀(y ∈ V)[x <V y ∧ E(x, y) → ∃!(z ∈ U)(E(y, z) ∧ ¬E(x, z))].

In analogy, we define:

x ≤U y := ∀(z ∈ V)[E(z, x) → E(z, y)];

I. Eleftheriadis 7:7

x <U y := x ≤U y ∧ ¬(y ≤U x);

ξ1 := ∀(x ∈ U)∀(y ∈ U)[x ≤U y ∨ y ≤U x];

ξ2 := ∀(x ∈ V)[E(x, u1) → x = v1];

ξ2∗ := ∀(x ∈ V) E(x, u6);

ξ3 := ∀(x ∈ U)∀(y ∈ U)[x <U y ∧ ¬E(x, y) → ∃!(z ∈ V)(E(y, z) ∧ ¬E(x, z))].

We then define:

ϕ1 := χ1 ∧ χ2 ∧ χ3;

ϕ2 := ∀(x ∈ V)[x ̸= v1 → ∃(y ∈ V)(E(x, y) ∧ x <V y)];

ψ1 := ξ1 ∧ ξ2 ∧ ξ2∗ ∧ ξ3;

ψ2 := ∀(x ∈ U)[x ̸= u6 → ∃(y ∈ U)(¬E(x, y) ∧ x <U y)].

Putting the above together we finally define:

ϕ := ∃v̄, ū, a, b(I(v̄, ū, a, b) ∧ [ϕ1(v̄, ū, a, b) ∧ ψ1(v̄, ū, a, b) → ϕ2(v̄, ū, a, b) ∧ ψ2(v̄, ū, a, b)])

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5 v6

a b

Figure 1 The gadget induced by I(v̄, ū, a, b).

▶ Proposition 3. The formula ϕ is preserved by extensions over the class of all finite graphs.

Proof. Let G,H be two graphs such that G embeds into H, and G |= ϕ. Without loss of
generality we assume that V (G) ⊆ V (H) and that the identity map is an embedding. We
shall argue that H |= ϕ.

Since G |= ϕ, we may fix (tuples of) vertices v̄, ū, a, b ∈ V (G) such that G |= I(v̄, ū, a, b).
Evidently, H also models I(v̄, ū, a, b). If H ̸|= (ϕ1(v̄, ū, a, b) ∧ ψ1(v̄, ū, a, b)) then H |= ϕ; we
may therefore assume that H |= (ϕ1(v̄, ū, a, b)∧ψ1(v̄, ū, a, b)). Let U := NH(v1)\{v2} ⊆ V (H)
be the neighbours of v1 in H that are not v2, and V := V (H) \ (U ∪ {a, b}) ⊆ V (H) be
the non-neighbours of v1 that are not a or b (in particular v1 ∈ V). We call the vertices
x ∈ V V -elements. For each V -element x we write Ux := {y ∈ U : H |= E(x, y)} for the
U -neighbourhood of x. We similarly define U -elements and V -neighbourhoods. From each of
the conjuncts χi of ϕ1 we deduce that in H:

CSL 2025

7:8 Extension Preservation on Dense Graph Classes

χ1: V -elements have pairwise comparable U -neighbourhoods;
χ2: the only member of Uv6 is u6;
χ3: if two adjacent V -elements x, y satisfy Ux ⊊ Uy then |Uy| = |Ux| + 1.

We shall argue that items (1)-(3) are still true within G, replacing V with V ′ := V ∩V (G)
and U with U ′ := U ∩ V (G), and so G |= ϕ1(v̄, ū, a, b). We write U ′

x := Ux ∩ V (G) for the
relativised U ′-neighbourhoods. Clearly, items (1) and (2) are still true in G. For item (3),
suppose that x, y ∈ V ′ are two adjacent V ′-elements, such that V ′

x ⊊ V ′
y . Since V -elements

in H have pairwise comparable U -neighbourhoods, we deduce that Vx ⊊ Vy and therefore
that |Vy| = |Vx| + 1 as H satisfies χ3. In particular, it follows that |V ′

y | = |V ′
x| + 1 as required,

and so G models χ3(v̄, ū, a, b) and consequently ϕ1(v̄, ū, a, b).
Similarly, from each of the conjuncts ξi of ψ1 we deduce that in H:

ξ1: U -elements have pairwise comparable V -neighbourhoods;
ξ2: the only element of Vu1 is v1;
ξ2∗ : Vu6 is equal to V ;
ξ3: if two non-adjacent U -elements satisfy Vx ⊊ Vy then |Vy| = |Vx| + 1.

Arguing as before, we obtain that G |= ψ1(v̄, ū, a, b). Since G |= ϕ and G |= (ϕ1(v̄, ū, a, b)∧
ψ1(v̄, ū, a, b)) we deduce that G |= (ϕ2(v̄, ū, a, b) ∧ ψ2(v̄, ū, a, b)), i.e. the following are true
in G:
ϕ2: every V ′-element that is not v1 is adjacent to a V ′-element of strictly greater U ′-

neighbourhood;
ψ2: every U ′-element that is not u6 is non-adjacent to a U ′-element of strictly greater

V ′-neighbourhood.

We proceed to show that the above implies that V = V ′ and U ′ = U , and hence G = H.
In particular, this implies that H |= ϕ as claimed.

Since G is finite and satisfies ϕ2 we obtain some n ∈ N and a sequence of distinct
elements α1 := v6, α2, . . . , αn := v1 of V ′ such that U ′

αi
⊊ U ′

αi+1
and G |= E(αi, αi+1) for all

i ∈ [n− 1]. In particular, Uαi
⊊ Uαi+1 and H |= E(αi, αi+1) for all i ∈ [n]. As H satisfies

χ3 we obtain that |Uαi+1 | = |Uαi
| + 1 for all i. Moreover, since H satisfies χ2 and every

element of U is adjacent to v1, we obtain that Uα1 = {u6} and Uαn
= U . In particular,

we deduce that n = |U | ≤ |V ′|. Symmetrically, we obtain some k ∈ N and a sequence of
elements β1 := u1, β2, . . . , βk := u6 of U ′ such that V ′

βi
⊊ V ′

βi+1
and G |= ¬E(βi, βi+1) for all

i ∈ [k − 1]. Hence, Vβi ⊊ Vβi+1 and H |= ¬E(βi, βi+1) for all i ∈ [k − 1]. Once again, since
H satisfies ξ2, ξ2∗ , and ξ3 we obtain that Vβ1 = {v1}, Vβn

= V , and |Vβi+1 | = |Vβi
| + 1. It

thus follows that k = |V | ≤ |U ′|. Putting the above together we have that

|U | ≤ |V ′| ≤ |V | ≤ |U ′| ≤ |U |.

Consequently, n = k while V = V ′ = {α1, . . . , αn} and U = U ′ = {β1, . . . , βn} as
needed. ◀

We now define the intended minimal induced models of our formula ϕ.

▶ Definition 4. For n ≥ 7 we define the graph Hn with vertex and edge set

V (Hn) := {v1, . . . , vn} ∪ {u1, . . . , un} ∪ {a} ∪ {b};

E(Hn) := {(vi, uj) : i ≤ j} ∪ {(vi, vj) : j = i+ 1} ∪ {(ui, uj) : j ̸= i+ 1}
∪ {(a, ui) : i ≥ 2} ∪ {(b, ui) : i ≥ n− 1} ∪ {(a, v2), (b, vn−1)},

respectively. We also write In for the subgraph of Hn induced on the set

V (In) := {v1, v2, v3, vn−2, vn−1, vn, u1, u2, u3, un−2, un−1, un, a, b} ⊆ V (Hn).

I. Eleftheriadis 7:9

Figure 2 The graph H7.

We aim to establish that the graphs Hn are all minimal induced models of ϕ. Towards this,
we first argue that the only embedding of In in Hn is the inclusion map. While this lemma
is not conceptually difficult, it requires analysing and ruling out different cases corresponding
to potential images of the gadget. Its proof may be found in Section A.

▶ Lemma 5. Let n ≥ 7 and f : In → Hn be an embedding. Then f is the inclusion map.

▶ Proposition 6. For each n ≥ 7 the graphs Hn are minimal induced models of ϕ.

Proof. We fix some n ≥ 7. We first argue that Hn |= ϕ for every n ≥ 7. Indeed, we clearly
have that

Hn |= I(v1, v2, v3, vn−2, vn−1, vn, u1, u2, u3, un−2, un−1, un, a, b).

Moreover, the set U := {u1, . . . , un} ⊆ V (Hn) is precisely the set of neighbours of v1 which
are not v2, while the set V := {v1, . . . , vn} ⊆ V (Hn) is precisely the set of non-neighbours
of v1 which are not a or b. Evidently, we then have that for every vertex vi ∈ V \ {v1} the
vertex vi−1 ∈ V is adjacent to vi and its neighbourhood over U strictly contains that of
vi. Consequently Hn |= ϕ2(v̄, ū, a, b). Likewise, for every vertex ui ∈ U \ {un} the vertex
ui+1 ∈ U is non-adjacent to ui and its neighbourhood over V strictly contains that of ui. It
follows that Hn |= ψ2(v̄, ū, a, b), and so Hn |= ϕ as required.

Now, suppose that H is a proper induced subgraph of Hn, and assume for a contradiction
that H |= ϕ, i.e. there are vertices x1, . . . , x6, y1, . . . , y6, α, β of H

H |= (I(x̄, ȳ, α, β) ∧ [ϕ1(x̄, ȳ, α, β) ∧ ψ1(x̄, ȳ, α, β) → ϕ2(x̄, ȳ, α, β) ∧ ψ2(x̄, ȳ, α, β)]).

Since these vertices induce a copy of In, it follows by Lemma 5 that

(x1, x2, x3, x4, x5, x6, y1, y2, y3, y4, y5, y6, α, β) =
(v1, v2, v3, vn−2, vn−1, vn, u1, u2, u3, un−2, un−1, un, a, b),

and so In ≤ H ⪇ Hn. Moreover, letting U ′ := U ∩ V (H) and V ′ := V ∩ V (H) we see that
the elements in V ′ have pairwise comparable neighbourhoods over U ′, and the elements
of U ′ have pairwise comparable neighbourhoods over V ′;
the only neighbour of vn in U ′ is un, and the only neighbour of u1 in V ′ is v1;

CSL 2025

7:10 Extension Preservation on Dense Graph Classes

un is adjacent to every element of V ;
if x, y ∈ V ′ are adjacent and the U ′-neighbours of y are strictly more than the U ′-
neighbours of x then there is some i ∈ [n− 1] such that y = vi and x = vi+1, and there is
a unique vertex in U ′ that is adjacent to y and not adjacent to x, namely ui;
if x, y ∈ U ′ are adjacent and the V ′-neighbours of y are strictly more than the V ′-
neighbours of x then there is some i ∈ [n− 1] such that y = vi+1 and y = vi, and there is
a unique vertex in V ′ that is adjacent to y and not adjacent to x, namely vi.

It follows that H |= (ϕ1(v̄, ū, a, b) ∧ ψ1(v̄, ū, a, b)). Since H |= ϕ this implies that H |=
(ϕ2(v̄, ū, a, b) ∧ ψ2(v̄, ū, a, b)). However, since V (H) ⊊ V (Hn), there is some i ∈ [4, n − 3]
such that vi /∈ V (H) or ui /∈ V (H). Assume the former, and let i ∈ [4, n− 3] be maximal
such that vi /∈ V (H). It follows that there is no vertex in x ∈ V ′ that is adjacent to
vi+1 and its neighbourhood over U ′ is strictly greater than that of vi+1, contradicting that
H |= ψ1(v̄, ū, a, b). By a symmetric argument we obtain a contradiction if ui /∈ V (H), and
thus follows that H ̸|= ϕ. ◀

▶ Theorem 7. Extension preservation fails on any hereditary graph class containing the
graphs Hn for arbitrarily large n ∈ N.

Proof. Let C be a class of graphs containing the graphs Hn for arbitrarily large n. Since the
formula ϕ is preserved under extensions over the class of all finite graphs, it is in particular
preserved under extensions over C. Since C is hereditary and ϕ has infinitely many minimal
induced models in C, namely the graphs Hn, it follows by Lemma 2 that ϕ is not equivalent
to an existential formula over C. ◀

Finally, we observe that the graphs Hn have bounded cliquewidth, which is easily seen to
be at most 4. For this, we crucially use the fact that successive pairs are adjacent on one side
and non-adjacent on the other. One could simplify the construction, e.g. by using adjacency
to denote succession on both sides, but this would slightly increase the cliquewidth.

▶ Observation 8. The graphs Hn have (linear) cliquewidth 4.

▶ Corollary 9. Extension preservation fails on CWk for every k ≥ 4.

As witnessed by the above, orders appear to provide strong counterexamples to extension
preservation. In the next section we explore preservation in certain monadically stable classes,
where no such issues are expected to arise.

4 Extension preservation on strongly flip-flat classes

Local information on dense graphs can be as complicated as global information, as for
instance is the case with cliques. This fact seemingly renders locality useless in the context
of dense graph classes. Nonetheless, our understanding of tame classes indicates that it is
still possible to recover meaningful local information, after possibly “sparsifying” our graphs
in a controlled manner. The flip operation, which is central to the emerging theory of dense
graph classes, plays precisely this role. We introduce it in the following definition.

▶ Definition 10. Let G be a graph and k ∈ N. A k-partition P of G is a partition of the
vertex set into k labelled parts P1, . . . , Pk, i.e. V (G) =

⋃
i∈[k] Pi and Pi ∩ Pj = ∅ for i ̸= j.

By a k-flip F we denote a symmetric subset of [k]2, i.e. a set of tuples F = {(i, j) : i, j ∈ [k]}
such that (i, j) ∈ F ⇐⇒ (j, i) ∈ F . Given a k-partition P of G and a k-flip F we define
the graph G△FP on the same vertex set as G and on the edge set

E(G△FP) := E(G)△{(u, v) : u ̸= v, u ∈ Pi, v ∈ Pj , and (i, j) ∈ F}.

where △ denotes the symmetric difference operation.

I. Eleftheriadis 7:11

We note that the notation for flips existing in the literature uses the notation ⊕ rather
than △ (e.g. in [17]); here we have opted for the latter as the symbol ⊕ was used in [3]
and [14] to denote the amalgamation operation. Moreover, instead of partitioning our graph,
we may define k-flips by applying a sequence of at most k atomic operations, each one
switching the edges and non-edges between two arbitrary subsets A,B of our vertex set.
Evidently, these definitions are equivalent up to blowing up the number of flips by a value
that only depends on k, while we have opted for the partition definition here to simplify our
construction in Definition 14 below.

▶ Definition 11. We say that a hereditary class of graphs C is flip-flat1 if for every r ∈ N
there exist kr ∈ N and a function fr : N → N satisfying that for every m ∈ N and every
G ∈ C of size at least fr(m) there is a kr-partition P of G, a kr-flip F ⊆ [kr]2, and a set
A ⊆ V (G) of size at least m which is r-independent in G△FP . If in the above kr := k ∈ N
does not depend on r, then we say that C is strongly flip-flat.

It was established in [17, Theorem 1.3] that a hereditary class of graphs is flip-flat if, and
only if, it is monadically stable. In particular, every transduction of a quasi-wide class is
flip-flat. The qualitative difference between strong flip-flatness and flip-flatness is precisely
the same as that of almost-wideness and quasi-wideness. We make this idea precise in
the following straightforward proposition, which establishes that every transduction of a
uniformly almost-wide class is strongly flip-flat. For this, we use the following lemma from
[29, Lemma H.3], which follows easily from Gaifman’s locality theorem.

▶ Lemma 12 (Flip transfer lemma, [29]). There exists a (computable) function Ξ : N3 → N
satisfying the following. Fix k, c, q ≥ 1 and Tδ,ϕ a transduction involving c colours and
formulas of quantifier rank at most q. Let G,H be graphs such that H ∈ Tδ,ϕ(G). Then
for every k-partition P of G and k-flip F there exists a Ξ(k, c, q)-partition PH of H and a
Ξ(k, c, q)-flip FH such that for all u, v ∈ V (H):

distG△F P (u, v) ≤ 2q · distH△FH
PH

(u, v).

▶ Proposition 13. Every transduction of a uniformly almost-wide graph class is strongly
flip-flat.

Proof. Let C be a uniformly almost-wide graph class and fix kC ∈ N witnessing this, so that
for every r,m ∈ N there is fr(m) ∈ N satisfying that every G of size at least fr(m) in the
hereditary closure of C contains an r-independent set of size m after removing at most kC
elements. Let D a class such that there is a transduction Tδ,ϕ satisfying D ⊆ Tδ,ϕ(C). Let
c ∈ N be the number of unary predicates used by T , and q be the maximum of the quantifier
ranks of δ and ϕ. We argue that D is strongly flip-flat with k := Ξ(2kC , c, q).

Indeed, fix r,m ∈ N and a graph H ∈ D of size at least f2q·r(m). It follows that there
exists some G ∈ C such that H ∈ Tδ,ϕ(G), and since f2q·r(m) ≤ |V (H)|, we obtain by uniform
almost-wideness that G[V (H)] contains a (2q · r)-independent set of size m after removing
a set of size at most kC . In particular, there is a 2kC -partition P of G and a 2kC -flip F

such that (G△FP)[V (H)] contains an (2q · r)-independent subset of size m; call this set A.
Consequently, Lemma 12 implies that there is a k-partition P of H and a k-flip F such that

1 The original definition of flip-flatness in [17] is the uniform variant of the definition we have provided
here. A simple analysis of the obstructions to monadic stability from [16], reveals that these definitions
are equivalent for hereditary classes of graphs.

CSL 2025

7:12 Extension Preservation on Dense Graph Classes

for all a, b ∈ A ⊆ V (H)

r = 2q · r
2q

≤ distG△F P (a, b)
2q

≤ distH△FH
PH

(a, b),

i.e. A is an r-independent set of size m in H△FH
PH . It follows that D is strongly flip-flat. ◀

In particular, transductions of bounded degree classes, classes of bounded shrub-depth [20],
and transductions of proper minor-closed classes [4, Theorem 5.3] are all strongly flip-flat.
However, obtaining preservation via locality and wideness in the style of [3, 4, 13, 14]
additionally requires subtle closure assumptions. The proofs of the above articles are
essentially structured into two parts. The first part argues via locality that for every formula
ϕ preserved by extensions (or homomorphisms in the case of [4, 13, 14]) over a class C closed
under substructures and disjoint unions there exist r,m ∈ N such that no minimal induced
model of ϕ in C can contain an r-independent set of size m. In the second part, wideness
is used to bound the size of minimal models of ϕ, as large enough models would have to
contain r-independent sets of size m, under the proviso that a bounded number of bottleneck
points have been removed. To account for the removal of these points, we have to work
with an adjusted formula ϕ′ in an expanded vocabulary, together with suitably adjusted
structures ([2] called these plebian companions) on which we apply the argument of the first
part. Working with ϕ′, however, has translated the requirement of closure under disjoint
unions to closure under a more involved operation which depends on the choice of bottlenecks.
Consequently, preservation can fail on natural tame classes which do not satisfy this closure
condition, e.g. for planar graphs [14, Theorem 5.8].

In the context of vertex deletions, the corresponding operation was amalgamation over
bottlenecks [14, Theorem 4.2]. Here, we must formulate a different operation to account for
the fact that flips are required to witness wideness. This is precisely the construction below.

▶ Definition 14. Given k ∈ N, a graph G, a k-partition P of G, and a k-flip F ⊆ [k2] we
write G ⋆(F,P) G for the graph whose vertex set V (G ⋆(F,P) G) := V (G+G) is the same as
the disjoint union of two copies of G, and whose edge set is

E(G ⋆(F,P) G) := E(G + G) ∪ {(u, v) : u, v are in distinct copies of G, u ∈ Pi, v ∈ Pj , (i, j) ∈ F }

We call this the flip-sum of G over (F, P).

Figure 3 The graph H ⋆(F,P) H, where H is the half-graph of order 4, P is the partition into red
(top) and blue (bottom) vertices and F = {(1, 2), (2, 1)}.

We now introduce the relevant translation for the formulas.

▶ Definition 15. Given a k-flip F ⊆ [k]2, consider the formula

EF (x, y) := E(x, y) △(i,j)∈F (Pi(x) ∧ Pj(y)).

over the signature τk
E := τE ∪{P1, . . . , Pk}, where △(i,j)∈F denotes the consecutive application

of the XOR operator over all tuples (i, j) ∈ F . Given a τE-formula ϕ, we define the τk
E-formula

I. Eleftheriadis 7:13

ϕk obtained from ϕ by replacing every atom E(x, y) with the formula EF (x, y). Moreover, for
every graph G and k-partition P we write G(F,P) for the {P1, . . . , Pk}-expansion of G△FP

where each predicate is interpreted by the respective part of P . It is then clear from the
definitions and the fact that the flip operation is involutive that

G |= ϕ ⇐⇒ G(F,P) |= ϕk.

Our goal in Theorem 18 is to start with a strongly flip-flat class and a formula ϕ and apply
the argument of [3, Theorem 4.3] to the formula ϕk and the structures G(F,P). However,
as previously explained, ϕk is not necessarily preserved under embeddings over C. We can
nonetheless use the following easy lemma in case that the class is closed under the desired
flip-sums, which will be sufficient for our purposes.

▶ Lemma 16. Let C be a hereditary class of graphs and ϕ a formula preserved under
extensions over C. Fix a graph G ∈ C, a k-partition P of G, and a k-flip F ⊆ [k]2. If
G ⋆(F,P) G ∈ C then

G(F,P) |= ϕk =⇒ G(F,P) +G(F,P)[S] |= ϕk

for any S ⊆ V (G).

Proof. Fix C, ϕ,G, P, F as in the statement above, and let S ⊆ V (G). Write G∗ for the
subgraph of G ⋆(F,P) G induced on the vertex set of G + G[S]; it follows that G∗ ∈ C by
hereditariness. As G(F,P) |= ϕk we obtain that G |= ϕ, and since G∗ contains an induced
copy of G and ϕ is preserved by extensions over C it follows that G∗ |= ϕ. Let P ∗ be the
natural k-partition of G∗ inherited from G, i.e. for each i ∈ [k] the i-th part P ∗

i of P ∗

contains the union of the i-th parts of G and G[S]. It follows from the definitions that the
structure G∗

(F,P ∗) is isomorphic to G(F,P) +G(F,P)[S]. Finally, since G∗ |= ϕ we obtain that
G∗

(F,P ∗) |= ϕk and so G(F,P) +G(F,P)[S] |= ϕk as claimed. ◀

We shall also make use of the following observation, which simply says that the induced
substructures of G(F,P) are the same as expansions of flips of induced substructures of G.

▶ Observation 17. Let G be a graph, P a k-partition of G, and F a k-flip. Then for every
S ⊆ V (G) the structure G(F,P)[S] is equal to G[S](F,PS), where PS is the k-partition of G[S]
obtained by restricting each part of P on S.

We are now ready to state the main theorem of this section.

▶ Theorem 18. Fix a hereditary class of graphs C. Suppose that there is some k ∈ N such
that for all r ∈ N there is a function fr : N → N satisfying that for every m ∈ N and every
G ∈ C of size at least f(m) there is a k-partition P of V (G), some k-flip F , and A ⊆ V (G)
such that
1. |A| ≥ m;
2. A is r-independent in G△FP ;
3. G ⋆(F,P) G ∈ C.

Then extension preservation holds over C.

The proof of Theorem 18 is an adaptation of the proof of [3, Theorem 4.3], which
established that extension preservation holds over any class closed under weak substructures
and disjoint unions which is wide, i.e. for every r ∈ N there exists fr : N → N such that for
every m ∈ N every structure with at least fr(m)-many elements contains an r-independent

CSL 2025

7:14 Extension Preservation on Dense Graph Classes

set of size m. Here, we replace wideness by strong flip-flatness by working with the formula
ϕk of Definition 15. Moreover, as previously explained, addability is replaced by assumption
3 above. Preservation is then ensured by Lemma 22. Finally, going from closure under weak
substructures to closure under induced substructures follows by analysing [3, Theorem 4.3].
The detailed proof can be found in Section B.

▶ Example 19. For d ∈ N, write Dd be the class of all graphs G such that the maximum
degree of G is at most d, or the maximum degree of G, i.e. the complement graph of G, is
at most d. Let fr(m) = (m − 1)(d + 1)r + 1 and consider a graph G ∈ Dd of size at least
fr(m). If G has maximum degree d, then G must contain an r-independent set of size m.
Consequently, letting P = {V (G)} and F = ∅, we see that G ⋆(F,P) G is simply the disjoint
union of two copies of G, which still has maximum degree d and is therefore in Dd. On the
other hand if G has maximum degree d, then for P = {V (G)} and F = {(1, 1)}, we see that
Ḡ = G△FP has an r-independent set of size m. Since G ⋆(F,P) G is the complement of the
disjoint union of two copies of G and so G ⋆(F,P) G has maximum degree d, it follows that
G ⋆(F,P) G ∈ Dd. Consequently, extension preservation holds over Dd by Theorem 18.

As mentioned above, Lemma 2 implies that any well-quasi-ordered class has the extension
preservation property. In particular, this applies to classes of bounded shrubdepth [20,
Corollary 3.9]. Still, in the following example we indirectly show that the class of all graphs of
SC-depth at most k has extension preservation by showing that it satisfies the requirements of
Theorem 18, as an illustration that, although closure under flip-sums is a technical condition,
it can be present in interesting tame dense classes.

▶ Definition 20 ([20], Definition 3.5). We inductively define the class SC(k) as:
SC(0) = {K1};
If G1, . . . , Gn ∈ SC(k), H := G1 + · · · + Gn and X ⊆ V (H), then H

X := H△FP ∈
SC(k + 1) for P1 := X,P2 := V (H) \X and F = {(1, 1)}, i.e. HX is the graph obtained
from H by flipping the edges within X.

▶ Example 21. Fix k ∈ N and let G ∈ SC(k). Consider an SC-decomposition tree of G, i.e.
a labelled tree T of height k+ 1 whose leaves are labelled by the vertices of G, every non-leaf
node is labelled by the graph (G1 + . . . Gn)

X
where Gi are the labels of its children, X is

a subset of
⋃

i∈[n] V (Gi), and the root ρ is labelled by G. Let f(m) = mk+1, and suppose
that |G| > f(m). Since T has height k + 1 and its leaves correspond to the vertices of G,
there must exist some vertex t of T with at least m children. Let t1 := ρ, t2, . . . , tℓ := t

be the unique path from the root of T to t, and for each i ∈ [ℓ] let Xi ⊆ V (G) be the set
coming from the label of ti. Letting P the partition of V (G) into 2ℓ parts depending on the
membership of a vertex within each of X1, . . . , Xℓ and F ⊆ [2ℓ]2 be the flip that corresponds
to complementing each of X1, . . . , Xℓ, it follows that G△FP contains at least m distinct
connected components. Let T ′ be the tree obtained from T by the following operation. We
first create a copy of each subtree of T rooted at a child of tℓ and connect them to tℓ. The
labels are naturally carried from each original subtree to the copy. If the label of tℓ in T
was (G1 + · · · +Gm)

X
, then its label in T ′ is (G1 +G′

1 + · · · +Gm +G′
m)

X∪X′

where each
G′

i corresponds to the copy of Gi, and X ′ corresponds to the set of copies of the vertices
in X. From there, we perform the same operation for i = ℓ − 1, . . . , 1, this time copying
only the children of ti that are not ti+1. This completes the construction of T ′. It is easy
to then see than the root of T ′ corresponds to the graph G ⋆(F,P) G, thus witnessing that
G ⋆(F,P) G ∈ SC(k). It follows that the class SC(k) satisfies the requirements of Theorem 18,
and thus extension preservation holds over this class.

I. Eleftheriadis 7:15

5 Conclusion

We conclude with some questions and remarks. Firstly, it would be of independent interest
to provide a characterisation of strongly flip-flat classes, akin to the characterisation of
almost-wide classes via shallow minors given in [24, Theorem 3.21]. This could either be a
characterisation via excluded induced subgraphs occurring in flips, in analogy to the one of
monadic stability provided in [15], or in terms of shallow vertex minors, in analogy to the
one in [8].

Moreover, it is unclear whether one can produce a formula preserved by extensions with
minimal induced models of cliquewidth 3. The issue with interweaving definable orders is that
one simultaneously requires for two sets to semi-induce a half-graph while (non-)adjacency is
used to mark successors; this requires to keep track of at least four colours classes in a clique
decomposition. We therefore leave the question of whether extension preservation holds over
graphs of cliquewidth 3 open. It is also easily seen that the structures Hn have twin-width 2
(see [6] for definitions). The status of extension preservation on the class of all graphs of
twin-width 1 is also unknown.

The role of orders was crucial in our construction in Section 3. In the context of undirected
graphs, orders are instantiated through half-graphs. It natural to then inquire if, for every
fixed k, ℓ ∈ N, the class of all graphs of cliquewidth at most k which omit semi-induced
half-graphs of size larger than ℓ has the extension preservation property. Every such class
is known to be equal to a transduction of a class of bounded treewidth by [26], and so by
Proposition 13, it is strongly flip-flat. It would therefore be interesting to provide a direct
combinatorial argument witnessing this, so as to be able to verify if such classes satisfy the
closure requirements of Theorem 18.

References
1 Hans Adler and Isolde Adler. Interpreting nowhere dense graph classes as a classical notion

of model theory. European Journal of Combinatorics, 36:322–330, 2014. doi:10.1016/j.ejc.
2013.06.048.

2 Miklos Ajtai and Yuri Gurevich. Datalog vs first-order logic. Journal of Computer and System
Sciences, 49(3):562–588, 1994. 30th IEEE Conference on Foundations of Computer Science.
doi:10.1016/S0022-0000(05)80071-6.

3 Albert Atserias, Anuj Dawar, and Martin Grohe. Preservation under extensions on well-
behaved finite structures. SIAM Journal on Computing, 38(4):1364–1381, 2008. doi:10.1137/
060658709.

4 Albert Atserias, Anuj Dawar, and Phokion G Kolaitis. On preservation under homomorphisms
and unions of conjunctive queries. Journal of the ACM (JACM), 53(2):208–237, 2006. doi:
10.1145/1131342.1131344.

5 John T Baldwin and Saharon Shelah. Second-order quantifiers and the complexity of theories.
Notre Dame Journal of Formal Logic, 26(3):229–303, 1985. doi:10.1305/NDJFL/1093870870.

6 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable fo model checking. ACM Journal of the ACM (JACM), 69(1):1–46, 2021. doi:
10.1145/3486655.

7 Samuel Braunfeld, Anuj Dawar, Ioannis Eleftheriadis, and Aris Papadopoulos. Monadic nip in
monotone classes of relational structures. In 50th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2023). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023.

8 Hector Buffière, Eun Jung Kim, and Patrice Ossona de Mendez. Shallow vertex minors,
stability, and dependence. arXiv preprint arXiv:2405.00408, 2024.

9 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1):77–114, 2000. doi:10.1016/S0166-218X(99)00184-5.

CSL 2025

https://doi.org/10.1016/j.ejc.2013.06.048
https://doi.org/10.1016/j.ejc.2013.06.048
https://doi.org/10.1016/S0022-0000(05)80071-6
https://doi.org/10.1137/060658709
https://doi.org/10.1137/060658709
https://doi.org/10.1145/1131342.1131344
https://doi.org/10.1145/1131342.1131344
https://doi.org/10.1305/NDJFL/1093870870
https://doi.org/10.1145/3486655
https://doi.org/10.1145/3486655
https://doi.org/10.1016/S0166-218X(99)00184-5

7:16 Extension Preservation on Dense Graph Classes

10 Konrad K. Dabrowski, Matthew Johnson, and Daniël Paulusma. Clique-width for hereditary
graph classes, pages 1–56. London Mathematical Society Lecture Note Series. Cambridge
University Press, 2019. doi:10.1017/9781108649094.002.

11 Peter Damaschke. Induced subgraphs and well-quasi-ordering. Journal of Graph Theory,
14(4):427–435, 1990. doi:10.1002/JGT.3190140406.

12 Anuj Dawar. Finite model theory on tame classes of structures. In International Symposium
on Mathematical Foundations of Computer Science, pages 2–12. Springer, 2007. doi:10.1007/
978-3-540-74456-6_2.

13 Anuj Dawar. Homomorphism preservation on quasi-wide classes. Journal of Computer and
System Sciences, 76(5):324–332, 2010. doi:10.1016/J.JCSS.2009.10.005.

14 Anuj Dawar and Ioannis Eleftheriadis. Preservation theorems on sparse classes revisited. arXiv
preprint arXiv:2405.10887, 2024. doi:10.48550/arXiv.2405.10887.

15 Jan Dreier, Ioannis Eleftheriadis, Nikolas Mählmann, Rose McCarty, Michał Pilipczuk, and
Szymon Toruńczyk. First-order model checking on monadically stable graph classes. arXiv
preprint arXiv:2311.18740, 2023.

16 Jan Dreier, Nikolas Mählmann, and Sebastian Siebertz. First-order model checking on
structurally sparse graph classes. In STOC 2023, pages 567–580. ACM, 2023. doi:10.1145/
3564246.3585186.

17 Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, and Szymon Toruńczyk. Indiscernibles and
Flatness in Monadically Stable and Monadically NIP Classes. In Kousha Etessami, Uriel Feige,
and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and
Programming (ICALP 2023), volume 261 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 125:1–125:18, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. doi:10.4230/LIPIcs.ICALP.2023.125.

18 Jan Dreier, Nikolas Mählmann, and Szymon Toruńczyk. Flip-breakability: A combinatorial
dichotomy for monadically dependent graph classes. In Proceedings of the 56th Annual ACM
Symposium on Theory of Computing, pages 1550–1560, 2024. doi:10.1145/3618260.3649739.

19 H-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2nd edition, 1999.
20 Robert Ganian, Petr Hliněnỳ, Jaroslav Nešetřil, Jan Obdržálek, and Patrice Ossona De Mendez.

Shrub-depth: Capturing height of dense graphs. Logical Methods in Computer Science, 15,
2019.

21 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. J. ACM, 64(3), June 2017. doi:10.1145/3051095.

22 Yuri Gurevich. Toward logic tailored for computational complexity. Computation and Proof
Theory, pages 175–216, 1984.

23 Ulrich Knauer and Kolja Knauer. Algebraic Graph Theory: Morphisms, Monoids and Matrices.
De Gruyter, Berlin, Boston, 2019. doi:doi:10.1515/9783110617368.

24 Jaroslav Nešetřil and Patrice Ossona De Mendez. First order properties on nowhere dense
structures. The Journal of Symbolic Logic, 75(3):868–887, 2010. URL: http://www.jstor.
org/stable/20799288, doi:10.2178/JSL/1278682204.

25 Jaroslav Nešetřil and Patrice Ossona De Mendez. Sparsity: graphs, structures, and algorithms,
volume 28. Springer Science & Business Media, 2012.

26 Jaroslav Nešetřil, Patrice Ossona de Mendez, Michał Pilipczuk, Roman Rabinovich, and
Sebastian Siebertz. Rankwidth meets stability. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 2014–2033. SIAM, 2021.

27 Benjamin Rossman. Homomorphism preservation theorems. Journal of the ACM (JACM),
55(3):1–53, 2008. doi:10.1145/1379759.1379763.

28 W. W. Tait. A counterexample to a conjecture of Scott and Suppes. Journal of Symbolic
Logic, 24(1):15–16, 1959. doi:10.2307/2964569.

29 Szymon Toruńczyk. Flip-width: Cops and robber on dense graphs. In 2023 IEEE 64th Annual
Symposium on Foundations of Computer Science (FOCS), pages 663–700. IEEE, 2023.

https://doi.org/10.1017/9781108649094.002
https://doi.org/10.1002/JGT.3190140406
https://doi.org/10.1007/978-3-540-74456-6_2
https://doi.org/10.1007/978-3-540-74456-6_2
https://doi.org/10.1016/J.JCSS.2009.10.005
https://doi.org/10.48550/arXiv.2405.10887
https://doi.org/10.1145/3564246.3585186
https://doi.org/10.1145/3564246.3585186
https://doi.org/10.4230/LIPIcs.ICALP.2023.125
https://doi.org/10.1145/3618260.3649739
https://doi.org/10.1145/3051095
https://doi.org/doi:10.1515/9783110617368
http://www.jstor.org/stable/20799288
http://www.jstor.org/stable/20799288
https://doi.org/10.2178/JSL/1278682204
https://doi.org/10.1145/1379759.1379763
https://doi.org/10.2307/2964569

I. Eleftheriadis 7:17

A The proof of Lemma 5

Here we provide a proof of Lemma 5, which we now restate.

▶ Lemma 5. Let n ≥ 7 and f : In → Hn be an embedding. Then f is the inclusion map.

This is achieved in two steps. First, we consider the subgraph I ′ of Hn induced on
{v1, v2, v3, u1, u2, u3, a}. Evidently, the map gn : I ′ → Hn sending

(v1, v2, v3, u1, u2, u3, a) 7→ (vn−2, vn−1, vn, un−2, un−1, un, b)

is an embedding. We argue that this is the only non-trivial embedding of I ′ in Hn.

▶ Lemma 22. Let n ≥ 7 and f : I ′ → Hn be an embedding. Then f is either the inclusion
map or equal to gn.

Proof. As before, we write V := {v1, . . . , vn} ⊆ V (Hn) and U := {u1, . . . , un} ⊆ V (Hn).
We shall consider the possible images of the vertex v2. Suppose that f(v2) = ui for some
i ∈ [n]. Clearly, since the vertices v1, v3, a are pairwise non-adjacent, we cannot have
f [{v1, v3, a}] ⊆ U . We hence distinguish cases.
1. Suppose that v1, v3, a are all mapped to vertices in V under f . Since these are non-

adjacent, we must have f [{v1, v3, a}] = {vm, vr, vℓ} for some m+ 2 < r+ 1 < ℓ ≤ i. Now,
consider f(u1); this must be some vertex in Hn which is adjacent to only one of vm, vr, vℓ

and not adjacent to ui. This necessarily implies that f(u1) = vi+1, f(v1) = vℓ while ℓ = i.
Consider f(u2); this must be a vertex non-adjacent to vi+1, and adjacent to ui, vi and
exactly one of {vm, vr}. From this we deduce that f(u2) = vi−1, f(a) = vr, and r = i− 2.
Finally, the vertex f(u3) must be adjacent to vm, vi−2, vi, ui, vi+1 and non-adjacent to
vi−1; obviously no such vertex exists in Hn, and we thus obtain a contradiction.

2. Suppose that two of v1, v3, a are mapped to vertices in V and one is mapped to a
vertex in U . In this case we must have that f [{v1, v3, a}] = {um, vr, vℓ} for some
m+ 1 < r + 1 < ℓ ≤ i. Consider f(u1); this must be non-adjacent to vi and adjacent to
exactly one of um, vr, vℓ. This further results in two distinct cases. If f(u1) = vi+1, then
we have f(v1) = vℓ and ℓ = i, which leads to a contradiction with an analogous argument
to the above. If f(u1) = ui−1, then necessarily f(v1) = vr while m = i− 2, r = i− 1, ℓ = i.
Considering f(u2), we now see that this vertex must be non-adjacent to ui−1 and adjacent
to ui, vi−1 and exactly one of {ui−2, vi}; evidently there is no such vertex in Hn and we
thus obtain a contradiction.

3. Suppose that exactly one of v1, v3, a is mapped to a vertex in V and two are mapped to
vertices of U . This forces that f [{v1, v3, a}] = {um−1, um, vℓ} for some m < ℓ ≤ i and
m + 1 < i. Again, consider f(u1); this is non-adjacent to ui and adjacent to exactly
one of {um, um+1, vℓ}. Once again this leads to two options. If f(u1) = vi+1, then we
have f(v1) = vℓ and ℓ = i, which leads to a contradiction as in Case 1. On the other
hand, if f(u1) = ui−1 then we necessarily obtain that f(v1) = um−1 while m = i − 2
and ℓ = i. The vertex f(u2) ∈ Hn must then be non-adjacent to ui−1 and adjacent to
ui−1, ui and exactly one of ui−2, vi; since there is no such vertex in Hn we once again
obtain a contradiction.

4. Suppose that one of v1, v3, a is mapped to a or b under f . Since u3 is adjacent to all of
v1, v2, v3, a it must necessarily be that f(u3) = um for some m > i+ 1. The vertex f(u2)
must then be non-adjacent to um, and adjacent to ui and exactly two of f(v1), f(v3), f(a).
As no such vertex exists in this case, we obtain a contradiction.

CSL 2025

7:18 Extension Preservation on Dense Graph Classes

Since the above cases lead to a contradiction, we see that f(v2) /∈ U . Since no vi for
i ∈ [n] \ {2, n− 1} has three neighbours which induce an independent set, this necessarily
implies that f(v2) is equal to v2 or vn−1. Assume that f(v2) = v2. Again, since v1, v3, a

share no edges, we must necessarily have f [{v1, v3, a}] = {v1, v3, a}. Since u3 is adjacent to
all of v1, v2, v3, a we see that f(u3) = um for some m ≥ 3. As u2 is non-adjacent to u3 and
adjacent to v2 to exactly two of v1, v3, a, we see that f(u3) = u3 and f(u2) = u2, which in
turn ensure that f is the inclusion map. By similar reasoning, we deduce that if f(v2) is
equal to vn−1 then f = gn as required. ◀

Proof of Lemma 5. Let f : In → Hn be an embedding. It follows by Lemma 22 that either
f is the inclusion map, or it is the map given by swapping the two induced copies of I ′, i.e.
the map

(v1, v2, v3, u1, u2, u3, a) 7→ (vn−2, vn−1, vn, un−2, un−1, un, b);

(vn−2, vn−1, vn, un−2, un−1, un, b) 7→ (v1, v2, v3, u1, u2, u3, a).

Since un−2 is adjacent to v2, the latter case would imply that u1 is adjacent to vn−1, which
is a contradiction. Hence, f is the inclusion map as claimed. ◀

B The proof of Theorem 18

Before proceeding with Theorem 18 we introduce some relevant definitions. Fix a relational
signature τ and q, d ∈ N, and let A be a τ -structure. By the (q, d)-type of some a ∈ A we
shall mean the set containing all the MSO formulas θ(x) of quantifier rank2 at most q, up
to logical equivalence, such that NA

d (a) |= θ(a). When we speak of a (q, d)-type t over τ ,
without reference to a particular element in a structure, we shall mean a (q, d)-type of some
element in some τ -structure. We say that an element a ∈ A realises a (q, d)-type t whenever
NA

d (a) |= θ(a) for all θ(x) ∈ t. Evidently, the number of (q, d)-types is bounded by some
p ∈ N depending only on τ and q. Given a τ -structure A, a set C ⊆ A, and a (q, d)-type t,
we say that t is covered by C in A if all a ∈ A realising t satisfy NA

d (a) ⊆ C. For n ∈ N we
also say that t is n-free over C in A if there is a 2d-independent set S ⊆ A of size n such
that each a ∈ S realises t and NA

d (a) ∩ C = ∅.

▶ Lemma 23. Fix a relational signature τ and q, d ∈ N. Let p be the number of (q, d)-types
over τ . Then for every τ -structure A and n ∈ N, there exists a radius e ≤ 2dp and a set
D ⊆ A of at most (n− 1)p points such that each (q, d)-type is either covered by NA

e (D) or is
n-free over over NA

e (D).

Proof. Fix an enumeration t1, . . . , tp of all (q, d)-types over τ . We shall define D and e

inductively starting at D0 = ∅ and e0 = 0. Assuming Di and ei have been defined, we let
C = NA

ei
(Di). If all types are covered by C or are n-free over C then we are done; otherwise,

we let j ∈ [p] be minimal such that tj is neither covered by C nor n-free over C. We then
define a set E ⊆ A inductively, starting with E0 := ∅ and at step ℓ + 1 adding to Eℓ a
realisation a ∈ A \ NA

2d(C ∪ Eℓ) of tj if there exists one; this iteration must stop within
n − 1 steps, as otherwise tj would be n-free over C. In particular, |E| ≤ n − 1 and tj is
covered by NA

ei+2d(Di ∪ E). We subsequently let Di+1 = Di ∪ E and ei+1 = ei + 2d. It
follows that the construction must stop within at most p steps, since at each step we cover a
previously uncovered type, which in addition, remains covered for the rest of the construction.
Consequently, |D| ≤ (n− 1)p and e ≤ 2dp as claimed. ◀

2 Here both first-order and second-order quantifiers contribute to the quantifier rank.

I. Eleftheriadis 7:19

▶ Theorem 18. Fix a hereditary class of graphs C. Suppose that there is some k ∈ N such
that for all r ∈ N there is a function fr : N → N satisfying that for every m ∈ N and every
G ∈ C of size at least f(m) there is a k-partition P of V (G), some k-flip F , and A ⊆ V (G)
such that
1. |A| ≥ m;
2. A is r-independent in G△FP ;
3. G ⋆(F,P) G ∈ C.

Then extension preservation holds over C.

Proof. Fix C as above, and let ϕ be a formula preserved by extensions overs C. We shall
obtain a bound on the size of the minimal induced models of ϕ, by arguing that any large
enough model of ϕ contains a proper induced substructure which also models ϕ. We can
then conclude that ϕ is equivalent to an existential formula over C using Lemma 2.

Letting k ∈ N be as the in the statement of Theorem 18, we consider the formula ϕk from
Definition 15. Using Gaifman’s locality theorem we rewrite ϕk into a boolean combination of
basic local sentences, i.e. we may assume that there is some ℓ ∈ N and τk

E-sentences ψi for
i ∈ [ℓ] such that

ϕk =
∨
i∈ℓ

ψi and ψi =
∧

j∈Ai

χij ∧
∧

j∈Bi

¬χij ,

where each χij is a basic local sentence. We henceforth fix the following constants:
ρ is the maximum over all the locality radii of the χij ;
s is the sum of all widths of the χij ;
γ is the maximum over all the quantifier ranks of the χij ;
q := γ + 3ρ+ 3;
d := 2(ρ+ 1)(ℓ+ 1)s+ 6ρ+ 2;
p is the number of (q, d)-types over the signature τk

E ;
n := (ℓ+ 2)s;
m := (n− 1)q + s+ ℓs+ 1;
r := 4dp+ 2ρ+ 1.

Our goal is to establish that any minimal induced model of ϕ in C must have size less than
fr(m), where f is as in the statement of Theorem 18. So, assume that some G |= ϕ has size
at least fr(m). It follows by assumption that there is a k-partition P and a k-flip F such
that G△FP contains an r-independent set of size m. We henceforth work with the structure
G∗ := G(F,P), i.e. the expansion of G△FP with unary predicates corresponding to the parts
of P . By definition, we have that G∗ |= ϕk.

By Lemma 23 we obtain a radius e ≤ 2dp and a set D ⊆ V (G∗) of at most (n−1)p vertices
such that each (q, d)-type in G∗ is either covered by NG∗

e (D) or is n-free over NG∗

e (D); we
henceforth refer to types of the former kind as rare, and to types of the latter kind as frequent.

We proceed to inductively construct increasing sequences of sets S0 ⊆ S1 ⊆ · · · ⊆ V (G∗),
C0 ⊆ C1 ⊆ · · · ⊆ V (G∗), and I0 ⊆ I1 ⊆ · · · ⊆ I which satisfy the following conditions for
every i:
1. Si ⊆ NG∗

ρ (Ci);
2. |Ci| ≤ is;
3. |Ii| = i;
4. no disjoint extension of G∗[Si] satisfies

∨
j∈Ii

ψj ;
5. NG∗

e (D) and NG∗

d (Ci) are disjoint.

CSL 2025

7:20 Extension Preservation on Dense Graph Classes

Clearly, this construction must terminate within ℓ steps. Indeed, assume for a contradiction
that we have constructed Sℓ, Cℓ, and Iℓ satisfying conditions 1-5 above. If so, then Iℓ = I

while G∗ +G∗[Sℓ] is a disjoint extension of G∗[Sℓ] which satisfies ϕk =
∨

i∈I ψi by Lemma 16,
therefore contradicting condition 4. At the end of the construction we will obtain some
N < ℓ and some SN ⊊ V (G∗) satisfying G∗[SN] |= ϕk. Combining Definition 15 with
Observation 17, this will imply that G[SN] |= ϕ, and hence that G cannot be a minimal
model of ϕ as required.

Initially, we set S0 = C0 = I0 = ∅. Assume that Si, Ci, and Ii have been defined. Write
H∗ := G∗ +G∗[Si] for the disjoint union of G∗ with its substructure induced on Si. By our
closure assumptions on C and Lemma 16 we deduce that H∗ |= ϕk. In particular, there exists
some i′ ∈ I such that H∗ |= ψi′ , while i′ /∈ Ii due to property 4. We let Ii+1 = Ii ∪ {i′} and
henceforth drop the reference to the index i′ as it will remain fixed for the remaining of the
argument, e.g. by writing ψ and χj instead of ψi′ and χi′j respectively.

As H∗ satisfies ψ = (
∧

j∈A χj ∧
∧

j∈B ¬χj), it satisfies the basic local sentences χj with
j ∈ A. For each j ∈ A, we may thus choose a minimal set Wj ⊆ V (H∗) of witnesses for the
outermost existential quantifiers of the basic local sentence χj , and let W :=

⋃
j∈A Wj be

their union. As s is the sum of the widths of all the χ’s it follows that |W | ≤ s. We partition
W into those witnesses that appear in the disjoint copy of G∗, and those that appear in the
disjoint copy of G∗[Si], and write WG and WH for these respective parts.

Now, suppose that some v ∈ WG satisfies NG∗

ρ+1(Ci) ∩ NG∗

ρ (v) ̸= ∅; we argue that we
may replace v with some witness v′ ∈ V (G∗) such that NG∗

ρ+1(Ci) ∩ NG∗

ρ (v′) = ∅. Indeed,
we first choose some u ∈ Ci such that NG∗

ρ+1(u) ∩NG∗

ρ (v) ̸= ∅. Consequently, we have that
NG∗

ρ (v) ⊆ NG∗

3ρ+1(u) ⊆ NG∗

d (u). Property 5 then ensures that the (q, d)-type t (in G∗) of u
is frequent, and so it has n > (ℓ+ 1)s ≥ |W ∪ Ci| realisations whose d-neighbourhoods are
pairwise disjoint and disjoint from NG∗

e (D). We may thus pick a realisation u′ ∈ V (G∗) of t
such that NG∗

ρ+1(W ∪ Ci) ∩ NG∗

3ρ+1(u′) = ∅. Let τ be the (γ, ρ)-type of v, and consider the
formula

θ(x) := ∃y[∀z(dist(y, z) ≤ ρ → dist(x, z) ≤ 3ρ+ 1) ∧
∧
η∈τ

ηNr(y)(y)].

Clearly, the quantifier rank of θ is bounded by 3ρ+ 3 + γ ≤ q, while NG∗

d (u) |= θ(u) with v

serving as the existential witness. Consequently θ(x) is in t, and as u and u′ have the same
(q, d)-type, it follows that NG∗

d (u′) |= θ(u′). It follows that there is v′ ∈ V (G∗) such that
NG∗

ρ (v′) ⊆ NG∗

3ρ+1(u′) ⊆ NG∗

d (u′), while v and v′ have the same (γ, ρ)-type. In particular,
their ρ-neighbourhoods satisfy the same FO-formulas of quantifier rank ≤ γ. Finally, observe
that NG∗

ρ+1(W ∪ Ci) ∩NG∗

3ρ+1(v′) = ∅ and so NG∗

ρ+1(Ci) ∩NG∗

ρ (v′) = ∅; we may thus replace v
by v′ in WG as a witness.

After replacing all such witnesses in G, we can ensure that

|{v ∈ WG : NG∗

ρ+1(Ci) ∩NG∗

ρ (v) ̸= ∅}| = 0 (⋆)

Consider the induced substructure U∗ := G∗[NG∗

e (D) ∪ NG∗

ρ (WG) ∪ Si]. We claim that
U∗ satisfies

∧
j∈A χj . Indeed, notice that Si ⊆ NG∗

ρ (Ci), while NG∗

ρ+1(Ci) is disjoint from
NG∗

e (D) by property 5 and disjoint from NG∗

ρ (WG) by (⋆). It follows that U∗ is the disjoint
union of G∗[NG∗

e (D) ∪ NG∗

ρ (WG)] and G∗[Si]; thus all the witnesses from W and their
ρ-neighbourhoods can be found in U∗, implying that U∗ |= χj for all j ∈ A as these are basic
local sentences.

I. Eleftheriadis 7:21

Now, observe that U∗ is a proper induced substructure of G∗. This is because

|D ∪WG ∪ Ci| ≤ (n− 1)p+ s+ ℓs < m;

NG∗

e (D) ∪NG∗

ρ (WG) ∪ Si ⊆ NG∗

2dp+ρ(D ∪WG ∪ Ci) ⊆ NG∗

⌊r/2⌋(D ∪WG ∪ Ci),

and so, unlike G∗, U∗ does not contain an r-independent set of size m. Consequently, if
U∗ |= ϕk then we set SN := NG∗

e (D) ∪NG∗

ρ (WG) ∪ Si and our construction terminates.
We hereafter assume that U∗ ̸|= ϕk, and proceed with the definition of Si+1 and Ci+1.

Since U∗ |=
∧

j∈A χj it must be that U∗ ̸|=
∧

j∈B ¬χj . We can therefore fix some j ∈ B such
that U∗ |= χj . Suppose that

χj = ∃x1, . . . , ∃xs′ [
∧
a ̸=b

dist(xa, xb) > 2ρ′ ∧
∧
a

ξNρ′ (xa)(xa)]

for some ρ′ ≤ ρ, s′ ≤ s, and a formula ξ of quantifier rank γ′ ≤ γ. Fix a set V =
{w1, . . . , ws′} ⊆ U∗ of witnesses for the outermost existential quantifier of χj . Notice that if
the (q, d)-type in G∗ of every w ∈ V was rare then NG∗

ρ′ (V) ⊆ NG∗

e (D) ⊆ V (G∗), implying
that G∗ |= χj and thus H∗ |= χj as H∗ is a disjoint extension of G∗ and χj is a basic
local sentence. We can thus fix some w ∈ V whose (q, d)-type in G∗, say tw, is frequent.
As a result, there is a set Z ⊆ V (G∗) of n realisations of tw whose d-neighbourhoods are
pairwise disjoint and disjoint from NG∗

e (D). Now, since 4ρ + 3 ≤ d, n = (ℓ + 2)s, and
|Ci| ≤ ℓs, there exists a subset Z ′ ⊆ Z of at least s elements which additionally satisfies
NG∗

ρ+1(Ci) ∩NG∗

ρ (Z ′) = ∅.
Consider F := NU∗

ρ′ (w). Evidently, U∗[F] = G∗[F] and so G∗[F] |= ξNρ′ (x)(w). For
a set variable X consider the formula ξNρ′ (x)∩X(x,X) obtained from ξ by simultaneously
relativising the quantifiers of ξ to the r′-neighbourhoods of x and to the set X. Observe
that the quantifier rank of ξNρ′ (x)∩X(x,X) is at most γ′ + ρ′ < q, and moreover G∗ |=
ξNρ′ (x)∩X(w,F). Since ρ′ < d it follows that the MSO formula ∃XξNρ′ (x)∩X(x,X) is in tw.
As every ω ∈ Z ′ has the same (q, d)-type in G∗ as w, we may find sets Fω ⊆ NG∗

ρ′ (ω) for every
ω ∈ Z ′ such that G∗ |= ξNρ′ (x)∩X(ω, Fω). In particular, this implies that G∗[Fω] |= ξNρ′ (x)(ω).
We finally let:

Ci+1 = Ci ∪ Z ′; Si+1 = Si ∪
⋃

ω∈Z′

Fω.

We argue that these satisfy the properties 1-5. First, observe that |Ci+1| = |Ci|+s ≤ is+s =
(i+ 1)s. Moreover, as Fω ⊆ NG∗

ρ′ (ω), ω ∈ Ci+1, and ρ′ ≤ ρ we have Si+1 ⊆ NG∗

ρ (Ci+1). By
the fact that every ω ∈ Z ′ realises a frequent type we also have that NG∗

e (D)∩NG∗

d (Ci+1) = ∅.
It remains to argue that no disjoint extension of G∗[Si+1] satisfies

∨
j∈Ii+1

ψj .
Towards this, we note that G∗[Si+1] is a disjoint extension of G∗[Si] by the fact that

Si ⊆ NG∗

ρ (Ci) and NG∗

ρ+1(Ci) ∩ NG∗

ρ (Z ′) = ∅. Therefore, no disjoint extension of G∗[Si+1]
satisfies ψj for j ∈ Ii. At the same time, every disjoint extension of G∗[Si+1] contains
witnesses for the outermost existential quantifiers of χi′j , namely the elements ω ∈ Z ′,
which are pairwise at distance at least 2d > 2ρ′ and satisfy G∗[Fω] |= ξNρ′ (x)(ω) and
N

G∗[Si+1]
ρ′ (ω) = Fω, and thus G∗[Si+1] |= ξNρ′ (x)(ω). It follows that every disjoint extension

of G∗[Si+1] satisfies χi′j , and so it cannot satisfy ψi′ as needed. This complete our inductive
construction of Si+1, Ci+1, and Ii+1. ◀

CSL 2025

The Parameterized Complexity of Learning
Monadic Second-Order Logic
Steffen van Bergerem #

Humboldt-Universität zu Berlin, Germany

Martin Grohe #

RWTH Aachen University, Germany

Nina Runde #

RWTH Aachen University, Germany

Abstract
Within the model-theoretic framework for supervised learning introduced by Grohe and Turán
(TOCS 2004), we study the parameterized complexity of learning concepts definable in monadic
second-order logic (MSO). We show that the problem of learning an MSO-definable concept from a
training sequence of labeled examples is fixed-parameter tractable on graphs of bounded clique-width,
and that it is hard for the parameterized complexity class para-NP on general graphs.

It turns out that an important distinction to be made is between 1-dimensional and higher-
dimensional concepts, where the instances of a k-dimensional concept are k-tuples of vertices of
a graph. For the higher-dimensional case, we give a learning algorithm that is fixed-parameter
tractable in the size of the graph, but not in the size of the training sequence, and we give a hardness
result showing that this is optimal. By comparison, in the 1-dimensional case, we obtain an algorithm
that is fixed-parameter tractable in both.

2012 ACM Subject Classification Theory of computation → Logic; Theory of computation →
Complexity theory and logic; Theory of computation → Fixed parameter tractability; Computing
methodologies → Logical and relational learning; Computing methodologies → Supervised learning

Keywords and phrases monadic second-order definable concept learning, agnostic probably approxi-
mately correct learning, parameterized complexity, clique-width, fixed-parameter tractable, Boolean
classification, supervised learning, monadic second-order logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.8

Related Version Full Version: https://arxiv.org/abs/2309.10489 [10]

Funding Steffen van Bergerem: This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – project number 431183758 (gefördert durch die Deutsche
Forschungsgemeinschaft (DFG) – Projektnummer 431183758).
Martin Grohe: Funded by the European Union (ERC, SymSim, 101054974). Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect those of the European
Union or the European Research Council. Neither the European Union nor the granting authority
can be held responsible for them.
Nina Runde: This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – project number 453349072 (gefördert durch die Deutsche Forschungsgemeinschaft
(DFG) – Projektnummer 453349072).

© Steffen van Bergerem, Martin Grohe, and Nina Runde;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 8; pp. 8:1–8:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:steffen.van.bergerem@informatik.hu-berlin.de
https://orcid.org/0000-0002-5212-8992
mailto:grohe@informatik.rwth-aachen.de
https://orcid.org/0000-0002-0292-9142
mailto:runde@lics.rwth-aachen.de
https://orcid.org/0009-0000-4547-1023
https://doi.org/10.4230/LIPIcs.CSL.2025.8
https://arxiv.org/abs/2309.10489
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 The Parameterized Complexity of Learning Monadic Second-Order Logic

1 Introduction

We study abstract machine-learning problems in a logical framework with a declarative view
on learning, where the (logical) specification of concepts is separated from the choice of
specific machine-learning models and algorithms (such as neural networks). Here we are
concerned with the computational complexity of learning problems in this logical learning
framework, that is, the descriptive complexity of learning [8].

Specifically, we consider Boolean classification problems that can be specified in monadic
second-order logic (MSO). The input elements for the classification task come from a set
X, the instance space. A classifier on X is a function c : X → {+,−}. Given a training
sequence S of labeled examples (x, λ) ∈ X × {+,−}, we want to find a classifier, called a
hypothesis, that explains the labels given in S and that can also be used to predict the labels
of elements from X not given as examples. In the logical setting, the instance space X is a
set of tuples from a (relational) structure, called the background structure, and classifiers are
described by formulas of some logic, in our case MSO, using parameters from the background
structure. This model-theoretic learning framework was introduced by Grohe and Turán [33]
and further studied in [30, 32, 31, 7, 9, 11, 8].

We study these problems within the following well-known settings from computational
learning theory. In the consistent-learning model, the examples are assumed to be generated
using an unknown classifier, the target concept, from a known concept class. The task is to find
a hypothesis that is consistent with the training sequence S, i.e. a function h : X → {+,−}
such that h(x) = λ for all (x, λ) ∈ S. In Haussler’s model of agnostic probably approximately
correct (PAC) learning [35], a generalization of Valiant’s PAC learning model [50], an
(unknown) probability distribution D on X × {+,−} is assumed, and training examples are
drawn independently from this distribution. The goal is to find a hypothesis that generalizes
well, i.e. one is interested in algorithms that return with high probability a hypothesis
with a small expected error on new instances drawn from the same distribution. For more
background on PAC learning, we refer to [37, 41, 46]. In both settings, we require our
algorithms to return a hypothesis from a predefined hypothesis class.

Our Contributions

In this paper, we study the parameterized complexity of the consistent-learning problem
MSO-Consistent-Learn and the PAC-learning problem MSO-PAC-Learn. In both prob-
lems, we are given a graph G (the background structure) and a sequence of labeled training ex-
amples of the form (v̄, λ), where v̄ is a k-tuple of vertices from G and λ ∈ {+,−}. The goal is to
find a hypothesis of the form hφ,w̄ for an MSO formula φ(x̄; ȳ) and a tuple w̄ with hφ,w̄(v̄) := +
if G |= φ(v̄; w̄) and hφ,w̄(v̄) := − otherwise. For MSO-Consistent-Learn, this hypothesis
should be consistent with the given training examples. For MSO-PAC-Learn, the hypoth-
esis should generalize well. We restrict the complexity of allowed hypotheses by giving a
bound q on the quantifier rank of φ and a bound ℓ on the length of w̄. Both q and ℓ as well
as the dimension k of the problem, that is, the length of the tuples to classify, are part of
the parameterization of the problems. A detailed description of MSO-Consistent-Learn
is given in Section 3. The problem MSO-PAC-Learn is formally introduced in Section 5.

▶ Example 1.1. Assume we are given the graph G depicted in Figure 1, the training sequence
S = ((v1,+), (v3,+), (v4,−), (v5,−)), and k = 1, ℓ = 1, q = 3. Note that k = 1 indicates
that the instances are vertices of the input graph G. Furthermore, ℓ = 1 indicates that
the specification may involve one vertex of the input graph as a parameter. Finally, q = 3
indicates that the formula specifying the hypothesis must have quantifier rank at most 3.

S. van Bergerem, M. Grohe, and N. Runde 8:3

v1 v2 v3

v4 v5 v6

Figure 1 Graph G for Example 1.1. Positive examples are shown in purple, and negative examples
are shown in orange.

Our choice of a hypothesis h : V (G) → {+,−} consistent with S says that “there is a
bipartite partition of the graph such that all positive instances x are on the same side as v2
and all negative examples are on the other side.” This hypothesis can be formally specified in
MSO as hφ,w̄ for the MSO formula φ(x; y) = ∃Z

(
ψbipartite(Z) ∧Z(x) ∧Z(y)

)
and parameter

setting w̄ = (v2), where ψbipartite(Z) = ∀z1∀z2

(
E(z1, z2) → ¬

(
Z(z1)↔Z(z2)

))
.

For the 1-dimensional case of MSO-Consistent-Learn, called 1D-MSO-Consistent-
Learn, [31, 30] gave algorithms that are sublinear in the background structures after a
linear-time pre-processing stage for the case that the background structure is a string or a tree.
This directly implies that 1D-MSO-Consistent-Learn can be solved in time f(ℓ, q) · n
for some function f , that is, in fixed-parameter linear time, if the background structure is a
string or a tree. Here n is the size of the background structure and ℓ, q are the parameters
of the learning problem described above. We generalize the results to labeled graphs of
bounded clique-width. Graphs of clique-width c can be described by a c-expression, that
is, an expression in a certain graph grammar that only uses c labels (see Section 2.1 for
details). In our algorithmic results for graphs of bounded clique-width, we always assume
that the graphs are given in the form of a c-expression. We treat c as just another parameter
of our algorithms. By the results of Oum and Seymour [44], we can always compute a
2O(c)-expression for a graph of clique-width c by a fixed-parameter tractable algorithm.

▶ Theorem 1.2. Let C be a class of labeled graphs of bounded clique-width. Then 1D-MSO-
Consistent-Learn is fixed-parameter linear on C.

Since graphs of bounded tree-width also have bounded clique-width, our result directly
implies fixed-parameter linearity on graph classes of bounded tree-width.

Our proof for Theorem 1.2 relies on the model-checking techniques due to Courcelle,
Makowsky, and Rotics for graph classes of bounded clique-width [23]. To make use of them,
we encode the training examples into the graph as new labels. While this construction works
for k = 1, it fails for higher dimensions if there are too many examples to encode.

As far as we are aware, all previous results for learning MSO formulas are restricted to
the one-dimensional case of the problem. We give the first results for k > 1, presenting two
different approaches that yield tractability results in higher dimensions.

As we discuss in Section 5, for the PAC-learning problem MSO-PAC-Learn in higher
dimensions, we can restrict the number of examples to consider to a constant. In this way,
we obtain fixed-parameter tractability results for learning MSO-definable concepts in higher
dimensions, similar to results for first-order logic on nowhere dense classes [9, 8].

▶ Theorem 1.3. Let C be a class of labeled graphs of bounded clique-width. Then MSO-PAC-
Learn is fixed-parameter linear on C.

In the second approach to higher-dimensional tractability, and as the main result of this
paper, we show in Section 6 that a consistent hypothesis can be learned on graphs of bounded
clique-width with a quadratic running time in terms of the size of the graph.

CSL 2025

8:4 The Parameterized Complexity of Learning Monadic Second-Order Logic

▶ Theorem 1.4. There is a function g : N5 → N such that, for a Λ-labeled graph G of clique-
width cw(G) ≤ c and a training sequence S of size |S| = m, the problem MSO-Consistent-
Learn can be solved in time

O
(
(m+ 1)g(c,|Λ|,q,k,ℓ)|V (G)|2

)
.

While this is not strictly a fixed-parameter tractability result, since we usually do not
consider m to be part of the parameterization, we show in Section 7 that this bound is
optimal. Technically, this result is much more challenging than Theorems 1.3 and 1.2. While
we still use an overall dynamic-programming strategy that involves computing MSO types,
here we need to consider MSO types over sequences of tuples. The number of such sequence
types is not constantly bounded, but exponential in the length of the sequence. The core of
our argument is to prove that the number of relevant types can be polynomially bounded.
This fundamentally distinguishes our approach from typical MSO/automata arguments,
where types are from a bounded set (and they correspond to the states of a finite automaton).

Lastly, we study MSO-Consistent-Learn on arbitrary classes of labeled graphs. Anal-
ogously to the hardness of learning FO-definable concepts and the relation to the FO-
model-checking problem discussed in [9], we are interested specifically in the relation of
MSO-Consistent-Learn to the MSO-model-checking problem MSO-Mc. We show that
MSO-Mc can already be reduced to the 1-dimensional case of MSO-Consistent-Learn,
even with a training sequence of size two. This yields the following hardness result that we
prove in Section 4.

▶ Theorem 1.5. 1D-MSO-Consistent-Learn is para-NP-hard under fpt Turing reduc-
tions.

Related Work

The model-theoretic learning framework studied in this paper was introduced in [33]. There,
the authors give information-theoretic learnability results for hypothesis classes that can be
defined using first-order and monadic second-order logic on restricted classes of structures.

Algorithmic aspects of the framework were first studied in [32], where it was proved that
concepts definable in first-order logic can be learned in time polynomial in the degree of the
background structure and the number of labeled examples the algorithm receives as input,
independently of the size of the background structure. This was generalized to first-order
logic with counting [7] and with weight aggregation [11]. On structures of polylogarithmic
degree, the results yield learning algorithms running in time sublinear in the size of the
background structure. It was shown in [31, 7] that sublinear-time learning is no longer
possible if the degree is unrestricted. To address this issue, in [31], it was proposed to
introduce a preprocessing phase where, before seeing any labeled examples, the background
structure is converted to a data structure that supports sublinear-time learning later. This
model was applied to monadic second-order logic on strings [31] and trees [30].

The parameterized complexity of learning first-order logic was first studied in [9]. Via a
reduction from the model-checking problem, the authors show that on arbitrary relational
structures, learning hypotheses definable in FO is AW[∗]-hard. In contrast to this, they show
that the problem is fixed-parameter tractable on nowhere dense graph classes. This result
has been extended to nowhere dense structure classes in [8]. Although not stated as fpt
results, the results in [31, 30] yield fixed-parameter tractability for learning MSO-definable
concepts on strings and trees if the problem is restricted to the 1-dimensional case where the
tuples to classify are single vertices.

S. van Bergerem, M. Grohe, and N. Runde 8:5

The logical learning framework is related to, but different from the framework of inductive
logic programming (see, e. g., [21, 42, 43]), which may be viewed as the classical logic-learning
framework. In the database literature, there are various approaches to learning queries from
examples [6, 5, 34, 36, 38, 13, 49, 1, 2, 14, 48, 17]. Many of these are concerned with active
learning scenarios, whereas we are in a statistical learning setting. Moreover, most of the
results are concerned with conjunctive queries or queries outside the relational database model,
whereas we focus on monadic second-order logic. Another related subject in the database
literature is the problem of learning schema mappings from examples [3, 15, 18, 19, 29]. In
formal verification, related logical learning frameworks [20, 25, 28, 40, 52] have been studied
as well. In algorithmic learning theory, related works study the parameterized complexity of
several learning problems [4, 39] including, quite recently, learning propositional CNF and
DNF formulas and learning solutions to graph problems in the PAC setting [16].

2 Preliminaries

We let N denote the set of non-negative integers. For m,n ∈ N, we let [m,n] := {ℓ ∈ N |
m ≤ ℓ ≤ n} and [n] := [1, n]. For a set V , we let 2V := {V ′ | V ′ ⊆ V }.

2.1 Clique-Width
In this paper, graphs are always undirected and simple (no loops or parallel edges); we view
them as {E}-structures for a binary relation symbol E, and we denote the set of vertices
of a graph G by V (G). A label set is a set Λ of unary relation symbols, and a Λ-graph or
Λ-labeled graph is the expansion of a graph to the vocabulary {E} ∪ Λ. A labeled graph is a
Λ-graph for any label set Λ.

In the following, we define expressions to represent labeled graphs. A base graph is a
labeled graph of order 1. For every base graph G, we introduce a base expression β that
represents G. Moreover, we have the following operations.
Disjoint union: For disjoint Λ-graphs G1, G2, we define G1 ⊎G2 to be the union of G1 and

G2. If G1 and G2 are not disjoint, then G1 ⊎G2 is undefined.
Adding edges: For a Λ-graph G and unary relation symbols P,Q ∈ Λ with P ̸= Q, we

let ηP,Q(G) be the Λ-graph obtained from G by adding an edge between every pair of
distinct vertices v ∈ P (G), w ∈ Q(G). That is, E

(
ηP,Q(G)

)
:= E(G) ∪

{
(v, w), (w, v)

∣∣
v ∈ P (G), w ∈ Q(G), v ̸= w

}
.

Relabeling: For a Λ-graph G and unary relation symbols P,Q ∈ Λ with P ̸= Q, we
let ρP,Q(G) be the Λ-graph obtained from G by relabeling all vertices in P by Q,
that is, V (ρP,Q(G)) := V (G), P (ρP,Q(G)) := ∅, Q(ρP,Q(G)) := Q(G) ∪ P (G), and
R(ρP,Q(G)) := R(G) for all R ∈ Λ \ {P,Q}.

Deleting labels: For a Λ-graph G and a unary relation symbol P ∈ Λ, we let δP (G) be the
restriction of G to Λ \ {P}, that is, the (Λ \ {P})-graph obtained from G by removing
the relation P (G).

We also introduce a modification of the disjoint-union operator, namely the ordered-disjoint-
union operator ⊎<, which is used in Section 6 to simplify notations.
Ordered disjoint union: To introduce this operator, we need two distinguished unary relation

symbols P<
1 and P<

2 . For disjoint Λ-graphs G1, G2, where we assume P<
1 , P

<
2 ̸∈ Λ, we

let G1 ⊎< G2 be the (Λ ∪ {P<
1 , P

<
2 })-expansion of the disjoint union G1 ⊎ G2 with

P<
1 (G1 ⊎<G2) := V (G1) and P<

2 (G1 ⊎<G2) := V (G2). By deleting the relations P<
1 , P

<
2

immediately after introducing them in an ordered disjoint union, we can simulate a
standard disjoint-union by an ordered disjoint union, that is, G1 ⊎G2 = δP <

1
(δP <

2
(G1 ⊎<

G2)).

CSL 2025

8:6 The Parameterized Complexity of Learning Monadic Second-Order Logic

A Λ-expression is a term formed from base expressions β, whose label set is a subset of Λ,
using unary operators ηP,Q, ρP,Q, δP for P,Q ∈ Λ with P ̸= Q, and the binary operator
⊎. We require Λ-expressions to be well-formed, that is, all base expressions represent base
graphs with mutually distinct vertices, and the label sets fit the operators.

Every Λ-expression Ξ describes a Λ′-graph GΞ for some Λ′ ⊆ Λ. Note that there is a
one-to-one correspondence between the base expressions in Ξ and the vertices of GΞ. Actually,
we may simply identify the vertices of GΞ with the base expressions in Ξ. We let VΞ := V (GΞ)
be the set of these base expressions. We may then view an expression Ξ as a tree where
VΞ is the set of leaves of this tree. We let |Ξ| be the number of nodes of the tree. We
have |GΞ| = |VΞ| ≤ |Ξ|. In general, we cannot bound |Ξ| in terms of |GΞ|, but for every
Λ-expression Ξ, we can find a Λ-expression Ξ′ such that GΞ′ = GΞ and |Ξ′| ∈ O(

∣∣Λ2
∣∣ · |GΞ|).

Each subexpression Ξ′ of Ξ describes a labeled graph GΞ′ on a subset VΞ′ ⊆ VΞ consisting
of all base expressions in Ξ′. Note that, in general, GΞ′ is not a subgraph of GΞ.

For c ∈ N, a c-expression is a Λ-expression for a label set Λ of size |Λ| = c. It is easy to
see that every labeled graph of order n is described by an n-expression. The clique-width
cw(G) of a (labeled) graph G is the least c such that G is described by a c-expression.

We remark that our notion of clique-width differs slightly from the one given by Courcelle
and Olariu [24], since we allow vertices to have multiple labels, and we also allow the deletion
of labels. Thus, our definition is similar to the definition of multi-clique-width [27]. However,
for our algorithmic results, the definitions are equivalent, since we have cw(G) ≤ cw′(G)
and cw′(G) ∈ 2O(cw(G)) for every (labeled) graph G, where cw′ is the notion of clique-width
from [24].

▶ Lemma 2.1 ([44]). For a graph G with n vertices and clique-width c′ := cw(G), there is
an algorithm that outputs a c-expression for G where c = 23c′+2 − 1. The algorithm has a
running time of O(n9 log n).

2.2 Monadic Second-Order Logic

We consider monadic second-order (MSO) logic, which is a fragment of second-order logic
where we only quantify over unary relations (sets). In MSO, we consider two kinds of free
variables, which we call set variables (uppercase X,Y,Xi) and individual variables (lowercase
x, y, xi). The quantifier rank qr(φ) of a formula φ is the nesting depth of its quantifiers.

Let τ be a relational vocabulary and q ∈ N. By MSO(τ, q), we denote the set of all
MSO formulas of quantifier rank at most q using only relation symbols in τ , and we let
MSO(τ) :=

⋃
q MSO(τ, q). By MSO(τ, q, k, s), we denote the set of all MSO(τ, q) formulas

with free individual variables in {x1, . . . , xk} and free set variables in {X1, . . . , Xs}. In
particular, MSO(τ, q, 0, 0) denotes the set of sentences. Moreover, it will be convenient
to separate the free individual variables into instance variables (x1, x2, . . .) and parameter
variables (y1, y2, . . .). For this, we let MSO(τ, q, k, ℓ, s) denote the set of all MSO(τ, q) formulas
with free instance variables in {x1, . . . , xk}, free parameter variables in {y1, . . . , yℓ}, and free
set variables in {X1, . . . , Xs}. Furthermore, we write φ(x̄, ȳ, X̄) to denote that the formula
φ has its free instance variables among the entries of x̄, its free parameter variables among
the entries ȳ, and its free set variables among the entries X̄.

We normalize formulas such that the set of normalized formulas in MSO(τ, q, k, ℓ, s) is
finite, and there is an algorithm that, given an arbitrary formula in MSO(τ, q, k, ℓ, s), decides
if the formula is normalized, and if not, computes an equivalent normalized formula. In the
following, we assume that all formulas are normalized.

S. van Bergerem, M. Grohe, and N. Runde 8:7

In this paper, all structures we consider will be labeled graphs for some label set Λ. In
notations such as MSO(τ, . . .), it will be convenient to write MSO(Λ, . . .) if τ = {E} ∪ Λ.
For a Λ-labeled graph G and a tuple v̄ ∈ (V (G))k, the q-type of v̄ in G is the set tpG

q (v̄) of
all formulas φ(x̄) ∈ MSO(Λ, q, k, 0) such that G |= φ(v̄).

2.3 VC Dimension
For q, k, ℓ ∈ N, a formula φ(x̄, ȳ) ∈ MSO(Λ, q, k, ℓ, 0), a Λ-labeled graph G, and a tuple
w̄ ∈ (V (G))ℓ, we let

φ(G, w̄) :=
{
v̄ ∈ (V (G))k

∣∣ G |= φ(v̄, w̄)
}
.

For a set X ⊆ (V (G))k, we let

Hφ(G,X) :=
{
X ∩ φ(G, w̄)

∣∣ w̄ ∈ (V (G))ℓ
}
.

We say that X is shattered by φ if Hφ(G,X) = 2X . The VC dimension VC(φ,G) of φ on G
is the maximum d ∈ N such that there is a set X ⊆ V (G)k of cardinality |X| = d that is
shattered by φ. In this paper, we are only interested in finite graphs, but for infinite G, we
let VC(φ,G) := ∞ if the maximum does not exist. For a class C of Λ-labeled graphs, the
VC dimension of φ over C, VC(φ,C), is the least d such that VC(φ,G) ≤ d for all G ∈ C if
such a d exists, and ∞ otherwise.

▶ Lemma 2.2 ([33, Theorem 17]). There is a function g : N5 → N such that the following
holds. Let Λ be a label set, let C be the class of all Λ-graphs of clique-width at most c, and
let q, k, ℓ ∈ N. Then VC(φ,C) ≤ g(c, |Λ| , q, k, ℓ) for all φ ∈ MSO(Λ, q, k, ℓ, 0).

2.4 Parameterized Complexity
A parameterization κ is a function mapping the input x of a problem to a natural number
κ(x) ∈ N. An algorithm A is an fpt algorithm with respect to κ if there is a computable
function f : N → N and a polynomial p such that for every input x the running time of A is
at most f(κ(x)) · p(|x|).

A parameterized problem is a tuple (Q, κ). We say (Q, κ) ∈ FPT or (Q, κ) is fixed-
parameter tractable if there is an fpt algorithm with respect to κ for Q, and we say (Q, κ) is
fixed-parameter linear if the polynomial in the running time of the fpt algorithm is linear.
We say (Q, κ) ∈ para-NP if there is a nondeterministic fpt algorithm with respect to κ for Q.
If the parameterization is clear from the context, then we omit it.

For two parameterized problems (Q, κ), (Q′, κ′), an fpt Turing reduction from (Q, κ)
to (Q′, κ′) is an algorithm A with oracle access to Q′ such that A decides Q, A is an fpt
algorithm with respect to κ, and there is a computable function g : N → N such that on
input x, κ′(x′) ≤ g

(
(κ(x)

)
for all oracle queries with oracle input x′.

For additional background on parameterized complexity, we refer to [26].

3 Tractability for One-Dimensional Training Data on Well-Behaved
Classes

We start by formalizing the parameterized version of the problem MSO-Consistent-Learn
described in the introduction. For a training sequence S, a graph G, and a hypothesis hφ,w̄,
we say hφ,w̄ is consistent with S on G if for every positive example (v̄,+) ∈ S, we have
G |= φ(v̄, w̄), and for every negative example (v̄,−) ∈ S, we have G ̸|= φ(v̄, w̄).

CSL 2025

8:8 The Parameterized Complexity of Learning Monadic Second-Order Logic

MSO-Consistent-Learn

Instance: Λ-labeled graph G, q, k, ℓ ∈ N, training sequence S ∈ (V (G)k ×{+,−})m

Parameter: κ := |Λ| + q + k + ℓ

Problem: Return a hypothesis hφ,w̄ consisting of
a formula φ ∈ MSO(Λ, q, k, ℓ, 0) and
a parameter setting w̄ ∈ V (G)ℓ

such that hφ,w̄ is consistent with the training sequence S on G, if such a hypothesis
exists. Reject if there is no consistent hypothesis.

The problem 1D-MSO-Consistent-Learn refers to the 1-dimensional version of the
problem MSO-Consistent-Learn where the arity k of the training examples is 1. The
tractability results for 1D-MSO-Consistent-Learn are significantly more straightforward
than those for the higher-dimensional problem. This is due to the fact that the full training
sequence can be encoded into the graph by only adding two new labels, and a parameter
setting can be encoded with ℓ more new labels.

As discussed in Section 2.2, there is a function f : N4 → N such that |MSO(Λ, q, k, ℓ, 0)| ≤
f(|Λ| , q, k, ℓ). Therefore, to solve 1D-MSO-Consistent-Learn, we can iterate over all
formulas φ ∈ MSO(Λ, q, k, ℓ, 0) and focus on finding a parameter setting w̄ ∈ V (G)ℓ such that
hφ,w̄ is consistent with S on G. Moreover, if the model-checking problem on a graph class
with additional labels is tractable, then finding a consistent parameter setting is tractable as
well by performing model checking on the graph with the encoded training sequence.

▶ Lemma 3.1. Let C be a class of labeled graphs, let Ci be the class of all extensions of
graphs from C by i additional labels for all i ∈ N, let f : N → N be a function, and let c ∈ N
such that the MSO-model-checking problem on Ci can be solved in time f(|φ|) · |V (G)|c for all
i ∈ N, where φ is the MSO sentence and G ∈ Ci is the labeled graph given as input. There is
a function g : N3 → N such that 1D-MSO-Consistent-Learn can be solved on C in time
g(|Λ| , q, ℓ) · |V (G)|c+1.

The formal proof of this result can be found in the full version [10]. If the input graph is
given in the form of a c-expression, then the MSO model-checking problem is fixed-parameter
linear on classes of bounded clique-width [23]. Therefore, Lemma 3.1 implies that there
is a function g : N4 → N such that 1D-MSO-Consistent-Learn can be solved in time
g(cw(G), |Λ| , q, ℓ) · |G|2.

Theorem 1.2 improves this bound for classes of graphs of bounded clique-width even
further, showing that the problem 1D-MSO-Consistent-Learn can be solved in time
linear in the size of the graph. This can be done by again encoding the training sequence into
the graph, but then extracting a consistent parameter setting directly, following techniques
similar to the ones used by Courcelle and Seese for the corresponding model-checking problem
on graphs of bounded clique-width. The full proof of Theorem 1.2 can be found in [10].

Since graphs of tree-width ct have a clique-width of at most 3 · 2ct−1 [22], Theorem 1.2
implies that for classes of graphs of bounded tree-width, 1D-MSO-Consistent-Learn
is fixed-parameter linear as well. Moreover, although all background structures we con-
sider in this paper are labeled graphs, we remark that the result for classes of bounded
tree-width also holds on arbitrary relational structures and a corresponding version of
1D-MSO-Consistent-Learn.

S. van Bergerem, M. Grohe, and N. Runde 8:9

4 Hardness for One-Dimensional Training Data

Previously, we restricted the input graph of the MSO-learning problem to certain well-behaved
classes. Now, we consider the problem MSO-Consistent-Learn without any restrictions.
Van Bergerem, Grohe, and Ritzert showed in [9] that there is a close relation between
first-order model checking (FO-Mc) and learning first-order formulas. The fpt-reduction
in [9] from model checking to learning yields AW[∗]-hardness for learning first-order formulas
on classes of structures that are not nowhere dense. It is simple to show (and not surprising)
that MSO-Consistent-Learn is at least as hard as FO-Mc. The more interesting question
is whether MSO-Consistent-Learn is at least as hard as the model-checking problem for
MSO sentences (MSO-Mc), which is defined as follows.

MSO-Mc

Instance: Λ-labeled graph G, MSO(Λ) sentence φ
Parameter: |φ|
Problem: Decide whether G |= φ holds.

We give a positive answer, which even holds for the MSO-learning problem with only
one-dimensional training data where we restrict the training sequence to contain at most
two training examples.

▶ Lemma 4.1. The model-checking problem MSO-Mc is fpt Turing reducible to 1D-MSO-
Consistent-Learn where we restrict the training sequence S given as input to have length
at most 2.

MSO-Mc is para-NP-hard under fpt Turing reductions as even for some fixed sentence
φ, the corresponding model-checking problem can be NP-hard (for example for a formula
defining 3-Colorability, see [26] for details). Hence, Lemma 4.1 proves Theorem 1.5. We
give a proof sketch for Lemma 4.1. The full proof can be found in [10].

Proof sketch of Lemma 4.1. We describe an fpt algorithm solving MSO-Mc using access
to a 1D-MSO-Consistent-Learn oracle. Let G be a Λ-labeled graph, and let φ be an
MSO(Λ) sentence. We decide whether G |= φ holds recursively by decomposing the input
formula. While handling negation and Boolean connectives is easy, the crucial part of the
computation is handling quantification. Thus, we assume that φ = ∃xψ or φ = ∃Xψ for some
MSO formula ψ. For both types of quantifiers, we use the 1D-MSO-Consistent-Learn
oracle to identify a small set of candidate vertices or sets such that ψ holds for any vertex
or set if and only if it holds for any of the identified candidates. Then, since the number
of candidates will only depend on |ψ|, we can check recursively whether ψ holds for any of
them and thereby decide MSO-Mc with an fpt algorithm.

More specifically, using the 1D-MSO-Consistent-Learn oracle, we partition the ver-
tices and sets based on their qr(ψ)-type, and we only check one candidate for each class
of the partition. Intuitively, for every pair of vertices, we call the oracle with one vertex
as a positive example and the other vertex as a negative example. The oracle returns a
hypothesis if and only if the types of the two vertices differ. When partitioning the sets of
vertices, we encode the two sets to check into the graph before calling the oracle. Moreover,
instead of calling the oracle for every pair of sets (which would lead to a running time that is
exponential in the size of the graph), we group the sets based on their size, start by finding
a small family of candidate sets of size 1, and we use these candidates iteratively to find a
small family of sets with one additional vertex. With this technique, the number of oracle
calls is only quadratic in the size of the graph. ◀

CSL 2025

8:10 The Parameterized Complexity of Learning Monadic Second-Order Logic

5 PAC Learning in Higher Dimensions

So far, we considered the consistent-learning setting, where the goal is to return a hypothesis
that is consistent with the given examples. In this section, we study the MSO-learning
problem in the agnostic PAC-learning setting. There, for an instance space X, we assume
an (unknown) probability distribution D on X × {+,−}. The learner’s goal is to find a
hypothesis h : X → {+,−}, using an oracle to draw training examples randomly from D,
such that h (approximately) minimizes the generalization error

errD(h) := Pr
(x,λ)∼D

(
h(x) ̸= λ

)
.

For every Λ-labeled graph G and q, k, ℓ ∈ N, let Hq,k,ℓ(G) be the hypothesis class

Hq,k,ℓ(G) :=
{
hφ,w̄

∣∣ φ ∈ MSO(Λ, q, k, ℓ, 0), w̄ ∈ (V (G))ℓ
}
.

Formally, we define the MSO PAC-learning problem as follows.

MSO-PAC-Learn

Instance: Λ-labeled graph G, numbers k, ℓ, q ∈ N, δ, ε ∈ (0, 1), oracle access to
probability distribution D on (V (G))k × {+,−}
Parameter: κ := |Λ| + k + ℓ+ q + 1/δ + 1/ε
Problem: Return a hypothesis hφ,w̄ ∈ Hq,k,ℓ(G) such that, with probability of at
least 1 − δ over the choice of examples drawn i.i.d. from D, it holds that

errD(hφ,w̄) ≤ min
h∈Hq,k,ℓ(G)

errD(h) + ε.

The remainder of this section is dedicated to the proof of Theorem 1.3, that is, we want
to show that MSO-PAC-Learn is fixed-parameter linear on classes of bounded clique-width
when the input graph is given as a c-expression. To solve the problem algorithmically, we can
follow the Empirical Risk Minimization (ERM) rule [51, 46], that is, our algorithm should
minimize the training error (or empirical risk)

errS(h) := 1
|S|

· |{(v̄, λ) ∈ S | h(v̄) ̸= λ}|

on the training sequence S of queried examples. Roughly speaking, an algorithm can solve
MSO-PAC-Learn by querying a sufficient number of examples and then following the
ERM rule. To bound the number of needed examples, we combine a fundamental result of
statistical learning [12, 46], which bounds the number of needed examples in terms of the
VC dimension of a hypothesis class, with Lemma 2.2, a result due to Grohe and Turán [33],
which bounds the VC dimension of MSO-definable hypothesis classes on graphs of bounded
clique-width. Together, they imply the following result. See the full version [10] for details.

▶ Lemma 5.1. There is a computable function m : N5 × (0, 1)2 → N such that any algorithm
that proceeds as follows solves the problem MSO-PAC-Learn. Given a Λ-labeled graph G
of clique-width at most c, numbers k, ℓ, q ∈ N, δ, ε ∈ (0, 1), and oracle access to a probability
distribution D on (V (G))k × {+,−}, the algorithm queries at least m(c, |Λ| , q, k, ℓ, δ, ε) many
examples from D and then follows the ERM rule.

Using this lemma, we can now give a proof sketch for Theorem 1.3, showing that
MSO-PAC-Learn is fixed-parameter linear on classes of bounded clique-width if the input
graph is given as a c-expression, even for dimensions k > 1. The full proof can be found
in [10].

S. van Bergerem, M. Grohe, and N. Runde 8:11

Proof sketch of Theorem 1.3. Let G be a Λ-labeled graph, let k, ℓ, q ∈ N, δ, ε ∈ (0, 1), and
assume we are given oracle access to a probability distribution D on (V (G))k × {+,−}.
Moreover, let c ∈ N and let Ξ be a c-expression given as input that describes G.

Let s := m(c, |Λ| , q, k, ℓ, δ, ε), where m is the function from Lemma 5.1. We sample
s examples from D and call the resulting sequence of training examples S. Then, for
every subsequence S′ of S, we make use of the techniques in Section 3 (adapted to higher-
dimensional training data) and compute a hypothesis hS′ ∈ Hq,k,ℓ that is consistent with
S′ if such a hypothesis exists. This can be computed by an fpt-algorithm with parameters
c, |Λ| , k, ℓ, q, δ, and ε. Finally, from all subsequences with a consistent hypothesis, we choose
a subsequence S∗ of maximum length and return hS∗ . Note that this procedure minimizes
the training error on the training sequence S, i. e., errS(hS∗) = minh∈Hq,k,ℓ

errS(h). Hence,
the procedure follows the ERM rule, and, by Lemma 5.1, it solves MSO-PAC-Learn. Since
the number of subsequences to check can be bounded by 2s, all in all, the described procedure
is an fpt-algorithm that solves MSO-PAC-Learn. ◀

6 Consistent Learning in Higher Dimensions

In this section, we consider the problem MSO-Consistent-Learn with dimension k > 1
on labeled graphs of bounded clique-width. A brute-force attempt yields a solution in time
g(c, |Λ| , q, k, ℓ) · (V (G))ℓ+1 · m, where m is the length of the training sequence, for some
g : N5 → N. This is achieved by iterating over all formulas, then iterating over all parameter
assignments, and then performing model checking for each training example. We assume that
the graph G is considerably larger in scale than the sequence of training examples S. Therefore,
Theorem 1.4 significantly improves the running time to O

(
(m+ 1)g(c,|Λ|,q,k,ℓ)|V (G)|2

)
. While

Theorem 1.4 is not a fixed-parameter tractability result in the classical sense, we show that
this is optimal in Section 7. The present section is dedicated to the proof of Theorem 1.4.

Until now, we have viewed the training sequence as a sequence of tuples S ∈ ((V (G))k ×
{+,−})m. In the following, it is useful to split the training sequence into two parts, a sequence
of vertex tuples a ∈ ((V (G))k)m and a function σ : [m] → {+,−} which assigns the corre-
sponding label to each tuple. Let G be a Λ-labeled graph, a = (v̄1, . . . , v̄m) ∈ ((V (G))k)m,
σ : [m] → {+,−}, and φ(x̄, ȳ) ∈ MSO(Λ, q, k, ℓ, 0). We call (G,a, σ) φ-consistent if there is a
parameter setting w̄ ∈ (V (G))ℓ such that for all i ∈ [m], G |= φ(v̄i, w̄) ⇐⇒ σ(v̄i) = +. We
say that w̄ is a φ-witness for (G,a, σ). This notation allows us to state the main technical
ingredient for the proof of Theorem 1.4 as follows.

▶ Theorem 6.1. There is a computable function g : N5 → N and an algorithm that, given
a Λ-graph G of clique-width cw(G) ≤ c, a sequence a = (v̄1, . . . , v̄m) ∈ ((V (G))k)m, a
function σ : [m] → {+,−}, and a formula φ(x̄, ȳ) ∈ MSO(Λ, q, k, ℓ, 0), decides if (G,a, σ) is
φ-consistent in time (m+ 1)g(c,|Λ|,q,k,ℓ)|G|.

Using Theorem 6.1, we can now prove Theorem 1.4.

Proof of Theorem 1.4. Given a Λ-labeled graph G and a training sequence S =
((v̄1, λ1), . . . , (v̄m, λm)) ∈ ((V (G))k × {+,−})m, we let a := (v̄1, . . . , v̄m) ∈ ((V (G))k)m

and σ : [m] → {+,−}, i 7→ λi. We iterate over all formulas φ ∈ MSO(Λ, q, k, ℓ, 0) and use
Theorem 6.1 to check whether (G,a, σ) is φ-consistent. If there is no φ such that (G,a, σ)
is φ-consistent, then we reject the input. Otherwise, let φ ∈ MSO(Λ, q, k, ℓ, 0) be such that
(G,a, σ) is φ-consistent. We compute a φ-witness following the same construction as in
the proof of Lemma 3.1. That is, using a fresh label, we encode the parameter choice of
a single variable into the graph, and then we check whether consistency still holds for the

CSL 2025

8:12 The Parameterized Complexity of Learning Monadic Second-Order Logic

corresponding formula φ′ that enforces this parameter choice. In total, we perform up to
ℓ · |V (G)| such consistency checks to compute a φ-witness w̄. The consistent formula φ

together with the φ-witness w̄ can then be returned as a hypothesis hφ,w̄ that is consistent
with S on G and therefore a solution to MSO-Consistent-Learn. ◀

The remainder of this section is dedicated to the proof of Theorem 6.1. We start by
introducing the formal definitions for types and sets of types over sequences of elements.

6.1 Type Definitions
Let G be a Λ-labeled graph and v̄ ∈ (V (G))k. Recall that the q-type of v̄ in G is the set
tpG

q (v̄) of all formulas φ(x̄) ∈ MSO(Λ, q, k, 0) such that G |= φ(v̄). A (Λ, q, k)-type is a
set θ ⊆ MSO(Λ, q, k, 0) such that, for each φ ∈ MSO(Λ, q, k, 0), either φ ∈ θ or ¬φ ∈ θ.
We denote the set of all (Λ, q, k)-types by Tp(Λ, q, k). Note that tpG

q (v̄) ∈ Tp(Λ, q, k). For
a type θ ∈ Tp(Λ, q, k), we write G |= θ(v̄) if G |= φ(v̄) for all φ(x̄) ∈ θ. Observe that
G |= θ(v̄) ⇐⇒ tpG

q (v̄) = θ. We say that a type θ ∈ Tp(Λ, q, k) is realizable if there is some
Λ-labeled graph G and tuple v̄ ∈ (V (G))k such that θ = tpG

q (v̄). We are not particularly
interested in types that are not realizable, but it is undecidable if a type θ is realizable,
whereas the sets Tp(Λ, q, k) are decidable. (More precisely, there is an algorithm that, given
Λ, q, k and a set θ of formulas, decides if θ ∈ Tp(Λ, q, k).) For a (Λ, q, k)-type θ and a
Λ-labeled graph G, we let

θ(G) :=
{
v̄ ∈ (V (G))k

∣∣ G |= θ(v̄)
}
.

If θ(G) ̸= ∅, we say that θ is realizable in G.
As for formulas, we split the variables for types into two parts, so we consider (Λ, q, k, ℓ)-

types θ ⊆ MSO(Λ, q, k, ℓ, 0), and we denote the set of all these types by Tp(Λ, q, k, ℓ). For a
Λ-labeled graph G and tuples v̄ ∈ (V (G))k, w̄ ∈ (V (G))ℓ, we often think of tpG

q (v̄, w̄) as the
q-type of w̄ over v̄ in G. Moreover, we let

θ(v̄, G) := {w̄ ∈ (V (G))ℓ | G |= θ(v̄, w̄)}.

If θ(v̄, G) ̸= ∅, we say that θ is realizable over v̄ in G.
For a vector k̄ = (k1, . . . , km) ∈ Nm and a set V , we let V k̄ be the set of all sequences

a = (v̄1, . . . , v̄m) of tuples v̄i ∈ V ki . Let G be a labeled graph, a = (v̄1, . . . , v̄m) ∈ V k̄ for
some k̄ ∈ Nm, and w̄ ∈ (V (A))ℓ. We define the q-type of w̄ over a in G to be the tuple

tpG
q (a, w̄) :=

(
tpG

q (v̄1, w̄), . . . , tpG
q (v̄m, w̄)

)
.

Again, we need an “abstract” notion of type over a sequence. A (Λ, q, k̄, ℓ)-type for a tuple
k̄ = (k1, . . . , km) ∈ Nm is an element of

Tp(Λ, q, k̄, ℓ) :=
m∏

i=1
Tp(Λ, q, ki, ℓ).

Let θ̄ = (θ1, . . . , θm) ∈ Tp(Λ, q, k̄, ℓ). For a labeled graph G, a sequence a = (v̄1, . . . , v̄m) ∈
(V (G))k̄, and a tuple w̄ ∈ (V (G))ℓ, we write G |= θ̄(a, w̄) if G |= θi(v̄i, w̄) for all i ∈ [m].
Note that G |= θ̄(a, w̄) ⇐⇒ tpG

q (a, w̄) = θ̄. For a type θ̄ ∈ Tp(Λ, q, k̄, ℓ), a Λ-labeled graph
G, and a sequence a ∈ (V (G))k̄, we let

θ̄(a, G) :=
{
w̄ ∈ (V (G))ℓ

∣∣ G |= θ(a, w̄)
}
.

If θ̄(a, G) ̸= ∅, we say that θ̄ is realizable over a in G.

S. van Bergerem, M. Grohe, and N. Runde 8:13

6.2 Computing the Realizable Types
For the proof of Theorem 6.1, we use the following result that allows us to compute the
realizable types of an expression.

▶ Lemma 6.2. There is a computable function f : N4 → N and an algorithm that, given
c, q, k, ℓ,m ∈ N, a vector k̄ = (k1, . . . , km) ∈ Nm with ki ≤ k for all i ∈ [m], a Λ-expression
Ξ with |Λ| ≤ c, and a sequence a ∈ (VΞ)k̄, computes the set of all θ̄ ∈ Tp(Λ, q, k̄, ℓ) that are
realizable over a in GΞ in time

O
(

(m+ 1)f(c,q,k,ℓ) · |Ξ|
)
.

Before proving this result, we first show that it implies Theorem 6.1.

Proof of Theorem 6.1. We assume that the input graph G is given as a c-expression. To
check whether (G,a, σ) is φ-consistent, we compute the set R of all θ̄ ∈ Tp(Λ, q, k̄, ℓ) that
are realizable over a in G, using Lemma 6.2. Then, for each θ̄ = (θ1, . . . , θm) ∈ R we check
if φ ∈ θi ⇐⇒ σ(i) = +. If we find such a θ̄, then (G,a, σ) is φ-consistent; otherwise it
is not. ◀

It remains to prove Lemma 6.2. In a bottom-up algorithm, starting at the leaves of Ξ,
we compute the set of all tuples θ̄ = (θ1, . . . , θm) of (Λ, q, ki, ℓ)-types θi that are realizable
over a in G. This is possible because the realizable tuples of types of an expression can
be computed from the tuples of types of its subexpressions. We formally prove this for the
operators ηP,Q, ρP,Q, δP , and ⊎< in the full version [10].

The difficulty with this approach is that we are talking about m-tuples of types. In
general, the number of such tuples is exponential in m, and hence the size of the set we
aim to compute could be exponentially large. Fortunately, this does not happen in graphs
of bounded clique-width. By Lemma 2.2, we can bound the VC dimension of a first-order
formula over classes of graphs of bounded clique-width. Further, we show in Lemma 6.3 that
this suffices to give a polynomial bound for the number of realizable tuples.

▶ Lemma 6.3. Let d, q, k, ℓ ∈ N, let t := |Tp(Λ, q, k, ℓ)|, and let G be a Λ-labeled graph such
that VC(φ,G) ≤ d for all φ ∈ MSO(Λ, q, k, ℓ, 0). Let a ∈ (V (G))k̄ for some k̄ ∈ {0, . . . , k}m.
Then at most (k+1) · g(d,m)t types in Tp(Λ, q, k̄, ℓ) are realizable over a in G.

The proof of Lemma 6.3 is based on the Sauer–Shelah Lemma [45, 47]. See [10] for proof
details. Based on this, we can now prove Lemma 6.2.

Proof of Lemma 6.2. As argued in Section 2, we may assume that Ξ only contains ordered-
disjoint-union operators and no plain disjoint-union operators.

For every subexpression Ξ′, we let ΛΞ′ be the set of labels of Ξ′, that is, the set of
unary relation symbols such that GΞ′ is a ΛΞ′ -graph. Moreover, let aΞ′ := a ∩ VΞ′ , and let
k̄Ξ′ ⊆ Nm such that aΞ′ ∈ (VΞ′)k̄Ξ′ .

We inductively construct, for every subexpression Ξ′ of Ξ and 0 ≤ ℓ′ ≤ ℓ, the set Rℓ′(Ξ′)
of all types θ̄ ∈ Tp(ΛΞ′ , q, k̄Ξ′ , ℓ′) that are realizable over aΞ′ in GΞ′ .
Case 1: Ξ′ is a base expression. In this case, for each ℓ′ ∈ [ℓ], we can construct Rℓ′(Ξ′)

by brute force in time f1(c, q, k, ℓ) · m for a suitable (computable) function f1. Let
(k′

1, . . . , k
′
m) := k̄Ξ′ . We compute θi by iterating over all formulas φ with k′

i + ℓ′ free
variables and evaluating φ on the single vertex graph GΞ′ .

CSL 2025

8:14 The Parameterized Complexity of Learning Monadic Second-Order Logic

Case 2: Ξ′ = ηP,Q(Ξ′′). Let 0 ≤ ℓ′ ≤ ℓ, and let k̄′ = (k′
1, . . . , k

′
m) := k̄Ξ′ = k̄Ξ′′ . As we

show in the full version [10], there is a computable mapping Tη,P,Q : Tp(ΛΞ′) → 2Tp(ΛΞ′′)

such that Rℓ′(Ξ′) is the set of all θ̄ = (θ1, . . . , θm) ∈ Tp(ΛΞ′ , q, k̄′, ℓ′) such that there is
a θ̄′ = (θ′

1, . . . , θ
′
m) ∈ R(Ξ′′) with θ′

i ∈ Tη,P,Q(θi) for all i ∈ [m]. Moreover, for every
realizable θ′ ∈ Tp(ΛΞ′), we guarantee that there is at most one type θ ∈ Tp(ΛΞ′′) such
that θ′ ∈ Tη,P,Q(θ). To compute the set Rℓ′(Ξ′), we step through all θ̄′ ∈ R(Ξ′′). For
each such θ̄′ = (θ′

1, . . . , θ
′
m), for all i ∈ [m], we compute the unique θi ∈ Tp(ΛΞ′ , q, k′

i, ℓ
′)

such that θ′
i ∈ Tη,P,Q(θi). If for some i ∈ [m], no such θi exists, we move on to the next

θ̄′. Otherwise, we add θ̄ = (θ1, . . . , θm) to R(Ξ′).

Case 3: Ξ′ = ρP,Q(Ξ′′). Analogous to Case 2, again based on results from the full ver-
sion [10].

Case 4: Ξ′ = δP (Ξ′′). Analogous to Case 2, based on results from [10].

Case 5: Ξ′ = Ξ1 ⊎< Ξ2. Let Λ′ := ΛΞ′ , V ′ := VΞ′ , k̄′ = (k′
1, . . . , k

′
m) := k̄Ξ′ , and a′ :=

(v̄′
1, . . . , v̄

′
m) := aΞ′ = a ∩ V ′. For j = 1, 2, let Λj := ΛΞj

, Vj := VΞj
, k̄j :=

(kj1, . . . , kjm) := k̄Ξj
, and for all i ∈ [m], let Kji ⊆ [kji] such that v̄′

i ∩ Vj = (v̄i)Kji
. Let

0 ≤ ℓ′ ≤ ℓ.
For all L1, L2 ⊆ [ℓ′] such that L2 = [ℓ′] \ L1, we let RL1,L2 be the set of all θ̄ =
(θ1, . . . , θm) ∈ Tp(Λ′, q, k̄′, ℓ′) such that for j = 1, 2, we have

θ̄j :=
(
T⊎,j,Lj ,Kj1(θ1), . . . , T⊎,j,Lj ,Kjm

(θm)
)

∈ R|Lj |(Ξj),

where T⊎,j,Lj ,Kji : Tp(Λ′) → Tp(Λj) for i ∈ [m] is a computable mapping that we give in
the full version [10]. Then, as we also show in [10],

Rℓ′(Ξ′) =
⋃

L1⊆[ℓ′]
L2=[ℓ′]\L1

RL1,L2 .

To compute RL1,L2 , we iterate over all θ̄1 = (θ11, . . . , θ1m) ∈ R|L1|(Ξ1). For all i ∈ [m]
we compute the unique θi ∈ Tp(Λ′, q, k′

i, ℓ
′) such that T⊎,1,L1,K1i(θi) = θ1i. If, for some

i ∈ [m], no such θi exists, then we move on to the next θ̄1. Otherwise, we compute

θ̄2 =
(
T⊎,2,L2,K21(θ1), . . . , T⊎,2,L2,K2m

(θm)
)

and check if θ̄2 ∈ R|L2|(Ξ2). If it is, we add θ̄ to RL1,L2 . Otherwise, we move on to the
next θ̄1.

This completes the description of our algorithm. To analyze the running time, let

r := max
Ξ′

|RΞ′ |,

where Ξ′ ranges over all subexpressions of Ξ. By Lemmas 2.2 and 6.3, there is a computable
function f2 : N4 → N such that

r ≤ (m+ 1)f2(c,q,k,ℓ).

The running time of each step of the constructions can be bounded by f3(c, q, k, ℓ) · r for a
suitable computable function f3. We need to make |Ξ| steps. Thus, overall, we obtain the
desired running time. ◀

S. van Bergerem, M. Grohe, and N. Runde 8:15

7 Hardness of Checking Consistency in Higher Dimensions

The following result shows, under the assumption FPT ̸= W[1], that Theorem 6.1 can not be
improved to an fpt-result.

▶ Theorem 7.1. There is a q ∈ N such that the following parameterized problem is W[1]-hard.

Instance: graph G of clique-width at most 2, sequence a = (ā1, . . . , ām) ∈(
(V (G))2)m, function σ : [m] → {+1,−1}, formula φ(x̄, ȳ) ∈ MSO(Λ, q, 2, ℓ, 0)

Parameter: ℓ
Problem: decide if (G,a, σ) is φ-consistent.

Proof sketch. We prove this by a reduction from the W[1]-complete weighted satisfiability
problem for Boolean formulas in 2-conjunctive normal form [26]. The weight of an assignment
to a set of Boolean variables is the number of variables set to 1.

WSat(2-CNF)

Instance: Boolean formula Φ in 2-CNF
Parameter: ℓ
Problem: decide if Φ has a satisfying assignment of weight ℓ.

Given a 2-CNF formula Φ =
∧m

i=1(Li,1 ∨ Li,2) in the variables {X1, . . . , Xn} and ℓ ∈ N,
we construct an instance (G,a, σ, φ) of the consistency problem from Theorem 7.1 where
the graph G is a forest that encodes Φ. Moreover, a, φ, and σ are chosen to verify that
a φ-witness w̄ ∈ (V (G))ℓ for (G,a, σ) encodes exactly ℓ variables among X1, . . . , Xn that
can be set to 1 to satisfy Φ. Hence, there is a φ-witness for (G,a, σ) if and only if Φ has
a satisfying assignment of weight ℓ. Details on the construction can be found in the full
version [10]. ◀

8 Conclusion

Just like model checking and the associated counting and enumeration problems, the learning
problem we study here is a natural algorithmic problem for logics on finite structures. All
these problems are related, but each has its own challenges requiring different techniques.
Where model checking and enumeration are motivated by automated verification and database
systems, we view our work as part of a descriptive complexity theory of machine learning [8].

The first problem we studied is 1D-MSO-Consistent-Learn, where the instances to
classify consist of single vertices, and we extended the previous fixed-parameter tractability
results for strings and trees [31, 30] to (labeled) graphs of bounded clique-width. Moreover,
on general graphs, we showed that the problem is hard for the complexity class para-NP.

For MSO-learning problems in higher dimensions, we presented two different approaches
that yield tractability results on graphs of bounded clique-width. For the agnostic PAC-
learning problem MSO-PAC-Learn, we described a fixed-parameter tractable learning
algorithm. Furthermore, in the consistent-learning setting for higher dimensions, we gave an
algorithm that solves the learning problem and is fixed-parameter tractable in the size of
the input graph. However, the algorithm is not fixed-parameter tractable in the size of the
training sequence, and we showed that this is optimal.

In the learning problems considered so far, hypotheses are built using MSO formulas and
tuples of vertices as parameters. We think that the algorithms presented in this paper for
the 1-dimensional case could also be extended to hypothesis classes that allow tuples of sets

CSL 2025

8:16 The Parameterized Complexity of Learning Monadic Second-Order Logic

as parameters. Finally, utilizing the full power of MSO, one could also consider a learning
problem where, instead of classifying tuples of vertices, we are interested in classifying sets
of vertices. That is, for a graph G, we are given labeled subsets of V (G) and want to find a
hypothesis h : 2V (G) → {+,−} that is consistent with the given examples. It is easy to see
that the techniques used in our hardness result also apply to this modified problem, proving
that it is para-NP-hard. However, it remains open whether our tractability results could also
be lifted to this version of the problem.

References
1 Azza Abouzied, Dana Angluin, Christos H. Papadimitriou, Joseph M. Hellerstein, and Avi

Silberschatz. Learning and verifying quantified boolean queries by example. In Proceedings of
the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS 2013, New York, NY, USA, June 22–27, 2013, pages 49–60. ACM, 2013. doi:10.1145/
2463664.2465220.

2 Howard Aizenstein, Tibor Hegedüs, Lisa Hellerstein, and Leonard Pitt. Complexity theoretic
hardness results for query learning. Comput. Complex., 7(1):19–53, 1998. doi:10.1007/
PL00001593.

3 Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and Wang Chiew Tan. Characterizing
schema mappings via data examples. ACM Trans. Database Syst., 36(4):23:1–23:48, 2011.
doi:10.1145/2043652.2043656.

4 Vikraman Arvind, Johannes Köbler, and Wolfgang Lindner. Parameterized learnability of
k-juntas and related problems. In Algorithmic Learning Theory, 18th International Conference,
ALT 2007, Sendai, Japan, October 1–4, 2007, volume 4754 of Lecture Notes in Computer
Science, pages 120–134. Springer, 2007. doi:10.1007/978-3-540-75225-7_13.

5 Pablo Barceló, Alexander Baumgartner, Víctor Dalmau, and Benny Kimelfeld. Regularizing
conjunctive features for classification. J. Comput. Syst. Sci., 119:97–124, 2021. doi:10.1016/
j.jcss.2021.01.003.

6 Pablo Barceló and Miguel Romero. The complexity of reverse engineering problems for
conjunctive queries. In 20th International Conference on Database Theory, ICDT 2017,
Venice, Italy, March 21–24, 2017, volume 68 of LIPIcs, pages 7:1–7:17. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICDT.2017.7.

7 Steffen van Bergerem. Learning concepts definable in first-order logic with counting. In 34th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC,
Canada, June 24–27, 2019, pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.8785811.

8 Steffen van Bergerem. Descriptive Complexity of Learning. PhD thesis, RWTH Aachen
University, Germany, 2023. doi:10.18154/RWTH-2023-02554.

9 Steffen van Bergerem, Martin Grohe, and Martin Ritzert. On the parameterized complexity
of learning first-order logic. In PODS 2022: International Conference on Management of
Data, Philadelphia, PA, USA, June 12–17, 2022, pages 337–346. ACM, 2022. doi:10.1145/
3517804.3524151.

10 Steffen van Bergerem, Martin Grohe, and Nina Runde. The parameterized complexity of
learning monadic second-order logic, 2023. doi:10.48550/arXiv.2309.10489.

11 Steffen van Bergerem and Nicole Schweikardt. Learning concepts described by weight aggrega-
tion logic. In 29th EACSL Annual Conference on Computer Science Logic, CSL 2021, Ljubljana,
Slovenia (Virtual Conference), January 25–28, 2021, volume 183 of LIPIcs, pages 10:1–10:18.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CSL.2021.10.

12 Anselm Blumer, A. Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability and
the Vapnik-Chervonenkis dimension. J. ACM, 36(4):929–965, October 1989. doi:10.1145/
76359.76371.

https://doi.org/10.1145/2463664.2465220
https://doi.org/10.1145/2463664.2465220
https://doi.org/10.1007/PL00001593
https://doi.org/10.1007/PL00001593
https://doi.org/10.1145/2043652.2043656
https://doi.org/10.1007/978-3-540-75225-7_13
https://doi.org/10.1016/j.jcss.2021.01.003
https://doi.org/10.1016/j.jcss.2021.01.003
https://doi.org/10.4230/LIPIcs.ICDT.2017.7
https://doi.org/10.1109/LICS.2019.8785811
https://doi.org/10.18154/RWTH-2023-02554
https://doi.org/10.1145/3517804.3524151
https://doi.org/10.1145/3517804.3524151
https://doi.org/10.48550/arXiv.2309.10489
https://doi.org/10.4230/LIPIcs.CSL.2021.10
https://doi.org/10.1145/76359.76371
https://doi.org/10.1145/76359.76371

S. van Bergerem, M. Grohe, and N. Runde 8:17

13 Angela Bonifati, Radu Ciucanu, and Aurélien Lemay. Learning path queries on graph databases.
In Proceedings of the 18th International Conference on Extending Database Technology, EDBT
2015, Brussels, Belgium, March 23–27, 2015, pages 109–120. OpenProceedings.org, 2015.
doi:10.5441/002/edbt.2015.11.

14 Angela Bonifati, Radu Ciucanu, and Slawek Staworko. Learning join queries from user
examples. ACM Trans. Database Syst., 40(4):24:1–24:38, 2016. doi:10.1145/2818637.

15 Angela Bonifati, Ugo Comignani, Emmanuel Coquery, and Romuald Thion. Interactive
mapping specification with exemplar tuples. ACM Trans. Database Syst., 44(3):10:1–10:44,
2019. doi:10.1145/3321485.

16 Cornelius Brand, Robert Ganian, and Kirill Simonov. A parameterized theory of PAC
learning. In Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-
Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC,
USA, February 7–14, 2023, pages 6834–6841. AAAI Press, 2023. doi:10.1609/aaai.v37i6.
25837.

17 Balder ten Cate and Víctor Dalmau. Conjunctive queries: Unique characterizations and
exact learnability. In 24th International Conference on Database Theory, ICDT 2021, Nicosia,
Cyprus, March 23–26, 2021, volume 186 of LIPIcs, pages 9:1–9:24. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ICDT.2021.9.

18 Balder ten Cate, Víctor Dalmau, and Phokion G. Kolaitis. Learning schema mappings. ACM
Trans. Database Syst., 38(4):28:1–28:31, 2013. doi:10.1145/2539032.2539035.

19 Balder ten Cate, Phokion G. Kolaitis, Kun Qian, and Wang-Chiew Tan. Active learning of
GAV schema mappings. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, Houston, TX, USA, June 10–15, 2018, pages 355–368.
ACM, 2018. doi:10.1145/3196959.3196974.

20 Adrien Champion, Tomoya Chiba, Naoki Kobayashi, and Ryosuke Sato. ICE-based refinement
type discovery for higher-order functional programs. J. Autom. Reason., 64(7):1393–1418,
2020. doi:10.1007/s10817-020-09571-y.

21 William W. Cohen and C. David Page Jr. Polynomial learnability and inductive logic
programming: Methods and results. New Gener. Comput., 13(3&4):369–409, December 1995.
doi:10.1007/BF03037231.

22 Derek G. Corneil and Udi Rotics. On the relationship between clique-width and treewidth.
SIAM J. Comput., 34(4):825–847, 2005. doi:10.1137/S0097539701385351.

23 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150,
2000. doi:10.1007/s002249910009.

24 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discret.
Appl. Math., 101(1-3):77–114, 2000. doi:10.1016/S0166-218X(99)00184-5.

25 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan. Horn-
ICE learning for synthesizing invariants and contracts. Proc. ACM Program. Lang.,
2(OOPSLA):131:1–131:25, 2018. doi:10.1145/3276501.

26 Jörg Flum and Martin Grohe. Parameterized complexity theory. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

27 Martin Fürer. Multi-clique-width. In 8th Innovations in Theoretical Computer Science
Conference, ITCS 2017, Berkeley, CA, USA, January 9–11, 2017, volume 67 of LIPIcs, pages
14:1–14:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPICS.
ITCS.2017.14.

28 Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. ICE: A robust framework
for learning invariants. In Computer Aided Verification - 26th International Conference,
CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
18–22, 2014, volume 8559 of Lecture Notes in Computer Science, pages 69–87. Springer, 2014.
doi:10.1007/978-3-319-08867-9_5.

CSL 2025

https://doi.org/10.5441/002/edbt.2015.11
https://doi.org/10.1145/2818637
https://doi.org/10.1145/3321485
https://doi.org/10.1609/aaai.v37i6.25837
https://doi.org/10.1609/aaai.v37i6.25837
https://doi.org/10.4230/LIPIcs.ICDT.2021.9
https://doi.org/10.1145/2539032.2539035
https://doi.org/10.1145/3196959.3196974
https://doi.org/10.1007/s10817-020-09571-y
https://doi.org/10.1007/BF03037231
https://doi.org/10.1137/S0097539701385351
https://doi.org/10.1007/s002249910009
https://doi.org/10.1016/S0166-218X(99)00184-5
https://doi.org/10.1145/3276501
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.4230/LIPICS.ITCS.2017.14
https://doi.org/10.4230/LIPICS.ITCS.2017.14
https://doi.org/10.1007/978-3-319-08867-9_5

8:18 The Parameterized Complexity of Learning Monadic Second-Order Logic

29 Georg Gottlob and Pierre Senellart. Schema mapping discovery from data instances. J. ACM,
57(2):6:1–6:37, 2010. doi:10.1145/1667053.1667055.

30 Émilie Grienenberger and Martin Ritzert. Learning definable hypotheses on trees. In 22nd
International Conference on Database Theory, ICDT 2019, Lisbon, Portugal, March 26–
28, 2019, volume 127 of LIPIcs, pages 24:1–24:18. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.ICDT.2019.24.

31 Martin Grohe, Christof Löding, and Martin Ritzert. Learning MSO-definable hypotheses
on strings. In International Conference on Algorithmic Learning Theory, ALT 2017, Kyoto
University, Kyoto, Japan, October 15–17, 2017, volume 76 of Proceedings of Machine Learning
Research, pages 434–451. PMLR, October 2017. ISSN: 2640-3498. URL: https://proceedings.
mlr.press/v76/grohe17a.html.

32 Martin Grohe and Martin Ritzert. Learning first-order definable concepts over structures
of small degree. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavík, Iceland, June 20–23, 2017, pages 1–12. IEEE, June 2017. doi:
10.1109/LICS.2017.8005080.

33 Martin Grohe and György Turán. Learnability and definability in trees and similar structures.
Theory Comput. Syst., 37(1):193–220, January 2004. doi:10.1007/s00224-003-1112-8.

34 David Haussler. Learning conjunctive concepts in structural domains. Mach. Learn., 4:7–40,
1989. doi:10.1007/BF00114802.

35 David Haussler. Decision theoretic generalizations of the PAC model for neural net and
other learning applications. Inf. Comput., 100(1):78–150, 1992. doi:10.1016/0890-5401(92)
90010-D.

36 Kouichi Hirata. On the hardness of learning acyclic conjunctive queries. In Algorithmic
Learning Theory, 11th International Conference, ALT 2000, Sydney, Australia, December
11–13, 2000, volume 1968 of Lecture Notes in Computer Science, pages 238–251. Springer,
2000. doi:10.1007/3-540-40992-0_18.

37 Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational
Learning Theory. MIT Press, 1994. URL: https://mitpress.mit.edu/books/
introduction-computational-learning-theory.

38 Benny Kimelfeld and Christopher Ré. A relational framework for classifier engineering. ACM
Trans. Database Syst., 43(3):11:1–11:36, 2018. doi:10.1145/3268931.

39 Yuanzhi Li and Yingyu Liang. Learning mixtures of linear regressions with nearly optimal
complexity. In Conference On Learning Theory, COLT 2018, Stockholm, Sweden, July 6–9,
2018, volume 75 of Proceedings of Machine Learning Research, pages 1125–1144. PMLR, 2018.
URL: http://proceedings.mlr.press/v75/li18b.html.

40 Christof Löding, P. Madhusudan, and Daniel Neider. Abstract learning frameworks for
synthesis. In Tools and Algorithms for the Construction and Analysis of Systems - 22nd
International Conference, TACAS 2016, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2–8,
2016, volume 9636 of Lecture Notes in Computer Science, pages 167–185. Springer, 2016.
doi:10.1007/978-3-662-49674-9_10.

41 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.
Adaptive computation and machine learning. MIT Press, 2nd edition, 2018.

42 Stephen H. Muggleton. Inductive logic programming. New Gener. Comput., 8(4):295–318,
February 1991. doi:10.1007/BF03037089.

43 Stephen H. Muggleton and Luc De Raedt. Inductive logic programming: Theory and methods.
J. Log. Program., 19/20:629–679, 1994. doi:10.1016/0743-1066(94)90035-3.

44 Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width. J. Comb.
Theory, Ser. B, 96(4):514–528, 2006. doi:10.1016/j.jctb.2005.10.006.

45 Norbert Sauer. On the density of families of sets. J. Comb. Theory, Ser. A, 13(1):145–147,
1972. doi:10.1016/0097-3165(72)90019-2.

https://doi.org/10.1145/1667053.1667055
https://doi.org/10.4230/LIPIcs.ICDT.2019.24
https://proceedings.mlr.press/v76/grohe17a.html
https://proceedings.mlr.press/v76/grohe17a.html
https://doi.org/10.1109/LICS.2017.8005080
https://doi.org/10.1109/LICS.2017.8005080
https://doi.org/10.1007/s00224-003-1112-8
https://doi.org/10.1007/BF00114802
https://doi.org/10.1016/0890-5401(92)90010-D
https://doi.org/10.1016/0890-5401(92)90010-D
https://doi.org/10.1007/3-540-40992-0_18
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://doi.org/10.1145/3268931
http://proceedings.mlr.press/v75/li18b.html
https://doi.org/10.1007/978-3-662-49674-9_10
https://doi.org/10.1007/BF03037089
https://doi.org/10.1016/0743-1066(94)90035-3
https://doi.org/10.1016/j.jctb.2005.10.006
https://doi.org/10.1016/0097-3165(72)90019-2

S. van Bergerem, M. Grohe, and N. Runde 8:19

46 Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From Theory to
Algorithms. Cambridge University Press, Cambridge, 2014. doi:10.1017/CBO9781107298019.

47 Saharon Shelah. A combinatorial problem: stability and order for models and theories in
infinitary languages. Pacific Journal of Mathematics, 41(1):247–261, 1972. doi:10.2140/pjm.
1972.41.247.

48 Robert H. Sloan, Balázs Szörényi, and György Turán. Learning Boolean functions with queries.
In Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pages
221–256. Cambridge University Press, 2010. doi:10.1017/cbo9780511780448.010.

49 Slawek Staworko and Piotr Wieczorek. Learning twig and path queries. In 15th International
Conference on Database Theory, ICDT 2012, Berlin, Germany, March 26–29, 2012, pages
140–154. ACM, 2012. doi:10.1145/2274576.2274592.

50 Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, November
1984. doi:10.1145/1968.1972.

51 Vladimir Vapnik. Principles of risk minimization for learning theory. In Advances in Neural
Information Processing Systems 4, [NIPS Conference, Denver, Colorado, USA, December 2–5,
1991], pages 831–838, 1991. URL: https://proceedings.neurips.cc/paper_files/paper/
1991/file/ff4d5fbbafdf976cfdc032e3bde78de5-Paper.pdf.

52 He Zhu, Stephen Magill, and Suresh Jagannathan. A data-driven CHC solver. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2018, Philadelphia, PA, USA, June 18–22, 2018, pages 707–721. ACM, 2018. doi:
10.1145/3192366.3192416.

CSL 2025

https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.2140/pjm.1972.41.247
https://doi.org/10.2140/pjm.1972.41.247
https://doi.org/10.1017/cbo9780511780448.010
https://doi.org/10.1145/2274576.2274592
https://doi.org/10.1145/1968.1972
https://proceedings.neurips.cc/paper_files/paper/1991/file/ff4d5fbbafdf976cfdc032e3bde78de5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1991/file/ff4d5fbbafdf976cfdc032e3bde78de5-Paper.pdf
https://doi.org/10.1145/3192366.3192416
https://doi.org/10.1145/3192366.3192416

On Homogeneous Models of Fluted Languages
Daumantas Kojelis # Ñ

Department of Computer Science, University of Manchester, UK

Abstract
We study the fluted fragment of first-order logic which is often viewed as a multi-variable non-guarded
extension to various systems of description logics lacking role-inverses. In this paper we show that
satisfiable fluted sentences (even under reasonable extensions) admit special kinds of “nice” models
which we call globally/locally homogeneous. Homogeneous models allow us to simplify methods for
analysing fluted logics with counting quantifiers and establish a novel result for the decidability of
the (finite) satisfiability problem for the fluted fragment with periodic counting. More specifically,
we will show that the (finite) satisfiability problem for the language is Tower-complete. If only two
variable are used, computational complexity drops to NExpTime-completeness. We supplement
our findings by showing that generalisations of fluted logics, such as the adjacent fragment, have
finite and general satisfiability problems which are, respectively, Σ0

1- and Π0
1-complete. Additionally,

satisfiability becomes Σ1
1-complete if periodic counting quantifiers are permitted.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic

Keywords and phrases Fluted Fragment, Fluted Logic, Fluted Fragment with Periodic Counting,
Adjacent Fragment, Adjacent Fragment with Counting, Adjacent Fragment with Periodic Counting,
Counting Quantifiers, Periodic Counting Quantifiers, Decidable Fragments of First-Order Logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.9

Funding This work is supported by the NCN grant 2018/31/B/ST6/03662.

Acknowledgements The author would like to thank Dr. Ian Pratt-Hartmann and Dr. Bartosz Jan
Bednarczyk for their valuable feedback.

1 Introduction

The fluted fragment (denoted FL) is a fragment of first-order logic in which, roughly
put, variables appear in predicates following the order in which they were quantified. For
illustrative purposes, we translate the sentence “Every conductor nominates their favorite
soloist to play at every concert” into this language as follows:

∀x1

(
cond(x1) → ∃x2

(
solo(x2) ∧ fav(x1, x2) ∧ ∀x3(conc(x3) → nom(x1, x2, x3))

))
. (1)

As a non-example, the sentences axiomatising transitivity, symmetry and reflexivity of a
relation are not in the fluted fragment.

The fluted fragment is a member of argument-sequence logics – a family of decidable (in
terms of satisfiability) fragments of first-order logic which also includes the ordered [11, 13],
forward [2] and adjacent [4] fragments. The fluted fragment in particular is decidable in
terms of satisfiability even in the presence of counting quantifiers [19] or a distinguished
transitive relation [22]. Surprisingly, the satisfiability problem for FL under a combination
of the two not only retains decidability but also has the finite model property [24]. We refer
the reader to [23] for a survey.

In this paper we will mostly be concerned with what we call the fluted fragment with
periodic counting (denoted FLPC). We remark that periodic counting quantifiers generalise
standard (threshold) counting quantifiers which have been an object of intensive study as an
extension for the fluted fragment in the past few years [19, 24]. Under this new formalism,

© Daumantas Kojelis;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 9; pp. 9:1–9:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daumantas.kojelis@manchester.ac.uk
https://daumantaskojelis.github.io/
https://orcid.org/0000-0002-1632-9498
https://doi.org/10.4230/LIPIcs.CSL.2025.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 On Homogeneous Models of Fluted Languages

we are allowed to write formulas requesting an even number of existential witnesses. As an
example, we can express sentences as “Every orchestra hires an even number of people to
play first violin” in our language (see (2)).

The origins of flutedness trace back to the works of W. V. Quine [26]. It is, however, the
definition given by W. C. Purdy (in [25]) that has become widespread and will be the one
we use. The popularity of Purdy’s idea of flutedness is not without cause, at least when
keeping the field of description logics in mind. Indeed, after a routine translation, formulas
of the description logic ALC are contained in the two-variable sub-fragment of FLPC. This
is even the case when ALC is augmented with role hierarchies, nominals and/or cardinality
restrictions (possibly with modulo operations). We refer the reader to [12] for more details.
In terms of expressive power, FLPC closely parallels ALCSCC – a new formalism with
counting constrains expressible in quantifier-free Boolean algebra with Presburger arithmetic
(see [16, 1]). Thus, noting that the guarded fragment with at least three variables becomes
undecidable under counting extensions [8], and that the guarded fluted fragment has “nice”
model theoretic properties such as Craig interpolation [3], fluted languages emerge as perfect
candidates for generalising description logics in a multi-variable context.

In Sections 3 and 4 we establish that classes of models of satisfiable FLPC-sentences
always contain a “nice” structure in which elements behave (in a sense that we will make clear)
homogeneously. Utilising this behaviour we will show that the fluted fragment extended with
periodic counting quantifiers has a decidable satisfiability problem. Intriguingly, even though
periodic counting quantifiers generalise standard counting quantifiers, our methodology
allows us to avoid Presburger quantification, which was required to establish decidability of
satisfiability for FL with standard counting [19].

In section 5 we show that the satisfiability problems for the fluted fragment with counting
extensions become undecidable when minimal syntactic relaxations are allowed. More
precisely, the section will culminate with a result showing that the finite satisfiability problem
for the 3-variable adjacent fragment with counting is Σ0

1-complete. Additionally, the general
satisfiability problem will be shown to be Π0

1-complete when 4 variables are used, and
Σ1

1-complete if periodic counting is allowed. Denoting the adjacent fragment as AF , we
provide a brief survey of complexity and undecidability standings in Table 1.

The work in this paper is closely related to [6] in which decidability of satisfiability
is established for the two-variable fragment with periodic counting (denoted FO2

Pres) but
without a sharp complexity-theoretic bound. Our homogeneity conditions, which stem from
lack of inverse relations in fluted logics, allow us to establish NExpTime-completeness for
both the finite and general satisfiability problems of FLPC2.

Table 1 Complexity of finite (left-hand side of “/”) and general (right-hand side of “/”) satisfiability
problems for languages (in the top row) under quantifier extensions (on the left-most column). All
complexity classes are in regard to time. C-c (C-h) stands for complete (hard). Here k ≥ 4 and ℓ ≥ 3.

FL2 FLℓ AF3 AFk

standard NExp-c [9] (ℓ−2)-NExp [21] NExp-c [4] (k−2)-NExp [4]
counting NExp-c [18] (ℓ−1)-NExp [19] Σ0

1-c/∆0
1 Th 11/claim Σ0

1-c/Π0
1-c Th 11/15

periodic NExp-c Th 5 (ℓ−1)-NExp Th 9 Σ0
1-c/Σ0

1-h Th 11 Σ0
1-c/Σ1

1-c Th 11/15

D. Kojelis 9:3

2 Preliminaries

We use N to denote the set of integers {0, 1, 2, . . . }, and N∗ to denote N along with the first
infinite cardinal; i.e. N∗ = N ∪ {ℵ0}. By picking some n, p ∈ N we write n+p for the linear
set {n+ ip | i ∈ N}. In the extended integers N∗, the cardinal ℵ0 is the maximum element
under the canonical ordering “<” and

0 · ℵ0 = ℵ0 · 0 = 0;
n+ ℵ0 = ℵ0 + n = ℵ0 for all n ∈ N∗; and
n · ℵ0 = ℵ0 · n = ℵ0 for all n ∈ N∗ \ {0}.

A linear Diophantine inequation is an expression of the form a1v1 + · · · + anvn + b ▷◁

c1v1+· · ·+cnvn+d, where (ai)n
i=1, b, (ci)n

i=1, d are constant values taken form N∗, v̄ = v1, . . . vn

is a vector of variables, and “▷◁” is any of the relations “=, ̸=,≤, <,≥, >” (each interpreted
as one would assume). It is known that when the cardinal ℵ0 is disallowed, a solution for a
set of such inequations may be found in NPTime [17]. The picture does not change when ℵ0
is permitted as a solution and/or constant. Indeed, we may reduce the problem of finding a
solution over N∗ to that of finding it over N as follows. First guess which variables should
be mapped to ℵ0 and which should have a finite value. Then, check that each inequation
featuring a variable assigned ℵ0 holds and discard them. What will be left is a system of
inequations with constants in N and in variables assumed to be finite. See [20, Ch 7.4] for
greater detail. We will allow systems of inequations to contain disjunctions.

By a word ā ∈ An we mean a tuple ā = a1 · · · an, where ai ∈ A for each i, 1 ≤ i ≤ n.
In case n = 1, we often write a instead of ā. By ā−1 we mean the reversal of ā; i.e.
ā−1 = an · · · a1. If ā and b̄ are words we write āb̄ for the concatenation of the two. We use
the terms “tuple” and “word” interchangeably.

Now, take some structure A and an i-tuple ā of elements from A. Suppose B = {b ∈ A |
A, āb |= φ} for some first-order formula φ(x1, . . . , xi+1). Fixing n, p ∈ N we extend the syntax
of first-order logic with (threshold) counting quantifiers ∃[≥n] and periodic counting quantifier
∃[n+p]. Semantically, A, ā |= ∃[≥n]xi+1φ if and only if |B| ≥ n. Similarly, A, ā |= ∃[n+p]xi+1φ

if and only if |B| ∈ n+p. We refrain from further generalisation to ultimately periodic counting
quantifier ∃[n+p1

1 ∪···∪n
+pk
k

] (as in [6]) as they can be expressed as a disjunction of formulas
using periodic counting quantifiers ∃[n+p1

1]xi+1φ ∨ · · · ∨ ∃[n+pk
k

]xi+1φ. Thus, a sentence such
as “Every orchestra hires an even number of people to play first violin” may be written in a
language with periodic counting:

∀x1

(
orch(x1) → ∃[0+2]x2

(
pers(x2)∧∃x3(1st_viol(x3)∧hires_to_play(x1, x2, x3))

))
. (2)

Formally, the fluted fragment with periodic counting is the union of sets of formulas
FLPC[ℓ] defined by simultaneous induction as follows:
(i) any atom r(xk, . . . , xℓ), where xk, . . . , xℓ is a contiguous subsequence of x1, x2, . . .

and r is a predicate of arity ℓ−k+1, is in FLPC[ℓ];
(ii) FLPC[ℓ] is closed under Boolean combinations;
(iii) if φ ∈ FLPC[ℓ+1], then ∃[n+p]xℓ+1φ is in FLPC[ℓ] for every n, p ∈ N.
We write FLPC =

⋃
ℓ≥0 FLPC[ℓ] for the set of all fluted formulas with periodic counting

and define the ℓ-variable fluted fragment with periodic counting to be the set FLPCℓ :=
FLPC ∩ FOℓ. (Here FOℓ is the set of first-order formulas that do not use more than ℓ

variables). We will implicitly restrict attention to signatures σ ∪ {=} which feature no
function and/or constant symbols, and where “=” is always interpreted as the canonical
equality relation. Lastly, we use ∀xφ interchangeably with ∃[0+0]x ¬φ whenever convenient.

CSL 2025

9:4 On Homogeneous Models of Fluted Languages

Variables in fluted logics convey no meaningful information. Indeed, since the arity of
every predicate in σ∪{=} is fixed and each atom features a suffix of the variable quantification
order, we may employ what we call variable-free notation. As an example, formulas (1) and
(2) may be (respectively) written as

∀
(
cond → ∃

(
solo ∧ fav ∧ ∀(conc → nom)

))
, (3)

∀
(
orch → ∃[0+2]

(
person ∧ ∃(1st_viol ∧ hires_to_play)

))
(4)

without ambiguity (up to a shift of variable indices). Writing ∀ℓ for ∀x1 · · · ∀xℓ, we will
employ variable-free notation extensively throughout subsequent sections.

Fix a first-order formula φ with periodic counting quantifiers. We assume that numeric
values are encoded in binary and write ||φ|| for the number of symbols used in φ. We point
out that the signature of φ (which we write as sig(φ) for brevity) is no larger than ||φ||.

Now, let φ be a formula in FLPCℓ+1. We say that φ is in normal-form if it takes the
following shape

∧
r∈R

∀ℓ
(
αr → ∃[n+pr

r]γr

)
∧

∧
t∈T

∀ℓ
(
βt → ¬∃[n+pt

t]δt

)
, (5)

where R, T are sets of indices, each αr, βt is a quantifier-free formula in ℓ variables, each
γr, δt is a quantifier-free formula in ℓ+1 variables, and each n+pr

r , n+pt

t is a linear set. Using
standard rewriting techniques we prove the following in Appendix A.

▶ Lemma 1. Suppose φ is an FLPCℓ+1-sentence. Then, we may compute, in polynomial
time, an equisatisfiable normal-form FLPCℓ+1-sentence ψ.

Notice that the negation before the periodic counting quantifier in the second conjunct of (5)
is not moved-inwards. This is done deliberately so as to avoid computing complements of
linear sets, which may be of exponential size as a function of ||φ||.

Now, let A be a structure over a finite signature σ ∪ {=}. We say that an atom is
(ℓ+1)-fluted if it features a suffix of x1, . . . , xℓ+1 as arguments. The fluted atomic (ℓ+1)-type
τ of ab̄c ∈ Aℓ+1 (denoted ftpA

ℓ+1(ab̄c)) is then the set of (ℓ+1)-fluted (possibly negated) atoms
over σ ∪ {=} with arity no greater than ℓ+1 that are satisfied by ab̄c in A. We invite the
reader to view the tuple ab̄ as emitting τ , and b̄c as absorbing τ . Write τ ↾[2,ℓ+1] for the
fluted ℓ-type π obtained by deleting entries in τ of arity greater than ℓ and decrementing
variable indices by 1. We say that a fluted ℓ-type π is an endpoint of a fluted (ℓ+1)-type τ if
τ ↾[2,ℓ+1]= π. We define FTPσ

ℓ+1 to be the set of all fluted (ℓ+1)-types over σ ∪ {=}.
The fluted ℓ-profile of ab̄ ∈ Aℓ (denoted fprAℓ (ab̄)) is a function ρ mapping τ ∈ FTPσ

ℓ+1
to the number of times ab̄ emits τ . Formally, ρ(τ) = |{c ∈ A | ftpA

i+1(ab̄c) = τ}|. If φ is a
quantifier-free FLPCℓ+1-formula, we write ρ |= ∃[n+p]φ just in case

∑τ |=φ
τ∈FTPσ

ℓ+1
ρ(τ) ∈ n+p.

Clearly, ρ |= ∃[n+p]φ if and only if A, ab̄ |= ∃[n+p]φ.
In the sequel we will assume that all structures are countable. This comes with no loss

of generality as FLPC is subsumed by the countable fragment of infinitary logic Lω1,ω; a
language for which the downward Löwenheim-Skolem Theorem holds (folklore, see [15, p. 69]).
Note that, in FLPC, the finite model property fails as ¬∃[0+1]⊤ is an axiom of infinity.

D. Kojelis 9:5

3 The Two-Variable Sub-fragment

In this section we restrict attention to the two-variable fluted fragment with periodic counting.
To achieve decidability of (finite) satisfiability we first specify what kind of “nice” models we
will be looking for. Take any σ-structure A and π ∈ FTPσ

1 . For convenience, we write Aπ for
the set of all elements a ∈ A with ftpA(a) = π. We say that π is globally homogeneous in A

if fprA(a) = fprA(b) for each a, b ∈ Aπ. That is to say, π is globally homogeneous in A if, for
each τ ∈ FTPσ

2 , the number of fluted 2-types τ emitted is the same for each element in Aπ.
The structure A is globally homogeneous if each π ∈ FTPσ

1 is globally homogeneous in A.
For the remainder of the section fix some normal-form FLPC2-sentence φ. We claim

that if φ is a satisfiable, then it is satisfiable in a globally homogeneous model. To see this,
take some structure A |= φ and a pair of elements cd ∈ A2 that realised the fluted 2-type τ
in A. Since τ consists of fluted formulas, it does not feature atoms of the form p(x1) and
p(x2, x1). Referencing τ only, we lack information to deduce what formulas are satisfied by
the pair dc in A. On the other hand, A, cd |= ψ if and only if τ |= ψ for each quantifier-free
FLPC2-formula ψ. Thus, if we were to in any way alter the fluted 2-type of dc in A, the set
of quantifier-free FLPC2-formulas satisfied by cd in A would not change.

Taking a step back, take any π ∈ FTPσ
1 and recall that Aπ ⊆ A is the set of all elements

realising the 1-type π in A. We redefine 2-types emitted by elements of Aπ in A in such a way
that makes π globally homogeneous in the rewiring of A. Let us fix any a ∈ Aπ and write
ρ = fprA(a). The element a and profile ρ picked will serve as an “example” of how the rest
of Aπ should form fluted 2-types with other elements of the model. Taking any b ∈ Aπ \ {a}
and c ∈ A \ {a, b} we see that it is impossible to prohibit b from emitting the fluted 2-type
ftpA(ac) to c via any normal-form FLPC2-formula. We thus allow b to impersonate a in A

by rewiring the fluted 2-type ftpA(bc) to be ftpA(ac) for each c ∈ A \ {a, b} and, additionally,
by resetting ftpA(ba) to be the 2-type ftpA(ab) and ftpA(bb) to be ftpA(aa). Clearly, only
fluted 2-types emitted by b were reconsidered in this procedure, thus pairs in (A \ {b}) ×A

satisfy the same quantifier-free FLPC2-formulas as before. To see that A still models φ we
need only show that b does not violate αr → ∃[n+pr

r]γr and βt → ¬∃[n+pt
t]δt for each r ∈ R

and t ∈ T . By our rewiring procedure, we have that fprA(a) = ρ = fprA(b). Thus,

A, a |= ∃[n+p]ψ ⇐⇒ ρ |= ∃[n+p]ψ ⇐⇒ A, b |= ∃[n+p]ψ for quantifier-free ψ ∈ FLPC2.

Having already argued that A, a |= αr → ∃[n+pr
r]γr and A, a |= βt → ¬∃[n+pt

t]δt for each
r ∈ R and t ∈ T we therefore conclude that A |= φ.

Since the only 2-types redefined are those emitted by b, we can run this construction in
parallel for each element in Aπ \ {a}. Clearly, this renders π globally homogeneous in the
rewired model. Since elements in A \Aπ are left untouched by our rewiring, we can repeat
this procedure for each π ∈ FTPσ

1 thus proving the following:

▶ Lemma 2. Suppose φ is a satisfiable normal-form FLPC2-sentence. Then, φ is satisfiable
in a globally homogeneous model.

In globally homogeneous structures elements realising the same fluted 1-type are, in a
sense, stripped away of their individuality as they all realise the same fluted 1-profile. When
the globally homogeneous structure A is clear from context, we can unambiguously write ρπ

for the fluted 1-profile realised by each element of Aπ (for π ∈ FTPσ
1).

When considering the (finite) satisfiability problem for normal-form FLPC2-sentences
such as φ, we will confine ourselves to the search of globally homogeneous models. More
precisely, we will produce a system of linear Diophantine inequations Ψ that has a solution

CSL 2025

9:6 On Homogeneous Models of Fluted Languages

over N∗ if and only if φ is satisfiable in a globally homogeneous model. For this purpose, let
(xπ)π∈FTPσ

1
, (yπ,τ)τ∈FTPσ

2
π∈FTPσ

1
, (iπ,r)r∈R

π∈FTPσ
1
, and (jπ,t)t∈T

π∈FTPσ
1

be sequences of variables. Intuitively,
the value assigned to xπ will represent the number of elements realising the fluted 1-type π;
yπ,τ – the number times the 2-type τ is emitted by an element realising π; and with iπ,r and
jπ,t acting as periodic counters for elements realising π when considering linear sets n+pr

r

and n+pt

t . To be more precise, when given a satisfying assignment for Ψ, we will build a
globally homogeneous A |= φ with

|Aπ| = xπ and ρπ(τ) = yπ,τ for each π ∈ FTPσ
1 and τ ∈ FTPσ

2 . (6)

On the other hand, we will have that any globally homogeneous model A |= φ gives rise to a
solution of Ψ with the following assignments for all π ∈ FTPσ

1 , τ ∈ FTPσ
2 , r ∈ R and t ∈ T :1

xπ:=|Aπ|; yπ,τ :=ρπ(τ); iπ,r:=
(τ ′|=γr∑

τ ′∈FTPσ
2

ρπ(τ ′)−nr

)
/pr; jπ,t:=

⌊(τ ′|=δt∑
τ ′∈FTPσ

2

ρπ(τ ′)−nt

)
/pt

⌋
. (7)

We will proceed first by showing that the latter assignment satisfies our (yet to be defined)
system of inequations Ψ := Ψ1 ∪ · · · ∪ Ψ6.

When considering any model A |= φ we have that the domain A =
⋃

π∈FTPσ
1
Aπ is

non-empty. The following is thus trivially satisfied by the assignment xπ := Aπ:{ ∑
π∈FTP1

xπ ≥ 1
}
. (Ψ1)

Additionally, picking any element a ∈ Aπ (for any π ∈ FTPσ
1) and picking any π′ ∈ FTPσ

π′ , we
have that the number of fluted 2-types emitted by a to Aπ′ must be |Aπ′ | = xπ′ . Assuming
that A is globally homogeneous, we may fixate on the fact that the shared profile ρπ of
π has exactly |Aπ′ | witnesses for fluted 2-types with the endpoint π′, or, more formally,∑τ↾[2,2]=π′

τ∈FTPσ
2

ρ(τ) = |Aπ′ |. Thus, the assignment yπ,τ := ρπ(τ) satisfies the following set of
inequations:

{
xπ ̸= 0 →

τ↾[2,2]=π′∑
τ∈FTPσ

2

yπ,τ = xπ′

∣∣∣ π, π′ ∈ FTPσ
1

}
. (Ψ2)

Of course, under the supposition that π |= αr for some r ∈ R and π ∈ FTPσ
1 such that

|Aπ| ≥ 1, we have that ρπ |= ∃[n+pr
r]γr. Clearly, k :=

∑τ |=γr

τ∈FTPσ
2
ρπ(τ) must be a member

of the linear set n+pr
r . Thus, there is a period counter iπ,r ∈ N such that k = nr+iπ,rpr.

Turning the equation around we get that iπ,r = (k−nr)/pr. Recalling that ρπ(τ) = yπ,τ for
all τ ∈ FTPσ

2 , we have that the following is satisfied by our assignments:

{
xπ ̸= 0 →

τ |=γr∑
τ∈FTPσ

2

yπ,τ = nr+iπ,rpr

∣∣∣ r ∈ R, π ∈ FTPσ
1 s.t. π |= αr

}
. (Ψ3)

On the other hand, supposing π |= βt for some t ∈ T and with π ∈ FTPσ
1 such that |Aπ| ≥ 1,

we have that ρπ ̸|= ∃[n+pt
t]δr, thus leaving k :=

∑τ |=γr

τ∈FTPσ
2
ρπ(τ) outside of the linear set n+pt

t .
Notice that this happens when the following conditions are met:

1 In case pr (resp. pt) is 0, we allow iπ,r (resp. jπ,t) to take any integer value.

D. Kojelis 9:7

1. k < nt; or
2. pt ̸= 0 and k > m for each m ∈ n+pt

t (which only happens when k = ℵ0); or
3. pt = 0 and k > nt; or
4. for some m ∈ n+pt

t we have m < k < m+ pt.
Note that the listed conditions are exhaustive. We translate the requirements 1–4 into four
functions Θ1, . . . ,Θ4 which map fluted 1-types paired with indices in T to linear equations.
The functions are then defined as follows:

Θ1(π, t) :=
∑τ |=δt

τ∈FTPσ
2
yπ,τ < nt,

Θ2(π, t) :=
∑τ |=δt

τ∈FTPσ
2
yπ,τ = ℵ0,

Θ3(π, t) := (pt = 0) ∧ (nt <
∑τ |=δt

τ∈FTPσ
2
yπ,τ),

Θ4(π, t) := nt + jπ,tpt <
∑τ |=δt

τ∈FTPσ
2
yπ,τ < nt + (jπ,t + 1)pt.

Since k adheres to at least one of the four conditions, we write the following clauses for
eligible fluted 1-types:{

xπ ̸= 0 →
∨

i∈[1,4]

Θi(π, t)
∣∣∣ t ∈ T and π ∈ FTPσ

1 such that π |= βt

}
. (Ψ4)

To verify that jπ,τ = ⌊(k − nt)/pt⌋ is indeed a satisfying assignment for Ψ4, we need only
consider case 4. For this assume that m < k < m+ pt for some m ∈ n+pt

t . We can thus write
m = nt + jpt. Since jπ,τ = ⌊(k − nt)/pt⌋, we conclude that jπ,τ = j thus satisfying Θ4(π, t).

Reflecting on the semantics of the equality predicate, we see that for any given π ∈ FTPσ
1

in any globally homogeneous model A |= φ there is exactly one τ ∈ FTPσ
2 such that τ

features the non-negated equality predicate and ρπ(τ) ̸= 0. More precisely, ρπ(τ) = 1 and
the endpoint of τ is π. We have that our assignment respects this condition and thus satisfies
the following inequations:{

yπ,τ = 0
∣∣∣ π ∈ FTPσ

1 , τ ∈ FTPσ
2 s.t. = ∈ τ, τ ↾[2,2] ̸= π

}
∪

{ =∈τ∑
τ∈FTPσ

2

yπ,τ = 1
∣∣∣ π ∈ FTPσ

1

}
. (Ψ5)

Finally, we forbid the periodic counters (iπ,r)r∈R
π∈FTPσ

1
and (jπ,t)t∈R

π∈FTPσ
1

from taking the value ℵ0:{
iπ,r, jπ,t < ℵ0

∣∣∣ π ∈ FTPσ
1 and r ∈ R, t ∈ T

}
. (Ψ6)

Putting everything together, we have engineered a system of equations Ψ = Ψ1 ∪ · · · ∪ Ψ6
that is satisfied by extracting relevant cardinalities (see (7)) from homogeneous models of φ.

▶ Lemma 3. Suppose A |= φ is a globally homogeneous model. Then, Ψ is satisfiable.

We now move on to the converse direction:

▶ Lemma 4. Suppose Ψ is satisfiable. Then, there is a globally homogeneous model A |= φ.

Proof. Suppose that Ψ has a satisfying assignment. To avoid notational clutter, we identify
the solution vectors of variables in Ψ as themselves. We will build a globally homogeneous
model A over the domain A =

⋃
π∈FTPσ

1
A′π, where A′π = {aπ,i | i ∈ [1, xπ]}. Intuitively, we

wish that elements of A′π realise the fluted 1-type π. We thus assign ftpA
1 (a) := π for all

a ∈ A′π. Recalling that Aπ is the set of all elements that realise the 1-type π in A, we have
that Aπ = A′π is of cardinality xπ as required by (6). By Ψ1, the domain is non-empty.

CSL 2025

9:8 On Homogeneous Models of Fluted Languages

Picking any π ∈ FTPσ
1 we now move on to the assignment of fluted 2-types. Take any

π′ ∈ FTPσ
1 and let S = {τ ∈ FTPσ

2 | τ ↾[2,2]= π′}, i.e. S is the set of all fluted 2-types
containing the fluted 1-type π′ as an endpoint. By Ψ2, we have that

∑
τ∈S yπ,τ = xπ′ , thus∑

τ∈S yπ,τ = |Aπ′ |. Now, pick some element a ∈ Aπ. In case π ̸= π′, equation Ψ5 prohibits
fluted 2-types that feature the (non-negated) equality literal. We set fluted 2-types between
a and elements of Aπ′ in any way that results in |{b ∈ Aπ′ | ftpA

2 (ab) = τ}| = yπ,τ for each
τ ∈ S (n.b. the exact configuration of fluted 2-types between a and elements of Aπ′ is
irrelevant as the fluted 2-type of ba for any b ∈ Aπ′ is not set in this process). In case π = π′

notice that by Ψ5 there is exactly one τ= ∈ S such that (i) = ∈ τ=, (ii) yπ,τ= ≥ 0, and with
(iii) τ= ↾[2,2]= π. By Ψ5 again, we have that yπ,τ= = 1. We therefore set the fluted 2-types
between a and Aπ \ {a} for each τ ∈ S \ {τ=} as in the case before and, additionally, specify
that ftpA

2 (aa) := τ=.
By repeating the fluted 2-type assignment for each element a ∈ A and fluted 1-type

π′ ∈ FTPσ
1 we are guaranteed that elements in Aπ (where π = ftpA(a)) realise the fluted

1-profile ρπ := {τ 7→ yπ,τ | τ ∈ FTPσ
2 } as required by (6). The resulting structure is clearly

globally homogeneous.
We now claim that the resulting structure is a model of φ. Indeed, take any a ∈ A

with π = ftpA
1 (a) and suppose π |= αr for some r ∈ R. Let S = {τ ∈ FTPσ

2 | τ |= γr}.
By equations Ψ3 and Ψ6, the sum

∑
τ∈S yπ,τ is a member of the linear set n+pr

r . Since
the element a is of fluted 1-type π, we have that it realises the profile ρπ in A. By our
construction, ρπ(τ) = yπ,τ for each τ ∈ FTPσ

2 . Thus, ρπ |= ∃[n+pr
r]γr which is equivalent to

A, a |= ∃[n+pr
r]γr as required.

On the other hand, suppose π |= βt for some t ∈ T . We claim that A, a ̸|= ∃[n+pt
t]δt. To

see this, let S be the set {τ ∈ FTPσ
2 | τ |= δt}. Writing k =

∑
τ∈S yπ,τ we take note of

equations Ψ4 and Ψ6, and conclude that one of the following conditions must be true:
1. k is smaller than the minimal element of n+pt

t ; or
2. n+pt

t ⊆ N and k = ℵ0; or
3. pt = 0 and k > nt; or
4. k is in between two consecutive elements of n+pt

t .
Whichever case it may be, we have that k ̸∈ n+pt

t . Again, recalling that ρπ(τ) = yπ,τ for each
τ ∈ FTPσ

2 , we conclude that ρπ ̸|= ∃[n+pt
t]δt which is equivalent to saying A, a ̸|= ∃[n+pt

t]δt. ◀

Given an FLPC2-sentence φ we present a decision procedure for the (finite) satisfiability
problem. Compute a normal-form formula ψ from φ and write the linear Diophantine
equations Ψ. Now, guess a solution vector z̄ which can be done in non-deterministic
polynomial time as a function of ||Ψ||. If z̄ is indeed a solution for Ψ, accept, otherwise,
reject. In the case of the finite satisfiability problem, prohibit ℵ0 from being a solution in Ψ.
Correctness of the procedure follows from the fact that, by Lemma 2, ψ if satisfiable then it
is satisfiable in a globally homogeneous model. Thus, by Lemma 3, if ψ is satisfiable, then Ψ
has a solution. On the other hand, by Lemma 4, if Ψ has a solution, then ψ is satisfiable.

Noting that the satisfiability problem for FL2 is NExpTime-hard [21], and that ||Ψ|| is
bounded by a polynomial function on the number of different fluted 1- and 2-types (of which
there are 2||φ|| many), we conclude the following:

▶ Theorem 5. The (finite) satisfiability problem of FLPC2 is NExpTime-complete.

D. Kojelis 9:9

4 More Than Two Variables

We now generalise our results on homogeneity and decidability of satisfiability for higher-arity
formulas of FLPC. Thus, throughout this section, we will be working in the (ℓ+1)-variable
sub-fragment of FLPC, where ℓ ≥ 2 is fixed.

Firstly, we lift our homogeneity conditions to the multivariable setting. Suppose A is
a σ-structure and take any (ℓ−1)-tuple b̄ from A and π ∈ FTPσ

ℓ . Let Aπ←b̄ be the set
{a ∈ A | ftpA(ab̄) = π}. We say that π is b̄-homogeneous in A if for each a, a′ ∈ Aπ←b̄

and all c ∈ A we have that ftpA(ab̄c) = ftpA(a′b̄c). That is to say, b̄c absorbs the same
fluted (ℓ+1)-type from each ℓ-tuple ab̄ that realises the fluted ℓ-type π. If each π ∈ FTPσ

ℓ

is b̄-homogeneous in A, then we say that the (ℓ−1)-tuple b̄ is homogeneous in A. Finally, if
each (ℓ−1)-tuple b̄ is homogeneous in A, then we say that A is locally ℓ-homogeneous.

When considering satisfiable normal-form FLPCℓ+1-sentences we can, without loss of
generality, confine ourselves to locally ℓ-homogeneous structures. To see this fix some normal-
form FLPCℓ+1-sentence φ and take b̄ ∈ Aℓ−1 and a, a′ ∈ Aπ←b̄. Proceeding similarly as
before Lemma 2 we see that the fluted (ℓ+1)-type of a′b̄c does not impact the satisfaction
of quantifier-free FLPCℓ+1-formulas by cb̄−1a′. Thus, redefining the fluted (ℓ+1)-types
emitted by a′b̄ will not alter the satisfaction of quantifier-free FLPCℓ+1-formulas by other
tuples. Notice again that it is impossible to prohibit ftpA(ab̄c) ̸= ftpA(a′b̄c) by a normal-form
formula. Thus, by setting ftpA(a′b̄c) := ftpA(ab̄c) for each c ∈ A and repeating the procedure
for each a′ ∈ Aπ←b̄ \ {a}, we will have that π is b̄-homogeneous in A. Clearly A |= φ as
the tuples rewired by this procedure (i.e. a′b̄ with a′ ∈ Aπ←b̄ \ {a}) now emit τ ∈ FTPσ

ℓ+1
to a given witness if and only if ab̄ does. The rewired tuples thus satisfy the same exact
FLPCℓ+1-formulas with at most 1 quantifier as ab̄ does. Repeating the procedure for all
π ∈ FTPσ

ℓ and b̄ ∈ Aℓ−1 we will have the following:

▶ Lemma 6. Suppose φ is a satisfiable normal-form FLPCℓ+1-sentence. Then, φ is satisfiable
in a locally ℓ-homogeneous model.

Using local ℓ-homogeneity coupled with variable reduction techniques prevalent in studies
of fluted logics (see [21]), we will establish a decidability result for the (finite) satisfiability
problem of FLPCℓ+1. More specifically, fixing a normal-form FLPCℓ+1-sentence φ we will
compute a normal-form FLPCℓ-sentence ψ that is satisfiable in structures holding just
enough information to build locally ℓ-homogeneous models for φ. To aid motivation, we fix
A to be any locally ℓ-homogeneous model of φ. We shall construct ψ whilst also expanding
A into A′ |= ψ. Note that the construction depends exclusively on the syntactic properties
of φ.

First, set A′ := A. Take (qπ)π∈FTPσ
ℓ

to be a sequence of fresh (ℓ−1)-ary predicate symbols.
In A′ we decorate (ℓ−1)-tuples b̄ over A with qπ just in case we have that Aπ←b̄ ≠ ∅. That
is to say, qA′

π remembers which (ℓ−1)-tuples can be extended (by appending an element to
the left) to realise the fluted ℓ-type π. It is clear that A′ models the following:∧

π∈FTPσ
ℓ

∀ℓ
(
π → qπ

)
. (ψ1)

Proceeding similarly, let (sπ,τ)τ∈FTPσ
ℓ+1

π∈FTPσ
ℓ

be a sequence of new ℓ-ary predicates. Intuitively,
we will have b̄c ∈ sA

′

π,τ if in A it is the case that b̄c absorbs the fluted (ℓ+1)-type τ emitted
from ab̄ for some a ∈ Aπ←b̄. Notice that, by local ℓ-homogeneity, if b̄c absorbs τ from some
ab̄ with a ∈ Aπ←b̄, then it absorbs τ from a′b̄ for all a′ ∈ Aπ←b̄. Thus, by our construction,
sπ,τ is the unique predicate amongst (sπ,τ ′)τ ′∈FTPσ

ℓ+1 satisfied by b̄c in A′. Clearly, A′ models:

CSL 2025

9:10 On Homogeneous Models of Fluted Languages

∧
π∈FTPσ

ℓ

∧
τ∈FTPσ

ℓ+1

∀ℓ
(
sπ,τ → τ ↾[2,ℓ+1]

)
∧

∧
π∈FTPσ

ℓ

∀ℓ−1
(
qπ → ∀

(∨
τ∈FTPσ

ℓ+1

sπ,τ ∧
τ ̸=τ ′∧

τ,τ ′∈FTPσ
ℓ+1

(¬sπ,τ ∨ ¬sπ,τ ′)
))
. (ψ2)

Again taking b̄ ∈ Aℓ−1 and any π ∈ FTPσ
ℓ suppose π |= αr for some r ∈ R. In

case Aπ←b̄ is non-empty (thus guaranteeing b̄ ∈ qA
′

π), we pick any a ∈ Aπ←b̄ and write
S = {c ∈ A | A, ab̄c |= γr}. Since π is b̄-homogeneous in A, the exact element in Aπ←b̄ we
pick has no effect on S. By our construction, S is then exactly the set of element c ∈ A

such that A′, b̄c |=
∨τ |=γr

τ∈FTPσ
ℓ+1

sπ,τ . Since |S| ∈ n+pr
r it is then immediate that A′ models the

following:

∧
r∈R

π|=αr∧
π∈FTPσ

ℓ

∀ℓ−1
(
qπ → ∃[n+pr

r]

τ |=γr∨
τ∈FTPσ

ℓ+1

sπ,τ

)
. (ψ3)

Similar observations follow whenever π |= βt for some t ∈ T . This time, however, the
cardinality of S = {c ∈ A | A, ab̄c |= δr} must be outside the set n+pr

r . Clearly, A′ models:

∧
t∈T

π|=βt∧
π∈FTPσ

ℓ

∀ℓ−1
(
qπ → ¬∃[n+pt

t]

τ |=δt∨
τ∈FTPσ

ℓ+1

sπ,τ

)
. (ψ4)

Writing ψ := ψ1 ∧ · · · ∧ ψ4 we have shown the following:

▶ Lemma 7. Suppose A |= φ is a locally ℓ-homogeneous model. Then, A can be extended to
a model A′ of ψ.

▶ Lemma 8. Suppose A′ |= ψ. Then, we can construct a locally ℓ-homogeneous model A+ of
φ over the same domain.

Proof. Supposing ψ is satisfiable we take any model A′. Now, let A− be the model A′

but with the predicates in (qπ)π∈FTPσ
ℓ

and (sπ,τ)τ∈FTPσ
ℓ+1

π∈FTPσ
ℓ

removed from the signature. We
proceed by expanding A− into a locally ℓ-homogeneous model A+ of the original sentence φ.

Fix b̄ ∈ Aℓ−1 and take some a ∈ A. Supposing that ftpA−

ℓ (ab̄) = π, by ψ1 we have that
A′, b̄ |= qπ. Taking any c ∈ A we observe that the conjuncts of ψ2 enforce the following:

if A′, b̄c |= sπ,τ for some τ ∈ FTPσ
ℓ+1, then b̄c can absorb the fluted (ℓ+1)-type τ ,

b̄c satisfies at least one of the predicates (sπ,τ)τ∈FTPσ
ℓ+1

, and
b̄c satisfies at most one of the predicates (sπ,τ)τ∈FTPσ

ℓ+1
.

We can then safely set ftpA+

ℓ+1(ab̄c) := τ for each c ∈ A, where τ is taken from the subscript
of the unique sπ,τ ∈ (sπ,τ)τ∈FTPσ

ℓ+1
that b̄c satisfies in A′. By repeating the above procedure

for all a ∈ A and tuples b̄ ∈ Aℓ−1 we will obtain the desired structure A+.
To verify that A+ is a model of φ we first claim that A+ |=

∧
r∈R ∀ℓ(αr → ∃[n+pr

r]γr).
For this purpose, fix some r ∈ R and ab̄ ∈ Aℓ, and suppose π |= αr, where ftpA+

ℓ (ab̄) = π.
Recall that b̄ ∈ qA

′

π by ψ1. Then, ψ3 gives us A′, b̄ |= ∃[n+pr
r]

∨τ |=γr

τ∈FTPσ
ℓ+1

sπ,τ . Taking any
c ∈ A we have, by our construction, that A+, ab̄c |= τ if and only if A′, b̄c |= sπ,τ . Thus,
A+, ab̄ |= ∃[n+pr

r]
∨τ |=γr

τ∈FTPσ
ℓ+1

τ , which is equivalent to saying A+, ab̄ |= ∃[n+pr
r]γr. Repeating

the argument for each r ∈ R and ab̄ ∈ Aℓ will yield the required result.
To show A+|=

∧
t∈T ∀ℓ(βt→¬∃[n+pt

t]δt) we proceed analogously with ψ4 in place of ψ3. ◀

D. Kojelis 9:11

Let us take stock of the previous three lemmas. Take φ to be an FLPCℓ+1-sentence.
Without loss of generality, assume that it is in normal-form (Lemma 1). By Lemma 6, φ is
satisfiable if it is satisfiable in a locally ℓ-homogeneous model. By computing the formula ψ
we have, by Lemmas 7 and 8, that ψ is (finitely) satisfiable if and only if φ is. Noting that
the (finite) satisfiability problem for FLPC2 is in NExpTime (Theorem 5) and that ψ can
be constructed from φ in polynomial time in regards to the number of different fluted ℓ- and
(ℓ+1)-types (of which there are 2O(||φ||)), we conclude the following:

▶ Theorem 9. The (finite) satisfiability problem for FLPCℓ+1 is in ℓ-NExpTime.

Noting that the (finite) satisfiability problem for FLℓ+1 is ⌊(ℓ+1)/2⌋-NExpTime-hard [21],
we see that no elementary function can encapsulate the complexity of (finite) satisfiability
for FLPC. We thus conclude our section having reached our initial goal:

▶ Theorem 10. The (finite) satisfiability problem for FLPC is Tower-complete.

5 Counting With Reversed Relations

In this section we will show that relaxing the syntactic restrictions of the fluted fragment
with counting yields undecidability of satisfiability. We define the language FLrev to be
FL but with the addition of atoms with reversed variable sequences. More formally, if
r(xk, . . . , xℓ) is an FL-atom, then r(xk, . . . , xℓ) and r(xℓ, . . . , xk) are FLrev-atoms. The
language FLCrev (FLPCrev) is then the obvious extension of FLrev with (periodic) counting
quantifiers. Clearly, the languages FLrev, FLCrev, and FLPCrev are subfragments of the
adjacent fragment with the appropriate counting extensions. We will use counting quantifiers
∃[=1] and ∃[≤1] with the meanings “there is exactly one element s.t. ...” and “there is at most
one element s.t. ...” along side periodic counting qunatifiers. For simplicity, we do away with
variable-free notation and use variable sequences of x, y, z and z, y, x in place of x1, x2, x3.

We proceed by reducing Hilbert’s 10th problem to the finite satisfiability problem of
FLC3

rev. Let E be a system of Diophantine equations. We assume that each equation e ∈ E is
of one of the following (simple) forms: (i) u = 1, (ii) u+v = w, or (iii) u ·v = w, where u, v, w
are mutually disjoint variables. Clearly, no loss of generality occurs as any (non-simple)
Diophantine equation can be rewritten into the simpler form by introducing new variables.
For each e ∈ E we will define a formula φe depending on the form that e takes. Then,
φ :=

∧
e∈E φe ∧ ψ will be the advertised formula that is finitely satisfiable if and only if E

has a solution over N. We specify that the signature of φ includes (1) unary predicates Au

for each variable of u in E , (2) binary predicates Re for each e ∈ E of the form (ii), and
(3) ternary predicates Pe for each e ∈ E of the form (iii). We will not assume that the equality
predicate is available. In the sequel we will argue that if A |= φ, then E has a solution with
u 7→ |AA

u | for each variable u. (And, of course, the converse as well). For technical reasons
we wish for the sets AA

u and AA
v with u ̸= v to be disjoint. Denoting vars(E) for the set of

variables in E , we first define ψ :=
∧u ̸=v

u,v∈vars(E) ∀x
(
¬Au(x) ∨ ¬Av(x)

)
, which clearly has the

required effect. We proceed by taking e ∈ E in turn.
Suppose first that e is of the form (i) u = 1. We ensure that every model A of φ will have

|AA
u | = 1 by defining φe to be ∃[=1]x Au(x).
Now, supposing that e is of the form (ii) u+v = w, we define φe with the intent that models

A of φ will have RA
e being a bijection between AA

u ∪AA
v and AA

w (i.e. |AA
u | + |AA

v | = |AA
w|):

∀x
((
Au(x) ∨Av(x)

)
→ ∃[=1]y

(
Aw(y) ∧Re(xy)

))
∧

∀y
(
Aw(y) → ∃[=1]x

(
(Au(x) ∨Av(x)) ∧Re(xy)

))
.

CSL 2025

9:12 On Homogeneous Models of Fluted Languages

Lastly, if e is of the form (iii) u · v = w, then φe (defined just below) will guarantee that
A |= φ forces PA

e to be a bijection between AA
u ×AA

v and AA
w (i.e. |AA

u | · |AA
v | = |AA

w|):

∀x
(
Au(x) → ∀y

(
Av(y) → ∃[=1]z(Aw(z) ∧ Pe(xyz))

))
∧

∀z
(
Aw(z) → ∃[=1]y

(
Av(y) ∧ ∃x(Au(x) ∧ Pe(xyz))

))
∧

∀z
(
Aw(z) → ∃y

(
Av(y) ∧ ∃[=1]x(Au(x) ∧ Pe(xyz))

))
.

It is then straightforward to show (see Appendix B) that φ is finitely satisfiable iff E has
a solution over N. Noting that the problem of finding solutions to Diophantine equations
over N is Σ0

1-complete, and that φ ∧ ∃[0+1]x ⊤ is an FLPC3
rev-sentence that is satisfiable if

and only if φ is finitely satisfiable, we conclude the following:

▶ Theorem 11. The finite satisfiability problem for FLC3
rev is Σ0

1-hard. If periodic counting
is permitted, then so is the general satisfiability problem.

We note that one can use the same type of argument as above when reducing from
the problem of solving Diophantine equations E over N∗ = {1, 2, . . . } ∪ {ℵ0} to the general
satisfiability problem of FLC + ·−1. Such an approach, however, is not fruitful for determining
undecidability as the problem of finding solutions to E over N∗ is in NPTime [14]. Thus,
to show undecidability of general satisfiability, we resort to the tiling problem. Take
Φ = ⟨T ,H,V⟩ with H,V ⊆ T × T . We will produce and FLC4

rev-sentence φ that is satisfiable
if and only if Φ tiles the infinite N×N plane in accordance to the horizontal (H) and vertical (V)
constraints. Additionally, we will argue that one can append additional FLPC2

rev conjuncts
to φ and thus obtain a reduction from the tiling problem with a designated tile recurring
infinitely often on the first column (see [10] for details about the problem). All-in-all, such
reductions will guarantee that FLC4

rev is Π0
1-hard, whilst making FLPC4

rev hard for Σ1
1.

Take G to be unary and H, V to be binary predicate symbols. We define the canonical
(N×N)-grid to be a {G,H, V }-structure G over the domain N×N with the following extensions:

GA := N×N,
HA := {⟨(i, j), (i, j+1)⟩ | i, j ∈ N}, and
V A := {⟨(i, j), (i+1, j)⟩ | i, j ∈ N}.

We say that a structure A is a (N×N)-grid if A restricted to elements GA and the signature
{G,H, V } is isomorphic to the canonical (N×N)-grid. More leniently, A is grid-like if it
contains a homomorphic embedding of G. It is well known that the satisfiability problem
posed over subclasses of grid-like structures is undecidable for even inexpressive logics such
as FL2. The following is almost immediate:

▶ Lemma 12. The satisfiability problem for FLC2
rev posed over subclasses of grid-like

structures is Π0
1-hard. The satisfiability problem for FLPC2

rev posed over subclasses of
(N×N)-grids is Σ1

1-hard.

The lemma above is, of course, the “easy” part of a much larger reduction. The axio-
matisation of grid-like structures and (N×N)-grids is where the expressive power of FLC4

rev
and FLPC4

rev is needed. Before writing the advertised formulas, we build the motivating
structure we will be looking for in three steps. Suppose G is the canonical (N×N)-grid.
Letting EH , EV be binary and O be unary predicate symbols we define the graphed expansion
of G to be the structure G+ over the domain (N×N) ∪ N with the following extensions:

D. Kojelis 9:13

G+↾N×N := G,
k ̸∈ GG+ for each k ∈ N,
k ∈ OG+ if and only if k = 0,
EG+

H :=
⋃

i,j∈N{⟨(i, j), k⟩ | 1 ≤ k ≤ i}, and
EG+

V :=
⋃

i,j∈N{⟨(i, j), k⟩ | 1 ≤ k ≤ j}.
Intuitively, G+, when restricted to N×N = GG+ , is the canonical (N×N)-grid. Notice that
each (i, j) ∈ N×N has i elements in N that are EH -successors and j elements that are
EV -successors. In other words, the coordinates of (i, j) are explicitly encoded in G+ as the
out-degrees of EH and EV respectively. (In the future, we will simply speak of EH - and
EV -degree with “out” being left implicit). We invite the reader to regard N as the set of extra
elements which help encode positions of grid elements. Notice that the singleton 0 ∈ OG+ is
not featured in any binary relations (most notably, EH and EV). This is deliberate as it will
act as a spare part in the constructions to come.

We now define the mapped expansion G⋆ of G+, where G+ itself is the graphed expansion
of G. For this, we introduce quaternary RH , RV , SH , SV and ternary predicates CH , CV ,
whilst setting the following extensions:

RG⋆

H :=
⋃i≤i′

i,j,i′,j′∈N{⟨k, (i, j), (i′, j′), k⟩ | 1 ≤ k ≤ i},

RG⋆

V :=
⋃j≤j′

i,j,i′,j′∈N{⟨k, (i, j), (i′, j′), k⟩ | 1 ≤ k ≤ j},

SG⋆

H :=
⋃

i,j,j′∈N{⟨k − 1, (i, j), (i+1, j′), k⟩ | 1 ≤ k ≤ i+ 1},

SG⋆

V :=
⋃

i,j,i′∈N{⟨k − 1, (i, j), (i′, j+1), k⟩ | 1 ≤ k ≤ j + 1},

CG⋆

H :=
⋃i≤i′

i,j,i′,j′∈N{⟨k, (i′, j′), (i, j)⟩ | 1 ≤ k ≤ i}, and

CG⋆

V :=
⋃j≤j′

i,j,i′,j′∈N{⟨k, (i′, j′), (i, j)⟩ | 1 ≤ k ≤ j}.
Recall that each (i, j) ∈ N×N sends EH -edges to each k ∈ [1, i]. Fixing some (i′, j′) ∈ N×N
with i ≤ i′, we have that RG⋆

H injectively maps EH -edges originating from (i, j) to EH -edges
of (i′, j′). On the other hand, SG⋆

H is a bijection between the EH -edges of (i, j) with the spare
part 0 and EH -edges of (i+1, j′). The relation CG⋆

H simply remembers which EH -edges of
(i′, j′) are mapped to EH -edges of (i, j) via RA

H . Relations RG⋆

V , SG⋆

V and CG⋆

V act similarly.
Lastly, We say that G# is the ordered expansion of G⋆, where G⋆ itself is the graphed

and mapped expansion of G, if the signature contains two additional relations ⪯H and ⪯V

which we will define to be total orders over N×N. For motivational purposes, we will forget
that grid elements a and b are pairs of natural numbers and instead focus on the EH - and
EV -degrees of the elements. In G# we will have that

a ⪯G#

H b if and only if the EH -degree of a is no more than that of b, and
a ⪯G#

V b if and only if the EV -degree of a is no more than that of b.
(Again, the EH - and EV -degrees encode the horizontal and vertical positions of the element).

We will now write the sentence φ := φ1 ∧ · · · ∧ φ13 one conjunct at a time. At a high
level, the conjuncts simply state facts about the graphed mapped and ordered expansion G#

of G. In the sequel we will argue that the satisfaction of φ by A is sufficient to deduce that
the structure in question is grid-like. For readability, we will be using variable sequences
x, y, z, w and w, z, y, x instead of x1, x2, x3, x4. Strictly speaking, the formulas to be defined
are not (reverse) fluted, but can be made such by moving quantifiers inwards.

Fix G# to be as described above. We first capture some graphed properties. Recall that
in G# there is a single spare part element 0 ∈ OG# . Noting that this element is not part of
the grid (0 ̸∈ GG#) we have that G# models:

∃[=1]x O(x) ∧ ∀x
(
O(x) → ¬G(x)

)
(φ1)

CSL 2025

9:14 On Homogeneous Models of Fluted Languages

Additionally, recall that the spare part 0 has no incoming edges EH - or EV -edges in G#.
Thus, G# also models:

∀x
(
O(x) → ∀y

(
¬EH(yx) ∧ ¬EV (yx)

))
(φ2)

Moving to grid elements, we see that there is a single element in GA# with no EH - or
EV -degree. Thus, G# is a model of:

∃[=1]x
(
G(x) ∧ ∀y

(
¬EH(xy) ∧ ¬EV (xy)

))
. (φ3)

Additionally, each element in GG# has a single H- and V -successor. Thus, G# models:

∀x
(
G(x) →

(
∃[=1]y

(
H(xy) ∧G(y)

)
∧ ∃[=1]y

(
V (xy) ∧G(y)

)))
. (φ4)

For the next two conjuncts fix (i, j) ∈ GG# . Notice that the H-successor (i+1, j) has an
EH -degree that is larger by 1 when compared to its predecessor (i, j). We can thus map the
EH -edges from (i+1, j) to the set of EH -edges from (i, j) taken together with the spare part
element bijectively. This is exactly how the extension to SH in G# is set up. Noting that
V -successors have analogous properties we conclude that G# models the following sentences:∧

X∈{H,V }

∀xyz
((

(EX(yx) ∨O(x)) ∧X(yz)
)
→∃[=1]w

(
EX(zw) ∧ SX(xyzw)

))
, (φ5)

∧
X∈{H,V }

∀wzy
((
EX(zw) ∧X(yz)

)
→∃[=1]x

(
(EX(yx) ∨O(x)) ∧ SX(xyzw)

))
. (φ6)

Recall that for grid elements (i, j), (i′, j′) ∈ GG# we have G# |= (i, j) ⪯V (i′, j′) if and
only if the EV -degree of (i, j) is no more than that of (i′, j′). Fixing (i, j) and its H-successor
(i+1, j) we see that G# |= (i, j) ⪯V (i+1, j) ∧ (i+1, j) ⪯V (i, j). That is, (i, j) and its
H-successor have the same EV -degrees. Thus, G# models:

X ̸=Y∧
X,Y ∈{H,V }

∀xy
(
X(xy) →

(
x ⪯Y y ∧ y ⪯Y x

))
. (φ7)

Now, recall that the ordering ⪯X (X ∈ {H,V }) is total on GG# . Thus, G# models:∧
X∈{H,V }

∀xy
((
G(x) ∧G(y)

)
→

(
x ⪯X y ∨ y ⪯X x

))
. (φ8)

Taking (i, j), (i′, j′) ∈ GG# with i ≤ i′ recall that the elements have EH -edges mapped
injectively by RG#

H . Thus, G# |= (i, j) ⪯H (i′, j′) if and only if RG#

H is an injection between
the EH -edges of (i, j) and that of (i′, j′). We capture the “only-if” direction of the dependency
with the sentences φ9 and φ10, whilst the “if” direction is handled by φ11 and φ12.

Still holding the supposition that G# |= (i, j) ⪯H (i′, j′), we write a sentence ensuring
that each EH -edge from (i, j) is mapped to some single EH -edge from (i′, j′):∧

X∈{H,V }

∀xyz
((
y ⪯X z ∧ EX(yx)

)
→ ∃[=1]w

(
EX(zw) ∧RX(xyzw)

))
. (φ9)

With the next sentence we require that each EH -edge from (i′, j′) is a witness (in regard to
RG#

H) to at most a single EH -edge from (i, j):∧
X∈{H,V }

∀wzy
((
y ⪯X z ∧ EX(zw)

)
→ ∃[≤1]x

(
EX(yx) ∧RX(xyzw)

))
. (φ10)

D. Kojelis 9:15

It is easy to verify that this is indeed how RG#

H is set up. Noting that ⪯V and RV behave
symmetrically we conclude G# |= φ9 ∧ φ10.

For the converse direction of the implication take any (i, j), (i′, j′) ∈ GG# and recall that
⟨k, (i′, j′), (i, j)⟩ ∈ CG#

H if and only if there is some k′ ∈ N for which ⟨k′, (i, j), (i′, j′), k⟩ ∈
RG#

H . In other words, CG#

H remembers which EH -edges from (i′, j′) are featured in a mapping
(by RG#

H) with EH -edges from (i, j). We axiomatise this relationship as follows:∧
X∈{H,V }

∀wzy
(
CX(wzy) ↔ ∃[=1]x

(
EX(yx) ∧RX(xyzw)

))
. (φ11)

Utilising CH we can then test if each EH -edge of (i′, j′) is mapped to some EX -edge of (i, j)
and, if that is indeed the case, require that the grid elements be related via ⪯H accordingly.
We do just that with φ12:∧

X=H,V

∀yz
((
G(y) ∧G(z) ∧ ∀w(EX(zw) → CX(wzy))

)
→ z ⪯X y

)
. (φ12)

Noting that ⪯V , RV and CV behave similarly, we have that G# |= φ11 ∧ φ12.
Lastly, notice that there are no two grid elements that have the same EH - and EV -degrees.

Thus, G# models the uniqueness requirement as given by φ13:

∀y
(
G(y) → ∃[=1]z

(∧
X=H,V

(y ⪯X z ∧ z ⪯X y)
))
. (φ13)

Notice that by stepping inside the realm of periodic counting, we may capture the fact
that in G# there are no transfinite positions by defining the sentence χ limiting the EH - and
EV -degrees of elements to finite values:∧

X=H,V

∀x∃[0+1]y EX(xy). (χ)

Recalling that φ := φ1 ∧ · · · ∧ φ13 we have showed the following:

▶ Lemma 13. The graphed, mapped and ordered expansion of the canonical (N×N)-grid is a
model of φ ∧ χ.

We proceed with the other direction as follows:

▶ Lemma 14. Suppose A |= φ. Then A is a grid-like structure. In addition, if A |= χ, then
A is an (N×N)-grid.

Proof. Suppose first that A |= φ. Notice that by φ1 there is exactly one element that satisfies
O in A and, by φ2, has no incoming EH - and EV -edges. This will be our spare part element
in the argument to come. Now, take any element a0,0 ∈ A such that a0,0 ∈ GA (i.e. a0,0 is a
grid element) with finite EH - and EV -degree. Such an element is guaranteed to exist by φ3.
Then, φ4 gives us that a0,0 has an H-successor a1,0 and a V -successor a0,1. Notice that, by
φ5 each EH -edge originating from a0,0 along with the spare part is paired with exactly one
edge EH -edge from a1,0 in SA

E . That is to say, writing U = {b ∈ A | a0,0b ∈ EA
H or b ∈ OA}

and U ′ = {c ∈ A | a1,0c ∈ EA
H}, we have that for each b ∈ U there is exactly one c ∈ U ′ such

that ba0,0a1,0c ∈ SA
E . The reverse is established by φ6. Clearly, there is a bijection between

U and U ′ thus making the EH -degree of a1,0 one greater than that of a0,0. By φ7 we have
that a0,0 ⪯A

V a1,0 and a1,0 ⪯A
V a0,0. We first fixate on the fact that a0,0 ⪯A

V a1,0. Writing
U = {b ∈ A | a0,0b ∈ EA

V } and U ′ = {c ∈ A | a1,0c ∈ EA
V } we have, by φ9, that for each

CSL 2025

9:16 On Homogeneous Models of Fluted Languages

b ∈ U there is exactly one c ∈ U ′ such that ba0,0a1,0c ∈ RA
V . By φ10, for each c ∈ U ′ there

is at most a single b ∈ U such that ba0,0a1,0c ∈ RA
V . We may thus regard RA

V as being an
injection between EV -edges of a0,0 and that of a1,0. Then, again by φ9, φ10 and the fact
that a1,0 ⪯A

V a0,0, we have that RA
V is an injection between the EV -edges from a1,0 and that

of a0,0. By the Cantor-Schröder-Bernstein Theorem, their EV -degrees are thus equal. A
symmetric argument holds for the EV - and EH -degree of a0,1.

Now, let a1,1 and a′1,1 be, respectively, the V -sucessor of a1,0 and the H-sucessor of
a0,1 promised by φ4. Using the same arguments as in the paragraph above, it is easy to
see that the EH -degrees of a1,1 and a′1,1 coincide; and so do the EV -degrees. We claim
that a1,1 = a′1,1. By φ13 we need only show that a1,1 is equal to a′1,1 with respect to the
orderings ⪯A

H and ⪯A
V as we already have that a1,1 ⪯E a1,1 and a1,1 ⪯V a1,1 by φ8. Fixating

on EH -edges first, we have, by φ8, that a1,1 and a′1,1 are comparable by ⪯A
E in some way.

Suppose, without loss of generality, that a1,1 ⪯A
E a′1,1. Writing U = {b ∈ A | a1,1b ∈ EA

H}
and U ′ = {c ∈ A | a′1,1c ∈ EA

H} we have, by φ9, that for each b ∈ U there is exactly one
c ∈ U ′ such that ba1,1a

′
1,1c ∈ RA

E , and, by φ10, for each c ∈ U ′ there is at most one b ∈ U

such that the same holds. That is to say, RA
E is an injection between EH -edges originating

from a1,1 and EH -edges from a′1,1. Notice that since a1,1 and a′1,1 both have an equal and
finite EH -degree, we can conclude that RA

E is a bijection between the edges. Using this, we
have that ca′1,1a1,1 ∈ CA

H for each c ∈ U ′ by φ11. Clearly, the antecedents of φ12 are met and
thus a′1,1 ⪯A

E a1,1 as required. Repeating the argument for ⪯A
V we indeed have (by φ13) that

a1,1 = a′1,1 thus closing the grid.
By repeating the argument above on element in GA with finite EH - and EV -degree

we conclude that A contains a homomorphic embedding of the canonical (N×N)-grid thus
making it grid-like.

Supposing, in addition, that A |= χ we have that each element in GA has a finite EH -
and EV -degree. We may thus unambiguously identify these elements as the pair of their
EH -degree i ∈ N and EV -degree j ∈ N. Hence, the structure A restricted to elements in
GA and signature {G,H, V } is isomorphic to the canonical (N×N)-grid thus making A an
(N×N)-grid as required. ◀

Combining Lemmas 13 and 14 we have that φ is a satisfiable FLC4
rev-sentence modeled

exclusively by (some non-empty subclass of) grid-like structures, whilst φ ∧ χ is a satisfiable
FLPC4

rev-sentence that is modeled only by (some non-empty subclass of) (N×N)-grids.
Combining the observation above with Lemma 12 we have the following:

▶ Theorem 15. The satisfiability problem for FLC4
rev is Π0

1-hard. The same problem for
FLPC4

rev is Σ1
1-hard.

Note that the adjacent fragment with periodic counting is a fragment of the constructive
fragment of Lω1,ω, which has a Σ1

1-complete satisfiability problem [10, 15]. We conclude the
section by reformulating results of Theorems 11 and 15 in terms of the adjacent fragment:

▶ Corollary 16. The finite and general satisfiability problems for the adjacent fragment with
counting are, respectively, Σ0

1- and Π0
1-complete. If periodic counting is permitted, then the

general satisfiability problem turns to be Σ1
1-complete.

D. Kojelis 9:17

6 Discussion

In this paper we utilised the homogeneity property of satisfiable FLPC-sentences to establish
a decision procedure for the (finite) satisfiability problem of the new language. With this
methodology we not only gained a better understanding of models of fluted formulas, but
also managed to establish decidability of (finite) satisfiability using simpler methods when
compared to Presburger quantifiers discussed in previous literature [19, 24].

Reflecting on global homogeneity we see that, as opposed to local homogeneity, the
rewiring in Lemma 2 is impacted by the presence of the (in)equality atom. More precisely,
the semantics of predicates of arity at most ℓ do not interfere in the rewiring for local
ℓ-homogeneity. Because of this we may establish a more general result for local homogeneity
of fluted sentences with semantic extensions. Consider a signature that is split into symbols
σ∗ with a fixed interpretation (e.g. transitive relation, reversed relation, etc.) and standard
predicate symbols σ with no fixed meaning. Furthermore, suppose that the maximum arity
of any symbol in σ∗ is at most k. Then, Lemma 6 implies the following:

▶ Corollary 17. Suppose φ is a fluted, normal-form, (ℓ+1)-variable sentence (possibly with
periodic counting) over the signature σ ∪ σ∗, and where ℓ ≥ k. Then if φ is satisfiable it is
satisfiable in a locally ℓ-homogeneous model.

The same cannot be said about (ℓ+1)-variable sentences when ℓ < k, and thus establishing an
analogue to global homogeneity (as was done for FLPC2 with equality in Lemma 2) requires
case-by-case consideration. Nonetheless, we believe our approach could not only be used
to simplify existing decidability procedures for satisfiability (e.g. for FL with a transitive
relation and counting [24]) but to also expand on expressiveness of fluted languages.

We make use of Corollary 17 when (briefly) analysing the language L formed by com-
bining FLPC and FO2

Pres. That is to say, L is FLPC with (ℓ+1)-atoms R(xℓ+1, Rℓ) and
R(xℓ+1, xℓ+1) allowed. The following is almost immediate. (See Appendix C for the proof).

▶ Theorem 18. The (finite) satisfiability problem for L is decidable.

Combining the result above with Corollary 16, and noting that more expressive counting
quantifiers render the two-variable fragment undecidable [7, 5], one can argue that the
language L is on the edge of decidability (for satisfiability). There are, however, other
maximal fragments with counting that have a decidable satisfiability problem. The reader
might have noticed that, in Section 5, we did not consider the general satisfiability problem
for the 3-variable adjacent fragment with counting (whilst noting that the finite variant is
undecidable in Theorem 11). Surprisingly, the problem was recently shown to be in ∆0

1 by
the current author. The details, however, are beyond the scope of this article. We conclude
the paper by outlining the following problems which, to the best of our knowledge, are open.
1. What is the complexity of satisfiability for the 3-variable adjacent fragment with counting?
2. Is the satisfiability problem for the adjacent fragment with periodic counting Σ1

1-hard?
3. Is the satisfiability problem for the guarded adjacent fragment with counting decidable?

References
1 Franz Baader. A new description logic with set constraints and cardinality constraints on role

successors. In Frontiers of Combining Systems, pages 43–59. Springer International Publishing,
2017. doi:10.1007/978-3-319-66167-4_3.

2 Bartosz Bednarczyk. Exploiting forwardness: Satisfiability and query-entailment in forward
guarded fragment. In Logics in Artificial Intelligence - 17th European Conference, JELIA 2021,
Virtual Event, May 17-20, 2021, Proceedings, volume 12678 of Lecture Notes in Computer
Science, pages 179–193. Springer, 2021. doi:10.1007/978-3-030-75775-5_13.

CSL 2025

https://doi.org/10.1007/978-3-319-66167-4_3
https://doi.org/10.1007/978-3-030-75775-5_13

9:18 On Homogeneous Models of Fluted Languages

3 Bartosz Bednarczyk and Reijo Jaakkola. Towards a model theory of ordered logics: Expressivity
and interpolation. In 47th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2022, August 22-26, 2022, Vienna, Austria, volume 241 of LIPIcs, pages
15:1–15:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.
MFCS.2022.15.

4 Bartosz Bednarczyk, Daumantas Kojelis, and Ian Pratt-Hartmann. On the Limits of Decision:
the Adjacent Fragment of First-Order Logic. In 50th International Colloquium on Automata,
Languages, and Programming (ICALP 2023), volume 261 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 111:1–111:21, Dagstuhl, Germany, 2023. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPICS.ICALP.2023.111.

5 Bartosz Bednarczyk, Maja Orłowska, Anna Pacanowska, and Tony Tan. On Classical Decidable
Logics Extended with Percentage Quantifiers and Arithmetics. In 41st IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2021), volume 213 of Leibniz International Proceedings in Informatics (LIPIcs), pages 36:1–
36:15, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPICS.FSTTCS.2021.36.

6 Michael Benedikt, Egor V. Kostylev, and Tony Tan. Two variable logic with ultimately periodic
counting. SIAM Journal on Computing, 53(4):884–968, 2024. doi:10.1137/22M1504792.

7 Erich Grädel, Martin Otto, and Eric Rosen. Undecidability results on two-variable logics.
Archive for Mathematical Logic, 38(4):313–354, 1999. doi:10.1007/S001530050130.

8 Erich Grädel. On the restraining power of guards. The Journal of Symbolic Logic, 64(4):1719–
1742, 1999. doi:10.2307/2586808.

9 Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for two-
variable first-order logic. The Bulletin of Symbolic Logic, 3(1):53–69, 1997. doi:10.2307/
421196.

10 David Harel. Recurring dominoes: Making the highly undecidable highly understandable.
In Topics in the Theory of Computation, volume 102 of North-Holland Mathematics Studies,
pages 51–71. North-Holland, 1985.

11 Andreas Herzig. A new decidable fragment of first order logic. In Abstracts of the 3rd Logical
Biennial Summer School and Conference in honour of S. C. Kleene, Varna, Bulgaria, 1990.

12 Ullrich Hustadt, Renate A Schmidt, and Lilia Georgieva. A survey of decidable first-order
fragments and description logics. Journal of Relational Methods in Computer Science, 1(3):251–
276, 2004.

13 Reijo Jaakkola. Ordered fragments of first-order logic. In 46th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2021, August 23-27, 2021, Tallinn,
Estonia, volume 202 of LIPIcs, pages 62:1–62:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPICS.MFCS.2021.62.

14 Emil Jeřábek. Division by zero. Archive for Mathematical Logic, 55(7):997–1013, 2016.
doi:10.1007/S00153-016-0508-5.

15 H. Jerome. Keisler. Model theory for infinitary logic : logic with countable conjunctions and
finite quantifiers. Studies in logic and the foundations of mathematics ; v. 62. North-Holland
Pub. Co., Amsterdam, 1971.

16 Viktor Kuncak and Martin Rinard. Towards efficient satisfiability checking for boolean algebra
with presburger arithmetic. In Automated Deduction – CADE-21, pages 215–230, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg. doi:10.1007/978-3-540-73595-3_15.

17 Christos H. Papadimitriou. On the complexity of integer programming. J. ACM, 28(4):765–768,
1981. doi:10.1145/322276.322287.

18 Ian Pratt-Hartmann. The two-variable fragment with counting revisited. In Logic, Language,
Information and Computation, 17th International Workshop, WoLLIC 2010, Brasilia, Brazil,
July 6-9, 2010. Proceedings, volume 6188 of Lecture Notes in Computer Science, pages 42–54.
Springer, 2010. doi:10.1007/978-3-642-13824-9_4.

https://doi.org/10.4230/LIPICS.MFCS.2022.15
https://doi.org/10.4230/LIPICS.MFCS.2022.15
https://doi.org/10.4230/LIPICS.ICALP.2023.111
https://doi.org/10.4230/LIPICS.FSTTCS.2021.36
https://doi.org/10.4230/LIPICS.FSTTCS.2021.36
https://doi.org/10.1137/22M1504792
https://doi.org/10.1007/S001530050130
https://doi.org/10.2307/2586808
https://doi.org/10.2307/421196
https://doi.org/10.2307/421196
https://doi.org/10.4230/LIPICS.MFCS.2021.62
https://doi.org/10.1007/S00153-016-0508-5
https://doi.org/10.1007/978-3-540-73595-3_15
https://doi.org/10.1145/322276.322287
https://doi.org/10.1007/978-3-642-13824-9_4

D. Kojelis 9:19

19 Ian Pratt-Hartmann. Fluted logic with counting. In 48th International Colloquium on
Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland
(Virtual Conference), volume 198 of LIPIcs, pages 141:1–141:17. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPICS.ICALP.2021.141.

20 Ian Pratt-Hartmann. Fragments of First-Order Logic. Oxford University Press, 2023.
21 Ian Pratt-Hartmann, Wieslaw Szwast, and Lidia Tendera. The fluted fragment revisited.

Journal of Symbolic Logic, 84(3):1020–1048, 2019. doi:10.1017/JSL.2019.33.
22 Ian Pratt-Hartmann and Lidia Tendera. The Fluted Fragment with Transitivity. In 44th

International Symposium on Mathematical Foundations of Computer Science (MFCS 2019),
volume 138 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–18:15,
Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
LIPICS.MFCS.2019.18.

23 Ian Pratt-Hartmann and Lidia Tendera. The fluted fragment with transitive relations. Annals
of Pure and Applied Logic, 173(1):103042, 2022. doi:10.1016/J.APAL.2021.103042.

24 Ian Pratt-Hartmann and Lidia Tendera. Adding Transitivity and Counting to the Fluted
Fragment. In 31st EACSL Annual Conference on Computer Science Logic (CSL 2023), volume
252 of Leibniz International Proceedings in Informatics (LIPIcs), pages 32:1–32:22, Dagstuhl,
Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPICS.
CSL.2023.32.

25 William C. Purdy. Fluted formulas and the limits of decidability. The Journal of Symbolic
Logic, 61(2):608–620, 1996. doi:10.2307/2275678.

26 Willard Van Orman Quine. On the limits of decision. In Proceedings of the 14th International
Congress of Philosophy, volume III, pages 57–62. University of Vienna, 1969.

A Preliminaries

▶ Lemma 1. Suppose φ is an FLPCℓ+1-sentence. Then, we may compute, in polynomial
time, an equisatisfiable normal-form FLPCℓ+1-sentence ψ.

Proof. We start by assuming that φ contains no universal quantifiers. No loss of generality
follows this supposition as every formula of the form ∀θ is equivalent to ∃[0]¬θ. Writing
φ0 := φ, take any subformula θ := ∃[n+p]χ of φ0, where χ is quantifier-free. Supposing
there are k free variables in θ, let q be a fresh predicate of arity k. We write ψ1 as
∀ℓ(q → ∃[n+p]χ) ∧ ∀ℓ(¬q → ¬∃[n+p]χ) and define φ1 to be φ0 but with θ replaced by q.
Clearly, φ1 ∧ ψ1 |= φ0. Conversely, if A |= φ0, we may expand A to A′ by setting ā ∈ qA

′ if
A, ā |= θ for each ā ∈ Ak. Then, A′ |= φ1 ∧ ψ1 as required. Processing φ1 and subsequent
sentences in the same way, we are left with a sentence φm composed solely of proposition
letters and sentences ψ1, . . . , ψm. The conjunction of the aforementioned sentences is then
(after rearrangement) of the required form. ◀

B Counting With Reversed Relations

▷ Claim. Suppose E is an instance of Hilbert’s 10th problem and φ is computed as described
as above Theorem 11. Then, φ is finitely satisfiable if and only if E has a solution over N.

Proof. Suppose A |= φ. We claim that {u 7→ |AA
u | | u ∈ vars(E)} is a satisfying assignment

for E . Thus, again taking e ∈ E in turn, we have that if e is of the form (i) u = 1, then
A |= φe =⇒ |AA

u | = 1. If e takes the form (ii) u + v = w, we then claim that RA
e is a

bijection between AA
u ∪ AA

v and AA
w having cardinality |AA

u | + |AA
v |. Indeed, by the first

conjunct of φe we have that each element in AA
u ∪AA

v is paired with a single element in AA
w;

the converse is establishes by the second conjunct. Thus, clearly, |AA
u ∪ AA

v | = |AA
w|. But

CSL 2025

https://doi.org/10.4230/LIPICS.ICALP.2021.141
https://doi.org/10.1017/JSL.2019.33
https://doi.org/10.4230/LIPICS.MFCS.2019.18
https://doi.org/10.4230/LIPICS.MFCS.2019.18
https://doi.org/10.1016/J.APAL.2021.103042
https://doi.org/10.4230/LIPICS.CSL.2023.32
https://doi.org/10.4230/LIPICS.CSL.2023.32
https://doi.org/10.2307/2275678

9:20 On Homogeneous Models of Fluted Languages

since A |= ψ we have that AA
u ∩ AA

v = ∅. This coupled with our initial assumption that
u ≠ v gives us |AA

u ∪ AA
v | = |AA

u | + |AA
v | as required. Lastly, suppose e takes the form (iii)

u ·v = w. By the first conjunct of φe for each ab ∈ AA
u ×AA

v there is a single c ∈ AA
w such that

abc ∈ PA
e . Hence, PA

e gives rise to a function f := {ab 7→ c | abc ∈ PA
e ∩ (AA

u ×AA
v ×AA

w)}.
Thus, writing f(xy) = z in place of Pe(xyz), we claim that f is a bijection between AA

u ×AA
v

and AA
w and has cardinality |AA

u | · |AA
v |. It is easily seen that f is surjective from either the

second or third conjunct of φe. To establish injectivity suppose f(ab) = f(a′b′) = c. But, by
the second conjunct of φe, we have that A, c |= ∃[=1]y

(
Av(y) ∧ ∃x

(
Au(x) ∧ f(xy) = z

))
,

thus b = b′. Notice that this establishes that b is the only element in AA
v for which, under

the assignment c 7→ z, b 7→ y, A, cb |= ∃x
(
Au(x) ∧ f(xy) = z

)
. Combining this fact

with the third conjunct of φe we have that, again under the assignment c 7→ z, b 7→ y,
A, cb |= ∃[=1]x

(
Au(x) ∧ f(xy) = z

)
thus making a = a′. We finish our argument by noting

that |AA
u | · |AA

v | = |AA
u ×AA

v | = |f | = |AA
w| as required.

Conversely, suppose E has a solution. We define π : vars(E) → N to be the satisfying
assignment for E and construct a model A of φ as follows. For each variable u ∈ vars(E)
set AA

u be a set of π(u) distinct elements and set the domain of A to be A =
⋃

u∈vars(E) A
A
u

where each AA
u ∩ AA

v = ∅ for u ̸= v. Clearly, A |= ψ. If φe was constructed from e ∈ E of
the form (i) u = 1, then AA

u = 1 as required by φe. On the other hand, if e is of the form
(ii) u+ v = w, we have that A |= φe by setting RA

e to be a bijection between AA
u ∪AA

v and
AA

w (this can be done as π(u) + π(v) = π(w) and, by initial assumption, u ̸= v). Lastly,
if e is (iii) u · v = w, then π(u) · π(v) = π(w). Thus, index elements of AA

u as a1 . . . aπ(u),
elements of AA

v as b1 . . . bπ(v) and elements of AA
w as (ci,j)1≤i≤π(u)

1≤j≤π(v). Clearly, by setting
PA

e = {aibjci,j | 1 ≤ i ≤ π(u), 1 ≤ j ≤ π(v)} we have that A |= φe thus concluding the proof.
◁

C Discussion

▶ Theorem 18. The (finite) satisfiability problem for L (i.e. the combination of FLPC and
FO2

Pres) is decidable.

Proof. Let Lℓ+1 be the ℓ+ 1-variable sub-fragment of L. Taking some sentence φ ∈ Lℓ+1

we proceed by induction on the number of variables. If ℓ+ 1 = 2, then φ is a sentence in
the two-variable fragment with periodic counting which is known to have a decidable (finite)
satisfiability problem [6]. Now, set ℓ + 1 > 2 and suppose that the (finite) satisfiability
problem for Lℓ is decidable. We may assume (by allowing αr, βt, γr, δt to contain binary
predicates of the form R(xℓ+1, xℓ) and R(xℓ+1, xℓ+1)) that φ is in normal-form (5). Defining
σ∗ to be the set of predicates of arity no more than 2, we have that if φ is satisfiable then,
by Corollary 17, it is satisfiable in an ℓ-homogeneous model. Applying the variable reduction
outlined in Lemmas 7 and 8 we will then have the required result. ◀

The Complexity of Second-Order HyperLTL
Hadar Frenkel #

Bar-Ilan University, Ramat Gan, Israel

Martin Zimmermann #

Aalborg University, Denmark

Abstract
We determine the complexity of second-order HyperLTL satisfiability, finite-state satisfiability, and
model-checking: All three are equivalent to truth in third-order arithmetic.

We also consider two fragments of second-order HyperLTL that have been introduced with
the aim to facilitate effective model-checking by restricting the sets one can quantify over. The
first one restricts second-order quantification to smallest/largest sets that satisfy a guard while
the second one restricts second-order quantification further to least fixed points of (first-order)
HyperLTL definable functions. All three problems for the first fragment are still equivalent to truth
in third-order arithmetic while satisfiability for the second fragment is Σ1

1-complete, i.e., only as hard
as for (first-order) HyperLTL and therefore much less complex. Finally, finite-state satisfiability and
model-checking are in Σ2

2 and are Σ1
1-hard, and thus also less complex than for full second-order

HyperLTL.

2012 ACM Subject Classification Theory of computation → Verification by model checking; Theory
of computation → Logic and verification

Keywords and phrases HyperLTL, Satisfiability, Model-checking

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.10

Related Version Full Version: https://arxiv.org/abs/2311.15675 [21]

Funding Martin Zimmermann: Supported by DIREC – Digital Research Centre Denmark.

Acknowledgements This work was initiated by a discussion at Dagstuhl Seminar 23391 “The
Futures of Reactive Synthesis” and some results were obtained at Dagstuhl Seminar 24111 “Logics
for Dependence and Independence: Expressivity and Complexity”. We are grateful to Gaëtan Regaud
for finding and fixing a bug in the proof of Theorem 18 and to the reviewers for their detailed and
valuable feedback, which improved the paper considerably.

1 Introduction

The introduction of hyperlogics [11] for the specification and verification of hyperproper-
ties [12] – properties that relate multiple system executions, has been one of the major
success stories of formal verification during the last decade. Logics like HyperLTL and
HyperCTL∗ [11], the extensions of LTL [32] and CTL∗ [14] (respectively) with trace quantifi-
cation, are natural specification languages for information-flow and security properties, have
a decidable model-checking problem [17], and hence found many applications in program
verification.

However, while expressive enough to express common information-flow properties, they
are unable to express other important hyperproperties, e.g., common knowledge in multi-
agent systems and asynchronous hyperproperties (witnessed by a plethora of asynchronous
extensions of HyperLTL, e.g., [1, 2, 3, 6, 9, 10, 23, 26, 27, 28]). These examples all have in
common that they are second-order properties, i.e., they naturally require quantification over
sets of traces, while HyperLTL (and HyperCTL∗) only allows quantification over traces.

© Hadar Frenkel and Martin Zimmermann;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 10; pp. 10:1–10:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hadar.frenkel@biu.ac.il
https://orcid.org/0000-0002-3566-0338
mailto:mzi@cs.aau.dk
https://orcid.org/0000-0002-8038-2453
https://doi.org/10.4230/LIPIcs.CSL.2025.10
https://arxiv.org/abs/2311.15675
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 The Complexity of Second-Order HyperLTL

In light of this situation, Beutner et al. [4] introduced the logic Hyper2LTL, which extends
HyperLTL with second-order quantification, i.e., quantification over sets of traces. They
show that the resulting logic, Hyper2LTL, is indeed able to capture common knowledge,
asynchronous extensions of HyperLTL, and many other applications.

Consider, e.g., common knowledge in multi-agent systems where each agent i only observes
some parts of the system. The agent knows that a statement φ holds if it holds on all traces
that are indistinguishable in the agent’s view. We write π ∼i π

′ if the traces π and π′ are
indistinguishable for agent i. A property φ is common knowledge among all agents if all agents
know φ, all agents know that all agents know φ, and so on, i.e., one takes the infinite closure
of knowledge among all agents. This infinite closure cannot be expressed using first-order
quantification over traces [8], like the one used in HyperLTL. The second-order quantification
suggested by Beutner et al. allows us to express common knowledge, as demonstrated by the
formula φck , which states that φ is common knowledge on all traces of the system (we use a
simplified syntax for readability):

φck = ∀π. ∃X. π ∈ X ∧
(

∀π′ ∈ X. ∀π′′.
(∨n

i=1
π′ ∼i π

′′) → π′′ ∈ X
)

∧ ∀π′ ∈ X. φ(π′)

The formula φck expresses that for every trace t (instantiating π), there exists a set T (an
instantiation of the second-order variable X) such that t is in T , T is closed under the
observations of all agents (if t′ is in T and t′′ is indistinguishable from t′ for some agent i,
then also t′′ is in T), and all traces in T satisfy φ.

However, Beutner et al. also note that this expressiveness comes at a steep price: model-
checking Hyper2LTL is highly undecidable, i.e., Σ1

1-hard. Thus, their main result is a partial
model-checking algorithm for a fragment of Hyper2LTL where second-order quantification
degenerates to least fixed point computations of HyperLTL definable functions. Their
algorithm over- and underapproximates these fixed points and then invokes a HyperLTL
model-checking algorithm on these approximations. A prototype implementation of the
algorithm is able to model-check properties capturing common knowledge, asynchronous
hyperproperties, and distributed computing.

However, one question has been left open: Just how complex is Hyper2LTL verification?

Complexity Classes for Undecidable Problems. The complexity of undecidable problems
is typically captured in terms of the arithmetical and analytical hierarchy, where decision
problems (encoded as subsets of N) are classified based on their definability by formulas of
higher-order arithmetic, namely by the type of objects one can quantify over and by the
number of alternations of such quantifiers. We refer to Roger’s textbook [35] for fully formal
definitions and refer to Figure 1 for a visualization.

Σ0
0

=
Π0

0

Σ0
1

Π0
1

Σ0
2

Π0
2

Σ0
3

Π0
3

· · ·

· · ·

Σ1
0

=
Π1

0

Σ1
1

Π1
1

Σ1
2

Π1
2

Σ1
3

Π1
3

· · ·

· · ·

Σ2
0

=
Π2

0

Σ2
1

Π2
1

Σ2
2

Π2
2

Σ2
3

Π2
3

· · ·

· · ·

Decidable UndecidableRecursively enumerable

arithmetical hierarchy
≡

first-order arithmetic

analytical hierarchy
≡

second-order arithmetic

“the third hierarchy”
≡

third-order arithmetic

Figure 1 The arithmetical hierarchy, the analytical hierarchy, and beyond.

H. Frenkel and M. Zimmermann 10:3

The class Σ0
1 contains the sets of natural numbers of the form

{x ∈ N | ∃x0. · · · ∃xk. ψ(x, x0, . . . , xk)}

where quantifiers range over natural numbers and ψ is a quantifier-free arithmetic formula.
Note that this is exactly the class of recursively enumerable sets. The notation Σ0

1 signifies
that there is a single block of existential quantifiers (the subscript 1) ranging over natural
numbers (type 0 objects, explaining the superscript 0). Analogously, Σ1

1 is induced by
arithmetic formulas with existential quantification of type 1 objects (sets of natural numbers)
and arbitrary (universal and existential) quantification of type 0 objects. So, Σ0

1 is part of
the first level of the arithmetical hierarchy while Σ1

1 is part of the first level of the analytical
hierarchy. In general, level Σ0

n (level Π0
n) of the arithmetical hierarchy is induced by formulas

with at most n− 1 alternations between existential and universal type 0 quantifiers, starting
with an existential (universal) quantifier. Similar hierarchies can be defined for arithmetic
of any fixed order by limiting the alternations of the highest-order quantifiers and allowing
arbitrary lower-order quantification. In this work, the highest order we are concerned with is
three, i.e., quantification over sets of sets of natural numbers.

HyperLTL satisfiability is Σ1
1-complete [19], HyperLTL finite-state satisfiability is Σ0

1-
complete [16, 20], and, as mentioned above, Hyper2LTL model-checking is Σ1

1-hard [4], but,
prior to this current work, no upper bounds were known for Hyper2LTL.

Another yardstick is truth for order k arithmetic, i.e., the question whether a given
sentence of order k arithmetic evaluates to true. In the following, we are in particular
interested in the case k = 3, i.e., we consider formulas with arbitrary quantification over
type 0 objects, type 1 objects, and type 2 objects (sets of sets of natural numbers). Note that
these formulas span the whole third hierarchy, as we allow arbitrary nesting of existential
and universal third-order quantification.

Our Contributions. In this work, we determine the exact complexity of Hyper2LTL satisfi-
ability, finite-state satisfiability, and model-checking, for the full logic and the two fragments
introduced by Beutner et al. [4], as well as for two variations of the semantics.

An important stepping stone for us is the investigation of the cardinality of models of
Hyper2LTL. It is known that every satisfiable HyperLTL sentence has a countable model,
and that some have no finite models [18]. This restricts the order of arithmetic that can
be simulated in HyperLTL and explains in particular the Σ1

1-completeness of HyperLTL
satisfiability [19]. We show that (unsurprisingly) second-order quantification allows to write
formulas that only have uncountable models by generalizing the lower bound construction
of HyperLTL to Hyper2LTL. Note that the cardinality of the continuum is a trivial upper
bound on the size of models, as they are sets of traces.

With this tool at hand, we are able to show that Hyper2LTL satisfiability is equivalent to
truth in third-order arithmetic, i.e., much harder than HyperLTL satisfiability. This increase
in complexity is not surprising, as second-order quantification can be expected to increase the
complexity considerably. But what might be surprising at first glance is that the problem is
not Σ2

1-complete, i.e., at the same position of the third hierarchy that HyperLTL satisfiability
occupies in one full hierarchy below (see Figure 1). However, arbitrary second-order trace
quantification corresponds to arbitrary quantification over type 2 objects, which allows to
capture the full third hierarchy. Furthermore, we also show that Hyper2LTL finite-state
satisfiability is equivalent to truth in third-order arithmetic, and therefore as hard as general
satisfiability. This should be contrasted with the situation for HyperLTL described above,
where finite-state satisfiability is Σ0

1-complete (i.e., recursively enumerable) and thus much
simpler than general satisfiability, which is Σ1

1-complete.

CSL 2025

10:4 The Complexity of Second-Order HyperLTL

Finally, our techniques for Hyper2LTL satisfiability also shed light on the exact complexity
of Hyper2LTL model-checking, which we show to be equivalent to truth in third-order
arithmetic as well, i.e., all three problems we consider have the same complexity. In
particular, this increases the lower bound on Hyper2LTL model-checking from Σ1

1 to truth
in third-order arithmetic. Again, this has be contrasted with the situation for HyperLTL,
where model-checking is decidable, albeit Tower-complete [33, 31].

So, quantification over arbitrary sets of traces makes verification very hard. However,
Beutner et al. [4] noticed that many of the applications of Hyper2LTL described above do
not require full second-order quantification, but can be expressed with restricted forms of
second-order quantification. To capture this, they first restrict second-order quantification
to smallest/largest sets satisfying a guard (obtaining the fragment Hyper2LTLmm)1 and
then further restrict those to least fixed points induced by HyperLTL definable operators
(obtaining the fragment lfp-Hyper2LTLmm). By construction, these least fixed points are
unique, i.e., second-order quantification degenerates to least fixed point computation.

As an example, consider again φck above. The internal constraint

∀π′ ∈ X. ∀π′′.
(∨n

i=1
π′ ∼i π

′′) → π′′ ∈ X

defines a condition on what traces have to be in the set X, and how they are added gradually
to X, a behavior that can be captured by a fixed point computation for the (monotone)
operator induced by the formula above. Since the last part ∀π′ ∈ X. φ(π′) of φck universally
quantifies over all traces in X, and since X is existentially quantified, it is enough to consider
the minimal set that satisfies the internal constraint: if some set satisfies a universal condition,
then so does the minimal set. This minimal set is exactly the least fixed point of the operator
induced by the formula above. Similar behavior is exhibited by many other applications of
the logic, which gives the motivation to explore the fragment lfp-Hyper2LTLmm.

Nevertheless, we show that Hyper2LTLmm retains the same complexity as Hyper2LTL,
i.e., all three problems are still equivalent to truth in third-order arithmetic: Just restricting
to guarded second-order quantification does not decrease the complexity.

For all results mentioned so far, it is irrelevant whether we allow second-order quantifiers
to range over sets of traces that may contain traces that are not in the model (standard
semantics) or whether we restrict these quantifiers to subsets of the model (closed-world
semantics). But if we consider lfp-Hyper2LTLmm satisfiability under closed-world semantics,
the complexity finally decreases to Σ1

1-completeness. Stated differently, one can add least fixed
points of HyperLTL definable operators to HyperLTL without increasing the complexity
of the satisfiability problem. Finally, for lfp-Hyper2LTLmm finite-state satisfiability and
model-checking, we prove Σ2

2-membership and Σ1
1 lower bounds for both semantics, thereby

confining the complexity to the second level of the third hierarchy.
Table 1 lists our results and compares them to LTL and HyperLTL. Recall that Beutner

et al. showed that lfp-Hyper2LTLmm yields (partial) model checking and monitoring algo-
rithms [4, 5]. Our results confirm the usability of the lfp-Hyper2LTLmm fragment also from
a theoretical point of view, as all problems relevant for verification have significantly lower
complexity (albeit, still highly undecidable).

Proofs omitted due to space restrictions can be found in the full version [21].

1 In [4] this fragment is termed Hyper2LTLfp. For clarity, since it is not fixed point based, but uses
minimality/maximality constraints, we use the subscript “mm” instead of “fp”.

H. Frenkel and M. Zimmermann 10:5

Table 1 List of our results (in bold) and comparison to related logics. “T3A-equivalent” stands
for “equivalent to truth in third-order arithmetic”. Entries marked with an asterisk only hold for
closed-world semantics, all others hold for both semantics.

Logic Satisfiability Finite-state satisfiability Model-checking

LTL PSpace-complete PSpace-complete PSpace-complete
HyperLTL Σ1

1-complete Σ0
1-complete Tower-complete

Hyper2LTL T3A-equivalent T3A-equivalent T3A-equivalent
Hyper2LTLmm T3A-equivalent T3A-equivalent T3A-equivalent
lfp-Hyper2LTLmm Σ1

1-complete∗ Σ1
1-hard/in Σ2

2 Σ1
1-hard/in Σ2

2

2 Preliminaries

We denote the nonnegative integers by N. An alphabet is a nonempty finite set. The
set of infinite words over an alphabet Σ is denoted by Σω. Let AP be a nonempty finite
set of atomic propositions. A trace over AP is an infinite word over the alphabet 2AP.
Given a subset AP′ ⊆ AP, the AP′-projection of a trace t(0)t(1)t(2) · · · over AP is the
trace (t(0) ∩ AP′)(t(1) ∩ AP′)(t(2) ∩ AP′) · · · over AP′.

A transition system T = (V,E, I, λ) consists of a finite nonempty set V of vertices, a
set E ⊆ V ×V of (directed) edges, a set I ⊆ V of initial vertices, and a labeling λ : V → 2AP

of the vertices by sets of atomic propositions. We assume that every vertex has at least
one outgoing edge. A path ρ through T is an infinite sequence ρ(0)ρ(1)ρ(2) · · · of vertices
with ρ(0) ∈ I and (ρ(n), ρ(n+ 1)) ∈ E for every n ≥ 0. The trace of ρ is defined as λ(ρ) =
λ(ρ(0))λ(ρ(1))λ(ρ(2)) · · · . The set of traces of T is Tr(T) = {λ(ρ) | ρ is a path through T}.

Hyper2LTL. Let V1 be a set of first-order trace variables (i.e., ranging over traces) and V2
be a set of second-order trace variables (i.e., ranging over sets of traces) such that V1 ∩V2 = ∅.
We typically use π (possibly with decorations) to denote first-order variables and X,Y, Z

(possibly with decorations) to denote second-order variables. Also, we assume the existence of
two distinguished second-order variables Xa, Xd ∈ V2 such that Xa refers to the set (2AP)ω

of all traces, and Xd refers to the universe of discourse (the set of traces the formula is
evaluated over).

The formulas of Hyper2LTL are given by the grammar

φ ::= ∃X. φ | ∀X. φ | ∃π ∈ X. φ | ∀π ∈ X. φ | ψ ψ ::= pπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where p ranges over AP, π ranges over V1, X ranges over V2, and X (next) and U (until)
are temporal operators. Conjunction (∧), exclusive disjunction (⊕), implication (→), and
equivalence (↔) are defined as usual, and the temporal operators eventually (F) and
always (G) are derived as Fψ = ¬ψUψ and Gψ = ¬ F ¬ψ. We measure the size of a
formula by its number of distinct subformulas.

The semantics of Hyper2LTL is defined with respect to a variable assignment, i.e., a
partial mapping Π: V1 ∪ V2 → (2AP)ω ∪ 2(2AP)ω such that

if Π(π) for π ∈ V1 is defined, then Π(π) ∈ (2AP)ω and
if Π(X) for X ∈ V2 is defined, then Π(X) ∈ 2(2AP)ω .

Given a variable assignment Π, a variable π ∈ V1, and a trace t, we denote by Π[π 7→ t] the
assignment that coincides with Π on all variables but π, which is mapped to t. Similarly,
for a variable X ∈ V2, and a set T of traces, Π[X 7→ T] is the assignment that coincides
with Π everywhere but X, which is mapped to T . Furthermore, Π[j,∞) denotes the variable

CSL 2025

10:6 The Complexity of Second-Order HyperLTL

assignment mapping every π ∈ V1 in Π’s domain to Π(π)(j)Π(π)(j + 1)Π(π)(j + 2) · · · , the
suffix of Π(π) starting at position j (the assignment of variables X ∈ V2 is not updated).

For a variable assignment Π we define
Π |= pπ if p ∈ Π(π)(0),
Π |= ¬ψ if Π ̸|= ψ,
Π |= ψ1 ∨ ψ2 if Π |= ψ1 or Π |= ψ2,
Π |= Xψ if Π[1,∞) |= ψ,
Π |= ψ1 Uψ2 if there is a j ≥ 0 such that Π[j,∞) |= ψ2 and for all 0 ≤ j′ < j we have
Π[j′,∞) |= ψ1 ,
Π |= ∃π ∈ X. φ if there exists a trace t ∈ Π(X) such that Π[π 7→ t] |= φ ,
Π |= ∀π ∈ X. φ if for all traces t ∈ Π(X) we have Π[π 7→ t] |= φ,
Π |= ∃X. φ if there exists a set T ⊆ (2AP)ω such that Π[X 7→ T] |= φ, and
Π |= ∀X. φ if for all sets T ⊆ (2AP)ω we have Π[X 7→ T] |= φ.

Throughout the paper, we use the following shorthands to simplify our formulas:
We write π =AP′ π′ for a set AP′ ⊆ AP for the formula G

∧
p∈AP′(pπ ↔ pπ′) expressing

that the AP′-projection of π and the AP′-projection of π′ are equal.
We write π ▷ X for the formula ∃π′ ∈ X. π =AP π′ expressing that the trace π is in X.
Note that this shorthand cannot be used under the scope of temporal operators, as we
require formulas to be in prenex normal form.

A sentence is a formula in which only the variables Xa, Xd can be free. The variable
assignment with empty domain is denoted by Π∅. We say that a set T of traces satisfies a
Hyper2LTL sentence φ, written T |= φ, if Π∅[Xa 7→ (2AP)ω, Xd 7→ T] |= φ, i.e., if we assign
the set of all traces to Xa and the set T to the universe of discourse Xd. In this case, we say
that T is a model of φ. A transition system T satisfies φ, written T |= φ, if Tr(T) |= φ.

Although Hyper2LTL sentences are required to be in prenex normal form, Hyper2LTL
sentences are closed under Boolean combinations, which can easily be seen by transforming
such a sentence into an equivalent one in prenex normal form (which might require renaming
of variables). Thus, in examples and proofs we will often use Boolean combinations of
Hyper2LTL sentences.

▶ Remark 1. HyperLTL is the fragment of Hyper2LTL obtained by disallowing second-order
quantification and only allowing first-order quantification of the form ∃π ∈ Xd and ∀π ∈ Xd,
i.e., one can only quantify over traces from the universe of discourse. Hence, we typically
simplify our notation to ∃π and ∀π in HyperLTL formulas.

Closed-World Semantics. Second-order quantification in Hyper2LTL as defined by Beutner
et al. [4] (and introduced above) ranges over arbitrary sets of traces (not necessarily from
the universe of discourse) and first-order quantification ranges over elements in such sets,
i.e., (possibly) again over arbitrary traces. To disallow this, we introduce closed-world
semantics for Hyper2LTL, only considering formulas that do not use the variable Xa. We
change the semantics of set quantifiers as follows, where the closed-world semantics of atomic
propositions, Boolean connectives, temporal operators, and trace quantifiers is defined as
before:

Π |=cw ∃X. φ if there exists a set T ⊆ Π(Xd) such that Π[X 7→ T] |= φ, and
Π |=cw ∀X. φ if for all sets T ⊆ Π(Xd) we have Π[X 7→ T] |= φ.

We say that T ⊆ (2AP)ω satisfies φ under closed-world semantics, if Π∅[Xd 7→ T] |=cw φ.
Hence, under closed-world semantics, second-order quantifiers only range over subsets of the

H. Frenkel and M. Zimmermann 10:7

universe of discourse. Consequently, first-order quantifiers also range over traces from the
universe of discourse.

▶ Lemma 2. Every Hyper2LTL sentence φ can be translated in polynomial time (in |φ|)
into a Hyper2LTL sentence φ′ such that for all sets T of traces we have that T |=cw φ if and
only if T |= φ′ (under standard semantics).

Thus, all complexity upper bounds we derive for standard semantics also hold for closed-
world semantics and all lower bounds for closed-world semantics hold for standard semantics.
▶ Remark 3. Let φ be an Xa-free Hyper2LTL sentence over AP. We have (2AP)ω |= φ (under
standard semantics) if and only if (2AP)ω |=cw φ, as the second-order quantifiers range in
both cases over subsets of (2AP)ω, which implies that the trace quantifiers in both cases
range over traces from (2AP)ω.

Arithmetic. To capture the complexity of undecidable problems, we consider formulas
of arithmetic, i.e., predicate logic with signature (+, ·, <,∈), evaluated over the struc-
ture (N,+, ·, <,∈). A type 0 object is a natural number in N, a type 1 object is a subset of
N, and a type 2 object is a set of subsets of N.

Our benchmark is third-order arithmetic, i.e., predicate logic with quantification over
type 0, type 1, and type 2 objects. In the following, we use lower-case roman letters
(possibly with decorations) for first-order variables, upper-case roman letters (possibly with
decorations) for second-order variables, and upper-case calligraphic roman letters (possibly
with decorations) for third-order variables. Note that every fixed natural number is definable
in first-order arithmetic, so we freely use them as syntactic sugar. Truth of third-order
arithmetic is the following problem: given a sentence φ of third-order arithmetic, does
(N,+, ·, <,∈) satisfy φ?

Arithmetic formulas with a single free first-order variable define sets of natural numbers.
We are interested in the classes

Σ1
1 containing sets of the form {x ∈ N | ∃X1 ⊆ N. · · · ∃Xk ⊆ N. ψ(x,X1, . . . , Xk)}, where

ψ is a formula of arithmetic with arbitrary quantification over type 0 objects (but no
second-order quantifiers), and
Σ2

2 containing sets of the following form, where ψ is a formula of arithmetic with
arbitrary quantification over type 0 and type 1 objects (but no third-order quantifiers):
{x ∈ N | ∃X1 ⊆ 2N. · · · ∃Xk ⊆ 2N.∀Y1 ⊆ 2N. · · · ∀Yk′ ⊆ 2N. ψ(x,X1, . . . ,Xk,Y1, . . . ,Yk′)}.

3 The Cardinality of Hyper2LTL Models

In this section, we investigate the cardinality of models of satisfiable Hyper2LTL sentences,
i.e., the number of traces in the model.

We begin by stating a (trivial) upper bound, which follows from the fact that models are
sets of traces. Here, c denotes the cardinality of the continuum (equivalently, the cardinality
of 2N and of (2AP)ω for any finite nonempty AP).

▶ Proposition 4. Every satisfiable Hyper2LTL sentence has a model of cardinality at most c.

In this section, we show that this trivial upper bound is tight.
▶ Remark 5. There is a very simple, albeit equally unsatisfactory way to obtain the desired
lower bound: Consider ∀π ∈ Xa. π ▷ Xd expressing that every trace in the set of all traces
is also in the universe of discourse, i.e., (2AP)ω is its only model over AP. However, this
crucially relies on the fact that Xa is, by definition, interpreted as the set of all traces. In
fact, the formula does not even use second-order quantification.

CSL 2025

10:8 The Complexity of Second-Order HyperLTL

We show how to construct a sentence that has only uncountable models, and which
retains that property under closed-world semantics (which in particular means it cannot
use Xa). This should be compared with HyperLTL, where every satisfiable sentence has
a countable model [18]: Unsurprisingly, the addition of (even closed-world) second-order
quantification increases the cardinality of minimal models, even without cheating.

▶ Example 6. We begin by recalling a construction of Finkbeiner and Zimmermann giving
a satisfiable HyperLTL sentence ψ that has no finite models [18]. The sentence intuitively
posits the existence of a unique trace for every natural number n. Our lower bound for
Hyper2LTL builds upon that construction.

Fix AP = {x} and consider the conjunction ψ = ψ1 ∧ ψ2 ∧ ψ3 of the following three
formulas:
1. ψ1 = ∀π. ¬xπ U(xπ ∧ X G ¬xπ): every trace in a model is of the form ∅n{x}∅ω for some

n ∈ N, i.e., every model is a subset of {∅n{x}∅ω | n ∈ N}.
2. ψ2 = ∃π. xπ: the trace ∅0{x}∅ω is in every model.
3. ψ3 = ∀π. ∃π′. F(xπ ∧ X xπ′): if ∅n{x}∅ω is in a model for some n ∈ N, then also

∅n+1{x}∅ω.
Then, ψ has exactly one model (over AP), namely {∅n{x}∅ω | n ∈ N}.

A trace of the form ∅n{x}∅ω encodes the natural number n and ψ expresses that every
model contains the encodings of all natural numbers and nothing else. But we can of course
also encode sets of natural numbers with traces as follows: a trace t over a set of atomic
propositions containing x encodes the set {n ∈ N | x ∈ t(n)}. In the following, we show
that second-order quantification allows us to express the existence of the encodings of all
subsets of natural numbers by requiring that for every subset S ⊆ N (quantified as the set
{∅n{x}∅ω | n ∈ S} of traces) there is a trace t encoding S, which means x is in t(n) if and
only if S contains a trace in which x holds at position n. This equivalence can be expressed
in Hyper2LTL. For technical reasons, we do not capture the equivalence directly but instead
use encodings of both the natural numbers that are in S and the natural numbers that are
not in S.

▶ Theorem 7. There is a satisfiable Xa-free Hyper2LTL sentence that only has models of
cardinality c (both under standard and closed-world semantics).

Proof. We first prove that there is a satisfiable Xa-free Hyper2LTL sentence φallSets whose
unique model (under standard semantics) has cardinality c. To this end, we fix AP =
{+, -, s, x} and consider the conjunction φallSets = φ0 ∧ · · · ∧ φ4 of the following formulas:

φ0 = ∀π ∈ Xd.
∨

p∈{+,-,s} G(pπ ∧
∧

p′∈{+,-,s}\{p} ¬p′
π): In each trace of a model, one of

the propositions in {+, -, s} holds at every position and the other two propositions in
{+, -, s} hold at none of the positions. Consequently, we speak in the following about
type p traces for p ∈ {+, -, s}.
φ1 = ∀π ∈ Xd. (+π ∨ -π) → ¬xπ U(xπ ∧ X G ¬xπ): Type p traces for p ∈ {+, -} in the
model have the form {p}n{x, p}{p}ω for some n ∈ N.
φ2 =

∧
p∈{+,-} ∃π ∈ Xd. pπ ∧ xπ: for both p ∈ {+, -}, the type p trace {p}0{x, p}{p}ω is

in every model.
φ3 =

∧
p∈{+,-} ∀π ∈ Xd. ∃π′ ∈ Xd. pπ → (pπ′ ∧ F(xπ ∧ X xπ′)): for both p ∈ {+, -}, if the

type p trace {p}n{x, p}{p}ω is in a model for some n ∈ N, then also {p}n+1{x, p}{p}ω.

The formulas φ1, φ2, φ3 are similar to the formulas ψ1, ψ2, ψ3 from Example 6. So, every
model of φ0 ∧ · · · ∧ φ3 contains {{+}n{x, +}{+}ω | n ∈ N} and {{-}n{x, -}{-}ω | n ∈ N} as
subsets, and no other type + or type - traces.

H. Frenkel and M. Zimmermann 10:9

Now, consider a set T of traces over AP (recall that second-order quantification ranges
over arbitrary sets, not only over subsets of the universe of discourse). We say that T is
contradiction-free if there is no n ∈ N such that {+}n{x, +}{+}ω ∈ T and {-}n{x, -}{-}ω ∈ T .
Furthermore, a trace t over AP is consistent with a contradiction-free T if
(C1) {+}n{x, +}{+}ω ∈ T implies x ∈ t(n) and
(C2) {-}n{x, -}{-}ω ∈ T implies x /∈ t(n).
Note that T does not necessarily specify the truth value of x in every position of t, i.e., in those
positions n ∈ N where neither {+}n{x, +}{+}ω nor {-}n{x, -}{-}ω are in T . Nevertheless,
for every trace t over {x} there is a contradiction-free T such that the {x}-projection of every
trace t′ over AP that is consistent with T is equal to t. Thus, each of the uncountably many
traces over {x} is induced by some subset of the model.

Hence, we define φ4 as the formula

∀X.
X is contradiction-free︷ ︸︸ ︷

[∀π ∈ X. ∀π′ ∈ X. (+π ∧ -π′) → ¬ F(xπ ∧ xπ′)] →
∃π′′ ∈ Xd. ∀π′′′ ∈ X. sπ′′ ∧ (+π′′′ → F(xπ′′′ ∧ xπ′′))︸ ︷︷ ︸

(C1)

∧ (-π′′′ → F(xπ′′′ ∧ ¬xπ′′))︸ ︷︷ ︸
(C2)

,

expressing that for every contradiction-free set of traces T , there is a type s trace t′′ in
the model (note that π′′ is required to be in Xd) that is consistent with T .

While φallSets is not in prenex normal form, it can easily be turned into an equivalent formula
in prenex normal form (at the cost of readability).

Now, the set

TallSets = {{+}n{x, +}{+}ω | n ∈ N} ∪ {{-}n{x, -}{-}ω | n ∈ N}∪

{(t(0) ∪ {s})(t(1) ∪ {s})(t(2) ∪ {s}) · · · | t ∈ (2{x})ω}

of traces satisfies φallSets. On the other hand, every model of φallSets must indeed contain
TallSets as a subset, as φallSets requires the existence of all of its traces in the model. Finally,
due to φ0 and φ1, a model (over AP) cannot contain any traces that are not in TallSets, i.e.,
TallSets is the unique model of φallSets.

To conclude, we just remark that

{(t(0) ∪ {s})(t(1) ∪ {s})(t(2) ∪ {s}) · · · | t ∈ (2{x})ω} ⊆ TallSets

has indeed cardinality c, as (2{x})ω has cardinality c.
Finally, let us consider closed-world semantics. We can restrict the second-order quantifier

in φ4 (the only one in φallSets) to subsets of the universe of discourse, as the set T =
{{+}n{x, +}{+}ω | n ∈ N} ∪ {{-}n{x, -}{-}ω | n ∈ N} of traces (which is a subset of every
model) is already rich enough to encode every subset of N by an appropriate contradiction-
free subset of T . Thus, φallSets has the unique model TallSets even under closed-world
semantics. ◀

4 The Complexity of Hyper2LTL Satisfiability

A Hyper2LTL sentence is satisfiable if it has a model. The Hyper2LTL satisfiability problem
asks, given a Hyper2LTL sentence φ, whether φ is satisfiable. In this section, we determine
tight bounds on the complexity of Hyper2LTL satisfiability and some of its variants.

Recall that in Section 3, we encoded sets of natural numbers as traces over a set of
propositions containing x and encoded natural numbers as singleton sets. The proof of

CSL 2025

10:10 The Complexity of Second-Order HyperLTL

Theorem 7 relies on constructing a sentence that requires each of its models to encode every
subset of N by a trace in the model. Hence, sets of traces can encode sets of sets of natural
numbers, i.e., type 2 objects.

Another important ingredient in the following proof is the implementation of addition
and multiplication in HyperLTL. Let AParith = {arg1, arg2, res, add, mult} and let T(+,·)
be the set of all traces t ∈ (2AParith)ω such that:

there are unique n1, n2, n3 ∈ N with arg1 ∈ t(n1), arg2 ∈ t(n2), and res ∈ t(n3), and
either add ∈ t(n) and mult /∈ t(n) for all n, and n1 + n2 = n3, or mult ∈ t(n) and
add /∈ t(n) for all n, and n1 · n2 = n3.

▶ Proposition 8 (Theorem 5.5 of [20]). There is a satisfiable HyperLTL sentence φ(+,·) such
that the AParith-projection of every model of φ(+,·) is T(+,·).

Combining the capability of quantifying over type 0, type 1, and type 2 objects and the
encoding of addition and multiplication, we show that Hyper2LTL and truth in third-order
arithmetic have the same complexity.

▶ Theorem 9. The Hyper2LTL satisfiability problem is polynomial-time equivalent to truth
in third-order arithmetic. The lower bound holds even for Xa-free sentences.

Proof. We begin with the lower bound by reducing truth in third-order arithmetic to
Hyper2LTL satisfiability: we present a polynomial-time translation from sentences φ of
third-order arithmetic to Hyper2LTL sentences φ′ such that (N,+, ·, <,∈) |= φ if and only if
φ′ is satisfiable.

Given a third-order sentence φ, we define

φ′ = ∃XallSets. ∃Xarith . (φallSets[Xd/XallSets] ∧ φ′
(+,·) ∧ hyp(φ))

where
φallSets[Xd/XallSets] is the Hyper2LTL sentence from the proof of Theorem 7 where every
occurrence of Xd is replaced by XallSets and thus enforces every subset of N to be encoded
in the interpretation of XallSets (as introduced in the proof of Theorem 7),
φ′

(+,·) is the Hyper2LTL formula obtained from the HyperLTL formula φ(+,·) by replacing
each quantifier ∃π (∀π, respectively) by ∃π ∈ Xarith (∀π ∈ Xarith , respectively) and thus
enforces that Xarith is interpreted by a set whose AParith-projection is T(+,·), and

where hyp(φ) is defined inductively as follows:
For third-order variables Y,

hyp(∃Y . ψ) = ∃XY . (∀π ∈ XY . ∃π′ ∈ XallSets. (π ={+,-,s,x} π
′) ∧ sπ) ∧ hyp(ψ).

For third-order variables Y,

hyp(∀Y . ψ) = ∀XY . (∀π ∈ XY . ∃π′ ∈ XallSets. (π ={+,-,s,x} π
′) ∧ sπ) → hyp(ψ).

For second-order variables Y , hyp(∃Y. ψ) = ∃πY ∈ XallSets. sπY
∧ hyp(ψ).

For second-order variables Y , hyp(∀Y. ψ) = ∀πY ∈ XallSets. sπY
→ hyp(ψ).

For first-order variables y,

hyp(∃y. ψ) = ∃πy ∈ XallSets. sπy
∧ [(¬xπy

) U(xπy
∧ X G ¬xπy

)] ∧ hyp(ψ).

For first-order variables y,

hyp(∀y. ψ) = ∀πy ∈ XallSets. (sπy
∧ [(¬xπy

) U(xπy
∧ X G ¬xπy

)]) → hyp(ψ).

H. Frenkel and M. Zimmermann 10:11

hyp(ψ1 ∨ ψ2) = hyp(ψ1) ∨ hyp(ψ2).
hyp(¬ψ) = ¬hyp(ψ).
For second-order variables Y and third-order variables Y,

hyp(Y ∈ Y) = ∃π ∈ XY . πY ={x} π.

For first-order variables y and second-order variables Y , hyp(y ∈ Y) = F(xπy ∧ xπY
).

For first-order variables y, y′, hyp(y < y′) = F(xπy
∧ X F xπy′).

For first-order variables y1, y2, y,

hyp(y1+y2 = y) = ∃π ∈ Xarith . addπ ∧F(arg1π ∧xπy1
)∧F(arg2π ∧xπy2

)∧F(resπ ∧xπy
).

For first-order variables y1, y2, y,

hyp(y1 ·y2 = y) = ∃π ∈ Xarith . multπ ∧F(arg1π ∧xπy1
)∧F(arg2π ∧xπy2

)∧F(resπ ∧xπy).

While φ′ is not in prenex normal form, it can easily be brought into prenex normal form, as
there are no quantifiers under the scope of a temporal operator.

As we are evaluating φ′ w.r.t. standard semantics and the variable Xd (interpreted with
the model) does not occur in φ′, satisfaction of φ′ is independent of the model, i.e., for all
sets T, T ′ of traces, T |= φ′ if and only if T ′ |= φ′. So, let us fix some set T of traces. An
induction shows that (N,+, ·, <,∈) satisfies φ if and only if T satisfies φ′. Altogether we
obtain the desired equivalence between (N,+, ·, <,∈) |= φ and φ′ being satisfiable.

For the upper bound, we conversely reduce Hyper2LTL satisfiability to truth in third-
order arithmetic: we present a polynomial-time translation from Hyper2LTL sentences φ to
sentences φ′ of third-order arithmetic such that φ is satisfiable if and only if (N,+, ·, <,∈) |= φ′.
Here, we assume AP to be fixed, so that we can use |AP| as a constant in our formulas
(which is definable in arithmetic).

Let pair : N × N → N denote Cantor’s pairing function defined as pair(i, j) = 1
2 (i+ j)(i+

j + 1) + j, which is a bijection. Furthermore, fix some bijection e : AP → {0, 1, . . . , |AP| − 1}.
Then, we encode a trace t ∈ (2AP)ω by the set St = {pair(j, e(p)) | j ∈ N and p ∈ t(j)} ⊆ N.
As pair is a bijection, we have that t ̸= t′ implies St ̸= St′ . While not every subset of N
encodes some trace t, the first-order formula

φisTrace(Y) = ∀x. ∀y. y ≥ |AP| → pair(x, y) /∈ Y

checks if a set does encode a trace. Here, we use pair as syntactic sugar, which is possible as
the definition of pair only uses addition and multiplication.

As (certain) sets of natural numbers encode traces, sets of (certain) sets of natural numbers
encode sets of traces. This is sufficient to reduce Hyper2LTL to third-order arithmetic, which
allows the quantification over sets of sets of natural numbers. Before we present the translation,
we need to introduce some more auxiliary formulas:

Let Y be a third-order variable (i.e., Y ranges over sets of sets of natural numbers). Then,
the formula

φonlyTraces(Y) = ∀Y. Y ∈ Y → φisTrace(Y)

checks if a set of sets of natural numbers only contains sets encoding a trace.
Further, the formula

φallTraces(Y) = φonlyTraces(Y) ∧ ∀Y. φisTrace(Y) → Y ∈ Y

checks if a set of sets of natural numbers contains exactly the sets encoding a trace.

CSL 2025

10:12 The Complexity of Second-Order HyperLTL

Now, we are ready to define our encoding of Hyper2LTL in third-order arithmetic. Given
a Hyper2LTL sentence φ, let

φ′ = ∃Ya. ∃Yd. φallTraces(Ya) ∧ φonlyTraces(Yd) ∧ (ar(φ))(0)

where ar(φ) is defined inductively as presented below. Note that φ′ requires Ya to contain
exactly the encodings of all traces (i.e., it corresponds to the distinguished Hyper2LTL
variable Xa in the following translation) and Yd is an existentially quantified set of trace
encodings (i.e., it corresponds to the distinguished Hyper2LTL variable Xd in the following
translation).

In the inductive definition of ar(φ), we will employ a free first-order variable i to denote
the position at which the formula is to be evaluated to capture the semantics of the temporal
operators. As seen above, in φ′, this free variable is set to zero in correspondence with the
Hyper2LTL semantics.

ar(∃X. ψ) = ∃YX . φonlyTraces(YX) ∧ ar(ψ). Here, the free variable of ar(∃X. ψ) is the
free variable of ar(ψ).
ar(∀X. ψ) = ∀YX . φonlyTraces(YX) → ar(ψ). Here, the free variable of ar(∀X. ψ) is the
free variable of ar(ψ).
ar(∃π ∈ X. ψ) = ∃Yπ. Yπ ∈ YX ∧ ar(ψ). Here, the free variable of ar(∃π ∈ X. ψ) is the
free variable of ar(ψ).
ar(∀π ∈ X. ψ) = ∀Yπ. Yπ ∈ YX → ar(ψ). Here, the free variable of ar(∀π ∈ X. ψ) is the
free variable of ar(ψ).
ar(ψ1 ∨ ψ2) = ar(ψ1) ∨ ar(ψ2). Here, we require that the free variables of ar(ψ1) and
ar(ψ2) are the same (which can always be achieved by variable renaming), which is then
also the free variable of ar(ψ1 ∨ ψ2).
ar(¬ψ) = ¬ar(ψ). Here, the free variable of ar(¬ψ) is the free variable of ¬ar(ψ).
ar(Xψ) = ∃i′(i′ = i+ 1) ∧ ar(ψ), where i′ is the free variable of ar(ψ) and i is the free
variable of ar(Xψ).
ar(ψ1 Uψ2) = ∃i2. i2 ≥ i ∧ ar(ψ2) ∧ ∀i1. (i ≤ i1 ∧ i1 < i2) → ar(ψ1), where ij is the free
variable of ar(ψj), and i is the free variable of ar(ψ1 Uψ2).
ar(pπ) = pair(i, e(p)) ∈ Yπ, i.e., i is the free variable of ar(pπ).

Now, an induction shows that Π∅[Xa → (2AP)ω, Xd 7→ T] |= φ if and only if (N,+, ·, <,∈)
satisfies (ar(φ))(0) when the variable Ya is interpreted by the encoding of (2AP)ω and Yd is
interpreted by the encoding of T . Hence, φ is indeed satisfiable if and only if (N,+, ·, <,∈)
satisfies φ′. ◀

In the lower bound proof above, we have turned a sentence φ of third-order arithmetic
into a Hyper2LTL sentence φ′ such that (N,+, ·, <,∈) |= φ if and only if φ′ is satisfiable. In
fact, we have constructed φ′ such that if it is satisfiable, then every set of traces satisfies it,
in particular (2AP)ω. Recall that Remark 3 states that (2AP)ω satisfies φ′ under standard
semantics if and only if (2AP)ω satisfies φ′ under closed-world semantics. Thus, altogether
we obtain that (N,+, ·, <,∈) |= φ if and only if φ′ is satisfiable under closed-world semantics,
i.e, the lower bound holds even under closed-world semantics. Together with Lemma 2, this
settles the complexity of Hyper2LTL satisfiability under closed-world semantics.

▶ Corollary 10. The Hyper2LTL satisfiability problem under closed-world semantics is
polynomial-time equivalent to truth in third-order arithmetic.

The Hyper2LTL finite-state satisfiability problem asks, given a Hyper2LTL sentence φ,
whether there is a finite transition system satisfying φ. Note that we do not ask for a finite

H. Frenkel and M. Zimmermann 10:13

set T of traces satisfying φ. In fact, the set of traces of the finite transition system may
still be infinite or even uncountable. Nevertheless, the problem is potentially simpler, as
there are only countably many finite transition systems (and their sets of traces are much
simpler). However, we show that the finite-state satisfiability problem is as hard as the
general satisfiability problem, as Hyper2LTL allows the quantification over arbitrary (sets
of) traces, i.e., restricting the universe of discourse to the traces of a finite transition system
does not restrict second-order quantification at all (as the set of all traces is represented by a
finite transition system). This has to be contrasted with the finite-state satisfiability problem
for HyperLTL (defined analogously), which is Σ0

1-complete (a.k.a. recursively enumerable),
as HyperLTL model-checking of finite transition systems is decidable [11].

▶ Theorem 11. The Hyper2LTL finite-state satisfiability problem is polynomial-time equiva-
lent to truth in third-order arithmetic. The lower bound holds even for Xa-free sentences.

Proof. For the lower bound under standard semantics, we reduce truth in third-order
arithmetic to Hyper2LTL finite-state satisfiability: we present a polynomial-time translation
from sentences φ of third-order arithmetic to Hyper2LTL sentences φ′ such that (N,+, ·,
<,∈) |= φ if and only if φ′ is satisfied by a finite transition system.

So, let φ be a sentence of third-order arithmetic. Recall that in the proof of Theorem 9,
we have shown how to construct from φ the Hyper2LTL sentence φ′ such that the following
three statements are equivalent:

(N,+, ·, <,∈) |= φ.
φ′ is satisfiable.
φ′ is satisfied all sets T of traces (and in particular by some finite-state transition system).

Thus, the lower bound follows from Theorem 9.
For the upper bound, we conversely reduce Hyper2LTL finite-state satisfiability to truth in

third-order arithmetic: we present a polynomial-time translation from Hyper2LTL sentences φ
to sentences φ′′ of third-order arithmetic such that φ is satisfied by a finite transition system
if and only if (N,+, ·, <,∈) |= φ′′.

Recall that in the proof of Theorem 9, we have constructed a sentence

φ′ = ∃Ya. ∃Yd. φallTraces(Ya) ∧ φonlyTraces(Yd) ∧ (ar(φ))(0)

of third-order arithmetic where Ya represents the distinguished Hyper2LTL variable Xa, Yd

represents the distinguished Hyper2LTL variable Xd, and where ar(φ) is the encoding of φ
in Hyper2LTL.

To encode the general satisfiability problem it was sufficient to express that Yd only
contains traces. Here, we now require that Yd contains exactly the traces of some finite
transition system, which can easily be expressed in second-order arithmetic2 as follows.

We begin with a formula φisTS(n,E, I, ℓ) expressing that the second-order variables E,
I, and ℓ encode a transition system with set {0, 1, . . . , n− 1} of vertices. Our encoding will
make extensive use of the pairing function introduced in the proof of Theorem 9. Formally,
we define φisTS(n,E, I, ℓ) as the conjunction of the following formulas (where all quantifiers
are first-order and we use pair as syntactic sugar):

n > 0: the transition system is nonempty.
∀y. y ∈ E → ∃v. ∃v′. (v < n ∧ v′ < n ∧ y = pair(v, v′)): edges are pairs of vertices.
∀v. v < n → ∃v′. (v′ < n ∧ pair(v, v′) ∈ E): every vertex has a successor.
∀v. v ∈ I → v < n: the set of initial vertices is a subset of the set of all vertices.

2 With a little more effort, and a little less readability, first-order suffices for this task, as finite transition
systems can be encoded by natural numbers.

CSL 2025

10:14 The Complexity of Second-Order HyperLTL

∀y. y ∈ ℓ → ∃v. ∃p. (v < n∧ p < |AP| ∧ y = pair(v, p)): the labeling of v by p is encoded
by the pair (v, p). Here, we again assume AP to be fixed and therefore can use |AP| as a
constant.

Next, we define φisPath(P, n,E, I), expressing that the second-order variable P encodes
a path through the transition system encoded by n, E, and I, as the conjunction of the
following formulas:

∀j. ∃v. (v < n ∧ pair(j, v) ∈ P ∧ ¬∃v′. (v′ ≠ v ∧ pair(j, v′) ∈ P)): the fact that at
position j the path visits vertex v is encoded by the pair (j, v). Exactly one vertex is
visited at each position.
∃v. v ∈ I ∧ pair(0, v) ∈ P : the path starts in an initial vertex.
∀j. ∃v. ∃v′. pair(j, v) ∈ P ∧ pair(j + 1, v′) ∈ P ∧ pair(v, v′) ∈ E: successive vertices in
the path are indeed connected by an edge.

Finally, we define φtraceOf (T, P, ℓ), expressing that the second-order variable T encodes
the trace (using the encoding from the proof of Theorem 9) of the path encoded by the
second-order variable P , as the following formula:

∀j. ∀p. pair(j, p) ∈ T ↔ (∃v. pair(j, v) ∈ P ∧ pair(v, p) ∈ ℓ): a proposition holds in the
trace at position j if and only if it is in the labeling of the j-th vertex of the path.

Now, we define the sentence φ′′ as

∃Ya. ∃Yd. φallTraces(Ya) ∧ φonlyTraces(Yd)∧[
∃n. ∃E. ∃I. ∃ℓ. φisTS(n,E, I, ℓ)︸ ︷︷ ︸

there exists a transition system T

∧

(∀T. T ∈ Yd → ∃P. (φisPath(P, n,E, I) ∧ φtraceOf (T, P, ℓ)))︸ ︷︷ ︸
Yd contains only traces of paths through T

∧

(∀P. (φisPath(P, n,E, I) → ∃T. T ∈ Yd ∧ φtraceOf (T, P, ℓ)))︸ ︷︷ ︸
Yd contains all traces of paths through T.

]
∧ (ar(φ))(0),

which holds in (N,+, ·, <,∈) if and only if φ is satisfied by a finite transition system. ◀

Again, the lower bound proof can easily be extended to the case of closed-world semantics,
using the same arguments as in the case of general satisfiability.

▶ Corollary 12. The Hyper2LTL finite-state satisfiability problem under closed-world seman-
tics is polynomial-time equivalent to truth in third-order arithmetic.

5 The Complexity of Hyper2LTL Model-Checking

The Hyper2LTL model-checking problem asks, given a finite transition system T and a
Hyper2LTL sentence φ, whether T |= φ. Beutner et al. [4] have shown that Hyper2LTL
model-checking is Σ1

1-hard, but there is no known upper bound in the literature. We improve
the lower bound considerably, i.e., also to truth in third-order arithmetic, and show that this
bound is tight. This is the first upper bound on the problem’s complexity.

▶ Theorem 13. The Hyper2LTL model-checking problem is polynomial-time equivalent to
truth in third-order arithmetic. The lower bound already holds for Xa-free sentences.

H. Frenkel and M. Zimmermann 10:15

Proof. For the lower bound, we reduce truth in third-order arithmetic to the Hyper2LTL
model-checking problem: we present a polynomial-time translation from sentences φ of
third-order arithmetic to pairs (T, φ′) of a finite transition system T and a Hyper2LTL
sentence φ′ such that (N,+, ·, <,∈) |= φ if and only if T |= φ′.

In the proof of Theorem 9 we have, given a sentence φ of third-order arithmetic, con-
structed a Hyper2LTL sentence φ′ such that (N,+, ·, <,∈) |= φ if and only if every set T of
traces satisfies φ′ (i.e., satisfaction is independent of the model). Thus, we obtain the lower
bound by mapping φ to φ′ and T∗, where T∗ is some fixed transition system.

For the upper bound, we reduce the Hyper2LTL model-checking problem to truth in
third-order arithmetic: we present a polynomial-time translation from pairs (T, φ) of a finite
transition system and a Hyper2LTL sentence φ to sentences φ′ of third-order arithmetic such
that T |= φ if and only if (N,+, ·, <,∈) |= φ′.

In the proof of Theorem 11, we have constructed, from a Hyper2LTL sentence φ, a
sentence φ′ of third-order arithmetic that expresses the existence of a finite transition system
that satisfies φ. We obtain the desired upper bound by modifying φ′ to replace the existential
quantification of the transition system by hardcoding T instead. ◀

Again, the lower bound proof can easily be extended to closed-world semantics, using the
same arguments as in the case of satisfiability.

▶ Corollary 14. The Hyper2LTL model-checking problem under closed-world semantics is
polynomial-time equivalent to truth in third-order arithmetic.

6 Hyper2LTLmm

As we have seen, unrestricted second-order quantification makes Hyper2LTL very expressive
and therefore highly undecidable. But restricted forms of second-order quantification are
sufficient for many application areas. Beutner et al. [4] introduced Hyper2LTLmm, a fragment3

of Hyper2LTL in which second-order quantification ranges over smallest/largest sets that
satisfy a given guard. For example, the formula ∃(X,⋎, φ1). φ2 expresses that there is a set T
of traces that satisfies both φ1 and φ2, and T is a smallest set that satisfies φ1 (i.e., φ1 is
the guard). This fragment is expressive enough to express common knowledge, asynchronous
hyperproperties, and causality in reactive systems [4].

The formulas of Hyper2LTLmm are given by the grammar

φ ::= ∃(X,⋎⋏, φ). φ | ∀(X,⋎⋏, φ). φ | ∃π ∈ X. φ | ∀π ∈ X. φ | ψ
ψ ::= pπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where p ranges over AP, π ranges over V1, X ranges over V2, and ⋎⋏ ∈ {⋎,⋏}, i.e., the only
modification concerns the syntax of second-order quantification.

Accordingly, the semantics of Hyper2LTLmm is similar to that of Hyper2LTL but for the
second-order quantifiers, for which we define (for ⋎⋏ ∈ {⋎,⋏}):

Π |= ∃(X,⋎⋏, φ1). φ2 if there exists a set T ∈ sol(Π, (X,⋎⋏, φ1)) such that Π[X 7→ T] |= φ2

Π |= ∀(X,⋎⋏, φ1). φ2 if for all sets T ∈ sol(Π, (X,⋎⋏, φ1)) we have Π[X 7→ T] |= φ2

3 In [4] this fragment is termed Hyper2LTLfp.

CSL 2025

10:16 The Complexity of Second-Order HyperLTL

Here, sol(Π, (X,⋎⋏, φ1)) is the set of all minimal/maximal models of the formula φ1, which is
defined as follows:

sol(Π, (X,⋎, φ1)) = {T ⊆ (2AP)ω | Π[X 7→ T] |= φ1 and Π[X 7→ T ′] ̸|= φ1 for all T ′ ⊊ T}
sol(Π, (X,⋏, φ1)) = {T ⊆ (2AP)ω | Π[X 7→ T] |= φ1 and Π[X 7→ T ′] ̸|= φ1 for all T ′ ⊋ T}

Note that sol(Π, (X,⋎⋏, φ1)) may be empty, may be a singleton, or may contain multiple sets,
which then are pairwise incomparable.

Let us also define closed-world semantics for Hyper2LTLmm. Here, we again disallow the
use of the variable Xa and change the semantics of set quantification to

Π |=cw ∃(X,⋎⋏, φ1). φ2 if there exists a set T ∈ solcw(Π, (X,⋎⋏, φ1)) such that Π[X 7→
T] |= φ2, and
Π |=cw ∀(X,⋎⋏, φ1). φ2 if for all sets T ∈ solcw(Π, (X,⋎⋏, φ1)) we have Π[X 7→ T] |= φ2,

where solcw(Π, (X,⋎, φ1)) and solcw(Π, (X,⋏, φ1)) are defined as follows:

solcw(Π, (X,⋎, φ1)) = {T ⊆ Π(Xd) | Π[X 7→ T] |=cw φ1

and Π[X 7→ T ′] ̸|=cw φ1 for all T ′ ⊊ T}
solcw(Π, (X,⋏, φ1)) = {T ⊆ Π(Xd) | Π[X 7→ T] |=cw φ1

and Π[X 7→ T ′] ̸|=cw φ1 for all Π(Xd) ⊇ T ′ ⊋ T}.

Note that solcw(Π, (X,⋎⋏, φ1)) may still be empty, may be a singleton, or may contain multiple
sets, but all sets in it are now incomparable subsets of Π(Xd).

A Hyper2LTLmm formula is a sentence if it does not have any free variables except for
Xa and Xd (also in the guards). Models are defined as for Hyper2LTL.

▶ Proposition 15 (Proposition 1 of [4]). Every Hyper2LTLmm sentence φ can be translated
in polynomial time (in |φ|) into a Hyper2LTL sentence φ′ such that for all sets T of traces
we have that T |= φ if and only if T |= φ′.4

The same claim is also true for closed-world semantics, using the same proof.

▶ Remark 16. Every Hyper2LTLmm sentence φ can be translated in polynomial time (in |φ|)
into a Hyper2LTL sentence φ′ such that for all sets T of traces we have that T |=cw φ if and
only if T |=cw φ′.

Thus, every complexity upper bound for Hyper2LTL also holds for Hyper2LTLmm and
every lower bound for Hyper2LTLmm also holds for Hyper2LTL. In the following, we show
that lower bounds can also be transferred in the other direction, i.e., from Hyper2LTL to
Hyper2LTLmm. Thus, contrary to the design goal of Hyper2LTLmm, it is in general not more
feasible than full Hyper2LTL.

We begin again by studying the cardinality of models of Hyper2LTLmm sentences, which
will be the key technical tool for our complexity results. Again, as such formulas are evaluated
over sets of traces, whose cardinality is bounded by c, there is a trivial upper bound. Our
main result is that this bound is tight even for the restricted setting of Hyper2LTLmm. The
proof is similar to the one of Theorem 7, we just have to modify φ4 so that the universal
second-order quantifier only ranges over maximal contradiction-free sets.

4 The polynomial-time claim is not made in [4], but follows from the construction when using appropriate
data structures for formulas.

H. Frenkel and M. Zimmermann 10:17

▶ Theorem 17. There is a satisfiable Xa-free Hyper2LTLmm sentence that only has models
of cardinality c (under standard and closed-world semantics).

Now, let us describe how we settle the complexity of Hyper2LTLmm satisfiability and
model-checking: Recall that Hyper2LTL allows set quantification over arbitrary sets of traces
while Hyper2LTLmm restricts quantification to minimal/maximal sets of traces that satisfy a
guard formula. By using a sentence φc as guard that has only models of cardinality c, the
minimal sets satisfying the guard have cardinality c. Thus, we can obtain every possible set
over propositions not used by φc as the projection of a subset of a minimal set satisfying the
guard φc. Thus, quantification of arbitrary sets of traces can be mimicked by quantification
of minimal and maximal sets satisfying a guard.

▶ Theorem 18. Hyper2LTLmm satisfiability, finite-state satisfiability, and model-checking
are polynomial-time equivalent to truth in third-order arithmetic. The lower bounds hold even
for Xa-free sentences.

Let us conclude by mentioning that Theorem 18 can again be extended to Hyper2LTLmm
under closed-world semantics, using the same arguments as for full Hyper2LTL.

▶ Corollary 19. Hyper2LTLmm satisfiability, finite-state satisfiability, and model-checking
under closed-world semantics are polynomial-time equivalent to truth in third-order arithmetic.

7 The Least Fixed Point Fragment of Hyper2LTLmm

We have seen that even restricting second-order quantification to smallest/largest sets that
satisfy a guard formula is essentially as expressive as full Hyper2LTL, and thus as difficult.
However, Beutner et al. [4] note that applications like common knowledge and asynchronous
hyperproperties do not even require quantification over smallest/largest sets satisfying a
guard, they “only” require quantification over least fixed points of HyperLTL definable
functions. This finally yields a fragment with (considerably) lower complexity: we show
that satisfiability under closed-world semantics is Σ1

1-complete while finite-state satisfiability
and model-checking are in Σ2

2 and Σ1
1-hard (under both semantics). For satisfiability under

closed-world semantics, this matches the complexity of HyperLTL satisfiability.
A Hyper2LTLmm sentence using only minimality constraints has the form

φ = γ1. Q1(Y1,⋎, φ
con
1). γ2. Q2(Y2,⋎, φ

con
2). . . . γk. Qk(Yk,⋎, φ

con
k). γk+1. ψ

satisfying the following properties:
Each γj is a block γj = Qℓj−1+1πℓj−1+1 ∈ Xℓj−1+1 · · ·Qℓjπℓj ∈ Xℓj of trace quanti-
fiers (with ℓ0 = 0). As φ is a sentence, this implies that we have {Xℓj+1, . . . , Xℓj

} ⊆
{Xa, Xd, Y1, . . . , Yj−1}.
The free variables of ψcon

j are among the trace variables quantified in the γj′ and
Xa, Xd, Y1, . . . , Yj .
ψ is a quantifier-free formula. Again, as φ is a sentence, the free variables of ψ are among
the trace variables quantified in the γj .

Now, φ is an lfp-Hyper2LTLmm sentence5, if additionally each φcon
j has the form

φcon
j = π̇1 ▷ Yj ∧ · · · ∧ π̇n ▷ Yj ∧ ∀π̈1 ∈ Z1. . . . ∀π̈n′ ∈ Zn′ . ψstep

j → π̈m ▷ Yj

5 Our definition here differs slightly from the one of [4] in that we allow to express the existence of some
traces in the fixed point (via the subformulas π̇i ▷ Yj). All examples and applications of [4] are also of
this form.

CSL 2025

10:18 The Complexity of Second-Order HyperLTL

for some n ≥ 0, n′ ≥ 1, where 1 ≤ m ≤ n′, and where we have
{π̇1, . . . , π̇n} ⊆ {π1, . . . , πℓj

},
{Z1, . . . , Zn′} ⊆ {Xa, Xd, Y1, . . . , Yj}, and
ψstep

j is quantifier-free with free variables among π̈1, . . . , π̈n′ , π1, . . . , πℓj .
As always, φcon

j can be brought into the required prenex normal form.
Let us give some intuition for the definition. To this end, fix some j ∈ {1, 2, . . . , k} and a

variable assignment Π whose domain contains at least all variables quantified before Yj , i.e.,
all Yj′ and all variables in the γj′ for j′ < j, as well as Xa and Xd. Then,

φcon
j = π̇1 ∈ Yj ∧ · · · ∧ π̇n ∈ Yj ∧

(
∀π̈1 ∈ Z1. . . . ∀π̈n′ ∈ Zn′ . ψstep

j → π̈m ▷ Yj

)
induces the monotonic function fΠ,j : 2(2AP)ω → 2(2AP)ω defined as

fΠ,j(S) = S ∪ {Π(π̇1), . . . ,Π(π̇n)} ∪ {Π′(π̈m) | Π′ = Π[π̈1 7→ t1, . . . , π̈n′ 7→ tn′]
for ti ∈ Π(Zi) if Zi ̸= Yj and ti ∈ S if Zi = Yj s.t. Π′ |= ψstep

j }.

We define S0 = ∅, Sℓ+1 = fΠ,j(Sℓ), and

lfp(Π, j) =
⋃

ℓ∈N
Sℓ,

which is the least fixed point of fΠ,j . Due to the minimality constraint on Yj in φ, lfp(Π, j) is
the unique set in sol(Π, (Yj ,⋎, φcon

j)). Hence, an induction shows that lfp(Π, j) only depends
on the values Π(π) for trace variables π quantified before Yj as well as the values Π(Xd) and
Π(Xa), but not on the values Π(Yj′) for j′ < j (as they are unique).

Thus, as sol(Π, (Yj ,⋎, φcon
j)) is a singleton, it is irrelevant whether Qj is an existential or

a universal quantifier. Instead of interpreting second-order quantification as existential or
universal, here one should understand it as a deterministic least fixed point computation:
choices for the trace variables and the two distinguished second-order variables uniquely
determine the set of traces that a second-order quantifier assigns to a second-order variable.
▶ Remark 20. Note that the traces that are added to a fixed point assigned to Yj either come
from another Yj′ with j′ < j, from the model (via Xd), or from the set of all traces (via Xa).
Thus, for Xa-free formulas, all second-order quantifiers range over (unique) subsets of the
model, i.e., there is no need for an explicit definition of closed-world semantics. The analogue
of closed-world semantics for lfp-Hyper2LTLmm is to restrict oneself to Xa-free sentences.

In the remainder of this section, we study the complexity of lfp-Hyper2LTLmm. For
satisfiability, the key step is again to study the size of models of satisfiable sentences. For Xa-
free lfp-Hyper2LTLmm, as for HyperLTL, we are able to show that each satisfiable sentence
has a countable model. The following result is proven by generalizing the proof for the
analogous result for HyperLTL [18] showing that every model T of a HyperLTL sentence φ
contains a countable R ⊆ T that is closed under the application of Skolem functions. This
implies that R is also a model of φ.

▶ Lemma 21. Every satisfiable Xa-free lfp-Hyper2LTLmm sentence has a countable model.

Proof Sketch. Let φ = γ1Q1(Y1,⋎, φcon
1). γ2Q2(Y2,⋎, φcon

2). . . . γkQ2(Yk,⋎, φcon
k). γk+1. ψ

be a satisfiable lfp-Hyper2LTLmm sentence where

φcon
j = π̇1 ▷ Yj ∧ · · · ∧ π̇n ▷ Yj ∧ ∀π̈1 ∈ Z1. . . . ∀π̈n′ ∈ Zn′ . ψstep

j → π̈m ▷ Yj .

We assume w.l.o.g. that each trace variable is quantified at most once in φ. This implies that
for each trace variable π quantified in some γj or in some φcon

j , there is a unique second-order
variable Xπ such that π ranges over Xπ.

H. Frenkel and M. Zimmermann 10:19

Membership of traces in least fixed points assigned to the variables Yj can be characterized
by trees labeled by traces that make the inductive construction of the stages of the least fixed
points explicit. Intuitively, consider the formula φcon

j above inducing the unique least fixed
point lfp(Π, j) that Yj ranges over. It expresses that a trace t is in the fixed point either
because it is of the form Π(π̇i) for some i ∈ {1, . . . , n} where π̇i is a trace variable quantified
before the quantification of Yj , or t is in the fixed point because there are traces t1, . . . , tn′

such that assigning them to the π̈i satisfies ψstep
j and t = tm. Thus, the traces t1, . . . , tn′

witness that t is in the fixed point. However, each ti must be selected from Π(Zi), which,
if Zi = Yj′ for some j′, again needs witnesses. Thus, a witness is in general a tree whose
vertices are labeled by traces and indexes in {1, 2,′ ldots, k} indicating in which fixed point
the trace is in.

As φ is satisfiable, there exists a set T of traces such that T |= φ. We show that there is
a countable R ⊆ T with R |= φ. Intuitively, we show that the smallest set R that is closed
under the application of the Skolem functions and that contains the traces labeling witness
trees (for the fixed points computed w.r.t. T) for the traces in R has the desired properties.

The full proof requires additional notation, e.g., a formalization of the notion of witness
trees, and can be found in the full version [21]. ◀

Before we continue with our complexity results, let us briefly mention that the formula
from Remark 5 on Page 7 shows that the restriction to Xa-free sentences is essential to
obtain the upper bound above.

With this upper bound, we can express the existence of (w.l.o.g.) countable models of a
given Xa-free sentence φ via arithmetic formulas that only use existential quantification of
type 1 objects (sets of natural numbers), which are rich enough to express countable sets T
of traces and objects (e.g., Skolem functions and more) witnessing that T satisfies φ. This
places satisfiability in Σ1

1 while the matching lower bound already holds for HyperLTL [19].

▶ Theorem 22. lfp-Hyper2LTLmm satisfiability for Xa-free sentences is Σ1
1-complete.

Proof Sketch. The Σ1
1 lower bound already holds for HyperLTL satisfiability [19], as

HyperLTL is a fragment of Xa-free lfp-Hyper2LTLmm (see Remark 1). Hence, we focus
in the following on the upper bound, which is a generalization of the corresponding upper
bound for HyperLTL [19].

Let φ be an Xa-free lfp-Hyper2LTLmm sentence. From Lemma 21, φ is satisfiable if and
only if it has a countable model T . Thus, to prove that the lfp-Hyper2LTLmm satisfiability
problem for Xa-free sentences is in Σ1

1, we express the existence of a countable set T of traces
and a witness that T is indeed a model of φ.

As we want to show a Σ1
1 upper bound, we have to express the existence of a countable

model by a sentence of arithmetic with existential quantification over sets of natural numbers
and existential and universal quantification over natural numbers. A bit more in detail, since
we only have to work with countable sets (as second-order quantifiers in φ range over subsets
of the countable model), we can use natural numbers to “name” traces. Thus, a countable set
of traces is a mapping from N × N (names and positions) to 2AP, which can be encoded by a
set of natural numbers. Then, we can encode the existence of the following type 1 objects:

Variable assignments, such that membership of their assigned traces into respective fixed
point sets can be captured in first-order arithmetic.
Functions for the existentially quantified first-order variables of φ, which can be verified
to be Skolem functions (in first-order arithmetic).
Functions expressing the satisfaction of subformulas of φ.

CSL 2025

10:20 The Complexity of Second-Order HyperLTL

Furthermore, first-order arithmetic can express that the variable assignments indeed map set
variables to least fixed points.

Altogether, this allows us to capture the satisfiability of lfp-Hyper2LTLmm in Σ1
1. ◀

Finally, we consider finite-state satisfiability and model-checking. Note that we have to
deal with uncountable sets of traces in both problems, as the sets of traces of finite transition
systems may be uncountable. The lower bounds are proven by reductions from a variant of
the recurrent tiling problem [24] while the upper bounds are obtained by expressing least
fixed points in second-order arithmetic.

▶ Theorem 23. lfp-Hyper2LTLmm finite-state satisfiability and model-checking are both in
Σ2

2 and Σ1
1-hard, where the lower bounds already hold for Xa-free sentences.

8 Related Work

As mentioned in Section 1, the complexity problems for HyperLTL were thoroughly studied [16,
19, 20]. For Hyper2LTL, Beutner et al. mainly focused on the algorithmic aspects by providing
model checking [4] and monitoring [5] algorithms, and did not study the respective complexity
problems in depth.

Logics related to Hyper2LTL are asynchronous and epistemic logics. Much research has
been done regarding epistemic properties [13, 15, 29, 36] and their relations to hyperproper-
ties [8]. However, most of this work concerns expressiveness and decidability results (e.g., [7]),
and not complexity analysis for the undecidable fragments. This is similar for asynchronous
hyperlogics [1, 2, 3, 6, 9, 10, 23, 26, 27, 28], where most work concerns decidability results
and expressive power, but not complexity analysis.

Another related logic is TeamLTL [28], a hyperlogic for the specification of dependence
and independence. Lück [30] studied similar problems to those we study in this paper and
showed that, in general, satisfiability and model checking of TeamLTL with Boolean negation
is equivalent to truth in third-order arithmetic. Kontinen and Sandström [25] generalize this
result and show that any logic between TeamLTL with Boolean negation and second-order
logic inherits the same complexity results. Kontinen et al. [26] study set semantics for
asynchronous TeamLTL, and provide positive complexity and decidability results. Gutsfeld
et al. [22] study an extension of TeamLTL to express refined notions of asynchronicity and
analyze the expressiveness and complexity of their logic, proving it also highly undecidable.
While TeamLTL is closely related to Hyper2LTL, the exact relation between them is still
unknown.

9 Conclusion

We have investigated and settled the complexity of satisfiability, finite-state satisfiabil-
ity, and model-checking for Hyper2LTL and Hyper2LTLmm and (almost) settled it for
lfp-Hyper2LTLmm. For the former two, all three problems are equivalent to truth in third-
order arithmetic, and therefore (not surprisingly) much harder than the corresponding
problems for HyperLTL, which are “only” Σ1

1-complete, Σ0
1-complete, and Tower-complete,

respectively. This shows that the addition of second-order quantification increases the already
high complexity of HyperLTL significantly. However, for the fragment lfp-Hyper2LTLmm,
in which second-order quantification degenerates to least fixed point computations, the

H. Frenkel and M. Zimmermann 10:21

complexity is much lower: satisfiability under closed-world semantics is Σ1
1-complete and

finite-state satisfiability as well as model-checking are in Σ2
2.

Recently, Regaud and Zimmermann [34] have solved several problems left open in this
work, e.g., they settled the complexity of Hyper2LTLmm with only minimality constraints or
only maximality constraints, the complexity of lfp-Hyper2LTLmm under standard semantics,
and closed the gaps in our results for lfp-Hyper2LTLmm finite-state satisfiability and model-
checking. Furthermore, they settled the complexity of all three decision problems we consider
here for HyperQPTL [33].

References

1 Ezio Bartocci, Thomas A. Henzinger, Dejan Nickovic, and Ana Oliveira da Costa. Hypernode
automata. In Guillermo A. Pérez and Jean-François Raskin, editors, CONCUR 2023, volume
279 of LIPIcs, pages 21:1–21:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPICS.CONCUR.2023.21.

2 Jan Baumeister, Norine Coenen, Borzoo Bonakdarpour, Bernd Finkbeiner, and César Sánchez.
A temporal logic for asynchronous hyperproperties. In Alexandra Silva and K. Rustan M.
Leino, editors, CAV 2021, Part I, volume 12759 of LNCS, pages 694–717. Springer, 2021.
doi:10.1007/978-3-030-81685-8_33.

3 Raven Beutner and Bernd Finkbeiner. HyperATL∗: A logic for hyperproperties in multi-agent
systems. Log. Methods Comput. Sci., 19(2), 2023. doi:10.46298/LMCS-19(2:13)2023.

4 Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Niklas Metzger. Second-order hyper-
properties. In Constantin Enea and Akash Lal, editors, CAV 2023, Part II, volume 13965 of
LNCS, pages 309–332. Springer, 2023. doi:10.1007/978-3-031-37703-7_15.

5 Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Niklas Metzger. Monitoring second-order
hyperproperties. In Mehdi Dastani, Jaime Simão Sichman, Natasha Alechina, and Virginia
Dignum, editors, AAMAS 2024, pages 180–188. International Foundation for Autonomous
Agents and Multiagent Systems / ACM, 2024. doi:10.5555/3635637.3662865.

6 Alberto Bombardelli, Laura Bozzelli, César Sánchez, and Stefano Tonetta. Unifying asyn-
chronous logics for hyperproperties. arXiv, 2404.16778, 2024. doi:10.48550/arXiv.2404.
16778.

7 Laura Bozzelli, Bastien Maubert, and Aniello Murano. On the complexity of model checking
knowledge and time. ACM Trans. Comput. Log., 25(1):8:1–8:42, 2024. doi:10.1145/3637212.

8 Laura Bozzelli, Bastien Maubert, and Sophie Pinchinat. Unifying hyper and epistemic temporal
logics. In Andrew M. Pitts, editor, FoSSaCS 2015, volume 9034 of LNCS, pages 167–182.
Springer, 2015. doi:10.1007/978-3-662-46678-0_11.

9 Laura Bozzelli, Adriano Peron, and César Sánchez. Asynchronous extensions of HyperLTL. In
LICS 2021, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470583.

10 Laura Bozzelli, Adriano Peron, and César Sánchez. Expressiveness and decidability of temporal
logics for asynchronous hyperproperties. In Bartek Klin, Slawomir Lasota, and Anca Muscholl,
editors, CONCUR 2022, volume 243 of LIPIcs, pages 27:1–27:16. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CONCUR.2022.27.

11 Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.
Rabe, and César Sánchez. Temporal logics for hyperproperties. In Martín Abadi and
Steve Kremer, editors, POST 2014, volume 8414 of LNCS, pages 265–284. Springer, 2014.
doi:10.1007/978-3-642-54792-8_15.

12 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur., 18(6):1157–
1210, 2010. doi:10.3233/JCS-2009-0393.

CSL 2025

https://doi.org/10.4230/LIPICS.CONCUR.2023.21
https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.46298/LMCS-19(2:13)2023
https://doi.org/10.1007/978-3-031-37703-7_15
https://doi.org/10.5555/3635637.3662865
https://doi.org/10.48550/arXiv.2404.16778
https://doi.org/10.48550/arXiv.2404.16778
https://doi.org/10.1145/3637212
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1109/LICS52264.2021.9470583
https://doi.org/10.4230/LIPIcs.CONCUR.2022.27
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393

10:22 The Complexity of Second-Order HyperLTL

13 Catalin Dima. Revisiting satisfiability and model-checking for CTLK with synchrony and
perfect recall. In Michael Fisher, Fariba Sadri, and Michael Thielscher, editors, CLIMA IX,
volume 5405 of LNCS, pages 117–131. Springer, 2008. doi:10.1007/978-3-642-02734-5_8.

14 E. Allen Emerson and Joseph Y. Halpern. "sometimes" and "not never" revisited: on branching
versus linear time temporal logic. J. ACM, 33(1):151–178, 1986. doi:10.1145/4904.4999.

15 Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning About
Knowledge. MIT Press, 1995. doi:10.7551/MITPRESS/5803.001.0001.

16 Bernd Finkbeiner and Christopher Hahn. Deciding hyperproperties. In Josée Desharnais and
Radha Jagadeesan, editors, CONCUR 2016, volume 59 of LIPIcs, pages 13:1–13:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CONCUR.2016.13.

17 Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for Model Checking
HyperLTL and HyperCTL∗. In Daniel Kroening and Corina S. Pasareanu, editors, CAV 2015,
Part I, volume 9206 of LNCS, pages 30–48. Springer, 2015. doi:10.1007/978-3-319-21690-4_
3.

18 Bernd Finkbeiner and Martin Zimmermann. The First-Order Logic of Hyperproperties. In
STACS 2017, volume 66 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPIcs.STACS.2017.30.

19 Marie Fortin, Louwe B. Kuijer, Patrick Totzke, and Martin Zimmermann. HyperLTL satisfia-
bility is Σ1

1-complete, HyperCTL* satisfiability is Σ2
1-complete. In Filippo Bonchi and Simon J.

Puglisi, editors, MFCS 2021, volume 202 of LIPIcs, pages 47:1–47:19. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.MFCS.2021.47.

20 Marie Fortin, Louwe B. Kuijer, Patrick Totzke, and Martin Zimmermann. HyperLTL satisfia-
bility is highly undecidable, HyperCTL* is even harder. arXiv, 2303.16699, 2023. Journal
version of [19]. Under submission. doi:10.48550/arXiv.2303.16699.

21 Hadar Frenkel and Martin Zimmermann. The complexity of second-order HyperLTL. arXiv,
2311.15675, 2023. doi:10.48550/arXiv.2311.15675.

22 Jens Oliver Gutsfeld, Arne Meier, Christoph Ohrem, and Jonni Virtema. Temporal team
semantics revisited. In Christel Baier and Dana Fisman, editors, LICS 2022, pages 44:1–44:13.
ACM, 2022. doi:10.1145/3531130.3533360.

23 Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. Automata and fixpoints
for asynchronous hyperproperties. Proc. ACM Program. Lang., 5(POPL):1–29, 2021. doi:
10.1145/3434319.

24 David Harel. Recurring Dominoes: Making the Highly Undecidable Highly Understandable.
North-Holland Mathematical Studies, 102:51–71, 1985. doi:10.1016/S0304-0208(08)73075-5.

25 Juha Kontinen and Max Sandström. On the expressive power of TeamLTL and first-order
team logic over hyperproperties. In Alexandra Silva, Renata Wassermann, and Ruy J. G. B.
de Queiroz, editors, WoLLIC 2021, volume 13038 of LNCS, pages 302–318. Springer, 2021.
doi:10.1007/978-3-030-88853-4_19.

26 Juha Kontinen, Max Sandström, and Jonni Virtema. Set semantics for asynchronous TeamLTL:
Expressivity and complexity. In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors,
MFCS 2023, volume 272 of LIPIcs, pages 60:1–60:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPICS.MFCS.2023.60.

27 Juha Kontinen, Max Sandström, and Jonni Virtema. A remark on the expressivity of asyn-
chronous TeamLTL and HyperLTL. In Arne Meier and Magdalena Ortiz, editors, FoIKS 2024,
volume 14589 of LNCS, pages 275–286. Springer, 2024. doi:10.1007/978-3-031-56940-1_15.

28 Andreas Krebs, Arne Meier, Jonni Virtema, and Martin Zimmermann. Team semantics for
the specification and verification of hyperproperties. In Igor Potapov, Paul G. Spirakis, and
James Worrell, editors, MFCS 2018, volume 117 of LIPIcs, pages 10:1–10:16. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.MFCS.2018.10.

29 Alessio Lomuscio and Franco Raimondi. The complexity of model checking concurrent programs
against CTLK specifications. In Hideyuki Nakashima, Michael P. Wellman, Gerhard Weiss,

https://doi.org/10.1007/978-3-642-02734-5_8
https://doi.org/10.1145/4904.4999
https://doi.org/10.7551/MITPRESS/5803.001.0001
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.4230/LIPIcs.STACS.2017.30
https://doi.org/10.4230/LIPICS.MFCS.2021.47
https://doi.org/10.48550/arXiv.2303.16699
https://doi.org/10.48550/arXiv.2311.15675
https://doi.org/10.1145/3531130.3533360
https://doi.org/10.1145/3434319
https://doi.org/10.1145/3434319
https://doi.org/10.1016/S0304-0208(08)73075-5
https://doi.org/10.1007/978-3-030-88853-4_19
https://doi.org/10.4230/LIPICS.MFCS.2023.60
https://doi.org/10.1007/978-3-031-56940-1_15
https://doi.org/10.4230/LIPIcs.MFCS.2018.10

H. Frenkel and M. Zimmermann 10:23

and Peter Stone, editors, AAMAS 2006, pages 548–550. ACM, 2006. doi:10.1145/1160633.
1160733.

30 Martin Lück. On the complexity of linear temporal logic with team semantics. Theor. Comput.
Sci., 837:1–25, 2020. doi:10.1016/j.tcs.2020.04.019.

31 Corto Mascle and Martin Zimmermann. The keys to decidable HyperLTL satisfiability: Small
models or very simple formulas. In Maribel Fernández and Anca Muscholl, editors, CSL 2020,
volume 152 of LIPIcs, pages 29:1–29:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.CSL.2020.29.

32 Amir Pnueli. The temporal logic of programs. In FOCS 1977, pages 46–57. IEEE, October
1977. doi:10.1109/SFCS.1977.32.

33 Markus N. Rabe. A temporal logic approach to information-flow control. PhD thesis, Saarland
University, 2016. URL: http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/.

34 Gaëtan Regaud and Martin Zimmermann. The complexity of fragments of second-order
HyperLTL, 2025. Under preparation.

35 Hartley Rogers. Theory of Recursive Functions and Effective Computability. MIT Press,
Cambridge, MA, USA, 1987.

36 Ron van der Meyden and Nikolay V. Shilov. Model checking knowledge and time in systems with
perfect recall (extended abstract). In C. Pandu Rangan, Venkatesh Raman, and Ramaswamy
Ramanujam, editors, FSTTCS 1999, volume 1738 of LNCS, pages 432–445. Springer, 1999.
doi:10.1007/3-540-46691-6_35.

CSL 2025

https://doi.org/10.1145/1160633.1160733
https://doi.org/10.1145/1160633.1160733
https://doi.org/10.1016/j.tcs.2020.04.019
https://doi.org/10.4230/LIPIcs.CSL.2020.29
https://doi.org/10.1109/SFCS.1977.32
http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/
https://doi.org/10.1007/3-540-46691-6_35

On the Expansion of Monadic Second-Order Logic
with Cantor-Bendixson Rank and Order Type
Predicates
Thomas Colcombet
Université Paris Cité, CNRS, IRIF, France

Alexander Rabinovich
The Blavatnik School of Computer Science, Tel-Aviv University, Israel

Abstract
In this work, we consider two extensions of monadic second-order logic, and study in what cases the
classical decidability results are preserved.

The first extension, MSO[CBrankβ], is MSO (over the signature of the binary tree) augmented
with the extra ability to express that the subtree over a set X has Cantor-Bendixson rank β, for
some fixed countable ordinal β. We show that this extension is decidable over the binary tree if and
only if β is finite, which means that it is decidable if and only if it is equivalent in expressiveness to
MSO.

The second extension, MSO[otpα], is MSO (over the signature of order) augmented with the
extra ability to express that the suborder induced by a set X has order type α for some fixed
countable ordinal α. We show that this extension is decidable over countable ordinals if and only if
α < ωω, which means that it is decidable if and only if it is equivalent in expressiveness to MSO.

The first result can be established as a consequence of the second. The second result relies on
the undecidability results of the logic BMSO (itself relying on the undecidability of MSO+U) in the
case of ωβ for β a limit ordinal, and on entirely new techniques when β is a successor ordinal. We
also have some partial extensions of the second result to some uncountable cases.

2012 ACM Subject Classification Theory of computation → Tree languages; Theory of computation
→ Logic and verification

Keywords and phrases Logic, Algorithmic model theory, Monadic second-order logic, Ordinals,
Binary tree

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.11

Funding Alexander Rabinovich: Visits to IRIF were supported by the Fondation Sciences Math-
ématiques de Paris (FSMP) and Université Paris Cité.

1 Introduction

This work studies extensions of monadic second-order logic for which the decidability status
was not known before.

Monadic second-order logic (MSO) is the extension of first-order logic with set quantifiers.
It plays a key role in the context of automata and verification. The central decidability
results in this context are (1) the seminal paper of Büchi [10] that proves the decidability of
MSO(N, <) using automata, (2) the breakthrough [24] where Rabin establishes that MSO is
decidable on infinite trees of height ω, again using automata, and from which the decidability
of MSO over countable chains can be deduced, and finally (3) the introduction by Shelah [31]
of model-theoretic techniques for showing the decidability of the MSO-theory of countable
linear orderings, traditionally referred to as the “composition method.”

© Thomas Colcombet and Alexander Rabinovich;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 11; pp. 11:1–11:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6529-6963
https://orcid.org/0000-0002-1460-2358
https://doi.org/10.4230/LIPIcs.CSL.2025.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 On the Expansion of MSO with Cantor-Bendixson Rank and Order Type Predicates

These historical contributions show the extremely strong decidability properties that
enjoy MSO. Their extension beyond MSO and beyond linear orderings and trees has been and
still is a strong motivation for new research in the field (see more in Section 1.3). The present
work pursues this quest by considering two natural extensions of monadic second-order logic
(MSO for short).

1.1 Contributions
Our two contributions, Theorems 1 and 2 share a similar form. We consider in both cases a
natural notion of measure of the “complexity” of a set, namely, the Cantor-Bendixson rank in
the theory of infinite trees for the first one, and the order type in the theory of well-founded
linear orders for the second. We then study the decidability status of MSO extended with a
construction of the form:

“the complexity of the set X is α”

for a unique fixed value of α. Our results show that either this new construction was already
expressible in MSO, or decidability is lost.

First extension: Cantor-Bendixson rank of trees
We consider here an extension of the monadic theory of trees.

The Cantor-Bendixson rank of a tree is an ordinal that measures its branching complexity
(see Section 3 for more on trees and the Cantor-Bendixson rank), and is undefined if the tree
contains an induced full binary tree. A subset X of a tree is downward closed if whenever
v ∈ X, then all the nodes on the path from the root of T to v are in X. Given an ordinal α,
for X some downward closed subset of an infinite tree, let CBrankα(X) express that “the
tree restricted to universe X has Cantor-Bendixson rank α”. We denote by MSO[CBrankα]
monadic second-order logic extended with the new predicate CBrankα(−). We prove:

▶ Theorem 1. For all countable ordinals α, the following properties are equivalent:
the MSO[CBrankα]-theory of the full binary tree is decidable,
α is finite,
CBrankα is MSO-definable.

It can be summarised as the impossibility to extend the main theorem of Rabin of decidability
of MSO over the full binary tree with the ability to express the Cantor-Bendixson rank of
trees.

Second extension: the order type of an ordinal
We consider here an extension of the monadic theory of linear orders.

Büchi [11] proved a kind of “a small model property”: if an MSO-formula is satisfiable in
any countable ordinal, then it is satisfiable in an ordinal < ωω. Hence, ωω is MSO-undefinable.
On the other hand, for every ordinal α < ωω one can express “the order type of X is α.” A
natural question follows: is the extension of MSO by the ability to express “the order type of
X is ωω” still decidable? We provide a negative answer to this question.

Given an ordinal α, we consider the predicate otpα(X) which holds if the order type of
the set X is the ordinal α, i.e., if the linear order restricted to universe X is isomorphic to α.
We denote by MSO[otpα] the monadic second-order logic of order extended with the new
predicate otpα(−). Our main result reads as follows.

T. Colcombet and A. Rabinovich 11:3

▶ Theorem 2. For all countable ordinals α (and more generally for all α ≤ ωω1
1 , where ω1

is the first uncountavle ordinal), the following properties are equivalent:
the MSO[otpα]-theory of α is decidable,
α < ωω,
otpα(−) is MSO-definable.

Let us recall that the MSO-theory is known to be decidable for the class of ordinals smaller
than ω2, as well as separately for each ordinal smaller than ω2 (see [12] for the countable
case, [31] for ordinals up to ω2, and [21] for showing that this question is independent of
ZFC at ω2, where ω2 is the first ordinal of the cardinality greater than the cardinality of ω1).
It is clear that if α is an MSO-definable ordinal, then MSO[otpα] and MSO are effectively
expressively equivalent, and thus MSO[otpα] is decidable. Our result shows that if α is not
MSO-definable and smaller than or equals to ωω1

1 , then, the logic is strictly more expressive
than MSO; however, decidability is lost.

Note that we do not rule out the possibility that there exists some uncountable ordinal α
larger or equal to ωω1

1 such that the MSO[otpα]-theory of α is still decidable.

1.2 Overview of the proofs
For both theorems, the difficult part is to prove the undecidability of the theory.

The undecidability part of the first theorem, Theorem 1, is obtained from Theorem 2. The
main observation is that when the lexicographically order over the leaves of a binary tree T
of Cantor-Bendixson rank α, is an ordinal, then its order type is in the interval [ωα, ωα+1).
This is the crux of the reduction of the undecidability.

The undecidability part of the second theorem, Theorem 2, amounts to prove the
undecidablity of the MSO[otpα]-theory for all non MSO-definable ordinals α up to ωω1

1 . In
fact, it boils down to treat three different cases.

In Theorem 24, we prove that the MSO[otpωβ]-theory of ωβ is undecidable for all countable
limit ordinals β (or more generally for β of cofinality ω). This covers, in particular, the
important case of ωω which is the first non MSO-definable ordinal. This proof relies
on a simple reduction of the BMSO-theory of ω, which is known to be undecidable (see
Theorem 9).
In Theorem 25, we establish that the MSO[otpωβ]-theory of ωβ can be reduced to the
MSO[otpωβ+1]-theory of ωβ+1. This is the most interesting part. It involves using the
construct otpωβ+1 over an input that has been decomposed into ω-blocks in such a way
that in almost all the blocks it faithfully simulates otpωβ .
The two above results treat the case of all ordinals of the form ωβ that are smaller than
ωω1

1 and are not MSO-definable. But some ordinals are not of the form ωβ , such as, for
instance, ωω + 1. Extending the result to these cases requires some extra work, but can
be achieved without difficulty.

Another argument in the proof is a characterization of MSO-definable ordinals. This
is well known in the countable case: a countable ordinal α is MSO-definable if and only
if it is smaller than ωω. For proving Theorem 2, there is also a need to characterize the
MSO-definable ordinals smaller than ω2. We provide such a result in Theorem 45. This
statement is not deep but, as far as we know, had not been mentioned before.

1.3 Historical Background
It was known in the 50s from Robinson that the extensions of MSO with a plus function,
MSO(N,+), or even the doubling function MSO(N, <, x 7→ 2x) were undecidable [27]. Elgot
and Rabin studied in [17] the MSO theory of structures of the form (N, <, P), where P is

CSL 2025

11:4 On the Expansion of MSO with Cantor-Bendixson Rank and Order Type Predicates

some unary predicate. They give a sufficient condition on P which ensures decidability of
the MSO theory of (N, <, P). In particular, it holds when P denotes the set of factorials, or
the set of powers of some integer. The frontier between decidability and undecidability of
related theories was explored in numerous later papers [14, 18, 30, 29, 26, 25, 33, 34, 1].

The Büchi decidability theorem result (and the automata method) was extended to the
MSO theory of any countable ordinal [11], to ω1 - the first uncountable ordinal, and to any
ordinal less than ω2 - the first ordinal of the cardinality greater than ω1, [13]. Gurevich,
Magidor and Shelah [21] proved that the decidability status of the MSO theory of ω2 depends
on set-theoretical assumptions. What can be said about MSO theories for linear orderings
beyond ordinals? Using automata, Rabin [24] proved decidability of the MSO theory of
the binary tree, from which he deduces decidability of the MSO theory of Q, which in turn
implies decidability of the MSO theory of the class of countable linear orderings. Shelah [31]
improved model-theoretical techniques yielding new decidability proofs over linear orderings,
and proved that the MSO theory of the real line (R, <) is undecidable. The frontier between
decidable and undecidable cases was specified in later papers by Gurevich and Shelah
[20, 22, 23]); we refer the reader to the survey [19].

A logic that was much studied in recent years, introduced in [4], is MSO+U. The logic
MSO+U extends MSO with a new quantifier-like construct UX.φ(X) expressing that there
are sets of arbitrary large cardinality for which φ(X) holds. Some non-trivial fragments of
MSO+U are known to be decidable over ω (if this new construct is not allowed to appear
negatively inside iteslf). [5]. It took more than ten years before it was shown undecidable
over ω [8]. Works concerned with weak variants of this logic have also been pursued, yielding
decidability results, such as in [9], but these cannot be considered as syntactic extensions of
MSO.

The logic BMSO is a logic expressing properties of infinite sequences of numbers. It was
designed in order to retain the quantitative aspects of MSO+U, while removing the ability to
measure the cardinality of sets [2]. It turns out that its theory is intereducible to the one of
MSO+U (see [2]), and thus it is also undecidable by [8]. The decidability of some important
fragments of this logic still remain open. The undecidability result concerning MSO+U
has been extended in [6], and then eventually, the existence of (almost) any significative
extension of MSO that would retain decidability over ω has been ruled out in [7]: as soon as
any non-regular property is expressible (with some mild closure assumption), then theory is
undecidable. All these undecidability results boil down to reductions to the work [8].

The logic cost-MSO is another logic inspired by MSO+U, this time exhibiting the ability
to express bound properties on the cardinality of sets, but removing the ability to quantify
express asymptotic properties on these quantities. This logic is known to be decidable over
finite words [15] and trees [16] over infinite words and partially over infinite trees [3]. The
decidability status of cost-MSO over the full binary tree is a difficult open problem in the
area.

1.4 Structure of the paper
Some definitions and results concerning MSO and BMSO are recalled in Section 2. Section 3
establishes our result over infinite trees, namely Theorem 1. Section 4 presents the proof
of Theorem 24 stating that the MSO[otpωβ]-theory of ωβ is undecidable for all countable
limit ordinals β (or more generally β of cofinality ω). In Section 5, we prove that the
MSO[otpωβ]-theory of ωβ can be reduced to the MSO[otpωβ+1] of ωβ+1 (Theorem 25). In
Section 6, we combine the results of the two previous sections for proving our main result,
Theorem 2, for all countable ordinals. Section 7 concludes the paper.

T. Colcombet and A. Rabinovich 11:5

For space considerations all the results beyond the countable case, i.e., for ordinals up to
ωω1

1 , do not appear in the main body of the submission, and are found in Appendix B.

2 Preliminaries

In this section we recall standard definitions and notions about ordinals (Section 2.1), monadic
second-order logic (Section 2.2) and definability (Section 2.3). In Section 2.4, we introduce
BMSO, and the undecidability Theorem 9 for it, which is crucial in our proof.

2.1 Ordinals
We shall use the standard terminology over ordinals. Here, an ordinal is seen, up to
isomorphism, as a set equipped with a well-founded total order <. We use the classical
notations over ordinals (order, sum, product, exponentiation). A limit ordinal is a non-empty
ordinal that has no maximal element. A successor ordinal is an ordinal that has a maximum.

Given a subset X of an ordinal α, we denote α|X its restriction to X. The order type of
X is the ordinal α|X . We shall denote [x, y) the set of {z ∈ α : x ⩽ z < y}, and [x,∞) for
the set {z ∈ α : x ⩽ z}. An interval of the form [x,∞) is called a final non-empty segment.
Given an ordinal α, a set X is cofinal (in α) if for all x ∈ α, there is y ∈ X with y ⩾ x. The
cofinality of α is the least order type of X for X cofinal subset of α. Let us recall that all
countable limit ordinals have cofinality ω.

2.2 Monadic second-order logic of order
We use standard notations and terminology about monadic second-order logic of order.

The monadic second-order logic of order (or monadic logic of order or simply monadic
logic, abbreviated as MSO) is the extension of first-order logic over the signature {<}, where
< is a binary relational symbol interpreted as a total order, with (a) monadic (second-order)
variables interpreted as subsets of the universe (usually denoted by uppercase letters X,Y, Z),
(b) existential and universal quantifiers over for monadic variables ∃X.ψ and ∀X.ψ, and (c)
atomic formulas y ∈ X expressing that y belongs to X.

In this paper, we shall always interpret this logic over partial orders or ordinals. Given
a structure M := (M,<), which is a model over the signature {<}, a monadic formula
φ(X1, . . . , Xk, y1, . . . , yℓ), sets U1, . . . , Uk ⊆ M , and elements v1, . . . , vℓ ∈ M , we denote the
fact that the formula holds on the model M with valuations Ui for Xi, and vj for yj as

M |= φ(U1, . . . , Uk, v1, . . . , vℓ) .

We shall use the classical technique of relativization of formulas. The next lemma is obtained
easily by a syntactic transformation of the formula.

▶ Lemma 3 (Relativization). Let φ(Y1, . . . , Yl) be a formula, U a variable not appearing in
φ. We can compute a formula φU (Y1, . . . , Yl, U) such that for every structure M and every
non-empty D ⊆ M and every l-tuple P̄ of subsets of D:

M |= φU (P̄ ,D) if and only if M↾D |= φ(P̄),

where M|D is the substructure of M over D.

When this is the case, we say that φ holds in (M, P̄) relativized to D.

CSL 2025

11:6 On the Expansion of MSO with Cantor-Bendixson Rank and Order Type Predicates

To ease the notation, we shall use some shorthands such as overlined variables X̄, Ȳ
to denote tuples of monadic variables. We allow ourselves to write X ⊆ Y to denote the
inclusion of sets, and we use more generally any abbreviation if it is clear that it can be
translated into MSO syntax. For instance, we shall use formulas such as (“X is cofinal” ∧
“X has order type ω”).

The main results concerning the MSO-theory of ordinals are the following:

▶ Theorem 4 ([12]). The MSO-theory of the class of countable ordinals is decidable. The
MSO-theory of every countable ordinal is decidable.

▶ Theorem 5 ([31]). The MSO-theory of the class of ordinals smaller than ω2 is decidable.
The MSO-theory of every ordinal smaller than ω2 is decidable.

▶ Theorem 6 ([21]). The MSO-theory of ω2 is independent of ZFC.

Given an ordinal β, we consider the extension of monadic logic in which the extra atomic
formula otpβ(X) for X a monadic variable can be used, and is interpreted in an ordinal α as
“the order type of X is β”. It is denoted MSO[otpβ].

2.3 Definability
We say that a sentence ψ defines the ordinal α if α is the unique ordinal such that α |= ψ.
An ordinal α is definable in logic Ł, or simply (Ł-definable) if there is a sentence of Ł that
defines α. The following important lemma is well known.

▶ Lemma 7. For all countable ordinals α, α is MSO-definable if and only if α < ωω.

Definability of ordinals below ωω is fairly straightforward, by an inductive definition. The
undefinability above ωω, follows from the small model property for MSO over the countable
ordinals.

We say that a formula ψ(x) defines α inside the ordinal β if there is a unique b ∈ β such
that β |= ψ(b) and the [0, b) has order type α. For a logic Ł, α is Ł-definable inside β if
there is a formula ψ(x) ∈ Ł that defines α in β.

It is clear that if α is MSO or MSO[otpγ]-definable by some sentence, then, by relativization
of the sentence to [0, b) it is definable inside β with the same logic for every β > α. However,
the other direction fails, as witnessed by the next lemma, to be put in contrast with Theorem 7.

▶ Lemma 8. ωω is MSO-definable inside β := ωω + γ for every 0 < γ < ωω.

Proof. By Theorem 7, there exists an MSO-sentence ψγ that defines γ. The formula that
says that x is the minimal element such that ψγ holds when relativized to [x,∞). ◀

2.4 BMSO
The BMSO-logic is an extension of MSO that can express the existence of a bound on
numerical quantity. Formally, the syntax of BMSO is the same as the one of MSO, extended
with a new construct B(X), for X a monadic variable. These formulas are interpreted on
ω-sequences of natural numbers, that we see as the ordinal ω extended with a map f from
ω to N. The construct B(X) is interpreted as “there exists n ∈ N such that f(x) ⩽ n for
all x ∈ X”.

For instance, the formula u |= ∀X.B(X) for an ω-sequence of natural numbers u if and
only if u is bounded. The formula ∀X.(∀x ∈ X.∃y ∈ X.(x < y)) → ¬B(X) expresses the
non-existence of an infinite set which is bounded: in other words, it expresses that f tends
to infinity.

T. Colcombet and A. Rabinovich 11:7

▶ Theorem 9 (consequence of [2, 8]). Satisfiability of BMSO is undecidable over ω-sequences
of natural numbers.

Proof. Theorem 2 in [2] states that BMSO is equivalent to another logic, AMSO. Theorem 13
states that the satisfiability of AMSO is equivalent to the one of MSO+U. Finally, Theorem 1.1
in [8] establishes the undecidability of MSO+U. ◀

3 The tree case

In this section we derive Theorem 1 from Theorem 2. This section is organized as follows.
First, we recall some standard definitions and results about trees. Then, we recall a definition
of Cantor-Bendixson rank of trees and state some well-known facts. Finally, we prove
Theorem 1.

3.1 Trees
A tree (T,<) is a structure over a signature with a unique a binary relation < such that (1)
there is a minimal element (called the root), and (2) for every b ∈ T the set {a | a < b} is
finite and linearly ordered by <. Elements of the tree are called nodes. A node u is parent of
a node v (and v is a child of u) if u < v and there is no w such that u < w < v. A tree is
binary if every node has at most two children. Nodes u and v are incomparable if neither
u ⩽ v nor v ⩽ u. An antichain is a subset of a tree such that all pairs of distinct nodes are
incomparable. For a subset A of a tree we denote by A↓ the downward closure of A, i.e.,
the set {b | ∃a ∈ A(b < a)}. For a node u, denote Tu↑ the tree T restricted to nodes that
are above or equal to u. Tu↑ is itself a tree, and is called the subtree at u. Note that if T
is a binary tree, then Tu↑ also is. A tree is regular if it has finitely-many subtrees up to
isomorphism.

The full binary tree is a tree for which (a) there is a partition of the children into left
and right children and (b) all nodes have exactly two children, one being left, and the other
right. The full binary tree is considered as a structure for the signature {<,Left(),Right()}.
The standard representation of the full binary tree has as the domain the finite strings over
{L,R}; the relation < is interpreted as the prefix relation, and a node is left (respectively,
right) if its last letter is L (respectively, R).

The major decidability result is Rabin’s theorem [24]:

▶ Theorem 10. The MSO-theory of the full binary tree is decidable.

We shall also use the so-called Rabin’s Basis Theorem [24]:

▶ Theorem 11. If an MSO-sentence has a [binary] tree model, it has a [binary] regular tree
model.

We use <lex for the lexicographical (linear) order on the nodes of the full binary tree. It
is definable in the standard way. Rabin proved [24] that there is a definable antichain Q

such that (Q,<lex) is order isomorphic to the rationals. As a consequence, he obtained that
the MSO-theory of the rationals is decidable. Moreover, since every countable ordinal is
embedable into the rationals, and “(A,<) is an ordinal” is MSO-definable, he derived that
the MSO-theory of the class of countable ordinals is decidable.

We will use the fact that <lex is MSO-definable, “A is an antichain” and “A↓” are
MSO-definable.

CSL 2025

11:8 On the Expansion of MSO with Cantor-Bendixson Rank and Order Type Predicates

3.2 Cantor-Bendixson rank
We are going to define the Cantor-Bendixson rank (or CB rank) of a binary tree. There are
several equivalent definitions. The only properties of Cantor-Bendixson rank that we need
are stated in Theorem 16 and Theorem 17. The reader might skip the definition and use
these lemmas as black-boxes.

▶ Definition 12 (Sum of trees). Let Ti = (|Ti|, <i) for i ∈ {0, 1} be trees over disjoint
universes. their sum is the tree T0 +T1 with universe |T0| ∪ |T1| and its order relation defined
as n1 ⩽ n2 if there is i ∈ {0, 1} such that n1, n2 ∈ |Ti| and n1 ⩽i n2, or n1 is the root of T0.

The ω-sum of trees is defined as follows.

▶ Definition 13 (ω-sum of trees). Let Ti = (|Ti|, <i) for i ∈ ω be trees over disjoint universes.
We define the tree∑

i∈ω

Ti

as having universe
⋃

i∈ω |Ti| and its order relation is defined as n1 ⩽ n2 if there is i such
that n1, n2 ∈ |Ti| and n1 ⩽i n2 or n1 is the root of Ti and n2 ∈ |Tj | for j ⩾ i.

If the disjointness assumption does not hold, we replace Ti by disjoint isomorphic copies
and proceed as above.

In order to simplify notations, we will consider only finitely branching trees. The sets of
trees of Cantor-Bendixson rank ⩽ α can be defined by transfinite induction.

▶ Definition 14 (Cantor-Bendixson rank of a tree). Define two families of trees CBrankα and
CBrank+

α , where α is a countable ordinal.
1. CBrank0 contains only one element trees.
2. CBrank+

α is the closure of ∪β⩽αCBrankβ under +, i.e. T ∈ CBrank+
α if T = T0 + T1 +

· · · + Tk for Ti ∈ ∪β⩽αCBrankβ.
3. CBrankα :=

∑
i∈ω Ti, where Ti ∈ CBrank+

β for β < α.
If there is no α such that T ∈ CBrank+

α , then the Cantor-Bendixson rank is undefined;
otherwise we set CBrank(T) of T to be inf{α | T ∈ CBrank+

α }, and the tree is called tame.

It is well known that a tree T has a CB rank if there is no embedding of the full binary
tree in T , equivalently, T has only countably many branches. We are not going to use this
fact.

▶ Example 15. Let S1 be the subtree of the full binary tree T2 over R∗, S2 the subtree of
T2 over R∗L∗. Let S2i (respectively, S2i+1) be the subtree of T2 over (R∗L∗)i (respectively,
over and (R∗L∗)iR∗). Then CBrank(Si) = i for i ⩾ 1. Let S′

1 be the subtree of T2 over R∗L;
then CBrank(S′

1) = 1.

The following lemma is well-known and is easily proved by induction.

▶ Lemma 16. For every n ∈ N, the set of binary trees of Cantor-Bendixson rank n is
definable, i.e., there is an MSO sentence ϕn such that (T,<) |= ϕn if (T,<) is a binary tree
of Cantor-Bendixson rank n.

The next lemma is proved in the Appendix.

▶ Lemma 17. Let X be an antichain in the full binary tree such that (X,<lex) is isomorphic
to an ordinal. Then, (X ↓, <) has Cantor-Bendixson rank α if and only if the order type of
(X,<lex) belongs to [ωα, ωα+1).

T. Colcombet and A. Rabinovich 11:9

3.3 Theorem 2 implies Theorem 1

Now, relying on Lemma 17, we can express in MSO[CBrankα] that the order type of (X,<lex)
is ωα for an antichain X of the full binary tree. The conjunction φωα(X) of (1)-(5) below
expresses this property.
1. X is an antichain:

∀y ∈ X∀x ∈ X(y ⩽ x) → (x = y)

2. (X,<lex) is isomorphic to an ordinal, i.e., every non-empty subset has a minimum element:

∀Y ⊆ X
(
(Y ̸= ∅) → ∃y ∈ Y (∀z ∈ Y (y ⩽lex z))

)
3. The downward closure of X has the CB rank α:

CBrankα(X ↓), and

4. For every final non-empty segment Y of (X,<lex) the CB rank of the downward closure
of Y is α:

∀y ∈ X
(
CBrankα({z ∈ X | z ⩾ y} ↓)

)
.

5. For no proper prefix (Y,<lex) of (X,<lex) the CB rank of the downward closure of Y
is α.

(1)-(5) are not MSO[CBrankα] formulas; however, they can be easily translated into (less
readable) MSO[CBrankα] formulas.

Next, let ψ be an MSO[otpωα] sentence. Let ψX be the relativization of ψ to a fresh
variable X. Let ΨX ∈ MSO[CBrankα] be obtained from ψX when all the occurrences of
otpωα(Y) are replaced by φωα(Y). Finally, let Ψ be ∃X(φωα(X) ∧ ΨX). Then, ωα |= ψ if
and only if Ψ holds in the full binary tree. Hence, we have:

▶ Lemma 18. There is an algorithm that for every MSO[otpωα] sentence ψ constructs an
MSO[CBrankα] sentence Ψ such that ωα |= ψ if and only if Ψ holds in the full binary tree.

Moreover, in Theorem 18, the algorithm treats α symbolically, i.e., if φ is obtained from ψ

when α is replaced by β, then the corresponding translation of φ replaces in Ψ everywhere α
by β.

As a corollary of Theorem 18, Theorem 7 and Theorem 2, we obtain:

▶ Corollary 19. MSO[CBrankα] is undecidable for every α ⩾ ω.

And as a corollary of Rabin’s theorem, Theorem 10, we obtain:

▶ Corollary 20. For all α ⩾ ω, the property “the CB rank of a binary tree is α” is not
MSO-definable.

Theorem 1 follows from Theorem 10, Theorem 16, Theorem 19 and Theorem 20.

CSL 2025

11:10 On the Expansion of MSO with Cantor-Bendixson Rank and Order Type Predicates

4 The ωβ case for β an ordinal of cofinality ω

The goal of this section is to establish Theorem 24, stating that the MSO[otpα]-theory of α
is undecidable for α of the form ωβ where β is a countable limit ordinal1. This covers in
particular the case of ωω which is the first non-definable ordinal. Theorem 24 is obtained by
reduction from the undecidability of BMSO (Theorem 9).

For the rest of the section, we fix an ordinal β which is limit of an ω-sequence β̂ :=
0 = β0 < β1 < · · · . This is possible for all countable limit ordinals, and more generally for
ordinals that have cofinality ω.

Given an ordinal 0 < α < ωβ , it is said to be of β̂-rank k if ωβk ⩽ α < ωβk+1 . Let us
denote β̂−rank(α) the β̂-rank of α. Recall that α|X is the substructure of α over X. If X is
some subset of an ordinal α, we also denote β̂−rank(X) for the β̂−rank(α|X).

The key argument used in this section is that we can relate the order type of some infinite
sums of ordinals to the boundedness of sequences of β̂-ranks. This is formalized in the
following lemma.

▶ Lemma 21. Given an ω-sequence (αi)i∈ω of ordinals smaller than ωβ, then the following
properties are equivalent:∑

i∈ω αi = ωβ,
The ω-sequence of natural numbers defined for all i ∈ ω as ui := β̂−rank(αi) is unbounded.

Proof. Assume the ranks of the αi are unbounded, then there exists an increasing ω-sequence
0 = i0 < i1 < . . . such that j ⩽ β̂−rank(αij

) for all j. As a consequence, we have
ωβj ⩽ αij ⩽

∑ij+1−1
i=ij

αi for all j. We obtain

ωβ =
∑
j∈ω

ωβj ⩽
∑
j∈ω

ij+1−1∑
i=ij

αi =
∑
i∈ω

αi .

Conversely, assume the β̂-ranks of the αi’s would be bounded by some N ; this means that
αi ≤ ωβN+1 for all i. We get

∑
i∈ω αi ⩽ ωβN+1 × ω < ωβ . ◀

Let S ⊆ ωβ be of order type ω. This means that there exists an increasing ω-sequence
s0 < s1 < · · · with S = {si : i ∈ ω}. We abbreviate it as S = {s0 < s1 < · · · }. Given
a set S = {s0 < s1 < · · · } ⊆ ωβ , it is said to encode the sequence u ∈ Nω defined as
u(i) = β̂−rank([si, si+1)) for all i ∈ ω. Finally, given a set X ⊆ ω, the S-code of X, written
XS , is defined as

XS :=
⋃

i∈X

[si, si+1) .

▶ Fact 22. The key facts concerning these definitions are the following:
1. All ω-sequences of natural numbers u ∈ Nω are encoded by some ω-sequence S = {s0 <

s1 < · · · }. Take, for instance, si = ωβu(0) + ωβu(1) + · · · + ωβu(i−1) for all i ∈ ω.
2. Conversely, every S ⊆ ωβ of order type ω encodes a sequence u ∈ Nω; namely, the one in

which u(i) is the β-rank of [si, si+1) for all i ∈ ω.
3. For sets S and X, “S is of order type ω”, and “X is an S-coded set”, are properties

definable in first-order logic (X and S are seen as unary predicates).
4. If S encodes u, then u |= ¬B(X) if and only if ωβ |= otpωβ (XS). This is a direct

consequence of Theorem 21 applied to the sequence of αi, where X = {x0 < x1 < · · · }
and αi is the order type of [sxi , sxi+1).

1 This works in the more general case of β being a limit ordinal of cofinality ω.

T. Colcombet and A. Rabinovich 11:11

▶ Lemma 23. Given a formula φ(X1, . . . , Xk, x1, . . . , xl) of BMSO, there exists effectively a
formula φ∗(S,X1, . . . Xk, x1, . . . , xl) of MSO[otpωβ] such that whenever S encodes u, Ai ⊆ ω,
and aj ∈ ω,

u |= φ(A1, . . . , Ak, a1, . . . , aℓ)

if and only if

ωβ |= φ∗(S,A1
S , . . . , Ak

S , sa1 , . . . , saℓ
) .

Proof. The translation is defined by structural induction, as in the following table:

(x < y)∗ := x < y , (x ∈ X)∗ := x ∈ X,

(B(X))∗ := ¬otpωβ (X) , (φ ∧ ψ)∗ := φ∗ ∧ ψ∗ ,

(∀xψ)∗ := ∀x (x ∈ S → ψ∗) , (¬φ)∗ := ¬φ∗ ,

(∀Xψ)∗ := ∀X(“X is an S-coded set” → ψ∗) .

The conclusion of the lemma is obtained along the same induction, relying on Theorem 22. ◀

▶ Corollary 24. For all countable limit ordinals β (and more generally for all ordinals of
cofinality ω), the MSO[otpωβ]-theory of ωβ is undecidable.

Proof. Consider a BMSO sentence φ, and, using the notations in Theorem 23, and the above
facts, construct the sentence

ψ := ∃S (“S has order type ω” ∧ φ∗(S)) .

Then, φ has a sequence u ∈ Nω which models it if and only if ωβ models ψ. Indeed, if u |= φ,
one can take some S ⊆ ωβ encoding u. It is of order type ω by definition, and by Theorem 23,
ωω |= φ∗(S). Conversely, if some S is the witness that ωω |= ψ, then S is of order type ω.
Thus S encodes some sequence u ∈ Nω, and since ωβ |= φ∗(S), by Theorem 23, u |= φ. In
combination with Theorem 9, we get that the MSO[otpωβ]-theory of ωβ is undecidable. ◀

5 Reduction of MSO[otpωβ] to MSO[otpωβ+1]

We have shown in the previous section the undecidability of MSO[otpωβ] for β an ordinal of
cofinality ω. In this section, we show that if MSO[otpωβ+1] is decidable for some β, then the
same goes for MSO[otpωβ]. This case requires more work.

We aim at proving the following:

▶ Lemma 25. For all ordinals β, the MSO[otpωβ]-theory of ωβ is reducible to the the
MSO[otpωβ+1]-theory of ωβ+1.

In other words, given an MSO[otpωβ]-sentence φ, our goal is to construct an MSO[otpωβ+1]-
sentence ψ such that

ωβ |= φ if and only if ωβ+1 |= ψ .

The principle of this construction is that formula ψ will guess a decomposition of ωβ+1

into ω intervals, such that almost all of them have order type ωβ . The intuition is then that
formula ψ will “simulate” φ independently in each of these blocks. The construction is done
in such a way that this “simulation” is “faithful” on almost all the blocks. There, we say that
a unary property P holds for almost all elements of a set D if P holds on all, but finitely
many elements of D.

CSL 2025

11:12 On the Expansion of MSO with Cantor-Bendixson Rank and Order Type Predicates

The first key ingredient for achieving this is Theorem 27. It provides an MSO[otpωβ+1]-
formula that allows to chop ωβ+1 into ω pieces while guaranteeing that almost all of them
are of order type ωβ .

We first state some elementary facts about ordinals that will prove useful in the construc-
tion.

▶ Fact 26. The following standard facts hold:
1. The order type of every final non-empty segment of ωβ has order type ωβ.
2. Let (αi)i∈ω be an ω-sequences of ordinals smaller than ωβ+1. Then

∑
i∈ω αi = ωβ+1 if

and only if αj ⩾ ωβ for infinitely many j.
3. For all ordinals α < ωβ+1, either α = ωβ × k for some natural k > 0, or α has some

final non-empty segment of order type smaller than ωβ.

▶ Lemma 27. There is effectively an MSO[otpωβ+1] formula Splitaa
ωβ (X) such that for all

S = {s0 < s1 < · · · }, ωβ+1 |= Splitaa
ωβ (S) if and only if the order type of [si, si+1) is ωβ for

almost all i ∈ ω.

Proof. We proceed in three steps, in which we successively describe formulas that approximate
each time better the expected behavior of Splitaa

ωβ .

Step 1. The MSO[otpωβ+1]-formula Split∞
ωβ×∗(S) expressing that⋃

i∈ω[ai, si+1) has order type ωβ+1 for all (ai)i∈ω such that ai ∈ [si, si+1) for all i ∈ ω,
which holds if and only if there exist infinitely many indices i ∈ ω such that [si, si+1) is of
the order type ωβ × k for some k ⩾ 1.

Indeed, assume that [si, si+1) is of the form ωβ × k with k ⩾ 1 for infinitely many i ∈ ω,
then by the first item of Theorem 26, [ai, si+1) has an order type of the form ωβ × ℓ with
ℓ ⩾ 1 for these i’s. Consequently, by the second item of Theorem 26,

⋃
i∈ω[ai, si+1) has order

type ωβ+1.
Conversely, assume that [si, si+1) is not of the form ωβ ×k with k ⩾ 1 for almost all i ∈ ω.

This means by the third item of Theorem 26, that for these i’s, there exists ai ∈ [si, si+1)
such that the order type of [ai, si) is smaller than ωβ . This can be completed, by choosing
arbitrary ai in the finitely many other segments, into an ω-sequence of ai’s as in the formula.
This time using the second item of Theorem 26, we get that

⋃
i∈ω[ai, si+1) has an order type

smaller than ωβ+1.

Step 2. In a second step, we claim that the formula Splitaa
ωβ×∗ that expresses that

for all infinite sets S′ ⊆ S, Split∞
ωβ×∗(S′) holds

if and only if [si, si+1) is of the form ωβ × k with k ⩾ 1 for almost all i ∈ ω.
Indeed, if [si, si+1) is of the form ωβ × k with k ⩾ 1 for almost all i ∈ ω, this also holds

for every infinite subsequence, and as a consequence, Split∞
ωβ×∗(S′) for all infinite S′ ⊆ S.

Conversely, assume that [si, si+1) is not of the form ωβ × k with k ⩾ 1 for infinitely
many i ∈ ω. In this case, it is possible to extract a subsequence S′ = {s′

0 < s′
1 < · · · } ⊆ S

such that the order type of [s′
i, s

′
i+1) is not of the form ωβ × k with k ⩾ 1, for all i ∈ ω.

According to the previous step, Split∞
ωβ×∗(S′) does not hold for this choice of S′, and

hence Splitaa
ωβ×∗(S) does not either.

Step 3. Finally, we can define the formula Splitaa
ωβ (S) that expresses that

Splitaa
ωβ×∗(S) holds, and

for all S′ ⊇ S, if Splitaa
ωβ×∗(S′) holds then S′ \ S is not cofinal.

T. Colcombet and A. Rabinovich 11:13

We have to show that it fulfils the conclusion of the lemma, i.e., that Splitaa
ωβ (S) holds if

and only if the order type of [si, si+1) is ωβ for almost all i ∈ ω.
Indeed, assume that [si, si+1) has order type ωβ for almost all i ∈ ω, and consider

some S′ = {s′
0 < s′

1 < · · · } ⊇ S. If S′ \ S is cofinal, then for such sufficiently large j, we
would have that si < s′

j < si+1 for some i such that [si, si+1) has order type ωβ . But in this
case, [si, s

′
j) has an order type smaller than ωβ and since s′

j−1 ⩾ si, the interval [s′
j−1, s

′
j)

also does. Overall, we have constructed infinitely many intervals [s′
j−1, s

′
j) of order type

smaller than ωβ , and thus Splitaa
ωβ×∗(S′) does not hold. This is a contradiction, and hence

Splitaa
ωβ (S) is satisfied.

Conversely, assume by contradiction that Splitaa
ωβ (S) holds, and that [si, si+1) has an

order type different than ωβ for infinitely many i ∈ ω. Since Splitaa
ωβ×∗(S) holds, this means

that [si, si+1) has order type ωβ × k with k > 1 for infinitely many i ∈ ω. But each such
interval [si, si+1) can be decomposed into [si, s

′
i) and [s′

i, si+1), both of them of order type
ωβ × k for some k ⩾ 1. Thus, the set S′ obtained by adding to S all such elements s′

i would
make Splitaa

ωβ×∗(S′) satisfied. Since S′ \ S is infinite, this contradicts the fact that Splitaa
ωβ (S)

holds. ◀

From now on, we assume that S = {s0 < s1 < · · · } is such that Splitaa
ωβ (S) holds. Let αi

be the order type of [si, si+1) be the corresponding sequence of ordinals. For the sake of
simplicity, we shall not mention the first order variables in formulas in the rest of the proof,
since these can be seen as a special case of monadic variables that would be interpreted as
singletons (something definable).

▶ Lemma 28. There is an algorithm which given an MSO[otpωβ]-formula

φ(X1, . . . Xk),

constructs an MSO[otpωβ+1]-formula

φ∗(S, F,X1, . . . Xk)

such that for all A1, . . . , Ak ⊆ ωβ+1and all infinite F ⊆ ω,

ωβ+1 |= φ∗(S, FS , A1, . . . , Ak)

if and only if

ωβ+1|[si,si+1) |= φ(A1 ∩ [si, si+1), . . . , Ak ∩ [si, si+1))

for almost all i ∈ F .

Proof. We shall define the formula φ∗ by structural induction on φ, and establish the
conclusions of the lemma at the same time. The case of existential quantifier, the case
of conjunction, and the case of MSO predicates are elementary. The crucial point is the
negation.

For the sake of simplicity, we shall write ωβ+1 |=S,F φ(Ā) in order to express that
ωβ+1|[si,si+1) |= φ(A1 ∩ [si, si+1), . . . , Ak ∩ [si, si+1)) for almost all i such that si ∈ F .

Case of a conjunction, i.e., φ(X̄) = (φ1(X̄) ∧ φ2(X̄)). We define

φ∗(S, F, X̄) := φ∗
1(S, F, X̄) ∧ φ∗

2(S, F, X̄) .

The induction hypothesis holds: indeed, ωβ |= φ∗(S, F, Ā) if and only if ωβ |= φ∗
1(S, F, Ā)

and ωβ |= φ∗
2(S, F, Ā), if and only if (by induction hypothesis) ωβ+1 |=S,F φ1(Ā) and

ωβ+1 |=S,F φ2(Ā), if and only if ωβ+1 |=S,F φ1(Ā) ∧ φ2(Ā), if and only if ωβ+1 |=S,F φ(Ā).

CSL 2025

11:14 On the Expansion of MSO with Cantor-Bendixson Rank and Order Type Predicates

Case of an existential set quantifier, i.e., φ(X̄) = ∃Y.φ1(X̄, Y). We define

φ∗(S, F, X̄) := ∃Y. φ∗
1(S, F, X̄, Y) .

Correctness is also straighforward.
Case of an MSO-formula φ(X̄), and in particular of the atomic formulas x ∈ Y and x < y

(recall that in this case, we see first-order variable as singleton sets). In this case, we simply
set φ∗(S, FS , X̄) to express ωβ+1 |=S,F φ(X̄). This is easily definable using relativization
and the fact that “almost all” can be expressed in MSO.

Case of an order type predicate, i.e., φ(X̄) := otpωβ (Xm). For simplicity, we shall treat
the case of φ(X̄) := ¬otpωβ (Xm), and leave the question of removing the negation to the
negation case below. We set:

φ∗(S, F, X̄) := ¬otpωβ+1(Xm ∩ FS) .

The correctness of this construction relies on the second item of Theorem 26. Indeed,
“otpωβ+1(Am ∩ FS) does not hold” means that Am ∩ [si, si+1) has order type smaller than
ωβ for almost all i ∈ F , which is the same as ωβ+1 |=S,F ¬otpωβ (Xm).

Case of a negation, i.e., φ(X̄) = ¬φ1(X1, . . . , Xk). We set

φ∗(S, F, X̄) := ∀F ′ ⊆ F. (“F ′ infinite”) → ¬φ∗
1(S, F ′, X̄) .

Let us prove that the induction hypothesis holds. Let us assume that ωβ+1 |=S,F ¬φ(Ā).
This is equivalent to the fact that ¬φ(Ā ∩ [si, si+1)) holds for almost all i with si ∈ F .
Hence, this is also true for almost all i such that si ∈ F ′ when F ′ ⊆ F is infinite. Thus
ωβ+1 |= φ∗(S, F, Ā). Conversely, assume that ωβ+1 |=S,F ¬φ(Ā) does not hold. This means
that there are infinitely many i such that si in F and φ(Ā ∩ [si, si+1)) holds. Let us chose
F ′ ⊆ F infinite to contain these indices. Then, this F ′ is a witness that ωβ+1 |= φ∗(S, F, Ā)
does not hold either. ◀

As a consequence of Theorem 28 and of Theorem 27, we obtain:

▶ Corollary 29. For every MSO[otpωβ]-sentence φ, there exists effectively an MSO[otpωβ+1]-
sentence ψ such that

ωβ |= φ if and only if ωβ+1 |= ψ .

Proof. Set ψ to be the formula

∃S “S has order type ω” ∧ “S is cofinal” ∧ Splitaa
ωβ (S) ∧ φ∗(S, S) ,

in which φ∗ is the formula produced by Theorem 28.
First implication. Let us assume that ωβ |= φ. We have to prove that ωβ+1 |= ψ. For

this, let us choose S to be {si := ωβ × i | i < ω}. This set S is of order type ω and cofinal
in ωβ+1. It is also such that [si, si+1) as order type ωβ for all i. Hence, by Theorem 27,
ωβ+1 |= Splitaa

ωβ (S). Since ωβ |= φ, we get by Theorem 28 that ωβ+1 |= φ∗(S, S), and hence
ωβ+1 |= ψ.

Conversely, let us assume that ωβ+1 |= ψ. This means that there exists S of order type ω
and cofinal that satisfies Splitaa

ωβ (S). Let S = {s0 < s1 < . . . }. By Theorem 27, this means
that [si, si+1) has order type ωβ for almost all i. Furthermore, ωβ+1 |= φ∗(S, S). Hence, by
Theorem 28, this means that ωβ+1|[si,si+1 |= φ for almost all i ∈ ω. This means that it holds
for at least one i < ω such that ωβ+1|[si,si+1) = ωβ . Hence, ωβ |= φ. ◀

T. Colcombet and A. Rabinovich 11:15

6 Countable ordinals

By combining Theorems 24 and 25 from the previous sections, we have proved that the
MSO[otpα]-theory of α is undecidable for all countable ordinals α of the form ωβ . The next
step is to show it for all countable α ⩾ ωω:

▶ Lemma 30. For all countable ordinals α ⩾ ωω, the MSO[otpα]-theory of α is undecidable.

This part of the proof does not involve new interesting arguments. It is presented below for
the completeness.

Recall some elementary facts about ordinal arithmetic. Cantor proved that every ordinal
α can be uniquely expressed as a finite sum

α = ωβn + · · · + ωβ1 + ωβ0 ,

for ordinals βn ⩾ · · · ⩾ β1 ⩾ β0. This is called the Cantor normal form of α.

▶ Notations. In order to avoid multi level subscripts, we will sometimes write MSO[α] instead
of MSO[otpα]

▶ Lemma 31. Let α = ωβn + · · ·+ωβ1 +ωβ0 where βn ⩾ · · · ⩾ β1 ⩾ β0. If the MSO[α]-theory
of α is decidable, the MSO[ωβn]-theory of ωβn is also decidable.

Proof. First note that there is an MSO[α] formula ψ=ωβn (x) such that α |= ψ=ωβn (b) if and
only if b = ωβn . Indeed, this formula says that x is the minimal element such that the set
{y : y ⩾ x} does not have the order type α.

Now, for every MSO[ωβn] sentence φ, we can construct an MSO[α] sentence φ∗ such that
ωβn |= φ if and only if α |= φ∗. Indeed, it is sufficient to relativize the quantifiers to βn, and
this is possible according to the above remark, and replace every occurrence of the predicate
otpωβn (X) by otpα(X ∪ {z | z > ωβn}). ◀

We are now ready to complete the proof of our theorem in the countable case.

Proof of Theorem 30. Let α ⩾ ωω be a countable ordinal. Its Cantor normal form βn ⩾
· · · ⩾ β1 ⩾ β0 is such that βn is countable infinite. Hence, by Theorems 24 and 25, the
MSO[otpωβn]-theory of ωβn is undecidable. By Theorem 31, this implies that the MSO[otpα]-
theory of α is undecidable. ◀

To sum up we have the following corollary:

▶ Corollary 32. Let α be a countable ordinal. TFAE
1. α ⩾ ωω.
2. α is not MSO definable.
3. The MSO[α] theory of α is undecidable.
4. The MSO[α] theory of any class of ordinals that contains an ordinal ⩾ α is undecidable.

Proof. We have already proved the equivalence between (1)-(3). The implication (4)⇒(3) is
immediate.

Let us proof that (3) ⇒(4). First note that there is an MSO[α] formula Ψα(x) which
defines α inside every β > α, i.e., for every β > α there is a unique b such that β |= Ψα(b)
and the substructure of β over the prefix {a | a < b} is isomorphic to α. Now, using this
formula, for every MSO[α] sentence Φ it is easy to construct an MSO[α] sentence Φα such
that α |= Φ if and only if β |= Φα for every (equivalently some) β > α. ◀

CSL 2025

11:16 On the Expansion of MSO with Cantor-Bendixson Rank and Order Type Predicates

7 Conclusion

This paper belongs to the body of works that aims at extending the expressive power of
monadic second-order logic, while retaining decidability results. More precisely, we have
studied the question of decidability of monadic second-order logic of ordinals when extended
with predicates about the order type of sets. Since the order type of some ordinals is non
definable (in particular for all countable ordinals from ωω upward), such extensions of MSO
are strictly more expressive than MSO. Our main result for ordinals, Theorem 2, shows
that up to ordinal ωω1

1 , there is nothing to be gained: if extending MSO with an order type
predicate is decidable, then this order type was already definable in plain MSO, and thus the
obtained logic is expressively equivalent to MSO.

The proof techniques involve a reduction of non-decidability of the satisfiability BMSO,
which itself relies on the deep result of undecidability of the satisfiability of MSO+U over ω.
This has to be combined with extra involved arguments for catching all the ordinals < ωω1

1 .
However, when reaching ωω1

1 all these tools seems to become useless, and the main open
question we are left with is the following:

▶ Problem 33. Is it true that α is MSO-definable if and only if the MSO[otpα]-theory of α
is decidable for all α < ω2?

Another problem is:

▶ Problem 34. What is the degree of undecidability of the MSO[otpα]-theory of α?

We provided a reduction from the satisfiability of BMSO to the satisfiability problem of
MSO[otpα]. The satisfiability problem for BMSO is not in RE and not in Co-RE. We do not
know whether there is a reduction in the other direction. Similar problems are about the
degree of undecidability of the MSO[CBrankα]-theory of the full binary tree.

The Hausdorff rank (sometimes called VD-rank or F -rank) is naturally definable for
linear orders [28]. In particular, a linear order (L,<) has a Hausdorff rank if and only if
it is scattered, equivalently if and only if there is no order preserving embedding of the
rationals in (L,<). Given an ordinal α, let Hrankα(X) express that X has Hausdorff rank α.
We denote by MSO[Hrankα] the monadic second-order logic of order extended with the new
predicate Hrankα(−).

It is well known that “a linear order has Hausdorff rank n” is definable for every n ∈ N.

▶ Theorem 35. For every countable ordinals α ⩾ ω, the MSO[Hrankα]-theory of the class of
countable linaer orders is undecidable.

The proof is a reduction of Theorem 35 to Theorem 2, and it is based on the following
observations:
1. An ordinal γ has Hausdorff rank ⩽ α if and only if γ ⩽ ωα.
2. Hence, for an infinite ordinal γ: OTP(γ) = ωα can be expresses as Hrank(γ) = α and

Hrank({y | y ⩾ x}) = α for every x < γ.
Therefore, there is an MSO[Hrankα] formula φα(X) that expresses “X is a well-order and
the order type of X is ωα.” Hence, by Theorem 2, we obtain that the MSO[Hrankα]-theory
of the linear orders of Hausdorff rank α as well as the MSO[Hrankα]-theory of the class of
countable linear orders is undecidable.

We can prove a stronger result:

▶ Theorem 36. For every countable ordinals β ≥ α ≥ ω, and every countable linear order
(L,<) of Hausdorff rank β, the MSO[Hrankα]-theory of (L,<) is undecidable.

Our proof of Theorem 36 is direct. The proof techniques are similar to those of Theorem 2,
however, we have not found a reduction of Theorem 36 to Theorem 2.

T. Colcombet and A. Rabinovich 11:17

References
1 Valérie Berthé, Toghrul Karimov, Joris Nieuwveld, Joël Ouaknine, Mihir Vahanwala, and

James Worrell. On the decidability of monadic second-order logic with arithmetic predicates.
In Pawel Sobocinski, Ugo Dal Lago, and Javier Esparza, editors, Proceedings of the 39th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2024, Tallinn, Estonia,
July 8-11, 2024, pages 11:1–11:14. ACM, 2024. doi:10.1145/3661814.3662119.

2 Achim Blumensath, Olivier Carton, and Thomas Colcombet. Asymptotic monadic second-order
logic. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors, Mathematical
Foundations of Computer Science 2014 - 39th International Symposium, MFCS 2014, Budapest,
Hungary, August 25-29, 2014. Proceedings, Part I, volume 8634 of Lecture Notes in Computer
Science, pages 87–98. Springer, 2014. doi:10.1007/978-3-662-44522-8_8.

3 Achim Blumensath, Thomas Colcombet, Denis Kuperberg, Pawel Parys, and Michael Vanden
Boom. Two-way cost automata and cost logics over infinite trees. In Thomas A. Henzinger
and Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages
16:1–16:9. ACM, 2014. doi:10.1145/2603088.2603104.

4 Mikolaj Bojanczyk. A bounding quantifier. In Jerzy Marcinkowski and Andrzej Tarlecki, editors,
Computer Science Logic, 18th International Workshop, CSL 2004, 13th Annual Conference of
the EACSL, Karpacz, Poland, September 20-24, 2004, Proceedings, volume 3210 of Lecture
Notes in Computer Science, pages 41–55. Springer, 2004. doi:10.1007/978-3-540-30124-0_7.

5 Mikolaj Bojanczyk and Thomas Colcombet. Boundedness in languages of infinite words. Log.
Methods Comput. Sci., 13(4), 2017. doi:10.23638/LMCS-13(4:3)2017.

6 Mikolaj Bojanczyk, Laure Daviaud, Bruno Guillon, Vincent Penelle, and A. V. Sreejith.
Undecidability of a weak version of MSO+U. Log. Methods Comput. Sci., 16(1), 2020.
doi:10.23638/LMCS-16(1:12)2020.

7 Mikolaj Bojanczyk, Edon Kelmendi, Rafal Stefanski, and Georg Zetzsche. Extensions of ω-
regular languages. In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors,
LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken,
Germany, July 8-11, 2020, pages 266–272. ACM, 2020. doi:10.1145/3373718.3394779.

8 Mikolaj Bojanczyk, Pawel Parys, and Szymon Torunczyk. The MSO+U theory of (n, <)
is undecidable. In Nicolas Ollinger and Heribert Vollmer, editors, 33rd Symposium on
Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France,
volume 47 of LIPIcs, pages 21:1–21:8. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.STACS.2016.21.

9 Mikolaj Bojanczyk and Szymon Torunczyk. Weak MSO+U over infinite trees. In Christoph
Dürr and Thomas Wilke, editors, 29th International Symposium on Theoretical Aspects of
Computer Science, STACS 2012, February 29th - March 3rd, 2012, Paris, France, volume 14
of LIPIcs, pages 648–660. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2012. doi:
10.4230/LIPIcs.STACS.2012.648.

10 J. R. Büchi. On a decision method in the restricted second-order arithmetic. In Proc. Int.
Congress Logic, Methodology and Philosophy of science, Berkeley 1960, pages 1–11. Stanford
University Press, 1962.

11 J. R. Büchi. Transfinite automata recursions and weak second order theory of ordinals. In
Proc. Int. Congress Logic, Methodology, and Philosophy of Science, Jerusalem 1964, pages
2–23. HOLLAND, 1965.

12 J Richard Büchi and Dirk Siefkes. Decidable Theories: Vol. 2: The Monadic Second Order
Theory of All Countable Ordinals, volume 328. Springer, 2006.

13 J.Richard Büchi and Charles Zaiontz. Deterministic automata and the monadic theory of
ordinals ω2. Z. Math. Logik Grundlagen Math., 29:313–336, 1983.

14 O. Carton and W. Thomas. The monadic theory of morphic infinite words and generalizations.
Inform. Comput., 176:51–76, 2002.

CSL 2025

https://doi.org/10.1145/3661814.3662119
https://doi.org/10.1007/978-3-662-44522-8_8
https://doi.org/10.1145/2603088.2603104
https://doi.org/10.1007/978-3-540-30124-0_7
https://doi.org/10.23638/LMCS-13(4:3)2017
https://doi.org/10.23638/LMCS-16(1:12)2020
https://doi.org/10.1145/3373718.3394779
https://doi.org/10.4230/LIPIcs.STACS.2016.21
https://doi.org/10.4230/LIPIcs.STACS.2012.648
https://doi.org/10.4230/LIPIcs.STACS.2012.648

11:18 On the Expansion of MSO with Cantor-Bendixson Rank and Order Type Predicates

15 Thomas Colcombet. Regular cost functions, part I: logic and algebra over words. Log. Methods
Comput. Sci., 9(3), 2013. doi:10.2168/LMCS-9(3:3)2013.

16 Thomas Colcombet and Christof Löding. Regular cost functions over finite trees. In Proceedings
of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14
July 2010, Edinburgh, United Kingdom, pages 70–79. IEEE Computer Society, 2010. doi:
10.1109/LICS.2010.36.

17 Calvin C. Elgot and Michael O. Rabin. Decidability and undecidability of extensions of
second (first) order theory of (generalized) successor. J. Symb. Log., 31(2):169–181, 1966.
doi:10.2307/2269808.

18 S. Fratani. The theory of successor extended with several predicates. preprint, 2009.
19 Y. Gurevich. Monadic second-order theories. In J. Barwise and S. Feferman, editors, Model-

Theoretic Logics, pages 479–506. Springer-Verlag, Perspectives in Mathematical Logic, 1985.
20 Yuri Gurevich. Modest theory of short chains. i. J. Symb. Log., 44(4):481–490, 1979. doi:

10.2307/2273287.
21 Yuri Gurevich, Menachem Magidor, and Saharon Shelah. The monadic theory of ω2. J. Symb.

Log, 48(2):387–398, 1983.
22 Yuri Gurevich and Saharon Shelah. Modest theory of short chains. ii. J. Symb. Log., 44(4):491–

502, 1979. doi:10.2307/2273288.
23 Yuri Gurevich and Saharon Shelah. Interpreting second-order logic in the monadic theory of

order. J. Symb. Log., 48(3):816–828, 1983. doi:10.2307/2273475.
24 M.O. Rabin. Decidability of second-order theories and automata on infinite trees. Transactions

of the American Mathematical Society, 141:1–35, 1969.
25 A. Rabinovich. On decidability of monadic logic of order over the naturals extended by

monadic predicates. Inf. Comput, 205(6):870–889, 2007. doi:10.1016/J.IC.2006.12.004.
26 A. Rabinovich and W. Thomas. Decidable theories of the ordering of natural numbers with

unary predicates. In Zoltán Ésik, editor, Computer Science Logic, 20th International Workshop,
CSL 2006, 15th Annual Conference of the EACSL, Szeged, Hungary, September 25-29, 2006,
Proceedings, volume 4207 of Lecture Notes in Computer Science, pages 562–574. Springer,
2006. doi:10.1007/11874683_37.

27 R.M. Robinson. Restricted set-theoretical definitions in arithmetic. Proc. Am. Math. Soc.,
9:238–242, 1958.

28 J.G. Rosenstein. Linear Orderings. ISSN. Elsevier Science, 1982. URL: https://books.
google.com.sg/books?id=y3YpdW-sbFsC.

29 A. L. Semenov. Decidability of monadic theories. In M. P. Chytil and V. Koubek, editors,
Proceedings of the 11th Symposium on Mathematical Foundations of Computer Science, volume
176 of LNCS, pages 162–175, Praha, Czechoslovakia, September 1984. Springer. doi:10.1007/
BFB0030296.

30 A. L. Semenov. Logical theories of one-place functions on the set of natural numbers. Math-
ematics of the USSR - Izvestia, 22:587–618, 1984.

31 S. Shelah. The monadic theory of order. Annals of Mathematics, 102:379–419, 1975.
32 Saharon Shelah. The monadic theory of order. The Annals of Mathematics, 102(3):379,

November 1975. doi:10.2307/1971037.
33 D. Siefkes. Decidable extensions of monadic second order successor arithmetic. Automatenthe-

orie und Formale Sprachen, (Tagung, Math. Forschungsinst, Oberwolfach), 1969; (Bibliograph.
Inst., Mannheim), pages 441–472, 1970.

34 W. Thomas. A note on undecidable extensions of monadic second order successor arithmetic.
Arch. Math. Logik Grundlagenforsch., 17:43–44, 1975. doi:10.1007/BF02280812.

A Proof of Lemma 17

Note that T0 + T1 is a binary tree only if T0 has at most one child. Since we are dealing with
binary trees where every child is either left or right (these trees are considered as structures
for the signature {<,Left(),Right()}) we have further refine sum and ω-sum operations.

https://doi.org/10.2168/LMCS-9(3:3)2013
https://doi.org/10.1109/LICS.2010.36
https://doi.org/10.1109/LICS.2010.36
https://doi.org/10.2307/2269808
https://doi.org/10.2307/2273287
https://doi.org/10.2307/2273287
https://doi.org/10.2307/2273288
https://doi.org/10.2307/2273475
https://doi.org/10.1016/J.IC.2006.12.004
https://doi.org/10.1007/11874683_37
https://books.google.com.sg/books?id=y3YpdW-sbFsC
https://books.google.com.sg/books?id=y3YpdW-sbFsC
https://doi.org/10.1007/BFB0030296
https://doi.org/10.1007/BFB0030296
https://doi.org/10.2307/1971037
https://doi.org/10.1007/BF02280812

T. Colcombet and A. Rabinovich 11:19

First we characterize when a tree T of rank α is isomorphic to the downward closure
of an antichain X of the full binary tree such that (X,<lex) is (isomorphic to) an ordinal.
Then we state properties of these trees and finally, we prove Theorem 17.

▶ Definition 37 (BWT trees). Let BWT be the set of binary trees such that T ∈ BWT if
the children of T are partitioned into the left and right children and every node has a leaf as
a descendant, and the lexicographic order on the leaves is a well-order.

▶ Lemma 38. Let X be an antichain in the full binary tree such that (X,<lex) is isomorphic
to an ordinal. Then T := (X ↓, <) is in BWT .

▶ Lemma 39. Let π = u1u1 · · · ∈ {L,R}ω be an ω-branch of T ∈ BWT .
Let Ti (for i ∈ ω) be the subtree of T over Xi := {v | v ⩾ u1 . . . ui and ¬(v ⩾ u1 . . . ui+1)}.

Then
1. Ti ∈ BWT .
2. Infinitely many Ti have more than one element.
3. There is iR such that for every i ⩾ iR: if Ti has more than one element, then ui+1 = R.

Proof.
(1) Ti ∈ BWT . Indeed (a) every node in Xi has a leaf descendant in Xi, (b) the leaves are

well-ordered by <lex and (c) children are partitioned into left/right as in T .
(2) If Ti is singleton for all i > j, then for all i > j the i-th node on π has no leaf as

descendant. Contradiction.
(3) Let F := {v | vL ∈ π and there is a leaf above vR}. We claim that F is finite. Indeed if

i ∈ F and ui is a leaf above vR then vL <lex ui and every descendant u of vL is <lexui .
In particular, ui+1 <lex ui for all i ∈ F . Hence, if F is infinite, then <lex is not well-order
on the leaves. Contradiction. ◀

The + and ω-sum operations on trees are refined by sums and infinite sums of BWT trees.

▶ Definition 40 (Sums of BWT trees). Let Ti = (|Ti|, <i) for i ∈ {0, 1} be BWT trees over
disjoint universes. If the root of T0 does not have right (respectively left) child define T0 +R T1
(respectively, T0 +L T1) to be a tree with universe |T0| ∪ |T1| and its order relation defined as
n1 ⩽ n2 if there is i ∈ {0, 1} such that n1, n2 ∈ |Ti| and n1 ⩽i n2, or n1 is the root of T0;
the root of T1 becomes right (respectively, left) child of the root of T0, and for other nodes
their left/right status is inherited from T0 and T1.

The infinite sums of BWT trees is defined as follows.

▶ Definition 41 (Infinite sums of BWT trees). Let Ti = (|Ti|, <i) for i ∈ ω be BWT trees
over disjoint universes, and let u1u2 · · · ∈ {L,R}ω be an ω-string. ◦

∑u
i∈ω Ti is defined if

1. The root of Ti does not have ui+1 child (i ∈ ω).
2. Infinitely many of Ti have more than one element.
3. There is iR such that for i ⩾ iR: if Ti has more than one element, then ui+1 = R.

We define the tree
u

◦
∑
i∈ω

Ti

as having universe
⋃

i∈ω |Ti| and its order relation is defined as n1 ⩽ n2 if there is i such
that n1, n2 ∈ |Ti| and n1 ⩽i n2, or n1 is the root of Ti and n2 ∈ |Tj | for j ⩾ i.

The root of Ti+1 becomes the right (respectively, left) child of the root of Ti if ui+1 = R

(respectively, ui+1 = L), and for other nodes of Ti their left/right status is inherited from Ti.

CSL 2025

11:20 On the Expansion of MSO with Cantor-Bendixson Rank and Order Type Predicates

Note the requirement that infinitely many of Ti have more than one element ensures that
every node in the ω-sum has a leaf as a descendant. The third requirement ensures that the
lexicographic order on the leaves of ◦

∑u
i∈ω Ti is well-order.

If the disjointness assumption does not hold in the above definitions, we replace Ti by
disjoint isomorphic copies and proceed as above.

▶ Lemma 42.
1. If Ti are in BWT and T0 +R T1 is defined, then T0 +R T1 is in BWT .
2. If Ti are in BWT and T0 +L T1 is defined, then T0 +L T1 is in BWT .
3. If Ti are in BWT and ◦

∑u
i∈ω Ti is defined, then ◦

∑u
i∈ω Ti is in BWT .

For T ∈ BWT , we denote by OTP(T) the order type of the lexicographic order on the
leaves of T .

▶ Lemma 43.
1. OTP(T0 +R T1) = OTP(T0) + OTP(T1).
2. OTP(T0 +L T1) = OTP(T1) + OTP(T0).
3. Assume that if Ti have more than one element, then ui+1 = R. Then OTP(◦

∑u
i∈ω Ti) =∑

i∈ω OTP(Ti).

Define BWT α := CBrankα ∩ BWT and BWT +
α := CBrank+

α ∩ BWT , where α is a
countable ordinal. Note that BWT 0 are one element trees and BWT +

0 are finite binary trees
with a partition of children into left and right.

▶ Lemma 44. For α > 0.
1. T ∈ BWT α if and only if T = ◦

∑u
i∈ω Ti for Ti ∈ ∪β<αBWT +

β .
2. T ∈ BWT +

α if and only if there are T ′
0, . . . , T

′
k ∈ ∪β⩽αBWT β and v1 . . . vk ∈ {L,R.}

such that T = (((T ′
0 +v1 T

′
1) +v2 T

′
2) · · · +vk

T ′
k).

3. Assume that CBrank(T) = α and T ∈ BWT α. Let u and Ti be as in 1. Then
a. If α is limit, then for every β < α there is Ti ̸∈ BWT +

β .
b. If α = γ + 1, then infinitely often Ti ∈ BWT +

γ \ ∪β<γBWT +
β .

Proof. (1) ⇐ direction is easily follows by the induction on α.
⇒-direction. T ∈ CBrankα, therefore there is an ω-branch π = u1u2 · · · ∈ {L,R}ω such

that T =
∑

i∈ω Ti, where Ti ∈ ∪β<αCBrank+
β is the subtree of T over Xi := {v | v ⩾

u1 . . . ui−1 and ¬(v ⩾ u1 . . . ui)}. Since T ∈ BWT , it follows that Ti ∈ BWT and therefore,
Ti ∈ ∪β<αBWT +

β . It is also clear that T = ◦
∑π

i∈ω Ti.
(2) and (3) easily follows from the definitions. ◀

Proof Theorem 17. Let X be an antichain in the full binary tree such that (X,<lex) is
isomorphic to an ordinal. We have to prove that T := (X ↓, <) has Cantor-Bendixson rank
α if and only if the order type of (X,<lex) belongs to [ωα, ωα+1).

Note that T is a BWT by Theorem 38. The proof proceeds by induction on α using
Theorem 43 and Theorem 44.

The base case α = 0 is immediate.
Assume that Lemma holds for all β < α.
Let T ∈ BWT α. By Theorem 44, T = ◦

∑u
i∈ω Ti for Ti ∈ ∪β<αBWT +

β . By the inductive
hypothesis OTP(Ti) < ωα.

Let uk := uk+1uk+2 Then u := u1 . . . uku
k. By Theorem 39(3), we can choose k

such that if Tk+i have more than one element, then uk+i+1 = R. Hence, by Theorem 43(3),
OTP(◦

∑uk

i∈ω Tk+i) =
∑

i∈ω OTP(Ti+k) < ωα × ω. T := (T0 +u1 +(T1 +u2 +u3(· · · +uk
T ′)))),

where T ′ := ◦
∑uk

i∈ω Tk+i. We proved that OTP(Ti) < ωα and OTP(T ′) < ωα × ω = ωα+1.
Hence, by Theorem 43(1)-(2), OTP(T) < ωα+1.

T. Colcombet and A. Rabinovich 11:21

Let us show that OTP(T) ⩾ ωα.
By Theorem 44(3), if α is limit then there is no β < α such that all Ti ∈ BWT +

β

for i > k . Therefore, there is no β < α such that OTP(Ti) < ωβ for i > k. Hence
OTP(◦

∑uk

i∈ω Tk+i) ⩾ ωα.
By Theorem 44(3), if α = γ + 1 is a successor, then infinitely often Ti ∈ BWT +

γ \
∪β<γBWT +

β . Hence, by the inductive hypothesis, infinitely often OTP(Ti) ⩾ ωγ . Hence,
OTP(◦

∑u′

i∈ω Tk+i) ⩾ ωγ × ω = ωα. Therefore, OTP(T) ⩾ ωα. This completes the proof for
the case when T ∈ BWT α.

Now assume that T ∈ BWT +
α and CBrank(T) = α. Then T is a sum of trees in BWT α

where at least one of the summands has CBrank equal to α. Therefore, the OTP of this
summand is at least ωα, and hence, the OTP of the sum is at least ωα. ◀

B Beyond countable ordinals

In this section, we consider the decidability questions concerning MSO[otpα] for α smaller
than ωω1

1 . It essentially relies, as for the countable case, on the techniques in Sections 4–6,
but it requires a bit more care. Also, some of the arguments go beyond ωω1

1 , but not all.
Thus, our first task is to understand precisely what are the MSO-definable ordinals beyond

the countable. Let ω1 be the first uncountable ordinal and ω2 be the initial ordinal of the
cardinal ℵ2.

Let us first note that ω1 is MSO-definable, indeed, this is the least limit ordinal which
is not of cofinality ω. It is easy to express in an MSO that an ordinal is limit and that an
ordinal has a cofinal ω-sequence. In the same way, ω2 is MSO-definable since it is the least
ordinal which is not of cofinality ω1 or ω.

In Section B.1 we characterize MSO-definable ordinals in [ω1, ω2). In Section B.2 we
consider ordinals of the form ωβ

1 where β is countable. We prove that for these ordinals
MSO[otpωβ

1
] is decidable if and only if ωβ

1 is MSO definable. In Section B.3 we extend the
equivalence between decidability and definability to all ordinals < ωω1

1 . The ordinal ωω1
1 is

undefinable, unfortunately we do not know whether MSO[otpω
ω1
1

] is decidable.

B.1 Definable ordinals < ω2

In this subsection we characterize the MSO-definable ordinals < ω2. We use the following
variant of the Cantor normal form: If α ∈ (0, ω2), then α has a unique decomposition of the
form

α = ωβn

1 × γn + · · · + ωβ0
1 × γ0 ,

where ω2 > βn > · · · > β1 > β0 ⩾ 0 and γi is a non-zero countable ordinal for all i. Let us
call it the ω1-representation of α.

▶ Proposition 45 (MSO-definable ordinals). An ordinal α < ω2 is MSO-definable if and only
if its ω1-representation ωβn

1 × γn + · · · + ωβ0
1 × γ0 is such that βi < ω and γi < ωω for all i.

Proof. ⇐ direction.
Let us recall that MSO-definable ordinals are closed under sum and multiplication.

Therefore, every finite power of ω1 is MSO-definable, and since every γ < ωω is MSO-
definable, we obtain that all the ordinals that have an ω1-representation as in the statement,
are MSO-definable.

Our proof of the other direction use elements of the compositional methods [32].

CSL 2025

11:22 On the Expansion of MSO with Cantor-Bendixson Rank and Order Type Predicates

For every n ∈ N we say that ordinals α and β are ≡n-equivalent (notation α ≡n β) if for
every MSO sentence Φ of the quantifier depth at most n: α |= Φ if and only if β |= Φ. We
will use the following well-known facts:

▶ Fact 46 (≡n is a congruence). The relation ≡n is an equivalence relation and it is a
congruence with respect to + and ×. If α ≡n β then for every γ:
1. α+ γ ≡n β + γ and γ + α ≡n γ + β.
2. α× γ ≡n β × γ

▶ Fact 47. There is a function M : N → N such that for every n if α ≡M(n) β then
γ × α ≡n γ × β.

▶ Fact 48 (cf Theorem 3.5(B) [31]).
1. For every δ < ω2 there is δ(k) < ωω

1 such that δ ≡k δ(k).
2. For every δ < ω1 there is δ(k) < ωω such that δ ≡k δ(k).

Now we are ready to prove the ⇒ direction of Theorem 45.
Assume that the ω1-representation of α is

α = ωβn

1 × γn + · · · + ωβi

1 × γi + · · · + ωβ0
1 × γ0 ,

If βi ⩾ ω for some i, then α ⩾ ωω
1 . Therefore, if α satisfies a sentence Φ of quantifier depth

k, by Fact 48(1), there is α(k) < ωω
1 that satisfies Φ. Hence, α is not MSO definable.

Hence, if α is MSO definable then all βi < ω. Now assume that γi > ωω for some i.
Toward a contradiction, let α be definable by a sentence Φ of quantifier depth k. By Fact
48(2) there is γ′

i < ωω such that γ ≡M(k) γ
′
i, where M is a function from Fact 47. Therefore,

by Fact 47, ωβi

1 × γi ≡k ω
βi

1 × γ′
i. Hence, by Fact 46, α is ≡k-equivalent to α′ which has the

following ω1-representation:

α′ = ωβn

1 × γn + · · · + ωβi

1 × γ′
i + · · · + ωβ0

1 × γ0

Therefore, α′ |= Φ. But α′ ̸= α (by uniqueness of ω1 representation) and this contradicts
that α is definable by Φ. ◀

B.2 ωβ
1 for countable β

In this subsection we consider ordinals of the form ωβ
1 where β is countable. We prove that

for these ordinals MSO[otpω
β
1] is decidable if and only if ωβ

1 is MSO definable.
Theorem 24 states that if β is of cofinality ω, the MSO[otpωβ]-theory of ωβ is undecidable.
Note that ω1 = ωω1 and ωβ

1 = ωω1×β . Observe that if β is ω-cofinal then ω1 × β is
ω-cofinal. Hence,

▶ Corollary 49. If β is ω-cofinal, then the MSO[otpω
β
1]-theory of ωβ

1 is undecidable.

Now we are going to show how to reduce MSO[ωβ
1] to MSO[ωβ+1

1]. From this reduction
and Theorem 49 we deduce undecidability of MSO[ωβ

1] for all β ∈ [ω, ω1).
The following standard facts hold:

▶ Fact 50.
1. Let (αi)i∈ω be an ω-sequence such that αi < ωβ for all i. Then,∑

i∈ω

αi ⩽ ωβ .

T. Colcombet and A. Rabinovich 11:23

2. Let (αi)i∈ω be an ω-sequences of ordinals smaller than ωβ+1.∑
i∈ω

αi = ωβ+1 if and only if αj ⩾ ωβ for cofinally many j.

3. Let (αi)i∈ω1 be an ω1-sequences of ordinals smaller than ωβ+1
1 .∑

i∈ω1

αi = ωβ+1
1 if and only if αj ⩾ ωβ

1 for cofinally many j.

4. Let (αi)i∈ω1 be an ω1-sequence such that αi < ωβ
1 for all i. Then,∑

i∈ω1

αi ⩽ ωβ
1 .

Theorem 50(1)-(2) was used in the reduction of MSO[ωβ] to MSO[ωβ+1]. We will use
Theorem 50(3)-(4) in our reduction of MSO[ωβ

1] to MSO[ωβ+1
1].

Note that for β ≥ ω, it is impossible to express in MSO[ωβ+1
1] “an interval is of length

ωβ
1 .” Even there is no MSO[ωβ+1

1] formula B(x) such that ωβ+1
1 |= B(b) if and only if the

interval [0, b) := {c | c < b} has the order type ωβ .
Our first aim is to chop ωβ+1

1 into ω1 disjoint intervals all of length ωβ
1 , except a countable

many.

▶ Lemma 51. There is an MSO[ωβ+1
1] formula Chop(XB , XE) such that for every B,E ⊆

ωβ+1
1 we have ωβ+1

1 |= Chop(B,E) if and only if
1. B and E have order type ω1 and bi < ei < bi+1 for i ∈ ω1. Hence, for i ≠ j the intervals

(bi, ei) and (bj , ej) are disjoint.
2. For all but countable many i, the order type of [bi, ei) is ωβ

1 .

Proof. Let B := (bi)i∈ω1 and E := (ei)i∈ω1 be increasing ω1 sequences such that bi <

ei < bi+1 for all i ∈ ω1. (This can be formalized in MSO.) We want to ensure that
OTP([bi, ei)) = ωβ

1 for all i ∈ ω1, except countable many one.
Let us formalize it as follows:

Requirements.
(1)

⋃
i∈I [bi, ei) has order type ωβ+1

1 for every cofinal subset I of ω1, and
(2) for all C := (ci)i∈ω1 such that ci ∈ [bi, ei) the order type of

⋃
[bi, ci) is not ωβ+1

1 (it
should be < ωβ+1

1).
It is easy to formalize (1) and (2) by an MSO[ωβ+1

1] formula.
We claim that (1) and (2) hold if and only if for all, but countable many i: OTP([bi, ei)) =

ωβ
1 .

Indeed, if for all i: OTP([bi, ei)) = ωβ
1 , then, by Theorem 50(4), for all C := (ci)i∈ω1 such

that ci ∈ [bi, ei) we have OTP((
⋃

[bi, ci)) ⩽ ωβ
1 . Therefore, if for all but countable many i:

OTP([bi, ei)) = ωβ
1 , then OTP((

⋃
[bi, ci)) < ωβ+1

1 . Therefore, (1) and (2) hold.
For the other direction. If (1) holds, then by Theorem 50(4) there are at most countable

many i such that OTP([bi, ei)) < ωβ
1 . If (2) holds, then, by Theorem 50(3), there are at most

countable many i such that OTP([bi, ei)) > ωβ
1 . Hence, there are at most countable many i

such that OTP([bi, e1)) ̸= ωβ
1 . We proved the Lemma ◀

Now we will reduce MSO[ωβ
1] to MSO[ωβ+1

1]. This is exactly like the reduction of Theorem 28,
but for negation we should replace2 “infinite” by ω1.

2 Instead of the filter of co-finite subset of ω, we use the filter of co-countable subsets of ω1.

CSL 2025

11:24 On the Expansion of MSO with Cantor-Bendixson Rank and Order Type Predicates

▶ Lemma 52. There is an algorithm which given an MSO[ωβ
1]-formula φ(X1, . . . Xk)

constructs an MSO[ωβ+1
1]-formula φ∗(XB , XE , X1, . . . Xk) such that for all A1, . . . , Ak ⊆

ωβ+1
1 and all B,E which satisfy ωβ+1

1 |= Chop(B,E):

ωβ+1
1 |= φ∗(B,E,A1, . . . , Ak)

if and only if

ωβ+1
1 |[bi,ei) |= φ(A1 ∩ [bi, ei), . . . , Ak ∩ [bi, ei))

for all but countable many i.

Proof. We shall define the formula φ∗ by structural induction on φ, and establish the
conclusions of the lemma at the same time. The case of existential quantifier, the case
of conjunction, and the case of MSO predicates are elementary. The crucial point is the
negation.

Case of a conjunction, i.e., φ(X̄) = (φ1(X̄) ∧ φ2(X̄)). We define

φ∗(XB , XE , X̄) := φ∗
1(XB , XE , X̄) ∧ φ∗

2(XB , XE , X̄) .

Correctness follows from the fact that co-countable subsets of ω1 are closed under the
intersection.

Case of an existential set quantifier, i.e., φ(X̄) = ∃Y.φ1(X̄, Y). We define

φ∗(XB , XE , X̄) := ∃Y. φ∗
1(XB , XE , X̄, Y) .

Correctness is also straightforward.
Case of an MSO-formula φ(X̄), and in particular of the atomic formulas x ∈ Y and x < y

is easy and very similar to Theorem 28.

Case of an order type predicate, i.e., φ(X̄) := otpωβ
1

(Xm). For simplicity, we shall treat
the case of φ(X) := ¬otpωβ

1
(Xm), and leave the question of removing the negation to the

negation case below. We set:

φ∗(XB , XE , Xm) := Chop(XB , XE) ∧ ¬otpωβ+1
1

(Xm ∩ F), .

where F := {z | ∃x ∈ XB∃y ∈ XE(x ⩽ z < y ∧ (x, y) ∩ XB = ∅ ∧ (x, y) ∩ XE = ∅)}. The
correctness of this construction relies on Theorem 50.

Case of a negation, i.e., φ(X̄) := ¬φ1(X1, . . . , Xk). We set φ∗(XB , XE , X̄) to be the
conjunction of
A Chop(XB , XE), and
B ¬φ∗

1(X ′
B , X

′
E , X̄) holds for every X ′

B , X
′
E which are cofinal subsets of XB and XE such

that Chop(X ′
B , X

′
E).

Let us assume that ωβ+1 |= Chop(B,E). Then B := {bi | i ∈ ω1} and E := {ei | i ∈ ω1},
where bi and ei are increasing ω1-sequences.

Condition B is equivalent to “¬φ1(Ā ∩ [bi, ei)) holds for all but countable many i.
Hence, the inductive hypothesis holds. ◀

As a consequence of Theorem 49 and Theorem 52 we obtain:

▶ Corollary 53. The MSO[ωβ
1] is undecidable on ωβ

1 for β ∈ [ω, ω1).

T. Colcombet and A. Rabinovich 11:25

B.3 Definability is equivalent to Decidability for α < ωω1
1

We are ready to extend Theorem 2 up to ωω1
1 .

▶ Theorem 54. For all ordinals α < ωω1
1 , the MSO[otpα]-theory of α is decidable if and only

if α is MSO-definable.

Proof. For countable α it was proved in Theorem 30.
If α is definable, then MSO[α] is equivalent to MSO. Since, the MSO theory of every

α < ω2 is decidable, we obtain that the MSO[α] theory of α is decidable.
It remains to show that if an uncountable α < ωω1

1 is undefinable, then MSO[α] is
undecidable.

Let α = ωβn

1 × γn + · · · + ωβ0
1 × γ0 , where ω2 > βn > · · · > β1 > β0 ⩾ 0 and γi is a

non-zero countable ordinal for all i. Assume that α < ωω1
1 and α is undefinable.

By Proposition 45, there is i such that (A) βi ⩾ ω or (B) γi ⩾ ωω.
If (A) holds then βn ∈ [ω, ω1). In this case there is an MSO[α] formula B(x) such

that α |= B(b) if and only if the interval [0, b) has the order type ωβn

1 . Indeed, let [x,∞)
(respectively, [0, x)) be the set {y | y ⩽ x} (respectively, {y | y < x}) and let B(x) says that
x is the minimal element such that ¬α([x,∞)). It is clear that α |= B(b) if the interval [0, b)
has the order type ωβn

1 . Now, similarly to the proof of Theorem 31, for every MSO[ωβn

1]
sentence C we can (effectively) construct an MSO[α] sentence C∗ such that ωβn

1 |= C if and
only if α |= C∗. Since, MSO[ωβn

1] is undecidable by Corollary 53, we derive that MSO[α] is
undecidable.

If (A) does not holds and (B) holds we have that all βi < ω and therefore ωβi

1 are definable
for all i ⩽ n, and there are γi ⩾ ωω. Let i be the maximal index such that γi ⩾ ωω.

There is an MSO formula B(x) such that α |= B(b) if and only if the order type of
[0, b) is δ := ωβn

1 × γn + · · · + ω
βi+1
1 × γi+1 indeed δ is a definable ordinal, hence such B

exists. There is an MSO formula E(y) such that α |= E(e) if the order type of [0, e) is
δ1 := ωβn

1 × γn + · · · +ωβi

1 × γi. Indeed E(x) states x is the minimal such that that the order
type of [x,∞) is less than ωβi

1 . The order type of [b, e) is µ := ωβi

1 × γi.
Now we will use two reductions. The first one reduces MSO[γi] to MSO[ωβi

1 × γi]

▷ Claim 55. For every k < ω and an MSO[γ] sentence A there is an MSO[ωk
1 × γ] sentence

A∗ such that γ |= A if and only if ωk
1 × γ |= A∗.

Proof. Since an ordinal ωk
1 is MSO definable, there is a formula Mult(X) which defines the

set of multiples of ωk
1 , i.e., for every ordinal α: α |= Mult(S) if and only if S := {a ∈ α | [0, a)

is a multiple of ωk
1 }. Let A⋆ be defined as ∃S(Mult(S) ∧B), where B is the relativisation of

A on S.
For an MSO (or MSO[γ]) sentence A: γ |= A if and only if ωk

1 ×γ |= A⋆. If A is an MSO[γ]
sentence, then A⋆ is an MSO[γ] sentence, and we have to express γ-order type predicates
“X ⊆ S has order type γ” by ωk

1 × γ order type predicates.
For x = ωk

1 × β (a multiple of ωk
1), we denote by [x] an interval [ωk

1 × β, ωk
1 × (β + 1)).

For a set X of multiples of ωk
1 , we denote by [X] the set ∪x∈X [x]. Note that [X] is MSO

definable from X.
Hence, our desired A∗ can be defined from A⋆ by replacing the subformulas “X has the

order type γ” by ∃Y (Y = [X]∧“Y has the order type ωk
1 × γ”). ◁

Since, γi ⩾ ωω and it is countable, MSO[γi] is undecidable, hence, we obtain by Theorem 55
that MSO[ωβi

1 × γi] is undecidable.
The second reduction reduces MSO[ωβi

1 × γi] to MSO[α].

CSL 2025

11:26 On the Expansion of MSO with Cantor-Bendixson Rank and Order Type Predicates

▷ Claim 56. For every MSO[ωβi

1 × γi] sentence A there is an MSO[α] sentence A∗ such that
ωβi

1 × γi |= A if and only if α |= A∗.

Proof. Recall that there are MSO formulas B(x) and E(y) such that α |= B(b) ∧E(e) if and
only if [0, b) has the order type ωβn

1 × γn + · · · + ω
βi+1
1 × γi+1 and [b, e) has the order type

ωβi

1 × γi.
As A∗ we can take ∃xy(B(x) ∧E(y) ∧C), where C is obtained from A first by relativizing

A to the interval [x, y). and then replacing atomic subformulas “X has order type ωβi

1 × γi”
by “X ∪ Z has the order type α,” where Z := {z | z < x ∨ z ⩾ y}. ◁

Since MSO[ωβi

1 × γi] is undecidable, we obtain by Theorem 56 that MSO[α] is undecidable.
and this completes our proof of Theorem 54. ◀

First-Order Logic with Equicardinality in Random
Graphs
Simi Haber #

Bar-Ilan University, Ramat Gan, Israel

Tal Hershko #

California Institute of Technology, Pasadena, CA, USA

Mostafa Mirabi #

Taft School, Watertown, CT, USA

Saharon Shelah # Ñ

Hebrew University of Jerusalem, Israel

Abstract
We answer a question of Blass and Harary about the validity of the zero-one law in random graphs
for extensions of first-order logic (FOL). For a given graph property P , the Lindström extension
of FOL by P is defined as the minimal (regular) extension of FOL able to express P . For several
graph properties P (e.g. Hamiltonicity), it is known that the Lindström extension by P is also
able to interpret a segment of arithmetic, and thus strongly disobeys the zero-one law. Common
to all these properties is the ability to express the Härtig quantifier, a natural extension of FOL
testing if two definable sets are of the same size. We prove that the Härtig quantifier is sufficient for
the interpretation of arithmetic, thus providing a general result which implies all known cases of
Lindström extensions which are able to interpret a segment of arithmetic.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Mathematics of
computing → Random graphs

Keywords and phrases finite model theory, first-order logic, monadic second-order logic, random
graphs, zero-one laws, generalized quantifiers, equicardinality

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.12

Funding Saharon Shelah: Research partially supported by the grant “Independent Theories” NSF-
BSF, (BSF 3013005232) and by NSF grant no: DMS 1833363. Paper 1250 on Shelah’s publication list.

1 Introduction

In this paper we study the Erdös-Rényi binomial random graph model G(n, p). Recall that
G(n, p) is defined as a probability distribution over the set of all labeled (simple) graphs with
the vertex set [n] := {1, 2, . . . , n}, by requiring that each of the

(
n
2
)

potential edges appears
with probability p and independently of all other edges. Note that G

(
n, 1

2
)

is the uniform
distribution over the set of 2(n

2) labeled graphs with vertex set [n].
In what follows, we use P(·) to denote probabilities and E(·) to denote expected values.

1.1 Background and Previous Results
The study of random graphs was pioneered by Erdös and Rényi in the 1960s, originating from
two seminal papers [9, 10]. One of the earliest phenomena recognized in their work is the
fact that many natural graph properties – including connectivity, Hamiltonicity, planarity,

© Simi Haber, Tal Hershko, Mostafa Mirabi, and Saharon Shelah;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 12; pp. 12:1–12:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:simi@math.biu.ac.il
https://orcid.org/0000-0001-8421-832X
mailto:thershko@caltech.edu
https://orcid.org/0009-0008-9415-4698
mailto:mmirabi@wesleyan.edu
https://orcid.org/0000-0003-0404-9904
mailto:saharon.shelah@mail.huji.ac.il
https://shelah.logic.at/
https://orcid.org/0000-0003-0462-3152
https://doi.org/10.4230/LIPIcs.CSL.2025.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 First-Order Logic with Equicardinality in Random Graphs

k-colorability for a fixed k and containing H as a subgraph for a fixed graph H – hold either
in almost all graphs, or in almost none of them. Formally, let P be a graph property and fix
p ∈ (0, 1). We say that P holds asymptotically almost surely (a.a.s. for short) in G(n, p) if

lim
n→∞

P (G(n, p) satisfies P) = 1

and that P holds asymptotically almost never (a.a.n. for short) in G(n, p) if

lim
n→∞

P (G(n, p) satisfies P) = 0.

Then, for example, for every fixed p ∈ (0, 1),
Connectivity holds a.a.s. in G(n, p).
Hamiltonicity holds a.a.s. in G(n, p).
Planarity holds a.a.n. in G(n, p).
For every fixed k ∈ N, k-colorability holds a.a.n. in G(n, p).
For every fixed finite graph H, the property of containing H as a subgraph holds a.a.s. in
G(n, p).

As a reference, see any introductory text in random graphs, e.g. [19].
The observation that many natural graph properties hold either a.a.s. or a.a.n. in G(n, p)

motivates the following definition.

▶ Definition 1. Let A be a set of graph properties. We say that A obeys the zero-one law in
G(n, p) if for every property P ∈ A,

lim
n→∞

P (G(n, p) satisfies P) ∈ {0, 1} .

With this definition, we may formulate the following informal observation: if A is a set of
natural graph properties then A obeys the zero-one law. This is not a formal statement, due
to the lack of a formal definition of a “natural graph property”.

From a logician’s point of view, a natural class of graph properties is the class FO
of first-order properties. These are properties which can be expressed as a sentence in
the first-order language of graphs, whose signature consists of a single binary relation ∼
representing adjacency.1 Indeed, a classic result, proven independently by Glebskii et al. [13]
and Fagin [11], states that FO obeys the zero-one law in G(n, p).

▶ Theorem 2 (GKLT-Fagin). Fix p ∈ (0, 1). Then the set of first-order graph properties FO
obeys the zero-one law in G(n, p).

The GKLT-Fagin zero-one law pioneered the study of random graphs with tools of
mathematical logic. This point of view has proved to be doubly beneficial, teaching us about
the properties of the underlying random graph, and also about the expressive power of logical
languages. It is therefore considered an important part of finite model theory.

The GKLT-Fagin zero-one law deals with first-order properties. However, many graph
properties which are considered natural – including connectivity, Hamiltonicity and k-
colorability – are not first-order. On the other extreme, the class SO of second-order graph
properties contains all the properties listed above, but fails to obey the zero-one law. For
example, as noted by Fagin [11, p. 55], the property of having an even number of vertices is
second-order, but clearly has no limiting probability.

1 We shall often identify logical sentences with the properties they describe.

S. Haber, T. Hershko, M. Mirabi, and S. Shelah 12:3

It is therefore natural to ask for extensions of first-order logic which have a stronger
expressive power on the one hand, but still obey the zero-one law on the other hand. This
question was posed by Blass and Harary [2, Section 5]. In their discussion, they suggest
several guiding questions:
1. Is there an extension of first order logic which is strong enough to express Hamiltonicity

and rigidity (asymmetry), but still obeys the zero-one law?
2. What about monadic second-order logic? It cannot express Hamiltonicity, but it is still

an important extension of first-order logic – does it obey the zero-one law?
3. Can something be done with “more exotic languages”, for example with equicardinality

quantifiers?

These questions have been studied in many papers. We dedicate the following sections to
explain the precise meaning of these questions in more detail and review previous results.
Our review is not exhaustive; for a broader survey of results in this field, we refer the reader
to [4] and [29]. For a more focused discussion of results directly related to our work, see [6]
and [16].

Lindström Extensions
Suppose we are interested in an extension of FO which includes a certain graph property P .
One option is to simply take the union FO ∪ {P}. However, this set of properties clearly
lacks a basic notion of closure. To avoid such trivialities, we focus on regular extensions. A
regular logic is a logic that is closed under negation, conjunction, existential quantification,
relativization and substitution (see [7] for more details). We then have the following definition.

▶ Definition 3. Let P be a graph property. The Lindström extension of FO by P , denoted
FO[P], is the minimal regular extension of FO that includes P .

The term Lindström extension comes from the fact that FO[P] can be constructed by
adjoining the Lindström quantifier of P , denoted QP and defined as follows [26, 27, 7].

▶ Definition 4. Let P be a graph property. Its Lindström quantifier QP is defined as follows.
Syntactically, given a formula φV (x, z⃗) with x, z⃗ as free variables and a formula φE(x, y, z⃗)
with x, y, z⃗ as free variables, it returns the formula QPx, y (φV (x, z⃗), φE(x, y, z⃗)) in which
x, y are quantified and z⃗ are free.
Semantically, the truth value of this formula is defined as follows. Let G = (V,E)
be a graph and let a⃗ be a vector of vertices, of the same length as z⃗. Let V0 =
{v ∈ V : G |= φV (v, a⃗)} and let E0 be the set of pairs {u, v} with u, v ∈ V0 such that
G |= φ(u, v, a⃗) or G |= φ(v, u, a⃗). Then

G |=z⃗=a⃗ QPx, y (φV (x, z⃗), φE(x, y, z⃗)) ⇐⇒ G0 = (V0, E0) satisfies P.

It can be shown that FO[P] is the same as the closure of FO under quantification with
QP (see [8] for more details).

We can now suggest a more precise formulation of the first question of Blass and Harary:
do the Lindström extensions of FO by Hamiltonicity and by rigidity obey the zero-one law?
The answer was given by Dawar and Grädel ([6], also in [5]).

▶ Theorem 5 (Dawar-Grädel). Fix p ∈ (0, 1).
1. The Lindström extension FO[Rigidity] obeys the zero-one law in G(n, p).
2. The Lindström extension FO[Hamiltonicity] does not obey the zero-one law in G(n, p).

CSL 2025

12:4 First-Order Logic with Equicardinality in Random Graphs

The latter part of the theorem was demonstrated by encoding Parity – the property
of having an even number of vertices. It is worth noting, however, that Parity still allows
for the possibility of a modular limit law, as shown by Kolaitis and Kopparty [25]. A far
more extreme violation of the zero-one law occurs through the interpretation of a segment of
arithmetic, a concept we will elucidate in the subsequent section.

Arithmetization
The second question of Blass and Harary, regarding monadic second order logic MSO, was
answered much earlier than the first. The answer was given by Kaufmann and Shelah [23],
who proved that MSO disobeys the zero-one law in a very strong sense. Their main result is
that MSO can interpret arithmetic in G(n, p), which roughly means that there are sentences
in MSO that define an arithmetic structure on (a subset of) the vertex set. If a language L
can interpret a segment of arithmetic then it is, in a sense, the farthest possible from obeying
the zero-one law. Indeed, in such a case, it is possible to construct sentences φ ∈ L whose
probability sequence {P (G(n, p) |= φ)}∞

n=1 exhibits different kinds of complex behaviors. We
shall demonstrate this fact shortly by constructing a sentence φ ∈ L whose probability
sequence alternates between near-zero values and near-one values, and hence has no limit.

The definition of interpreting arithmetic given below is somewhat weaker than what
Kaufmann and Shelah prove for MSO, but describes a more general and more common type
of arithmetization results (see review below). In particular, it includes the main result of
this paper, Theorem 14).

Recall that for n ∈ N we denote [n] = {1, 2, . . . , n}. We begin by defining the language
SO[Arith] as the second-order language of arithmetic, where:

Addition + and multiplication × are defined as ternary relations (so, for example, we
write +(a, b, c) instead of a+ b = c). This is a convenient choice when working with finite
models such as [n], where addition and multiplication are restricted.
Second order quantification is done only over unary and binary relations.

▶ Example 6. We can construct a formula in SO[Arith] with free variables x, y expressing
the property y = 2x by the following steps.

Begin by asserting the existence of a binary relation: ∃Exp2.
Require that it is single-valued:

∀a∀b∀b′ (Exp(a, b) ∧ Exp(a, b′) → b = b′) .

Define the relation inductively:

Exp(0, 1) ∧ ∀a∀b∀a′∀b′ (Exp(a, b) ∧ +(a, 1, a′) ∧ ×(b, 2, b′) → Exp(a′, b′)) .

Finally, require Exp(x, y).

For every n ∈ N, the set [n] admits an arithmetic structure with the standard addition and
multiplication (restricted to [n]). Given an interval [a, b] ⊆ R and a sentence φ ∈ SO[Arith],
we say that:
1. φ holds in [a, b] if [n] |= φ for every n ∈ [a, b] ∩ N.
2. φ is constant on [a, b] if φ holds in [a, b] or ¬φ holds in [a, b].

Finally, let us say that a function f : N → N is finite-to-one if for every m ∈ N, the inverse
image f−1(m) is a non-empty finite set. Note that if f is finite-to-one then f is onto and
limn→∞ f(n) = ∞. Examples include f(n) = ⌊

√
n⌋ and f(n) = ⌊log log n⌋.

S. Haber, T. Hershko, M. Mirabi, and S. Shelah 12:5

▶ Definition 7 (Arithmetization). Let L be a logical language whose signature includes the
binary relation symbol ∼, representing adjacency. Fix a parameter p ∈ (0, 1), constants
0 < c1 ≤ c2 and a finite-to-one function f : N → N. We say that L can interpret a segment
of arithmetic in G(n, p) with constants c1, c2 and a scaling function f(n) if the following
holds. For every sentence φ ∈ SO[Arith] there exists a sentence φ∗ ∈ L such that, given
a sequence {nk}∞

k=1 with limk→∞ nk = ∞ such that φ is constant on [c1f(nk), c2f(nk)] for
every k, we have

lim
k→∞

P (G(nk, p) |= φ∗ ⇐⇒ φ holds in [c1f(nk), c2f(nk)]) = 1.

To motivate the definition, we remark that it reflects a general strategy of encoding
arithmetic in random graphs, which can be roughly summarized as follows:

Restrict to a certain L-definable subset S ⊆ [n] of size |S| ∈ [c1f(n), c2f(n)].
Use the structure of the random graph to encode unary and binary relations and an
arithmetic structure on S.
Given a sentence φ ∈ SO[Arith], use the encoded structure to convert it into a sentence
φ∗ ∈ L asserting that φ is satisfied in S.

▶ Proposition 8. Let L be a language that can interpret a segment of arithmetic in G(n, p).
Then there exists a sentence ψ ∈ L such that the limit limn→∞ P (G(n, p) |= ψ) does not exist.
In particular, L disobeys the zero-one law.

Proof. Let 0 < c1 ≤ c2 and f(n) be the constants and the scaling function for L, as in
Definition 7. Let N = ⌈max {|log2 c1| , |log2 c2|}⌉ + 1. It is straightforward to construct a
sentence φ ∈ SO[Arith] such that for every m ∈ N, [m] |= φ if and only if

⌊log2 m⌋ ≡ k mod 8N for k ∈ {−N,−N + 1, . . . , N − 1, N} .

Let {nk}∞
k=1 be a sequence satisfying f(nk) = 24Nk for every k. Such a sequence exists

and approaches ∞, because f is finite-to-one. We claim that φ is constant on each interval
[c1f(nk), c2f(nk)]. Indeed, for every m ∈ [c1f(nk), c2f(nk)] ∩ N we have

log2 m ∈ [log2 c1 + 4Nk, log2 c2 + 4Nk] ,
⌊log2 m⌋ ∈ [4Nk −N, 4Nk +N] (1)

where (1) follows from our choice of N . When k is even, (1) implies [m] |= φ. When k is
odd, (1) implies [m] ̸|= φ.

Now let φ∗ ∈ L as in Definition 7. Then the probabilities sequence {P (G(nk, p) |= φ∗)}∞
k=1

converges to 1 on even values of k and converges to 0 on odd values of k. This implies that
the limit limn→∞ P (G(n, p) |= φ∗) does not exist. ◀

Going back to Kaufmann and Shelah, we can now formulate the following consequence
of [23] (which follows from Theorem 1 and the closing remark).

▶ Theorem 9 (Kaufmann-Shelah). Fix p ∈ (0, 1). Then MSO can interpret a segment of
arithmetic in G(n, p) (with constants c1 = c2 = 1 and scaling function f(n) = ⌊

√
n⌋).

As explained, this result provides a strongly negative answer to the second question of
Blass and Harary.

In [16], Haber and Shelah prove an arithmetization result for the Lindström extension of
Hamiltonicity, thus strengthening Part 2 of Theorem 5.

CSL 2025

12:6 First-Order Logic with Equicardinality in Random Graphs

▶ Theorem 10 (Haber-Shelah). Fix p ∈ (0, 1). Then FO[Hamiltonicity] can interpret a
segment of arithmetic in G(n, p) (with scaling function f(n) = Ω(log log log n)).

As for other graph properties, Haber and Shelah also proved in [16] that the zero-one
law holds for the Lindström extensions FO[Connectivity] and FO[k−colorability] for every
fixed k. These results also follow from a more general theorem by Dawar and Grädel [6],
which also implies that the zero-one law holds for FO[Planarity]. On the other hand, there
are additional graph properties P for which it is known that FO[P] can interpret a segment
of arithmetic. These include regularity, the existence of a perfect matching [15] and the
existence of a C4-factor [14]. It is noteworthy that Haber and Shelah [16] employed a strategy
to encode the Rescher plurality quantifier [28], resulting in a more expressive logic. In
contrast, our finding that equicardinality alone suffices to interpret a segment of arithmetic
is unexpected and significantly stronger.

Equicardinality Quantifiers
Common to all the Lindström extensions of FO which are known to be able to interpret a
segment of arithmetic is the ability to express the equicardinality quantifier, also known as
the Härtig quantifier [17], which we denote by Q=. This quantifier allows for testing if two
definable sets are of the same size.

▶ Definition 11. The Härtig quantifier Q= is defined as follows.
Syntactically, given formulas φ(x, z⃗) and ψ(x, z⃗) with free variables x, z⃗, it returns a
formula Q=x (φ(x, z⃗), ψ(x, z⃗)) in which x is quantified and z⃗ are free.
Semantically, the truth value of this formula is defined as follows. Let G = (V,E) be a
finite graph and let a⃗ be a vector of vertices, of the same length as z⃗. Then

G |=z⃗=a⃗ Q=x (φ(x, z⃗), ψ(x, z⃗)) ⇐⇒ |{v ∈ V : G |= φ(v, a⃗)}| = |{v ∈ V : G |= ψ(v, a⃗)}| .

The following proposition shows that Q= is indeed expressible in FO[Hamiltonicity].
Similar arguments show that Q= is also expressible in the other Lindström extensions of FO
listed above that are known to be able to interpret a segment of arithmetic.

▶ Proposition 12. Let φ(x, z⃗) and ψ(x, z⃗) be formulas in FO[Hamiltonicity] with free vari-
ables x, z⃗. Then the formula Q=x (φ(x, z⃗), ψ(x, z⃗)) is also expressible in FO[Hamiltonicity].

Proof. Fix a graph G = (V,E) and a vector a⃗ of vertices. Let A = {x ∈ V : G |= φ(x, a⃗)}
and B = {x ∈ V : G |= ψ(x, a⃗)}. Also let φ′(x, z⃗) = φ(x, z⃗) ∧ ¬ψ(x, z⃗) (which defines
the set A \ B) and ψ′(x, z⃗) = ψ(x, z⃗) ∧ ¬φ(x, z⃗) (which defines the set B \ A). Define
φV (x, z⃗) = φ′(x, z⃗) ∨ ψ′(x, z⃗) and φE(x, y, z⃗) = φ′(x, z⃗) ∧ ψ′(y, z⃗). Consider the graph
G0 = (V0, E0) defined by these formulas, as in Definition 4. Note that G0 is the complete
bipartite graph with sides A \ B and B \ A. Recall that a complete bipartite graph is
Hamiltonian if and only if its sides are of the same size. Therefore

G |=z⃗=a⃗ QHamx, y (φV (x, z⃗), φE(x, y, z⃗)) ⇐⇒ |A \B| = |B \A|
⇐⇒ |A| = |B| ⇐⇒ G |=z⃗=a⃗ Q=x (φ(x, z⃗), ψ(x, z⃗)) .

◀

Let FO[Q=] denote the closure of FO under quantification with Q=. This is a natural
extension of first-order logic which has been studied quite extensively. For a survey on
equicardinality quantifiers in the context of general model theory and abstract logic, see [18].

S. Haber, T. Hershko, M. Mirabi, and S. Shelah 12:7

Equicardinality quantifiers have also been studied in the context of zero-one laws and
convergence laws. In [12], Fayolle, Grumbach and Tollu studied zero-one laws for first-
order logic enriched by generalized quantifiers, including Härtig quantifiers (equicardinality
quantifiers) and Rescher quantifiers (expressing inequalities of cardinalities). Their results
show that the zero-one law does hold for FO∗[Q=], defined in the same way as FO[Q=] but
with the restriction that free variables are not allowed in the scope of Q=-quantification.
▶ Remark 13. A simple argument, also mentioned in [12], proves that FO[Q=] can express
parity in the special case of G

(
n, 1

2
)
. Indeed, consider the sentence ∃zQ=x (x ∼ z,¬(x ∼ z)),

asserting the existence of a vertex with the same number of neighbors as non-neighbors.
This sentence holds in G

(
n, 1

2
)

with probability 0 when n is even, and with probability
approaching 1 when n is odd. In particular, FO[Q=] does not satisfy the zero-one law in
G

(
n, 1

2
)
. As we shall soon see, much more can be said: FO[Q=] can express not only parity,

but a segment of arithmetic, and for every p ∈ (0, 1) (Theorem 14).
Finally, we mention that in addition to Lindström quantifiers and equicardinality quan-

tifiers, other generalized quantifiers have also been studied in the context of zero-one laws
and convergence laws. In a sequence of three papers [20, 21, 22], Kalia studied almost sure
quantifier elimination, providing a method for proving convergence laws for logics with gen-
eralized quantifiers. In [24], Keisler and Lotfallah proved almost sure quantifier elimination
logics with probability quantifiers.

1.2 Our Results
The main result of the paper is the following theorem.

▶ Theorem 14 (Main Theorem). Fix p ∈ (0, 1). Then FO[Q=] can interpret a segment of
arithmetic in G(n, p) (with scaling function f(n) =

⌊√
lnn

⌋
).

In particular, from Proposition 8 we get the following corollary.

▶ Corollary 15. Fix p ∈ (0, 1). Then there exists a sentence ψ ∈ FO[Q=] such that the limit
limn→∞ P (G(n, p) |= ψ) does not exist.

This answers the third question of Blass and Harary [2, Section 5], and provides a general
result which immediately implies all known cases of Lindström extensions of FO which are
able to express arithmetic. As mentioned above, these include the Lindström quantifier of
Hamiltonicity, regularity, the existence of a perfect matching and the existence of a C4-factor.

The rest of the paper is dedicated to the proof of Theorem 14. The proof strategy is
roughly as follows. Given a sentence φ ∈ SO[Arith], first apply Theorem 9 to convert it into
a sentence φ∗ ∈ MSO which expresses φ on a set of size ⌊

√
n⌋. Then, the crux of the proof

is to convert a sentence φ∗ ∈ MSO into a sentence ψ ∈ FO[Q=] which expresses φ∗ on a set
of size Θ(lnn). To do that, we need to show that FO[Q=] can define subsets of logarithmic
size, and can also interpret monadic second-order logic on such sets. The proof is divided
between Sections 2 and 3. In Section 2 we develop the necessary probabilistic tools, and in
Section 3 we put them together in order to complete the proof.

Notation and Conventions
We denote FO= := FO[Q=] for short. Given a list of variable symbols x1, . . . , xn, let
FO(x1, . . . , xn) denote the set of first-order formulas (in the language of graphs) with
x1, . . . , xn as free variables. Similarly define FO=(x1, . . . , xn) and MSO(x1, . . . , xn).

CSL 2025

12:8 First-Order Logic with Equicardinality in Random Graphs

Throughout the text we maintain the convention of denoting random variables with a
boldface font.

For n ∈ N and p ∈ (0, 1), we write Gn ∼ G(n, p) to indicate that Gn is a random graph
with distribution G(n, p). For two vertices u, v ∈ [n], let u ∼ v denote that they are adjacent
in Gn. For a subset S ⊆ [n], let Gn[S] denote the subgraph of Gn induced by S.

We shall use the following notions of asymptotic probabilities. Let (En)∞
n=1 be a sequence

of events, taken from a sequence of probability spaces.
1. We say that En holds with high probability (as n → ∞) if

P (En) = 1 − o(1).

2. We say that En holds with exponentially high probability (as n → ∞) if

P (En) = 1 − exp
(

−nΩ(1)
)
.

In addition, let (Xn)∞
n=1, (Yn)∞

n=1 be two sequences of positive random variables. We
say that Xn = (1 + o(1)) Yn with (exponentially) high probability if there exists a sequence
εn = o(1) such that the event |Xn/Yn − 1| ≤ εn holds with (exponentially) high probability.

For notational convenience, we sometimes omit dependency on n from our notation. The
underlying assumption throughout the text is that all quantities implicitly depend on n

(unless it is explicitly stated that they are constant or fixed) and n → ∞. We explicitly refer
to the dependency on n in cases where this convention may cause ambiguity.

Finally, recall the following tail bounds on binomial and Poisson variables, following from
Chernoff’s inequality (e.g. see [1, Appendix A]).

Let X ∼ Bin(n, p) and µ = EX. Then for every 0 < δ < 1,

P (|X − µ| ≥ δµ) ≤ 2 exp
(

−δ2

3 µ
)
. (2)

Let X ∼ Pois(λ) and µ = EX. Then for every 0 < δ < 1,

P (|X − µ| ≥ δµ) ≤ 2 exp
(

−δ2

4 µ
)
. (3)

2 Some Probabilistic Results

From now fix a constant p ∈ (0, 1) and consider a binomially distributed random graph
Gn ∼ G(n, p).

We begin by fixing, for every n, two arbitrary vertices u1, u2 ∈ [n]. Let V ′ = [n]\{u1, u2}.
Define the following (random) vertex sets:

A = {v ∈ V ′ : v ∼ u1 ∧ v ∼ u2} ,
B = {v ∈ V ′ : v ∼ u1 ∧ v ̸∼ u2} ,
C = {v ∈ V ′ : v ̸∼ u1 ∧ v ∼ u2} .

Note that the statements v ∈ A, v ∈ B, v ∈ C are all expressible as formulas in FO(u1, u2, v).
From (2), with exponentially high probability we have

|A| = (1 + o(1))p2n,

|B| , |C| = (1 + o(1))p(1 − p)n.

S. Haber, T. Hershko, M. Mirabi, and S. Shelah 12:9

That is, there exists a sequence δn = o(1) such that the event (which we denote by Q)

|A|
p2n

,
|B|

p(1 − p)n,
|C|

p(1 − p)n ∈ [1 − δn, 1 + δn] (4)

holds with exponentially high probability. It will be convenient to condition on the val-
ues of the variables A,B,C; that is, to condition on an event of the form QA,B,C =
{A = A,B = B,C = C} where A,B,C are possible values of A,B,C. Note that condition-
ing on QA,B,C does not affect the distribution of Gn[V ′].

The rest of the section is as follows. In Section 2.1 we show how to define sets S ⊆ [n] of
logarithmic size in FO[Q=] . In Section 2.2 we show how to express unary relations (subsets)
on such sets S in FO[Q=]. In both sections, all the probabilities and expected values are
assumed to be conditioned on QA,B,C , where we assume that A,B,C satisfy Equation (4)
(that is, we assume QA,B,C ⊆ Q). Finally, in Section 2.3 we apply the law of total probability
to obtain non-conditioned results.

2.1 Defining Sets of Logarithmic Size
Recall that A, B are the fixed values of the random sets A, B defined above. We construct
subsets of A in terms of the edges between A and B.

▶ Definition 16.
1. For every vertex x ∈ A, let dB(x) denote the B-degree of x, which is the number of edges

between x and B.
2. For every 0 ≤ k ≤ |B|, let Sk = {v ∈ A : dB(v) = k}. That is, Sk is the set of vertices

from A with B-degree k.
3. For every x ∈ A, let S[x] = SdB(x) = {v ∈ A : dB(v) = dB(x)} . That is, S[x] is the set

of vertices from A with the same B-degree as x.

▶ Remark 17. Given a vertex x ∈ A, the statement v ∈ S[x] is expressible as a formula in
FO= (u1, u2, x, v):

v ∈ A ∧Q=y (y ∈ B ∧ y ∼ v, y ∈ B ∧ y ∼ x)

where x ∈ A means x ∼ u1 ∧ x ∼ u2 and y ∈ B means y ∼ u1 ∧ ¬(y ∼ u2).
Importantly, note that the B-degrees (dB(x))x∈A are i.i.d. with distribution Bin (|B| , p).

▶ Theorem 18. Let c > 0 be a constant. Then, with exponentially high probability, there
exists k = k(n) such that 0 ≤ k ≤ |B| and |Sk| = (1 + o(1))c lnn.

We can reformulate the statement of theorem more explicitly by recalling the definition
of exponentially high probability (see Notation and conventions above). Given a positive
constant c, the statement is that there exists a sequence (εn)∞

n=1 such that, as n → ∞, we
have εn = o(1) and

P
(

∃0 ≤ k ≤ |B| :
∣∣∣∣ |Sk|
c lnn − 1

∣∣∣∣ ≥ εn

)
= exp

(
−nΩ(1)

)
.

For the proof of Theorem 18 we use the following normal approximations of binomial
probabilities (see [3, Theorems 1.2 and 1.5]).

▷ Claim 19. Let p ∈ (0, 1) and n ∈ N. Let µ = np and σ =
√
p(1 − p)n be the mean and

standard deviation of the binomial distribution Bin(n, p). Let 0 ≤ k ≤ n be an integer and
let b(k;n, p) = P (Bin (n, p) = k). Write k = µ+ h.

CSL 2025

12:10 First-Order Logic with Equicardinality in Random Graphs

1. Assume µ ≥ 1 and h(1−p)n
3 ≥ 1. Then

b(k;n, p) ≤ 1√
2πσ

exp
(

− h2

2σ2 + h

(1 − p)n + h3

p2n2

)
.

2. Assume µ ≥ 1, h > 0 and k < n. Then

b(k;n, p) ≥ 1√
2πσ

exp
(

− h2

2σ2 − h3

2(1 − p)2n2 − h4

3p3n3 − h

2pn − 1
12k − 1

12(n− k)

)
.

In the proof of Theorem 18 we shall use the following notation:
1. nA = |A| and nB = |B|.
2. µ = pnB and σ =

√
p(1 − p)nB .

3. pk = P (Bin (nB , p) = k) for every 0 ≤ k ≤ nB .

▶ Lemma 20. Let c > 0 be a constant. For every n ∈ N let t0 ∈ R be the unique positive
solution of

1√
2πσ

exp
(

− t20
2

)
= c lnn

n

and let k0 = µ + t0σ. Then, for every integer k ∈
[
k0 − n1/4, k0 + n1/4

]
we have pk =

(1 + o(1)) c ln n
n (where the asymptotic term o(1) is uniform with respect to k).

Proof of Lemma 20. First note that nB = Θ(n), µ = Θ(n), σ = Θ
(
n1/2

)
and t0 = (1 +

o(1))
√

lnn. For a given integer k ∈
[
k0 − n1/4, k0 + n1/4

]
, we can write k = µ + tσ for

t = t0 +O(n−1/4). Applying Part 1 of Claim 19 (with h = tσ and n = nB),

pk ≤ 1√
2πσ

exp
(

− t2

2

)
· exp

(
tσ

(1 − p)nB
+ t3σ3

p2n2
B

)
= 1√

2πσ
exp

(
− t20

2

)
· exp

(
O(t0n−1/4)

)
· exp

(
O(t0n−1/2)

)
= (1 + o(1))c lnn

n
.

Applying Part 2 of Claim 19 (with h = tσ and n = nB),

pk ≥ 1√
2πσ

exp
(

− t2

2

)
· exp

(
− t3σ3

2(1 − p)2b2 − t4σ4

3p3b3 − tσ

2pb − 1
12k − 1

12(n− k)

)
= 1√

2πσ
exp

(
− t20

2

)
· exp

(
O(t0n−1/4)

)
· exp

(
O(t0n−1/2)

)
= (1 + o(1))c lnn

n
.

Overall we have pk = (1+o(1))c ln n
n , where the o(1) term can be taken to be O

(
(lnn)1/2n−1/4

)
and uniform with respect to k. ◀

Proof of Theorem 18. Note that sk := |Sk| ∼ Bin (nA, pk) for every 0 ≤ k ≤ nB. The
variables {sk}nB

k=0 are not independent, since
∑nB

k=0 sk = nA. However, we can replace them
with independent variables by introducing a Poisson process.

Let {di}∞
i=1 be i.i.d. variables with distribution Bin (nB , p) and let N ∼ Pois(nA) be

independent of {di}∞
i=1. These variables define the Poisson process d1,d2, . . . ,dN. For every

0 ≤ k ≤ nB let s̃k count the number of times the value k appears in the process; that is,
s̃k = |{0 ≤ i ≤ N : di = k}|. Then the variables {s̃k}nB

k=0 satisfy the following two properties:

S. Haber, T. Hershko, M. Mirabi, and S. Shelah 12:11

1. The distribution of {s̃k}nB

k=0 given N = nA is identical to the distribution of {sk}nB

k=0.
2. {s̃k}nB

k=0 are independent and s̃k ∼ Pois(nApk) for every k.
We now apply Lemma 20 with c

p2 as the constant. For every integer k ∈
[
k0 − n1/4, k0 + n1/4

]
we then have

E (s̃k) = nApk = (1 + o(1))p2n · c
p2 lnn = (1 + o(1))c lnn.

From Equation (3) we deduce that there exists a sequence εn = o(1) such that for every
integer k ∈

[
k0 − n1/4, k0 + n1/4

]
,

P (s̃k ̸∈ [(1 − εn)c lnn, (1 + εn)c lnn]) ≤ 1
2 .

Write

I = [(1 − εn)c lnn, (1 + εn)c lnn] ,

K =
[
k0 − n

1/4, k0 + n
1/4

]
∩ Z

for short. Then, from independence,

P (s̃k ̸∈ I ∀k ∈ K) ≤
(

1
2

)|K|

= exp
(

−Θ(n1/4)
)
.

Therefore there exists k such that s̃k ∈ I with exponentially high probability.
Finally, we condition on the event N = nA. By Stirling’s approximation, P (N = nA) =

Θ
(
n

−1/2
A

)
= Θ

(
n−1/2

)
. Overall

P (sk ̸∈ I ∀k ∈ K) ≤ P (s̃k ̸∈ I ∀k ∈ K)
P (N = nA) =

exp
(
−Θ(n1/4)

)
Θ

(
n−1/2

) = exp
(

−Θ(n1/4)
)
.

We conclude that, with exponentially high probability, there exists k such that sk ∈ I, and
so sk = (1 + o(1))c lnn as we wanted. ◀

▶ Corollary 21. Let c > 0 be a constant. Then, with exponentially high probability, there
exists x ∈ A such that |S[x]| = (1 + o(1))c lnn.

Proof. Given k such that |Sk| = (1 + o(1))c lnn, pick any x ∈ Sk and then Sk = S[x]. ◀

2.2 Expressing Unary Relations
To express subsets of a given set S ⊆ A, we use the edges between S and C.

▶ Definition 22. For a set S ⊆ A and a vertex z ∈ C let Sz = {s ∈ S : s ∼ z}. We say that
Sz is the subset of S defined by z.

▶ Proposition 23. There exists a positive constant c1 <
1
2 such that the following holds with

exponentially high probability. For every x ∈ A, if |S[x]| ≤ 2c1 lnn then for every subset
T ⊆ S[x] there exists z ∈ C such that T = S[x]z.

The purpose of the condition c1 <
1
2 will become apparent in Section 3 (see Lemma 30).

CSL 2025

12:12 First-Order Logic with Equicardinality in Random Graphs

Proof. Let p1 = min {p, 1 − p} and choose c1 to be a sufficiently small constant such that
c1 <

1
2 and γ1 := −2c1 ln p1 < 1. For this proof only, let us say that a subset S ⊆ A is good

if for every subset T ⊆ S there exists z ∈ C such that T = Sz.
First, fix S ⊆ A of size |S| ≤ 2c1 lnn and a subset T ⊆ S. For every z ∈ C,

P (T = Sz) = p|T |(1 − p)|S|−|T | ≥ p
|S|
1 ≥ p2c1 ln n

1 = n−γ1 .

Crucially, the subsets of S defined by different vertices z ∈ C are independently distributed.
Thus

P (∀z ∈ C. T ̸= Sz) =
(

1 − p|T |(1 − p)|S|−|T |
)|C|

≤
(
1 − n−γ

)|C| = exp
(
−Θ(n1−γ1)

)
.

Taking a union bound over 2|S| = 2Θ(ln n) possible choices of the subset T , we deduce
P (S is not good) = exp

(
−nΩ(1)).

Finally, for every x ∈ A we can apply the law of total probability with respect to the
possible values of S[x], and deduce that, with exponentially high probability, |S[x]| ≤ 2c1 lnn
implies that S[x] is good. Taking a union bound over Θ(n) possible choices of x, we get the
desired result. ◀

We will also need the following analogous proposition, which will be used to control the
upper bound on the size of the definable sets.

▶ Proposition 24. There exists a positive constant c2 such that c2 ≥ 2c1 and the following
holds with probability 1 − o

(
n−2)

. For every x ∈ A, if |S[x]| ≥ c2 log2 n then for every
z1, z2 ∈ C, if z1 ̸= z2 then S[x]z1 ̸= S[x]z2 .

Again, the purpose of the condition c2 ≥ 2c1 will become apparent in Section 3.

Proof. Let p2 = max {p, 1 − p} and choose c2 to be a sufficiently large constant such that
c2 ≥ 2c1 and γ2 := −c2 ln p1 > 5. For this proof only, let us say that a subset S ⊆ A is good
if for every z1, z2 ∈ C, if z1 ̸= z2 then Sz1 ̸= Sz2 .

First, fix S ⊆ A of size |S| ≥ c2 lnn. For every pair of distinct vertices z1, z2 ∈ C,

P (Sz1 = Sz2) ≤ p
|S|
2 ≤ pc2 ln n

2 = nc2 ln p2 = n−γ2 .

Taking a union bound over Θ(n2) choices of z1 ̸= z2, we get

P (S is not good) = O(n2−γ2).

Finally, for every x ∈ A we can apply the law of total probability with respect to the possible
values of S[x] and deduce that, with probability 1 −O(n2−γ2), |S[x]| ≥ c2 lnn implies that
S[x] is good. Taking a union bound over Θ(n) possible choices of x, and recalling that
n3−γ2 = o(n−2) by definition, we get the desired result. ◀

2.3 Non-Conditioned Results
Finally, we lose the conditioning on the events QA,B,C which fix the values of A,B,C. Note
that we still have dependency on the choice of u1, u2; we will quantify over u1, u2 in the next
section. The following theorem summarizes all the probabilistic results proved in this section.

▶ Theorem 25. There exist positive constants c1, c2 with c1 <
1
2 and c2 ≥ 2c1 and sequences

δn = o(1) and εn = o(1) such that P(Γ(u1, u2)) = 1 − o(n−2), where Γ(u1, u2) is the event
that:

S. Haber, T. Hershko, M. Mirabi, and S. Shelah 12:13

1. |A|
p2n

,
|B|

p(1 − p)n,
|C|

p(1 − p)n ∈ [1 − δn, 1 + δn] (we denote this event by Q);

2. There exists x ∈ A such that

|S[x]| ∈
[
(1 − εn)3

2c1 lnn, (1 + εn)3
2c1 lnn

]
;

3. For every x ∈ A, if |S[x]| ≤ 2c1 lnn then for every T ⊆ S[x] there exists z ∈ C such that
T = S[x]z; and

4. For every x ∈ A, if |S[x]| ≥ c2 lnn then for every z1, z2 ∈ C, if z1 ̸= z2 then S[x]z1 ̸=
S[x]z2 .

Proof. Let δn = o(1) be the sequence from Equation (4). In the previous sections, we
conditioned all probabilities on QA,B,C where QA,B,C ⊆ Q. However, note that the proofs of
Theorem 18 and Propositions 23, 24 do not depend on the specific values A,B,C, but only
on the fact that they satisfy Equation (4). Therefore, they also hold when the conditioning
is on the event Q.

Now, let c1, c2 be the constants from Propositions 23 and 24 (respectively) and let (εn)∞
n=1

be the sequence from Theorem 18 for c = 3
2c1. Define Γ(u1, u2) as above. Then

P (Γ(u1, u2)) = P
(
Γ(u1, u2)

∣∣ Q
)
P (Q)

≥
(
1 − o(n−2)

) (
1 − exp

(
−nΩ(1)

))
= 1 − o(n−2).

That concludes the proof. ◀

▶ Remark 26. Note that, due to symmetry considerations, P (Γ(u1, u2)) does not depend on
the choice of u1, u2.

3 Proof of the Main Theorem

In this section we complete the proof of Theorem 14. We begin with a sequence of short
lemmas, which build upon our previous results. Once again, we fix a constant p ∈ (0, 1) and
consider a binomial random graph Gn ∼ G(n, p). Probabilities are now non-conditioned.

We begin with a refinement of Theorem 9.

▶ Lemma 27 (Kaufmann-Shelah). There exists a sentence Encode∗ ∈ MSO such that:
1. limn→∞ P (Gn |= Encode∗) = 1.
2. For every sentence φ ∈ SO[Arith] there exists a sentence φ∗ ∈ MSO such that, for every

n ∈ N and graph G = ([n], E) with G |= Encode∗, we have G |= φ∗ ⇐⇒ [
√
n] |= φ.

Proof. This follows from Theorem 1 and the closing remark of [23]. ◀

Intuitively, the sentence Encode∗ asserts the existence of MSO-formulas expressing a struc-
ture of addition and multiplication on the vertices, a necessary ingredient for converting any
φ ∈ SO[Arith] into φ∗ ∈ MSO. The basic structure of the sentence Encode∗ is given in
Theorem 1 of [23].

▶ Lemma 28. For every sentence φ∗ ∈ MSO there exists a formula φ∗∗(u1, u2, x) ∈
FO= (u1, u2, x) such that the following holds. Given the event Γ(u1, u2), for every x ∈ A
with |S[x]| ≤ 2c1 lnn we have

Gn |= φ∗∗(u1, u2, x) ⇐⇒ Gn[S[x]] |= φ∗.

CSL 2025

12:14 First-Order Logic with Equicardinality in Random Graphs

Proof. Given φ∗, define φ∗∗(u1, u2, x) as follows:
Restrict quantification to S[x]: replace every ∀v (θ) with ∀v (v ∈ S[x] → θ) and every
∃v (θ) with ∃v (v ∈ S[x] ∧ θ). Recall that the statement v ∈ S[x] is expressible as a
formula in FO= (u1, u2, x, v) (see Remark 17).
Convert unary relations: for every unary relation R introduced by ψ, replace ∃R (θ) with
∃zR(zR ∈ C ∧ θ) where zR is a new variable symbol, and also replace every R(v) with
v ∼ zR. Similarly handle ∀R (θ). Recall that the statement z ∈ C is expressible the
formula z ̸∼ u1 ∧ z ∼ u2, which is in FO(u1, u2, z)

Given the event Γ(u1, u2), for every x ∈ A with |S[x]| ≤ 2c1 lnn, we know that every subset
of S[x] is defined by some z ∈ C (see Part 3 of Theorem 25). Therefore

Gn |= φ∗∗(u1, u2, x) ⇐⇒ Gn[S[x]] |= φ∗

as we wanted. ◀

Next, we introduce a formula for upper-bounding the size of definable sets.

▶ Definition 29. Given a choice of u1, u2 ∈ [n] and x ∈ A, we say that S[x] is pseudo-
logarithmic if there exist z1, z2 ∈ C such that z1 ̸= z2 but S[x]z1 = S[x]z2 .

Note that this property is expressible as a formula in FO=(u1, u2, x), given by

∃z1∃z2 (z1 ∈ C ∧ z2 ∈ C ∧ z1 ̸= z2 ∧ S[x]z1 = S[x]z2) ,

where S[x]z1 = S[x]z2 is the formula ∀y (y ∈ S[x] → (y ∼ z1 ↔ y ∼ z2)).

▶ Lemma 30. Given the event Γ(u1, u2), for every x ∈ A,
1. If S[x] is pseudo-logarithmic then |S[x]| ≤ c2 lnn.
2. If |S[x]| ≤ 2c1 lnn then S[x] is pseudo-logarithmic.

Proof. Part 1 follows directly from the definition of Γ(u1, u2) (see part 4 of Theorem 25).
Part 2 follows from the pigeonhole principle. Indeed, let S = S[x] and assume |S| ≤ 2c1 lnn.
Then the number of subsets of S is 2|S| ≤ 22c1 ln n = n2c1 ln 2. Recall that c1 < 1

2 , so
2|S| ≤ nln 2 = o(n). However, given Γ(u1, u2) we have |C| = Θ(n). From the pigeonhole
principle there must exist z1, z2 ∈ C such that z1 ̸= z2 but Sz1 = Sz2 , hence S is pseudo-
logarithmic. ◀

Finally, we introduce a formula for comparing sizes of definable sets.

▶ Definition 31. Given a choice of u1, u2 ∈ [n] and two vertices x, x′ ∈ A, we say that S[x]
is pseudo-smaller than S[x′] if there exists z ∈ C such that |S[x′]z| = |S[x]|.

Note that this property is expressible as a formula in FO=(u1, u2, x, x
′), since belonging

to S[x] and to S[x′]z and the equicardinality condition |S[x′]z| = |S[x]| are all expressible in
FO=.

▶ Lemma 32. Given the event Γ(u1, u2), for every x, x′ ∈ A,
1. If S[x] is pseudo-smaller than S[x′] then |S[x]| ≤ |S[x′]|.
2. If |S[x]| ≤ |S[x′]| ≤ 2c1 lnn then S[x] is pseudo-smaller than S[x′] .

Proof. Part 1 follows from the definition of pseudo-smaller (in fact, it is true deterministically).
Part 2 follows from the definition of Γ(u1, u2) (see Part 3 of Theorem 25). ◀

We are now ready to prove the main theorem. In the proof, we use the notation E(X,Y)
for the set of edges in Gn between two disjoint sets of vertices X,Y ⊆ [n].

S. Haber, T. Hershko, M. Mirabi, and S. Shelah 12:15

Proof of Theorem 14. We prove that FO= can interpret a segment of arithmetic with
constants √

c1,
√
c2 and scaling function f(n) =

⌊√
lnn

⌋
, where c1, c2 are the constants from

Theorem 25. That is, for every sentence φ ∈ SO[Arith] we construct a sentence ψ ∈ FO=
such that the following holds. Given a sequence {nk}∞

k=1 with limk→∞ nk = ∞ such that φ
is constant on

[√
c1 lnnk,

√
c2 lnnk

]
for every k, we have

lim
k→∞

P
(
G(nk, p) |= ψ ⇐⇒ φ holds in

[√
c1 lnnk,

√
c2 lnnk

])
= 1. (5)

From now on we fix a sentence φ ∈ SO[Arith]. First, we apply Lemma 27 to obtain a
sentence φ∗ ∈ MSO such that, for every graph G = ([n], E) with G |= Encode∗, we have
G |= φ∗ ⇐⇒ [

√
n] |= φ. Second, we apply Lemma 28 to the MSO-sentences φ∗ and Encode∗

(from Lemma 27) to obtain formulas φ∗∗(u1, u2, x),Encode∗∗(u1, u2, x) ∈ FO= (u1, u2, x)
such that, given the event Γ(u1, u2), for every x ∈ A with |S[x]| ≤ 2c1 lnn we have

Gn |= φ∗∗ (u1, u2, x) ⇐⇒ Gn [S[x]] |= φ∗, (6)
Gn |= Encode∗∗ (u1, u2, x) ⇐⇒ Gn [S[x]] |= Encode∗. (7)

Now define ψ as the sentence claiming the existence of two vertices u1, u2 and a vertex
x ∈ A such that:
1. S[x] is pseudo-logarithmic and Gn[S[x]] |= Encode∗.
2. If x′ ∈ A is another vertex such that S[x′] is pseudo-logarithmic and Gn[S[x]] |= Encode∗,

then S[x] is not pseudo-smaller than S[x′].
3. Gn[S[x]] |= φ∗.
From Lemmas 30, 32 and (6), (7) above, ψ is indeed expressible as a sentence in FO=. It
remains to verify (5).

Let {nk}∞
k=1 with limk→∞ nk = ∞ such that φ is constant on

[√
c1 lnnk,

√
c2 lnnk

]
for

every k. There are two cases to consider.

Case 1: φ holds in
[√

c1 ln nk,
√

c2 ln nk

]
. Fix two vertices u1, u2 arbitrarily. We show

that, with high probability, there exists a vertex x ∈ A which satisfies the three parts of ψ
(along with u1, u2).

First, we know that P (Γ(u1, u2)) = 1−o(1), so from now on we may assume that Γ(u1, u2)
holds. Recall that the event Γ(u1, u2) guarantees a vertex x′ ∈ A such that

|S[x′]| ∈
[
(1 − εn)3

2c1 lnnk, (1 + εn)3
2c1 lnnk

]
.

Fix such a vertex x′. Since c2 ≥ 2c1 ≥ (1 + εn) 3
2c1, Lemma 32 implies that S[x′] is

pseudo-logarithmic. Let us show that Gnk
[S[x′]] |= Encode∗ with high probability.

Condition on the values A,B,C of the sets A,B,C and on the edge sets E(A,B) and
E(A,C). These values determine the value S of the set S[x′]. Crucially, the induced subgraph
Gnk

[S] depends only on the edge set E(A), and so, given the last conditioning, Gnk
[S] is

still binomially distributed with vertex set S and edge probability p. From Lemma 27 we
get that, given the last conditioning, Gnk

[S] |= Encode∗ with high probability. Now apply
the law of total probability over the possible values of A,B,C,E(A,B),E(A,C) to conclude
that Gnk

[S[x]] |= φ∗ with high probability.
Next, among all vertices x ∈ A such that S[x] is pseudo-logarithmic and Gnk

[S[x]] |=
Encode∗, pick x such that |S[x]| is maximal. By definition, x satisfies Part 1 and Part 2 of
ψ. We show that it also satisfies Part 3. Since S[x] is pseudo-logarithmic, Lemma 30 implies
|S[x]| ≤ c2 lnnk. We also know that

|S[x]| ≥ |S[x′]| ≥ (1 − εn)3
2c1 lnnk ≥ c1 lnnk + 1.

CSL 2025

12:16 First-Order Logic with Equicardinality in Random Graphs

Letting s = |S[x]|, we deduce ⌊
√

s⌋ ∈
[√
c1 lnnk,

√
c2 lnnk

]
. From the assumption of Case 1,

[⌊
√

s⌋] |= φ. Since Gnk
[S[x′]] |= Encode∗, Lemma 27 implies Gnk

[S[x′]] |= φ∗ as we wanted.

Case 2: ¬φ holds in
[√

c1 ln nk,
√

c2 ln nk

]
. We need to prove that with high probability,

for every u1, u2, there is no vertex x that satisfies all three parts of ψ. Let Γ =
⋂

u1,u2
Γ(u1, u2).

Theorem 25 shows that P (Γ(u1, u2)) = 1 − o(n−2) for every u1, u2. Taking a union bound
the over Θ(n2) pairs u1, u2 we get P (Γ) = 1 − o(1). So from now on we may assume that Γ
holds.

Assume that u1, u2, x are vertices such that Part 1 and Part 2 of ψ hold and let us show
that Part 3 does not hold. Again, Γ guarantees a vertex x′ ∈ A such that

|S[x′]| ∈
[
(1 − εn)3

2c1 lnnk, (1 + εn)3
2c1 lnnk

]
.

We prove |S[x]| ≥ |S[x′]| by contradiction. Indeed, otherwise we have

|S[x]| ≤ |S[x′]| ≤ (1 + εn)3
2c1 lnnk ≤ 2c1 lnnk,

and from Lemma 30 we get that S[x] is pseudo-smaller than S[x′]. But that contradicts
Part 2 of ψ. Therefore

|S[x]| ≥ |S[x′]| ≥ (1 − εn)3
2c1 lnnk ≥ c1 lnnk + 1.

Moreover, S[x] is pseudo-logarithmic, so Lemma 30 implies |S[x]| ≤ c2 lnn. As before, letting
s = |S[x]|, we get ⌊

√
s⌋ ∈

[√
c1 lnnk,

√
c2 lnnk

]
. From the assumption of Case 2, [⌊

√
s⌋] ̸|= φ.

Since Gnk
[S[x′]] |= Encode∗, Lemma 27 implies Gnk

[S[x′]] ̸|= φ∗, as we wanted. ◀

References
1 Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley Publishing, 4th edition,

2016.
2 Andreas Blass and Frank Harary. Properties of almost all graphs and complexes. Journal of

Graph Theory, 3(3):225–240, 1979. doi:10.1002/JGT.3190030305.
3 Béla Bollobás. Random Graphs. Cambridge University Press, 2001.
4 Kevin J. Compton. 0-1 laws in logic and combinatorics. In Rival Ivan, editor, Algorithms and

Order, volume 255 of Advanced Study Institute Series C: Mathematical and Physical Sciences,
pages 353–383. Kluwer Academic Publishers, Dordrecht, 1989.

5 Anuj Dawar and Erich Grädel. Generalized quantifiers and 0-1 laws. In Proceedings of the
Tenth Annual IEEE Symposium on Logic in Computer Science (LICS 1995), pages 54–64.
IEEE Computer Society Press, June 1995. doi:10.1109/LICS.1995.523244.

6 Anuj Dawar and Erich Grädel. Properties of almost all graphs and generalized quantifiers.
Fundam. Inform., 98(4):351–372, 2010. doi:10.3233/FI-2010-232.

7 Heinz-Dieter Ebbinghaus. Extended logics: The general framework. In Jon Barwise and
Solomon Feferman, editors, Model-Theoretic Logics, chapter II, pages 25–76. Association for
Symbolic Logic, September 1985.

8 Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Springer Berlin, Heidelberg,
second edition, 2006.

9 Paul Erdős and Alfréd Rényi. On random graphs, I. Publicationes Mathematicae, 6:290–297,
1959.

10 Paul Erdős and Alfréd Rényi. On the evolution of random graphs. In Publication of the
Mathematical Institute of the Hungarian Academy of Sciences, number 5 in Acta Math. Acad.
Sci. Hungar., pages 17–61, 1960.

https://doi.org/10.1002/JGT.3190030305
https://doi.org/10.1109/LICS.1995.523244
https://doi.org/10.3233/FI-2010-232

S. Haber, T. Hershko, M. Mirabi, and S. Shelah 12:17

11 Ronald Fagin. Probabilities on finite models. The Journal of Symbolic Logic, 41(1):50–58,
March 1976. doi:10.1017/S0022481200051756.

12 Guy Fayolle, Stéphane Grumbach, and Christophe Tollu. Asymptotic probabilities of languages
with generalized quantifiers. In Proceedings Eighth Annual IEEE Symposium on Logic in
Computer Science, pages 199–207, 1993. doi:10.1109/LICS.1993.287587.

13 Yu. V. Glebskĭı, D. I. Kogan, M. I. Liogon’kĭı, and V. A. Talanov. Range and degree of
realizability of formulas in the restricted predicate calculus. Cybernetics and Systems Analysis,
5(2):142–154, March 1969. (Russian original: Kibernetika 5(2):17–27, March-April 1969).

14 Simi Haber. Generalized quantifiers for simple graph properties in random graphs. , Preprint.
15 Simi Haber. Arithmetization for first order logic augmented with perfect matching. , Submitted.
16 Simi Haber and Saharon Shelah. Random graphs and Lindström quantifiers for natural graph

properties. Accepted, Annales Univ. Sci. Budapest., Sect. Math, 2024+. HbSh:986 in Shelah’s
archive.

17 Klaus Härtig. Über einen quantifikator mit zwei wirk ungsbereichen. In Laszlo Kalmar, editor,
Colloquium on the Foundations of Mathematics, Mathematical Machines and their Applications,
pages 31–36. Akademiai Kiado, Budapest, September 1962.

18 Heinrich Herre, Michał Krynicki, Alexandr Pinus, and Jouko Väänänen. The Härtig quantifier:
a survey. Journal of Symbolic Logic, 56(4):1153–1183, December 1991. doi:10.2307/2275466.

19 Svante Janson, Tomasz Łuczak, and Andrzej Ruciński. Random Graphs. John Wiley & Sons,
2000.

20 Risto Kaila. On probabilistic elimination of generalized quantifiers. Random Struct. Algorithms,
19(1):1–36, 2001. doi:10.1002/RSA.1016.

21 Risto Kaila. Convergence laws for very sparse random structures with generalized quanti-
fiers. Math. Log. Q., 48(2):301–320, 2002. doi:10.1002/1521-3870(200202)48:2\%3C301::
AID-MALQ301\%3E3.0.CO;2-Z.

22 Risto Kaila. On almost sure elimination of numerical quantifiers. J. Log. Comput., 13(2):273–
285, 2003. doi:10.1093/LOGCOM/13.2.273.

23 Matt Kaufmann and Saharon Shelah. On random models of finite power and monadic logic.
Discrete Mathematics, 54(3):285–293, 1985. doi:10.1016/0012-365X(85)90112-8.

24 H. Jerome Keisler and Wafik Boulos Lotfallah. Almost everywhere elimination of probability
quantifiers. Journal of Symbolic Logic, 74(4):1121–1142, 2009. doi:10.2178/JSL/1254748683.

25 Phokion G. Kolaitis and Swastik Kopparty. Random graphs and the parity quantifier. Journal
of the Association for Computing Machinery, 60(5):1–34, October 2013. doi:10.1145/2528402.

26 Per Lindström. First order predicate logic with generalized quantifiers. Theoria, 32(3):186–195,
1966.

27 Per Lindström. On extensions of elementary logic. Theoria, 35(1):1–11, 1969.
28 M. H. Löb. Meeting of the association for symbolic logic, leeds 1962. The Journal of Symbolic

Logic, 27(3):373–382, 1962. First abstract: Plurality-quantification by Nicholas Rescher.
doi:10.1017/S0022481200118742.

29 Peter Winkler. Random structures and zero-one laws. In Sauer N. W., Woodrow R. E., and
Sands B., editors, Finite and Infinite Combinatorics in Sets and Logic, Advanced Science
Institutes, pages 399–420. Kluwer Academic Publishers, Dordrecht, 1993.

CSL 2025

https://doi.org/10.1017/S0022481200051756
https://doi.org/10.1109/LICS.1993.287587
https://doi.org/10.2307/2275466
https://doi.org/10.1002/RSA.1016
https://doi.org/10.1002/1521-3870(200202)48:2%3C301::AID-MALQ301%3E3.0.CO;2-Z
https://doi.org/10.1002/1521-3870(200202)48:2%3C301::AID-MALQ301%3E3.0.CO;2-Z
https://doi.org/10.1093/LOGCOM/13.2.273
https://doi.org/10.1016/0012-365X(85)90112-8
https://doi.org/10.2178/JSL/1254748683
https://doi.org/10.1145/2528402
https://doi.org/10.1017/S0022481200118742

Computational Complexity of the Weisfeiler-Leman
Dimension
Moritz Lichter #

RWTH Aachen University, Germany

Simon Raßmann #

TU Darmstadt, Germany

Pascal Schweitzer #

TU Darmstadt, Germany

Abstract
The Weisfeiler-Leman dimension of a graph G is the least number k such that the k-dimensional
Weisfeiler-Leman algorithm distinguishes G from every other non-isomorphic graph, or equivalently,
the least k such that G is definable in (k + 1)-variable first-order logic with counting. The dimension
is a standard measure of the descriptive or structural complexity of a graph and recently finds various
applications in particular in the context of machine learning. This paper studies the complexity of
computing the Weisfeiler-Leman dimension. We observe that deciding whether the Weisfeiler-Leman
dimension of G is at most k is NP-hard, even if G is restricted to have 4-bounded color classes. For
each fixed k ≥ 2, we give a polynomial-time algorithm that decides whether the Weisfeiler-Leman
dimension of a given graph with 5-bounded color classes is at most k. Moreover, we show that for
these bounds on the color classes, this is optimal because the problem is P-hard under logspace-
uniform AC0-reductions. Furthermore, for each larger bound c on the color classes and each fixed
k ≥ 2, we provide a polynomial-time decision algorithm for the abelian case, that is, for structures
of which each color class has an abelian automorphism group.

While the graph classes we consider may seem quite restrictive, graphs with 4-bounded abelian
colors include CFI-graphs and multipedes, which form the basis of almost all known hard instances
and lower bounds related to the Weisfeiler-Leman algorithm.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Problems, reductions and completeness; Theory of computation → Complexity
theory and logic

Keywords and phrases Weisfeiler-Leman algorithm, dimension, complexity, coherent configurations

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.13

Related Version Full Version: https://arxiv.org/abs/2402.11531 [35]

Funding The research leading to these results has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(EngageS: grant agreement No. 820148).
Moritz Lichter : The research of this author has received further funding by the European Union
(ERC, SymSim, 101054974).

1 Introduction

The Weisfeiler-Leman algorithm is a simple combinatorial procedure studied in the context
of the graph isomorphism problem. For every k ≥ 1, the algorithm has a k-dimensional
variant, k-WL for short, that colors k-tuples of vertices according to how they structurally
sit inside the whole graph: if two tuples get different colors, they cannot be mapped onto
each other by an automorphism of the graph (while the converse is not always true). The
1-dimensional algorithm, which is also known as color refinement, starts by coloring each

© Moritz Lichter, Simon Raßmann, and Pascal Schweitzer;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 13; pp. 13:1–13:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lichter@lics.rwth-aachen.de
https://orcid.org/0000-0001-5437-8074
mailto:rassmann@mathematik.tu-darmstadt.de
https://orcid.org/0000-0003-1685-410X
mailto:schweitzer@mathematik.tu-darmstadt.de
https://orcid.org/0009-0001-3585-8213
https://doi.org/10.4230/LIPIcs.CSL.2025.13
https://arxiv.org/abs/2402.11531
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Computational Complexity of the Weisfeiler-Leman Dimension

vertex according to its degree, and then repeatedly refines this coloring by including into each
vertex color the multisets of colors of its neighbors. The k-dimensional variant generalizes
this idea and colors k-tuples of vertices instead of single vertices [43, 11].

The Weisfeiler-Leman algorithm plays an important role in both theoretic and practical
approaches to the graph isomorphism problem, but is also related to a plethora of seemingly
unrelated areas: to finite model theory and descriptive complexity via the correspondence of
k-WL to (k + 1)-variable first-order logic with counting [11, 27], to machine learning via a
correspondence to the expressive power of (higher-dimensional) graph neural networks [37],
to the Sherali-Adams hierarchy in combinatorial optimization [3, 25], and to homomorphism
counts from treewidth-k graphs [14]. On the side of practical graph isomorphism, the color
refinement procedure is a basic building block of the so-called individualization-refinement
framework, which is the basis of almost every modern practical solver for the graph iso-
morphism problem [36, 28, 29, 1]. On the side of theoretical graph isomorphism, Babai’s
quasipolynomial-time algorithm for the graph isomorphism problem [4] uses a combination
of group-theoretic techniques and a logarithmic-dimensional Weisfeiler-Leman algorithm.

The Weisfeiler-Leman algorithm is a powerful algorithm for distinguishing non-isomorphic
graphs on its own. For every k, k-WL can be used as an incomplete polynomial-time
isomorphism test: if the multiset of colors of k-tuples of two graphs G and H differ, then G

and H cannot be isomorphic. In this case, k-WL distinguishes G and H , otherwise G and H

are k-WL-equivalent. For a given graph G, we say that the k-dimensional Weisfeiler-Leman
algorithm k-WL identifies G if it distinguishes G from every non-isomorphic graph. The
smallest such k is known as the Weisfeiler-Leman dimension of G [21].

It is known that almost all graphs have Weisfeiler-Leman dimension 1 [5]. However, color
refinement fails spectacularly on regular graphs, where it always returns the monochromatic
coloring. For these, it is known that 2-WL identifies almost all regular graphs [10, 32]. In
contrast to these positive results, for every k there is some graph G (even of order linear in k,
of maximum degree 3, and with 4-bounded abelian color classes, i.e., such that no more than 4
vertices can share the same vertex-color, and every color class induces a graph with abelian
automorphism group) that is not identified by k-WL [11]. These so-called CFI-graphs have
high Weisfeiler-Leman dimension and are thus hard instances for combinatorial approaches
to the graph isomorphism problem.

The situation changes for restricted classes of graphs. If the Weisfeiler-Leman dimension
over some class of graphs is bounded by k, then the k-WL correctly decides isomorphism over
this class. And since k-WL can be implemented in polynomial time O(nk+1 log n) [27], this
puts graph isomorphism over such classes into polynomial time. Examples of graph classes
with bounded Weisfeiler-Leman dimension include graphs of bounded tree-width [23], graphs
of bounded rank-width [24], graphs with 3-bounded color classes [27], planar graphs [30],
and more generally every non-trivial minor-closed graph class [20].

In this paper, we study the computational complexity of computing the Weisfeiler-Leman
dimension. We call the problem of deciding whether the Weisfeiler-Leman dimension of a
given graph is at most k the k-WL-identification problem. For upper complexity bounds, non-
identification of a graph G can be witnessed by providing a graph H that is not distinguished
from G by k-WL but is also not isomorphic to G. As the latter can be checked in co-NP,
this places the identification problem into the class ΠP

2 of the polynomial hierarchy. If the
graph isomorphism problem is solvable in polynomial time, this complexity bound collapses
to co-NP. However, there is no apparent reason why the identification problem should not be
polynomial-time decidable.

M. Lichter, S. Raßmann, and P. Schweitzer 13:3

On the side of lower complexity bounds, the 1-WL-identification problem is complete
for polynomial time under uniform reductions in the circuit complexity class AC0 [31, 2].
Hardness of the 1-WL-identification problem does, however, not easily imply any hardness
results for the k-WL-identification problem for higher values of k. Indeed, no hardness results
are known for k ≥ 2. The 2-WL-identification problem in particular includes the problem
of deciding whether a given strongly regular graph is determined up to isomorphism by its
parameters, which is a baffling problem from classic combinatorics far beyond our current
knowledge. To understand the difficulties of the k-WL-identification problem better, we can
again consider classes of graphs. On every class of graphs with bounded color classes, graph
isomorphism is solvable in polynomial time [6, 16], which puts the identification problem over
this class into co-NP for every k ≥ 2. Graphs with 3-bounded color classes are identified by
2-WL [27], which makes their identification problem trivial. As shown by the CFI-graphs [11],
this is no longer true for graphs with 4-bounded color classes. Nevertheless, as shown by
Fuhlbrück, Köbler, and Verbitsky, identification of graphs with 5-bounded color classes by
2-WL is efficiently decidable [15]. For higher dimensions or bounds on the color classes
essentially nothing is known.

Contribution. We extend the results of [15] from 2-WL to k-WL and give a polynomial-time
algorithm deciding whether a graph with 5-bounded color classes is identified by k-WL:

▶ Theorem 1. For every k, there is an algorithm that decides the k-WL-identification
problem for vertex- and edge-colored, directed graphs with 5-bounded color classes in time
Ok(nO(k)). If such a graph G is not identified by k-WL, the algorithm provides a witness for
this, i.e., a graph H that is not isomorphic to G and not distinguished from G by k-WL.

Via the correspondence of k-WL to (k + 1)-variable counting logic, Theorem 1 implies that
definability of graphs with 5-bounded color classes in this logic is decidable in polynomial time.
While the restriction to 5-bounded color classes may seem stark, almost all known hardness
results and lower bounds for the Weisfeiler-Leman algorithm remain true for graphs with
bounded color classes and in most cases even 4-bounded color classes suffice [19, 13, 40, 39, 38].

Towards generalizing Theorem 1 to arbitrary relational structures and larger color classes,
we consider structures with abelian color classes, i.e., structures of which each color class
induces a structure with an abelian automorphism group. Such structures were previously
considered in the context of descriptive complexity theory [44], and include both CFI-
graphs [11] and multipedes [39, 38] over ordered base graphs, which form the basis of all
known constructions of graphs with high Weisfeiler-Leman dimension. For many cases in
descriptive complexity theory, restricting to 4-bounded abelian color classes is sufficient, but
in some cases larger (but still abelian) color classes are required [26, 18, 33, 34]. For such
structures, we obtain a polynomial-time algorithm as before:

▶ Theorem 2. For every k ∈ N and c, r ≤ k, there is an algorithm that decides the k-WL-
identification problem for r-ary relational structures with c-bounded abelian color classes in
time Ok(nO(k)). If such a structure A is not identified by k-WL, the algorithm provides a
witness for this, i.e., a second structure B that is not isomorphic to A and not distinguished
from A by k-WL.

On the side of hardness results, we first prove that when the dimension k is part of the input,
the identification problem is NP-hard. Note that a similar result was recently independently
observed by Seppelt [42].

CSL 2025

13:4 Computational Complexity of the Weisfeiler-Leman Dimension

▶ Theorem 3. The problem of deciding, given a graph G and a natural number k, whether
the Weisfeiler-Leman dimension of G is at most k is NP-hard, both over uncolored simple
graphs, and over simple graphs with 4-bounded color classes.

Furthermore, we extend the P-hardness results for 1-WL [2] to arbitrary k and prove that,
when k is fixed, the k-WL-identification problem is hard for polynomial time:

▶ Theorem 4. For every k ≥ 1, the k-WL-identification problem is P-hard under uniform
AC0-reductions over both uncolored simple graphs, and simple graphs with 4-bounded abelian
color classes.

Techniques. To prove Theorem 1, we exploit the close connection between the coloring
computed by k-WL and certain combinatorial structures called k-ary coherent configurations.
These structures come with two notions of isomorphisms, algebraic ones and combinatorial
ones. Similarly to [15], we reduce the k-WL-identification problem to the separability problem
for k-ary coherent configurations, that is, to decide whether algebraic and combinatorial
isomorphisms for a given k-ary coherent configuration coincide. We make two crucial obser-
vations: First, we show that the k-ary coherent configurations obtained from graphs are fully
determined by their underlying 2-ary configurations. We call such configurations 2-induced.
Second, we reduce the separability problem for arbitrary k-ary coherent configurations to
the same problem on the structurally simpler class of star-free k-ary coherent configurations.
Combining both observations, we show that two 2-induced, star-free k-ary coherent config-
urations obtained from k-WL-equivalent graphs must be isomorphic. Given such a k-ary
coherent configuration obtained from a graph, it thus suffices to decide whether there is
another non-isomorphic graph yielding the same configuration. Finally, we solve this problem
by encoding it into the graph isomorphism problem for structures with bounded color classes,
which is polynomial-time solvable [6, 16].

The main obstacle to generalize Theorem 1 to larger color classes or relational structures of
higher arity is the existence of k-WL-equivalent structures that yield non-isomorphic star-free
k-ary coherent configurations, which greatly increases the space of possibly equivalent but
non-isomorphic structures. To make up for this, we consider structures with abelian color
classes. Using both the bijective pebble game [26] and ideas from the theory of coherent
configurations, we provide structural insights for the class of k-ary coherent configurations
with abelian fibers. This allows us to finally prove that in the abelian case, it does suffice to
consider other relational structures yielding the same k-ary coherent configuration.

NP-hardness in Theorem 3 is proved by combining the known relationship between the
Weisfeiler-Leman dimension of CFI-graphs [11] and the tree-width of the underlying base
graphs with the recent result that computing the tree-width of cubic graphs is NP-hard [9].
With the same techniques, we can also prove that deciding k-WL-equivalence of graphs is
co-NP-hard when the dimension k is considered part of the input.

For the P-hardness result of the k-WL-identification problem in Theorem 4, we adapt a
construction by Grohe [19] that he used to prove P-hardness of the k-WL-equivalence problem.
The construction encodes monotone boolean circuits into graphs using different types of
gadgets. This simultaneously reduces the monotone circuit value problem, which is known to
be hard for polynomial time, to the k-WL-equivalence and the k-WL-identification problem.
The main difficulty was to show identification of Grohe’s gadgets, specifically his so-called
one-way switches. We give an alternative construction of these one-way switches based on the
CFI-construction. This construction simplifies proofs and more importantly yields graphs
with 4-bounded color classes for every k. This shows hardness for the k-WL-equivalence and
k-WL-identification problems even for graphs with 4-bounded abelian color classes.

Full proofs of all statements can be found in the full version of this paper [35].

M. Lichter, S. Raßmann, and P. Schweitzer 13:5

2 The Weifeiler-Leman Algorithm and Coherent Configurations

Preliminaries. For n ∈ N, we set [n] := {1, . . . , n}. For a set A, the set of all k-element
subsets of A is denoted by

(
A
k

)
. For two runtime-bounding functions f and g with parameters

including κ, we write f ∈ Oκ(g) if f/g is bounded by a function of κ. A simple graph is
a pair G = (V (G), E(G)) of a set V (G) of vertices and a set E(G) ⊆

(
V (G)

2
)

of undirected
edges. For a directed graph, we allow E(G) ⊆ V (G)2 \ {(v, v) : v ∈ V (G)}. For either graph
type, we write uv for the edge {u, v} or (u, v) respectively. For a simple or directed graph
G, a vertex-coloring of G is a map χ : V (G) → C for some finite, ordered set C of colors.
Similarly, an edge-coloring is a map η : E(G) → C. A (vertex-)color class is a set χ−1(c) for
some vertex color c ∈ C. If all color classes have order at most q, we say that the colored
graph (G, χ) has q-bounded color classes.

Relational structures are a higher-arity analogue of graphs. Formally, a k-ary relational
structure A is a tuple (V (A), R1, . . . , Rℓ) of vertices V (A) and relations Ri ⊆ V (A)ri with
ri ≤ k. The number ri is the arity of the relation Ri. We again allow relational structures to
come with a vertex-coloring and define q-bounded color classes as before.

An isomorphism between graphs G and H is a bijection φ : V (G) → V (H) such that
uv ∈ E(G) if and only if φ(u)φ(v) ∈ E(H). In this case G and H are isomorphic and we
write G ∼= H. An isomorphism between edge- or vertex-colored graphs must also preserve
the vertex- and edge-colors. Similarly, an isomorphism between (vertex-colored) relational
structures is a (color-preserving) bijection between the vertex sets that preserves all relations
and their complements. An automorphism is an isomorphism from a structure to itself. We
say that a graph or relational structure A has abelian color classes if for every color class C,
the induced substructure A[C] has an abelian automorphism group.

Bounded Variable Counting Logics. First-order counting logic C is the extension of first-
order logic by the counting quantifiers ∃≥k for all natural numbers k, which state that
there exist at least k distinct elements satisfying the formula that follows. But because
first-order logic has the ability to simulate the counting quantifier ∃≥k by a sequence of
k usual existential quantifiers, adding counting quantifiers does not actually increase the
expressive power of first-order logic. This situation changes when we restrict the number
of variables. For a natural number k ≥ 2, we define k-variable counting logic Ck to be
the fragment of C which only uses the variables x1, . . . , xk. In order to not restrict the
expressive power of these logics too much, we do, however, allow requantifications, that
is, quantifications over a variable within the scope of another quantification over the same
variable. As an example, the following is a C2-formula

∀x1∃x2
(
Ex1x2 ∧

(
∃≥5x1Ex2x1

)
∧ ¬∃≥6x1Ex2x1

)
,

which states that every vertex is adjacent to a vertex of degree 5.
A relational structure A is definable in Ck if there exists some formula φ ∈ Ck which is

satisfied by a structure if and only if it is isomorphic to A.

The Weisfeiler-Leman Algorithm. The distinguishing power of bounded variable counting
logics has another characterization in terms of the Weisfeiler-Leman algorithm. For every
k ≥ 2, the k-dimensional Weisfeiler-Leman algorithm (k-WL) computes an isomorphism-
invariant coloring of k-tuples of vertices of a given graph G via an iterative refinement
process. Initially, the algorithm colors each k-tuple according to its isomorphism type,
i.e., x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ V (G)k get the same color if and only if mapping

CSL 2025

13:6 Computational Complexity of the Weisfeiler-Leman Dimension

xi 7→ yi for every i ∈ [k] is an isomorphism of the induced subgraphs G[{x1, . . . , xk}] and
G[{y1, . . . , yk}]. In each iteration, this coloring is refined as follows: if χG

r : V (G)k → Cr is
the coloring obtained after r refinement rounds, the coloring χG

r+1 : V (G)k → Cr+1 is defined
as χG

r+1(x) := (χG
r (x), Mr

x), where

Mr
x =

{{(
χG

r

(
xy

1
)
, . . . , χG

r

(
xy

k

))
: y ∈ V (G)

}}
and x y

i denotes the tuple obtained from x by replacing the i-th entry by y. If χG
r+1 does not

induce a finer color partition on V (G)k than χG
r , then the algorithm terminates and returns

the stable coloring χG
∞ := χG

r+1. This must happen before the nk-th refinement round.
We say that k-WL distinguishes two k-tuples x, y ∈ V (G)k if χG

∞(x) ̸= χG
∞(y) and

that k-WL distinguishes two ℓ-tuples x, y ∈ V (G)ℓ for ℓ < k if k-WL distinguishes the two
k-tuples we get by repeating the last entries of x respectively y. In either case, we write
(G, x) ̸≡k-WL (G, y). Finally, k-WL distinguishes two graphs G and H if the multisets of
stable colors computed for the k-tuples of vertices over the two graphs disagree. Otherwise, G

and H are k-WL-equivalent and we write G ≡k-WL H. A graph G is identified by k-WL
if k-WL distinguishes G from every other non-isomorphic graph. Every n-vertex graph
is identified by n-WL, and the least number k such that k-WL identifies G is called the
Weisfeiler-Leman dimension of G, denoted by WL-dim(G).

k-WL is at least as powerful in distinguishing graphs as (k − 1)-WL and this hierarchy
does not collapse [11]. Completely analogously, k-WL can be applied to relational structures.

▶ Lemma 5 ([11, 26]). Let A and B be two relational structures of arity at most k, and
a ∈ V (A)k and b ∈ V (B)k two tuples of vertices. Then the following are equivalent:

(i) For every Ck+1-formula φ(x1, . . . , xk), we have (A, a) |= φ if and only if (B, b) |= φ,
and

(ii) the stable colors computed by k-WL for the tuples a and b agree.
Further, every stable color class is definable by a single Ck+1-formula.

In particular, the Weisfeiler-Leman dimension of a structure is precisely one less than the
number of variables needed to define the structure in first-order counting logic.

Coherent Configurations. For an introduction to (2-ary) coherent configurations and their
connection to the Weisfeiler-Leman algorithm we refer to [15]. For k ≥ 2, a k-ary rainbow is
a pair (V, R) of a finite set of vertices V and a partition R of V k, whose elements are called
basis relations, that satisfies the following two conditions:
(R1) For every basis relations R ∈ R, all tuples x, y ∈ R have the same equality type, i.e.,

xi = xj if and only if yi = yj . We also call this the equality type of the relation R.
(R2) R is closed under permuting indices: For all basis relations R ∈ R and permutations σ

of [k], the set Rσ := {(xσ(1), . . . , xσ(k)) : (x1, . . . , xk) ∈ R} is a basis relation.
Because the vertex set V is determined by the partition R, we write R to denote the rainbow
(V, R) and in this case write V (R) for its vertex set V . A k-ary coherent configuration is a
k-ary rainbow C that is stable under k-WL-refinement. Formally, this means that
(C) for all basis relations R, R1, . . . , Rk ∈ C, the intersection number

p (R; R1, . . . , Rk) :=
∣∣∣{y ∈ V (C) : xy

i
∈ Ri for all i ∈ [k]

}∣∣∣
is the same for all choices of x ∈ R and is thus well-defined.

M. Lichter, S. Raßmann, and P. Schweitzer 13:7

For ℓ ≤ k, the partition of k-vertex tuples of an ℓ-ary relational structure according to
their isomorphism type always yields a k-ary rainbow. The connection of k-WL and k-ary
coherent configurations is that the partition of k-vertex tuples of a graph according to their
k-WL-colors always forms a k-ary coherent configuration.

Induced Configurations. If R is an ℓ-ary rainbow for ℓ ≤ k, we can interpret R as the k-ary
rainbow R|k by partitioning k-tuples according to the basis relations of the ℓ-subtuples they
contain. Formally, let ∼R be the equivalence relation on V (R)ℓ whose equivalence classes are
the basis relations of R. We define the equivalence relation ∼k

R on V (R)k by writing x ∼k y
if and only if for all I ∈

([k]
ℓ

)
we have x|I ∼R y|I , where x|I is the subtuple of x for which

all indices not in I are deleted. The basis relations of R|k are the equivalence classes of ∼k
R.

For every k-ary rainbow R, there is a unique coarsest k-ary coherent configuration
WLk(R) that is at least as fine as R and is called the k-ary coherent closure of R. For an
ℓ ≤ k and an ℓ-ary rainbow R, we also write WLk(R) for WLk(R|k). Similarly, for an ℓ-ary
relational structure A, we write WLk(A) for the partition of V (A)k into k-WL-color classes.

Every k-ary coherent configuration C induces the ℓ-ary coherent configuration C|ℓ for
every ℓ ≤ k by considering the partition of tuples of the form (x1, . . . , xℓ, . . . , xℓ) ∈ V (C)k.
This ℓ-ary coherent configuration is called the ℓ-skeleton of C. For every basis relation R ∈ C
and every subset I ∈

([k]
ℓ

)
of the indices, the set RI := {x|I : x ∈ R} is a basis relation of C|ℓ

and called the I-face of R. The 1-skeleton yields a partition of V (C), whose partition classes
are called fibers. We denote the set of fibers by F(C). C has c-bounded fibers if all fibers of C
have order at most c. If W ⊆ V (C) is a union of fibers, the induced structure C[W] is again
a k-ary coherent configuration. Between two fibers X and Y , the induced configuration C|2
further induces a partition C|2[X, Y] of X × Y , called an interspace.

A k-ary coherent configuration C is ℓ-induced if it is the coherent closure of its ℓ-skeleton,
i.e., if C = WLk(C|ℓ). This is equivalent to C being the coherent closure of some ℓ-ary rainbow.
In particular, the k-ary coherent closure of a (directed, colored) graph is 2-induced and the
k-ary coherent closure of an ℓ-ary relational structure is ℓ-induced for every k ≥ ℓ.

For a k-ary rainbow R = (V, {R1, . . . , Rℓ}), the vertex-colored k-ary relational structure
(V, R1, . . . , Rℓ, χ) where χ maps every vertex to its fiber is a colored variant of R. Note that
this requires choosing an ordering of the basis relations; colored variants are thus not unique.

Algebraic and Combinatorial Isomorphisms. There are two notions of isomorphism for
two k-ary coherent configurations C and D. First, a combinatorial isomorphism is a bijection
φ : V (C) → V (D) that preserves the partition into basis relations, i.e., for every basis relation
R ∈ C, the mapped set Rφ := {(φ(x1), . . . , φ(xk)) : (x1, . . . , xk) ∈ R} is a basis relation of D.
Combinatorial isomorphisms are thus isomorphisms between certain colored variants of C
and D and the notion also applies to rainbows.

Second, an algebraic isomorphism is a map f : C → D between the two partitions that
preserves the intersection numbers. More formally, we require that
(A1) for all R ∈ C, the relations R and f(R) have the same equality type,
(A2) for all R ∈ C and permutations σ of [k], we have f(Rσ) = f(R)σ, and
(A3) for all R, T1, . . . , Tk ∈ C, we have p (R; T1, . . . , Tk) = p (f(R); f(T1), . . . , f(Tk)),
but Property (A3) already implies the former two. Algebraic isomorphisms can be thought
of as maps preserving the Weisfeiler-Leman colors and thus as a functional perspective on
Weisfeiler-Leman equivalence. More formally, if for k-ary relational structures A and B,
f : WLk(A) → WLk(B) is an algebraic isomorphism that preserves the relations of A and

CSL 2025

13:8 Computational Complexity of the Weisfeiler-Leman Dimension

B, then f is the unique map that maps every color class of the stable coloring computed by
k-WL on A to the corresponding color class of the stable coloring computed by k-WL on B.
In particular, we get A ≡k-WL B in this case.

If f : C → D is an algebraic isomorphism, then f induces an algebraic isomorphism
f |ℓ : C|ℓ → D|ℓ for every ℓ ≤ k. If C = WLk(R) for some rainbow R, f induces a map
f |R : R → Rf for some rainbow Rf by sending each basis relation of R, which is a union of
basis relations of C, to the union of f -images of these basis relations of C. A combinatorial
(respectively algebraic) automorphism of C is a combinatorial (respectively algebraic) isomor-
phism from C to itself. Every combinatorial isomorphism induces an algebraic isomorphism,
but the converse is not true. Algebraic isomorphisms behave nicely with coherent closures as
seen in the next lemma (the proof is analogue to the k = 2 case [15, Lemma 2.4]):

▶ Lemma 6. For all k-ary rainbows R, algebraic isomorphisms f : C → D, and C = WLk(R)
1. D = WLk(Rf), in particular, if C is ℓ-induced, then so is D,
2. f is fully determined by its action on basis relations in R, and
3. if f |R is induced by a combinatorial isomorphism φ, then φ induces f .

A k-ary coherent configuration C is called separable if every algebraic isomorphism f : C → D
from C is induced by a combinatorial one. There is a close relation to the power of the
Weisfeiler-Leman algorithm (the proof is analogue to the k = 2 case [15, Theorem 2.5]):

▶ Lemma 7. Let ℓ ≤ k and A be an ℓ-ary relational structure. Then A is identified by the
k-dimensional Weisfeiler-Leman algorithm if and only if WLk(A) is separable.

3 Deciding Identification for Graphs With 5-Bounded Color Classes

As recently shown [15], identification of graphs with 5-bounded color classes by 2-WL is
polynomial-time decidable. We extend this result to arbitrary dimensions of the Weisfeiler-
Leman algorithm. We adapt the approach of [15] and solve the separability problem for
2-induced k-ary coherent configurations with 5-bounded fibers. We generalize the elimination
of interspaces containing a matching and of interspaces of type 2K1,2: we reduce to star-free
k-ary coherent configurations. By characterizing separability using certain automorphism
groups, we provide a new reduction of the separability problem for such configurations to
graph isomorphism for bounded color classes, which can be solved in polynomial time.

Disjoint Unions of Stars. Let C be a k-ary coherent configuration and X, Y ∈ F(C) two
distinct fibers. A disjoint union of stars between X and Y is a basis relation S ∈ C|2[X, Y]
such that every vertex in Y is incident to exactly one edge in S. If no interspace of C contains
a disjoint union of stars, then C is called star-free. We show that the separability problem of
(2-induced) k-ary coherent configurations reduces to that of star-free ones.

▶ Lemma 8. Let C be a k-ary coherent configuration, X, Y ∈ F(C) two distinct fibers, and
S ∈ C|2[X, Y] a disjoint union of stars between X and Y . Then C is separable if and only if
C \ X := C[V (C) \ X] is separable. Furthermore, if C is 2-induced, then so is C \ X.

Proof sketch. Let EqS be the set of pairs of vertices in Y that have a common S-neighbor
in X. We show that the k-ary coherent configuration C is uniquely determined by the
configuration C \ X and the relation EqS . For this, consider the function νS : Y → X that
maps each vertex in Y to its unique neighbor in X. When we apply this map to some of the
Y -components of a basis relation R ∈ C, the resulting set is again a basis relation, and we
can obtain every basis relation of R ∈ C from basis relations in C \ X in this way.

M. Lichter, S. Raßmann, and P. Schweitzer 13:9

K1 K2 K3
−→
C 3 K4 F4 C4

−→
C 4

K5 C5
−→
C 5

Figure 1 The complete list of 2-ary coherent configurations on a single fiber of order up to 4
from [15], and the three 2-ary coherent configurations on a single fiber of order 5 from [41].

2K2,2 C8

Figure 2 All non-uniform and star-free interspace types between two fibers of order up to 5. In
each case, there are at least two basis relations in each fiber, including the drawn matchings, and
two basis relations between the fibers: the drawn one and its complement.

We show that both algebraic and combinatorial isomorphisms can detect the uniqueness of
this extension in the following sense: every algebraic or combinatorial isomorphism C \X → D
uniquely extends to an algebraic or combinatorial isomorphism C → D∗, for some uniquely
determined extension D∗ ⊇ D by a single fiber. Hence, C is separable if and only if C\X is. By
analyzing this unique extension, it is moreover clear that it does not affect 2-inducedness. ◀

Lemma 8 allows us to remove fibers that are incident to a disjoint unions of stars without
affecting the separability. This simultaneously generalizes the elimination of interspaces
containing a matching and the elimination of fibers of size 2 from [15].

5-Bounded Fibers. In order to structurally understand 2-induced k-ary coherent configu-
rations, it mostly suffices to understand their 2-skeletons. The possible isomorphism types
of 2-ary coherent configurations on a single fiber of order at most 5 are known [15, 41], see
Figure 1. Further, the possible interspaces between fibers of order up to 4 are also known [15].
For fibers X, Y ∈ F(C), it is always possible that the interspace C[X, Y] is uniform, meaning
that it consists of only a single basis relation X × Y . Every interspace between a fiber of
size 5 and a fiber of size at most 4 is uniform [15, Lemma 3.1], and every interspace between
two fibers of size 5 is either uniform or contains a matching [15, Section 13]. Now, only two
possible non-uniform, star-free interspaces remain, which are depicted in Figure 2.

We call an algebraic automorphism f of a k-ary coherent configuration C strict if it fixes
every fiber, i.e., it satisfies f(X) = X for every X ∈ F(C). The strict algebraic automorphisms
of C form a group, which we denote by A(C). Using the enumeration of fiber and interspace
types, we obtain the following reformulation of separability as in [15, Lemma 7.2].

▶ Lemma 9. A star-free 2-induced k-ary coherent configuration with 5-bounded fibers is
separable if and only if every strict algebraic automorphism is induced by a combinatorial one.

CSL 2025

13:10 Computational Complexity of the Weisfeiler-Leman Dimension

Proof sketch. The forward implication is immediate. For the backward implication, consider
an algebraic isomorphism f : C → D. Because every coherent configuration of order at most 8
is separable [15], f is induced by a combinatorial isomorphism on every union of two fibers.
We pick such a combinatorial isomorphism inducing f |2 for every interspace of type C8 and
everywhere else, we pick combinatorial isomorphisms inducing f |2 just on each fiber. Using
the structure of fibers of order at most 5 and their interspaces, we can show that these
isomorphisms combine to a combinatorial isomorphism φ inducing f |2 on every fiber. But
then, φ−1 ◦ f |2 is a strict algebraic automorphism and is thus induced by a combinatorial
automorphism θ. But then, φ ◦ θ induces f |2 and thus also f by Lemma 6. ◀

Strict Algebraic Automorphisms. We now sketch a polynomial-time algorithm that decides
whether every strict algebraic automorphism of a k-ary coherent configuration is induced by
a combinatorial automorphism. We will heavily use that the graph isomorphism problem is
polynomial-time solvable for graphs with bounded color classes.

▶ Lemma 10 ([6, 16]). Isomorphism of k-ary relational structures of order n and c-bounded
color classes is decidable in time Ok,c(nO(k)). A generating set of the automorphism group
of these structures is computable in time Ok,c(nO(k)).

By encoding the algebraic structure of a coherent configuration C into a relational structure,
we obtain the following:

▶ Lemma 11. There is an algorithm running in time Ok,c(nO(k)) that, given a k-ary coherent
configuration C of order n with c-bounded fibers, computes a generating set of A(C).

Proof. We construct a (k + 1)-ary relational structure AC with ck-bounded color classes
such that Aut(AC) ∼= A(C). The vertices of our constructed structure are the basis relations
of C, and we color each (k + 1)-tuple (R, R1, . . . , Rk) of basis relations using the color
p (R; R1, . . . , Rk). Further, we color each basis relation by the tuple of fibers of its components.
Because every fiber is c-bounded, at most ck basis relations can share a color. Furthermore, it
is immediate that the automorphisms of the structure constructed so far naturally correspond
to strict algebraic automorphisms of C. Thus, we can compute a generating set for the group
of strict algebraic automorphisms in the required time using Lemma 10. ◀

Similarly, we can reduce the question whether a strict algebraic automorphism is induced by
a combinatorial one to the graph isomorphism problem.

▶ Lemma 12. There is an algorithm running in time Ok,c(nO(k)) that, given a k-ary coherent
configuration C with c-bounded fibers and a strict algebraic automorphism f ∈ A(C), decides
whether f is induced by a combinatorial automorphism.

Proof sketch. Let C be an arbitrary colored variant of C and Cf another colored variant
such that f is a color-preserving map between the color classes of C and Cf . Combinatorial
automorphisms inducing f correspond to isomorphisms between C and Cf , meaning that f

is induced by a combinatorial automorphism if and only if C ∼= Cf . As C has bounded fibers,
so does C. Thus, we can decide the latter in the required time by Lemma 10. ◀

▶ Corollary 13. There is an algorithm running in time Ok,c(nO(k)) that, given a k-ary coher-
ent configuration C with c-bounded fibers, decides whether every strict algebraic automorphism
of C is induced by a combinatorial automorphism.

M. Lichter, S. Raßmann, and P. Schweitzer 13:11

Proof. Those strict algebraic automorphisms that are induced by combinatorial ones form a
subgroup of the group of all strict algebraic automorphisms. Hence, it suffices to compute a
generating set of the whole group via Lemma 11 and to decide whether all elements of it are
induced by combinatorial automorphisms using Lemma 12. ◀

Finally, we are ready to prove our first theorem.

▶ Theorem 1. For every k, there is an algorithm that decides the k-WL-identification
problem for vertex- and edge-colored, directed graphs with 5-bounded color classes in time
Ok(nO(k)). If such a graph G is not identified by k-WL, the algorithm provides a witness for
this, i.e., a graph H that is not isomorphic to G and not distinguished from G by k-WL.

Proof. In a first step, we run k-WL on G to get the 2-induced configuration C := WLk(G).
By Lemma 7, it remains to decide whether C is separable. Now, we eliminate disjoint unions
of stars using Lemma 8, while maintaining 2-inducedness of C. By Lemma 9, it remains to
decide whether every strict algebraic automorphism is induced by a combinatorial one. This
can be achieved using Corollary 13.

If this is the case, the input structure is identified by k-WL. Otherwise, the algorithm
actually finds a strict algebraic automorphism f which is not induced by a combinatorial
automorphism. By adding back all interspaces containing a disjoint union of stars, we
can extend f to an algebraic isomorphism f̂ : WLk(G) → D which is not induced by a
combinatorial isomorphism. But then, we can obtain a witnessing graph H from G by
replacing its edge set by its f̂ |2-image and similarly translating vertex- and edge-colors
along f̂ . ◀

4 Identification for Structures With Bounded Abelian Color Classes

The approach we used in Section 3 to decide the k-WL-identification problem for graphs with
5-bounded color classes does not easily generalize to larger bounds on the color classes or to
relational structures of higher arity. In particular, Lemma 9 was crucial in the reduction of
k-WL-identification to a statement on certain automorphisms which could be handled using
group-theoretic techniques. The proof of the lemma was based on an explicit case distinction
on the possible isomorphism types of interspaces, and fails for graphs with larger color classes.
In this section, we show that Lemma 9 remains true in the special case of relational structures
with bounded abelian color classes, i.e., structures for which the automorphism group of the
structure induced on each color class is abelian. Such structures were already considered
in the context of descriptive complexity theory [44] and include both CFI-graphs [11] and
multipedes [39, 38] over ordered base graphs.

Coherent Configurations With Abelian Fibers. To start, we translate the concept of abelian
color classes to the corresponding concept of abelian fibers for k-ary coherent configurations.
A combinatorial automorphism φ of a k-ary coherent configuration D is color-preserving
if φ fixes every basis relation of D. This is equivalent to φ being an automorphism of every
colored variant of D or to the algebraic automorphism induced by φ being the identity (recall
that combinatorial automorphisms are not required to fix every basis relation, but only the
partition of V (D)k into basis relations). We say that a coherent configuration C has abelian
fibers if, for each fiber X ∈ F(C), the group of color-preserving combinatorial automorphisms
of C[X] is abelian.

▶ Lemma 14. Let A be a relational structure of arity at most k. If A has abelian color
classes, then WLk(A) has abelian fibers.

CSL 2025

13:12 Computational Complexity of the Weisfeiler-Leman Dimension

We start with a structural lemma, which states that small abelian fibers are always thin.
For a fiber X ∈ F(C), a binary basis relation S ∈ C|2[X] is called thin if every vertex in X

is incident to exactly one ingoing and exactly one outgoing S-edge, that is, if S is either
a matching or a union of directed cycles. The fiber X is called thin if all basis relations
R ∈ C|2[X] are thin and if this is true for all fibers of C, we say that C has thin fibers.

▶ Lemma 15. Let C be a k-ary coherent configuration. Then every abelian fiber of order at
most k is thin.

Proof. Let X ∈ F(C) be an abelian fiber of order at most k. Then C|2[X] is the partition
of X2 into orbits under the natural action of the group of color-preserving automorphisms.

Now, assume that some binary basis relation S ∈ C|2[X] contains two pairs xy and xy′

for x, y, y′ ∈ X. This implies that there is a color-preserving automorphism φ of C[X] that
maps xy to xy′. But as the group of color-preserving automorphism of C[X] is abelian and
acts transitvely on the vertices of X, its point-stabilizers are trivial. Because φ(x) = x, this
implies φ = idX and thus y′ = φ(y) = y. Thus, the basis relation S is thin. ◀

Next, we need one well-known lemma on the structure of thin fibers, which essentially
states that thin fibers correspond to Cayley graphs of their automorphism groups.

▶ Lemma 16 ([12, Section 2.1.4]). Let C be a 2-ary coherent configuration on a single thin
fiber. Then the basis relations of C are precisely those of the form Sφ := {xφ(x) : x ∈ V (C)}
for color-preserving combinatorial automorphisms φ of C.

Separability of Configurations With Bounded Thin Fibers. Next, we show that k-ary
coherent configurations with few, thin fibers are separable:

▶ Lemma 17. Let C be a k-ary coherent configuration with at most k fibers. If C has thin
fibers, then C is separable.

Proof sketch. Let x ∈ V (C)k be a k-tuple of vertices which contains a vertex from every
fiber of C. Then every vertex of C is the unique outgoing neighbor of some vertex in x with
respect to some thin basis relation. Thus, all vertices of C are fixed relative to x.

Now, let C be a colored variant of C. By Lemma 7, C is separable if and only if C is
identified by k-WL. We show the latter using the bijective (k + 1)-pebble game, which is
an Ehrenfeucht-Fraïssé-type game capturing k-WL-equivalence [26]. Indeed, if C ≡k-WL D,
this corresponds to Duplicator having a winning strategy in this game. But because we
can fix every vertex of C by only fixing one vertex per color class, we can easily extract an
isomorphism C → D from such a winning strategy. ◀

Finally, we are ready to once again reduce the question of separability to only strict algebraic
automorphisms, which we can again deal with using Corollary 13.

▶ Lemma 18. Let C be a k-ary coherent configurations with thin fibers. Then C is sepa-
rable if and only if every strict algebraic automorphism of C is induced by a combinatorial
automorphism.

Proof sketch. The proof is similar to that of Lemma 9, where instead of using that every 2-ary
coherent configuration of order at most 8 is separable, we apply Lemma 17 to get separability
of sufficiently small configurations. Afterwards, we use the structure of configurations with
thin fibers to show that the local bijections we picked are compatible with the partition in
the k-ary interspaces. ◀

M. Lichter, S. Raßmann, and P. Schweitzer 13:13

▶ Theorem 2. For every k ∈ N and c, r ≤ k, there is an algorithm that decides the k-WL-
identification problem for r-ary relational structures with c-bounded abelian color classes in
time Ok(nO(k)). If such a structure A is not identified by k-WL, the algorithm provides a
witness for this, i.e., a second structure B that is not isomorphic to A and not distinguished
from A by k-WL.

Proof. Let A be a relational structure of arity r. Then A is identified by k-WL if and
only if WLk(A) is separable. Because the k-ary coherent configuration WLk(A) has c-
bounded thin fibers by Lemmas 14 and 15, Lemma 18 implies that separability of WLk(A) is
equivalent to every strict algebraic automorphism of WLk(A) being induced by a combinatorial
automorphism. This can be checked in the given time using Corollary 13, and in case of a
negative answer, we can construct a non-isomorphic but non-distinguished structure from
the strict algebraic automorphism not induced by a combinatorial one as in Theorem 1. ◀

Note that the restriction to relational structures of arity at most k is insubstantial, because
the standard variant of the Weisfeiler-Leman algorithm given in Section 2 does not identify
any relational structure of arity larger than k, simply because it does not consider tuples of
length larger than k and thus cannot even detect whether a relation of arity larger than k is
empty. While there are variants of k-WL which identify some (k +1)-ary relational structures,
these variants can be treated similarly to decide identification by those algorithms.

5 Hardness

We now prove hardness results that complement the positive results in the previous two
sections. In the case that the dimension k is part of the input, the k-WL-equivalence
problem and the k-WL-identification problem are co-NP-hard and NP-hard, respectively.
We use that deciding whether a cubic graph has tree-width k is NP-hard [9]. The CFI-
construction [11] assigns to a graph G two CFI-graphs, which are distinguished by k-WL
if and only if G has tree-width at most k [8, 22]. If G is cubic, then the CFI-graphs are
polynomial-time computable and thus we reduced to k-WL-equivalence. To show hardness
of k-WL-identification, we show that the CFI-graphs are actually identified by k-WL if the
tree-width of G is at most k. Hardness of the k-WL-equivalence problem was independently
observed by Seppelt [42].

▶ Theorem 3. The problem of deciding, given a graph G and a natural number k, whether
the Weisfeiler-Leman dimension of G is at most k is NP-hard, both over uncolored simple
graphs, and over simple graphs with 4-bounded color classes.

▶ Theorem 19. The problem of deciding, for a given pair of graphs G and H and a natural
number k ≥ 1, whether G ≡k-WL H is co-NP-hard, both over uncolored simple graphs, and
over simple graphs with 4-bounded abelian color classes.

P-Hardness for Fixed Dimension. We again turn to the k-WL-identification problem for a
fixed dimension k ≥ 2, and show that both over uncolored simple graphs and over simple
graphs with 4-bounded abelian color classes, the problem is P-hard under logspace-uniform
AC0-reductions. We reduce from the P-hard monotone circuit value problem MCVP [17].
Our construction of a graph from a monotone circuit closely resembles the reductions of
Grohe [19] to show P-hardness of the k-WL-equivalence problem. A similar reduction was
also used to prove P-hardness of the identification problem for the color refinement algorithm
(1-WL) [2].

CSL 2025

13:14 Computational Complexity of the Weisfeiler-Leman Dimension

The reduction is based on so-called one-way switches, which were introduced by Grohe [19].
These graph gadgets allow color information computed by the Weisfeiler-Leman algorithm
to pass in one direction, but block it from passing in the other. And while Grohe provides
one-way switches for every dimension of the Weisfeiler-Leman algorithm, his gadgets have
large color classes and are difficult to analyze. Instead, we give a new construction of such
gadgets with 4-bounded color classes. We then use these one-way switches to construct a
graph from an instance of the monotone circuit value problem from the identification of
which we can read off the answer to the initial MCVP-query.

One-Way Switches. Fix a dimension k ≥ 2 of the Weisfeiler-Leman algorithm. A k-one-way
switch is a graph gadget with a pair of input vertices {y1, y2} and a pair of output vertices
{x1, x2}, which each form a color class of size 2. A pair of vertices is split if the two vertices
are colored differently and k-WL splits a pair if the coloring computed by k-WL splits the
pair. The crucial property of a k-one-way switch is the following: if the input pair {y1, y2}
of the one-way switch is split, then k-WL also splits the output pair, but not the other
way around. One-way switches thus only allow one-way flow of k-WL-color information. In
contrast to Grohe’s gadgets, our one-way switches are based on the CFI-construction [11].
We give only a brief sketch of the properties of our one-way switches here, and postpone
their precise construction and properties to Appendix A.

▶ Lemma 20 (simplified). For every k ≥ 2, there is a colored graph Ok with 4-bounded
abelian color classes, called k-one-way switch, with an input pair {y1, y2} and an output pair
{x1, x2}, neither of which is split by k-WL, such that
1. the graph Ok

split obtained by splitting the input pair {y1, y2} is identified by k-WL,
2. k-WL splits the output pair {x1, x2} of Ok

split, and
3. if we split the output pair {x1, x2}, k-WL still does not split the input pair {y1, y2}.

From Monotone Circuits to Graphs. We reduce the monotone circuit value problem to the
k-WL-identification problem. A monotone circuit M is a circuit consisting of input nodes
with values True or False, inner nodes, which are either AND- or OR-nodes with two inputs
each, and a distinguished output node. We write V (M) for the set of nodes of M . With a
monotone circuit M , we associate the evaluation function valM : V (M) → {True, False},
which is defined in the expected way. The monotone circuit value problem asks whether the
output node of a given monotone circuit evaluates to True and is P-hard by [17].

Let M be a monotone circuit. We construct a colored graph GM such that for every node
a ∈ V (M), there is a vertex pair {a1, a2} in GM that will be split by k-WL if and only if
valM (a) = False. Up to the construction of the one-way switches, the construction of GM

is similar to constructions employed in [19] and [2]. We use two graphs GOR and GAND (see
Figure 3) as gadgets to simulate logic gates. These gadgets both have two input pairs and
one output pair such that exchanging the two output vertices by an automorphism requires
the two vertices of one (for GOR) or both (for GAND) input pairs to also be exchanged.

The formal construction of GM is depicted in Figure 4. For every node a of M , we add
a pair of vertices {a1, a2} forming a color class of GM . To encode the input values of the
circuit, we split every pair {a1, a2} corresponding to an input node a of value False. For
every AND-node a ∈ V (M) with input nodes b and b′, we add a freshly colored copy of
the gadget GAND from Figure 3 and identify its output pair with the pair {a1, a2}. Next,
we connect its two input pairs via freshly colored one-way switches Ok

ba and Ok
b′a to the

pairs {b1, b2} and {b′
1, b′

2} respectively. More precisely, we identify the input pairs of these

M. Lichter, S. Raßmann, and P. Schweitzer 13:15

GOR GAND

Figure 3 The gadgets GOR and GAND encoding OR- and AND-gates respectively. The two vertex
pairs at the top are their input pairs and the bottom pair is their output pair.

False False True

∧

∨

GAND

GOR

→ →
→ →

↑

Figure 4 A simple monotone circuit M and the graph GM obtained from it.

one-way switches with {b1, b2} or {b′
1, b′

2} respectively and identify their output pair with
the respective input pair of the copy is identif of GAND. Analogously, we add a copy of GOR
for every OR-node a ∈ V (M) and connect it to its input via one-way switches as before.

This concludes the translation of the circuit itself, but for our reduction to the identification
problem we need one more step: we connect all input pairs {a1, a2} with valM (a) = True
to the output pair {c1, c2} via additional one-way switches Ok

ca, whose input pair we identify
with {c1, c2} and whose output pair we identify with {a1, a2}. Let GM be the resulting graph.
Because we color different gadgets using distinct colors, and every gadget has 4-bounded
color classes, the resulting graph GM also has 4-bounded color classes and indeed, these
color classes could also be made abelian by introducing colored edges within the gadgets.
The following lemma is proven similar to [19, Section 5.4] and [2, Theorem 7.11] by using
the properties of the one-way switches to bound the distinguishing power of k-WL on GM in
terms of its distinguishing power on the individual gadgets.

Recall that GM contains, for every node a of M , a vertex pair {a1, a2}. The essential
property of the encoding of monotone circuits as graphs is the following:

▶ Lemma 21. For every monotone circuit M with output node c and every node a of M , we
have (GM , a1) ≡k-WL (GM , a2) if and only if valM (a) = valM (c) = True.

▶ Corollary 22. The k-WL-equivalence problem for vertices is P-hard under uniform AC0-
reductions, both over simple graphs with 4-bounded abelian color classes, and over uncolored
simple graphs.

Consider now the modified graph G∗
M that we get by adding another freshly colored one-way

switch Ok
∗ whose input pair is {c1, c2}, i.e., the vertex pair corresponding to the output node

of the circuit M . Furthermore, we split the output pair of Ok
∗ . Note that when splitting the

CSL 2025

13:16 Computational Complexity of the Weisfeiler-Leman Dimension

output pair, we can choose which of the two vertices to give a fresh color to. We show that
these two choices lead to non-isomorphic graphs which are distinguished by k-WL if and
only if the circuit evaluates to False.

▶ Lemma 23. For every monotone circuit M , the graph G∗
M is identified by k-WL if and

only if valM (c) = False.

Proof sketch. If valM (c) = False, then all input and output pairs in G∗
M are split. Because

all gadgets in G∗
M are identified when their input and output pairs are split, and different

gadgets only interact at these split pairs, the whole graph G∗
M is identified.

Conversely, assume valM (c) = True, and let (G∗
M)′ be the graph constructed just like

G∗
M , but with the colors of the two output vertices of the one-way switch Ok

∗ exchanged.
Because the pair {c1, c2} is not split in GM , k-WL cannot distinguish the two output vertices
of Ok

∗ , which means that it cannot distinguish the non-isomorphic graphs G∗
M and (G∗

M)′. ◀

▶ Theorem 4. For every k ≥ 1, the k-WL-identification problem is P-hard under uniform
AC0-reductions over both uncolored simple graphs, and simple graphs with 4-bounded abelian
color classes.

6 Conclusion

We have shown on the one hand that when the dimension k is part of the input, the k-WL-
equivalence problem and the k-WL-identification problem are co-NP-hard and NP-hard,
respectively.

On the other hand, when the dimension k is fixed, the equivalence problem is trivially
solvable in polynomial time, and we have shown that the identification problem is solvable in
polynomial time over graphs with 5-bounded color classes and on relational structures with
k-bounded abelian color classes. Still, the identification problem is P-hard in both cases. As
an immediate corollary, we obtain the same polynomial-time solvability and hardness results
for definability and equivalence in the bounded-variable logic with counting Ck.

It would be interesting to know whether the k-WL-identification problem can be solved
in polynomial time for larger color classes or indeed on general graphs when k is fixed.
Indeed, our NP-hardness reduction was based on whether the tree-width of a given graph is
at most k, which can be solved in linear time for every fixed k [7], and thus does not even
yield a super-linear lower bound when k is fixed. Still, we would expect that neither the
identification nor the equivalence problem can be solved in time no(k). It might be fruitful to
study these problems from the lens of parameterized complexity or provide lower complexity
bounds based on the (strong) exponential time hypothesis.

References
1 Markus Anders and Pascal Schweitzer. Parallel computation of combinatorial symmetries. In

29th Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon,
Portugal (Virtual Conference), volume 204 of LIPIcs, pages 6:1–6:18. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.ESA.2021.6.

2 Vikraman Arvind, Johannes Köbler, Gaurav Rattan, and Oleg Verbitsky. Graph isomorphism,
color refinement, and compactness. Comput. Complex., 26(3):627–685, 2017. doi:10.1007/
S00037-016-0147-6.

3 Albert Atserias and Elitza N. Maneva. Sherali-Adams relaxations and indistinguishability in
counting logics. SIAM J. Comput., 42(1):112–137, 2013. doi:10.1137/120867834.

https://doi.org/10.4230/LIPICS.ESA.2021.6
https://doi.org/10.1007/S00037-016-0147-6
https://doi.org/10.1007/S00037-016-0147-6
https://doi.org/10.1137/120867834

M. Lichter, S. Raßmann, and P. Schweitzer 13:17

4 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Proceed-
ings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, June 18-21, 2016, pages 684–697. ACM, 2016. doi:10.1145/2897518.
2897542.

5 László Babai and Ludek Kucera. Canonical labelling of graphs in linear average time. In
20th Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 29-31
October 1979, pages 39–46. IEEE Computer Society, 1979. doi:10.1109/SFCS.1979.8.

6 László Babai. Monte-Carlo algorithms in graph isomorphism testing. Technical Report 79-10,
Université de Montréal, 1979.

7 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

8 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput.
Sci., 209(1-2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

9 Hans L. Bodlaender, Édouard Bonnet, Lars Jaffke, Dušan Knop, Paloma T. Lima, Martin
Milanič, Sebastian Ordyniak, Sukanya Pandey, and Ondřej Suchý. Treewidth is NP-complete
on cubic graphs. In 18th International Symposium on Parameterized and Exact Computation,
IPEC 2023, September 6-8, 2023, Amsterdam, The Netherlands, volume 285 of LIPIcs, pages
7:1–7:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.
IPEC.2023.7.

10 Béla Bollobás. Distinguishing vertices of random graphs. North-holland Mathematics Studies,
62:33–49, 1982. doi:10.1016/S0304-0208(08)73545-X.

11 Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identification. Comb., 12(4):389–410, 1992. doi:10.1007/BF01305232.

12 G. Chen and I. Ponomarenko. Lectures on Coherent Configurations. Central China Normal
University Press, 2019. A draft is available at https://www.pdmi.ras.ru/~inp/.

13 Anuj Dawar and David Richerby. The power of counting logics on restricted classes of
finite structures. In Computer Science Logic, 21st International Workshop, CSL 2007, 16th
Annual Conference of the EACSL, Lausanne, Switzerland, September 11-15, 2007, Proceedings,
volume 4646 of Lecture Notes in Computer Science, pages 84–98. Springer, 2007. doi:
10.1007/978-3-540-74915-8_10.

14 Zdenek Dvorák. On recognizing graphs by numbers of homomorphisms. J. Graph Theory,
64(4):330–342, 2010. doi:10.1002/JGT.20461.

15 Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. Identifiability of graphs with small
color classes by the Weisfeiler-Leman algorithm. SIAM J. Discret. Math., 35(3):1792–1853,
2021. doi:10.1137/20M1327550.

16 Merrick Furst, John Hopcroft, and Eugene M. Luks. A subexponential algorithm for trivalent
graph isomorphism. Technical report, Cornell University, USA, 1980.

17 Leslie M. Goldschlager. The monotone and planar circuit value problems are log space complete
for P. SIGACT News, 9(2):25–29, 1977. doi:10.1145/1008354.1008356.

18 Erich Grädel and Wied Pakusa. Rank logic is dead, long live rank logic! J. Symb. Log.,
84(1):54–87, 2019. doi:10.1017/jsl.2018.33.

19 Martin Grohe. Equivalence in finite-variable logics is complete for polynomial time. Comb.,
19(4):507–532, 1999. doi:10.1007/S004939970004.

20 Martin Grohe. Fixed-point definability and polynomial time on graphs with excluded minors.
J. ACM, 59(5):27:1–27:64, 2012. doi:10.1145/2371656.2371662.

21 Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory,
volume 47 of Lecture Notes in Logic. Cambridge University Press, 2017. doi:10.1017/
9781139028868.

22 Martin Grohe, Moritz Lichter, Daniel Neuen, and Pascal Schweitzer. Compressing CFI graphs
and lower bounds for the Weisfeiler-Leman refinements. In 64th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023,
pages 798–809. IEEE, 2023. doi:10.1109/FOCS57990.2023.00052.

CSL 2025

https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1109/SFCS.1979.8
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.4230/LIPICS.IPEC.2023.7
https://doi.org/10.4230/LIPICS.IPEC.2023.7
https://doi.org/10.1016/S0304-0208(08)73545-X
https://doi.org/10.1007/BF01305232
https://www.pdmi.ras.ru/~inp/
https://doi.org/10.1007/978-3-540-74915-8_10
https://doi.org/10.1007/978-3-540-74915-8_10
https://doi.org/10.1002/JGT.20461
https://doi.org/10.1137/20M1327550
https://doi.org/10.1145/1008354.1008356
https://doi.org/10.1017/jsl.2018.33
https://doi.org/10.1007/S004939970004
https://doi.org/10.1145/2371656.2371662
https://doi.org/10.1017/9781139028868
https://doi.org/10.1017/9781139028868
https://doi.org/10.1109/FOCS57990.2023.00052

13:18 Computational Complexity of the Weisfeiler-Leman Dimension

23 Martin Grohe and Julian Mariño. Definability and descriptive complexity on databases of
bounded tree-width. In Database Theory - ICDT ’99, 7th International Conference, Jerusalem,
Israel, January 10-12, 1999, Proceedings, volume 1540 of Lecture Notes in Computer Science,
pages 70–82. Springer, 1999. doi:10.1007/3-540-49257-7_6.

24 Martin Grohe and Daniel Neuen. Canonisation and definability for graphs of bounded rank
width. ACM Trans. Comput. Log., 24(1):6:1–6:31, 2023. doi:10.1145/3568025.

25 Martin Grohe and Martin Otto. Pebble games and linear equations. J. Symb. Log., 80(3):797–
844, 2015. doi:10.1017/JSL.2015.28.

26 Lauri Hella. Logical hierarchies in PTIME. Inf. Comput., 129(1):1–19, 1996. doi:10.1006/
INCO.1996.0070.

27 Neil Immerman and Eric S. Lander. Describing Graphs: A First-Order Approach to
Graph Canonization, pages 59–81. Springer New York, New York, NY, 1990. doi:
10.1007/978-1-4612-4478-3_5.

28 Tommi A. Junttila and Petteri Kaski. Engineering an efficient canonical labeling tool for
large and sparse graphs. In Proceedings of the Nine Workshop on Algorithm Engineering and
Experiments, ALENEX 2007, New Orleans, Louisiana, USA, January 6, 2007. SIAM, 2007.
doi:10.1137/1.9781611972870.13.

29 Tommi A. Junttila and Petteri Kaski. Conflict propagation and component recursion for
canonical labeling. In Theory and Practice of Algorithms in (Computer) Systems - First
International ICST Conference, TAPAS 2011, Rome, Italy, April 18-20, 2011. Proceedings,
volume 6595 of Lecture Notes in Computer Science, pages 151–162. Springer, 2011. doi:
10.1007/978-3-642-19754-3_16.

30 Sandra Kiefer, Ilia Ponomarenko, and Pascal Schweitzer. The Weisfeiler-Leman dimension of
planar graphs is at most 3. J. ACM, 66(6):44:1–44:31, 2019. doi:10.1145/3333003.

31 Sandra Kiefer, Pascal Schweitzer, and Erkal Selman. Graphs identified by logics with counting.
ACM Trans. Comput. Log., 23(1):1:1–1:31, 2022. doi:10.1145/3417515.

32 Ludek Kucera. Canonical labeling of regular graphs in linear average time. In 28th Annuqal
Symposium on Foundations of Computer Science, Los Angeles, California, USA, 27-29 October
1987, pages 271–279. IEEE Computer Society, 1987. doi:10.1109/SFCS.1987.11.

33 Moritz Lichter. Separating rank logic from polynomial time. J. ACM, 70(2), March 2023.
doi:10.1145/3572918.

34 Moritz Lichter. Witnessed symmetric choice and interpretations in fixed-point logic with
counting. In 50th International Colloquium on Automata, Languages, and Programming
(ICALP 2023), volume 261 of LIPIcs, pages 133:1–133:20. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/LIPIcs.ICALP.2023.133.

35 Moritz Lichter, Simon Raßmann, and Pascal Schweitzer. Computational complexity of the
Weisfeiler-Leman dimension. CoRR, abs/2402.11531, 2024. doi:10.48550/arXiv.2402.11531.

36 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symb. Comput.,
60:94–112, 2014. doi:10.1016/J.JSC.2013.09.003.

37 Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph
neural networks. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 4602–4609. AAAI Press,
2019. doi:10.1609/AAAI.V33I01.33014602.

38 Daniel Neuen and Pascal Schweitzer. Benchmark graphs for practical graph isomorphism. In
25th Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna,
Austria, volume 87 of LIPIcs, pages 60:1–60:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPICS.ESA.2017.60.

39 Daniel Neuen and Pascal Schweitzer. An exponential lower bound for individualization-
refinement algorithms for graph isomorphism. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June
25-29, 2018, pages 138–150. ACM, 2018. doi:10.1145/3188745.3188900.

https://doi.org/10.1007/3-540-49257-7_6
https://doi.org/10.1145/3568025
https://doi.org/10.1017/JSL.2015.28
https://doi.org/10.1006/INCO.1996.0070
https://doi.org/10.1006/INCO.1996.0070
https://doi.org/10.1007/978-1-4612-4478-3_5
https://doi.org/10.1007/978-1-4612-4478-3_5
https://doi.org/10.1137/1.9781611972870.13
https://doi.org/10.1007/978-3-642-19754-3_16
https://doi.org/10.1007/978-3-642-19754-3_16
https://doi.org/10.1145/3333003
https://doi.org/10.1145/3417515
https://doi.org/10.1109/SFCS.1987.11
https://doi.org/10.1145/3572918
https://doi.org/10.4230/LIPIcs.ICALP.2023.133
https://doi.org/10.48550/arXiv.2402.11531
https://doi.org/10.1016/J.JSC.2013.09.003
https://doi.org/10.1609/AAAI.V33I01.33014602
https://doi.org/10.4230/LIPICS.ESA.2017.60
https://doi.org/10.1145/3188745.3188900

M. Lichter, S. Raßmann, and P. Schweitzer 13:19

40 Thomas Schneider and Pascal Schweitzer. An upper bound on the Weisfeiler-Leman dimension,
2024. arXiv:2403.12581, doi:10.48550/arXiv.2403.12581.

41 Kyoungah See and Sung Y. Song. Association schemes of small order. Journal of Statistical
Planning and Inference, 73(1):225–271, 1998. doi:10.1016/S0378-3758(98)00064-0.

42 Tim Seppelt. An Algorithmic Meta Theorem for Homomorphism Indistinguishability. In
49th International Symposium on Mathematical Foundations of Computer Science (MFCS
2024), volume 306 of Leibniz International Proceedings in Informatics (LIPIcs), pages 82:1–
82:19, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.MFCS.2024.82.

43 B. Weisfeiler and A. Leman. The reduction of a graph to canonical form and the algebra
which appears therein. Nauchno-Technicheskaya Informatsia, Seriya 2, 9:12–16, 1968. An
english translation due to Grigory Ryabov is available at https://www.iti.zcu.cz/wl2018/
pdf/wl_paper_translation.pdf.

44 Faried Abu Zaid, Erich Grädel, Martin Grohe, and Wied Pakusa. Choiceless polynomial time
on structures with small abelian colour classes. In Mathematical Foundations of Computer
Science 2014 - 39th International Symposium, MFCS 2014, Budapest, Hungary, August 25-29,
2014. Proceedings, Part I, volume 8634 of Lecture Notes in Computer Science, pages 50–62.
Springer, 2014. doi:10.1007/978-3-662-44522-8_5.

A Construction of One-Way Switches

We construct our one-way switches based on the CFI-construction, and the proof of the
properties heavily uses the bijective pebble game. We thus start with a short introduction to
these.

The Bijective Pebble Game. The question whether Ck+1 or k-WL can distinguish struc-
tures A and B has another characterization in terms of the so-called bijective (k + 1)-pebble
game. In this game, there are two players: Spoiler and Duplicator. Game positions are
partial maps g 7→ h between G and H, where both tuples contain at most k + 1 elements.
We also sometimes identify such partial maps with the set P = {gi 7→ hi : i ≤ |g|}.

We think of these maps as k + 1 pairs of corresponding pebbles placed in the two graphs.
If such a partial map is not a partial isomorphism, i.e., not an isomorphisms on the induced
subgraphs, Spoiler wins immediately.

Otherwise, at the beginning of each turn, Spoiler picks up one pebble pair, either from the
board if all k + 1 pairs are placed, or from the side if there are pebble pairs left. Duplicator
responds by giving a bijection φ : V (G) → V (H) between the two graphs. Spoiler then places
the pebble pair they picked up on a pair (g, φ(g)) of vertices of their choice. The game then
continues in the resulting new position.

We say that Spoiler wins if the graphs have differing cardinality or they can reach a
position that is no longer a partial isomorphism (and thus win immediately). Duplicator
wins the game if Duplicator can find responses to Spoiler’s moves indefinitely.

Lemma 5 now has the following extension:

▶ Lemma 24 ([11], [26]). Let A and B be two relational structures of arity at most k, and
a ∈ V (A)k and b ∈ V (B)k two tuples of vertices. Then the following are equivalent:
(i) Duplicator has a winning strategy in position a 7→ b of the bijective (k + 1)-pebble game

between A and B,
(ii) for every Ck+1-formula φ(x1, . . . , xk), we have (G, g) |= φ if and only if (H, h) |= φ,
(iii) the stable colors computed by k-WL for the tuples a and b agree.

CSL 2025

https://arxiv.org/abs/2403.12581
https://doi.org/10.48550/arXiv.2403.12581
https://doi.org/10.1016/S0378-3758(98)00064-0
https://doi.org/10.4230/LIPIcs.MFCS.2024.82
https://doi.org/10.4230/LIPIcs.MFCS.2024.82
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://doi.org/10.1007/978-3-662-44522-8_5

13:20 Computational Complexity of the Weisfeiler-Leman Dimension

Figure 5 A CFI-gadget for a vertex of degree 3, consisting of four inner vertices and three outer
pairs.

The CFI-Construction. CFI-graphs are certain graphs with high Weisfeiler-Leman dimen-
sion [11]. To construct them, we start with a base graph G, which is a connected simple
graph, and a function f : E(G) → F2. For a vertex v ∈ V (G), we denote the set of edges
incident to v by E[v] := {uv : v ∈ NG(v)} ⊆ E(G). Now, to construct the CFI-graph
CFI(G, f), we replace each vertex v ∈ V (G) by a gadget Xv which consists of inner vertices
Iv := {v} × {x ∈ FE[v]

2 :
∑

x = 0} and outer vertices {v} × {(e, i) : e ∈ E[v], i ∈ F2}. Inside
each gadget, the inner and outer vertices each form an independent set, and an inner vertex
(v, x) and outer vertex (v, e, i) are connected by an edge if and only if xe = i. The resulting
gadget for a vertex of degree 3 is depicted in Figure 5.

Next, we define the edge set between different gadgets. For every edge e = uv ∈ E(G), we
connect the outer vertices (u, e, i) and (v, e, j) if and only if i + j = f(e) and add no further
edges. Thus, corresponding outer vertex pairs (u, e, ·) and (v, e, ·) are always connected by a
matching, which is either untwisted if f(e) = 0, or twisted if f(e) = 1.

Finally, we define a vertex coloring on this graph. For every vertex v, we turn the
set Iv of inner vertices into a color class of size 2d(v)−1. Moreover, we turn each outer pair
{(v, e, 0), (v, e, 1)} into a color class of size 2. This finishes the construction of CFI-graphs.

It turns out that for two functions f, g : E(G) → F2, we have CFI(G, f) ∼= CFI(G, g) if
and only if

∑
f =

∑
g, meaning that every even number of twists cancels out. Thus, we

also write CFI(G, 0) and CFI(G, 1) for the untwisted and twisted CFI-graphs over the base
graph G.

To understand the power of the Weisfeiler-Leman algorithm on CFI-graphs, it is convenient
to study tree-width, which is a graph parameter that intuitively measures how far a graph
is from being a tree. In this work, we do not need the formal definition of tree-width, and
refer to [8]. The power of the Weisfeiler-Leman algorithm to distinguish CFI-graphs can now
conveniently be expressed in terms of the tree-width of the base graphs, see [22].

▶ Lemma 25. For every base graph G of tree-width tw(G) ≥ 2, we have

WL-dim(CFI(G, 0)) = WL-dim(CFI(G, 1)) = tw(G).

Construction of the One-Way Switches. We start by defining a base graph. Consider a
wall graph consisting of k − 1 rows of k bricks each. Then, we attach a new vertex v to the
two upper corner vertices of the first row. The resulting graph Bk is depicted in Figure 6.

▶ Lemma 26. The graph Bk has tree-width k + 1, while Bk − v has tree-width k.

Now, we are ready to construct our one-way switches. In our proofs, we actually need
a more explicit version of Lemma 20 in order to precisely control the expressive power fo
the Weisfeiler-Leman algorithm on the whole graph in terms of its expressive power on the
individual gadgets:

M. Lichter, S. Raßmann, and P. Schweitzer 13:21

v

Figure 6 The base graph B6 of the CFI-graphs underlying our one-way switches.

▶ Lemma 27 (compare [19, Lemma 14]). For every k ≥ 2, there is a colored graph Ok with
4-bounded color classes, called k-one-way switch, with an input pair {y1, y2} and an output
pair {x1, x2} satisfying the following properties:
1. The graph Ok

split obtained by splitting the input pair {y1, y2} is identified by k-WL.
2. k-WL splits the output pair {x1, x2} of Ok

split.
3. There is no automorphism of Ok exchanging the output vertices x1 and x2.
Furthermore, there are sets of positions in the bijective (k + 1)-pebble game between Ok and
itself, called trapped and twisted such that
4. every trapped or twisted position is a partial isomorphism,
5. Duplicator can avoid non-trapped positions from trapped ones and non-twisted positions

from twisted ones,
6. for every trapped position a 7→ b, the position ax1 7→ bx1 is also trapped,1
7. for every twisted position a 7→ b, the position ax1 7→ bx2 is also twisted.
8. the positions y1y2 7→ y1y2 and y1y2 7→ y2y1 are both trapped and twisted,
9. every subposition of a trapped position is trapped, and every subposition of a twisted

position is twisted

Proof. Let Ok be the (untwisted) CFI-graph of Bk, but with a CFI-gadget of degree 3 added
for the vertex v instead of a gadget of degree 2. This leaves one outer pair of this gadget free
which we use as our output pair {x1, x2}. Furthermore, we use one of the other two outer
pairs of this same CFI-gadget as the input pair {y1, y2}.

Now, if we fix the output pair {x1, x2} by individualizing one of the two vertices, the
resulting graph corresponds to the usual CFI-graph of H, while switching the pair {x1, x2}
corresponds to the twisted CFI-graph of H . In particular, as these graphs are not isomorphic,
there is no automorphism of Ok switching the pair {x1, x2}, which proves Property 3.

Moreover, splitting the input pair {y1, y2} has the same effect to the power of k-WL as
removing one of the two edges incident to v in the base graph Bk has. When removing
this edge in the base graph, the resulting graph is essentially equivalent to the CFI-graph
of the k × (k + 1)-wall graph with one corner vertex replaced by a CFI-gadget of degree 3
instead of 2. Because exchanging the two vertices of the free outer pair of this degree-3
gadget interchanges the twisted and untwisted CFI-graphs over the base graph, and k-WL
can distinguish CFI-graphs from all other graphs, the resulting graph is identified by k-WL.
This proves Property 1.

1 If the position ax1 7→ bx1 contains more than k + 1 pebbles, this means that every subposition on at
most k + 1 pebbles is trapped.

CSL 2025

13:22 Computational Complexity of the Weisfeiler-Leman Dimension

To show Property 2, we start the bijective (k + 1)-pebble game in position x1 7→ x2.
Then, Spoiler uses the usual strategy of pebbling a wall which they then move from one side
of the wall graph to the other. But because the game started in position x 7→ x′, the two
graphs the game is played on differ in a twist which will finally force Duplicator to lose.

Now, consider again the original graph Ok without splitting the input pair. On this graph,
we can extend every winning position for Duplicator in the bijective k-pebble game between
the untwisted CFI-graph CFI(Bk, 0) and the twisted CFI-graph CFI(Bk, 1) to a position
in the bijective k-pebble game between Ok and itself which is compatible with x1 7→ x2.
Similarly, we can extend every winning position for Duplicator in the bijective k-pebble game
between the untwisted CFI-graph CFI(Bk, 0) and itself to a position between Ok and itself
which is compatible with x1 7→ x1.

We call the former positions twisted and the latter positions trapped. Properties 4, 6, 7
and 9 are then immediate, and Property 5 follows from Lemma 25 together with Lemma 26.

Because v lies on a cycle in Bk, there exists an automorphism of CFI(Bk) which twists
both outer pairs of the gadget corresponding to v. Lifting this automorphism to Ok yields
an automorphism switching y1 and y2 whilst fixing x1 and x2. This proves Property 8. ◀

Finite Variable Counting Logics with Restricted
Requantification
Simon Raßmann #

TU Darmstadt, Germany

Georg Schindling #

TU Darmstadt, Germany

Pascal Schweitzer #

TU Darmstadt, Germany

Abstract
Counting logics with a bounded number of variables form one of the central concepts in descriptive
complexity theory. Although they restrict the number of variables that a formula can contain, the
variables can be nested within scopes of quantified occurrences of themselves. In other words, the
variables can be requantified. We study the fragments obtained from counting logics by restricting
requantification for some but not necessarily all the variables.

Similar to the logics without limitation on requantification, we develop tools to investigate the
restricted variants. Specifically, we introduce a bijective pebble game in which certain pebbles can
only be placed once and for all, and a corresponding two-parametric family of Weisfeiler-Leman
algorithms. We show close correspondences between the three concepts.

By using a suitable cops-and-robber game and adaptations of the Cai-Fürer-Immerman construc-
tion, we completely clarify the relative expressive power of the new logics.

We show that the restriction of requantification has beneficial algorithmic implications in terms
of graph identification. Indeed, we argue that with regard to space complexity, non-requantifiable
variables only incur an additive polynomial factor when testing for equivalence. In contrast, for all
we know, requantifiable variables incur a multiplicative linear factor.

Finally, we observe that graphs of bounded tree-depth and 3-connected planar graphs can be
identified using no, respectively, only a very limited number of requantifiable variables.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Theory of
computation → Complexity theory and logic

Keywords and phrases Requantification, Finite variable counting logics, Weisfeiler-Leman algorithm

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.14

Related Version Full Version: https://arxiv.org/abs/2411.06944

Funding The research of the second and third author leading to these results has received funding
from the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (EngageS: grant agreement No. 820148).

1 Introduction

Descriptive complexity is a branch of finite model theory that essentially aims at characterizing
how difficult logical expressions need to be in order to capture particular complexity classes.
While we are yet to find or rule out a logic capturing the languages in the complexity class P,
there is an extensive body of work regarding the descriptive complexity of problems within P.
Most notably, there is the work of Cai, Fürer, and Immerman [3] which studies a particular
fragment of first-order logic. This is the fragment Ck in which counting quantifiers are
introduced into the logic, but the number of variables is restricted to being at most k. The
seminal result in [3] shows that this logic fails to define certain graphs up to isomorphism,
which in turn proves that inflationary fixed-point logic with counting IFP+C fails to capture P.

© Simon Raßmann, Georg Schindling, and Pascal Schweitzer;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 14; pp. 14:1–14:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rassmann@mathematik.tu-darmstadt.de
https://orcid.org/0000-0003-1685-410X
mailto:schindling@mathematik.tu-darmstadt.de
https://orcid.org/0009-0003-1304-5072
mailto:schweitzer@mathematik.tu-darmstadt.de
https://orcid.org/0009-0001-3585-8213
https://doi.org/10.4230/LIPIcs.CSL.2025.14
https://arxiv.org/abs/2411.06944
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Finite Variable Counting Logics with Restricted Requantification

Although the fragment Ck restricts the number of variables, it is common for variables
to be reused within a single logical formula. In particular, variables can be nested within
scopes of quantified occurrences of themselves. In other words, they can be requantified. In
our work, we are interested in understanding what happens if we limit the ability to reuse
variables through requantification. In fact, we may think of reusability as a resource (in
the vein of time, space, communication, proof length, advice etc.) that should be employed
economically.

It turns out that the ability to limit requantification provides us with a more detailed lens
into the landscape of descriptive complexities within P, much in the fashion of fine-grained
complexity theory.

Results and techniques. Let us denote by C(k1,k2) the fragment of first-order logic with
counting quantifiers in which the formulas have at most k1 variables that may be requantified
and at most k2 variables that may not be requantified.

First, we show that many of the traditional techniques of treating counting logics can be
adapted to the setting of limited requantification. Specifically, it is well known that there is
a close ternary correspondence between the logic Ck, the combinatorial bijective k-pebble
game, and the famous (k−1)-dimensional Weisfeiler-Leman algorithm [3, 22, 26]. We develop
versions of the game and the algorithm that also have a limit on the reusability of resources.
For the pebble game, a limit on requantification translates into pebbles that cannot be picked
up anymore, once they have been placed. For the Weisfeiler-Leman algorithm, the limit on
requantification translates into having some dimensions that “cannot be reused”. In fact the
translation to the algorithmic viewpoint is not as straightforward as one might hope at first.
Indeed, we do not know how to define a restricted version of the classical Weisfeiler-Leman
algorithm that corresponds to the logic C(k1,k2). However, we circumvent this problem by
employing the oblivious Weisfeiler-Leman algorithm (OWL). This variant is often used in the
context of machine learning. In fact, Grohe [17] recently showed that k+ 1-dimensional OWL
is in fact exactly as powerful as k-dimensional (classical) WL. We develop a resource-reuse
restricted version of the oblivious algorithm and prove equivalence to our logic. Indeed,
we formally prove precisely matching correspondences between the limited requantification,
limited pebble reusability, and the limited reusable dimensions (Theorem 6).

Next, we conclusively clarify the relation between the logics within the two-parametric
family C(k1,k2). We show that in most cases limiting the requantifiability of a variable strictly
reduces the power of the logic. We argue that no amount of requantification-restricted
variables is sufficient to compensate the loss of an unrestricted variable. However, these
statements are only true if at least some requantifiable variable remains. In fact, exceptionally,
C(1,k2) is strictly less expressive than C(0,k′

2) whenever k′
2 > 2k2 (Theorem 13). To show

the separation results, we adapt a construction of Fürer [13] and develop a cops-and-robber
game similar to those in [12, 19]. In this version, some of the cops may repeatedly change
their location, while others can only choose a location once and for all. Using another graph
construction, we rule out various a priori tempting ideas concerning normal forms in C(k1,k2).
To this end we show that formulas in the logics can essentially become as complicated as
possible, having to repeatedly requantify all of the requantifiable variables an unbounded
number of times, before using a non-requantifiable variable (Corollary 16). In terms of
the pebble game, it seems a priori unclear when an optimal strategy would employ the
non-reusable pebbles. However, the corollary says that in general one has to conserve the
non-reusable pebbles for possibly many moves until a favorable position calls for them.

S. Raßmann, G. Schindling, and P. Schweitzer 14:3

Having gone through the technical challenges that come with the introduction of reusability,
puts us into a position to discuss the implications. Indeed, as our main result, we argue that
our finer grained view on counting logics through restricted requantification has beneficial
algorithmic implications. Specifically, we show that equivalence with respect to the logic
C(k1,k2) can be decided in polynomial time with a space complexity of O

(
nk1 log n

)
, hiding

quadratic factors depending only on k1 and k2 (Theorem 24). This shows that while
the requantifiable variables each incur a multiplicative linear factor in required space, the
restricted variables only incur an additive polynomial factor. In particular, equivalence with
respect to the logics C(0,k2) can be decided in logarithmic space. To show these statements, we
leverage the fact that, because non-requantifiable variables cannot simultaneously occur free
and bound, the C(k1,k2)-type of a variable assignment does not depend on the C(k1,k2)-type
of assignments which disagree regarding non-requantifiable variables. Moreover, we use
ideas from an algorithm of Lindell, which computes isomorphism of trees in logarithmic
space [30] to implement the iteration steps of our algorithm. Generally, we believe the new
viewpoint may be of interest in particular for applications in machine learning, where the
WL-hierarchy appears to be too coarse for actual applications with graph neural networks
(see for example [1, 2, 31, 40]). In the process of the space complexity proof, we also show
that the iteration number of the resource-restricted Weisfeiler-Leman algorithm described
above is at most (k2 + 1)nk1 − 1 (Corollary 19).

Justifying the new concepts of restricted reusability, we observe that there are interesting
graph classes that are identified by the logics C(k1,k2). We argue that C(0,d+1) identifies all
graphs of tree-depth at most d (Theorem 27) and that C(2,2) identifies all 3-connected planar
graphs (Theorem 33).

Outline of the paper. After briefly providing necessary preliminaries (Section 2) we
formally introduce the logics C(k1,k2), the pebble game with non-reusable pebbles, the
(k1, k2)-dimensional oblivious Weisfeiler-Leman algorithm, and prove the correspondence
theorem between them (Section 3). We then relate the power of the logics to each other and
rule out certain normal forms (Section 4). We then analyze the space complexity (Section 5)
and finally provide two classes of graphs that are identified by our logics (Section 6).

Further related work. In addition to the references above, let us mention related investiga-
tions. Over time, a large body of work on descriptive complexity has evolved. For insights into
fundamental results regarding bounded variable logics, we refer to classic texts [25, 26, 33, 34].
However, highlighting the importance of the counting logics Ck, let us at least mention the
Immerman-Vardi theorem [24, 39]. It says that on ordered structures, least fixed-point logic
LFP captures P. Since LFP has the same expressive power as IFP+C on ordered structures,
also IFP+C, whose expressive power is closely related to the expressive power of the logics Ck,
captures P. We should also mention the work of Hella [22] introducing the bijective k-pebble
game which forms the basis for our resource restricted versions.
(Counting logics on graph classes) Because of the close correspondence between the logic

Ck and the (k− 1)-dimensional Weisfeiler-Leman algorithm, our investigations are closely
related to the notion of the Weisfeiler-Leman dimension of a graph defined in [15]. Given
a graph G this is the least number of variables k such that Ck+1 identifies G. In particular,
on every graph class of bounded Weisfeiler-Leman dimension, the corresponding finite
variable counting logic captures isomorphism. Graph classes with bounded Weisfeiler-
Leman dimension include graphs with a forbidden minor [14] and graphs of bounded
rank-width (or equivalently clique width) [20], which in both cases is also shown to imply

CSL 2025

14:4 Finite Variable Counting Logics with Restricted Requantification

that IFP+C captures P on these classes. For a comprehensive survey we refer to [27]. Our
observations for planar graphs follow from techniques bounding the number of variables
required for the identification of planar graphs [28]. Other recent classes not already
captured by the results on excluded minors and rank-width include, for example, some
polyhedral graphs [29], some strongly regular graphs [4], and permutation graphs [21].

(Logic and tree decompositions) In [9] and independently [8] it was shown that Ck-
equivalence is characterized by homomorphism counts from graphs of tree-width at
most k−1. Likewise, homomorphism counts from bounded tree-depth graphs characterize
equivalence in counting logic of bounded quantifier-rank [16]. Recently, these results were
unified to characterize logical equivalence in finite variable counting logics with bounded
quantifier-rank in terms of homomorphism counts [12].

(Space complexity) Ideas underlying Lindell’s logspace algorithm for tree isomorphism have
also been used in the context of planar graphs [6] and more generally bounded genus
graphs [10]. Similar results exist for classes of bounded tree-width [5, 11].

(Further recent results) Let us mention some quite recent results in the vicinity of our work
that cannot be found in the surveys mentioned above. Regarding the quantifier-rank
within counting logics, there is a recent superlinear lower bound [19] improving Fürer’s
linear lower bound construction [13]. Further, very recent work on logics with counting
includes results on rooted unranked trees [23] and inapproximability of questions on
unique games [35]. Finally, there has been a surge in research on descriptive complexity
within the context of machine learning (see [17, 36, 37]).

2 Preliminaries

General notation. For n ∈ N+ we use [n] to denote the n-element set {1, . . . , n}. We use
the notation {{v1, . . . , vn}} for multisets. For k1, k2 ∈ N+, we fix the variable sets [xk1] :=
{x1, . . . , xk1}, [yk2] := {y1, . . . , yk2}, and [xk1 , yk2] := {x1, . . . , xk1 , y1, . . . , yk2}. Given a set
V , a partial function α : [xk1 , yk2] ⇀ V assigns to every variable z ∈ [xk1 , yk2] at most one
element α(z) ∈ V . If α does not assign an element to z, we write α(z) = ⊥. Also, we write
im(α) for the image of α. With a finite set V and α : [xk1 , yk2] ⇀ V we associate the total
function α : [xk1 , yk2] → V ∪̇ {⊥}, which we also view as a [xk1 , yk2]-indexed (k1 + k2)-tuple.
For z ∈ [xk1 , yk2] and v ∈ V , the function α[z/v] is defined as α but with α(z) replaced by v.

Graphs. A graph is a pair G = (V (G), E(G)) consisting of a finite set V (G) of vertices and
a set E(G) ⊆

(
V (G)

2
)

of edges. We write |G| for the number of vertices, called the order of G.
For a vertex v ∈ V (G) we define the neighborhood NG(v) := {w ∈ V (G) : {v, w} ∈ E(G)}
and the degree dG(v) := |NG(v)| of v in G. We call v universal in G if NG(v) = V (G) \ {v}.
A colored graph consists of a graph G and a coloring function χ : V (G) → C with a finite,
ordered set C of colors. For a colored graph G and vertices v1, . . . , vn ∈ V (G) the graph
G(v1,...,vn) is obtained by assigning new and distinct colors to the vertices v1, . . . , vn in G.
The vertices v1, . . . , vn are then called individualized. An isomorphism of (colored) graphs G
and H is a bijection φ : V (G) → V (H) that preserves edges, non-edges, and vertex-colors.

We denote the complete graph on n vertices by Kn, that is, the graph with vertex set
[n] and all possible edges included. A star of degree n is a graph consisting of one universal
vertex of degree n and its neighbors of degree 1.

First-order logic with counting. First-order logic with counting C is an extension of first-
order logic by counting quantifiers ∃≥k for all k ∈ N. These intuitively state that there exist
at least k distinct vertices satisfying the formula that follows.

S. Raßmann, G. Schindling, and P. Schweitzer 14:5

Over the language of colored graphs with variable set V, formulas are inductively built
up from atomic formulas (for stating equality or adjacency of vertices as well as for stating
that a vertex has a given vertex color) via negation (¬), conjunction (∧), disjunction (∨),
implication (→), and quantification over vertices via ∀, ∃ and the counting quantifiers ∃≥k.
For a colored graph G, a variable assignment α : V → V (G), and a formula φ ∈ C, we write
G,α |= φ if the graph G together with the variable assignment α satisfies the formula φ.

The quantifier-rank qr(φ) of a formula φ is the maximum depth of nested quantifiers
in the formula. The set of free variables free(φ) of a formula φ is defined as the set of all
variables that occur outside the scope of a corresponding quantifier in φ. If free(φ) = ∅ the
formula φ is called a sentence. The set of bound variables bound(φ) is the set of all variables
that occur quantified in φ. If we restrict to a finite set of k ∈ N+ variables, the resulting
logic is called k-variable counting logic and denoted by Ck. For r ∈ N the quantifier-rank-r
counting logic Cr is obtained by restricting formulas in C to quantifier-rank at most r. The
k-variable quantifier-rank-r counting logic is defined as Ck

r := Ck ∩ Cr.
As a general reference on finite variable logics, we refer to [33].

The Weisfeiler-Leman algorithm. Let k ≥ 1 and G be a colored graph. The k-dimensional
Weisfeiler-Leman algorithm (short k-WL) iteratively computes a coloring of the k-tuples of
vertices of G. We also view the k-tuples as total functions α : {x1, . . . , xk} → V (G). Initially,
each tuple α ∈ V (G)k is colored by wl(0)

k (G,α) := atpk(G,α). Here, atpk(G,α) is the atomic
type of α in G, i.e., the set of all atomic formulas with variables in {x1, . . . , xk} satisfied
by the colored graph G[im(α)] together with the assignment α. For every r ∈ N, we then
inductively set

wl(r+1)
k (G,α) := (wl(r)

k (G,α); {{(wl(r)
k (G,α[xi/u]))i∈[k] : u ∈ V (G)}})

whenever k ≥ 2, but for the case k = 1 we set

wl(r+1)
k (G,α) := (wl(r)

k (G,α); {{wl(r)
k (G, u) : u ∈ NG(α)}}).

We write wl(r)
k (G) for the coloring of all k-tuples of vertices of G assigning wl(r+1)

k (G,α) to α.
Since the definition of wl(r+1)

k (G,α) includes the color wl(r)
k (G,α) of the previous iteration,

the coloring wl(r+1)
k (G) refines the coloring wl(r)

k (G). That is, whenever wl(r+1)
k (G,α1) =

wl(r+1)
k (G,α2) for α1, α2 ∈ V (G)k, then we also have wl(r)

k (G,α1) = wl(r)
k (G,α2). Since there

are exactly |V (G)|k-many k-tuples of vertices, there exists an r < |V (G)|k such that wl(r)
k (G)

induces the same partition of color classes as wl(r+1)
k (G). It follows from the definition of the

refinement that this implies wl(r)
k (G) induces the same partition as wl(r′)

k (G) for all r′ ≥ r. In
this case we say that k-WL stabilizes after at most r iterations on the graph G. If r is minimal
with this property, we write wl(∞)

k (G) := wl(r+1)
k (G) and call wl(∞)

k (G) the stable coloring. For
a second colored graph H , we say that k-WL distinguishes G and H after r iterations if there
exists a color c such that |{α ∈ V (G)k : wl(r)

k (G,α) = c}| ̸= |{β ∈ V (H)k : wl(r)
k (H,β) = c}|.

Besides the classical k-dimensional Weisfeiler-Leman algorithm, there also exists a vari-
ant, called the (k + 1)-dimensional oblivious Weisfeiler-Leman algorithm (short (k + 1)-
OWL). This variant colors (k + 1)-tuples of vertices, which we again view as total func-
tions α : {x1, . . . , xk+1} → V (G). Initially, all tuples are colored by their atomic type:
owl(0)

k+1(G,α) := atpk+1(G,α). Then, this coloring is iteratively refined by setting

owl(r+1)
k+1 (G,α) := (owl(r)

k+1(G,α); {{owl(r)
k+1(G,α[xi/u]) : u ∈ V (G)}}i∈[k+1]).

The stable coloring owl(∞)
k+1(G) and the notion of distinguishing graphs is defined as for k-WL.

CSL 2025

14:6 Finite Variable Counting Logics with Restricted Requantification

It turns out that k-WL and (k + 1)-OWL have the same distinguishing power.

▶ Lemma 1 ([17, Lemma A.1, Corollary V.7]). Let G and H be graphs, α ∈ V (G)k+1 and
β ∈ V (H)k+1. Then the following are equivalent for every r ∈ N:
1. owl(r)

k+1(G,α) = owl(r)
k+1(H,β),

2. atpk+1(G,α) = atpk+1(H,β) and for all i ∈ [k+1], we have wl(r)
k (G,α ̸=i) = wl(r)

k (H,β ̸=i),
where α ̸=i is the k-tuple obtained from α by deleting the i-th entry.

Moreover, two graphs are distinguished by k-WL if and only if they are distinguished by
(k + 1)-OWL.

3 Finite Variable Counting Logics with Restricted Requantification

When working in the logic Ck, it is often necessary to requantify variables in order to express
certain properties. We introduce finite variable first-order logic with counting quantifiers and
restricted requantification to study this issue. We then define an Ehrenfeucht-Fraïssé-style
game as an important tool for the analysis of the newly introduced logic by game-theoretic
arguments. Finally, we devise a variant of k-OWL that precisely captures the expressive
power of the logic and game and prove a characterization that closely ties the reusable
and non-reusable resources among these objects. First, we give a precise definition of
requantification.

▶ Definition 2. Consider the counting logic C over a set of variables V. A variable x ∈ V is
said to be requantified in a formula φ ∈ C if either x ∈ free(φ) ∩ bound(φ) or if there exist a
subformula Qxψ of φ and in turn a subformula Q′xχ of ψ with Q,Q′ ∈ {∀, ∃}∪{∃≥n : n ∈ N}.
We define the logic C(k1,k2) as the fragment of C over the fixed variable set V = [xk1 , yk2]
consisting of those formulas in which the variables from {y1, . . . , yk2} are not requantified.
The fragment of C(k1,k2) with quantifier-rank at most r ∈ N is denoted by C(k1,k2)

r .

▶ Example 3. Consider the following C(2,1)
3 formula:(

∃y1¬E(x2, y1)
)
∧∃≥4x1

(
E(x2, x1)∧∃y1

(
¬E(x1, y1)

)
∧∀x2

(
¬E(x2, x1) → ∃≥3x1E(x1, x2)

))
expressing that the vertex x2 is not universal and has at least four non-universal neighbors
such that every non-neighbor of those has degree at least three. The variable x2 is requantified
in this formula since it occurs free and bound. The variable x1 is requantified because the
subformula ∃≥3x1E(x1, x2) occurs within the scope of the outermost quantification ∃≥4x1.
The variable y1 however is not requantified since neither of its quantifications occurs in the
scope of the other.

The central question we will investigate in the following is how the non-requantifiability
restriction affects the expressive power of the logic C(k1,k2). To this end, we use the notation
C(k1,k2) ⪯ C(k′

1,k′
2) if every pair of graphs distinguished by C(k1,k2) is also distinguished by

C(k′
1,k′

2). We also write C(k1,k2) ≡ C(k′
1,k′

2) if the two logics distinguish exactly the same
pairs of graphs and C(k1,k2) ≺ C(k′

1,k′
2) if the relation is strict. In the case of unrestricted

requantification (i.e. k2 = 0) it is clear that C(k1,0) ⪯ C(k1+1,0). In this terminology, the
central result of [3] is that this relation is strict for all k1 ∈ N. For the case of restricted
requantification we make the simple observation that having more variables is at least as
expressive as having fewer variables (independent of their ability to be requantified). We also
observe that requantifiable variables are at least as expressive as non-requantifiable variables.
That is, for all k1, k2 ∈ N with k1 + k2 ≥ 1 it holds that C(k1,k2) ⪯ C(k1,k2+1) ⪯ C(k1+1,k2).

S. Raßmann, G. Schindling, and P. Schweitzer 14:7

Also, observe that having only non-requantifiable variables (i.e. k1 = 0) bounds the
quantifier-rank to at most k2 and in turn every sentence of quantifier-rank at most k2 can be
rewritten using at most k2 non-requantifiable variables. More precisely, we have C(0,k2) ≡ Ck2 .

Next, we establish an Ehrenfeucht-Fraïssé-style game which closely corresponds to the
power of the previously defined logics with respect to distinguishing graphs. The game is a
variant of the bijective pebble game introduced in [22] with the additional restriction that
some pebbles may not be picked up again once placed.

▶ Definition 4. Suppose k1, k2 ∈ N and k1 + k2 ≥ 1. For colored graphs G and H, we define
the bijective (k1, k2)-pebble game BP(k1,k2)(G,H) as follows:

The game is played by the players Spoiler, denoted by (S), and Duplicator, denoted by
(D), with one pair of pebbles for each variable in [xk1 , yk2]. The pebble pairs in [xk1] are
called reusable and the pebble pairs in [yk2] are called non-reusable.

The game proceeds in rounds, each of which is associated with a pair of partial functions
α : [xk1 , yk2] ⇀ V (G), β : [xk1 , yk2] ⇀ V (H) with dom(α) = dom(β). We call such a pair
of partial functions a (k1, k2)-configuration on the pair G,H. These functions indicate the
placement of the pebble pairs on the graphs. For a pebble pair z ∈ [xk1 , yk2] and vertices
v ∈ V (G), w ∈ V (H) we have α(z) = v, β(z) = w whenever the two pebbles of the pair z
are placed on v and w, respectively. If not specified otherwise, both games start from the
empty configuration given by dom(α) = dom(β) = ∅. One round of the game with current
configuration (α, β) consists of the following steps:
1. (S) picks up a pebble pair z ∈ [xk1 , yk2] such that z ∈ [xk1] or α(z) is undefined. If no

such z exists, the winning condition is checked directly.
2. (D) chooses a bijection f : V (G) → V (H).
3. (S) chooses w ∈ V (G) and f(w) ∈ V (H) to be pebbled with the pair z.
4. The new configuration is given by (α[z/w], β[z/f(w)]).

The winning conditions are as follows:
(S) wins immediately, if the initial configuration (α, β) does not induce a partial isomor-
phism. That is, the function h : im(α) → im(β), α(z) 7→ β(z) is not a graph isomorphism
from G[im(α)] to H[im(β)].
(S) wins if (D) cannot choose a bijection f , i.e., if |G| ̸= |H|.
(S) wins after the current round if the configuration (α, β) does not induce a partial
isomorphism. Otherwise, the game continues and (D) wins the game if (S) never wins a
round.

For r ∈ N+ we define the game variant BPr
(k1,k2), which has the additional winning condition

that (D) wins the game if (S) does not win after r rounds.

We now turn to devise an algorithmic counterpart of the logic C(k1,k2) and the game
BP(k1,k2). It is an adaptation of the oblivious Weisfeiler-Leman algorithm k-OWL.

Indeed, to capture C(k1,k2)-equivalence, we iteratively color (partial) (k1 + k2)-tuples of
vertices of a given graph with the previous color, and a sequence of multisets corresponding to
variables as in k1-OWL. We deviate from the classical oblivious Weisfeiler-Leman algorithm
by treating some entries of the tuple as non-reusable: For y ∈ [yk2] with α(y) ̸= ⊥, the
variable y is already assigned in the logic, respectively the non-reusable pebble is already
placed in the game. Thus, the entry in α corresponding to this variable should not be
replaced by other vertices, but be kept fixed. For this reason we utilize the advantage of
oblivious Weisfeiler-Leman that each multiset corresponds to exactly one variable and pebble
pair respectively.

CSL 2025

14:8 Finite Variable Counting Logics with Restricted Requantification

Recall that we can view a variable assignment α : [xk1 , yk2] ⇀ V (G) for a graph G as a
[xk1 , yk2]-indexed (k1 + k2)-tuple over V (G) ∪̇ {⊥}, which we denote by α. For a variable
assignment α, we set J(α) := {j ∈ [k2] : α(yj) = ⊥}.

▶ Definition 5. Let G be a graph and k1, k2 ∈ N with k1 + k2 ≥ 1. The (k1, k2)-dimensional
oblivious Weisfeiler-Leman algorithm (short (k1, k2)-OWL) iteratively computes a coloring
of [xk1 , yk2]-indexed (k1 + k2)-tuples over V (G) ∪̇ {⊥}.

Initially, each tuple α is colored by its atomic type in G: owl(0)
(k1,k2)(G,α) := atpk1+k2

(G,α).
This coloring is then refined recursively: for every r ∈ N, we define

owl(r+1)
(k1,k2)(G,α) := (owl(r)

(k1,k2)(G,α),{{owl(r)
(k1,k2)(G,α[xi/w]) : w ∈ V (G)}}i∈[k1],

{{owl(r)
(k1,k2)(G,α[yj/w]) : w ∈ V (G)}}j∈J(α))

Just as in the classical case, the coloring owl(r+1)
(k1,k2)(G) refines owl(r)

(k1,k2)(G) and eventually
stabilizes. We denote the stable coloring by owl(∞)

(k1,k2)(G).
The correspondence of counting logic, pebble game, and algorithm for restricted reusability

now is as follows:

▶ Theorem 6. Let G,H be colored graphs and k1, k2 ∈ N with k1 + k2 ≥ 1. Then for all
(k1, k2)-configurations (α, β) and r ∈ N the following are equivalent:
1. For every φ ∈ C(k1,k2)

r with free(φ) ⊆ dom(α) and free(φ) ∩ [yk2] = dom(α) ∩ [yk2] it holds
that G,α |= φ ⇔ H,β |= φ.

2. (D) has a winning strategy for BPr
(k1,k2)(G,H) with initial configuration (α, β).

3. It holds that owl(r)
(k1,k2)(G,α) = owl(r)

(k1,k2)(H,β).

The theorem can be proved by carefully adapting the proof of [3, Theorem 5.2] by treating
non-requantifiable variables separately.

4 The Role of Reusability

We investigate the interplay of requantifiable and non-requantifiable variables in C(k1,k2)

using the game-theoretic characterization provided by Theorem 6. To this end, we utilize
the CFI construction from [3] in the variant employed in [13]. The construction starts from
a so-called base graph, that is, a connected and colored graph such that every vertex receives
a unique natural number as color. By our convention, the coloring induces a linear ordering
on the vertices of the base graph. The vertices and edges of the base graph are called
base vertices and base edges, respectively. From a base graph G the CFI graph X(G) is
constructed by replacing each base vertex in G by a gadget consisting of gadget vertices but
not edges. Gadgets corresponding to adjacent base vertices are then connected by adding
edges between gadget vertices. To twist a base edge {u, v} ∈ E in X(G) means to replace
every edge between the corresponding gadgets by a non-edge and every non-edge by an edge.
The twisted CFI graph X̃(G) is obtained by twisting an arbitrary base edge e ∈ E(G) in
X(G).

We introduce a variant of the cops-and-robber game used in [19] to simulate the game
BP(k1,k2) on CFI graphs via a game played only on the base graph. Our variant involves
non-reusable cops as a way of restricting reusability of resources.

S. Raßmann, G. Schindling, and P. Schweitzer 14:9

▶ Definition 7. The cops-and-robber game CR(k1,k2)(G) is played on a base graph G between
a group of k1 +k2 cops and one robber. The cops are denoted by the elements of [xk1 , yk2] and
a cop xi is called reusable while a cop yj is called non-reusable. Each round of the game is
associated with a partial function γ : [xk1 , yk2] ⇀ V (G) and an edge e ∈ E(G). The function
γ encodes the current positions of the cops while the edge e is the position of the robber.
Initially, there are no cops on the vertices and the robber is placed on some edge of the base
graph. One round of the game with current position (γ, e) consists of the following steps:
1. The cops choose z ∈ [xk1 , yk2] such that z ∈ [xk1] or γ(z) is undefined. If no such z exists,

the winning condition is checked directly. Then a destination w ∈ V (G) for z is declared.
2. The robber chooses an edge e′ in the connected component of e in G− im(γ[z/⊥]).
3. The cop z is placed on the vertex w.
4. The new position of the game is given by (γ[z/w], e′).

The winning condition is as follows:
The cops win the game if at the end of the current round both vertices incident to the
robber edge e′ hold cops. The robber wins if the cops never win.

We also introduce the game CRr
(k1,k2)(G) with the additional winning condition that the robber

wins if the cops do not win in r rounds.

Intuitively, in the game BP(k1,k2)(X(G), X̃(G)) Spoiler has to catch the twist in X̃(G)
with pebbles to show the difference of the graphs. This corresponds to moving the cops
(according to the reusability of the used pebbles) in CR(k1,k2)(G). Duplicator, however,
moves the twist in X̃(G) using automorphisms of the graph to hide the difference, which
corresponds to moving the robber in CR(k1,k2)(G). Following similar arguments from [7, 13],
this yields the following lemma, stating that the bijective pebble game on CFI graphs can be
simulated appropriately.

▶ Lemma 8. Let k1 + k2 ≥ 2 and r ∈ N. Then the robber has a winning strategy in
CRr

(k1,k2)(G) if and only if (D) has a winning strategy in BPr
(k1,k2)(X(G), X̃(G)).

We now prove a strict hierarchy for the logics C(k1,k2) by providing, for every pair of
logics we want to separate, two CFI graphs X(G), X̃(G) that are distinguished by one of the
logics, but not the other. To show this, it now suffices to provide strategies for the game
CR(k1,k2)(G) by Lemma 8 and Theorem 6. The idea for the choice of the base graphs G is
inspired by [13] where grid graphs were chosen as base graphs.

▶ Definition 9. The graph

Gh×ℓ := ({vi,j : i ∈ [h], j ∈ [ℓ]}, {{vi,j , vr,s} : |i− r| + |j − s| = 1})

is called the grid graph with h rows and ℓ columns. We also call h the height and ℓ the length
of the grid. We say that the cops build a barrier in the game CR(k1,k2) played on a graph
G containing a grid if they are placed on a separator of the graph G disconnecting the first
column from the last column of the grid.

First, we show the advantages of reusability: When the cops-and-robber game is played
on the grid graph Gh×ℓ with at least h+ 1 cops, the cops can be placed on a column to form
a barrier and move it through the grid maintaining this formation by using the additional
cop. To show the separation, we choose the base graph as a grid of sufficient length such that
the cops are required to move or build a barrier repeatedly. This makes reusability necessary
as all non-reusable cops are placed at some point and cannot be used to move a barrier any
further.

CSL 2025

14:10 Finite Variable Counting Logics with Restricted Requantification

▶ Lemma 10. For all k1, k2, k
′
1, k

′
2 ≥ 0, if k1 > max(k′

1, 1), then C(k1,k2) ̸⪯ C(k′
1,k′

2).

Proof. First, consider the game CR(k1,k2)(G(k1−1)×(k122k′
2 +1)

). The cops can build a barrier
in the middle of the grid and move it towards the robber only using reusable cops. This
is a winning strategy for the cops since the size of the component containing the robber
is decreased by a constant in each round and eventually vanishes. On the other hand, we
show that the robber has a winning strategy in the game CR(k′

1,k′
2)(G(k1−1)×(k122k′

2 +1)
) by

induction on k′
2. The base case for k′

2 = 0 is the game CR(k′
1,0)(G(k1−1)×(k1+1)), for which

the robber has a winning strategy as a barrier can be built, but not moved. For the inductive
step assume k′

2 > 0 and consider the game CR(k′
1,k′

2+1)(G(k1−1)×(k122k′
2+2+1)

). Using only
reusable cops, the cops can reduce the size of the robber component with a barrier. However,
the size remains at least (k1 − 1) · (k122k′

2+1 + 1), since the robber can choose the larger
induced component. When a reusable cop is reused before a non-reusable cop was used
to build another barrier, the reusable barrier breaks down and the robber as an escape
strategy. Using non-reusable cops, the cops can build another wall to reduce the size of the
robber component to (k1 − 1) · (k122k′

2 + 1). Again, the robber chooses the larger induced
component. But now the remaining game is CR(k′

1,k′
2−k1+2)(G(k1−1)×(k122k′

2 +1)
) and we have

k′
2 ≥ k′

2 − k1 + 2. Thus, by the inductive hypothesis the robber has a winning strategy for
the remaining game. ◀

Second, we show the advantages of mere capacity: When the base graph is chosen as a
complete graph, the robber can choose any edge independently of the choice of vertices by
the cops and the only possibility to win for the cops is to have sufficient capacity. In this
case, capacity is more valuable than reusability.

▶ Lemma 11. For all k1, k2, k
′
1, k

′
2 ≥ 0, if k1 + k2 > k′

1 + k′
2, then C(k1,k2) ̸⪯ C(k′

1,k′
2).

Proof. In the game CR(k1,k2)(Kk1+k2), the cops have a winning strategy just by covering all
base vertices. In contrast, in the game CR(k′

1,k′
2)(Kk1+k2) the robber has a winning strategy.

Whenever a cop is picked up there is one edge that is not incident to a cop and thus yields a
safe escape for the robber. ◀

Third, we treat the special case of a single requantifiable variable: Intuitively, at least
two reusable cops are needed to move a barrier for an arbitrarily large distance in a base
graph. When only one single reusable cop is available, the distance that can be covered by
a barrier of cops is bounded by 2k1 + 1 because for every other move a non-reusable cop
must be used. The perfect binary tree of depth d is the binary tree Bd such that all interior
vertices have two children and all leaves have the same depth.

▶ Lemma 12. For all k2, k
′
2 ≥ 1 it holds that C(1,k2) ̸⪯ C(0,k′

2) if and only if k′
2 ≤ 2k2.

Proof. In the game CR(1,k2)(B2k2), the cops have a winning strategy by alternately using
non-reusable cops and the reusable cop. In the game CR(0,2k2)(B2k2) the robber has a
winning strategy as the non-reusable cops are exhausted before the robber is caught. This
yields C(1,k2) ̸⪯ C(0,2k2). For k′

2 ≤ 2k2 we get C(1,k2) ̸⪯ C(0,k′
2) since the robber wins with

the same strategy in CR(0,k′
2)(B2k2). For k′

2 > 2k2, let (S) have a winning strategy for
BP(1,k2)(G,H). Then (S) has a winning strategy for BP2k2+1

(1,k2) (G,H) since consecutive moves
involving the pebble pair x1 can be replaced by a single move instead. The winning strategy
for (S) in BP2k2+1

(1,k2) (G,H) directly yields a winning strategy for (S) in BP(0,k′
2)(G,H): For

every pebble pair played by (S) in BP2k2+1
(1,k2) (G,H), the player (S) can use a new pair in

BP(0,k′
2)(G,H). ◀

S. Raßmann, G. Schindling, and P. Schweitzer 14:11

With the previous lemmas we can determine the relation of the logics C(k1,k2) and C(k′
1,k′

2)

for any given combination of parameters.

▶ Theorem 13. For all k1, k2 ∈ N and k′
1, k

′
2 ∈ N with k1 + k2, k

′
1 + k′

2 ≥ 2 it holds that
C(k1,k2) ≺ C(k′

1,k′
2) if and only if one of the following assertions holds:

1. k1 < k′
1 and k1 + k2 ≤ k′

1 + k′
2,

2. k1 ≤ k′
1 and k1 + k2 < k′

1 + k′
2, or

3. k1 = 1, k′
1 = 0, and k′

2 > 2k2.
Furthermore, it holds that C(k1,k2) ≡ C(k′

1,k′
2) if and only if (k1, k2) = (k′

1, k
′
2).

This settles the question of how the use of non-requantifiable variables affects the expressive
power of the logic. For the investigation of the logic C(k1,k2) for fixed parameters, it is also of
interest how the non-requantifiable variables behave in concrete formulas of the logic. This
relates closely to asking whether there are normal forms for the logic C(k1,k2) with respect to
reusability. We give a precise answer to this question that rules out many such normal forms.
The idea is to construct a new family of base graphs that allow the use of non-reusable cops
only after all reusable cops have been used a certain number of times.

▶ Definition 14. We construct the graph Ġh×ℓ from the grid graph Gh×ℓ by adding one
additional vertex b, which we call bridge vertex, and the edges {{vi,⌊ ℓ

2 ⌋, b} : i ∈ [h]} ∪
{{b, vi,⌊ ℓ

2 +1⌋} : i ∈ [h]} to Gh×ℓ. Using this modified grid, we define the following base graph:
For ℓ ≥ 2, h ≥ 1 and d ≥ 1 we obtain the graph Bd

h×ℓ by replacing every vertex of a
perfect binary tree Bd of depth d by a grid Ġh×ℓ and connect adjacent grids row-wise (see
Figure 1).

▶ Theorem 15. For all k1, k2 ≥ 1 and r ≥ 1 there exist graphs G and H such that (S) has
a winning strategy for BP(k1,k2)(G,H) and in every winning strategy (S) must reuse every
reusable pebble pair at least r times (once if k1 = 1) before using a new non-reusable pebble
pair.

Proof. For k1 > 1, we consider the game CR(k1,k2)(Bk2+1
(k1−1)×2r), see Figure 1. The cops

have the following winning strategy: First, they build a barrier in the root grid (behind the
bridge vertex) by occupying one full column using k1 reusable cops. The barrier can then
be moved towards the robber using the additional reusable cop. When the barrier reaches
the last column, the two subtrees induced by the children of the root grid are disconnected
components with respect to the cops. Thus, the robber has to choose an edge in one of these
components to escape to. The cops move the barrier into the corresponding subtree, which
essentially results in the game CR(k1,k2)(Bk2

(k1−1)×2r). In every grid of the tree, the cops
encounter a bridge vertex that can be covered by one of the k2 non-reusable cops. The game
continues inductively for Ω(rk2) rounds, until the cops use the last remaining non-reusable
cop to cover the bridge vertex in a leaf grid. The barrier can be moved to the end of the grid
and the robber will be caught. Now assume a new non-reusable cop y has been used before
all reusable cops have been (re)used r times at some point of the game. Then the barrier was
not moved out of the current grid at this point, since all reusable cops have to be moved at
least r times to achieve this. Hence, the robber has not chosen a new subtree so far and can
pick an edge in a subtree that does not contain y. The cops need to move the barrier into
that subtree and use non-reusable cops for the bridge vertices. Since y was used in another
subtree, at some point there will be no non-reusable cops left to cover a bridge vertex and
the barrier cannot be moved further without breaking down. Thus, the robber can escape
indefinitely. For k1 = 1 we consider the game CR(1,k2)(B2k2). The cops have the following
winning strategy: First, the reusable cop x1 is placed in the root node. This disconnects

CSL 2025

14:12 Finite Variable Counting Logics with Restricted Requantification

Figure 1 A drawing of the base graph B3
3×4 for Theorem 15.

the subtrees induced by the two children of the root node for the robber, and the robber
has to choose an edge in one of the subtrees of depth 2k2 − 1. Accordingly, a non-reusable
cop y1 is placed on the node inducing that subtree, which again disconnects two subtrees
of depth 2k2 − 2. The cop x1 can be picked up again from the root node to be placed on
the corresponding subtree. Inductively, the cops alternately use non-reusable cops yj and
the reusable cop x1 to cover the next child node. After 2k2 moves, the induced subtree is of
depth 0 and the robber is caught in the edge to a leaf node. If two non-reusable cops are
used consecutively, similar to the case k1 > 1, there are no non-reusable cops left at depth
2k2 − 1 and the remaining reusable cop does not suffice to catch the robber. ◀

Again using Theorem 6 this result translates into the language of logic as follows:

▶ Corollary 16. For all k1, k2 ≥ 1 and r ≥ 1 there exist graphs G,H such that G and
H are not C(k1,k2)-equivalent and for every formula φ ∈ C(k1,k2) that distinguishes G and
H the following holds: There exists a sequence of subformulas ∃≥n1yj1ψ1, . . . , ∃≥nk2 yjk2

ψk2

of φ such that qr(ψk2) = k1 and for ℓ ∈ [k2 − 1] the formula ψℓ+1 is a subformula of ψℓ

with qr(ψℓ) ≥ qr(ψℓ+1) + k1r if k1 > 1 and qr(ψℓ) ≥ qr(ψℓ+1) + 1 if k1 = 1. Moreover,
between the quantifications ∃≥nℓyjℓ

ψℓ and ∃≥nℓ+1yjℓ+1ψℓ+1 all requantifiable variables have
to be requantified r times (once if k1 = 1) in ψℓ.

The necessity of this pattern of (re)quantification rules out various normal forms with
respect to requantification for C(k1,k2) one might have hoped to have. In particular, it is not
sufficient to quantify all non-requantifiable variables directly one after the other.

Regarding classical logics without restricted requantification, Theorem 13 and Corollary 16
yield that for k1, k2 ≥ 1 the power of C(k1,k2) to distinguish graphs is not identical to that of
Ck,Cr, or Ck

r for all k, r ∈ N.

5 Space Complexity

In this section we investigate the space complexity of deciding whether two given graphs are
C(k1,k2)-equivalent. In principle, this can be achieved by testing owl(∞)

(k1,k2)(G) = owl(∞)
(k1,k2)(H)

by Theorem 6. However, a naive implementation of (k1, k2)-OWL requires space Ω(nk1+k2)
and hence provides no improvement compared to the situation with unrestricted reusability.
We seek to improve the space complexity to O

(
nk1 log n

)
when both requantifiable and

non-requantifiable variables are involved. Here the O notation hides factors depending on k1
and k2 but not on n.

S. Raßmann, G. Schindling, and P. Schweitzer 14:13

To achieve this, we observe that the color owl(r)
(k1,k2)(G,α) only depends on the colors

owl(s)
(k1,k2)(G, β) with s < r where β|[yk2] is an extension of α|[yk2]. This allows us to compute

these colorings, while only ever remembering colors of assignments with a few distinct [yk2]-
parts. Moreover, we show that the (k1, k2)-dimensional oblivious Weisfeiler-Leman algorithm
can equivalently be implemented by alternatingly refining with respect to the reusable
dimensions until the coloring stabilizes, and refining with respect to the first unassigned
non-requantifiable variable. We use this to show that the iteration number of (k1, k2)-OWL
is at most (k2 + 1)nk1 − 1.

▶ Definition 17. For colorings χ and χ′ on a set S, we say that χ refines χ′, written χ ⪯ χ′,
if every χ′-color class is a union of χ-color classes. If χ ⪯ χ′ and χ ⪰ χ′, we write χ ≡ χ′.

In the context of colorings, it is natural to understand the oblivious Weisfeiler-Leman
algorithm as a refinement operator, i.e., a function that maps every coloring to a refined
coloring. To make this formal, we define for every coloring χ on assignments α : [xk1 , yk2] ⇀
V (G) the OWL-refinement

owl-ref(k1,k2)(χ)(α) :=
(
χ(α),{{χ(α[xi/w]) : w ∈ V (G)}}i∈[k1],

{{χ(α[yj/w]) : w ∈ V (G)}}j∈J(α)

)
.

This refinement is precisely the refinement that is applied by OWL in each iteration. In
particular, applying it r times to the initial coloring by atomic types yields precisely the
r-round OWL-coloring. That is,

owl-ref(r)
(k1,k2)(atpk1+k2(G)) = owl(r)

(k1,k2)(G).

Note that OWL-refinement is monotone in the sense that for all colorings χ and χ′ with the
property χ ⪯ χ′ it also holds that owl-ref(k1,k2)(χ) ⪯ owl-ref(k1,k2)(χ′).

In order to space-efficiently deal with these refinements, we want to separate the refine-
ments with respect to reusable dimensions from those with respect to non-reusable dimensions.
To do this, note that the definition of owl-ref(k1,k2) still makes sense for colorings assignments
α : [xk′

1
, yk′

2
] ⇀ V (G) for k′

1 ≥ k1 or k′
2 ≥ k2, where the refinement just refines with respect

to some but not all of the dimensions.
Moreover, in order to handle the distinguishing power of (k1, k2)-OWL on two different

graphs, we note that we can also simultaneously apply these refinement operators to colorings
on assignments over two different graphs.

With this terminology at hand, we can clarify the intuition we may gain from Section 4
regarding the employment of non-reusability. That is, in order to distinguish graphs, it suffices
to alternatingly refine with respect to all requantifiable variables and a non-requantifiable
variable.

▶ Lemma 18. For all k1 + k2 ≥ 1, we have

owl(∞)
(k1,k2)(G) ≡ (owl-ref(∞)

(k1,0) ◦ owl-ref(0,k2))(k2)(owl(∞)
(k1,0)(G))

Proof. Because owl(k1,k2) is a finer refinement than owl-ref(k1,0) and than owl-ref(0,k2), the
direction ⪯ is immediate. For the other direction, set

χr :=
(

owl-ref(∞)
(k1,0) ◦ owl-ref(0,k2)

)(r) (
owl(∞)

(k1,0)(G)
)
.

CSL 2025

14:14 Finite Variable Counting Logics with Restricted Requantification

We use the bijective pebble game and show, by induction on r, that for every (k1, k2)-
configuration (α, β) over G with |dom(α) ∩ [yk2]| = k2 − r such that α and β have equal
χr-colors, (D) has a winning strategy in the game BP(k1,k2)(G,G) with initial position (α, β).
This then implies the equality of owl-ref(∞)

(k1,k2)(χ)-colors.
For r = 0, the colors are precisely the colors computed by (k1, k2)-OWL. Thus, (D) has a

winning strategy by Theorem 6.
Now, assume the claim is true for some r and let (α, β) be a (k1, k2)-configuration with

|dom(α)∩ [yk2]| = k2 − (r+1) such that α and β have equal χr+1-colors. By the construction
of (k1, 0)-OWL refinement, (D) can preserve the equality of χr+1-colors as long as (S) picks
up reusable pebble pairs. When (S) picks up a non-reusable pebble pair, (D) can play such
that the resulting positions have the same χr-colors. But then, (D) has a winning strategy
by the induction hypothesis. ◀

Because classical owl(k1,0)-refinement stabilizes after at most nk1 − 1 rounds, this scheme
yields an upper bound on the iteration number of the oblivious Weisfeiler-Leman algorithm.

▶ Corollary 19. The sequence of colorings owl(r)
(k1,k2) computed on a graph G stabilizes after

at most (k2 + 1)nk1 − 1 rounds.

We will now turn to the computation of the OWL-colorings. Because the names of the
OWL-colors consist of nested multisets, they can become exponentially long. The usual
way to deal with this is to either replace after each iteration round all color names by
numbers of logarithmic length, or to not compute the colors at all but only consider the
order on the variable assignments induced by the lexicographic ordering of their OWL-colors.
We will switch between these two viewpoints depending on suitability to the task at hand.
Accordingly, we use two different encodings of the colorings we deal with. Consider a coloring
χ : M → C and an order ≤ on the set of colors C. We say that an algorithm is given
oracle access to the ordering of χ-colors if the algorithm has access to a function that, given
two elements m,m′ ∈ M , returns whether χ(m) ≤ χ(m′). For the second way that our
algorithms interact with colorings, we call a coloring χ′ : M → [|M |] a normalization of χ if
for all m,m′ ∈ M we have χ(m) ≤ χ(m′) if and only if χ′(m) ≤ χ′(m′). Now, we say that
an algorithm is given a function table for χ if for some normalization χ′ of χ the algorithm
is given an array A with A[m] = χ′(m) for all m ∈ M suitably encoded as numbers in [|M |].
Similarly, we say that an algorithm computes a function table for χ if it outputs such an
array. Note that a function table can be stored in space |M | · ⌈log2 |M |⌉ ∈ O(|M | log |M |).

The main technical tool needed for the implementation of owl-ref(k1,k2)-refinements, is
the ability to compare multisets of previously computed colors when given oracle access to a
function comparing these previous colors.

▶ Lemma 20. Given a natural number n in unary, oracle access to a total order ⪯ on [n],
and two multisets M and M ′ on [n] of order at most n, the lexicographic order of M and
M ′ can be decided in logarithmic space using quadratic time. Also, the lexicographical order
of tuples of colors can be computed in logarithmic space.

Proof. Consider two multisets M = {{s1, . . . , sn}} and M ′ = {{s′
1, . . . , s

′
n}}. Note that we

have enough space to store a constant number of elements of [n].
For a number i ∈ [n], we denote the number of occurrences of i in M or M ′ by M(i)

and M ′(i) respectively. Note that these numbers can be computed in logarithmic space and
linear time by simply comparing i to all elements in either set.

We start by finding the minimal element m1 of M and m′
1 of M ′. If m1 ̸= m′

1, we return
their order. Otherwise, if M(m1) ̸= M ′(m1), we return this order.

S. Raßmann, G. Schindling, and P. Schweitzer 14:15

Thus, assume m1 = m′
1 and that they occur in both multisets the same number of times.

Next, we find the second-smallest elements m2 and m′
2 of both sets, and can now forget

about m1 and m′
1. We again compare m2 and m′

2 and their number of occurrences and
possibly return the order accordingly. Iteratively, we only need to remember the i-th smallest
elements to find the (i+ 1)-th smallest elements, and we iteratively compare these elements
and their number of occurrences. ◀

This allows us to compute the order of owl-ref(k1,k2)(χ)-colors in logarithmic space when
we are given oracle access to the order of χ-colors. Using the bound on the iteration number
of (k1, k2)-OWL from Corollary 19, and the fact that we can perform one iteration using
only logarithmic additional space, we immediately obtain an algorithm that can compare
owl(∞)

(k1,k2)-colors using space at most O(nk1 log n), where we again dropped multiplicative
factors depending on k1 and k2. However, this naive implementation will not run in polynomial
time. Indeed, because there are already nk1+k2 many variable assignments, we do not have
enough space to store even the (order of) colors computed in the previous round. Instead,
this naive algorithm recomputes polynomially many previous colors in every step, which
leads to a polynomially branching algorithm with exponential running time.

To remedy this, we make full use of the scheme from Lemma 18. While performing
owl(k1,0)-refinements, we are able to store a function table with the previously computed
colors for all assignments with the same [yk2]-part. This allows us to perform a full owl(∞)

(k1,0)-
refinement in polynomial time and the required space. Only when performing one of the k2
many owl(0,k2)-refinement steps do we need to consider variable assignments with different
[yk2]-parts. In this latter case, we cannot circumvent needing to compute colors for these
assignments polynomially many times. While this does again lead to a polynomially branching
algorithm, the depth of this branching is bounded by k2, which leads to a polynomial running
time increase of nk2 .

For a fixed assignment η : [yk2] ⇀ V (G), we denote by [[xk1 , yk2] ⇀ V (G)]η the set
of assignments α : [xk1 , yk2] ⇀ V (G) whose [yk2]-part is η. Because we only ever need to
compare the colors of two assignments at a time, it will always be sufficient to compute the
OWL-coloring on sets of the form

[[xk1 , yk2] ⇀ V (G)]ηG
∪̇ [[xk1 , yk2] ⇀ V (H)]ηH

for a (0, k2)-configuration (ηG, ηH) over G and H . When restricting ourselves to assignments
in such a set, the coloring computed by (k1, 0)-OWL can be computed as usual:

▶ Lemma 21. Let k1 + k2 ≥ 1, G,H be graphs and (ηG, ηH) be a (0, k2)-configuration
over G,H. Given a function table for a coloring χ on [[xk1 , yk2] ⇀ V (G)]ηG

∪̇ [[xk1 , yk2] ⇀
V (H)]ηH

, a function table for owl-ref(k1,0)(χ) can be computed in time nO(k1) and space
O(k1n

k1 log n).

Proof. Note that
∣∣[[xk1 , yk2] ⇀ V (G)]ηG

∪̇ [[xk1 , yk2] ⇀ V (H)]ηH

∣∣ = 2(n+ 1)k1 , which means
that we can store a function tables for χ and owl-ref(k1,0)(χ) in space

O
(
2(n+ 1)k1 · log

(
2(n+ 1)k1

))
= O

(
k1n

k1 log n
)
.

In addition to these two function tables, we will only need logarithmic space.
In order to compute the function table for owl-ref(k1,0)(χ), we need to refine the coloring

χ with respect to the multisets

{{χ(α[xi/w]) : w ∈ V (G)}} or {{χ(α[xi/w]) : w ∈ V (H)}}

for all i ∈ [k1]. By using the function table for χ as an oracle, we can compare these multisets
in logarithmic additional space using Lemma 20.

CSL 2025

14:16 Finite Variable Counting Logics with Restricted Requantification

This allows us to compare owl-ref(k1,0)(χ)-colors in the required space. Now, we simply
start to compare each variable assignment α with all other assignments and count the number
of assignments whose color is less than or equal to α. Then, we use this count as the new
color of α and insert it into our function table. ◀

By applying Lemma 21 repeatedly until the coloring stabilizes, and only ever storing the
function table from the previous and current iteration round we get the following:

▶ Corollary 22. Let k1 + k2 ≥ 1, G and H be graphs, and (ηG, ηH) be a (0, k2)-configuration
over G and H. Given a function table for a coloring χ on [[xk1 , yk2] ⇀ V (G)]ηG

∪̇
[[xk1 , yk2] ⇀ V (H)]ηH

, a function table for owl-ref(∞)
(k1,0)(χ) can be computed in time nO(k1)

space O(k1n
k1 log n).

Now, we turn to refinements with respect to non-requantifiable variables.

▶ Lemma 23. Let k1 + k2 ≥ 1, G and H be graphs, and χ a coloring on [[xk1 , yk2] ⇀
V (G)] ∪̇ [[xk1 , yk2] ⇀ V (H)].

Given oracle access to the order of χ-colors, we can compute for every (0, k2)-configuration
(ηG, ηH) the function table of owl-ref(0,k2)(χ) on [[xk1 , yk2] ⇀ V (G)]ηG

∪̇ [[xk1 , yk2] ⇀
V (H)]ηH

using space O(k1n
k1 log n+ k2 log n) and time nO(k1).

Proof. Note that we have enough space to hold the function table. In addition, we will only
need logarithmic space.

Using Lemma 20, we can compute the lexicographic ordering of owl-ref(0,k2)(χ)-colors
with logarithmic additional space. We can then compute the function table by assigning to
each assignment α as the new color the number of assignments β in [[xk1 , yk2] ⇀ V (G)]ηG

∪̇
[[xk1 , yk2] ⇀ V (H)]ηH

such that

owl-ref(0,k2)(χ)(β) ≤lex owl-ref(0,k2)(χ)(α),

which is a number in [2(n+ 1)k1]. ◀

Together, these two statements allow us to compare the colors computed by the (k1, k2)-
dimensional oblivious Weisfeiler-Leman algorithm in a time- and space-efficient manner.

▶ Theorem 24. Let k1 + k2 ≥ 1 be fixed. For all (k1, k2)-configurations (α, β) over graphs
G and H, we can decide whether G,α1 ≡C(k1,k2) H,α2 using space O

(
k1(k2 + 1)nk1 log n+

(k2)2 log n
)

and polynomial time.

Proof. By Lemma 18, we have

owl(∞)
(k1,k2)(G) ≡

(
owl-ref(∞)

(k1,0) ◦ owl-ref(0,k2)

)(k2) (
owl(∞)

(k1,0)(G)
)
.

and similarly for H . We show by induction on r that we can compute for every pair of graphs
G1, G2 ∈ {G,H} and every (0, k2)-configuration (η1, η2) over G1 and G2, a function table of

χr :=
(

owl-ref(∞)
(k1,0) ◦ owl-ref(0,k2)

)(r) (
owl(∞)

(k1,0)

)
on [[xk1 , yk2] ⇀ V (G1)]|η1 ∪̇ [[xk1 , yk2] ⇀ V (G2)]|η2 using time nO((k1+1)(r+1)) and space
O

(
k1(r + 1)nk1 log n + k2(r + 1) log n

)
, where owl(∞)

(k1,0)(G1, G2) is the common coloring
computed by (k1, k2)-OWL on both G1 and G2.

S. Raßmann, G. Schindling, and P. Schweitzer 14:17

If r = 0, we only need to compute the classical OWL-coloring. To do this, we first note
that we can compute a function table listing the atomic types of assignments, each encoded
as numbers in [2(n+ 1)k1]. Then, the claim follows from Corollary 22.

For the induction step, assume we can compute function tables for (restrictions of) the
coloring χr for every fixed (0, k2)-configuration (η1, η2) over G1 and G2 in the required time
and space. This in particular implies that we can compute the order of χr-colors of arbitrary
assignments in time nO((k1+1)(r+1)) and space O

(
(r + 1)(k1n

k1 log n+ k2 log n)
)
.

For every fixed (0, k2)-configuration (η1, η2), we can thus compute a function table
for the refined coloring owl-ref(0,k2)(χr) on [[xk1 , yk2] ⇀ V (G)]η1,η2 using space O

(
(r +

2)(k1n
k1 log n + k2 log n)

)
by Lemma 23. Because the algorithm from Lemma 23 runs in

time nO(k1), it can make at most nO(k1) comparisons of previously computed colors, which
means that this step takes time at most nO(k1) · nO((k1+1)r) = nO((k1+1)(r+2)).

Using Corollary 22, we can refine this to a function table of

χr+1 = owl-ref(∞)
(k1,0) ◦ owl-ref(0,k2)(χr)

For r = k2, this yields the claim. ◀

6 Graphs Identified by Logics with Restricted Requantification

We finally give two classes of graphs where very few reusable variables already suffice for
identification. We say that a logic identifies a graph G if it distinguishes G from every
non-isomorphic graph.

First, we show that the logic C(0,d+1) identifies all graphs of tree-depth at most d. Second,
we refine previous work in which it was shown that C(4,0) identifies all planar graphs [28].
By closely inspecting the arguments, we show that already C(2,2) suffices to identify all
3-connected planar graphs.

Graphs of bounded tree-depth
Tree-depth is a graph parameter that intuitively measures how close a graph is to a star [32].
Let G be a graph and let G1, . . . , Gp be the connected components of G. Then the tree-depth
of G is inductively defined as

td(G) :=

1 if |G| = 1
1 + minv∈V (G) td(G− v) if p = 1 and |G| > 1
maxi∈[p] td(Gi) otherwise.

Note that a graph has tree-depth 1 if and only if it is an independent set, and tree-depth 2 if
and only if it is a disjoint union of isolated vertices and stars. Intuitively, graphs of bounded
tree-depth are those which, by repeatedly deleting one vertex in each connected component,
can be eliminated in a bounded number of rounds. We start by showing how to simulate
this deletion of vertices by pebbling them instead.

▶ Definition 25. Let G be a graph with vertex coloring χG and let v ∈ V (G). We define the
colored graph G ≀ v as the graph G− v with the new coloring χG≀v defined by setting

χG≀v(w) :=
{

(χG(w), 1) if {v, w} ∈ E(G)
(χG(w), 0) if {v, w} /∈ E(G)

for all w ∈ V (G) \ {v}.

CSL 2025

14:18 Finite Variable Counting Logics with Restricted Requantification

▶ Lemma 26 ([16, Lemma 4.5]). Let k2 ≥ 2, G,H be graphs with |G| = |H| ≥ 2 and
v ∈ V (G), w ∈ V (H) with χG(v) = χH(w). Then the following are equivalent:
1. (D) has a winning strategy for BP(0,k2)(G,H) with initial position given by α(y1) =

v, β(y1) = w and dom(α) = dom(β) = {y1}.
2. (D) has a winning strategy for BP(0,k2−1)(G ≀ v,H ≀ w).

We can now prove our result on identification of graphs of bounded tree-depth:

▶ Theorem 27. For all d ≥ 1, the logic C(0,d+1) identifies all colored graphs of tree-depth at
most d.

Proof. For two graphs G and C, denote by noc(G,C) the number of connected components
of G that are isomorphic to C. Using the equivalence of the logic and bijective pebble game,
it suffices to prove the following claim, which lends itself better to an inductive proof:

▷ Claim 28. Let G and H be colored graphs, and C a connected, colored graph of tree-
depth at most k2. If noc(G,C) ̸= noc(H,C), then (S) has a winning strategy for the game
BP(0,k2+1)(G,H).

Proof. We argue by induction on k2. If k2 = 1, then C is a single vertex. Thus, G and H

differ in the number of isolated vertices of some specific color, which allows (S) to win in 2
rounds.

For the induction step, assume that the claim is true for k2. Now, consider a graph C

with td(C) ≤ k2 + 1 and assume w.l.o.g. that noc(G,C) > noc(H,C). By the definition of
tree-depth, C contains a vertex c such that td(C − c) ≤ k2. Let s be the number of such
vertices.

We call a vertex v in either G or H C-shrinking if it is contained in a connected component
Cv isomorphic to C, and td(Cv − v) ≤ k2. The number of C-shrinking vertices in G and H

is s · noc(G,C) and s · noc(H,C) respectively. In particular, G contains more C-shrinking
vertices than H.

Now, we describe the winning strategy for (S) in the game BP(0,k2+2)(G,H). First, (S)
picks up the (unused) pebble pair y1, and (D) picks a bijection f : V (G) → V (H). Then there
exist some C-shrinking vertex v ∈ V (G) such that its image f(v) is not C-shrinking in H.
Then (S) places the pebble pair on these two vertices. By Lemma 26, it now suffices to argue
that (D) has a winning strategy for the game BP(0,k2+1)(G ≀ v,H ≀ f(v)). For this, let Cv be
the connected component of v in G, and consider the connected components C(1)

v , . . . , C
(ℓ)
v of

Cv ≀ v ⊆ G ≀ v. If for some i ∈ [ℓ], we have noc(G ≀ v, C(i)
v) ̸= noc(H ≀ f(v), C(i)

v), then we are
done by the induction hypothesis. Thus, we are left with the case that noc(G ≀ v, C(i)

v) =
noc(H ≀ f(v), C(i)

v). Note that the vertex-colorings of G ≀ v and H ≀ f(v) ensure that all
connected components isomorphic to C(i)

v for some i are incident to v or f(v) respectively.
Thus, all copies of C(i)

v in G lie in Cv.
In this case, there is an isomorphism φ between the subgraphs induced by G ≀ v and

H ≀ f(v) on the union of connected components isomorphic to C
(i)
v for some i ∈ [ℓ]. The

vertex-colorings of G ≀ v and H ≀ f(v) further ensure that φ can be extended by φ(v) := f(v),
so that its domain is all of Cv. Thus, φ now embeds Cv into the connected component of
f(v), which might, however, have additional vertices attached to f(v). If the image of Cv

under φ was the whole connected component of f(v), then f(v) would be C-shrinking, which
contradicts our assumption. Thus, there are additional vertices attached to f(v). Thus, v
and f(v) have distinct degrees, which allows (S) to win in one further round. ◁

The theorem now follows by applying the claim to all connected components of G. ◀

S. Raßmann, G. Schindling, and P. Schweitzer 14:19

Note that using Theorem 24 on the space complexity of C(k1,k2)-equivalence, the theorem in
particular reproves the statement that isomorphism of graphs of bounded tree-depth can be
decided in logarithmic space [5].

Note moreover that because C(1,1) can count the number of connected components
isomorphic to a fixed colored star, the above inductive proof also shows that for d ≥ 2, the
logic C(1,d−1) identifies all colored graphs of tree-depth at most d.

3-connected planar graphs
The next class of graphs we consider are 3-connected planar graphs. These naturally appear
in the proof that C4 identifies all planar graphs, which starts by reducing the claim for
arbitrary planar graphs to 3-connected planar graphs via the decomposition into triconnected
components [28]. We recall their proof that C4 identifies every 3-connected planar graph and
show that it actually already yields that C(2,2) suffices.

The underlying technical lemma is the following:

▶ Lemma 29 ([28, Lemma 23]). Let G be a 3-connected planar graph and let v1, v2, v3 ∈ V (G).
If v1, v2, v3 lie on a common face of G, then wl(∞)

1 (G(v1,v2,v3)) is a discrete coloring.

In the classical setting, from this lemma one can obtain that 4-WL, i.e., C5 identifies all
3-connected planar graphs. We make use of our framework and show that instead it suffices
to use non-reusable resources to cover the individualized vertices.

▶ Corollary 30 (compare [28, Corollary 24]). The logic C(2,3) identifies all 3-connected planar
graphs.

Proof. Let G be a 3-connected planar graph. By Lemma 29, there are v1, v2, v3 ∈ V (G) such
that wl(∞)

1 (G(v1,v2,v3)) is a discrete coloring. Then by Lemma 1, also owl(∞)
(2,0)(G(v1,v2,v3)) is

a discrete coloring, which implies that G(v1,v2,v3) is identified by C(2,0). Thus, there exists a
formula φ(y1, y2, y3) ∈ C(2,3) which defines the graph G with three individualized vertices
represented by y1, y2 and y3 up to isomorphism. But then, the formula ∃y1∃y2∃y3φ(y1, y2, y3)
identifies G. ◀

In order to improve the identification result from C5 to C4 and from C(2,3) to C(2,2), one
observes that for almost all 3-connected graphs, the individualization of just 2 vertices already
suffices for the above claim, and the exceptions, where indeed, 3 vertices are necessary are
somewhat rare.

▶ Definition 31. A 3-connected planar graph is called an exception if there are no two
vertices v1, v2 ∈ V (G) such that wl(∞)

1 (G(v1,v2)) is discrete.

The crucial tool in lowering the number of variables needed is an explicit classification of all
exceptions [28]. This allows to prove the following:

▶ Lemma 32. All exceptions are identified by C(2,2).

Proof. The exceptions are the following:
all bipyramids, i.e., cycles with two additional non-adjacent but otherwise universal
vertices,
all platonic solids besides the dodecahedron, and the rhombic dodecahedron,
the triakis tetrahedron, the tetrakis hexahedron and the triakis octahedron, i.e., the
graphs obtained from the tetrahedron, the hexahedron and the octahedron by adding
one vertex per face, whose neighborhood consists of the vertices on that face.

CSL 2025

14:20 Finite Variable Counting Logics with Restricted Requantification

Because even color refinement identifies every graph with at most 5 vertices, and the bipyramid
of order 6 is the octahedron, we start with bipyramids of order at least 7. We individualize
two adjacent vertices of the cycle. Then, color refinement computes a discrete coloring on the
underlying cycle, while the two pyramid tips get the same color, which is, however, distinct
from all other colors. This graph is identified by color refinement.

Next, consider the platonic solids and the rhombic dodecahedron. All of these are
distance-regular graphs of diameter at most 4, with at most 14 vertices. Note that for every
d ∈ N, there exists a formula φd(y1, y2) ∈ C(2,2) stating that y1 and y2 have distance d.
This implies that in C(2,2) we can express that a graph G is distance-regular with a given
parameter set. Because every distance-regular graph of order at most 14 is determined by its
parameters [38], C(2,2) identifies all platonic solids and the rhombic dodecahedron.

For the last case, note that the vertices of the platonic solid and the added vertices
for every face have distinct degrees. As moreover, adding these vertices does not change
the distance between any two original vertices, C(2,2) can still express that the underlying
platonic solid is of the correct type. Additionally, we can express that the neighborhood of
each added face vertex is a cycle of the correct length, and that no two face vertices share
more than 2 common neighbors. This identifies the last class of exceptions. ◀

This finally allows us to prove identification by C(2,2):

▶ Theorem 33. Every 3-connected planar graph is identified by C(2,2).

Proof. Let G be a 3-connected planar graph. If G is an exception, this follows from Lemma 32.
If G is not an exception, the claim can be proven as in Corollary 30, where we instead only
need to individualize 2 instead of 3 vertices. ◀

It is unclear how precisely this result generalizes to all planar graphs. Moreover, it is
known that all graphs of Euler genus g are identified by C4g+4 [18], and we would expect
that also here, for sufficiently connected graphs only a very small number of the variables
must be requantified.

7 Outlook

In this work, we establish a refined framework for the logical description of graphs by means
of the requantification of variables. We indicate some open questions for future work in
vastly different directions.

Towards structural graph theory, the newly defined cops-and-robber game CR(k1,k2)

defines a two-parametric family of graph classes, which contain the tree-width and tree-depth
graphs as subclasses. It will be interesting to obtain graph-theoretic characterizations for
these classes and to study them from an algorithmic and logical point of view.

From a practical viewpoint, the space complexity is generally the roadblock to a use
of higher-dimensional Weisfeiler-Leman in isomorphism testing and graph neural networks.
The introduction of non-requantifiable variables is a technique to limit space complexity, so
it needs to be investigated whether problems that arise in practice can be solved by this
technique.

In another direction, it will be interesting to investigate other classes of graphs that are
known to have bounded Weisfeiler-Leman dimension. Using the new variant with restricted
reusability, it may be possible to obtain a more fine-grained complexity measure and more
space-efficient algorithms for such graph classes. In particular, it seems highly plausible that
(sufficiently connected) bounded genus graphs require only a limited number of requantifiable

S. Raßmann, G. Schindling, and P. Schweitzer 14:21

variables. This might allow to design easier fixed-parameter tractable results for graph
isomorphism, for example on bounded genus graphs (see [18]). However, for this there are
further restrictions, as non-reusable variables must be choosable from FPT-size bounded
sets.

References
1 Pablo Barceló, Floris Geerts, Juan L. Reutter, and Maksimilian Ryschkov. Graph neural

networks with local graph parameters. In Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pages 25280–25293, 2021. URL: https://proceedings.neurips.
cc/paper/2021/hash/d4d8d1ac7e00e9105775a6b660dd3cbb-Abstract.html.

2 Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai,
Gopinath Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant sub-
graph aggregation networks. In The Tenth International Conference on Learning Repre-
sentations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL:
https://openreview.net/forum?id=dFbKQaRk15w.

3 Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identification. Comb., 12(4):389–410, 1992. doi:10.1007/BF01305232.

4 Jinzhuan Cai, Jin Guo, Alexander L. Gavrilyuk, and Ilia Ponomarenko. A large family of
strongly regular graphs with small Weisfeiler-Leman dimension. arXiv:2312.00460 [math.CO],
2023. arXiv. doi:10.48550/arXiv.2312.00460.

5 Bireswar Das, Murali Krishna Enduri, and I. Vinod Reddy. Logspace and FPT algorithms
for graph isomorphism for subclasses of bounded tree-width graphs. In M. Sohel Rahman
and Etsuji Tomita, editors, WALCOM: Algorithms and Computation - 9th International
Workshop, WALCOM 2015, Dhaka, Bangladesh, February 26-28, 2015. Proceedings, volume
8973 of Lecture Notes in Computer Science, pages 329–334. Springer, 2015. doi:10.1007/
978-3-319-15612-5_30.

6 Samir Datta, Nutan Limaye, Prajakta Nimbhorkar, Thomas Thierauf, and Fabian Wagner.
Planar graph isomorphism is in log-space. ACM Trans. Comput. Theory, 14(2):8:1–8:33, 2022.
doi:10.1145/3543686.

7 Anuj Dawar and David Richerby. The power of counting logics on restricted classes of
finite structures. In Jacques Duparc and Thomas A. Henzinger, editors, Computer Science
Logic, pages 84–98, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. doi:10.1007/
978-3-540-74915-8_10.

8 Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász meets Weisfeiler and Leman. In
Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors,
45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July
9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 40:1–40:14. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPICS.ICALP.2018.40.

9 Zdenek Dvorák. On recognizing graphs by numbers of homomorphisms. J. Graph Theory,
64(4):330–342, 2010. doi:10.1002/JGT.20461.

10 Michael Elberfeld and Ken-ichi Kawarabayashi. Embedding and canonizing graphs of bounded
genus in logspace. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA,
May 31 - June 03, 2014, pages 383–392. ACM, 2014. doi:10.1145/2591796.2591865.

11 Michael Elberfeld and Pascal Schweitzer. Canonizing graphs of bounded tree width in logspace.
ACM Trans. Comput. Theory, 9(3):12:1–12:29, 2017. doi:10.1145/3132720.

12 Eva Fluck, Tim Seppelt, and Gian Luca Spitzer. Going deep and going wide: Counting logic and
homomorphism indistinguishability over graphs of bounded treedepth and treewidth. In Aniello
Murano and Alexandra Silva, editors, 32nd EACSL Annual Conference on Computer Science
Logic, CSL 2024, February 19-23, 2024, Naples, Italy, volume 288 of LIPIcs, pages 27:1–27:17.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.CSL.2024.27.

CSL 2025

https://proceedings.neurips.cc/paper/2021/hash/d4d8d1ac7e00e9105775a6b660dd3cbb-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d4d8d1ac7e00e9105775a6b660dd3cbb-Abstract.html
https://openreview.net/forum?id=dFbKQaRk15w
https://doi.org/10.1007/BF01305232
https://doi.org/10.48550/arXiv.2312.00460
https://doi.org/10.1007/978-3-319-15612-5_30
https://doi.org/10.1007/978-3-319-15612-5_30
https://doi.org/10.1145/3543686
https://doi.org/10.1007/978-3-540-74915-8_10
https://doi.org/10.1007/978-3-540-74915-8_10
https://doi.org/10.4230/LIPICS.ICALP.2018.40
https://doi.org/10.1002/JGT.20461
https://doi.org/10.1145/2591796.2591865
https://doi.org/10.1145/3132720
https://doi.org/10.4230/LIPICS.CSL.2024.27

14:22 Finite Variable Counting Logics with Restricted Requantification

13 Martin Fürer. Weisfeiler-Lehman refinement requires at least a linear number of iterations. In
Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, Automata, Languages and
Programming, 28th International Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001,
Proceedings, volume 2076 of Lecture Notes in Computer Science, pages 322–333. Springer,
2001. doi:10.1007/3-540-48224-5_27.

14 Martin Grohe. Fixed-point definability and polynomial time on graphs with excluded minors.
J. ACM, 59(5):27:1–27:64, 2012. doi:10.1145/2371656.2371662.

15 Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory,
volume 47 of Lecture Notes in Logic. Cambridge University Press, 2017. doi:10.1017/
9781139028868.

16 Martin Grohe. Counting bounded tree depth homomorphisms. In Holger Hermanns, Lijun
Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual ACM/IEEE
Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, pages
507–520. ACM, 2020. doi:10.1145/3373718.3394739.

17 Martin Grohe. The logic of graph neural networks. In 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–17.
IEEE, 2021. doi:10.1109/LICS52264.2021.9470677.

18 Martin Grohe and Sandra Kiefer. A linear upper bound on the Weisfeiler-Leman dimension
of graphs of bounded genus. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini,
and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages
117:1–117:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.
ICALP.2019.117.

19 Martin Grohe, Moritz Lichter, Daniel Neuen, and Pascal Schweitzer. Compressing CFI graphs
and lower bounds for the Weisfeiler-Leman refinements. In 64th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023,
pages 798–809. IEEE, 2023. doi:10.1109/FOCS57990.2023.00052.

20 Martin Grohe and Daniel Neuen. Canonisation and definability for graphs of bounded rank
width. ACM Trans. Comput. Log., 24(1):6:1–6:31, 2023. doi:10.1145/3568025.

21 Jin Guo, Alexander L. Gavrilyuk, and Ilia Ponomarenko. On the Weisfeiler-Leman dimension
of permutation graphs. arXiv:2305.15861 [math.CO], May 2023. arXiv. URL: https://arxiv.
org/abs/2305.15861, doi:10.48550/arXiv.2305.15861.

22 Lauri Hella. Logical hierarchies in PTIME. Inf. Comput., 129(1):1–19, 1996. doi:10.1006/
INCO.1996.0070.

23 Jelle Hellings, Marc Gyssens, Jan Van den Bussche, and Dirk Van Gucht. Expressive com-
pleteness of two-variable first-order logic with counting for first-order logic queries on rooted
unranked trees. In Proceedings of the 38th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1–13, 2023. doi:10.1109/LICS56636.2023.10175828.

24 Neil Immerman. Relational queries computable in polynomial time. Inf. Control., 68(1-3):86–
104, 1986. doi:10.1016/S0019-9958(86)80029-8.

25 Neil Immerman. Descriptive complexity. Graduate texts in computer science. Springer, 1999.
doi:10.1007/978-1-4612-0539-5.

26 Neil Immerman and Eric Lander. Describing graphs: A first-order approach to graph canoniza-
tion. Complexity Theory Retrospective, pages 59–81, 1990. doi:10.1007/978-1-4612-4478-3_
5.

27 Sandra Kiefer. The Weisfeiler-Leman algorithm: an exploration of its power. ACM SIGLOG
News, 7(3):5–27, 2020. doi:10.1145/3436980.3436982.

28 Sandra Kiefer, Ilia Ponomarenko, and Pascal Schweitzer. The Weisfeiler-Leman dimension of
planar graphs is at most 3. J. ACM, 66(6):44:1–44:31, 2019. doi:10.1145/3333003.

29 Haiyan Li, Ilia Ponomarenko, and Peter Zeman. On the Weisfeiler-Leman dimension of some
polyhedral graphs. arXiv:2305.17302 [math.CO], May 2023. arXiv. doi:10.48550/arXiv.
2305.17302.

https://doi.org/10.1007/3-540-48224-5_27
https://doi.org/10.1145/2371656.2371662
https://doi.org/10.1017/9781139028868
https://doi.org/10.1017/9781139028868
https://doi.org/10.1145/3373718.3394739
https://doi.org/10.1109/LICS52264.2021.9470677
https://doi.org/10.4230/LIPICS.ICALP.2019.117
https://doi.org/10.4230/LIPICS.ICALP.2019.117
https://doi.org/10.1109/FOCS57990.2023.00052
https://doi.org/10.1145/3568025
https://arxiv.org/abs/2305.15861
https://arxiv.org/abs/2305.15861
https://doi.org/10.48550/arXiv.2305.15861
https://doi.org/10.1006/INCO.1996.0070
https://doi.org/10.1006/INCO.1996.0070
https://doi.org/10.1109/LICS56636.2023.10175828
https://doi.org/10.1016/S0019-9958(86)80029-8
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1007/978-1-4612-4478-3_5
https://doi.org/10.1007/978-1-4612-4478-3_5
https://doi.org/10.1145/3436980.3436982
https://doi.org/10.1145/3333003
https://doi.org/10.48550/arXiv.2305.17302
https://doi.org/10.48550/arXiv.2305.17302

S. Raßmann, G. Schindling, and P. Schweitzer 14:23

30 Steven Lindell. A logspace algorithm for tree canonization (extended abstract). In S. Rao
Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors, Proceedings of the 24th
Annual ACM Symposium on Theory of Computing, May 4-6, 1992, Victoria, British Columbia,
Canada, pages 400–404. ACM, 1992. doi:10.1145/129712.129750.

31 Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and Leman go sparse:
Towards scalable higher-order graph embeddings. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. URL: https://proceedings.neurips.cc/paper/
2020/hash/f81dee42585b3814de199b2e88757f5c-Abstract.html.

32 Jaroslav Nesetril and Patrice Ossona de Mendez. Tree-depth, subgraph coloring and homo-
morphism bounds. Eur. J. Comb., 27(6):1022–1041, 2006. doi:10.1016/J.EJC.2005.01.010.

33 Martin Otto. Bounded Variable Logics and Counting: A Study in Finite Models, volume 9 of
Lecture Notes in Logic. Cambridge University Press, 2017. doi:10.1017/9781316716878.

34 Oleg Pikhurko and Oleg Verbitsky. Logical complexity of graphs: A survey. In Martin
Grohe and Johann A. Makowsky, editors, Model Theoretic Methods in Finite Combinatorics -
AMS-ASL Joint Special Session, Washington, DC, USA, January 5-8, 2009, volume 558 of
Contemporary Mathematics, pages 129–180. American Mathematical Society, 2009.

35 Jamie Tucker-Foltz. Inapproximability of unique games in fixed-point logic with counting. In
36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy,
June 29 - July 2, 2021, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470706.

36 Steffen van Bergerem. Learning concepts definable in first-order logic with counting. In 34th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC,
Canada, June 24-27, 2019, pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.8785811.

37 Steffen van Bergerem. Descriptive complexity of learning. PhD thesis, RWTH Aachen
University, Germany, 2023. URL: https://publications.rwth-aachen.de/record/953243,
doi:10.18154/RWTH-2023-02554.

38 E. R. van Dam, J. H. Koolen, and H. Tanaka. Distance-regular graphs. Electronic Journal of
Combinatorics, 1(DynamicSurveys), 2018. doi:10.37236/4925.

39 Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In
Proceedings of the 14th Annual ACM Symposium on Theory of Computing, May 5-7, 1982,
San Francisco, California, USA, pages 137–146. ACM, 1982. doi:10.1145/800070.802186.

40 Qing Wang, Dillon Ze Chen, Asiri Wijesinghe, Shouheng Li, and Muhammad Farhan. N-WL:
A new hierarchy of expressivity for graph neural networks. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. Open-
Review.net, 2023. URL: https://openreview.net/pdf?id=5cAI0qXxyv.

CSL 2025

https://doi.org/10.1145/129712.129750
https://proceedings.neurips.cc/paper/2020/hash/f81dee42585b3814de199b2e88757f5c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f81dee42585b3814de199b2e88757f5c-Abstract.html
https://doi.org/10.1016/J.EJC.2005.01.010
https://doi.org/10.1017/9781316716878
https://doi.org/10.1109/LICS52264.2021.9470706
https://doi.org/10.1109/LICS.2019.8785811
https://publications.rwth-aachen.de/record/953243
https://doi.org/10.18154/RWTH-2023-02554
https://doi.org/10.37236/4925
https://doi.org/10.1145/800070.802186
https://openreview.net/pdf?id=5cAI0qXxyv

On the VC Dimension of First-Order Logic
with Counting and Weight Aggregation
Steffen van Bergerem #

Humboldt-Universität zu Berlin, Germany

Nicole Schweikardt #

Humboldt-Universität zu Berlin, Germany

Abstract
We prove optimal upper bounds on the Vapnik–Chervonenkis density of formulas in the extensions
of first-order logic with counting (FOC1) and with weight aggregation (FOWA1) on nowhere dense
classes of (vertex- and edge-)weighted finite graphs. This lifts a result of Pilipczuk, Siebertz, and
Toruńczyk [14] from first-order logic on ordinary finite graphs to substantially more expressive logics
on weighted finite graphs. Moreover, this proves that every FOC1 formula and every FOWA1 formula
has bounded Vapnik–Chervonenkis dimension on nowhere dense classes of weighted finite graphs;
thereby, it lifts a result of Adler and Adler [1] from first-order logic to FOC1 and FOWA1.

Generalising another result of Pilipczuk, Siebertz, and Toruńczyk [14], we also provide an explicit
upper bound on the ladder index of FOC1 and FOWA1 formulas on nowhere dense classes. This
shows that nowhere dense classes of weighted finite graphs are FOC1-stable and FOWA1-stable.

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases VC dimension, VC density, stability, nowhere dense graphs, first-order logic
with weight aggregation, first-order logic with counting

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.15

Funding This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – project number 541000908 (gefördert durch die Deutsche Forschungsgemeinschaft
(DFG) – Projektnummer 541000908).

Acknowledgements We thank the anonymous reviewers for their valuable comments that helped to
improve the presentation of this paper.

1 Introduction

The Vapnik–Chervonenkis dimension (for short: VC dimension) is a measure for the com-
plexity of set systems; it was introduced in the 1970s [19, 17, 16] and has been widely studied
since then. It is formally defined as follows. Let X be a set and let F ⊆ 2X be a family of
subsets of X. A set Y ⊆ X is shattered by F if every subset of Y can be obtained as the
intersection of Y with some F ∈ F , i. e., {Y ∩ F : F ∈ F} = 2Y . The VC dimension of F is
the maximum size of a set Y ⊆ X that is shattered by F (or ∞, if this maximum does not
exist).

Given a logical formula φ(x̄, ȳ) with its free variables partitioned into a k-tuple x̄ and an
ℓ-tuple ȳ, the VC dimension of φ(x̄, ȳ) on a graph G = (V (G), E(G)) is defined as the VC
dimension of the family Sφ(G/V (G)) := SφG(V (G)/V (G)), where for V,W ⊆ V (G) we let

SφG(V/W) := {tpφG(v̄/W) : v̄ ∈ V k}, where tpφG(v̄/W) := {w̄ ∈ W ℓ : G |= φ[v̄, w̄]}.

We say that φ(x̄, ȳ) has bounded VC dimension on a class C of graphs if there is a number c
such that for every G ∈ C the VC dimension of φ(x̄, ȳ) on G is at most c. In the following,
all graphs considered in this paper are finite.

© Steffen van Bergerem and Nicole Schweikardt;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:steffen.van.bergerem@informatik.hu-berlin.de
https://orcid.org/0000-0002-5212-8992
mailto:schweikn@informatik.hu-berlin.de
https://orcid.org/0000-0001-5705-1675
https://doi.org/10.4230/LIPIcs.CSL.2025.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 On the VC Dimension of FOC and FOWA

Motivated by applications on the learnability of concept classes in the model of Probably
Approximately Correct (PAC) learning, Grohe and Turán [9] showed that every first-order
formula φ(x̄, ȳ) has bounded VC dimension on classes of graphs of bounded local clique-width
(this, in particular, includes planar graphs). Adler and Adler [1] generalised this to all nowhere
dense classes of graphs. The notion of nowhere dense classes was introduced by Nešetřil and
Ossona de Mendez [12, 11] as a formalisation of classes of “sparse” graphs. It subsumes and
extends many well-known classes of sparse graphs, including planar graphs, trees, classes
of graphs of bounded tree-width or bounded degree, and all classes that exclude a fixed
topological minor. It is a robust notion that has numerous equivalent characterisations; for
details we refer to the book [13].

The goal of the present paper is to lift Adler and Adler’s result [1] from first-order logic
FO to the substantially more expressive logics FOC1 and FOWA1 (introduced in [8, 5]) that
enrich FO by mechanisms for counting and for weight aggregation. An obstacle in achieving
this is that the proof in [1] relies on model-theoretic results of [15] based on the compactness
of FO – and these are not available for FOC1 or FOWA1. Fortunately, Pilipczuk, Siebertz and
Toruńczyk [14] presented a different, constructive proof of Adler and Adler’s result. Their
proof is based on Gaifman locality and Feferman–Vaught decompositions of FO. Similar
locality results and decompositions were achieved for FOC1 and FOWA1 in [8, 5].

The logic FOC (first-order logic with counting terms) was introduced in [10] and further
studied in [8, 3]. This logic extends FO by the ability to formulate counting terms that
evaluate to integers, and by numerical predicates that allow to compare counting terms. If φ
is a formula with free variables x̄ = (x1, . . . , xk) and ȳ = (y1, . . . , yℓ), then #ȳ.φ is a counting
term with free variables x̄ that specifies the number of tuples ȳ that satisfy the formula φ.
Apart from this, every fixed integer is a counting term; and if t1 and t2 are counting terms,
then so are (t1 + t2) and (t1 · t2). The results of terms can be combined into a formula by
means of numerical predicates: an m-ary numerical predicate P is an m-ary relation on the
integers (e. g. P⩽ is the binary relation consisting of all pairs (i, j) of integers where i ⩽ j).
The logic FOC allows formulas of the form P(t1, . . . , tm) that evaluate to “true” if and only
if the m-tuple of integers obtained by evaluating the counting terms t1, . . . , tm belongs to
the relation P.

The logic FOWA (first-order logic with weight aggregation) was introduced in [5]. Formulas
and terms of this logic are evaluated on weighted graphs, which extend ordinary undirected
graphs by assigning weights (i. e., elements from particular rings or abelian groups) to vertices
or edges present in the graph. Pairs that do not occur as edges of the graph receive the
weight 0, i. e., the neutral element of the ring or abelian group. FOWA extends FO by the
ability to formulate (weight aggregation) terms that evaluate to elements in the given ring
(or abelian group), and by predicates that allow to compare these terms. Every fixed element
of the ring or abelian group is a term, as well as every expression of the form w(x) or w(x, y);
the latter yields the weight of vertex x and edge (x, y), respectively. If φ is a formula with
free variables x̄ = (x1, . . . , xk) and ȳ = (y1, . . . , yℓ), then

∑
w(ȳ).φ is a (weight aggregation)

term with free variables x̄ that specifies the sum (w.r.t. the ring or abelian group) of the
weights of all tuples ȳ for which the formula φ is satisfied. More generally, instead of a
single expression w(ȳ), the term may also refer to a product (w.r.t. the given ring) of such
expressions and fixed elements of the ring. Analogously as for FOC, terms can be combined
using the operations present in the ring or abelian group; and the results of terms can be
combined into a formula by means of predicates on the ring or abelian group: a formula of
the form P(t1, . . . , tm) expresses that the m-tuple of elements in the ring or abelian group
obtained by evaluating the terms t1, . . . , tm belongs to the relation P.

S. van Bergerem and N. Schweikardt 15:3

FOC can be viewed as a special case of FOWA where the ring is the ring of integers, and
every vertex of the graph is equipped with the weight 1. Thus, all results that are available
for (fragments of) FOWA immediately translate into analogous results on (the corresponding
fragment of) FOC (but not necessarily vice versa).

For each number n, the fragments FOCn and FOWAn of FOC and FOWA restrict subfor-
mulas of the form P(t1, . . . , tm) to have at most n free variables.

In this paper, we follow the approach of Pilipczuk, Siebertz and Toruńczyk [14] and
extend it to FOC and FOWA by utilising results of van Bergerem and Schweikardt [5] and
Grohe and Schweikardt [8]. Our main results are as follows.
(1) There is a formula φ(x, y) of FOC2 that has unbounded VC dimension on the class T3 of

unranked trees of height ⩽ 3 (note that T3 is nowhere dense). (Theorem 3.1)
(2) Every formula φ(x̄, ȳ) of FOC1 or FOWA1 has bounded VC dimension on every nowhere

dense class C of weighted graphs. (Corollary 5.3)
Result (1) is obtained by representing arbitrary graphs G via unranked trees TG of height 3
in the same way as in [8]. Then, arbitrary FO formulas on G can be translated into
corresponding FOC2 formulas on TG. By applying this translation to the formula E(x, y),
which has unbounded VC dimension on the class of all graphs, one obtains Result (1).

For obtaining Result (2), we combine the approach of [14] with the locality results of
[8, 5]. This allows us to lift the following key result of [14] from FO to FOC1 and FOWA1.
(3) For every nowhere dense class C of weighted graphs, for every formula φ(x̄, ȳ) of FOWA1

or FOC1, and for and every ε > 0, there exists a number c such that for every G ∈ C and
every non-empty W ⊆ V (G), we have |Sφ(G/W)| ⩽ c · |W ||x̄|+ε, where Sφ(G/W) :=
SφG(V (G),W). (Theorem 5.1)

As an immediate consequence of this, by definition, we obtain the following result.
(4) Every formula φ(x̄, ȳ) of FOWA1 or FOC1 has VC density at most |x̄| on every nowhere

dense class C of weighted graphs. (Corollary 5.2)
Here, the VC density of φ(x̄, ȳ) on C is defined as the infimum of all reals α > 0 such
that |Sφ(G/W)| ∈ O(|W |α), for all G ∈ C and all W ⊆ V (G) (where constants hidden in
the O-notation may depend on α). We want to remark that Result (4) implies Result (2),
because the VC dimension is finite if and only if the VC density is finite (see, e. g., [2]).

For proving Result (3), we rely on a technical main lemma (see Lemma 4.1). The same
statement was proven in [14] for FO instead of FOWA1. Lifting this from FO to FOWA1 (and
FOC1) was one of the main technical obstacles we had to overcome in this paper.

From [14], we know that the bounds provided by Results (3) and (4) are optimal (since FO
is included in FOC1 and FOWA1) and, furthermore, that Results (2)–(4) cannot be extended
to classes that are not nowhere dense but closed under taking subgraphs.

As another application of our main technical lemma (Lemma 4.1), we provide upper
bounds (Theorem 6.1) on the ladder index, which is defined as follows. For a FOWA1 formula
φ(x̄, ȳ), a φ-ladder of length L in a weighted graph G is a sequence v̄1, . . . , v̄L, w̄1, . . . , w̄L
such that v̄i ∈

(
V (G)

)|x̄| and w̄i ∈
(
V (G)

)|ȳ| for all i ∈ [L], and, for all i, j ∈ [L], it holds
that G |= φ[v̄i, w̄j] if and only if i ⩽ j. The smallest L for which there is no φ-ladder of
length L in G is called the ladder index of φ in G.

A class C of graphs is called stable if the ladder index of every first-order formula φ in
every graph from C is bounded by a constant depending only on φ and C [18]. Adler and
Adler [1] showed that every nowhere dense class of graphs is stable. Using our bound on the
ladder index (Theorem 6.1), we obtain the following result, which also implies Result (2).
(5) Every nowhere dense class C of weighted graphs is FOC1-stable and FOWA1-stable, that

is, the ladder index of every FOWA1 formula (and therefore also of every FOC1 formula)
φ in every weighted graph from C is bounded by a constant depending only on φ and C.
(Corollary 6.2)

CSL 2025

15:4 On the VC Dimension of FOC and FOWA

The remainder of the paper is structured as follows. Section 2 provides the necessary
background on graphs, nowhere dense classes, the logics FOC and FOWA, and the locality
results that are known for these logics and used in our proofs. Section 3 presents the proof
of Result (1). Section 4 is devoted to the main technical lemma (Lemma 4.1). In Section 5,
we utilise this lemma to prove our Results (2)–(4). Section 6 proves Result (5) based on
Lemma 4.1. We conclude in Section 7.

2 Preliminaries

We let Z, N, N⩾1, Q>0 denote the sets of integers, non-negative integers, positive integers,
and positive rationals, respectively. For m,n ∈ Z, we let [m,n] := {ℓ ∈ Z : m ⩽ ℓ ⩽ n} and
[n] := [1, n]. For a k-tuple v̄ = (v1, . . . , vk), we write |v̄| to denote its length k. We denote
the power set of a set S by 2S .

A group (G, ◦) is a set G equipped with a binary operator ◦ : G × G → G that is
associative (i. e. (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ G) and has a neutral element eG ∈ G

(i. e. a ◦ eG = eG ◦ a = a for all a ∈ G) such that each a ∈ G has an inverse a′ ∈ G (i. e.
a ◦ a′ = a′ ◦ a = eG); we write a−1 for this a′. A group is abelian if ◦ is commutative (i. e.
a ◦ b = b ◦ a for all a, b ∈ G). A ring (R,+, ·) is a set R equipped with two binary operators
+ (addition) and · (multiplication) such that (R,+) is an abelian group with neutral element
0R ∈ R, · is associative and has a neutral element 1R ∈ R, and multiplication is distributive
with respect to addition, i. e. a · (b+ c) = (a · b) + (a · c) and (a+ b) · c = (a · c) + (b · c) for all
a, b, c ∈ R. A ring is commutative if · is commutative.

When referring to an abelian group (or ring), we will usually write (S,+S) (or (S,+S , ·S)),
we denote the neutral element of the group by 0S , and −a denotes the inverse of an element
a in (S,+S) (and we denote the neutral element of the ring for (S, ·S) by 1S).

σ-Graphs

A (simple, undirected and finite) graph G = (V (G), E(G)) consists of a finite set V (G) (the
vertices of G) and a set E(G) of subsets of V (G) of size 2 (the edges of G).

A graph signature σ is a finite set consisting of a symbol E and a finite number of further
symbols. The symbol E as arity ar(E) = 2, while all other symbols R ∈ σ \ {E} have arity
ar(R) ∈ {0, 1}. Let σ be a graph signature. A σ-graph G consists of a graph (V (G), E(G)),
and a relation R(G) ⊆

(
V (G)

)ar(R) for every R ∈ σ \ {E}. Note that relations of arity 1 are
subsets of V (G), and since S0 = {()} for every set S, there exist only two relations of arity
0, namely ∅ and {()}. We identify the latter with true and the former with false.

The order of a σ-graph G is |G| := |V (G)|.

Weighted σ-Graphs

Let σ be a graph signature. Let S be a collection of rings and/or abelian groups. Let W be
a finite set of weight symbols such that each w ∈ W has an associated arity ar(w) ∈ {1, 2}
and a type type(w) ∈ S. A (σ,W)-graph (or, W-weighted σ-graph) is a σ-graph G that is
enriched, for every w ∈ W, by an interpretation wG :

(
V (G)

)ar(w) → type(w), which satisfies
the following edge condition for all w ∈ W with ar(w) = 2: if wG(v1, v2) ̸= 0S for S := type(w),
and v1, v2 ∈ V (G), then {v1, v2} ∈ E(G).

Standard notions used for graphs are defined for (W, σ)-graphs G by referring to their
Gaifman graph (V (G), E(G)). In particular, a path between two vertices u and v in G is
a path between u and v in the graph (V (G), E(G)), and the distance distG(u, v) between
vertices u and v is their distance in the graph (V (G), E(G)). The degree deg(G) is the
maximum degree of (V (G), E(G)).

S. van Bergerem and N. Schweikardt 15:5

For a set X ⊆ V (G), the induced subgraph of G on X is the (σ,W)-graph G[X] with
vertex set V (G[X]) = X, edge set E(G[X]) = {e ∈ E(G) : e ⊆ X}, relations R(G[X]) =
R(G) ∩Xar(R) for every R ∈ σ \ {E}, and weights wG[X](v̄) = wG(v̄) for every w ∈ W and
every v̄ ∈ Xar(w). For a (σ,W)-graph G and a set S ⊆ V (G), we let G \ S := G[V (G) \ S].

For a number r ⩾ 0, the r-ball around a vertex v ∈ V (G) is NG
r (v) := {u ∈ V (G) :

distG(v, u) ⩽ r}, and the r-ball around a set S ⊆ V (G) is NG
r (S) :=

⋃
v∈S N

G
r (v). The

r-neighbourhood around S is the (σ,W)-graph NG
r (S) := G[NG

r (S)]. For a tuple ā =
(a1, . . . , ak) ∈ V (G)k we let NG

r (ā) := NG
r (S) and NG

r (ā) := NG
r (S) for S := {a1, . . . , ak}.

Let σ′ be a graph signature with σ′ ⊇ σ, and let W′ be a finite set of weight symbols with
W′ ⊇ W. A (σ′,W′)-graph G′ is a (σ′,W′)-expansion of a (σ,W)-graph G if V (G′) = V (G),
R(G′) = R(G) for all R ∈ σ, and wG

′ = wG for every w ∈ W. If G′ is a (σ′,W′)-expansion of
the (σ,W)-graph G, then G is the (σ,W)-reduct of G′.

Let G and H be two (σ,W)-graphs with V (G) ∩ V (H) = ∅. The disjoint union of
G and H is the (σ,W)-graph G ⊎ H with vertex set V (G ⊎ H) = V (G) ∪ V (H), and
R(G⊎H) = R(G)∪R(H) for all R ∈ σ, and weight functions as follows: For all unary w ∈ W
we have wG⊎H(v) = wG(v) for all v ∈ V (G) and wG⊎H(v) = wH(v) for all v ∈ V (H). For all
binary w ∈ W we have wG⊎H(u, v) = wG(u, v) for all (u, v) ∈ V (G)2, wG⊎H(u, v) = wH(u, v)
for all (u, v) ∈ V (H)2, and wG⊎H(u, v) = 0S for all (u, v) ∈ (V (G) ×V (H)) ∪ (V (H) ×V (G)),
where S = type(w).

Nowhere Dense Classes

For n ∈ N, we write Kn for the complete graph on n vertices. A depth-n minor of a graph
G = (V (G), E(G)) is a subgraph of a graph obtained from G by contracting mutually
vertex-disjoint connected subgraphs of radius at most n to single vertices.

As mentioned in Section 1, the notion of nowhere dense classes of graphs is a robust notion
that has numerous equivalent characterisations; for an overview we refer to the introduction
of [14]; details can be found in the book [13]. For the purpose of this paper, the following
characterisation serves as our definition of the notion.

▶ Definition 2.1. A class C of graphs is nowhere dense if there is a function t : N → N such
that for every r ∈ N, no graph G ∈ C contains the complete graph Kt(r) as a depth-r minor.
A class C of (σ,W)-graphs is nowhere dense if and only if the class {(V (G), E(G)) : G ∈ C}
is nowhere dense.

The following theorem was proved in [14] (there, it was formulated for classes of graphs;
here we adapted the formulation to classes of (σ,W)-graphs). We will use this result for
proving our results on VC density in Section 5. The result uses the following notion. Let G
be a (σ,W)-graph, let r ∈ N, and let V,W, S ⊆ V (G). We say that V and W are r-separated
by S (in G) if every path of length at most r in G from a vertex in V to a vertex in W

contains a vertex from S. This notion naturally extends to tuples v̄ = (v1, . . . , vk) and
w̄ = (w1, . . . , wℓ) for any k, ℓ ∈ N⩾1 by considering the sets {v1, . . . , vk} and {w1, . . . , wℓ},
and it thereby also naturally extends to sets of tuples V and W .

▶ Theorem 2.2 (Uniform quasi-wideness for tuples [14, Theorem 2.9]). Let r, t ∈ N, and let
C be a class of (σ,W)-graphs G whose Gaifman graph (V (G), E(G)) does not include Kt

as a depth-18r minor. For every d ∈ N, there is a number s and a polynomial N : N → N
computable from r, t, and d with the following property.

For every G ∈ C, every m ∈ N, and every set X ⊆ (V (G))d with |X| ⩾ N(m), there are
sets S ⊆ V (G) and Y ⊆ X with |S| ⩽ s and |Y | ⩾ m such that all distinct v̄, v̄′ ∈ Y are
r-separated by S in G.

CSL 2025

15:6 On the VC Dimension of FOC and FOWA

The Weight Aggregation Logic FOWA

Fix a countably infinite set vars of variables. A (σ,W)-interpretation I = (G, β) con-
sists of a (σ,W)-graph G and an assignment β : vars → V (G). For k ∈ N⩾1, elements
a1, . . . , ak ∈ V (G), and k distinct variables y1, . . . , yk, we write I a1,...,ak

y1,...,yk
for the interpret-

ation (G, β a1,...,ak
y1,...,yk

), where β a1,...,ak
y1,...,yk

is the assignment β′ with β′(yi) = ai for every i ∈ [k]
and β′(z) = β(z) for all z ∈ vars \ {y1, . . . , yk}.

Recall that S is a collection of rings and/or abelian groups. An S-predicate collection is a
4-tuple (P, ar, type, J·K), where P is a countable set of predicate names and, to each P ∈ P, ar
assigns an arity ar(P) ∈ N⩾1, type assigns a type type(P) ∈ Sar(P), and J·K assigns a semantics
JPK ⊆ type(P). For the remainder of this paper, fix an S-predicate collection (P, ar, type, J·K).

For every S ∈ S that is not a ring but just an abelian group, a W-product of type S is
either an element in S or an expression of the form w(z̄), where w ∈ W is of type S and either
ar(w) = 1 and z̄ is a single variable, or ar(w) = 2 and z̄ = (z1, z2) for distinct variables z1, z2.

For every ring S ∈ S, a W-product of type S is an expression of the form t1· · · · ·tℓ, where
ℓ ∈ N⩾1, and for each i ∈ [ℓ], either ti ∈ S or there exists a w ∈ W with type(w) = S and
either ar(w) = 1 and ti is of the form w(z) for a variable z or ar(w) = 2 and ti is of the form
w(z1, z2) for distinct variables z1, z2. By vars(p), we denote the set of all variables that occur
in a W-product p. The syntax and semantics of first-order logic with weight aggregation
FOWA is defined as follows.

▶ Definition 2.3. For FOWA(P)[σ, S,W], the set of formulas and S-terms is built according
to the following rules.
(1) x1=x2 and R(x1, . . . , xk) are formulas for x1, . . . , xk ∈ vars and R ∈ σ with ar(R) = k.
(2) If w ∈ W, S = type(w), s ∈ S, k = ar(w), and x̄ = (x1, . . . , xk) is a tuple of k pairwise

distinct variables, then
(
s = w(x̄)

)
is a formula.

(3) If φ and ψ are formulas, then ¬φ and (φ ∨ ψ) are also formulas.
(4) If φ is a formula and x ∈ vars, then ∃xφ is a formula.
(5) If φ is a formula, w ∈ W, S = type(w), s ∈ S, k = ar(w), and x̄ = (x1, . . . , xk) is a tuple

of k pairwise distinct variables, then
(
s =

∑
w(x̄).φ

)
is a formula.

(6) If P ∈ P, m = ar(P), and t1, . . . , tm are S-terms with type(P) =
(
type(t1), . . . , type(tm)

)
,

then P(t1, . . . , tm) is a formula.
(7) For every S ∈ S and every s ∈ S, s is an S-term of type S.
(8) For every S ∈ S, every w ∈ W of type S, and every tuple (x1, . . . , xk) of k := ar(w)

pairwise distinct variables in vars, w(x1, . . . , xk) is an S-term of type S.
(9) If t1 and t2 are S-terms of the same type S, then (t1 + t2) and (t1 − t2) are also S-terms

of type S; furthermore, if S is a ring (and not just an abelian group), then also (t1·t2) is
an S-term of type S.

(10) If φ is a formula, S ∈ S, and p is a W-product of type S, then
∑
p.φ is an S-term of

type S.
Let I = (G, β) be a (σ,W)-interpretation. For a formula or S-term ξ from FOWA(P)[σ, S,W],
the semantics JξKI is defined as follows.
(1) Jx1=x2K

I = 1 if β(x1) = β(x2), and Jx1=x2K
I = 0 otherwise; JE(x1, x2)KI = 1 if

{β(x1), β(x2)} ∈ E(G), and JE(x1, x2)KI = 0 otherwise; for all R ∈ σ with ar(R) = 1,
we have JR(x1)KI = 1 if β(x1) ∈ R(G), and JR(x1)KI = 0 otherwise; for all R ∈ σ with
ar(R) = 0, we have JR()KI = 1 if () ∈ R(G), and JR()KI = 0 otherwise.

(2)
q(
s = w(x̄)

)y I = 1 if s = wG
(
β(x1), . . . , β(xk)

)
, and

q(
s = w(x̄)

)y I = 0 otherwise.
(3) J¬φKI = 1 − JφKI and J(φ ∨ ψ)K = max

{
JφKI

, JψKI}
.

(4) J∃xφKI = max
{
JφKI vx : v ∈ V (G)

}
.

S. van Bergerem and N. Schweikardt 15:7

(5)
q(
s =

∑
w(x̄).φ

)yI = 1 if s =
∑
S

{
wG(v̄) : v̄ = (v1, . . . , vk) ∈

(V (G))k with JφKI v1,...,vk
x1,...,xk = 1

}
, and

q(
s =

∑
w(x̄).φ

)yI = 0 otherwise. As usual,∑
S X = 0S if X = ∅.

(6) JP(t1, . . . , tm)KI = 1 if
(
Jt1K

I
, . . . , JtmKI)

∈ JPK, and JP(t1, . . . , tm)KI = 0 otherwise.
(7) JsKI = s for s ∈ S for some S ∈ S.
(8) Jw(x1, . . . , xk)KI = wG

(
β(x1), . . . , β(xk)

)
.

(9) J(t1 ∗ t2)KI = Jt1K
I ∗S Jt2K

I , for ∗ ∈ {+,−, ·}.
(10) J

∑
p.φKI =

∑
S

{
JpKI v1,...,vk

x1,...,xk : v1, . . . , vk ∈ V (G), JφKI v1,...,vk
x1,...,xk = 1

}
, where vars(p) =

{x1, . . . , xk}, k = |vars(p)| and JpKI = Jt1K
I ·S · · · ·S JtℓK

I if p = t1· · · · ·tℓ is of type S.

An expression is a formula or an S-term. The set vars(ξ) of an expression ξ is defined as
the set of all variables in vars that occur in ξ. The free variables free(ξ) of ξ are inductively
defined as follows.
(1) free(x1=x2) = {x1, x2} and free

(
R(x1, . . . , xk)

)
= {x1, . . . , xk} for R ∈ σ.

(2) free
((
s = w(x1, . . . , xk)

))
= {x1, . . . , xk}.

(3) free(¬φ) = free(φ) and free(φ ∨ ψ) = free(φ) ∪ free(ψ).
(4) free(∃xφ) = free(φ) \ {x}.
(5) free

((
s =

∑
w(x1, . . . , xk).φ

))
= free(φ) \ {x1, . . . , xk},

(6) free
(
P(t1, . . . , tm)

)
=

⋃m
i=1 free(ti).

(7) free(s) = ∅ for s ∈ S for some S ∈ S.
(8) free

(
w(x1, . . . , xk)

)
= {x1, . . . , xk}.

(9) free
(
(t1 ∗ t2)

)
= free(t1) ∪ free(t2) for ∗ ∈ {+,−, ·}.

(10) free(
∑
p.φ) = free(φ) \ vars(p).

We write ξ(x1, . . . , xk) to indicate that free(ξ) ⊆ {x1, . . . , xk}. A sentence is a formula
without free variables, and a ground S-term is an S-term without free variables.

For a formula φ and a (σ,W)-interpretation I, we write I |= φ to indicate that JφKI = 1.
Likewise, I ̸|= φ indicates that JφKI = 0. For a formula φ, a (σ,W)-graph G, and a tuple
v̄ = (v1, . . . , vk) ∈

(
V (G)

)
k, we write G |= φ[v̄] or (G, v̄) |= φ to indicate that (G, β) |= φ

for one (and hence every) assignment β with β(xi) = vi for all i ∈ [k]. Furthermore, we set
Jφ(v̄)KG := 1 if G |= φ[v̄], and Jφ(v̄)KG := 0 otherwise. Similarly, for an S-term t(x̄), we write
tG[v̄] to denote JtKI . The fragments FOWAn and FOW1 of FOWA are defined as follows.

▶ Definition 2.4. For every n ∈ N, the set of expressions of FOWAn(P)[σ, S,W] is built
according to the same rules as for the logic FOWA(P)[σ, S,W], with the following restrictions:

rule (5) can only be applied if S is finite,
rule (6) can only be applied if |free(t1) ∪ · · · ∪ free(tm)| ⩽ n.

FOW1(P)[σ, S,W] is the restriction of FOWA1(P)[σ, S,W] where rule (10) cannot be applied.

As pointed out in [5], FOW1 can be viewed as an extension of first-order logic with
modulo-counting quantifiers, and FOWA and FOWA1 can be viewed as extensions of the
counting logics FOC and FOC1 of [10] and [8]. In fact, every formula in FOC can be viewed
as a formula in FOWA.

Note that first-order logic FO is the restriction of FOW1 where only rules (1), (3), and
(4) can be applied. As usual, we write (φ ∧ ψ) and ∀xφ as shorthands for ¬(¬φ ∨ ¬ψ) and
¬∃x¬φ. The quantifier rank qr(ξ) of an FOWA(P)[σ, S,W] expression ξ is defined as the
maximum nesting depth of constructs using rules (4) and (5) in order to construct ξ. The
aggregation depth dag(ξ) of ξ is defined as the maximum nesting depth of term constructions
using rule (10) in order to construct ξ.

CSL 2025

15:8 On the VC Dimension of FOC and FOWA

▶ Example 2.5. Consider the following setting. S consists of a single ring, the ring (Z,+, ·)
of integers with the natural addition and multiplication. P consists of a single predicate, the
binary equality predicate P= with JP=K = {(i, i) : i ∈ Z}. W consists of a single weight symbol
w, and ar(w) = 2. Furthermore, σ = {E}. We interpret a (σ,W)-graph G = (V (G), E(G), wG)
as a flow network, where wG(u, v) indicates the flow through edge {u, v} in the direction
from u to v, and wG(v, u) indicates the flow through edge {u, v} in the direction from v to u.

The fact that a node x is a source node, i.e., all edges incident with x have weight 0
in the direction into x, can be described by the FOW1(P)[σ, S,W] formula source(x) :=
∀z (0 = w(z, x)). Similarly, target(y) := ∀z (0 = w(y, z)) is an FOW1(P)[σ, S,W] formula
expressing that node y is a target node, i.e., all edges incident with y have weight 0 in the
direction outgoing from y. Furthermore, tin(z) :=

∑
w(u, z′).(z′=z ∧ E(u, z′)) is a term

of FOWA1(P)[σ, S,W] which specifies the total flow through edges incoming into node z.
Moreover, tout(z) :=

∑
w(z′, u).(z′=z ∧ E(z′, u)) is a term of FOWA1(P)[σ, S,W] which

specifies the total flow through edges going out of node z. Thus, ψ(z) := P=(tin(z), tout(z))
is a FOWA1(P)[σ, S,W] formula expressing that for node z, the incoming flow is equal to
its outgoing flow. Finally, φ(x, y) := ((source(x) ∧ target(y)) ∧ ∀z ((z=x ∨ z=y) ∨ ψ(z))) is
a FOWA1(P)[σ, S,W] formula expressing the following: G |= φ[s, t] for nodes s, t ∈ V (G) if
and only if wG is a feasible flow for the flow network G with source and sink nodes s and t,
i.e., for all vertices v ∈ V (G) \ {s, t} the incoming flow is equal to its outgoing flow.

Locality Results

For proving the main results (2)–(5) stated in Section 1, we heavily rely on the following two
locality results achieved in [5].

▶ Theorem 2.6 (Feferman–Vaught decompositions for FOW1 [5, Theorem 4.3]). Let k, ℓ ∈ N,
and let x̄ = (x1, . . . , xk), ȳ = (y1, . . . , yℓ) be tuples of k + ℓ pairwise distinct variables. For
every FOW1(P)[σ, S,W] formula φ with free variables among {x1, . . . , xk, y1, . . . , yℓ}, there
is a finite, non-empty set ∆ of pairs (α, β) of FOW1(P)[σ, S,W] formulas with free(α) ⊆
{x1, . . . , xk} and free(β) ⊆ {y1, . . . , yℓ} such that the following holds. For all (σ,W)-graphs G
and H with V (G)∩V (H) = ∅ and all v̄ ∈ (V (G))k and w̄ ∈ (V (H))ℓ, we have G⊎H |= φ[v̄, w̄]
if and only if there is a pair (α, β) ∈ ∆ with G |= α[v̄] and H |= β[w̄].

Furthermore, all formulas occurring in ∆ have quantifier rank at most qr(φ), and they
only use those P ∈ P and S ∈ S that occur in φ and only those S-terms that occur in φ or
that are of the form s for an s ∈ S with S ∈ S where S is finite and occurs in φ.

Moreover, there is an algorithm that computes ∆ upon input of φ, x̄, and ȳ.

For stating the second locality result, we need the following notation of local formulas.
Let r ∈ N. A FOWA formula φ(x̄) with free variables x̄ = (x1, . . . , xd) is r-local (around x̄) if
for every (σ,W)-graph G and all ā ∈ V (G)d, we have G |= φ[ā] ⇐⇒ NG

r (ā) |= φ[ā] . A
formula is local if it is r-local for some r ∈ N.

▶ Theorem 2.7 (Localisation Theorem for FOWA1 [5, Theorem 4.7]). Let d ∈ N. For every
formula φ(x1, . . . , xd) of FOWA1(P)[σ, S,W], there is an r ∈ N, an extension σ′ of σ with
relation symbols of arity ⩽ 1, and an FOW1(P)[σ′, S,W] formula φ′(x1, . . . , xd) that is a
Boolean combination of r-local formulas and statements of the form R() for a 0-ary relation
symbol R ∈ σ′ such that the following holds. There is an algorithm that, upon input of a
(σ,W)-graph G, computes in time |V (G)| · (deg(G))O(1) a (σ′,W)-expansion G′ of G such
that, for all v̄ ∈ V (G)d, it holds that G′ |= φ′[v̄] if and only if G |= φ[v̄]. Furthermore, r, σ′,
and φ′ are computable from φ.

S. van Bergerem and N. Schweikardt 15:9

3 FOC2 has Unbounded VC Dimension

This section proves main result (1) stated in Section 1. Let σ := {E}. Let S consist of
the integer ring (Z,+, ·), and let W consist of a unary weight symbol one. We identify
a graph G = (V (G), E(G)) with a (σ,W)-graph by letting oneG(v) = 1 for all v ∈ V (G).
For a formula φ, we write #(y1, . . . , yj).φ for the weight aggregation term

∑
p.φ for p :=

one(y1) · · · one(yj). Note that this term evaluates to the number of tuples (a1, . . . , aj) ∈
V (G)j for which the formula φ is satisfied when assigning the variables y1, . . . , yj the vertices
a1, . . . , aj . Let P be the predicate collection consisting only of the equality predicate P=,
where JP=K = {(i, i) : i ∈ Z}. The logic FOC(P)[σ] considered in [8] precisely corresponds to
the logic FOWA(P)[σ, S,W], and FOCn(P)[σ] corresponds to FOWAn(P)[σ, S,W], for n ∈ N.

▶ Theorem 3.1. Let T3 be the class of undirected, unranked trees of height at most 3.
There is an FOC2(P)[σ] formula ψ(x, y) such that, for every n ∈ N, there exist H ∈ T3 and
W ′ ⊆ V (H) with |W ′| = n and |SφH(V (H)/W ′)| = 2|W ′|. In particular, this implies that
ψ(x, y) has unbounded VC dimension on T3.

Proof. Recall the notions introduced at the beginning of Section 1. In particular, we write
Sφ(G/W) as a shorthand for SφG(V (G)/W).

Let Call be the class of all graphs. The proof of [8, Theorem 4.1] associates with every
G ∈ Call a tree HG ∈ T3 and an injective mapping πG from V (G) to V (HG). Furthermore,
the construction presented there allows associating with every FO[σ] formula φ(x, y) an
FOC2(P)[σ] formula φ̂(x, y) such that the following is true for every G ∈ Call:
1. For all v, w ∈ V (G), we have: G |= φ[v, w] ⇐⇒ HG |= φ̂[πG(v), πG(w)].
2. For all v′, w′ ∈ V (HG) with v′ ̸∈ img(πG) or w′ ̸∈ img(πG), we have: HG ̸|= φ̂[v′, w′].
This implies that for all W ⊆ V (G) and all v ∈ V (G) we have:
πG(tpφG(v/W)) = {w′ ∈ πG(W) : HG |= φ̂[πG(v), w′]} = tpφ̂HG(πG(v)/πG(W)).
Hence, πG(Sφ(G/W)) ⊆ Sφ̂(HG/πG(W)), and thus

|Sφ(G/W) | ⩽ |Sφ̂(HG/πG(W)) |. (1)

Consider the FO formula φ(x, y) := E(x, y). For every n ∈ N, there is a graph G ∈ Call
and a set W ⊆ V (G) with |W | = n and |Sφ(G/W)| = 2|W |. For example, we could use the
graph G with V (G) := [n] ⊎ {0, 1}n, E(G) :=

{
{i, w̄} : i ∈ N, w̄ ∈ {0, 1}n, wi = 1

}
, and

W := [n]. Let W ′ := πG(W), and note that |W ′| = |W | = n. From Equation (1), we obtain
that 2|W | = |Sφ(G/W)| ⩽ |Sφ̂(HG/W

′)| ⩽ 2|W ′| = 2|W |. Therefore, |Sφ̂(HG/W
′)| = 2|W ′|.

Choosing ψ(x, y) to be the formula φ̂(x, y) thus proves the first statement of Theorem 3.1.
The second statement of the theorem is an immediate consequence of its first statement and
the definition of the notion of VC dimension. ◀

4 Bound on the Number of Types

In this section, we prove the main technical tool for this paper. For that, we use the following
notation. For every k ∈ N, I = {i1, . . . , iℓ} ⊆ [k] with i1 < i2 < · · · < iℓ, and for a tuple
v̄ = (v1, . . . , vk), we let v̄I := (vi1 , vi2 , . . . , viℓ) be the tuple obtained from v̄ by keeping only
entries at positions contained in I.

▶ Lemma 4.1. There are computable functions T : FOWA1(P)[σ, S,W] × N → N and
r : FOWA1(P)[σ, S,W] → N such that, for every FOWA1(P)[σ, S,W] formula φ(x̄, ȳ), every
m ∈ N, every (σ,W)-graph G, and all V,W ⊆ V (G) that are r(φ)-separated by a set of size
at most m, we have |SφG(V/W)| ⩽ T (φ,m).

CSL 2025

15:10 On the VC Dimension of FOC and FOWA

Proof. Let φ(x̄, ȳ) ∈ FOWA1(P)[σ, S,W], k := |x̄|, and ℓ := |ȳ|. W.l.o.g., we assume that
P, σ, S, and W only contain elements that occur in φ. Using Theorem 2.7, from φ, we
can compute an r′ ∈ N, an extension σ′ of σ with relation symbols of arity ⩽ 1, and an
FOW1(P)[σ′, S,W] formula φ′(x̄, ȳ) that is a Boolean combination of r′-local formulas and
statements of the form R() for a 0-ary relation symbol R ∈ σ′ such that the following
holds. For every (σ,W)-graph G, there is a (σ′,W)-expansion G′ of G such that for all
v̄ ∈

(
V (G)

)
k and w̄ ∈

(
V (G)

)
ℓ, it holds that G |= φ[v̄, w̄] if and only if G′ |= φ′[v̄, w̄]. We

set r(φ) := 2r′ + 1. Note that, for all V,W ⊆ V (G), we have that SGφ (V/W) = SG
′

φ′ (V/W).
Let m ∈ N. We extend σ′ and W to be able to remove a set of vertices of size at most

m from G′ and encode the missing information in the remaining graph. For that, for every
i, j ∈ [m], we introduce a new 0-ary relation symbol Ri for every unary relation symbol
R ∈ σ′, we introduce the new unary relation symbol Ei, and we introduce the new 0-ary
relation symbol Ei,j . Analogously, for every i ∈ [m], we introduce two new unary weight
symbols wi,1, wi,2 for every binary weight symbol w ∈ W. In addition, for all i, j ∈ [m], for
all weight symbols w ∈ W, for all s ∈ type(w) that occur in φ′ (and type(w) may be infinite)
and all s ∈ type(w) if type(w) is finite, we add the new 0-ary relation symbol Rw,i,s if w is
a unary weight symbol, and we add the new 0-ary relation symbol Rw,i,j,s if w is a binary
weight symbol. Let σm and Wm denote the resulting signature and the resulting set of
weight symbols, respectively. Note that both σm and Wm are finite.

▷ Claim 4.2. Let H be a (σ′,W)-graph, let z1, . . . , zt ∈ V (H) be pairwise distinct vertices
with t ⩽ m, let Z := {z1, . . . , zt}, and let ψ(x′

1, . . . , x
′
p) ∈ FOW1(P)[σ′, S,W] for some p ∈ N.

There is a (σm,Wm)-expansion Hz̄,ψ of H \Z such that for every mapping f : [p] → [0, t],
there is a FOW1(P)[σm, S,Wm] formula ψH,z̄,f (x̄′′), where x̄′′ is obtained from x̄′ by dropping
all variables x′

i with f(i) ̸= 0, with the following properties.
For all v̄ ∈ (V (H))p, we have that H |= ψ[v̄] if and only if Hz̄,ψ |= ψH,z̄,f [v̄′], where v̄′ is

obtained from v̄ by dropping all elements that are contained in Z, and f : [p] → [0, t] maps
i ∈ [p] to j ∈ [t] if vi = zj , and it maps i ∈ [p] to 0 if vi ̸∈ Z.

Further, for a fixed formula ψ and a fixed mapping f , the formulas ψH,z̄,f are structurally
identical. That is, the syntax trees of all the formulas ψH,z̄,f have the same inner nodes, and
the leaf nodes that do not represent constants from rule (7) coincide. Hence, the dependence
on H and z̄ is only reflected in the use of different constants for rule (7).

Proof. Let H be a (σ′,W)-graph, let z1, . . . , zt ∈ V (H) be pairwise distinct vertices with
t ⩽ m, let Z := {z1, . . . , zt}, and let ψ(x′

1, . . . , x
′
p) ∈ FOWA1(P)[σ, S,W] for some p ∈ N.

We use the new relation symbols Ri and Ei,j to encode whether zi ∈ R(H) and {zi, zj} ∈
E(H), and we let Ei include all vertices v such that {zi, v} ∈ E(H). The relation symbols
Rw,i,s and Rw′,i,j,s are used to encode whether wH(zi) = s and (w′)H(zi, zj) = s. Finally, the
unary weight symbols wi,1 and wi,2 are used to encode the weights wH(zi, v) and wH(v, zi) for
all v ∈ V (H) \ Z. Formally, we let Hz̄,ψ be the (σm,Wm)-expansion of H \ Z with

Ri(Hz̄,ψ) := ⊤ if and only if i ∈ [t] and zi ∈ R, for all unary R ∈ σ′ and i ∈ [m],
Ei(Hz̄,ψ) := NH

1 (zi), for all i ∈ [t],
Ei(Hz̄,ψ) := ∅, for all i ∈ [m] \ [t],
Ei,j(Hz̄,ψ) := ⊤ if and only if i, j ∈ [t] and {zi, zj} ∈ E(H), for all i, j ∈ [m],
Rw,i,s(Hz̄,ψ) := ⊤ if and only if i ∈ [t] and wH(zi) = s, for all unary w ∈ W and all
s ∈ type(w) that occur in ψ and all s ∈ type(w) if type(w) is finite,
Rw,i,j,s(Hz̄,ψ) := ⊤ if and only if i, j ∈ [t] and wH(zi, zj) = s, for all binary w ∈ W and
all s ∈ type(w) that occur in ψ and all s ∈ type(w) if type(w) is finite,

S. van Bergerem and N. Schweikardt 15:11

wHz̄,ψi,1 : V (Hz̄,ψ) → type(w), v 7→ wH(zi, v), for all binary w ∈ W and i ∈ [t],
wHz̄,ψi,2 : V (Hz̄,ψ) → type(w), v 7→ wH(v, zi), for all binary w ∈ W and i ∈ [t], and
wHz̄,ψi,j : V (Hz̄,ψ) → type(w), v 7→ 0, for all binary w ∈ W, j ∈ [2], and i ∈ [m] \ [t].

Next, for every mapping f : [p] → [0, t], we recursively construct a FOW1(P)[σm, S,Wm]
formula ψH,z̄,f (x̄′′), where x̄′′ is obtained from x̄′ by dropping all variables x′

i with f(i) ̸= 0.
Intuitively, if f(i) ̸= 0, then this indicates that the variable x′

i should be replaced by the
vertex zf(i). For all i ∈ [p] and j ∈ [0, t], we let fi→j : [p] → [0, t] be the mapping with
fi→j(i′) := f(i′) for all i′ ̸= i and fi→j(i) := j. Moreover, for i, i′ ∈ [p] and j, j′ ∈ [0, t], we
analogously define fi→j,i′→j′ : [p] → [0, t].
(1) If ψ is of the form x′

i=x′
j , then we let ψH,z̄,f := ψ if f(i) = f(j) = 0, ψH,z̄,f := ⊤ if

f(i) = f(j) ̸= 0, and ψH,z̄,f := ⊥ else. If ψ is of the form R(), or ψ is of the form R(x′
i)

and f(i) = 0, or ψ is of the form E(x′
i, x

′
j) and f(i) = f(j) = 0, then we let ψH,z̄,f := ψ.

If ψ is of the form R(x′
i) and f(i) ̸= 0, then we let ψH,z̄,f := Rf(i)(). If ψ is of the form

E(x′
i, x

′
j) and f(i) ̸= 0 and f(j) = 0, then we let ψH,z̄,f := Ef(i)(x′

j). If ψ is of the form
E(x′

i, x
′
j) and f(i) = 0 and f(j) ̸= 0, then we let ψH,z̄,f := Ef(j)(x′

i). If ψ is of the form
E(x′

i, x
′
j) and f(i), f(j) ̸= 0, then we let ψH,z̄,f := Ef(i),f(j)().

(2) If ψ is of the form
(
s=w(x′

i)
)

and f(i) = 0, or ψ is of the form
(
s=w(x′

i, x
′
j)

)
and

f(i) = f(j) = 0, then we let ψH,z̄,f := ψ. If ψ is of the form
(
s=w(x′

i)
)

and f(i) ̸= 0,
then we let ψH,z̄,f := Rw,f(i),s. If ψ is of the form

(
s=w(x′

i, x
′
j)

)
and f(i), f(j) ̸= 0, then

we let ψH,z̄,f := Rw,f(i),f(j),s. If ψ is of the form
(
s=w(x′

i, x
′
j)

)
and f(i) ̸= 0 and f(j) = 0,

then we let ψH,z̄,f :=
(
s=wf(i),1(x′

j)
)
. If ψ is of the form

(
s=w(x′

i, x
′
j)

)
and f(i) = 0 and

f(j) ̸= 0, then we let ψH,z̄,f :=
(
s=wf(j),2(x′

i)
)
.

(3) If ψ is of the form (ψ′ ∨ψ′′), then we recursively construct ψ′
H,z̄,f and ψ′′

H,z̄,f , and we let
ψH,z̄,f := (ψ′

H,z̄,f ∨ψ′′
H,z̄,f). If ψ is of the form ¬ψ′, then we recursively construct ψ′

H,z̄,f ,
and we let ψH,z̄,f := ¬ψ′

H,z̄,f .
(4) If ψ is of the form ∃x′

i ψ
′, then we recursively construct ψ′

H,z̄,fi→j
for all j ∈ [0, t]. We

let ψH,z̄,f := (∃x′
i ψ

′
H,z̄,fi→0

∨
∨t
j=1 ψ

′
H,z̄,fi→j

).
(5) If ψ is of the form

(
s=

∑
w(x′

i).ψ′) for a unary weight symbol w ∈ W of finite type
S := type(w), then we recursively construct ψ′

H,z̄,fi→j
for all j ∈ [0, t]. We let

ψH,z̄,f :=
∨

s0,s1,...,st∈S
s0+s1+···+st=s

(
s0=

∑
w(x′

i).
(
ψ′
H,z̄,fi→0

∧
t∧

j=1
(Rw,j,sj ∧ ψ′

H,z̄,fi→j
)
))
.

If ψ is of the form
(
s=

∑
w(x′

i, x
′
i′).ψ′) for a binary weight symbol w ∈ W of finite type

S := type(w), then we recursively construct ψ′
H,z̄,fi→j,i′→j′ for all j, j′ ∈ [0, t]. We let

ψH,z̄,f :=
∨

s0,0,s0,1,...,s0,t,s10 ,...,st,t∈S
s00 +s0,1+···+st,t=s

(
s0=

∑
w(x′

i, x
′
i′).

(
ψ′
H,z̄,fi→0,i′→0

∧
t∧

j=1

t∧
j′=1

(Rw,j,j′,sj,j′ ∧ ψ′
H,z̄,fi→j,i′→j′)

))
.

(6) Finally, if ψ is of the form P(t1, . . . , tj), then t1, . . . , tj are terms according to rules (7)–
(9), and they have at most one free variable, say x′

i. If f(i) = 0, then we let ψH,z̄,f := ψ.
Otherwise, we let t′1, . . . , t′j be the terms obtained from t1, . . . , tj by replacing every
occurrence of a term of the form w(x′

i) by the constant wH(zf(i)) and every occurrence of
a term of the form w(x′

i, x
′
i) by the constant wH(zf(i), zf(i)). We set ψH,z̄,f := P(t′1, . . . , t′j).

CSL 2025

15:12 On the VC Dimension of FOC and FOWA

It follows from the construction that, for all v̄ ∈ (V (H))p, we have H |= ψ[v̄] if and only
if Hz̄,ψ |= ψH,z̄,f [v̄′], where v̄′ is obtained from v̄ by dropping all elements that are contained
in Z, and f : [p] → [0, t] maps i ∈ [p] to j ∈ [t] if vi = zj , and it maps i ∈ [p] to 0 if vi ̸∈ Z.

Moreover, for a fixed formula ψ and a fixed mapping f , the formulas ψH,z̄,f are structurally
identical. That is, the syntax trees of all the formulas ψH,z̄,f have the same inner nodes,
and even the leaf nodes that do not represent constants from some abelian group or ring
(rule (7)) coincide. Hence, the dependence on H and z̄ is only reflected in the use of different
constants for rule (7). ◁

Let V,W ⊆ V (G), let z1, . . . , zt ∈ V (G) be pairwise distinct vertices with t ⩽ m such
that V and W are r(φ)-separated in G (and thus also in G′) by the set Z := {z1, . . . , zt},
and let z̄ := (z1, . . . , zt). W.l.o.g., we may assume that every vertex from Z is contained in
some path from V to W in G of length at most r(φ) = 2r′ + 1, so Z ⊆ V

(
NG′

r′ (V ∪W)
)
.

By applying Claim 4.2 to H := NG′

r′ (V ∪W), z1, . . . , zt, and φ′, we obtain a (σm,Wm)-
expansion Hz̄,φ′ of H \ Z and, for every mapping f : [k + ℓ] → [0, t], a FOW1(P)[σm, S,Wm]
formula φ′

H,z̄,f . Since V is (2r′ + 1)-separated from W by Z, there is no path from V \ Z to
W \ Z in H \ Z = NG′

r′ (V ∪W) \ Z. Hence, there are (σm,Wm)-graphs HV and HW such
that V \ Z ⊆ V (HV), W \ Z ⊆ V (HW), and Hz̄,φ′ = HV ⊎HW .

Let v̄ ∈ V k and w̄ ∈ W ℓ. We have G |= φ[v̄, w̄] if and only if G′ |= φ′[v̄, w̄]. Moreover,
since φ′ is a Boolean combination of r′-local formulas and statements of the form R() for a
0-ary relation symbol R ∈ σ′, we have that G′ |= φ′[v̄, w̄] if and only if NG′

r′ (v̄w̄) |= φ′[v̄, w̄] if
and only if NG′

r′ (V ∪W) |= φ′[v̄, w̄]. Furthermore, by Claim 4.2, it holds that NG′

r′ (V ∪W) |=
φ′[v̄, w̄] if and only if Hz̄,φ′ |= φ′

H,z̄,f [v̄′, w̄′], where v̄′ and w̄′ are obtained from v̄ and w̄,
respectively, by dropping all entries that are contained in Z, and f : [k + ℓ] → [0, t] is defined
by f(i) := j if i ⩽ k and vi = zj or i > k and wi−k = zj , and f(i) := 0 if i ⩽ k and vi ̸∈ Z or
i > k and wi−k ̸∈ Z. Let x̄′ and ȳ′ be the tuples of variables obtained analogously from x̄

and ȳ, respectively.
Using Theorem 2.6, we obtain a Feferman–Vaught decomposition ∆φ′

H,z̄,f
of φ′

H,z̄,f (x̄′, ȳ′)
w.r.t. (x̄′; ȳ′), that is, a set of pairs

(
α(x̄′), β(ȳ′)

)
of FOW1(P)[σm, S,Wm] formulas such

that Hz̄,φ′ |= φ′
H,z̄,f [v̄′, w̄′] if and only if there is a pair

(
α(x̄′), β(ȳ′)

)
in ∆φ′

H,z̄,f
such that

HV |= α[v̄′] and HW |= β[w̄′]. Since the structure of φ′
H,z̄,f is independent of H and z̄, and

only the used constants might differ, it is easy to see from the proof of Theorem 2.6 (see [5]
for details) that the size of ∆φ′

H,z̄,f
only depends on φ and f , and that it is independent of

H and z̄. Furthermore, the number of mappings f : [k + ℓ] → [0, t] only depends on φ and m
(recall that t ⩽ m), so we can let T ′(φ,m) : FOWA1(P)[σ, S,W] × N → N be an upper bound
on the number of pairs in the decomposition ∆φ′

H,z̄,f
for all H, z̄, and f .

All in all, we have G |= φ[v̄, w̄] if and only if there is a pair
(
α(x̄′), β(ȳ′)

)
in ∆φ′

H,z̄,f
such

that HV |= α[v̄′] and HW |= β[w̄′]. Hence, for every v̄ ∈ V k, tpφG(v̄/W) only depends on
which vertices of v̄ are contained in Z and
which formulas α of pairs (α, β) in any of the ∆φ′

H,z̄,f
are satisfied by v̄′, where v̄′ is

obtained from v̄ by dropping all entries that are contained in Z, and f ranges over all
mappings f : [k+ ℓ] → [0, t] with, for all i ∈ [k], f(i) = j if vi = zj , and f(i) = 0 if vi ̸∈ Z.

Since the number of possibilities for both can be bounded in terms of φ and m, there is a
function T : FOWA1(P)[σ, S,W] × N → N such that |SφG(V/W)| =

∣∣{tpφG(v̄/W) : v̄ ∈ V k}
∣∣ ⩽

T (φ,m). This is the statement of Lemma 4.1. ◀

S. van Bergerem and N. Schweikardt 15:13

5 VC Density and VC Dimension

In this section, we prove Results (2)–(4) stated in Section 1. Our main result of this section
is the following.

▶ Theorem 5.1. Let C be a nowhere dense class of (σ,W)-graphs, and let φ(x̄, ȳ) be a
FOWA1(P)[σ, S,W] formula. For every ε > 0, there exists a constant c ∈ N such that for
every G ∈ C and every non-empty W ⊆ V (G), we have |Sφ(G/W)| ⩽ c · |W ||x̄|+ε.

As discussed in the introduction, this immediately implies the following bound on the
VC density of FOWA1 formulas.

▶ Corollary 5.2. Let C be a nowhere dense class of (σ,W)-graphs, and let φ(x̄, ȳ) be a
FOWA1(P)[σ, S,W] formula. The VC density of φ(x̄, ȳ) on C is at most |x̄|.

Moreover, this implies that the VC dimension of FOWA1 formulas on nowhere dense
classes is bounded.

▶ Corollary 5.3. Let C be a nowhere dense class of (σ,W)-graphs, and let φ(x̄, ȳ) be a
FOWA1(P)[σ, S,W] formula. It holds that φ(x̄, ȳ) has bounded VC dimension on C.

Proof. As described in the introduction, Corollary 5.2 already implies Corollary 5.3, since
the VC dimension is finite if and only if the VC density is finite (see, e. g., [2]). However, since
we find it short and instructive, we also give a proof of Corollary 5.3 based on Theorem 5.1.

Let k := |x̄|, ℓ := |ȳ|, let ε > 0, and let c ∈ N be the constant from Theorem 5.1 applied
to C, φ(x̄, ȳ), and ε. Moreover, let m0 ∈ N be such that c · (ℓm)k+ε < 2m for all m ⩾ m0.

Let G ∈ C and Y ⊆
(
V (G)

)ℓ such that |Y | =: m ⩾ m0. Let W ⊆ V (G) be the
set of vertices appearing in any tuple in Y . We have |W | ⩽ ℓ · |Y | = ℓm. Moreover,
we have {Y ∩ F : F ∈ Sφ(G/V (G))} ⊆ Sφ(G/W). Hence, by Theorem 5.1, we have
|{Y ∩ F : F ∈ Sφ(G/V (G))}| ⩽ |Sφ(G/W)| ⩽ c · (ℓm)k+ε < 2m. This shows that {Y ∩ F :
F ∈ Sφ(G/V (G))} ≠ 2Y , so Y is not shattered by Sφ(G/V (G)). Thus, the VC dimension of
Sφ(G/V (G)) is less than m0. Since m0 does not depend on G, this proves that φ(x̄, ȳ) has
bounded VC dimension on C. ◀

For the proof of Theorem 5.1, we rely on the following lemma on the neighbourhood
complexity in nowhere dense graph classes. Let G be a (σ,W)-graph, and let X ⊆ V (G).
For vertices v ∈ X and w ∈ V (G), a path P from v to w in G is called X-avoiding if all
vertices on the path except for v are not contained in X. For an r ∈ N and w ∈ V (G),
the r-projection of w on X, denoted by MG

r (w,X), is the set of all vertices v ∈ X that are
connected to w by an X-avoiding path of length at most r.

▶ Lemma 5.4 ([6, Lemmas 21 and 22]). Let C be a nowhere dense class of graphs. There is a
function fcl : N × Q>0 → N and an algorithm1 that, given a graph G ∈ C, X ⊆ V (G), r ∈ N,
and δ ∈ Q>0, computes a set clr,δ(X), called the r-closure of X w.r.t. δ, with the following
properties.
1. X ⊆ clr,δ(X) ⊆ V (G),
2. |clr,δ(X)| ⩽ fcl(r, δ) · |X|1+δ, and
3.

∣∣MG
r

(
u, clr,δ(X)

)∣∣ ⩽ fcl(r, δ) · |X|δ for all u ∈ V (G) \ clr,δ(X).
Moreover, for all X ⊆ V (G), it holds that
4.

∣∣{MG
r (u,X) : u ∈ V (G)

}∣∣ ⩽ fcl(r, δ) · |X|1+δ.

1 In [6], the authors even show that this can be computed by a polynomial-time algorithm. However,
running-time bounds are not relevant for our purposes.

CSL 2025

15:14 On the VC Dimension of FOC and FOWA

We can now prove Theorem 5.1.

Proof of Theorem 5.1. The proof is similar to the proof of the analogous result for first-order
logic in [14], using Lemma 4.1 instead of the corresponding result for FO.

Let C be a nowhere dense class of (σ,W)-graphs, let φ(x̄, ȳ) be a FOWA1 formula, and
let ε > 0. Let k := |x̄|, ℓ := |ȳ|, let r : FOWA1 → N and T : FOWA1 ×N → N be the functions
from Lemma 4.1, let t : N → N be the function from Definition 2.1, and let r := r(φ) and
t := t(36r). We have that no graph G ∈ C contains Kt as a depth-36r minor.

By Theorem 2.2, there is a number s ∈ N and a polynomial N : N → N such that, for
every graph G ∈ C, every m ∈ N, and every set X ⊆ (V (G))k with |X| ⩾ N(m), there are
sets S ⊆ V (G) and Y ⊆ X with |S| ⩽ s and |Y | ⩾ m such that all distinct v̄, v̄′ ∈ Y are
2r-separated by S in G. Let d be the degree of N .

Let G ∈ C, and let W ⊆ V (G) be a non-empty set of vertices. We set δ := ε
4k+4d , and we

let W ′ := clr,δ(W) be the r-closure of W w.r.t. δ, obtained via Lemma 5.4. We shall prove
that

|Sφ(G/W ′)| ∈ Oε,φ

(
|W ′|k+ε′)

for ε′ := ε/2 > 0, (⋆)

where Oε,φ(·) omits factors depending only on ε and φ. Since W ⊆ W ′, we have |Sφ(G/W)| ⩽
|Sφ(G/W ′)|. Moreover, by Lemma 5.4, we have |W ′| = |clr,δ(W)| ⩽ fcl(r, δ) · |W |1+δ, and
we have (1 + δ)(k + ε′) = (1 + δ)(k + ε/2) ⩽ k + ε by the choice of δ, so

|Sφ(G/W)| ∈ Oε,φ

((
fcl(r, δ) · |W |1+δ)k+ε′)

⊆ Oε,φ

(
|W |k+ε)

,

which is the statement of Theorem 5.1.
It remains to prove (⋆). Recall that Sφ(G/W ′) =

{
tpφG(v̄/W ′) : v̄ ∈

(
V (G)

)k}
. We

partition the tuples v̄ = (v1, . . . , vk) ∈
(
V (G)

)k based on their projection MG
r (v̄,W ′) :=⋃k

i=1 Mr(vi,W ′) into sets V1, . . . , Vp. That is, two tuples v̄, v̄′ ∈
(
V (G)

)k are contained in
the same set Vj for some j ∈ [p] if and only if MG

r (v̄,W ′) = MG
r (v̄′,W ′). By Item 4 of

Lemma 5.4, there are at most fcl(r, δ) · |W ′|1+δ different projections of vertices in V (G) on
W ′, so we have p ∈ Oε,φ

(
|W ′|(1+δ)k)

. Hence, to prove (⋆), it suffices to show that∣∣{tpφG(v̄/W ′) : v̄ ∈ Vj
}∣∣ ∈ Oε,φ

(
|W ′|ε

′′)
for ε′′ := ε′ − kδ > 0, (⋆⋆)

for all j ∈ [p], since then |Sφ(G/W ′)| ∈ Oε,φ

(
|W ′|(1+δ)k |W ′|ε

′−kδ) = Oε,φ

(
|W ′|k+ε′)

.
Let j ∈ [p], and let X := MG

r (v̄,W ′) be the r-projection of v̄ on W ′ for any (and, due to
the definition of Vj , for all) v̄ ∈ Vj . By Item 3 of Lemma 5.4, we have |X| ⩽ k ·fcl(r, δ)·|W |δ ∈
Oε,φ

(
|W |δ

)
.

Let V ′
j be a maximal subset of Vj such that all pairwise distinct tuples v̄, v̄′ from V ′

j have
different types tpφG(v̄/W ′) ̸= tpφG(v̄′/W ′). Note that

∣∣{tpφG(v̄/W ′) : v̄ ∈ Vj
}∣∣ =

∣∣V ′
j

∣∣. Now
let m ∈ N be the maximum number with

∣∣V ′
j

∣∣ ⩾ N(m). Then
∣∣V ′
j

∣∣ < N(m+ 1) ∈ Oε,φ(md).
By Theorem 2.2, as described above, there are sets S ⊆ V (G) and Y ⊆ V ′

j with |S| ⩽ s

and |Y | ⩾ m such that all distinct v̄, v̄′ ∈ Y are 2r-separated by S in G.
We partition Y into two sets Y1 ⊎ Y2, where Y1 contains all tuples that are r-separated

by S from W ′, and Y2 contains the remaining tuples. By Lemma 4.1, since all tuples in
Y1 are r-separated by S from W ′, and all tuples in Y1 have distinct types, we know that
|Y1| ⩽ T (φ, s) ∈ Oε,φ(1). Moreover, for every tuple v̄ ∈ Y2, there is a vertex w ∈ W ′ such
that v̄ and w are not r-separated by S in G. Note that we can choose w to be contained
in X. Moreover, since all tuples in Y2 are mutually 2r-separated by S in G, we know that

S. van Bergerem and N. Schweikardt 15:15

for two distinct tuples v̄, v̄′ ∈ Y2, the vertices in C connected to them by paths of length at
most r avoiding S must also be distinct. This shows that |Y2| ⩽ |X|. Combined, we obtain
that |Y | ∈ Oε,δ(|X|). Furthermore, since |Y | ⩾ m, we have∣∣V ′

j

∣∣ ∈ Oε,φ(md) ⊆ Oε,φ(|Y |d) ⊆ Oε,φ(|X|d) ⊆ Oε,φ(|W ′|dδ) ⊆ Oε,φ(|W ′|ε
′′

),

where the last inclusion holds because ε′′ = ε/2 − kδ ⩽ ε/4 ⩽ dδ by the choice of δ. This
proves (⋆⋆), which, as discussed above, implies the statement of Theorem 5.1. ◀

6 Stability

In this section, we provide the following bound on the ladder index of FOC1 formulas and
FOWA1 formulas on nowhere dense classes of weighted graphs. Based on this, we prove
Result (5) stated in Section 1.

▶ Theorem 6.1. There are computable functions f : FOWA1(P)[σ, S,W] × N → N and
g : FOWA1(P)[σ, S,W] → N such that, for every FOWA1(P)[σ, S,W] formula φ, for every
t ∈ N, and for every (σ,W)-graph G excluding Kt as a depth-g(φ) minor, the ladder index
of φ in G is at most f(φ, t).

Proof. The proof is similar to the proof of the analogous statement in [14] for first-order
formulas. Let r : FOWA1(P)[σ, S,W] → N and T : FOWA1(P)[σ, S,W] × N → N be the
functions from Lemma 4.1. We set g : FOWA1(P)[σ, S,W] → N, φ 7→ 18r(φ).

Let φ(x̄, ȳ) be a FOWA1(P)[σ, S,W] formula, let t ∈ N, and let C be the class of (σ,W)-
graphs excluding Kt as a depth-g(φ) minor. Let d := |x̄| + |ȳ|, and let s ∈ N be the number
and N : N → N be the polynomial computed from r(φ), t, and d using Theorem 2.2. Moreover,
let L := f(φ, t) := N

(
2T (φ, s) + 1

)
. (Note that N and s can be computed from φ and t.)

We show that every φ-ladder in every graph G ∈ C has length less than L.
Towards a contradiction, suppose there are a graph G ∈ C and tuples v̄1, . . . , v̄L ∈(

V (G)
)|x| and w̄1, . . . , w̄L ∈

(
V (G)

)|y| that form a φ-ladder in G, that is, G |= φ[v̄i, w̄j] if
and only if i ⩽ j. In particular, the tuples v̄1, . . . , v̄L are pairwise distinct, and the same
holds for the tuples w̄1, . . . , w̄L. Let X := {v̄iw̄i : i ∈ [L]} ⊆

(
V (G)

)d. By Theorem 2.2,
for m := 2T (φ, s) + 1, since |X| ⩾ N(m), there are sets S ⊆ V (G) and Y ⊆ X with
|S| ⩽ s and |Y | ⩾ m such that all distinct ū, ū′ ∈ Y are r(φ)-separated by S in G. Let
I := {i ∈ [ℓ] : v̄iw̄i ∈ Y }. Let I1, I2 be an alternating partition of I, that is, for all successive
i, j ∈ I1, there is exactly one k ∈ I2 with i < k < j. Note that |I1| ⩾ T (φ, s) + 1. Let
V ⊆ V (G) be the set of vertices appearing in a tuple v̄iw̄i with i ∈ I1, and let W ⊆ V (G)
be the set of vertices appearing in a tuple v̄iw̄i with i ∈ I2. Since all distinct ū, ū′ ∈ Y are
r(φ)-separated by S in G, it also holds that the sets V and W are r(φ)-separated by S in G.

Now we can apply Lemma 4.1 to V and W , and we obtain |SφG(V/W)| ⩽ T (φ, s) < |I1|.
Hence, there are two indices i, j ∈ I1 with i < j such that tpφG(v̄i/W) = tpφG(v̄j/W).
Let k ∈ I2 with i < k < j. Then w̄k ∈ tpφG(v̄i/W) if and only if w̄k ∈ tpφG(v̄j/W),
so G |= φ[v̄i, w̄k] if and only if G |= φ[v̄j , w̄k]. However, this contradicts v̄1, . . . , v̄ℓ and
w̄1, . . . , w̄ℓ being a φ-ladder, because we need to have G |= φ[v̄i, w̄k] (since i < k) and
G ̸|= φ[v̄j , w̄k] (since j > k). This shows that there is no φ-ladder in G of size at least
L = f(φ, t), so the ladder index of φ in G is at most f(φ, t). ◀

We call a class C of weighted graphs FOWA1-stable (FOC1-stable) if the ladder index of
every FOWA1 (FOC1) formula φ in every weighted graph from C is bounded by a constant
depending only on φ and C.

CSL 2025

15:16 On the VC Dimension of FOC and FOWA

▶ Corollary 6.2. Every nowhere dense class of weighted graphs is FOC1-stable and FOWA1-
stable.

Proof. Let C be a nowhere dense class of (σ,W)-graphs, let φ(x̄, ȳ) be a formula in
FOWA1(P)[σ, S,W], and let k := |x̄| and ℓ := |ȳ|. By Definition 2.1, there is a func-
tion t : N → N such that for all r ∈ N and G ∈ C, it holds that G does not contain Kt(r) as a
depth-r minor.

Let f : FOWA1(P)[σ, S,W] × N → N and g : FOWA1(P)[σ, S,W] → N be the functions
from Theorem 6.1. For all G ∈ C, we have that G does not contain Kt(g(φ)) as a depth-g(φ)
minor. Thus, by Theorem 6.1, for every G ∈ C, the ladder index of φ in G is at most
L := f

(
φ, t(g(φ))

)
, which only depends on φ and C. ◀

7 Final Remarks

In this paper, we have presented upper bounds on the VC dimension and the ladder index as
well as optimal bounds on the VC density of formulas in the first-order logic with counting
FOC1 and the first-order logic with weight aggregation FOWA1 on nowhere dense classes of
vertex- and edge-weighted graphs. This lifts results of Adler and Adler [1] and results of
Pilipczuk, Siebertz, and Toruńczyk [14] from first-order logic to substantially more expressive
logics.

In [4], van Bergerem, Grohe, and Ritzert combined the result by Adler and Adler with
the fixed-parameter tractable (fpt) model-checking result for FO on nowhere dense graph
classes [7] to prove learnability results for FO on nowhere dense graph classes in the Probably
Approximately Correct (PAC) learning framework. We remark that, by combining our results
on the VC dimension for FOC1 formulas with the fpt model-checking result for FOC1 by
Grohe and Schweikardt [8], we also obtain fpt PAC learnability for FOC1-definable concepts
over nowhere dense graph classes. We are currently working on lifting these model-checking
and learnability results from FOC1 to FOWA1.

References

1 Hans Adler and Isolde Adler. Interpreting nowhere dense graph classes as a classical notion of
model theory. Eur. J. Comb., 36:322–330, 2014. doi:10.1016/j.ejc.2013.06.048.

2 Matthias Aschenbrenner, Alf Dolich, Deirdre Haskell, Dugald Macpherson, and Sergei
Starchenko. Vapnik–Chervonenkis density in some theories without the independence prop-
erty, I. Transactions of the American Mathematical Society, 368(8):5889–5949, August 2016.
doi:10.1090/tran/6659.

3 Steffen van Bergerem. Learning concepts definable in first-order logic with counting. In 34th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC,
Canada, June 24–27, 2019, pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.8785811.

4 Steffen van Bergerem, Martin Grohe, and Martin Ritzert. On the parameterized complexity
of learning first-order logic. In PODS 2022: International Conference on Management of
Data, Philadelphia, PA, USA, June 12–17, 2022, pages 337–346. ACM, 2022. doi:10.1145/
3517804.3524151.

5 Steffen van Bergerem and Nicole Schweikardt. Learning concepts described by weight aggrega-
tion logic. In 29th EACSL Annual Conference on Computer Science Logic, CSL 2021, Ljubljana,
Slovenia (Virtual Conference), January 25–28, 2021, volume 183 of LIPIcs, pages 10:1–10:18.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CSL.2021.10.

https://doi.org/10.1016/j.ejc.2013.06.048
https://doi.org/10.1090/tran/6659
https://doi.org/10.1109/LICS.2019.8785811
https://doi.org/10.1145/3517804.3524151
https://doi.org/10.1145/3517804.3524151
https://doi.org/10.4230/LIPIcs.CSL.2021.10

S. van Bergerem and N. Schweikardt 15:17

6 Kord Eickmeyer, Archontia C. Giannopoulou, Stephan Kreutzer, O-joung Kwon, Michał
Pilipczuk, Roman Rabinovich, and Sebastian Siebertz. Neighborhood complexity and kernel-
ization for nowhere dense classes of graphs. In 44th International Colloquium on Auto-
mata, Languages, and Programming, ICALP 2017, July 10–14, 2017, Warsaw, Poland,
volume 80 of LIPIcs, pages 63:1–63:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPICS.ICALP.2017.63.

7 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. J. ACM, 64(3):17:1–17:32, 2017. doi:10.1145/3051095.

8 Martin Grohe and Nicole Schweikardt. First-order query evaluation with cardinality conditions.
In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS 2018, Houston, TX, USA, June 10–15, 2018, pages 253–266. ACM,
2018. doi:10.1145/3196959.3196970.

9 Martin Grohe and György Turán. Learnability and definability in trees and similar structures.
Theory Comput. Syst., 37(1):193–220, 2004. doi:10.1007/s00224-003-1112-8.

10 Dietrich Kuske and Nicole Schweikardt. First-order logic with counting. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavík, Iceland, June
20–23, 2017, pages 1–12. IEEE Computer Society, 2017. doi:10.1109/LICS.2017.8005133.

11 Jaroslav Nešetřil and Patrice Ossona de Mendez. First order properties on nowhere dense
structures. J. Symb. Log., 75(3):868–887, 2010. doi:10.2178/jsl/1278682204.

12 Jaroslav Nešetřil and Patrice Ossona de Mendez. On nowhere dense graphs. Eur. J. Comb.,
32(4):600–617, 2011. doi:10.1016/j.ejc.2011.01.006.

13 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity – Graphs, Structures, and
Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

14 Michał Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. On the number of types
in sparse graphs. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09–12, 2018, pages 799–808. ACM, 2018.
doi:10.1145/3209108.3209178.

15 Klaus-Peter Podewski and Martin Ziegler. Stable graphs. Fundamenta Mathematicae,
100(2):101–107, 1978. URL: http://eudml.org/doc/210953.

16 Norbert Sauer. On the density of families of sets. J. Comb. Theory A, 13(1):145–147, 1972.
doi:10.1016/0097-3165(72)90019-2.

17 Saharon Shelah. A combinatorial problem: stability and order for models and theories in
infinitary languages. Pacific Journal of Mathematics, 41(1):247–261, 1972. doi:10.2140/pjm.
1972.41.247.

18 Katrin Tent and Martin Ziegler. A Course in Model Theory. Lecture Notes in Logic. Cambridge
University Press, 2012. doi:10.1017/CBO9781139015417.

19 Vladimir Naumovich Vapnik and Alexey Ya. Chervonenkis. On the uniform convergence of
relative frequencies of events to their probabilities. Theory of Probability and its Applications,
16:264–280, 1971. doi:10.1137/1116025.

CSL 2025

https://doi.org/10.4230/LIPICS.ICALP.2017.63
https://doi.org/10.1145/3051095
https://doi.org/10.1145/3196959.3196970
https://doi.org/10.1007/s00224-003-1112-8
https://doi.org/10.1109/LICS.2017.8005133
https://doi.org/10.2178/jsl/1278682204
https://doi.org/10.1016/j.ejc.2011.01.006
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1145/3209108.3209178
http://eudml.org/doc/210953
https://doi.org/10.1016/0097-3165(72)90019-2
https://doi.org/10.2140/pjm.1972.41.247
https://doi.org/10.2140/pjm.1972.41.247
https://doi.org/10.1017/CBO9781139015417
https://doi.org/10.1137/1116025

Undefinability of Approximation of 2-To-2 Games
Anuj Dawar # Ñ

Department of Computer Science and Technology, University of Cambridge, UK

Bálint Molnár #

Department of Computer Science and Technology, University of Cambridge, UK

Abstract
Recent work by Atserias and Dawar [6] and Tucker-Foltz [26] has established undefinability results
in fixed-point logic with counting (FPC) corresponding to many classical complexity results from the
hardness of approximation. In this line of work, NP-hardness results are turned into unconditional
FPC undefinability results. We extend this work by showing the FPC undefinability of any constant
factor approximation of weighted 2-to-2 games, based on the NP-hardness results of Khot, Minzer
and Safra. Our result shows that the completely satisfiable 2-to-2 games are not FPC-separable from
those that are not ϵ-satisfiable, for arbitrarily small ϵ. The perfect completeness of our inseparability
is an improvement on the complexity result, as the NP-hardness of such a separation is still only
conjectured. This perfect completeness enables us to show the FPC undefinability of other problems
whose NP-hardness is conjectured. In particular, we are able to show that no FPC formula can
separate the 3-colourable graphs from those that are not t-colourable, for any constant t.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Theory of
computation → Complexity theory and logic; Theory of computation → Problems, reductions and
completeness

Keywords and phrases Hardness of Approximation, Unique Games, Descriptive Complexity, Fixed-
Point Logic with Counting

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.16

Funding Anuj Dawar : Funded by UK Research and Innovation (UKRI) under the UK government’s
Horizon Europe funding guarantee: grant number EP/X028259/1.

1 Introduction

The study of the hardness of approximation of NP-optimization problems began in earnest
with the PCP theorem in the 1990s. This theorem showed that for many problems (such
as MAX 3SAT), where there are polynomial-time algorithms that can approximate the
optimum solution within a constant factor, there is nonetheless a constant c such that no
efficient algorithm can approximate the optimum value within a factor c unless P = NP.
Indeed, Håstad [17] established tight bounds for MAX 3SAT: there is a trivial algorithm
that achieves an 8

7 approximation, but none that achieves an 8
7 − ϵ approximation for any ϵ,

unless P = NP. Such tight bounds are known for many NP-optimization problems, while
for others there is a gap in the approximation ratio between the best known algorithm
and the strongest known lower bound. An important problem in the latter category is the
minimum vertex cover problem, where the best known polynomial-time algorithms yield an
approximation ratio of 2, while the strongest proved lower bound is

√
2.

Perhaps the most important open question in the field of the hardness of approximation
is the unique games conjecture of Khot. This states that for any ϵ, δ > 0, there is a set of
labels Σ such that it is NP-hard to separate the (1 − ϵ)-satisfiable instances of Σ-unique
games (the precise definitions follow below) from those that are not even δ-satisfiable. The
strongest result obtained so far in this direction shows that there is a Σ for which it is
NP-hard to separate the (1

2 − ϵ)-satisfiable instances from the δ-unsatisfiable ones. This
result is a consequence of the 2-to-2 theorem due to Khot, Minzer and Safra [20, 11, 21].

© Anuj Dawar and Bálint Molnár;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 16; pp. 16:1–16:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anuj.dawar@cl.cam.ac.uk
https://www.cst.cam.ac.uk/people/ad260
https://orcid.org/0000-0003-4014-8248
mailto:bm589@cam.ac.uk
https://doi.org/10.4230/LIPIcs.CSL.2025.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Undefinability of Approximation of 2-To-2 Games

The hardness of approximation has also been studied in recent years in the context of
logical definability. In particular, Atserias and Dawar [6] showed that many of the NP-
hardness results can be recast as unconditional undefinability results in fixed-point logic with
counting (FPC). For example, there is an FPC formula which yields an 8

7 approximation of
the value of a MAX 3SAT instance and there is provably no formula that yields an 8

7 − ϵ

approximation for any ϵ > 0. Recall that FPC is a logic whose expressive power is contained
within the complexity class P and which has been characterized as a natural symmetric
fragment of that class [1]. Tucker-Foltz [26] established the first definability gap in FPC of
unique games, by showing that no formula can distinguish the 1

2 -satisfiable instances from
those that are not 1

3 + δ-satisfiable and also showed that no constant factor approximation is
FPC definable.

In the present paper, we consider the FPC definability of 2-to-2 games. The hardness of
approximating the optimum value of such games was established through a series of results
by Khot, Minzer and Safra [20, 25, 11]. At the core of their proof is a reduction from the
problem MAX 3XOR of maximizing the number of satisfied clauses in a 3XOR instance.
We show that the reductions used can be formulated, with some modification, as first-order
definable reductions. As a consequence, we obtain the result that the completely satisfiable
instances of 2-to-2 games cannot be separated by an FPC formula from those that are no
more than δ-satisfiable. This (1, δ) separation is stronger (in terms of approximation ratios)
than the known (1 − ϵ, δ) NP-hardness result due to the fact that the FPC undefinability
of approximating MAX 3XOR was proved with perfect completeness in [6]. A corollary of
our result is the FPC undefinability of a (1

2 , δ) separation for (a weighted version of) unique
games. This improves, again in terms of the approximation ratios, the gap obtained by
Tucker-Foltz, though it should be noted that the latter gap is for unweighted games.

A more striking consequence of our result is that no FPC sentence can separate the class
of 3-colourable graphs from those that are not even t-colourable for any constant t ≥ 3.
The NP-hardness of such a separation has only been proved for t at most 5, though it is
conjectured for larger values. Indeed, this is a central open problem in the rapidly growing
study of promise constraint satisfaction problems (PCSP, see [7]).

The result on graph colouring should be compared with a recent result of Atserias and
Dalmau [5] which shows that the promise graph colouring problem cannot be solved by a local
consistency algorithm. In particular, this implies that for any constant t the 3-colourable
graphs cannot be separated from those that are not t-colourable by a class (whose complement
is) definable in Datalog. Since Datalog programs can be translated into sentences of FPC, our
Theorem 5.3 can be seen as strengthening their result. It is worth examining this relationship
more closely. It is known, from results of [4] and [8], that every class of bounded counting
width (and therefore, in particular, any FPC definable class) that is the complement of a
fixed-template constraint satisfaction problem (CSP) is already definable in Datalog. Hence,
we can conclude from the result of Atserias and Dalmau that no FPC definable CSP separates
the 3-colourable graphs from the non-t-colourable ones. However, since it is conceivable that
a separating class for these two CSPs is FPC definable but not itself a CSP, our result is still
a strengthening. But we can say still more. It can be deduced from the proof in [5] that the
3-colourable graphs and the non-t-colourable ones are not separable by any class definable in
an existential positive infinitary logic (∃+,ω). Moreover, it is a consequence of a very recent
proof due to Rossman (published in the present volume [24]) that every class of bounded
counting width that is preserved under homomorphisms is definable in ∃+,ω. Thus, we can
conclude from these results that no homomorphism-closed class of bounded counting width
separates the 3-colourable graphs from the non-t-colourbale ones. Since Theorem 5.3 easily

A. Dawar and B. Molnár 16:3

applies to all classes of bounded counting width and not just the FPC-definable ones; and it
is conceivable that a separating class is not necessarily closed under homomorphisms, our
result subsumes even this strengthened version of that of Atserias and Dalmau.

In Section 2 we introduce the problems, notation and provide background definitions. An
outline of the steps involved in the reduction of Khot, Minzer and Safra is given in Section 3.
The proof that the reductions involved are definable as first-order interpretations is given in
Section 4 and certain consequences derived in Section 5.

2 Preliminaries

2.1 Hardness of Approximation in Optimization

We are interested in NP-hard optimization problems. A standard example is the problem
MAX 3SAT, where the aim is to find, given a formula in 3CNF, an assignment of values to
its variables that maximizes the number of clauses satisfied. Formally, consider a function
problem M , which associates with every possible input instance I a value M(I). In our
example, MAX 3SAT maps a formula ϕ to the maximum number m of clauses of ϕ that can
be simultaneously satisfied. While, in practice, we might be interested in finding an assignment
that achieves this maximum, for the purpose of proving hardness, it suffices to show that it
is hard to compute the number m. When finding M(I) is hard, we may wish to approximate
it, and we say that an algorithm computes a C-approximation (for a real number C > 1) of
M if it produces a number M ′(I) with the guarantee that M ′(I) ≤ M(I) ≤ C · M ′(I).

For the sake of uniformity, we consider function problems that take values in [0, 1]. Thus,
MAX 3SAT assigns to a 3CNF formula ϕ the maximum fraction of the clauses of ϕ that
can be simultaneously satisfied. For MAX 3SAT, it is known that, unless P = NP, there is
no polynomial-time algorithm that gives a C-approximation for any C < 8/7. Such hardness
of approximation results are usually proved by means of a hardness of separation, which
allows us to frame this in terms of the hardness of decision problems.

Formally, let A and B be two sets (i.e. decision problems) with A ∩ B = ∅. We say that
A and B are NP-hard to separate, if every set C with A ⊆ C ⊆ B is NP-hard, where B

denotes the complement of B. For a function problem M , and a constant c ∈ [0, 1], denote
by c-M the set {I | M(I) ≥ c}. Then, for constants c and s with 0 ≤ s < c ≤ 1, we say that
the gap problem GapM(c, s) is NP-hard if it is NP-hard to separate the sets c-M and s-M .
This implies, in particular, that unless P = NP, there is no polynomial-time algorithm giving
a c

s -approximation of M . The value c in GapM(c, s) is called the completeness parameter
and s the soundness parameter.

The first hardness of approximation results come from the PCP theorem [2, 15, 3]: one
of its direct consequences is the NP-hardness of Gap3SAT(1, η) for some constant η strictly
less than 1. Håstad [17] obtained an optimum inapproximability result for MAX 3SAT.
Namely, he showed that Gap3SAT(1, 7

8 + ϵ) is NP-hard for arbitrarily small ϵ. This is
optimal since there is an easy 8

7 -approximation algorithm. Similarly, he also showed that
Gap3XOR(1 − ϵ, 1

2 + ϵ) is NP-hard for arbitrarily small ϵ. Again, this is optimal. Here,
3XOR is the problem where we are given a Boolean formula as a conjunction of clauses, each
of which is the XOR of three literals and we aim to maximize the number of satisfied clauses.
Note that the completeness parameter must be strictly less than 1, since the problem of
determining whether such a formula is satisfiable or not is polynomial-time decidable. Thus
1-3XOR can be separated in polynomial time from (1 − ϵ)-3XOR for any ϵ.

CSL 2025

16:4 Undefinability of Approximation of 2-To-2 Games

Reductions

A common way of deriving further hardness of approximation results is via gap-reductions:
given function problems A and B, a polynomial-time computable function f taking instances
of A to instances of B is a reduction from GapA(c, s) to GapB(c′, s′) if for all instances I

of A

Completeness: if A(I) ≥ c, then B(f(I)) ≥ c′.
Soundness: if A(I) ≤ s, then B(f(I)) ≤ s′.

It is easily seen that, if such a reduction exists and GapA(c, s) is NP-hard, then so is
GapB(c′, s′).

2.2 Label Cover Games
Versions of label cover problems are ubiquitous in the study of hardness of approximation
(see [13]). A particularly important case are the unique games of Khot [18], defined below.
To arrive at the definition, we first introduce some terminology. For positive integers d and e,
a relation R ⊆ U × V is said to be d-to-e if it relates each element of U to exactly d elements
of V and each element of V to exactly e elements of U .

▶ Definition 2.1 (d-to-d games). A d-to-d game is a tuple (G, Σ, Φ), where G = (V, E) is a
multi-graph1, Σ is a finite alphabet and Φ : E → P(Σ2) assigns to each edge e ∈ E a d-to-d
binary relation.

A colouring χ : V → Σ satisfies an edge (u, v) if (χ(u), χ(v)) ∈ Φ(u, v).
The value of the game (G, Σ, Φ) is the maximum over all colourings of the proportion of

edges in E that are satisfied.

In this paper, we are particularly interested in 2-to-2 games and 1-to-1 games, the latter
also being known as Unique Games. We write UGq for the function problem of determining
the value of an instance of unique games with an alphabet of size q. We can then state
Khot’s unique games conjecture.

▶ Conjecture 2.2 (Unique Games Conjecture (UGC) [18]). For any δ, ϵ > 0, there exists a
positive integer q so that GapUGq(1 − ϵ, δ) is NP-Hard.

The significance of the conjecture is that it has been shown that many optimal hardness
of approximation results follow from it, including Max Cut and Vertex Cover [19, 23, 18].

The best known hardness result for unique games, towards proving Conjecture 2.2 is that
GapUGq(1

2 − ϵ, δ) is NP-Hard for arbitrarily small δ and ϵ. This is obtained as a consequence
of the hardness of 2-to-2 games established by Khot, Minzer and Safra, which we return to
in Section 3.

▶ Theorem 2.3 (Khot-Minzer-Safra). For any δ, ϵ > 0, there exists a positive integer q so
that Gap2to2q(1 − ϵ, δ) is NP-Hard.

It is conjectured that Theorem 2.3 can be strengthened to make the completeness parameter 1,
but this remains unproved.

In this paper, we are particularly concerned with weighted 2-to-2 and 1-to-1 games,
attaching a weight to each constraint.

1 That is to say, there may be multiple edges between the same pair of vertices. In the sequel we refer
simply to graphs to mean multi-graphs.

A. Dawar and B. Molnár 16:5

▶ Definition 2.4 (Weighted d-to-d games). A weighted d-to-d game is a tuple (G, Σ, Φ, w),
where (G, Σ, Φ) is a d-to-d game and w : E(G) → R+ is a function assigning a positive real
weight to each constraint.

Let tot =
∑

e∈E(G) w(e) be the total weight. The value of the game (G, Σ, Φ, w) is the
maximum over all colourings χ : V → Σ of the fraction

∑
e∈Sχ

w(e)/tot, where Sχ denotes
the set of edges e = (u, v) for which (χ(u), χ(v)) ∈ Φ(e).

We write WG2:2;q to denote the class of weighted 2-to-2 games with q labels and
Weight2to2q to denote the function taking such a game to its value. Similarly, we write
UGq and WeightUGq for the functions giving the values of unique games and weighted
unique games with q labels respectively.

2.3 Undefinability of Approximation
We assume the reader is familiar with first-order logic and the basics of finite model theory.
A good introduction is to be found in [14]. Our structures are finite structures in a finite
relational vocabulary. Our main inexpressibility results are stated for fixed-point logic with
counting (FPC). We do not need a formal definition here but note that every property
definable in FPC is decidable in polynomial-time and indeed FPC can be understood as a
complexity class defined by symmetric polynomial-time computation. For full definitions,
refer to [10] and references therein.

The two properties of FPC that we do need are that (1) every class of structures definable
in FPC has bounded counting width; and (2) that the class of properties definable in FPC is
closed under first-order interpretations. We elaborate on these below.

For a function problem M , and real numbers c and s with 0 ≤ s < c ≤ 1, we say
that GapM(c, s) is undefinable in FPC if there is no FPC definable class of structures that
separates the sets c-M and s-M . Atserias and Dawar [6] initiated a study of the FPC
undefinability of approximations, showing that many of the NP-hardness results for gap
problems can be reproduced as unconditional undefinability results in FPC. In particular
Gap3SAT(1, 7

8 + ϵ) is not FPC definable. More significantly, they established the following

▶ Theorem 2.5 (Atserias-Dawar [6]). Gap3XOR(1, 1
2 + ϵ) is not FPC definable.

Note the completeness parameter of 1 in the statement, which contrasts with 1 − ϵ in the
case of Theorem 2.3. Perfect completeness cannot be established in the case of NP-hardness
because satisfiability of XOR formulas is decidable in polynomial-time. However, it is not
definable in FPC and this allows the stronger result in the context of undefinability. This is
crucial to the application we make of Theorem 2.5 in Section 5.3

Following up on this work, Tucker-Foltz [26] studied the undefinability of gaps in unique
games. In particular, he established the inapproximability of unique games in FPC by any
constant factor and the FPC-undefinability of GapUGq(1

2 , 1
3 + δ) for a suitable value of q.

Counting Width

For relational structures A and B in the same vocabulary, and a positive integer k, A ≡k B
denotes that the two structures cannot be distinguished by any sentence of first-order logic
with counting using no more than k distinct variables. For a class C of structures, the counting
width of C is the function ν : N → N such that for any n, ν(n) is the least k such that C,
restricted to structures with at most n elements is a union of ≡k-equivalence classes. Any
class that is definable by a sentence of FPC has counting width bounded by a constant.
Almost all results showing that a class is not definable in FPC proceed by showing that it,
in fact, does not have bounded counting width.

CSL 2025

16:6 Undefinability of Approximation of 2-To-2 Games

Interpretations

A first-order interpretation of a relational vocabulary τ in a vocabulary σ is a sequence of
σ-formulas in first-order logic, which can be seen as mapping σ-structures to τ -structures.
There are many variations of the precise definition in the literature. We use the version
defined in [6] and refer the reader to that for the formal definition. Given a function problem
A whose instances are σ-structures and a function problem B whose instances are τ -structures,
an interpretation Θ of τ in σ is a GapA(c, s) to GapB(c′, s′) reduction if A(A) ≥ c implies
B(Θ(A)) ≥ c′ and A(A) ≤ s, then B(Θ(A)) ≤ s′. Definability in FPC and the property
of having bounded counting width are both closed under first-order reductions. That is to
say, if GapB(c′, s′) is FPC-definable and there is a first-order reduction of GapA(c, s) to
GapB(c′, s′), then GapA(c, s) is FPC-definable as well.

3 The Reduction

The proof of Theorem 2.3 was completed in 2018 and remains to this day the most significant
advance towards establishing the Unique Games Conjecture since the latter was formulated
by Khot in [18]. The proof proceeds by a reduction from Gap3XOR(1 − ϵ, 1

2 + δ) and
was presented in a series of papers [20, 25, 11]. The main difficulty lies in proving the
combinatorial conditions that the soundness analysis relies on. The full reduction and proof
of correctness can be found in [22, Chapter 3].

Our aim in the present paper is to show that the reduction constructed has two crucial
properties. First, it preserves perfect completeness and thus can be seen as a reduction from
Gap3XOR(1, 1

2 + δ). Secondly, with small modifications which do not affect the soundness
or completeness analysis, it can be described as a first-order interpretation. Together these
establish the main theorem.

▶ Theorem 3.1. For every δ > 0, there exists q ∈ N+ for which GapWeight2to2q(1, δ) is
not FPC definable.

In proving this, we do not need to reprise the difficult soundness analysis carried out
by Khot et al. Rather we study the actual construction involved in the reduction. For this
purpose, we describe the reduction in some detail in this section, and take up the two issues
of perfect completeness and first-order definability in the next.

3.1 Regular 3XOR
An instance of 3XOR can be seen as a system of linear equations over the field F2 with
exactly three variables appearing in each equation. We say that such an instance is d-regular
if every variable appears in exactly d equations and no two equations share more than one
variable. It is known that the NP-hardness of Gap3XOR(1 − ϵ, 1

2 + δ) holds even when
restricted to d-regular instances for some fixed value of d (indeed, taking d = 5 suffices,
see [22, Theorem 3.3.1]). In Section 4.3 we show that this is also true of the undefinability in
FPC of Gap3XOR(1, 1

2 + δ) From now on, we restrict attention to d-regular instances for a
suitable fixed value of d, and we call the resulting function problem GapRegular3XOR.

3.2 Reducing to Transitive Games
In the first step of the reduction, we reduce regular 3XOR instances to label cover games
with a mixture of 2-to-2 and 1-to-1 constraints, with an additional transitivity requirement.
We formally define these below.

A. Dawar and B. Molnár 16:7

▶ Definition 3.2 (Transitive 2-to-2 games). A transitive 2-to-2 game is a tuple (G, Σ, Φ)
where G = (V, E) is a graph, Σ is a finite alphabet and Φ : E → P(Σ2) assigns to each edge
e either a 2-to-2 or a 1-to-1 relation and whenever Φ(u, v) is 1-to-1, then for any edge (v, w),
Φ(u, w) is the composition of Φ(u, v) and Φ(v, w).

Note that the condition on composition only applies when Φ(u, v) is 1-to-1, but Φ(v, w) may
be 1-to-1 or 2-to-2, and this determines whether Φ(u, w) is 1-to-1 or 2-to-2.

Now, fix an instance I of GapRegular3XOR, with X being the set of variables that
appear in I and E the set of equations. Thus, each equation e ∈ E is of the form x+y +z = b

for some b ∈ F2. We refer to x, y and z as the variables occurring in e and b as the right-hand
side of e.

Fix a positive integer k and let U ⊆ Ek be the set of k-tuples U of equations, satisfying
the following properties:

no variable occurs in more than one equation of U ; and
if variables x and y appear in distinct equations of U , there is no equation in E (even
outside U) in which both x and y occur.

For U = (e1, . . . , ek) ∈ U , let XU denote the set of variables occuring in equations in U

and for i ∈ {1, . . . , k} let vi ∈ FX
2 denote the vector which has 1s in the three coordinates

corresponding to the variables occurring in ei and 0s everywhere else. We define the space
of side-conditions corresponding to U to be HU = Span(v1, . . . , vk). We say that a linear
function f : FX

2 → F2 satisfies the equations in U if f(vi) = bi for all i, where bi is the
right-hand side of ei.

Now, fix a parameter l with l ≤ |X|, and we define LU to be the collection of l-dimensional
subspaces of FX

2 which are linearly independent of HU . That is

LU =
{

L ⊆ FX
2 | dim(L) = l, L ∩ HU = {0}

}
.

The trivial intersection ensures that for any subspace L ∈ LU , any linear function f : L → F2
can be uniquely extended to one on L + HU

2 so that f(vi) = bi for all i. Therefore, the
number of linear functions on L + HU satisfying the equations in U is exactly 2l.

We can now define the reduction Θ that takes the instance I to a 2-to-2 transitive game
Θ(I). The reduction depends on the choice of parameters k and l. We omit the details on
how to select the right parameters.

Vertices. The vertices of Θ(I) are pairs (U, L), where U ∈ U and L ∈ LU .

Alphabet. The alphabet is a set of labels of size 2l. As noted above, for each vertex (U, L),
there are exactly 2l linear functions on L + HU satisfying the equations in U . We fix, for
each (U, L), a bijection between the alphabet and this set of linear functions. Henceforth, we
simply treat the functions themselves as labels.

Constraints. Given a pair of vertices u = (U, L) and v = (U ′, L′), the constraint Φ(u, v) is
a 1-to-1 relation if

dim(L + HU + HU ′) = dim(L′ + HU + HU ′) = dim(L + L′ + HU + HU ′)

and a 2-to-2 relation if

dim(L + HU + HU ′) = dim(L′ + HU + HU ′) = dim(L + L′ + HU + HU ′) − 1.

2 Here the sum is to be understood as vector space sum, i.e. L + HU is the space spanned by the union of
L and HU .

CSL 2025

16:8 Undefinability of Approximation of 2-To-2 Games

To define the relation, note that any function f : L + HU → F2 has a unique extension to
L+HU +HU ′ (by the conditions in the definition of U). Then, we relate f to f ′ : L′+HU ′ → F2
if, and only if, f and f ′ agree on the shared space (L + HU + HU ′) ∩ (L′ + HU + HU ′).

It is the case for any pair, that dim(L+HU +HU ′) = dim(L′ +HU +HU ′) [20, Lemma 4.3].
Let us call this dimension D. By [20, Lemma 4.4], any linear function f : L + HU → F2
satisfying the equations of U has a unique extension to (L + HU + HU ′) that also satisfies
the equations of U ′. Then, it is easily seen that if dim(L + L′ + HU + HU ′) = D, then f has
exactly one label of (U ′, L′) that it is consistent with, and if dim(L+L′ +HU +HU ′) = D +1,
there are exactly two such functions, thanks to the “free dimension”. Hence, the constraints
are 1-to-1 or 2-to-2 as required. The transitivity property of these constraints is established
in [20, Appendix A].

3.3 The final (weighted) 2-to-2 game
The final step of the reduction is to transform the transitive game constructed in Section 3.2
into a weighted 2-to-2 game, getting rid of the 1-to-1 constraints. This weighted game is
defined as follows.

Recall the transitive 2-to-2 game Θ(I) constructed in Section 3.2. The transitivity
condition guarantees that the vertices of Θ(I) can be partitioned into cliques C1, . . . , Cm so
that edges in each clique are associated with 1-to-1 constraints. Moreover, these constraints
are consistent in the sense that any colouring of a vertex V in a clique C can be extended
in a unique way to a colouring of all vertices in C so that all edge constraints in C are
satisfied. Also, by the transitivity condition, for distinct cliques Ci and Cj , either all pairs
(u, v) ∈ Ci × Cj are connected by 2-to-2 constraints or none are. Furthermore, these 2-to-2
constraints are consistent in the sense that given a clique-consistent colouring for Ci and Cj ,
either all or none of these 2-to-2 constraints are satisfied.

The final (weighted) 2-to-2 instance Iw
2:2 we construct from Θ(I) has as vertices the

vertices of Θ(I) and as edges all edges (u, v) of Θ(I) where u and v are in distinct cliques.
For each such edge, with u ∈ Ci and v ∈ Cj , we associate the constraint Φ(u, v) which is as
in Θ(I). The weight w(u, v) is the probability assigned to (u, v) by the following sampling
process:

Choose U ∈ U , uniformly at random.
Choose a random pair L, L′ so that (U, L) and (U, L′) are connected by a 2-to-2 edge.
Let Ci be the clique containing (U, L) and Cj be the clique containing (U ′, L′)
Choose uniformly at random a pair of vertices (u, v) ∈ Ci × Cj .

3.4 Irregular soundness case
For the result in Section 5.3, we need the FPC-undefinability of a different gap problem
based on 2-to-2 games. Specifically, we define the value of a game to be, not the fraction of
constraints that can be satisfied, but the fraction of the vertices formed by the largest set X

so that all constraints between nodes in X are satisfied. Moreover, we relax the notion of
colouring to allow vertices to be coloured by multiple colours.

▶ Definition 3.3. For a 2-to-2 game ((V, E), Σ, Φ), a colouring c : V →
(Σ

j

)
satisfies a set

X ⊆ V if ∀(u, v) ∈ E ∩ X2.∃a ∈ c(u), b ∈ c(v).(a, b) ∈ Φ(u, v).

That is to say, a j-colouring, i.e., one that assigns a set of j colours to each vertex satisfies
a set X if each constraint between vertices in X is satisfied by some choice among the colours
assigned to the vertices.

A. Dawar and B. Molnár 16:9

▶ Definition 3.4 (Irregular Values). For constants j and q define the function Irreg2to2j,q

to take a 2-to-2 game ((V, E), Σ, Φ) to the fraction |X|/|V | where X is the largest subset of
V that is satisfied by some j-colouring c : V →

(Σ
j

)
.

We can now state the theorem below, which is a consequence of Theorem 3.1.

▶ Theorem 3.5 (Definable 2-to-2 Games Theorem with irregular soundness). For every δ with
0 < δ < 1 and j ∈ N+, there exists q ∈ N+ so that GapIrreg2to2j,q(1, δ) is not FPC
definable.

It is not hard to see that this is a consequence of Theorem 3.1, and the corresponding
claim for NP-hardness appears in e.g. [20]. For completeness, we give a short proof.

▶ Lemma 3.6. For a weighted 2-to-2 game I = ((V, E), Σ, Φ, w) with
q = |Σ|, if Irreg2to2j,q((V, E), Σ, Φ) = δ, then Weight2to2(I) = Ω(δ2

j2).

Proof. Let c be a j-colouring of V that satisfies a set X with |X|/|V | ≥ δ. By [22,
Remark 3.4.9], there is a Ω(δ2) (weighted) fraction of the edges E which are satisfied by c, in
the sense that for each such edge (u, v) there are colours a and b in c(u) and c(v) respectively
such that (a, b) ∈ Φ(u, v). We now construct a standard colouring by a random process.
That is, for each vertex v ∈ V , independently choose a colour χ(v) from c(v) uniformly
at random. For an edge (u, v), let Ξ(u, v) be the indicator variable indicating whether
(χ(u), χ(v)) ∈ Φ(u, v) and let Ξ be the overall value of the colouring χ. If (u, v) ∈ X2, the
probability that χ satisfies the constraint Φ(u, v) is at least 1

j2 , as by definition, among the
j2 pairs in c(u) × c(v), at least one satisfies the constraint. Then

E[Ξ] = E[
∑

(u,v)∈E

w(u, v)Ξ(u, v)] =
∑

(u,v)∈E

w(u, v)E[Ξ(u, v)]

≥
∑

(u,v)∈E∩X2

w(u, v)E[Ξ(u, v)] ≥
∑

(u,v)∈E∩X2

w(u, v) 1
j2 ≥ Ω(δ2) 1

j2

Thus, there is a colouring that satisfies at least Ω(δ2

j2) (weighted) fraction of the constraints.
◀

From Lemma 3.6, we can conclude Theorem 3.5. For any fixed δ and j, the proof of
Theorem 3.1 gives us a q and an FO reduction that takes satisfiable 3XOR instances to
satisfiable 2-to-2 games and instances that are at most η-satisfiable to 2-to-2 games with value
at most Ω(δ2

j2). Then, by Lemma 3.6, this same reduction also maps at most η-satisfiable
3XOR instances to 2-to-2 games I for which Irreg2to2j,q(I) < δ.

3.5 2 ↔ 2 games
The definition of 2-to-2 games, Definition 2.4 only requires each constraint Φ(u, .v) to be
a 2-to-2 relation, meaning that each element on the left is related to exactly two elements
on the right and vice versa. However, the reductions yield games of a more restricted kind
and this will be useful in Section 5.3. Say that a binary relation R ⊆ A × B is 2 ↔ 2 if it is
the disjoint union of bipartite graphs K2,2. That is to say A and B can be each partitioned
into sets A =

⋃
i Ai and B =

⋃
i Bi so that each Ai and Bi has exactly two elements and

R =
⋃

i Ai × Bi.

CSL 2025

16:10 Undefinability of Approximation of 2-To-2 Games

We claim that the reductions in the proof of Thereom 3.1 yield games in which all
constraint relations are 2 ↔ 2. Specifically, given linear functions f ̸= f ′ : L + HU → F2 so
that their unique extension to the domain L + HU + HU ′ only differ in their “free dimension”,
i.e. they agree in values on (L+HU +HU ′)∩(L′ +HU +HU ′), f and f ′ are related to the same
two linear functions on L′ +HU ′ (uniquely extensible to L′ +HU +HU ′) in Φ((U, L), (U ′, L′)).
Thus, the constraint relations constructed are 2 ↔ 2.

4 Definability

The aim in this section is to show that the reduction outlined in Section 3 can, with
minor modifications, be implemented as a first-order interpretation, preserving perfect
completeness. Thus, it gives a first-order definable reduction from Gap3XOR(1, 1

2 + δ) to
GapWeight2to2q(1, δ′) for a suitable choice of parameters. This establishes Theorem 3.1.

4.1 Perfect completeness
To show that the reduction from Section 3 preserves perfect completeness, it suffices to verify
that instances of 3XOR that are satisfiable (i.e. have value 1) are mapped by the reduction
to instances of WG2:2 which also have value 1.

Assume I is an 3XOR instance on a set of variables X that is satisfiable, and let
s : X → F2 be an assignment of values to the variables that satisfies it. Let Iw

2:2 denote the
weighted 2-to-2 game that I maps to under the reduction. Then, for each vertex (U, L) of
Iw

2:2 the restriction of s to L + HU is a valid label since all equations are satisfied, and it is
easily seen that this labelling satisfies all constraints.

4.2 Vocabularies
An instance of 3XOR is defined as a structure over the vocabulary τ3XOR = ⟨Eq0, Eq1⟩ with
two ternary relations. We think of the universe of a τ3XOR-structure A as a set of variables.
For b ∈ {0, 1}, a triple (x, y, z) ∈ Eqb is understood as representing the equation x+y +z = b,
where addition is modulo 2.

For each positive integer q, we define a vocabulary τ(T) 2-to-2q
such that structures in this

vocabulary represent instances of transitive 2-to-2 games over a label alphabet of size q. Let
Sq denote the collection of permutations of [q] = {1, . . . , q}. Note that there is a natural
bijective correspondence between Sq and the 1-to-1 relations on [q]. Now, let S#2

q denote the
set of pairs of permutations (π1, π2) ∈ Sq × Sq such that for all i ∈ [q], π1(i) ̸= π2(i). Then,
it is easily seen that each 2-to-2 relation on [q] can be seen as the union of such a pair of
permutations. Our vocabulary τ(T) 2-to-2q

contains a binary relation for each element of Sq

and one for each element of S#2
q :

τ(T) 2-to-2q
= ⟨(Cπ)π∈Sq , (Cπ1,π2)(π1,π2)∈S#2

q
⟩.

We write C1 for the collection of relation symbols (Cπ)π∈Sq and C2 for the collection of
relation symbols (Cπ1,π2)(π1,π2)∈S#2

q
. Note that the vocabulary itself does not enforce the

transitivity property, only a subset of the structures with this vocabulary are transitive 2-to-2
games.

For weighted 2-to-2 games, we construct a vocabulary that allows us to code instances
with positive integer weights. This is more limiting than allowing rational weights, but as we
show below in Section 4.6, it suffices for our purpose. Specifically,

τ(w) 2-to-2q
= ⟨C, (Φπ1,π2)(π1,π2)∈S#2

q
⟩,

A. Dawar and B. Molnár 16:11

where C is unary, and the relations Φπ1,π2 are all ternary. A τ(w) 2-to-2q
-structure A is to be

understood as an instance Iw
2:2 = (G, Σ, Φ) of Gw

2:2 with integer weights. The universe of A
is the disjoint union of the set V of vertices of Iw

2:2, and the set C of constraints, with the
unary relation C picking out this set. For each (π1, π2) ∈ S#2

q , the relation Φπ1,π2 ⊆ V 2 × C

contains those triples (u, v, c) where Φ(u, v) is a pair (R, w) with R being the 2-to-2 relation
associated with the pair (π1, π2). The integer weight w is given by the number of elements c

for which (u, v, c) is in the relation. We assume our structures satisfy the (first-order) axiom
that ensures that there is at most one relation Φπ1,π2 in which triples (u, v, c) appear, for
each choice of u and v.

4.3 Undefinability of Regular 3XOR
The reduction in Section 3 starts from regular games. In contrast, the undefinability result
in Theorem 2.5 is stated for general 3XOR. Thus, we begin by arguing that the pfoof of
Theorem 2.5 can actually be used to show the undefinability of GapRegular3XOR(1, η)
for some η strictly smaller than 1.

We first note that the Gap3XOR(1, 1
2 + δ) is FPC undefinable even for “half-regular”

3XOR instances. That is, 3XOR instances where each variable appears in the same number of
equations. To see this, note that Lemma 5 in [6] uses a bipartite unique-neighbour expander
graph with r|X| nodes on the left and |X| nodes on the right. Thus the graph is 3-left-regular
and is an (α|X|, β) expander. Such graph exists for every X by [27, Chapter 4]. By a
variation shown for Theorem 4.4 in [27], we laim the existence of such a graph with the
extra condition that the graph is right-regular. Using this extra assumption on the graph in
Lemma 5 in [6] the proof establishes that Gap3XOR(1, 1

2 + δ) is FPC undefinable even for
“half-regular” 3XOR instances.

A half-regular instance can be converted into a regular one by ensuring that any two
equations share at most one variable.

First, by the unique-neighbour expander property of the graph in Lemma 5 in [6], we can
assume that the half-regular 3XOR instance has no repeated equations or repeated variables
within an equation. This half-regular instance (X, Eq) can be converted into a regular one
(call it (X∗, Eq∗)) by replacing every equation e : x + y + z = b with three equations (as done
in [22]): x + ye + ze = b, xe + y + ze = b, xe + ye + z = b, where xe, ye, and ze are new
variables only used for these equations.

As shown in [22], if X is fully satisfiable then so is X∗ and if X is no more than 1
2 + δ-

satisfiable, then X∗ is at most η-satisfiable for some η < 1 (for example, taking η = 0.9
suffices).

The reduction can be easily defined by a first-order interpretation.

4.4 Shuffling variables
One issue that arises with the games constructed in the reduction from Section 3 is that we
have a fixed alphabet of size q = 2l and we associate with each vertex (U, L) an arbitrary
bijection between this and the 2l distinct linear functions on the space L+HU that satisfy the
equations in U . The consistency across different vertices is then enforced by the constraint
relations. In order to turn this into a first-order reduction, we want to choose these bijections
in a symmetry-preserving fashion.

Let I be our starting instance of 3XOR and IT
2:2 = Θ(I) the transitive 2-to-2 game

obtained from the first step of the reduction of Section 3, and let X be the set of variables of
I. Let ρ ∈ SymX be a permutation of X. This permutation has a natural action on other

CSL 2025

16:12 Undefinability of Approximation of 2-To-2 Games

objects constructed from X. In particular, for an equation e of the form x + y + z = b, we
write ρ(e) for the equation ρ(x) + ρ(y) + ρ(z) = b. When U is a tuple of such equations, we
write ρ(U) for the tuple obtained by applying ρ componentwise to each element of the tuple.
Similarly, for other objects obtained by set and tuple constructions from X, we apply the
permutation ρ to denote the natural induced action without defining it formally.

Furthermore, we also use ρ to denote the invertible linear map on FX
2 obtained by applying

ρ to the basis (ex)x∈X , and extending linearly to all of FX
2 . Thus, in particular, for a subspace

L ⊆ FX
2 , ρ(L) denotes the image of this space under this map.

The following is now straightforward.

▶ Lemma 4.1 (Shuffling Variables 1). For any permutation ρ ∈ SymX , if U and ρ(U) are
both in U , and (U, L) ∈ V (IT

2:2), then ρ(U, L) ∈ V (IT
2:2).

Proof. Since ρ maps the basis of HU formed by the left-hand sides of the equations in U to
the corresponding basis of Hρ(U), we have ρ(HU) = Hρ(U). By invertibility of ρ, a space L is
then linearly independent of HU if, and only if, ρ(L) is linearly independent of Hρ(U). ◀

Now, we want to choose the bijections between our set of 2l labels and the linear functions
associated with a vertex (U, L) in such a way that whenever (U, L) and ρ(U, L) are both
vertices in IT

2:2, then they commute with ρ. For this, fix a canonical space F3k
2 of dimension

3k. For each U ∈ U , we write XU ⊆ X for the set of variables that appear in U . Since U

is a sequence of k equations with pairwise disjoint sets of variables, we can fix a bijection
between XU and [3k] which induces an isomorphism µU : FU

2 → F3k
2 . These isomorphisms

are easily seen to be ρ-invariant (for all ρ), that is,

∀S ∈ FXU
2 . µρ(XU)(ρ(S)) = µU (S).

Under this map, there is a fixed subspace H ⊆ F3k
2 of dimension k such that µU (HU) = H for

all U . Similarly, there is a fixed collection L of l-dimensional spaces such that µU (LU) = L.
Thus, we can identify the vertices of IT

2:2 uniquely with pairs (U, L∗) where U ∈ U and
L∗ ∈ L. This is to be understood as the representation of the vertex (U, µ−1

U (L∗)).
Similarly, for linear functions f over L ∈ LU , we can define

(ρ(f))(x) = f(ρ−1(x)) : ρ(L) → F2 and

(µU (f))(x) = f(µ−1
U (x)) : µU (L) → F2.

Then, a linear function f on L+HU satisfies the equations in U if, and only if, µU (f) satisfies
the equations in µU (U). Hence, we can interpret in a canonical way the label of a node
(U, µ−1

U (L∗)) as a linear function with domain H + L∗ satisfying the equations in µU (U).
We now show that this can be consistently applied to the constraints of the game.

▶ Lemma 4.2 (Shuffling Variables 2). Suppose (U, L), (U ′, L′) ∈ E(IT
2:2) and ρ(U), ρ(U ′) are

both in U . Then
(ρ(U, L), ρ(U ′, L′)) ∈ E(IT

2:2)
Φ((U, L), (U ′, L′)) = Φ(ρ(U, L), ρ(U ′, L′))

Proof. By Lemma 4.1, ρ(U, L), ρ(U ′, L′) ∈ V (IT
2:2). Also

dim(ρ(L) + Hρ(U) + Hρ(U ′)) =dim(ρ(L + HU + HU ′)) = dim(L + HU + HU ′)

The equalities hold because the mapping ρ is an automorphism of FX
2 . The analogous

dimensionality property holds with the mapping of subspaces (L′ + HU + HU ′) and (L + L′ +
HU + HU ′). Therefore, the dimensionality constraint for drawing edges is invariant under
the action of ρ. This proves the first bullet point.

A. Dawar and B. Molnár 16:13

Then if (f, f ′) ∈ Φ((U, L), (U ′, L′)), it means µ−1
U (f) and µ−1

U ′ (f ′) are consistent on the
intersection of their domains. Then µ−1

ρ(U)(f) = ρ(µ−1
U (f)) and µ−1

ρ(U ′)(f
′) = ρ(µ−1

U ′ (f ′))
are consistent too, meaning (f, f ′) ∈ Φ(ρ(U, L), ρ(U ′, L′)). Hence Φ((U, L), (U ′, L′)) ⊆
Φ(ρ(U, L), ρ(U ′, L′)). Applying the same argument to ρ−1 yields the other direction. ◀

4.5 The reduction to the transitive game
We now describe how the reduction Θ from Section 3.2 can be given as a first-order inter-
pretation. Fix positive integers k and l, which are the parameters to the reduction. Given
a (regular) 3XOR instance A = (X, EqA

0 , EqA
1), our interpretation maps it to the following

(transitive) 2-to-2 game (with alphabet size 2l) B.

Universe. The universe of B consists of tuples of elements of X of length 4k + 23k. These
tuples can be seen as broken up into three parts.

The first 3k elements (u1,1, . . . , uk,3) are the 3k variables in some U ∈ U . To define this,
we need to say that they are, in order, the collection of variables of a k-tuple of equations,
that no variable appears more than once, and that when two variables appear in distinct
equations, they do not occur together in some other equation in A.
The next k elements r1, . . . , rk define the right-hand sides of the k equations in U . To
encode these as binary values, we use ri = u1,1 to encode the value 0 and ri = u1,2 to
encode the value 1. Since u1,1 and u1,2 are distinct, this works and can be specified by a
first-order formula.
The next 23k elements also encode bits, using the values of u1,1 and u1,2 as 0 and 1.
Think of these as specifying a subset of F3k

2 . We can write a first-order formula that says
that this subset is a subspace L∗ of dimension l (since l and k are fixed, the formula
is simply a big disjunction over all subspaces). Finally, we can also write a first-order
formula that checks that L∗ is in L.

For completeness, here is the first-order sentence checking all these conditions.

πU =
k∧

i=1
[Eq0(ui,1, ui,2, ui,3) ∧ ri = 0] ∨ [Eq1(ui,1, ui,2, ui,3) ∧ ri = 1]

∧
∧

(a,i) ̸=(b,j)

ua,i ̸= ub,j

∧
∧

a ̸=b,i,j

¬

∃x
∨

(α,β,γ)∈Perm(ua,i,ub,j ,x)

Eq0(α, β, γ) ∨ Eq1(α, β, γ)

∧

∨
L∗∈L

23k−1∧
i=0

bi = L∗
i

Where Perm(x, y, z) describes the set of permutations of x, y, z.

We can thus, as required, identify the elements of B with pairs (U, L) which are the
vertices of Θ(A).

Relations. Given two vertices (U, L) and (U ′, L′) of B, the type of constraint between them
(1-to-1, 2-to-2 or no constraint at all) only depends on µU (L), µU ′(L′), r, r′ and I(U, U ′),
where r,r′ are the vectors of the right-hand sides of the equations and

I(U, U ′) ≜ {((a, i), (b, j)) ∈ ({1, . . . , k} × {1, 2, 3})2 | ua,i = u′
b,j}

CSL 2025

16:14 Undefinability of Approximation of 2-To-2 Games

If two pairs of vertices agree on all five of these values, there is a permutation ρ of the
variables that will take one to the other and then by Lemma 4.2, they must have the same
constraint between them.

Note that each of these five parameters can take only a constant number of different
values, so for each constraint C ∈ C1 ∪ C2, there is a (constant) finite set SC containing
such 5-tuples so that (U, L) and (U ′, L′) are connected by a constraint C if, and only if,
(µU (L), µU ′(L′), r, r′, I(U, U ′)) ∈ SC . The formula πC defining the relation C in B simply
states that the 5-tuple corresponding to a pair of vertices is in SC . This translates to a
disjunction of a finite number of cases and is clearly FO-definable. This concludes the
reduction to the transitive game.

4.6 Weight approximation

We now show how to get a weighted 2-to-2 game, that is an approximation of the instance
Iw

2:2 constructed in Section 3.3. The vertices of the game are exactly those in the structure B
above. The main task is to define the weights, by defining a suitable set C of constraints.
Recall that the vertices of Iw

2:2 are partitioned into cliques C1, . . . , Cm based on the 1-to-1
constraints. Suppose (U1, L1) ∈ Ci and (U2, L2) ∈ Cj are two vertices connected by a 2-to-2
constraint. Then, the weight of the constraint is∑

U,L,L′

L,L′∈LU

dim(L∩L′)=l−1

1(U,L)∈Ci∧(U,L′)∈Cj

1
|U|

1
|{L, L′ ∈ LU | dim(L ∩ L′) = l − 1}|

1
|Ci||Cj |

.

Each of the three factors (apart from the indicator variable) describes the probability of a
certain choice in the steps of the random process which define the weights.

Of course, 1
|U| is constant for all pairs (U1, L1), (U2, L2). Similarly,

1
|{L,L′∈LU |dim(L∩L′)=l−1}| is constant by the symmetry argument presented in Sec-
tion 4.4. Thus, removing them from the expression does not change the relative weights
of the constraints. Also, the clique size only depends on (U1, L1), (U2, L2), so the weight
expression (without the normalising factors) simplifies to

|{(U, L, L′) | (U, L) ∈ Ci, (U, L′) ∈ Cj}|
|Ci||Cj |

. (1)

These weights are rational, so we cannot express them directly in structures over τ(w) 2-to-2q
,

which is our vocabulary for describing integer-weighted games. One potential way to handle
rational weights would be to multiply all weights with a common denominator. This is not
a viable option since the number of different-sized cliques grows with the size of the input,
making the common denominator too large. However, we have a workaround: instead of
these weights, we give an approximation that does not change the soundness parameter
significantly but makes the common denominator of the weights small enough (polynomial
as a function of the input size) to be definable.

▶ Lemma 4.3. Given a weighted 2-to-2 game G = (V, Σ, Φ, w), whose value is at most δ,
any game G′ = (V, Σ, Φ, w′) where ∀ϕ ∈ Φ. 1

γ < w(ϕ)
w′(ϕ) < γ has value at most δγ2.

Proof (sketch). The sum of weights drops at most by a factor γ, and the sum of the weights
of the satisfied constraints increases by at most a factor of γ. ◀

A. Dawar and B. Molnár 16:15

So, the idea is to approximate clique sizes so that the number of possible denominators is
constant and their product grows only polynomially with the input size, while bounding the
change with a suitable multiplicative factor γ.

Fix a vertex (U, L) in a clique Ci. Recall that (U ′, L′) ∈ Ci if, and only if, there is a
one-to-one constraint between (U, L) and (U ′, L′) in B. First, let us split the equations in U ′

into two groups: “useful” and “useless” ones. An equation in U ′ is useful (for U) if it shares
at least one variable with U and useless otherwise. Note that the number of useful equations
of (U ′, L′) only depends on U ′, not on L′.

Next, we define an equivalence relation ≡U on the vertices of the game as follows:
(U1, L1) ≡U (U2, L2) iff

µU1(L1) = µU2(L2).
U1 and U2 have the same useful equations (for U), and these equations are in the same
positions within the k-tuple.
The right-hand sides of the equations in U1 and U2 are the same.

It is easily seen that this is, indeed, an equivalence relation.
Note that the clique Ci is invariant under the equivalence relation ≡U : each equivalence

class is either contained in Ci or disjoint with it, by Lemma 4.2 (choosing ρ to be a permutation
that fixes the variables of U and any useful equations).

Now, for any f with 0 ≤ f ≤ k, we can establish an upper bound on the number of
equivalence classes with f useful equations. Recall that any node (U ′, L′) can be uniquely
represented by U ′ and the subspace µU ′(L′) = L∗ ∈ L:

The number of possible subspaces L∗ ⊆ F3k
2 is at most 223k , as that is an upper bound

for |L| (in fact, it is much smaller, but for our purposes, this upper bound suffices).
The number of ways to choose the positions of the useful equations is

(
k
f

)
≤ 2k.

The number of choices for the right-hand sides of the equations is 2k.
Since the 3XOR instance is regular (each variable appears in at most d equations), the
number of equations sharing a variable with U is at most 3kd, so the number of ways of
choosing the useful equations is bounded by (3kd)k.

These bounds are all constants, so the number of equivalence classes within the clique, with
f useful equations (call it νf

U,L) is bounded by a constant Ψ for all f, U, L.
The number of elements in an equivalence class with f useful equations is simply the

number of ways to set the remaining k − f equations. This can be approximated by |Eq|k−f .
Given f useful equations, the probability of a random set of k − f equations having common
variables with U , the set of useful equations or each other, or making the k-tuple invalid
by having two variables from different equations which have a common equation in the
3XOR instance, converges to zero (O

(
k2

|X|

)
) as the instance size grows, due to the regularity

condition. By adding all the approximate sizes of the equivalence classes within Ci, we can
conclude that the approximation

χ(νU,L) ≜ χ(ν0
U,L, ν1

U,L, . . . , νk
U,L) ≜

k∑
f=0

νf
U,L|Eq|k−f ≈ |Ci|

is accurate within an arbitrarily small factor as the input size grows. Using this approximation
in the weight expression (1), we see that

∏
v∈{0,...,Ψ}k+1 χ(v)2 is a common denominator of

all weights. Multiplying all weights by this number, we get the expression

w((U1,L1), (U2, L2)) = |{(U, L, L′) | (U, L) ∈ Ci, (U, L′) ∈ Cj}|

·
∏

v∈{0,...,Ψ}k+1

{
χ(v) if v ̸= ν(U1,L1)

1 if v = ν(U1,L1)
·

∏
v∈{0,...,Ψ}k+1

{
χ(v) if v ̸= ν(U2,L2)

1 if v = ν(U2,L2)
(2)

CSL 2025

16:16 Undefinability of Approximation of 2-To-2 Games

As we see next, we can define a reduction in FO to weighted 2-to-2 games using these
approximate weights.

4.7 Defining the weighted game

Finally, we are ready to show that the construction of a weighted 2-to-2 game with approximate
weights as above can be given by an FO interpretation.

Universe. We need to define the set of vertices, and the set of constraints. The elements of
the universe are tuples of elements of X (the set of variables of the 3XOR instance I) of
length 8k + 1 + 23k+1 + Q, where Q is a parameter we define below.

A vertex (U, L) is coded by the first 4k + 23k elements of this tuple, as before, followed
by a sequence of 0s. Recall that we code bits 0 and 1 by the first and second elements of the
tuple. The first of these 0s is to be interpreted as an indicator that the tuple is a vertex (it
will be 1 for a constraint), and the rest are padding to make the length of the tuples match.

A constraint c is coded by a tuple where the first 4k + 23k elements represent a vertex
(U, L), this is followed by a 1 (i.e. a repeat of the second element of the tuple) and then the
next 4k+23k represent a second vertex (U ′, L′). The rest of the tuple codes a unique identifier
of the constraint, ID. We construct the interpretation so that for all fixed (U, L), (U ′, L′),
there are w((U, L), (U ′, L′)) different identifiers where w is the approximate weight described
above. We show that for this weight function, there is a formula W which defines a set of
exactly w((U, L), (U ′, L′)) tuples extending the description of (U, L) and (U ′, L′).

▶ Lemma 4.4. There exists Q ∈ N+ and a first-order formula W which defines a set T of
tuples coding pairs (U, L), (U ′, L′) together with a Q-element unique identifier and such that
for each fixed (U, L), (U ′, L′), T contains exactly w((U, L), (U ′, L′)) many tuples extending
(U, L), (U ′, L′).

The proof of this lemma, constructing the formula W is in Section 4.8 below.
Thus, we can define the formulas defining the set of vertices and constraints. For simplicity,

we use U, L, U ′, L′, ID to describe the sub-tuple of variables in their corresponding parts of
the N -tuple, where N = 8k + 1 + 23k+1 + Q.

Node(U, L, IsConstraint, U ′, L′, ID) ≡IsConstraint = 0 ∧ πU (U, L) ∧ ∧
x∈(U ′,L′,ID)

x = 0

To check if it is a valid constraint, we need

Constraint(U, L, IsConstraint, U ′, L′, ID) ≡ IsConstraint = 1 ∧ πU (U, L) ∧ πU (U ′, L′)
∧ ∨

C∈C2
πC((U, L), (U ′, L′)) ∧ W ((U, L), (U ′, L′), ID)

Constraints. For each Cπ1,π2 ∈ C2, we can construct the formula that defines the set of
triples (x, y, c) where x = (U, L, 0, . . . , 0) y = (U ′, L′, 0 . . . , 0) and c = (U, L, 1, U ′, L′, ID),
such that there is a constraint of type C between x and y and ID is a valid id of a constraint
between them.

Φπ1,π2(x, y, c) ≡ πCπ1,π2 (x, y) ∧ (U, L) = (U1, L1) ∧ (U ′, L′) = (U2, L2).

This completes the proof of Theorem 3.1.

A. Dawar and B. Molnár 16:17

4.8 Defining W
To prove Lemma 4.4 we define a first-order formula W (x, y, z) in the vocabulary τ3XOR,
where x, y and z are tuples of free variables. The formula is such that if x and y are
interepreted by the elements coding the nodes (U, L) and (U ′, L′) respectively, then there
are exactly w((U, L)(U ′, L′)) assignments of values to the tuple z that make W true. Here
w(U, L)(U ′, L′) is the expression given in Equation 2.

To define W , we construct formulas defining various elements of Equation 2. More
precisely, for various numerical expressions e(x, y), which depend on the values assigned to x

and y, we construct formulas we denote wq,e(x, y, z), where q is the length of the tuple of
variables z. These formulas have the property that when x and y are interepreted by the
elements coding the nodes (U, L) and (U ′, L′) the number of q-tuples that can be assigned to
z to make ωq,e true is exactly e(x, y). As before, we use 0 and 1 to denote the first and second
elements of the tuple. Also, for a first-order formula ϕ(x, y), let 1ϕ denote the indicator
variable that ϕ is true (under an assignment of values to x and y).
e = 1: ω1,e(x, y, z) ≡ (z = 0)
e = 1ϕ: ω1,e(x, y, z) ≡ (z = 0) ∧ ϕ(x, y)
e = e1 × e2: Given ωq1,e1 and ωq2,e2 , we can define

ωq1+q2,e(x, y, z1, . . . , zq1 , zq1+1, . . . , zq2) ≡ ωq1,e1(z1, . . . , zq1) ∧ ωq2,e2(zq1+1, . . . , zq2)

e = e1 + e2: Given ωq1,e1 and ωq2,e2 , (assuming without loss of generality that q2 ≥ q1, we
can define

ω1+q2,e(x, y, z1, z2, . . . , zq2+1) ≡

z1 = 0
∧

ωq1,e1(z2, . . . , zq1+1)
∧ q2+1∧

i=q1+2
zi = 0

∨ [

z1 = 1
∧

ωq2,e2(z2, . . . , zq2+1)
]

e = |Eq|: It suffices to take a formula defining the disjoint union of the relations Eq0
and Eq1.

ω4,e(x, y, z1, z2, z3, z4) ≡ (z1 = 0 ∧ Eq0(z2, z3, z4)) ∨ (z1 = 1 ∧ Eq1(z2, z3, z4))

e = |{(U1, L1, L2) | (U1, L1) ∈ Ci, (U1, L2) ∈ Cj}|: The numerator in Equation 1 (and
a term in Equation 2) is e = |{(U1, L1, L2) | (U1, L1) ∈ Ci, (U1, L2) ∈ Cj}|. We can get
a formula for this by defining exactly this set of tuples. Here z is a tuple of variables
composed of three tuples z1, z2 and z3 where z1 has length 4k and each of z2 and z3 is of
length 23k.

ω4k+2∗23k,e(x, y, z) = πU (z1, z2) ∧ πU (z1, z3) ∧
∨

C∈C2

C((z1, z2), (z1, z3)

∧
∨

C∈C1

C((z1, z2), x) ∧
∨

C∈C1

C((z1, z3), y)

Defining the size of the equivalence classes. Another element of Equation 2 are conditions
of the form νf

U,L = r for various values of r. We now construct a formula νf,≥r(x) with
4k + 23k free variables that expresses the condition νf

U,L ≥ r when x is interpreted by the
tuple coding (U, L). In the following, lower case letters u, l, possibly with subscript indices
always denote tuples of variables of length 4k and 23k respectively. Recall that two elements
in the clique are in the equivalence relation ≡(U,L) if, and only if, their L values are the same
and share the same useful equations with the same positions.

CSL 2025

16:18 Undefinability of Approximation of 2-To-2 Games

We begin with defining a couple of auxiliary formulas. For any j ∈ {1, . . . , k}, the formula
usefulj(x, u) says of a tuple u that the jth equation it represents is useful and the formula
diffj(u1, u2) asserts that the two tuples u1 and u2 differ in the jth equation:

usefulj(x, u) ≡
∨

i∈{1,...,3k}

(
u3(j−1)+1 = xi ∨ u3(j−1)+2 = xi ∨ u3(j−1)+3 = xi

)
; and

diffj(u1, u2) ≡(u1)3(j−1)+1 ̸= (u2)3(j−1)+1 ∨ (u1)3(j−1)+2 ̸= (u2)3(j−1)+2∨
(u1)3(j−1)+3 ̸= (u2)3(j−1)+3 ∨ (u1)3k+j ̸= (u2)3k+j .

With these, we can define νf,≥r(x) as a formula whiuch asserts the existence of r nodes

∃u1, l1, . . . , ur, lr
∧

i

πU (ui, li);

which are are in the same clique as the node coded by x∧
i

∨
C∈C1

C(x, ui, li);

all have f useful equations

∧
i∈{1,...,r}

 ∨
S⊆{1,...,k},|S|=f

 ∧
j∈{1,...,k}

usefulj(x, ui) ↔ j ∈ S

 ;

and such that no two nodes are ≡(U,L) equivalent when x is interpreted as (U, L)∧
i̸=j∈{1,...,r}

li ̸= lj ∨
∨

o∈{1,...,k}

(usefulo(ui) ∧ diffo(ui, uj)) .

Then, as usual, νf,r(x) ≡ νf,≥r(x) ∧ ¬νf,≥(r+1)(x). To give an expression for ωq(νf
U,L) for

some q, we can rewrite it as
∑Ψ

r=1 1νf,r
U,L

·r and construct the expression using the composition
rules (constants can be constructed via repeated addition of ones, addition, multiplication
and indicator variables are defined above)

Putting it all together. For each term in Equation 2, we have described how to define a
corresponding formula. Case splits can be handled via indicator variables and constants by
repeatedly adding 1s. By a repeated application of the addition and multiplication rules, W

can be constructed.

5 Consequences

5.1 Unique Games
An immediate corollary of the definable 2-to-2 games theorem is the inapproximability of
unique games by any constant factors:

Given a (weighted) 2-to-2 game I, we can map it to a Unique Game I ′ by splitting
every constraint into two: given a constraint of type Cπ1,π2 , we can replace them with two
1-to-1 constraints of type Cπ1 and Cπ2 . A colouring of the nodes then satisfies the constraint
Cπ1,π2 in I if, and only if, exactly one of thee two constraints is satisfied in I ′. Note that a
colouring can only satisfy at most one of the two constraints. This gives a reduction from
GapWeight2-to-2q(1, δ) to GapWeightUGq(1

2 , δ
2) for any δ > 0.

A. Dawar and B. Molnár 16:19

This reduction is clearly FO-definable: the universe remains the same; then, for a 1-to-1
constraint Cπ, we can determine if (x, y, c) represents a constraint of this type with the
sentence Φπ(x, y, c) ≡

∨
π2

Φπ,π2(x, y, c).

▶ Theorem 5.1. For every δ > 0, there exists q ∈ N+ so that GapWeightUGq
1
2 , δ) is FPC

undefinable.

This undefinability gap is stronger, at least in terms of the completeness and soundness para-
meters, than the gaps proved by Tucker-Foltz [26], the only previously known undefinability
gaps for Unique Games. However, our construction uses weighted instances, so we can only
conclude the undefinability gap over the domain of weighted unique games. Since the gaps
in [26] are proved for unweighted games, they are incomparable to Theorem 5.1.

5.2 Vertex Cover

Another consequence of Theorem 2.3 is the NP-Hardness of approximating the Vertex
Cover problem by a factor better than

√
2. The Unique Games Conjecture implies that

nothing better than a factor 2 approximation is possible. This is tight, since polynomial-
time algorithms achieving a 2-approximation are known. Before the results of Khot et
al. establishing Theorem 2.3 the best known inapproximability result, conditional only on
P ̸= NP, was ≈ 1.36. Atserias and Dawar [6] showed a corresponding unconditional FPC
undefinabiity result. We improve on this with the following.

▶ Theorem 5.2 (FPC-IS). For every ϵ, δ > 0, GapIS(1 − 1√
2 − δ, ϵ) is not definable in FPC.

Here IS is the function problem giving the size of a maximal independent set in a graph
as a proportion of the total number of vertices. This is equivalent to the FPC undefinability
of GapVertexCover(1

1−ϵ,
√

2 + δ), implying the FPC-inapproximability of vertex cover by a
factor smaller than

√
2. The theorem follows from the reduction presented in [22, Chapter 5]

which can be defined in First-Order Logic using standard methods.

5.3 Graph Colouring

Perhaps the most striking consequence of our result is the following.

▶ Theorem 5.3. For every t ≥ 3, the class of 3-colourable graphs are not FPC separable
from those that are not t-colourable.

Theorem 5.3 should be contrasted with what is known about the NP-hardness of promise
graph colouring. It is known that it is NP-hard to separate the 3-colourable graphs from
those that are not 5-colourable [7]. It is conjectured that it is NP-hard to separate the
3-colourable graphs from those that are not t-colourable for all t ≥ 3, but this is open even
for t = 6. Thus, Theorem 5.3 provides the first significant example of an FPC hardness of
approximation result that is open in the classical setting of NP-hardness.

Guruswami and Sandeep [16] show a reduction from GapIrreg2to2j,q(1, δ) to the
problem of separating 3-colourable graphs from non-t-colourable ones [12]. The reduction is
easily definable in first-order logic, proving Theorem 5.3.

CSL 2025

16:20 Undefinability of Approximation of 2-To-2 Games

6 Conclusion

We have shown that the reductions involved in the proof of the celebrated proof by Khot,
Minzer and Safra of the 2-to-2 games theorem can all be implemented as interpretations
in first-order logic. This means that the NP-hardness they establish of separating nearly
satisfiable instances from highly unsatisfiable ones can be turned into an unconditional
inseparability result in FPC. Moreover, the result is achieved with perfect completeness: it is
impossible to separate with an FPC sentence the fully satisfiable 2-to-2 games from those
that are highly unsatisfiable.

From this result we are able to derive a number of consequences, the most striking
of which is that it is impossible to separate with an FPC sentence the graphs that are
3-colourable from those that are not t-colourable for any constant t. The NP-hardness of
such a separation is only conjectured for values t larger than 5. We also obtain strong FPC
undefinability results for approximation of unique games. In terms of approximation ratios
these are an improvement over those of Tucker-Foltz [26]. However, the latter results were
obtained for unwieghted games while ours are for weighted games.

This work suggests a number of further directions to pursue. One is an investigation of
the FPC definability of promise constraint satisfaction problems (PCSP). The t-colouring
of 3-colourble graphs is one such example, but PCSP are a very active current area of
investigation. Our results could also be tightened by showing them for unweighted instances
rather than with weights. Indeed, we believe that Theorem 5.1 could be improved to apply
to unweighted games as well, making it a direct improvement of the results of [26]. For this
improvement, it would be sufficient to prove the FPC analogue for the result of Crescenzi et
al. [9] showing a gap reduction from weighted CSP instances to unweighted ones. The proof
of Khot, Minzer and Safra applies this reduction to establish Theorem 2.3 on unweighted
games. This merits further study.

References
1 Matthew Anderson and Anuj Dawar. On symmetric circuits and fixed-point logics. Theory of

Computing Systems, 60(3):521–551, July 2017. doi:10.1007/s00224-016-9692-2.
2 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof

verification and the hardness of approximation problems. J. ACM, 45(3):501–555, May 1998.
doi:10.1145/278298.278306.

3 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization of
np. J. ACM, 45(1):70–122, January 1998. doi:10.1145/273865.273901.

4 Albert Atserias, Andrei Bulatov, and Anuj Dawar. Affine systems of equations and counting
infinitary logic. Theoretical Computer Science, 410(18):1666–1683, 2009. Automata, Languages
and Programming (ICALP 2007). doi:10.1016/j.tcs.2008.12.049.

5 Albert Atserias and Víctor Dalmau. Promise constraint satisfaction and width. In Proceedings
of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, pages 1129–1153.
SIAM, 2022. doi:10.1137/1.9781611977073.48.

6 Albert Atserias and Anuj Dawar. Definable inapproximability: New challenges for duplicator,
2019. arXiv:1806.11307.

7 Libor Barto, Jakub Bulín, Andrei Krokhin, and Jakub Opršal. Algebraic approach to promise
constraint satisfaction. Journal of the ACM, 68(4):1–66, July 2021. doi:10.1145/3457606.

8 Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consistency
methods. J. ACM, 61(1), January 2014. doi:10.1145/2556646.

9 Pierluigi Crescenzi, Riccardo Silvestri, and Luca Trevisan. On weighted vs unweighted
versions of combinatorial optimization problems. Inf. Comput., 167(1):10–26, May 2001.
doi:10.1006/inco.2000.3011.

https://doi.org/10.1007/s00224-016-9692-2
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901
https://doi.org/10.1016/j.tcs.2008.12.049
https://doi.org/10.1137/1.9781611977073.48
https://arxiv.org/abs/1806.11307
https://doi.org/10.1145/3457606
https://doi.org/10.1145/2556646
https://doi.org/10.1006/inco.2000.3011

A. Dawar and B. Molnár 16:21

10 Anuj Dawar. The nature and power of fixed-point logic with counting. ACM SIGLOG News,
2(1):8–21, January 2015. doi:10.1145/2728816.2728820.

11 Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. Towards a proof of the
2-to-1 games conjecture? In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, pages 376–389, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3188745.3188804.

12 Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate coloring.
SIAM Journal on Computing, 39(3):843–873, January 2009. doi:10.1137/07068062x.

13 Irit Dinur and Shmuel Safra. On the hardness of approximating label-cover. Information
Processing Letters, 89(5):247–254, March 2004. doi:10.1016/j.ipl.2003.11.007.

14 Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Springer, 2nd edition, 1999.
15 Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. Interactive

proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292, March 1996.
doi:10.1145/226643.226652.

16 Venkatesan Guruswami and Sai Sandeep. d-to-1 hardness of coloring 3-colorable graphs with
o (1) colors. In 47th International Colloquium on Automata, Languages, and Programming
(ICALP 2020). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

17 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, July 2001.
doi:10.1145/502090.502098.

18 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the Thiry-
Fourth Annual ACM Symposium on Theory of Computing, STOC ’02, pages 767–775, New
York, NY, USA, 2002. Association for Computing Machinery. doi:10.1145/509907.510017.

19 Subhash Khot. On the unique games conjecture (invited survey). In 2010 IEEE 25th Annual
Conference on Computational Complexity, pages 99–121, 2010. doi:10.1109/CCC.2010.19.

20 Subhash Khot, Dor Minzer, and Muli Safra. On independent sets, 2-to-2 games, and grassmann
graphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, pages 576–589, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3055399.3055432.

21 Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in Grassmann graph have
near-perfect expansion. Annals of Mathematics, 198(1):1–92, 2023. doi:10.4007/annals.
2023.198.1.1.

22 Dor Minzer. On Monotonicity Testing and the 2-to-2 Games Conjecture, volume 49. Association
for Computing Machinery, New York, NY, USA, 1 edition, 2022.

23 Prasad Raghavendra. Optimal algorithms and inapproximability results for every csp? In
Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC ’08,
pages 245–254, New York, NY, USA, 2008. Association for Computing Machinery. doi:
10.1145/1374376.1374414.

24 Benjamin Rossman. Equi-rank homomorphism preservation theorem on finite structures. In
33rd EACSL Annual Conference on Computer Science Logic, CSL, 2025.

25 Khot Subhash, Dor Minzer, and Muli Safra. Pseudorandom sets in grassmann graph have
near-perfect expansion. In 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), pages 592–601, 2018. doi:10.1109/FOCS.2018.00062.

26 Jamie Tucker-Foltz. Inapproximability of Unique Games in Fixed-Point Logic with Count-
ing. Logical Methods in Computer Science, Volume 20, Issue 2, April 2024. doi:10.46298/
lmcs-20(2:3)2024.

27 Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer
FhScience, 7(1–3):1–336, 2012. doi:10.1561/0400000010.

CSL 2025

https://doi.org/10.1145/2728816.2728820
https://doi.org/10.1145/3188745.3188804
https://doi.org/10.1137/07068062x
https://doi.org/10.1016/j.ipl.2003.11.007
https://doi.org/10.1145/226643.226652
https://doi.org/10.1145/502090.502098
https://doi.org/10.1145/509907.510017
https://doi.org/10.1109/CCC.2010.19
https://doi.org/10.1145/3055399.3055432
https://doi.org/10.4007/annals.2023.198.1.1
https://doi.org/10.4007/annals.2023.198.1.1
https://doi.org/10.1145/1374376.1374414
https://doi.org/10.1145/1374376.1374414
https://doi.org/10.1109/FOCS.2018.00062
https://doi.org/10.46298/lmcs-20(2:3)2024
https://doi.org/10.46298/lmcs-20(2:3)2024
https://doi.org/10.1561/0400000010

Description Complexity of Unary Structures in
First-Order Logic with Links to Entropy
Reijo Jaakkola # Ñ

Mathematics Research Centre, Tampere University, Finland

Antti Kuusisto # Ñ

Mathematics Research Centre, Tampere University, Finland

Miikka Vilander #

Mathematics Research Centre, Tampere University, Finland

Abstract
The description complexity of a model is the length of the shortest formula that defines the model.
We study the description complexity of unary structures in first-order logic FO, also drawing links
to semantic complexity in the form of entropy. The class of unary structures provides, e.g., a
simple way to represent tabular Boolean data sets as relational structures. We define structures
with FO-formulas that are strictly linear in the size of the model as opposed to using the naive
quadratic ones, and we use arguments based on formula size games to obtain related lower bounds
for description complexity. For a typical structure the upper and lower bounds in fact match up to
a sublinear term, leading to a precise asymptotic result on the expected description complexity of a
randomly selected structure. We then give bounds on the relationship between Shannon entropy
and description complexity. We extend this relationship also to Boltzmann entropy by establishing
an asymptotic match between the two entropies. Despite the simplicity of unary structures, our
arguments require the use of formula size games, Stirling’s approximation and Chernoff bounds.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Mathematics of
computing → Information theory

Keywords and phrases formula size, finite model theory, formula size games, entropy, randomness

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.17

Related Version Full Version: https://arxiv.org/abs/2406.02108

Funding Antti Kuusisto and Miikka Vilander were supported by the Academy of Finland projects
Explaining AI via Logic (XAILOG), grant number 345612 and Theory of computational logics, grant
numbers 352419, 352420, 353027, 324435 and 328987.

1 Introduction

This paper investigates the resources needed to define finite models with a unary relational
vocabulary. While unary models are very simple, it turns out that proving limits on the
formula sizes for defining them is non-trivial. Furthermore, unary models are important
as they give a direct relational representation of Boolean data sets, consisting simply of
data points and their properties – thereby providing one of the simplest data representation
schemes available. In practice all tabular data can be discretized and modeled via a Boolean
data set. This relates to applications in, e.g., explainability and compression.

Given a logic L and a class M of models, the description complexity C(M) of a model
M is the minimum length of a formula φ ∈ L that defines M with respect to M. In the
main scenario of this paper, M is the class of models with the same domain of a finite size n
and with the same unary vocabulary τ . We mostly study the setting via first-order logic FO.
However, as description complexity links to the themes of compressibility and compression,

© Reijo Jaakkola, Antti Kuusisto, and Miikka Vilander;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 17; pp. 17:1–17:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:reijo.jaakkola@tuni.fi
https://reijojaakkola.github.io/
https://orcid.org/0000-0003-4714-4637
mailto:antti.kuusisto@tuni.fi
https://homepages.tuni.fi/antti.kuusisto/
https://orcid.org/0000-0003-1356-8749
mailto:miikka.vilander@tuni.fi
https://orcid.org/0000-0002-7301-939X
https://doi.org/10.4230/LIPIcs.CSL.2025.17
https://arxiv.org/abs/2406.02108
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Description Complexity in FO with Links to Entropy

we also investigate the restricted languages FOd where the quantifier rank of every formula
is limited to a positive integer d. This will lead to dramatically shorter description lengths
(cf. Section 3) via a natural lossy compression phenomenon.

We also investigate how the Shannon entropies of unary structures are linked to their
description complexities, the general trend being that higher entropy relates to higher
description complexity. Shannon entropy is a well-known measure of intrinsic complexity, or
randomness, from information theory. The Shannon entropy of a probability distribution
P : X → [0, 1] over a finite set X is given by −

∑
x∈X P(x) log2 P(x). A relational structure

M of size n over a unary vocabulary τ naturally defines a probability distribution over its
domain. Indeed, let T be the set of unary quantifier-free types over τ , i.e., subsets of τ . A
point a of a model M realizes a type π ⊆ τ if π is the set of relation symbols corresponding to
exactly those unary relations that contain the point a. Now a τ -model M of size n naturally
defines the probability distribution P : T → [0, 1] such that P(π) = |π|

n , where |π| is the
number of points of M realizing the type π. The Shannon entropy of M is then naturally
defined to be equal to the Shannon entropy of the distribution P : T → [0, 1].

While the Shannon entropy of M gives an intrinsic measure of complexity (or randomness)
of M, another entropy measure may perhaps be easier to grasp intuitively. Boltzmann entropy
has its origins in statistical mechanics, and it was originally defined as k ln Ω, where k is
the Boltzmann constant and Ω the number of microstates of a system. In our setting, we
follow [14] and define Boltzmann entropy of a model class A as log2 |A|, thus dropping the
Boltzmann constant k, using binary logarithms and associating models with microstates.
Now, it is natural to then define the Boltzmann entropy of a model M as log2 |M|, where
M is the isomorphism class of M (recall here that in our setting, all models have the same
domain of size n, so M is finite). The reason why the Boltzmann entropy of M is a reasonable
measure of intrinsic complexity of M is now easy to motivate. Firstly, consider a τ -model
M0 of size n where each P ∈ τ is interpreted as the empty relation. This is a very simple
model whose isomorphism class has size 1 and the Boltzmann entropy of M0 is thus very
low: log2 1 = 0. On the other hand, models with the predicates in τ distributed in more
disordered ways have larger isomorphism classes and thus greater Boltzmann entropies.

1.1 Contributions
Concerning upper bounds on description complexity, we show how to define unary structures
via FO-formulas that are linear in model size. This contrasts the standard quadratic formulas
that use equalities for counting cardinalities in a naive way. We also give analogous formulas
for FOd with quantifier rank at most d. Concerning lower bounds, we use formula size games
to provide bounds with a worst case gap of a constant factor of 2 in relation to the upper
bounds. This is done both for full FO and FOd.

For a random structure the upper and lower bounds in fact match up to a sublinear additive
term. Using this, we show that – asymptotically – the expected description complexity of a
random unary structure of size n and over the vocabulary τ is exactly 3n/2|τ | .

We then turn our attention to entropy. We show a close relationship between the Shannon
entropy and Boltzmann entropy of a unary structure. We obtain related upper and lower
bounds and thereby also establish the following asymptotic equivalence for every sequence
Mn of models of increasing size n: HS(Mn) ∼ 1

nHB(Mn). We note that a result bearing a
resemblance to this one has been obtained in a slightly different framework in [15].

Finally, we relate the description complexity of a model to its entropy. We investigate
the general picture of the relationship by giving upper and lower bounds on the description
complexity of a model in terms of its entropy. See Figure 1a for the case of FO and Figure 1b

R. Jaakkola, A. Kuusisto, and M. Vilander 17:3

for FOd. The bounds allow us to exclude a large portion of the (a priori) possible combinations
of description complexity and entropy. In particular, we see that models with very high
entropy have higher description complexity than models with very low entropy. Moreover,
models with a very low entropy are guaranteed to have a reasonably low description complexity,
while models with very high entropies must have a notable description complexity.

1.2 Related work, techniques and applications
Description complexity is conceptually related to Kolmogorov complexity, and it is also
well known that entropy and Kolmogorov complexity are linked. Indeed, for computable
distributions, Shannon entropy links to Kolmogorov complexity to within a constant. This is
discussed, e.g., in [17, 9, 16]. However, [23] shows that the general link fails for Rényi and
Tsallis entropies. See, e.g., [9, 16, 23] for discussions on Rényi and Tsallis entropies.

Concerning work in the intersection of logic and entropy, the recent article [14] by Jaakkola
et al. provides related results for a graded modal logic GMLU over Kripke-models with the
universal accessibility relation.

They show that the expected Boltzmann entropy of the equivalence classes of GMLU
is asymptotically equivalent to the expected description complexity times the vocabulary
size. While [14] concerns GMLU, the current paper studies (monadic) FO. Because of the
multi-variable nature of FO, this leads to some major differences in the techniques required.
The upper bound formulas of the current paper use some clever tricks that are not possible in
the modal logic GMLU. Indeed, together with the results of [14], our upper bound formulas
show that FO is more succinct than GMLU. Furthermore, the techniques used for the lower
bounds for GMLU do not suffice for FO, necessitating new arguments.

Surprisingly, the relationship to entropy also turns out to be different. Indeed, in the case
of GMLU, models with maximal entropy have maximal description complexity, while in the
case of FO this is no longer the case.

For proving bounds on formula sizes, we use formula size games for FO. Indeed, variants
of standard Ehrenfeucht-Fraïssé games would not suffice, as we need to deal with formula
length, and thereby with all logical operators, including connectives. The formula size game
that we use for FO is a slight modification of the game of Hella and Väänänen [10]. The first
formula size game, developed by Razborov in [20], dealt with propositional logic. A later
variant of the game was defined by Adler and Immerman for CTL in [1]. In [11] the formula
size game for modal logic ML was used by Hella and Vilander to establish that bisimulation
invariant FO is non-elementarily more succinct than ML. For a further example, we also
mention the frame validity games of Balbiani et al. [2]. Recently, Fagin et al. in [7, 8] and
Carmosino et al. in [4, 5, 6] have developed and used multi-structural games to prove lower
bounds on the number of quantifiers that are needed for separating two structures in a given
logic. In [8] they have also pointed out that strong lower bounds on the number of quantifiers
would imply new lower bounds in circuit complexity.

Description complexity is relevant in many applications, one interesting link being data
compression. It is natural to consider unary models M as data sets to be compressed into
corresponding FO-sentences. To give a simplified example, let M be the class of models
over the unary alphabet τ = {P,Q} and with domain M = {1, . . . , 10}. Let M1 be the
model where PM1 = QM1 = M and M2 be the model where PM2 = {1, 2, 3} and QM2 is,
say, {3, 4, 5, 6, 7}. Now, the simple formula ∀x(P (x) ∧ Q(x)) fully defines the model M1
with respect to M, while the model M2 clearly requires a more complex formula. Suppose
then that our models are represented as tabular Boolean data, meaning that each model
corresponds to a 0-1-matrix with ten rows (one row for each domain element m ∈ M) and

CSL 2025

17:4 Description Complexity in FO with Links to Entropy

two columns, one column for P and another one for Q. In this framework, when using FO as
a compression language, the Boolean matrix for M1 then compresses nicely into the formula
∀x(P (x) ∧Q(x)), while the matrix for M2 compresses to a notably more complex formula.

Many of the technical goals in explainable artificial intelligence (XAI) relate to com-
pression [22], often revolving around issues of compressing information given by probability
distributions. It is natural to expect representations of distributions with very high values
of Shannon entropy to be more difficult to compress than ones with very low values. Con-
cerning formula length, recent articles on XAI using minimum length formulas of logics as
explanations of longer specifications include, e.g.,[3, 18, 12, 13], and numerous others. For
work on using short Boolean formulas as general explanations of real-life data given in the
form of unary relational structures (i.e., tabular Boolean data sets), see [13]. In that paper,
surprisingly short Boolean formulas are shown to give similar error rates to ones obtained by
more sophisticated classifiers, e.g., neural networks and naive Bayesian classifiers.

Concerning further directions in explainability, minimum size descriptions ψ of unary
relational models M can be useful for finding explanations in the context of the special
explainability problem [12]. The positive case of this problem amounts to finding formulas χ
with a given bound k on length such that M ⊨ χ ⊨ φ, where φ acts as a classifier. In this
context, it often suffices to find a short interpolant χ such that ψ ⊨ χ ⊨ φ, where ψ is a
minimum description of M. In applications, this latter task can often be more efficient than
the first one, especially when ψ is significantly smaller than M. One way to ensure ψ is short
enough is to describe M in a sufficiently incomplete way, such as with FOd with small d.

Finally, in applications, it is typically easy to compute the Shannon entropy of structures,
while description complexity and thereby issues relating to compressibility and explainability
are much more difficult to determine. Therefore, even a rough picture of the links between
entropy and description complexity can be useful.

The plan of the paper is as follows. After the preliminaries in Section 2, we provide upper
bounds for the description complexity of unary structures in Section 3. In Section 4 we
establish related lower bounds using games. In Section 5 we determine asymptotically the
expected description complexity of a random unary structure. In Section 6 we give bounds
on the relationship between entropy and description complexity. In Section 7 we conclude.

2 Preliminaries

Let τ = {P1, . . . , Pk} be a monadic vocabulary and let Var = {x1, x2, . . . } be a countably
infinite set of variables. The syntax of first-order logic FO[τ] is generated by the grammar:
φ ::= x = y | P (x) | ¬φ | φ ∨ φ | φ ∧ φ | ∃xφ | ∀xφ, where x, y ∈ Var and P ∈ τ . The
quantifier rank of a formula φ ∈ FO[τ] is the maximum number of nested quantifiers in the
formula. We denote by FOd[τ] the fragment of FO[τ] that only includes the formulas with
quantifier rank at most d. A formula φ ∈ FO[τ] is in negation normal form if negations
are only applied to atomic formulas x = y or P (x). We assume all formulas are in negation
normal form and treat the notation ¬φ as shorthand for the negation normal form formula
obtained from φ by pushing the negation to the level of atomic formulas.

The size of a formula φ ∈ FO[τ] is defined as the number of atomic formulas, conjunctions,
disjunctions and quantifiers in φ. Note that negations do not contribute to the size of φ.
This choice together with using negation normal form means that positive and negative
atomic information is treated as equal in terms of formula size. In line with this thinking, we
will refer also to x ̸= y and ¬P (x) as atomic formulas in the sequel.

R. Jaakkola, A. Kuusisto, and M. Vilander 17:5

A formula φ ∈ FO[τ] is in prenex normal form if it is of the form Q1x1 . . . Qmxmψ,

where Qi ∈ {∃, ∀} for i ∈ {1, . . . ,m} and ψ ∈ FO[τ] has no quantifiers. It is well-known that
every FO-formula can be transformed into an equivalent formula in prenex normal form
which has the same size as the original formula.

A τ -model is a tuple M = (M,PM
1 , . . . , PM

k), where M = {1, . . . , n} and PM
i ⊆ M for

i ∈ {1, . . . , k}. A model M is a model of size n if |M | = n. A partial function s : Var ⇀M

is called an interpretation. We also call pairs (M, s) models and identify the pair (M, ∅)
with the model M. The truth relation (M, s) ⊨ φ is defined in the usual way for FO[τ].

Let M = (M,PM
1 , . . . , PM

k) be a τ -model of size n. We say that a formula φ ∈ FO[τ]
defines M if for all τ -models M′ of size n we have (M′, ∅) ⊨ φ iff M′ is isomorphic to
M. As first-order logic cannot distinguish between isomorphic structures, we can in some
sense identify the model M with the class of models isomorphic to M. The description
complexity C(M) of M is the size of the smallest formula in FO[τ] that defines M.

Note that our definition of description complexity concerns separating M only from
other models of the same size n. Requiring separation from all other models would unduly
emphasize the size of the model, making even very simple models have a high description
complexity. For example, the model M = (M,PM) of size n, where PM = M , would already
require a formula with size in the order of n. In our setting, C(M) = 2, because M is defined
by the formula ∀xP (x).

A τ -type π is a subset of τ . A point a ∈ M realizes a τ -type π if for all P ∈ τ we have
a ∈ PM iff P ∈ π. We let |π|M denote the number of points in M realizing π. We often omit
the subscript when the model is clear from the context. Note that two τ -models M and M′

are isomorphic iff each type is realized in the same number of points in both models.
We also consider more coarse ways to divide models into classes than isomorphism. For

each positive integer d we can define an equivalence relation ≡d over τ -models of size n
as follows. Given two τ -models M and M′ of size n, we define that M ≡d M′ iff for each
τ -type π with |π|M < d, we have that |π|M = |π|M′ . In other words, M ≡d M′ iff each
type that is realized in less than d points in M is realized in the same number of points
in both models. It is easy to show that M ≡d M′ iff they satisfy the same sentences of
FOd[τ]. The d-description complexity Cd(M) of a τ -model M is the size of the smallest
FOd[τ]-formula that defines the equivalence class of M in ≡d.

To characterize model classes, we use tuples with t = 2|τ | numbers. For an isomorphism
class, the tuple is simply (|π1|, . . . , |πt|). For an equivalence class M of ≡d, we only use
numbers up to d. For a tuple m = (m1, . . . ,mt), if mi = d, then there are at least d realizing
points of type πi in models of the class M. If mi < d, then each model has exactly mi

points realizing the type πi. The notation Mm refers to classes of ≡d via these tuples. The
tuples that correspond to some class of ≡d are characterized by the conditions mi ≤ d for
i ∈ {1, . . . , t},

∑t
i=1 mi ≤ n and if

∑t
i=1 mi < n, then mj = d for some j ∈ {1, . . . , t}. If∑t

i=1 mi = n, then Mm is an isomorphism class.
Since τ -types partition the points of a τ -model M, we may consider a natural probability

distribution over the types in M. The probability pπ of a type π is simply |π|/n, that is, the
probability of hitting a point of type π when selecting a point from M randomly. The Shan-
non entropy of M is the quantity HS(M) :=

∑t
i=1 −pπi

log(pπi
) =

∑t
i=1 − |πi|

n log
(|πi|

n

)
.

Here we follow the convention 0 log(0) = 0. Shannon entropy is an information theoretic way
of measuring randomness of probability distributions. Uniform distributions have maximal
Shannon entropy, as the uncertainty of the outcome of choosing a random point is maximized.
Conversely, for a distribution that places all of the probability mass on a single event, Shannon

CSL 2025

17:6 Description Complexity in FO with Links to Entropy

entropy is zero. Hence, a model realizing each type the same number of times (or as close as
possible) has maximal Shannon entropy, while for a model that realizes only a single type
Shannon entropy is zero.

Another way to define entropy of a model M uses the model class M belongs to. Given an
equivalence relation ≡ over models of size n (and thus domain {1, . . . , n}), the Boltzmann
entropy of M with respect to ≡ is HB(M) := log(|M|), where M is the equivalence class
of M. In this paper the equivalence relation ≡ is either isomorphism in the case of full FO
or ≡d for FOd. For isomorphism, we write HB(M) and for ≡d we write Hd

B(M).
Boltzmann entropy originates from statistical mechanics, where it measures the ran-

domness of a macrostate (= a model class) via the number of microstates (= models)
that correspond to it. The idea is that a larger macrostate is “more random” (or “less
specific”) since it is more likely to be hit by a random selection. We show in Section 6 that
HS(M) ∼ 1

nHB(M), where n is the size of the domain of M. Thus the two notions of entropy
are asymptotically equivalent up to normalization. This shows that both entropies indeed
measure the randomness of a model from different points of view.

3 Upper bound formulas

In this section we define arbitrary τ -models via formulas of size linear in the size of the model.
Recall that defining a model means separating it from all non-isomorphic models with the
same domain size. To see why linear size formulas are quite succinct, note that the following

naive formula
∧2|τ|

ℓ=1 ∃x1 . . . ∃x|πℓ|

(∧|πℓ|
i=1 πℓ(xi) ∧

∧|πℓ|
j=i+1 xi ̸= xj

)
, which expresses that for

each 1 ≤ ℓ ≤ 2|τ | the type πℓ is realized by at least |πℓ| distinct points, is of quadratic size in
the size n of the model.

For clean results on formula size, we define a constant cτ := 15|τ |2|τ |. Note that we
consider cτ to be constant as it only depends on the size of the alphabet τ , which in our
context is constant.

▶ Theorem 1. Let M be a model of size n. Let T = {π1, . . . , πℓ} be the types realized in
M, enumerated in ascending order of numbers of realizing points. Now we have the bound
C(M) ≤ min(3|πℓ| + cτ , 6|πℓ−1| + cτ).

Proof. We obtain two different upper bound formulas. Due to lack of space, we only give
one of them in full here; see A.1 for details on the second formula.

We begin with an easy formula we use extensively below. For a type π and x ∈ Var , let

π(x) :=
∧

P ∈π

P (x) ∧
∧

P /∈π

¬P (x).

The formula π(x) states that the point x realizes the type π.
Let T = {π1, . . . , πℓ} be a set of τ -types and let m be a sequence of r ≤ ℓ positive integers

with 0 < m1 ≤ · · · ≤ mr. Let M be a model of size n, where exactly the types in T are
realized. We will make sure of this with a separate formula later. The formula φ(T,m) below
is satisfied by such a model M if and only if for every i ∈ {1, . . . , r}, the model M has at
least mi points that realize the type πi. Note that we do not assert anything about the types
πr+1, . . . , πℓ, but we still need to mention them in the formula. We define

ψmr
:= y ̸= xmr−1 ∧

∨
j∈{1,...,r}

mj=mr

(πj(x1) ∧ πj(y))

R. Jaakkola, A. Kuusisto, and M. Vilander 17:7

ψi := y ̸= xi−1 ∧ ψi+1, if mj ̸= i for all j ∈ {1, . . . , r}, and

ψi := y ̸= xi−1 ∧ (
∨

j∈{1,...,r}
mj=i

(πj(x1) ∧ πj(y)) ∨ ψi+1), otherwise.

ψ1 := ψ2, if mj ̸= 1 for all j ∈ {1, . . . , r}, and

ψ1 :=
∨

j∈{1,...,r}
mj=1

πj(x1) ∨ ψ2, otherwise.

φ(T,m) := ∀x1 . . . ∀xmr−1∃y(
∨

j∈{r+1,...,ℓ}

πj(x1) ∨ ψ1)

We proceed with an explanation of how the formula φ(T,m) works. We assume that precisely
the types in T are realized in the model M to be evaluated, so we know that the first universal
variable x1 is always attached to a point that realizes one of the types in T . The formula first
checks if x1 realizes one of the types πr+1, . . . , πℓ that we wish to ignore. The recursion then
handles the rest of the types, starting with the smallest ones. If the type πj of x1 has mj = 1,
nothing further is stated as we already know the type is realized in M by our assumption.

Now, consider a type πj with, say, mj = 5. Up to the subformula ψ5, the recursion of our
formula has insisted that y ̸= xi for i ∈ {1, 2, 3, 4}. Note that the formula does not contain
any atomic formulas xi1 ̸= xi2 . The crucial point is that since the variables x1, . . . , x4 are
universally quantified, the existence of y must hold also in the case, where x1, . . . x4 happen
to all be different points of the same type πj . If the evaluated model M has at least 5 points
that realize πj , then the formula holds as another point y that realizes πj can be found. If,
however, M has only 4 points that realize πj , then one of the universally quantified tuples
includes precisely those 4 points and another y of the same type cannot be found.

We adopt the notation k = |τ | and compute the size of φ(T,m). The formula has mr

quantifiers. For each type π ∈ T , there are at most two occurrences of the subformula π(x)
(with different variables x). Each subformula π(x) contains k atomic formulas. Thus there
are at most 2k|T | atomic formulas of the form P (x) or ¬P (x). Each inequality y ̸= xi for
1 ≤ i ≤ mr − 1 occurs exactly once, so there are mr − 1 atomic formulas that are equalities
or inequalities. Finally we multiply the number of atomic formulas by two and subtract one
to also account for the binary connectives. The size of φ(T,m) is thus at most

mr + 2(mr − 1 + 2k|T |) − 1 = 3mr + 4k|T | − 3.

We proceed to define our first complete upper bound formula that defines an isomorphism
class of models. Let M be a τ -model with domain M = {1, . . . , n}. Let T = {π1, . . . , πℓ}
be the set of τ -types realized in M and let m = (|π1|, . . . , |πℓ|). Assume further that m is
increasing. The full formula φ(M) is based on bounding the size of every type in T from
below, thus separating it from all non-isomorphic models with the same domain size.

φ(M) :=
ℓ∧

i=1
∃xπi(x) ∧ ∀x

ℓ∨
i=1

πi(x) ∧ φ(T,m)

In addition to the size of φ(T,m) computed above, φ(M) includes |T | + 1 quantifiers and
two occurrences of π(x) for each type π ∈ T , resulting in 2k|T | atomic formulas. Accounting
for the added binary connectives, the size of φ(M) is thus at most

|T | + 1 + 2 · 2k|T | + 3|πℓ| + 4k|T | − 3 = 3|πℓ| + 8k|T | + |T | − 2 ≤ 3|πℓ| + cτ .

CSL 2025

17:8 Description Complexity in FO with Links to Entropy

The second formula ψ(M) of size at most 6|πℓ−1| + cτ states that each type πi with i ≠ ℓ

has exactly |πi| points. See A.1 for details. Both formulas define any model M so we can
always use whichever is smaller, thus proving the claim. ◀

▶ Corollary 2. Let M be a model of size n. Now C(M) ≤ 2n+ cτ .

Proof. A model M corresponding to the tuple (0, . . . , 0, n/3, 2n/3) maximises the value of
the expression min(3|πℓ| + cτ , 6|πℓ−1| + cτ), getting the value 2n+ cτ . ◀

We now consider defining equivalence classes of ≡d. Recall that an equivalence class of
≡d corresponds to a tuple m = (m1, . . . ,mt), where t = 2|τ |, mi ≤ d for all i ∈ {1, . . . , t},∑t

i=1 mi ≤ n and if
∑t

i=1 mi < n, then mj = d for some j ∈ {1, . . . , t}.

▶ Theorem 3. Let M be a τ -model of size n. Let Mm be the equivalence class of M in
≡d, where m = (m1, . . . ,mt) is the corresponding tuple with the numbers in ascending order.
Let mr be the highest number in m below d. Now Cd(M) ≤ 3d+ 3mr + cτ . Additionally, if
mt−1 < d, then Cd(M) ≤ 6mt−1 + cτ .

Proof. We use the same subformulas from Theorem 1 to obtain two linear size formulas. See
A.2 for details. The first formula of size 3d+ 3mr + cτ works for any tuple m and states that
each type πi has exactly mi points if mi < d and at least d points if mi = d. The second
formula of size 6mt−1 + cτ states that each type πi with i ̸= t has exactly mi points and
works only if all types except possibly πt have less than d points. ◀

Note that since mr < d, we have 6mr < 3d+ 3mr so the bound for the special case is
tighter than the general one. While we must use the more general bound for any m with at
least two instances of d, the tighter bound is significantly better for small classes with only
one instance of d in their tuple. For example, the class with the tuple (0, . . . , 0, 1, d) gets an
upper bound of 6 + cτ regardless of the number d. At the other extreme, the class with the
tuple (0, . . . , 0, d− 1, d, d) gets an upper bound of 3d+ 3(d− 1) + cτ = 6d− 3 + cτ .

We again directly obtain a global upper bound on description complexity.

▶ Corollary 4. Let M be a τ -model of size n. Now Cd(M) ≤ 6d− 3 + cτ .

4 Lower bounds via formula size games

In this section, we show lower bounds that match the upper bounds of Section 3 up to a
factor of 2. We use the formula size game for first-order logic defined in [10]. We modify
the game slightly to correspond to formulas in prenex normal form as this form does not
affect the size of the formula. In addition, we introduce a second resource parameter q that
corresponds to the number of quantifiers in the separating formula. The game consists of
two phases: a quantifier phase, where only ∃-moves and ∀-moves can be made by S, and an
atomic phase, where only ∨-moves, ∧-moves and atomic moves can be made. Before the
definition of the game, we define some notation.

Let A be a set of τ -models and let φ ∈ FO[τ]. We denote A ⊨ φ to mean (M, s) ⊨ φ for
all (M, s) ∈ A. Similarly, we denote A ⊨ ¬φ to mean (M, s) ⊭ φ for all (M, s) ∈ A.

For an interpretation s, a point a ∈ M and a variable x ∈ Var , we denote by s[a/x] the
interpretation s′ such that s′(x) = a and s′(y) = s(y) for all y ∈ dom(s), y ̸= x. Let A be
a set of τ -models with the same domain M and let f : A → M be a function. We denote
by A[f/x] the set {(M, s[f(M, s)/x]) | (M, s) ∈ A}. Intuitively, the function f gives the

R. Jaakkola, A. Kuusisto, and M. Vilander 17:9

new interpretation of the variable x for each model (M, s) ∈ A. Additionally, we denote
A[M/x] := {(M, s[a/x]) | (M, s) ∈ A, a ∈ M}. Here the variable x is given all possible
interpretations, usually leading to a larger set of models. We next define the game.

Let A0 and B0 be sets of τ -models and let r0, q0 ∈ N with r0 > q0. The FO prenex
formula size game FSτ (r0, q0,A0,B0) has two players: Samson (S) and Delilah (D).
Positions of the game are of the form (r, q,A,B), where r, q ∈ N and A and B are sets of
τ -models. The starting position is (r0, q0,A0,B0). In a position (r, q,A,B), if r = 0, then
the game ends and D wins. Otherwise, if q > 0, the game is said to be in the quantifier
phase and S can choose from the following three moves:

∃-move: S chooses f : A → M and xi ∈ Var . The new position is
(r − 1, q − 1,A[f/xi],B[M/xi]).
∀-move: The same as the ∃-move with the roles of A and B switched.
Phase change: S moves on to the atomic phase and the new position is (r, 0,A,B).

In a position (r, q,A,B), if q = 0, the game is said to be in the atomic phase and S can
choose from the following three moves:

∧-move: S chooses r1, r2 ∈ N and B1,B2 ⊆ B such that r1 + r2 + 1 = r and B1 ∪ B2 = B.
Then D chooses the next position from the options (r1, 0,A,B1) and (r2, 0,A,B2).
∨-move: The same as the ∧-move with the roles of A and B switched.
Atomic move: S chooses an atomic formula α. The game ends. If A ⊨ α and B ⊨ ¬α,
then S wins. Otherwise, D wins.

The prenex formula size game characterizes separation of model classes with formulas of
limited size in the following way.

▶ Theorem 5. Let A0 and B0 be sets of τ -models and let r0, q0 ∈ N with r0 > q0. The
following are equivalent
1. S has a winning strategy in the game FSτ (r0, q0,A0,B0),
2. there is an FO[τ]-formula φ in prenex normal form with size at most r0 and at most q0

quantifiers such that A0 ⊨ φ and B0 ⊨ ¬φ,
3. there is an FO[τ]-formula φ with size at most r0 and at most q0 quantifiers such that

A0 ⊨ φ and B0 ⊨ ¬φ.

Proof. For the simple inductive proof on how the game works, see [10]. The slight modifica-
tions of the separate parameter q for quantifiers and prenex normal form do not change the
proof in any meaningful way so we omit it. For the equivalence between the second and third
item, note that transforming a formula into prenex form and renaming variables as needed,
does not increase its size in full FO with no restrictions on, say, the number of variables. ◀

We take a moment to build some intuition on the formula size game. The role of player
S is to show that the model sets A0 and B0 can be separated by some FO formula with
restrictions on size and number of quantifiers. To achieve this, S starts building the supposedly
separating formula, starting from the quantifiers.

Each move of the game corresponds to an operator or atomic formula. When making
a move, S makes choices for each model that reflect how that particular model is going to
satisfy the formula, in the case of models in A, or not satisfy it, in the case of models in B.
For example, for an ∃-move, S must choose for each model in A the point to quantify. This
is done via the function f . For a ∧-move, S chooses for each model in B one of the conjuncts,
asserting that the model will not satisfy that conjunct.

The resources r0 and q0 restrict the moves of S. He can only make at most q0 quantifier
moves in the quantifier phase of the game. The resource r0 limits the size of the entire
separating formula, including the quantifiers. In the atomic phase, for ∧-moves, S must

CSL 2025

17:10 Description Complexity in FO with Links to Entropy

divide the remaining resource r between the two conjuncts. It is then the role of D to choose
the conjunct she thinks cannot be completed in such a way that the models present are
separated. Once D has chosen a conjunct, the other conjunct not chosen is discarded for the
rest of the game. Thus, the entire separating formula need not be constructed.

We move on to our lower bounds. Let M be a τ -model with domain M = {1, . . . , n} and
let T = {π1, . . . , πℓ} be the types realized in M, enumerated in ascending order of numbers
of realizing points, like in the previous section. We assume that ℓ ≥ 2 as a model, where all
points are of the same type, is easily defined by a constant-sized formula. We use the formula
size game to show a lower bound of the order 3|πℓ−1| for the description complexity of M.

Let M′ be the model obtained from M by changing the type of one point from πℓ−1 to
πℓ. We define A0 = {(M, ∅)} and B0 = {(M′, ∅)}. We will show that separating the sets A0
and B0 requires a formula of size at least 3|πℓ−1| − 3. We begin with an easy lemma on the
number of quantifiers required to separate A0 from B0.

▶ Lemma 6. If φ separates A0 from B0, then φ has at least |πℓ−1| quantifiers.

Proof. Let r0 > |πℓ−1| − 1. We show that D has a winning strategy for the formula size
game FSτ (r0, |πℓ−1| − 1,A0,B0). By Theorem 5, this proves the claim.

We show that in any position of such a game, there is a pair (M, s) ∈ A and (M′, s′) ∈ B
of models that cannot be separated by any atomic formula. At the starting position, the
single models in A0 and B0 are such a pair as no variables have been quantified. We proceed
to show that D can maintain this pair of models through any move of S. We only treat one
of each pair of dual moves as the other is handled the same way.
∃-move: S chooses a function f : A → M . We focus on the point a = f(M, s) chosen for

the model (M, s) ∈ A. On the other side, copies of (M′, s′) ∈ B are generated for each
point b ∈ M , but we restrict attention to only one as follows. If there is a previously
quantified variable x with s(x) = a, then we choose b = s′(x). Otherwise we choose a
new point b of the same type as a. If the type of a is πi with i < ℓ− 1, then M and M′

have the same points of type πi so we may choose b = a. If i ∈ {ℓ− 1, ℓ}, then both M

and M′ have at least |πℓ−1| − 1 points of the type πi so we may choose a fresh b of the
same type. The new pair of models found in this manner is clearly atomic-equivalent.

Phase change: With no changes to the sets of models A and B, the important pair of models
is still clearly present in the next position.

∧-move: S chooses splits r1 + r2 + 1 = r and B1 ∪ B2 = B. Now the model (M′, s′) ∈ B
is in B1 or B2 and A remains unchanged. Thus our model pair is present in one of the
positions (r1, 0,A,B1) and (r2, 0,A,B2). By choosing such a position, D maintains the
pair of models.

Atomic move: The model pair is atomic-equivalent, so D wins after any atomic move. ◀

The next lemma concerns the atomic phase. We show that if the number of different
atomic formulas required to separate the model sets A and B is too large, D wins the game.

▶ Lemma 7. In a game FSτ (r0, q0,A0,B0), let (r, 0,A,B) be the first position of the atomic
phase and let Γ be a minimum size set of atomic formulas such that for every (M, s) ∈ A
and (M′, s′) ∈ B, there is α ∈ Γ with (M, s) ⊨ α and (M′, s′) ⊭ α. If r < 2|Γ| − 1, then D
has a winning strategy from the position (r, 0,A,B).

Proof. We show that every move of S either ends the game in a win for D, or maintains the
condition r < 2|Γ| − 1. Assume this condition holds in position (r, 0,A,B).
Atomic move: S chooses an atomic formula α. Since 1 ≤ r < 2|Γ| − 1, we have |Γ| ≥ 2 so

the single atomic formula α does not separate A from B and D wins.

R. Jaakkola, A. Kuusisto, and M. Vilander 17:11

∧-move: S chooses splits r1 + r2 + 1 = r and B1 ∪ B2 = B. Assume for contradiction
that there are sets Γ1 and Γ2 of atomic formulas such that Γi separates A from Bi and
ri ≥ 2|Γi| − 1. Now for every pair of models (M, s) ∈ A and (M′, s′) ∈ B we have
(M′, s′) ∈ B1 or (M′, s′) ∈ B2 so the set Γ1 ∪ Γ2 separates A from B. Recalling that Γ is
a separating set of minimum size and r < 2|Γ| − 1, we also have r < 2|Γ1 ∪ Γ2| − 1 ≤
2(|Γ1| + |Γ2|) − 1 ≤ r1 + r2 + 1 = r, which is a contradiction. Thus we have r1 < 2|Γ1| − 1
or r2 < 2|Γ2| − 1. By choosing the correct position D can maintain the required condition.

∨-move: Identical to the ∧-move with the roles of A and B switched. ◀

We are now ready for the main theorem of this section.

▶ Theorem 8. Let M be a model of size n. Let T = {π1, . . . , πℓ} be the types realized
in M, enumerated in ascending order of numbers of realizing points, where ℓ ≥ 2. Now
C(M) ≥ 3|πℓ−1| − 3.

Proof. We begin with a definition. Let Γ be a set of atomic FO-formulas. We denote the
set of variables occurring in formulas of Γ by V (Γ). We define the variable graph of Γ as
G(Γ) = (V (Γ), E(Γ)), where (x, y) ∈ E(Γ) iff x = y ∈ Γ or x ̸= y ∈ Γ. We say that ∆ ⊆ Γ is
a connected component of Γ if G(∆) is a maximal connected subgraph of G(Γ).

For convenience, we denote here m := |πℓ−1|. Consider a formula size game FSτ (3m−
4, q0,A0,B0). We show that D has a winning strategy for this game, thus proving the claim
by Theorem 5. By Lemma 6 we see that to have a chance of winning, S must begin the game
with at least m quantifiers. We then move on to the first position (r, 0,A,B) of the atomic
phase, where r ≤ 2m− 4. Let Γ be a set of atomic formulas such that for every (M, s) ∈ A
and (M′, s′) ∈ B, there is α ∈ Γ such that (M, s) ⊨ α and (M′, s′) ⊭ α. If |Γ| ≥ m − 1 for
every such Γ, then r ≤ 2m− 4 = 2(m− 1) − 2 < 2|Γ| − 1 so D has a winning strategy by
Lemma 7. We now assume for contradiction that there exists such a Γ with |Γ| ≤ m− 2.

Consider the connected components ∆ of Γ. Since a connected graph with k edges has at
most k + 1 vertices, for every ∆ at most m− 1 variables occur in the formulas of ∆.

We now explain why there is a single pair of models (M, s) ∈ A and (M′, s′) ∈ B such
that they are atomic equivalent with respect to the variables in V (∆) for every connected
component ∆ of Γ. We consider the quantifier moves S made in the quantifier phase in the
order the moves were made. For every variable x used in a ∃-move, we consider ∆ such that
x ∈ V (∆). We proceed as in the proof of Lemma 6, with respect to only the variables in
V (∆). That is, if there is a previously quantified variable y ∈ V (∆) such that s(y) = s(x),
we choose the opposing model where s′(x) = s′(y). Otherwise, we choose a point with no
variables of V (∆) attached. Each ∆ uses at most m− 1 variables so we do not run out of
fresh points of any type. The same protocol works for ∀-moves as well.

Note that the choices of models are made based on the connected component ∆ of x,
completely independently of other components. Since every variable x is in exactly one
component ∆, this means that the resulting pair of models is simultaneously atomic equivalent
with regards to each component separately. Thus this model pair cannot be separated by
any atomic formula in Γ. This contradiction with the definition of Γ proves the claim. ◀

We now consider lower bounds in the setting of FOd. Recall that an equivalence class
of ≡d is characterized by a tuple (m1, . . . ,mt), where t = 2|τ |, mi ≤ d,

∑t
i=1 mi ≤ n and if∑t

i=1 mi < n, then mj = d for some j. Let m = (m1, . . . ,mt) be such a tuple in ascending
order of the numbers mi. If

∑t
i=1 mi = n, then m corresponds to an isomorphism class and

the lower bounds above work as is. Thus we assume that
∑t

i=1 mi < n and consequently
mt = d. By taking a model M in the equivalence class Mm with a maximal number of

CSL 2025

17:12 Description Complexity in FO with Links to Entropy

points of the type πt, we can directly obtain the model M′ as above and get a lower bound
on defining the class Mm in full FO. This bound directly extends also to FOd, as limiting
quantifier rank gives no advantage in terms of formula size.

▶ Corollary 9. Let Mm be an equivalence class of ≡d, where m = (m1, . . . ,mt) is the
corresponding tuple with the numbers in ascending order. Now C(Mm) ≥ 3mt−1 − 3.

5 Expected description complexity

Using Theorems 1 and 8, we can determine asymptotically the expected description complexity
of a random τ -model. Here by random we mean that the model is sampled uniformly at
random from the set of all τ -models of size n. That is, we determine the asymptotic behavior
of the quantity En[C] := 1

2|τ|n

∑
M C(M) as n → ∞, where the sum is taken over all the

τ -models M of size n.
We say that a τ -model M is balanced, if for every τ -type π, we have ||π|M − n

2|τ| | = o(n).
In other words, a model is balanced if every type is realized roughly the same number of
times, allowing for a sublinear discrepancy. We use the well-known Chernoff bounds to
establish that a random model is very likely balanced.

▶ Proposition 10 (Multiplicative Chernoff bound). Let X :=
∑n

i=1 Xi be a sum of independent
0-1-valued random variables, where Xi = 1 with probability p and Xi = 0 with probability
1 − p. Let µ := E[X]. Now, for every 0 ≤ δ < 1 we have that Pr[|X − µ| ≥ δµ] ≤ 2e−δ2µ/3

Proof. See for example Corollary 4.6 in [19]. ◀

▶ Lemma 11. The probability that a random τ -model of size n is balanced is at least
1 − 2|τ |+1/n.

Proof. A routine calculation using Proposition 10. See A.3 for details. ◀

The previous lemma gives a rough characterization of random τ -models. Using this
characterization together with Theorem 8 we can determine asymptotically the expected
description complexity of a random τ -model.

▶ Theorem 12. En[C] ∼ 3n
2|τ|

Proof. To give an upper bound on En[C] we first rewrite it as follows:

En[C] = 1
2|τ |n

∑
M balanced

C(M) + 1
2|τ |n

∑
M not balanced

C(M) (1)

Using Corollary 2 and Lemma 11 we see that

1
2|τ |n

∑
M not balanced

C(M) ≤ 1
2|τ |n

∑
M not balanced

2n+ cτ = Pr[M is not balanced] · (2n+ cτ)

≤ 2|τ |+1

n
· (2n+ cτ) = 2|τ |+2 + cτ 2|τ |+1

n
= O(1).

Since we are interested in the asymptotic behavior of En[C], the above shows that we can
safely concentrate on the first sum in Equation (1). Using Theorems 1 and 8 we see that if
M is balanced, then 3n

2|τ| − o(n) ≤ C(M) ≤ 3n
2|τ| + o(n). Hence

Pr[M is balanced]·
(

3n
2|τ | −o(n)

)
≤ 1

2|τ |n

∑
M balanced

C(M) ≤ Pr[M is balanced]·
(

3n
2|τ | +o(n)

)
.

R. Jaakkola, A. Kuusisto, and M. Vilander 17:13

Since Pr[M is balanced] goes to one as n → ∞, we see that 1
2|τ |n

∑
M balanced

C(M) ∼ 3n
2|τ | , which

is what we wanted to show. ◀

6 Entropy and description complexity

In this section we establish results that illustrate how entropy and description complexity relate
to each other. As one can already imagine after seeing our results on description complexity,
there can be models with very close entropies and quite different description complexities. We
can nevertheless use our results to exclude many a priori possible combinations of description
complexity and entropy. For notational simplicity, we adopt the notation t := 2|τ |.

We begin by showing that the Boltzmann and Shannon entropies of a single model
are essentially the same up to normalization. This underlines the fact that both entropies
measure the same thing: the randomness of a model.

▶ Theorem 13. Let M be a τ -model of size n. Now

HS(M) − 1
n
HB(M) < (t− 1) log(

√
2πn)

n
− log(e)

12n2 + t log(e)
12n2 + n

.

Proof. Using the quantitative version of Stirling’s approximation given in [21], we obtain

HB(M) = log
(

n

n1 . . . nt

)
= log n!

n1! . . . nt!
= log(n!) −

t∑
i=1

log(ni!)

< log
(√

2πn
(
n

e

)n

e
1

12n

)
−

t∑
i=1

log
(√

2πni

(
ni

e

)ni

e
1

12n+1

)
= log(

√
2πn) + n log(n) − n log(e) + log(e)

12n

−
t∑

i=1

(
log(

√
2πni) + ni log(ni) − ni log(e) + log(e)

12n+ 1

)

≤ n log(n) −
t∑

i=1
ni log(ni) − (t− 1) log(

√
2πn) + log(e)

12n − t log(e)
12n+ 1 .

Note that the term n log(e) is cancelled out above because n1 + · · · + nt = n. Using this
same fact we also easily see that

HS(M) =
t∑

i=1
−ni

n
log ni

n
=

t∑
i=1

ni

n
log(n) −

t∑
i=1

ni

n
log(ni) = log(n) −

t∑
i=1

ni

n
log(ni).

Finally, by dividing HB(M) with n we obtain

HS(M) − 1
n
HB(M) < (t− 1) log(

√
2πn)

n
− log(e)

12n2 + t log(e)
12n2 + n

. ◀

The above quantitative result readily implies that the Boltzmann and Shannon entropies
of a single model are asymptotically the same up to normalization. A connection that bears
a similarity to the one pointed out here has also been noted briefly in [15].

▶ Corollary 14. Let (Mn)n∈Z+ be a sequence of τ -models where each Mn has size n. Now
HS(Mn) ∼ 1

nHB(Mn) as n → ∞.

CSL 2025

17:14 Description Complexity in FO with Links to Entropy

The above results show that for the connections to description complexity, we could use
either of the two notions of entropy. We opt for Shannon entropy here.

We will next use results from Sections 3 and 4 to prove two theorems that give bounds
on description complexity in terms of Shannon entropy. Recall from Section 3 the constant
cτ := 15|τ |2|τ |. The first of our two theorems gives global upper and lower bounds on
description complexity based on the same edge case distributions.

▶ Theorem 15. Let p ∈ [0, 1
t [. If HS(M) > ((t− 1)p− 1) log(1 − (t− 1)p) − (t− 1)p log(p),

then 3np− 3 < C(M) < 3n(1 − (t− 1)p) + cτ .

Proof. Let f(p) := ((t− 1)p− 1) log(1 − (t− 1)p) − (t− 1)p log(p). The function f(p) gives
the entropy of a τ -model M′ corresponding to the tuple (np, . . . , np, n(1 − (t− 1)p)), where
n(1 − (t − 1)p) > np for the given values of p. Since all types but the largest are evenly
distributed, any model, where the largest type has at least n(1 − (t− 1)p) realizing points has
entropy at most HS(M′) = f(p). Therefore if HS(M) > f(p), then the largest type of M has
less than n(1−(t−1)p) realizing points. By Theorem 1, we obtain C(M) < 3n(1−(t−1)p)+cτ .
On the other hand, since the largest type of M has less realizing points than in M′, those
points realize some other type. Therefore the second largest type of M has more than np

realizing points. By Theorem 8, we obtain C(M) > 3np− 3. ◀

The next theorem uses low entropy models with only two realized types to show a better
upper bound on description complexity for low entropy models than the above global one.

▶ Theorem 16. Let p ∈ [0, 1
2]. If HS(M) < (p−1) log(1−p)−p log(p), then C(M) < 6np+cτ .

Proof. Let h(p) := (p − 1) log(1 − p) − p log(p). The function h(p) gives the entropy of a
τ -model M corresponding to the tuple (0, . . . , 0, np, n(1 − p)). If HS(M) < h(p), then the
second largest type of M must be smaller than np. Thus, by Theorem 1, C(M) < 6np+cτ . ◀

HS(M)

C(M)

1 2

cτ

3n/4

3n/2

2n+ cτ

(a)

Hd
B(M)

Cd(M)

60

30

100 200

(b)

Figure 1 Figure 1a on the left shows an area that encapsulates all combinations of Shannon
entropy and FO-description complexity for the values |τ | = 2 and n = 1000. Figure 1b on the
right concerns the case of FOd and shows bounds on description complexity in terms of Boltzmann
entropy for values |τ | = 2, n = 100 and d = 10 with the constants −3 and cτ omitted.

R. Jaakkola, A. Kuusisto, and M. Vilander 17:15

Figure 1a incorporates both of the above theorems as well as Corollary 2 to show an area,
where all possible combinations of Shannon entropy and description complexity must fall.
First, comparing the left side of the plot to the right, we can see that models with very high
entropy have significantly higher description complexity than models with very low entropy.

We can also see from Figure 1a that the gap between our upper bounds and lower bounds
is only constant at both extremes of entropy. For models with middling entropy, the gap is
at its largest. This is because middling values of entropy can be realized by models with
very different distributions of types, leading to different description complexity.

We conjecture that the upper bound given by Theorem 1 is in reality tight up to the
constant cτ . Now, recall that for any single model, our upper and lower bounds have a worst
case gap of a factor of 2. Therefore, assuming that our conjecture is true, the lower bound
would only rise to at most double its current height. In other words, the general picture
illustrated by Figure 1a would not be significantly different under our conjecture.

We proceed to show that similar relationships between description complexity and entropy
hold also in the case of limited quantifier rank. As the classes of ≡d contain multiple different
isomorphism types of models, it is not clear how to define Shannon entropy. Boltzmann
entropy, however, is still straightforward so we use Boltzmann entropy here. We formulate
similar theorems to those above for full FO.

▶ Theorem 17. Let h ∈ {1, ..., d−1}. If Hd
B(M) > log

(
n

h...h n−(t−1)h

)
, then Cd(M) > 3h−3.

Proof. Let f(n, h) = log
(

n
h...h n−(t−1)h

)
. The function f(n, h) gives the Boltzmann entropy

of the class of models Mm, where m = (h, . . . , h, d). Any class of models obtained from this
one by lowering any of the numbers in the tuple is clearly smaller than Mm and thus has
lower Boltzmann entropy. Thus, for any larger class of models the second largest number in
its tuple must be greater than h. By Corollary 9, we obtain Cd(M) > 3h− 3. ◀

▶ Theorem 18. Let h ∈ {1, . . . , d− 1}. If Hd
B(M) < log

(
n
h

)
, then Cd(M) < 6h+ cτ .

Proof. The function g(n, h) = log
(

n
h

)
gives the Boltzmann entropy of a class Mm of models,

where m = (0, . . . , 0, h, d). Now every class of models, where the second largest number
in the tuple is at least h, is larger than or equal to Mm. Thus if Hd

B(M) < g(n, h), then
the class of M is smaller and the second largest number in its tuple is smaller than h. By
Theorem 3 we obtain Cd(M) < 6h+ cτ . ◀

We again have a plot in Figure 1b, where the possible combinations of entropy and
description complexity lie between the two chopped lines. This time, we plotted from the
above theorems 3h for the lower bound and 6h for the upper bound, omitting the constants
−3 and cτ . For these low values of n and d, the constants would have warped the picture in
a significant way. With high enough n and d, the constants are clearly negligible, but for
such values, the Boltzmann entropy quickly becomes impractical to calculate as the model
class sizes explode. We provide a plot of the leading terms for the values n = 100 and d = 10
without the constants to illustrate the trends one would see for higher values of n and d.

We see that the first observation we made for full FO still holds. The models with
very high entropy have significantly higher description complexity than those with very low
entropy. Concerning the gap between the upper and lower bounds, it is again constant at
the extremes. The largest gap can now be found significantly before the halfway point of
entropy, unlike for full FO. This is because the limit d of quantifier rank quite quickly cuts
short the growth of the upper bound while the lower bound grows slower.

CSL 2025

17:16 Description Complexity in FO with Links to Entropy

7 Conclusion

We have studied the description complexity of unary models, obtaining bounds for FO and
FOd. We have found the asymptotic description complexity of a random unary structure and
studied the relation between Shannon entropy and description complexity – also observing
a connection between Boltzmann and Shannon entropy. Links to entropy can be useful as
computing entropy is significantly easier than determining description complexity.

An obvious future goal would be to close the gaps between the upper and lower bounds.
Generalizing to full relational vocabularies is also interesting, although this seems to require
highly involved arguments. The part on entropy would there relate to Boltzmann entropy, as
there is no obvious unique definition for Shannon entropy in the k-ary scenario.

References
1 Micah Adler and Neil Immerman. An n! lower bound on formula size. ACM Trans. Comput.

Log., 4(3):296–314, 2003. doi:10.1145/772062.772064.
2 Philippe Balbiani, David Fernández-Duque, Andreas Herzig, and Petar Iliev. Frame-validity

games and lower bounds on the complexity of modal axioms. Log. J. IGPL, 30(1):155–185,
2022. doi:10.1093/jigpal/jzaa068.

3 Pablo Barceló, Mikaël Monet, Jorge Pérez, and Bernardo Subercaseaux. Model interpretability
through the lens of computational complexity. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL: https://proceedings.neurips.cc/
paper/2020/hash/b1adda14824f50ef24ff1c05bb66faf3-Abstract.html.

4 Marco Carmosino, Ronald Fagin, Neil Immerman, Phokion Kolaitis, Jonathan Lenchner, and
Rik Sengupta. On the number of quantifiers needed to define boolean functions, 2024.

5 Marco Carmosino, Ronald Fagin, Neil Immerman, Phokion G. Kolaitis, Jonathan Lenchner, and
Rik Sengupta. A finer analysis of multi-structural games and beyond. CoRR, abs/2301.13329,
2023. doi:10.48550/arXiv.2301.13329.

6 Marco Leandro Carmosino, Ronald Fagin, Neil Immerman, Ph. G. Kolaitis, Jonathan Lenchner,
Rik Sengupta, and Ryan Williams. Parallel play saves quantifiers. ArXiv, 2024.

7 Ronald Fagin, Jonathan Lenchner, Kenneth W. Regan, and Nikhil Vyas. Multi-structural
games and number of quantifiers. In 2021 36th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1–13, 2021. doi:10.1109/LICS52264.2021.9470756.

8 Ronald Fagin, Jonathan Lenchner, Nikhil Vyas, and Ryan Williams. On the Number of
Quantifiers as a Complexity Measure. In Stefan Szeider, Robert Ganian, and Alexandra Silva,
editors, 47th International Symposium on Mathematical Foundations of Computer Science
(MFCS 2022), volume 241 of Leibniz International Proceedings in Informatics (LIPIcs), pages
48:1–48:14, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.MFCS.2022.48.

9 Peter Grünwald and Paul M. B. Vitányi. Shannon information and Kolmogorov complexity.
CoRR, cs.IT/0410002, 2004. URL: http://arxiv.org/abs/cs.IT/0410002, doi:10.48550/
arXiv.cs/0410002.

10 Lauri Hella and Jouko Väänänen. The size of a formula as a measure of complexity. In Åsa
Hirvonen, Juha Kontinen, Roman Kossak, and Andrés Villaveces, editors, Logic Without
Borders - Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy of
Mathematics, volume 5 of Ontos Mathematical Logic, pages 193–214. De Gruyter, 2015.
doi:10.1515/9781614516873.193.

11 Lauri Hella and Miikka Vilander. Formula size games for modal logic and µ-calculus. J. Log.
Comput., 29(8):1311–1344, 2019. doi:10.1093/logcom/exz025.

https://doi.org/10.1145/772062.772064
https://doi.org/10.1093/jigpal/jzaa068
https://proceedings.neurips.cc/paper/2020/hash/b1adda14824f50ef24ff1c05bb66faf3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b1adda14824f50ef24ff1c05bb66faf3-Abstract.html
https://doi.org/10.48550/arXiv.2301.13329
https://doi.org/10.1109/LICS52264.2021.9470756
https://doi.org/10.4230/LIPIcs.MFCS.2022.48
http://arxiv.org/abs/cs.IT/0410002
https://doi.org/10.48550/arXiv.cs/0410002
https://doi.org/10.48550/arXiv.cs/0410002
https://doi.org/10.1515/9781614516873.193
https://doi.org/10.1093/logcom/exz025

R. Jaakkola, A. Kuusisto, and M. Vilander 17:17

12 Reijo Jaakkola, Tomi Janhunen, Antti Kuusisto, Masood Feyzbakhsh Rankooh, and Miikka
Vilander. Explainability via short formulas: the case of propositional logic with implementation.
In Joint Proceedings of (HYDRA 2022) and the RCRA Workshop on Experimental Evaluation of
Algorithms for Solving Problems with Combinatorial Explosion, volume 3281 of CEUR Workshop
Proceedings, pages 64–77, 2022. URL: https://ceur-ws.org/Vol-3281/paper6.pdf.

13 Reijo Jaakkola, Tomi Janhunen, Antti Kuusisto, Masood Feyzbakhsh Rankooh, and Miikka
Vilander. Short boolean formulas as explanations in practice. In Sarah Alice Gaggl,
Maria Vanina Martinez, and Magdalena Ortiz, editors, Logics in Artificial Intelligence -
18th European Conference, JELIA 2023, Dresden, Germany, September 20-22, 2023, Pro-
ceedings, volume 14281 of Lecture Notes in Computer Science, pages 90–105. Springer, 2023.
doi:10.1007/978-3-031-43619-2_7.

14 Reijo Jaakkola, Antti Kuusisto, and Miikka Vilander. Relating description complexity to
entropy. In Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté,
editors, 40th International Symposium on Theoretical Aspects of Computer Science, STACS
2023, March 7-9, 2023, Hamburg, Germany, volume 254 of LIPIcs, pages 38:1–38:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.STACS.2023.38.

15 Andrey Kolmogorov. The theory of transmission of information. In Selected Works of A.
N. Kolmogorov: Volume III: Information Theory and the Theory of Algorithms, pages 6–32.
Springer Netherlands, 1993. doi:10.1007/978-94-017-2973-4_3.

16 Sik K. Leung-Yan-Cheong and Thomas M. Cover. Some equivalences between Shannon
entropy and Kolmogorov complexity. IEEE Trans. Inf. Theory, 24(3):331–338, 1978. doi:
10.1109/TIT.1978.1055891.

17 Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications, 4th Edition. Texts in Computer Science. Springer, 2019. doi:10.1007/
978-3-030-11298-1.

18 João Marques-Silva, Thomas Gerspacher, Martin C. Cooper, Alexey Ignatiev, and Nina
Narodytska. Explanations for monotonic classifiers. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages 7469–7479.
PMLR, 2021. URL: http://proceedings.mlr.press/v139/marques-silva21a.html.

19 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005. doi:10.1017/CBO9780511813603.

20 Alexander A. Razborov. Applications of matrix methods to the theory of lower bounds in
computational complexity. Comb., 10(1):81–93, 1990. doi:10.1007/BF02122698.

21 Herbert Robbins. A remark on stirling’s formula. The American Mathematical Monthly,
62(1):26–29, 1955. doi:10.2307/2308012.

22 Advait Sarkar. Is explainable AI a race against model complexity? In Workshop on Transpar-
ency and Explanations in Smart Systems (TeXSS), in conjunction with ACM Intelligent User
Interfaces (IUI 2022), volume 3124 of CEUR Workshop Proceedings, pages 192–199, 2022.

23 Andreia Teixeira, Armando Matos, Andre Souto, and Luis Filipe Coelho Antunes. Entropy
measures vs. Kolmogorov complexity. Entropy, 13(3):595–611, 2011. doi:10.3390/e13030595.

A Appendix

A.1 Proof of Theorem 1 continued
We define here the second upper bound formula ψ(M) of size at most 6|πℓ−1| + cτ , along
with required subformulas.

Let T , m and M be as in the proof so far. We define another formula χ(T,m) below.
Now the model M satisfies χ(T,m) if and only if for every i ∈ {1, . . . , r}, the model M has
at most mi points that realize the type πi. We again do not assert anything about the types
πj with no corresponding mj .

CSL 2025

https://ceur-ws.org/Vol-3281/paper6.pdf
https://doi.org/10.1007/978-3-031-43619-2_7
https://doi.org/10.4230/LIPIcs.STACS.2023.38
https://doi.org/10.1007/978-94-017-2973-4_3
https://doi.org/10.1109/TIT.1978.1055891
https://doi.org/10.1109/TIT.1978.1055891
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1007/978-3-030-11298-1
http://proceedings.mlr.press/v139/marques-silva21a.html
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1007/BF02122698
https://doi.org/10.2307/2308012
https://doi.org/10.3390/e13030595

17:18 Description Complexity in FO with Links to Entropy

θmr := y = xmr ∨
∨

j∈{1,...,r}
mj=mr

(πj(x1) ∧ ¬πj(y))

θi := y = xi ∨ θi+1, if mj ̸= i for all j ∈ {1, . . . , r}, and

θi := y = xi ∨ (
∨

j∈{1,...,r}
mj=i

(πj(x1) ∧ ¬πj(y)) ∨ (
∧

j∈{1,...,r}
mj=i

¬πj(x1) ∧ θi+1), otherwise.

χ(T,m) := ∀x1∃x2 . . . ∃xmr
∀y(

∨
j∈{r+1,...,ℓ}

πj(x1) ∨ θ1)

We again explain how the above formula works. Note that directly taking the negation
of the formula φ(T,m) would not work as we are dealing with all types at once. We instead
again start with a universally quantified variable x1 that is attached to a point realizing a
type πj ∈ T . We first check if πj is one of the types we can safely ignore. Assume then that
mj = 5. The existentially quantified variables x2, . . . , x5 are then chosen to be of the same
type πj as x1 in such a way that every point of the type πj has at least one xi attached to
it. Since mj = 5, the first step of the recursion insists that either y is the same as x1 or
the recursion continues. When the recursion arrives at θ5, we cannot go any further, as to
continue, we would need mj ̸= 5. We are instead left with the two options of either y = x5
or y realizes a different type than x1. This amounts to saying that there are no more than 5
points that realize the type πj .

The crucial point of the formula χ(T,m) is that the first universally quantified variable
x1 allows us to use the same existential quantifiers to count all types at once. To ensure that
we do not require all of the types to be the same size, we restrict the type realized by x1
before continuing with the recursion.

We compute the size of χ(T,m). The formula has mr + 1 quantifiers. For each type π,
the subformula π(x) occurs at most three times and for at least one type with |π| = mr, only
two times. This results in 3k|T | − k atomic formulas of the form P (x) or ¬P (x). For the
equalities and inequalities, each equality y = xi for 1 ≤ i ≤ mr occurs exactly once, for a
total of mr such atomic formulas. Accounting for the binary connectives, the size of χ(T,m)
is thus at most

mr + 1 + 2(mr + 3k|T | − k) − 1 = 3mr + 6k|T | − 2k.

Our second complete upper bound formula ψ(M) avoids counting the type πℓ with the
most realizing points by bounding the size of all other types from above and from below.
For this formula we denote by m \ |πℓ| the sequence (|π1|, . . . , |πℓ−1|). We define

ψ(M) :=
ℓ∧

i=1
∃xπi(x) ∧ ∀x

ℓ∨
i=1

πi(x) ∧ φ(T,m \ |πℓ|) ∧ χ(T,m \ |πℓ|).

The numbers of new quantifiers and atomic formulas are the same as for φ(M). Accounting
for the binary connectives, including the one connecting φ(T,m \ |πℓ|) and χ(T,m \ |πℓ|),
the size of ψ(M) is now at most

|T | + 1 + 2(k|T | + k|T |) + 3|πℓ−1| + 4k|T | − 3 + 3|πℓ−1| + 6k|T | − 2k + 1
= 6|πℓ−1| + 14k|T | + |T | − 2k − 1 ≤ 6|πℓ−1| + cτ .

R. Jaakkola, A. Kuusisto, and M. Vilander 17:19

A.2 Proof of Theorem 3
Let m = (m1, . . . ,mt) be a tuple corresponding to a class of ≡d, ordered in the following way.
The first numbers m1, . . . ,mr are the ones greater than 0 and smaller than d in ascending
order. The numbers mr+1, . . . ,mℓ are all equal to d, and finally the numbers mℓ+1, . . . ,mt

are all equal to 0.
Using this order for the types, the set T = {π1, . . . , πℓ} is now the set of types realized in

models of the class and the first r types are each realized exactly mi < d times. This is in
line with the notation of the formulas for full FO above.

Our first formula works for any m. The formula states that each type πj is realized at
least mj times and furthermore, the ones with mj < d are realized at most mj times.

φd(m) :=
ℓ∧

i=1
∃xπi(x) ∧ ∀x

ℓ∨
i=1

πi(x) ∧ φ(T, (m1, . . . ,mℓ)) ∧ χ(T, (m1, . . . ,mr))

In the same way as for ψ(M) in the proof of Theorem 1, the size of φd(m) is at most

|T | + 1 + 2(k|T | + k|T |) + 3d+ 4k|T | − 3 + 3mr + 6k|T | − 2k + 1
= 3d+ 3mr + 14k|T | + |T | − 2k − 1 ≤ 3d+ 3mr + cτ .

Our second formula is only for the special case, where there is exactly one mj equal to d.
In this case, as with full FO, we can avoid counting the type with the most realizing points.
The rest of the types πj have mj < d and the formula states that each πj is realized at least
and at most mj times.

ψd(m) :=
ℓ∧

i=1
∃xπi(x) ∧ ∀x

ℓ∨
i=1

πi(x) ∧ φ(T, (m1, . . . ,mr)) ∧ χ(T, (m1, . . . ,mr))

Again in the same way as for ψ(M) in the proof of Theorem 1, the size of ψd(m) is at most

|T | + 1 + 2(k|T | + k|T |) + 3mr + 4k|T | − 3 + 3mr + 6k|T | − 2k + 1
= 6mr + 14k|T | + |T | − 2k − 1 ≤ 6mr + cτ .

The upper bounds of the claim follow.

A.3 Proof of Lemma 11
We will use Proposition 10. For every type π and 1 ≤ i ≤ n we associate a 0-1-valued
random variable Xπ,i such that Xπ,i = 1 with probability 2−|τ | and Xπ,i = 0 with probability
1 − 2−|τ |. Intuitively this is an indicator random variable for the event “the ith element
received the type π”. Now Xπ =

∑n
i=1 Xπ,i is a random variable that counts the number of

times π is realized. Clearly E[Xπ] = n/2|τ |, which also holds for every type π. Set µ := n/2|τ |

and δ(n) :=
√

3
2|τ|

ln(n)
n . Now

2e−δ(n)2µ/3 = 2n−1

and

δ(n)µ =
√

3
2|τ |

√
2|τ |

√
ln(n)n.

CSL 2025

17:20 Description Complexity in FO with Links to Entropy

Thus, by Proposition 10, we know that

Pr
[
|Xπ − µ| ≥

√
3

2|τ |
√

2|τ |

√
ln(n)n

]
≤ 2n−1

Applying the union bound, we also see that

Pr
(

∃π : |Xπ − µ| ≥
√

3
2|τ |

√
2|τ |

√
ln(n)n

)
≤

∑
π

Pr
[
|Xπ − µ| ≥

√
3

2|τ |
√

2|τ |

√
ln(n)n

]
≤ 2|τ |+1n−1

Thus, with probability at least 1 − 2|τ |+1/n in a random model M of size n we have for every
type π that∣∣∣∣|π|M − n

2|τ |

∣∣∣∣ ≤
√

3
2|τ |

√
2|τ |

√
ln(n)n.

Hence, with probability at least 1 − 2|τ |+1/n a random model of size n is balanced.

Reachability for Multi-Priced Timed Automata
with Positive and Negative Rates
Andrew Scoones #

Department of Computer Science, University of Oxford, UK

Mahsa Shirmohammadi #

CNRS, IRIF, Université of Paris Cité, France

James Worrell #

Department of Computer Science, University of Oxford, UK

Abstract
Multi-priced timed automata (MPTA) are timed automata with observer variables whose derivatives
can change from one location to another. Observers are read-once variables: they do not affect the
control flow of the automaton and their value is output only at the end of a run. Thus MPTA lie
between timed and hybrid automata in expressiveness. Previous work considered observers with
non-negative slope in every location. In this paper we treat observers that have both positive and
negative rates. Our main result is an algorithm to decide a gap version of the reachability problem
for this variant of MPTA. We translate the gap reachability problem into a gap satisfiability problem
for mixed integer-real systems of nonlinear constraints. Our main technical contribution – a result of
independent interest – is a procedure to solve such contraints via a combination of branch-and-bound
and relaxation-and-rounding.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Quantitative automata; Theory of computation → Timed and hybrid models;
Theory of computation → Verification by model checking

Keywords and phrases Bilinear constraints, Existential theory of real closed fields, Diophantine
approximation, Pareto curve

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.18

Funding Andrew Scoones: Supported by UKRI Frontier Research Grant EP/X033813/1.
Mahsa Shirmohammadi : Supported by VeSyAM (ANR-22- CE48-0005).
James Worrell: Supported by UKRI Frontier Research Grant EP/X033813/1.

1 Introduction

Timed automata [1] are a widely studied model of real-time systems that extend classical
finite state-automata with real-valued variables, called clocks, that evolve with derivative
one and which can be queried and reset along transitions. Multi-Priced Timed Automata
(MPTA) [7, 10, 13, 25] further extend timed automata with variables, called observers, that
have a non-negative slope that can change from one location to another. Such variables can
model the accumulation of costs or the use of resources along a computation, such as energy
and memory consumption in embedded systems, or bandwidth in communication networks.
For this reason MPTA are widely used to model multi-objective real-time optimisation
problems [9].

While observers exhibit richer dynamics than clocks, they may not be queried while
taking edges. Thus MPTA lie between timed automata (for which reachability is decidable)
and linear hybrid automata (for which reachability is undecidable [17]). A natural class of
verification problems for MPTA concerns reachability subject to constraints on the observers.
A simple variant is the Domination Problem, which asks to reach a location subject to upper

© Andrew Scoones, Mahsa Shirmohammadi, and James Worrell;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 18; pp. 18:1–18:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andrew.scoones@cs.ox.ac.uk
https://orcid.org/0000-0002-0610-7998
mailto:mahsa@irif.fr
https://orcid.org/0000-0002-7779-2339
mailto:jbw@cs.ox.ac.uk
https://orcid.org/0000-0001-8151-2443
https://doi.org/10.4230/LIPIcs.CSL.2025.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Reachability for Multi-Priced Timed Automata with Positive and Negative Rates

bounds on each observer. Here one can think of the constraints as representing upper bounds
on accumulated costs or resources. The Domination Problem was shown decidable in [21]
using well-quasi-orders and was later shown to be PSPACE-complete in [12, Theorem 4].

A more expressive version of the Domination Problem partitions the set of observers into
cost variables and reward variables and asks to reach a location subject to upper bounds on
costs and lower bounds on rewards. This variant is, unfortunately, undecidable. However it
is shown in [12, Theorem 6] that a gap version of the problem – called the Gap Domination
Problem – is decidable. In the Gap Domination Problem the input additionally contains a
slack ε > 0. The objective is to distinguish the case that the constraints on the observers can
be satisfied with slack ε from the case in which they cannot be satisfied at all. In general,
gap problems are decision versions of approximation problems [3, Chapter 18.2]. Decidability
of the Gap Domination Problem implies that the Pareto curve of undominated reachable
cost vectors can be computed to arbitrary precision (cf. [11]).

The objective of this paper is to address a more expressive variant of MPTA than hitherto
considered: namely those in which observers can have both positive and negative rates.
Alternatively, and equivalently, one can consider MPTA with nonnegative rates, but in which
one allows reachability specifications to contain constraints on the difference between two
observers rather than just threshold constraints that compare observers to constants. Indeed,
this extension is motivated by the desire to measure net resource use along computations.
In this more general setting, the Domination Problem, of course, remains undecidable; one
moreover loses monotonicity properties on which previous positive decidability results rely,
including the decision procedure for the Gap Domination Problem given in [12, Theorem 15].
The main result of this paper is to establish decidability (in nondeterministic exponential
time) of the Gap Domination Problem in the presence of positive and negative rates via a
new decision procedure.

We start by recalling a result of [12] that characterises the set of all reachable observer
values for a given MPTA via a system of mixed integer-real nonlinear constraints. Our
main technical contribution, which is of independent interest, shows how to solve a gap
version of the satisfiability problem for such systems of constraints. Our method involves a
combination of relaxation-and-rounding and branch-and-bound that relies on Khinchine’s
Flatness Theorem from Diophantine approximation. We formulate a relaxation of the system
of constraints such that a solution to the relaxed version can be rounded to a solution of the
original problem, while unsolvability of the relaxed version permits a branch-and-bound step
that eliminates a variable from the original system of constraints.

Systems of non-linear constraints over integer and real variables appear in many different
domains and are widely studied, although typically not from the point of view of decidability
since most classes of problems with unbounded integer variables are undecidable [16]. Other
than [12], we are not aware of previous work on the gap problem considered here. Kachiyan
and Porkolab [19] showed that it is decidable whether a convex semialgebraic set contains an
integer point; however we work with non-convex sets.

In this paper we consider MPTA with arbitrarily many observers. There is a significant
literature and mature tool support concerning the special case of MPTA with a single
observer, which are variously called Priced Timed Automata or Weighted Timed Automata.
In this case, the optimal cost to reach a given location is computable [2, 6, 20]. In the case of
one cost and one reward observer, one can also compute the optimal reward-to-cost ratio in
reaching a given location [7]. The preceding results use the so-called corner-point abstraction,
which is insufficient for multi-objective model checking. Instead, the present paper implicitly
relies on the simplex-automaton abstraction, introduced in [12], which underlies the non-linear

A. Scoones, M. Shirmohammadi, and J. Worrell 18:3

constraint problems that are the subject of our main results. All previously mentioned works
involve observers that evolve linearly with time. Observer variables that vary non-linearly
with time are considered in [4]. In the non-linear setting the optimal cost reachability problem
is undecidable in general. Another variant, this time towards greater simplicity, is to consider
observers that are only updated through discrete transitions [26].

2 Automata and Decision Problems

2.1 Multi-Priced Timed Automata
Let R≥0 denote the set of non-negative real numbers. Given a set X = {x1, . . . , xn} of clocks,
the set Φ(X) of clock constraints is generated by the grammar

φ ::= true | x ≤ k | x ≥ k | φ ∧ φ ,

where k ∈ N is a natural number and x ∈ X . A clock valuation is a mapping ν : X → R≥0
that assigns to each clock a non-negative real number. We denote by 0 the valuation such
that 0(x) = 0 for all clocks x ∈ X . We write ν |= φ to denote that ν satisfies the constraint φ.
Given t ∈ R≥0, we let ν + t be the clock valuation such that (ν + t)(x) = ν(x) + t for all
clocks x ∈ X . Given λ ⊆ X , let ν[λ← 0] be the clock valuation such that ν[λ← 0](x) = 0
if x ∈ λ, and ν[λ← 0](x) = ν(x) otherwise.

A multi-priced timed automaton (MPTA) A = ⟨L, ℓ0, Lf ,X ,Y, E, R⟩ comprises a finite
set L of locations, an initial location ℓ0 ∈ L, a set Lf ⊆ L of accepting locations, a finite set
X of clock variables, a finite set Y of observers, a set E ⊆ L× Φ(X)× 2X × L of edges, and
a rate function R : L→ ZY . Here R(ℓ)(y) is the derivative of the observer y ∈ Y in location
ℓ. Denote by ∥A∥ the length of the description of A, where all integers are written in binary.

A state of A is a triple (ℓ, ν, t) where ℓ is a location, ν a clock valuation, and t ∈ R≥0 is a
time stamp. A run of A is an alternating sequence of states and edges

ρ = (ℓ0, ν0, t0) e1−→ (ℓ1, ν1, t1) e2−→ . . .
em−→ (ℓm, νm, tm) ,

where t0 = 0, ν0 = 0, ti−1 ≤ ti for all i ∈ {1, . . . , m}, and ei = ⟨ℓi−1, φ, λ, ℓi⟩ ∈ E is such
that νi−1 + (ti − ti−1) |= φ and νi = (νi−1 + (ti − ti−1))[λ ← 0] for i = 1, . . . , m. The
run is accepting if ℓm ∈ Lf . The value of such a run is a vector val(ρ) ∈ RY , defined by
val(ρ) =

∑m−1
i=0 (ti+1 − ti)R(ℓi) . We refer to Figure 1 for an example of an MPTA and its

operational semantics.

2.2 The Gap Domination Problem
The Domination Problem is as follows. Given an MPTA A with set Y of observers and
a target γ ∈ RY , decide whether there is an accepting run ρ of A such that val(ρ) ≤ γ

pointwise.
Our formulation of the Domination Problem involves a conjunction of constraints of the

form y ≤ c, where y ∈ Y and c ∈ Q. However such inequalities can encode more general
linear constraints of the form a1y1 + · · ·+ akyk ∼ c, where y1, . . . , yk ∈ Y, a1, . . . , ak, c ∈ Z
and ∼ ∈ {≤,≥, =}. To do this one introduces a fresh observer to denote each linear
term a1y1 + · · ·+ akyk (two fresh observers are needed for an equality constraint). For this
reduction it is crucial that we allow observers with negative rates.

The Domination Problem is PSPACE-complete for MPTA with positive rates only [12,
Theorem 11], but is undecidable if negative rates are allowed [12, Theorem 3]. This motivates
us to consider the Gap Domination Problem – a variant of the above problem in which

CSL 2025

18:4 Reachability for Multi-Priced Timed Automata with Positive and Negative Rates

start ȯ = 1 ė = 1
y := 0
z := 0

x ≥ 1?

x := 0

y ≤ 1?

y := 0

z ≤ 3?

Figure 1 The figure shows an MTPA with three clocks x, y, z and two observer variables o, e,
respectively standing for odd and even. The observer variables have slope 0 unless otherwise indicated;
thus o aggregates the total dwell time in the odd state and e aggregates the total dwell time in the
even state. An accepting run is completely determined by a sequence of nonnegative real numbers
d0, . . . , d2k, giving the respective delays between successive transitions. Suppose we wish to reach
the accepting state subject to the two objectives e ≥ 2 and o ≥ 1. This is achieved, among others,
by the run with sequence of time delays 2

3 , 1
3 , 2

3 , 1
3 , 2

3 , 1
3 , 2

3 and the run with integer sequence of
delays 1, 0, 1, 0, 1, 1, 0 (and any convex combination of the two runs). If the inequalities in the
guards on x and y are replaced by equalities then the first run is the unique one realising the two
given objectives. In the case of so-called pure reachability objectives, i.e., exclusively upper bound
constraints or exclusively lower bound constraints on the observers, there is an explicit upper bound
on the granularity of the delays in a run witnessing that the objective is realisable (1

3 in the present
example) [12, Section 6]. This no longer holds in the case of reachability objectives that contain
both upper and lower bounds on observers.

the input additionally includes a slack parameter ε > 0. If there is some run ρ such
that val(ρ) ≤ γ − ε then the output should be “dominated” and if there is no run ρ such
that val(ρ) ≤ γ then the output should be “not dominated”. In case neither of these
alternatives hold (i.e., γ is dominated but not with slack ε) then there is no requirement on
the output. The Gap Domination Problem is the decision version of the task of computing
ε-approximate Pareto curve in the sense of [11].

The following proposition and (a generalisation of [12, Propositions 6 and 7]), concerning
the structure of the set of reachable vectors of observer values, allows us to reduce the Gap
Domination Problem to a Diophantine problem. Geometrically the proposition says that
the set of reachable observer vectors consists of a countable union of simplexes, where each
simplex is specified by its vertices – a tuple of integer vectors – and the set of such tuples
is semilinear. The proposition is based on the fact that if there are d observers then any
reachable observer valuation is a convex combination of d + 1 valuations that are respectively
reached along d + 1 runs, all taking the same sequence of edges, in which all transitions occur
at integer time points (see [12] for details).

▶ Proposition 1. Let A be an MPTA with set of observers Y having cardinality d. Then
there is a semilinear set SA ⊆ (ZY)d+1 such that for every accepting run ρ of A there exists
(γ1, . . . , γd+1) ∈ SA for which cost(ρ) lies in the convex hull of {γ1, . . . , γd+1}. Moreover
SA can be written as a union of a collection of linear sets that can be computed in time
exponential in ∥A∥ and each of which has a description length polynomial in ∥A∥.

Proof. The proposition was proved in [12] under the assumption that observers have
nonnegative slope. The general case follows easily. Indeed, given an arbitrary MPTA
A = ⟨L, ℓ0, Lf ,X ,Y, E, R⟩, we define a new MPTA A′, differing from A only in its set of
observers and rate function, such that all observers in A′ have non-negative rates. The set of
observers of A′ is Y ′ := {y+, y− : y ∈ Y} and the rate function R′ is given by

R′(y+)(ℓ) := max(R(y)(ℓ), 0) and R′(y−)(ℓ) := max(−R(y)(ℓ), 0)

for all y ∈ Y and all ℓ ∈ L.

A. Scoones, M. Shirmohammadi, and J. Worrell 18:5

Define Φ : ZY′ → ZY by Φ(γ)(y) = γ(y+) − γ(y−). If a run ρ of A′ has cost vector γ

then ρ has cost vector Φ(γ) considered as a run of A. Thus if we define SA := Φ(SA′), where
Φ has been lifted pointwise to a linear map Φ : (ZY′)d+1 → (ZY)d+1, then SA satisfies the
requirements of the proposition. ◀

The following is immediate from Proposition 1.

▶ Corollary 2. Given γ ∈ RY , there exists a run ρ with val(ρ) ≤ γ if and only if the following
mixed integer-real system of non-linear inequalities has a solution.

λ1γ1 + · · ·+ λd+1γd+1 ≤ γ 1 = λ1 + · · ·+ λd+1
(γ1, . . . , γd+1) ∈ SA 0 ≤ λ1, . . . , λd+1
γ1, . . . , γd+1 ∈ ZY λ1, . . . , λd+1 ∈ R

(1)

In the following two sections we analyse systems of constraints of the above form, obtaining
a general result that allows us to solve the Gap Domination Problem.

3 Mixed Integer Bilinear Systems

3.1 The Satisfiability Problem
A mixed-integer bilinear (MIB) system is a collection of constraints in integer variables x

and real variables y of the form:

x⊤Aiy ≤ bi (i = 1, . . . , ℓ)
Cx ≤ d

Ey ≤ f

x ∈ Zm, y ∈ Rn .

(2)

We assume that all constants in (2) are integer; thus if the system is satisfiable then there is
a satisfying assignment in which y is a rational vector. We say that a satisfying assignment
has slack ε > 0 if x⊤Aiy ≤ bi − ε, for i = 1, . . . , ℓ. Note that the slack requirement refers
only to the nonlinear constraints.

We say that the system (2) is bounded if the polyhedron {y ∈ Rn : Ey ≤ f} is bounded,
i.e., is a polytope. Crucially, the MIB systems arising from multi-priced timed automata in
Corollary 2 are bounded. Unfortunately, however, the satisfiability problem for MIB systems
is undecidable, even in the bounded case.

▶ Proposition 3. The satisfiability problem for bounded mixed-integer bilinear systems is
undecidable.

Proof. We reduce from the following version of Hilbert’s 10th Problem (see [12, Proposi-
tion 1]): given a finite system S of equations in variables x1, . . . , xn, with each equation
either having the form xi = xj + xk or xi = xjxk, determine whether S has a solution in the
set of strictly positive integers.

The reduction involves transforming the system S into an equisatisfiable MIB system S ′

over a set of integer variables x0, . . . , xn ≥ 0 (i.e, the variables of S plus a new variable x0)
and real variables y1, . . . , yn ≥ 0. The construction is such that every solution of S extends
to a solution of S ′ and, conversely, every solution of S ′ restricts to a solution of S.

The system S ′ includes equations x0 = 1 and xiyi = 1 for i = 1, . . . , n. The linear
equations xi = xj + xk from S are carried over to S ′ and, for each equation xi = xjxk

in S, we include an equation (xj + xk)yi = x0(yj + yk) in S. The latter is equivalent to

CSL 2025

18:6 Reachability for Multi-Priced Timed Automata with Positive and Negative Rates

xj+xk

xi
= 1

xj
+ 1

xk
in the presence of the equations xiyi = xjyj = xkyk = 1 and x0 = 1, which

in turn is clearly equivalent to xi = xjxk. By adding constraints 0 ≤ yi ≤ 1 for i = 1, . . . , n

we furthermore make S ′ bounded without affecting the integrity of the reduction. ◀

3.2 The Gap Satisfiability Problem

In light of Proposition 3, we introduce the following gap version of the satisfiability problem
for MIB systems. In this variant we seek a procedure that inputs ε > 0 and a MIB system S
in the form (2) and returns either “UNSAT” or “SAT” subject to the following requirements:
1. If S has a satisfying assignment with slack ε then the output must be “SAT”.
2. If S is not satisfiable then the output must be ”UNSAT”.
Note that we place no restriction on the output in the case that S is satisfiable but with no
satisfying assignment having slack ε.

In Section 4 we will show that the Gap Satisfiability Problem is decidable for bounded
MIB systems. The following proposition shows the necessity of the boundedness hypothesis.

▶ Proposition 4. The Gap Satisfiability Problem is undecidable for (unbounded) MIB systems.

Proof. The proof is by reduction from the same variant of Hilbert’s Tenth Problem as in
the proof of Proposition 3. Recall that an instance of this problem comprises a system S of
equations in positive-integer variables x1, . . . , xn, with each equation having the form either
xi = xj + xk or xi = xjxk, where i, j, k ∈ {1, . . . , n}. Given such a system, we construct an
MIB system S ′ over integer variables x0, . . . , xn+1 and real variables y0, . . . , yn+1 such that
every satisfying assignment of S extends to a satisfying assignment of S ′ with slack 1

2 and
every satisfying assignment of S ′ restricts to a satisfying assignment of S.

We include the equations x0 = 1 and y0 = 1 in S ′. Each linear equation xi = xj + xk

in S is carried over to S ′. For each equation xi = xjxk in S we include the inequality
|xiy0 − xjyk| ≤ 1

2 in S ′. We then add the following collection of constraints to S ′ for all
i ∈ {1, . . . , n + 1} that intuitively force xi and yi to be very close together:
1. |xiy0 − x0yi| ≤ 1;
2. |xn+1yi − xiyn+1| ≤ 1;
3. xn+1y0 ≥ 4(x0 + xi)(y0 + yi) + 1.

A satisfying valuation of S can be extended to a valuation that satisfies S ′ with slack 1
2

by setting x0 := 1, xn+1 := 4 maxi∈{1,...,n}(1 + xi)2 + 1, and yi := xi for i = 0, . . . , n + 1.
Conversely, we claim that every satisfying valuation of S ′ (with no assumption on the

slack) restricts to a satisfying valuation of S. Indeed, by Item 2, above, for all k ∈ {1, . . . , n}
we have

|xn+1(xk − yk)− xk(xn+1 − yn+1)| = |xn+1yk − xkyn+1|
(2)
≤ 1.

By Items 1 and 3, this entails that for all j ∈ {1, . . . , n},

|xk − yk| ≤
xk|xn+1 − yn+1|+ 1

xn+1

(1)
≤ xk + 1

xn+1

(3)
≤ 1

4(yj + 1)
(1)
≤ 1

4xj

and hence |xjxk−xjyk| ≤ 1
4 . Combined with |xi−xjyk| ≤ 1

2 we conclude that |xi−xjxk| ≤ 3
4

and hence xi = xjxk. ◀

A. Scoones, M. Shirmohammadi, and J. Worrell 18:7

It is shown in [12, Theorem 6] how to solve the Gap Satisfiabililty Problem for a subclass
of MIB systems, which we here call positive. A positive MIB system has the form

x⊤Aiy ≤ bi (i = 1, . . . , ℓ1)
x⊤Aiy ≥ bi (i = ℓ1 + 1, . . . , ℓ2)
Cx ≤ f , x ≥ 0
Ey ≤ f , y ≥ 0
x ∈ Zm, y ∈ Rn .

with all coefficients of Ai being non-negative rational for i = 1, . . . , ℓ2. This variant can be
solved by a naive relaxing and rounding procedure, which does not require the boundedness
assumption. However, while suffiicent to handle MPTA with non-negative rates, positive
MIB appear insufficient for the case of MPTA with both positive and negative rates.

4 Decidability in the Bounded Case

4.1 Preliminaries
The following proposition on semilinear sets of integers [23, Corollary 1] will be used on
several occasions below:

▶ Proposition 5. Consider a set S := {x ∈ Zm : Ax ≤ b}, where the entries of A and b are
integers of absolute value at most H and the affine hull of S has dimension d. Then there
exists a finite set B ⊆ Zm and a matrix P ∈ Zm×d such that

S = L(B, P) := {w + Pz : w ∈ B, z ∈ Zd, z ≥ 0}

and the entries of P and w have absolute value at most (2 + (m + 1)H)m.

We will also need the following result [24, Corollary 3.1] on semialgebraic sets of real
numbers. We assume that polynomials are written as lists of monomials with all integers,
including exponents, written in binary.

▶ Proposition 6. Let {fi}i∈I be a family of polynomials in n variables whose representation
has total bit length at most L. Then the set S := {x ∈ Rn :

∧
i∈I fi ∼i 0}, where ∼i ∈ {<, =},

is either empty or contains a point of distance at most 2L8n to the origin.

For further analysis it will be useful to transform the MIB problem to a standard form,
shown in (3) below. In standard form the only linear constraints on the integer variables
are that they be nonnegative. Correspondingly we enrich the nonlinear constraints, allowing
them to contain an extra linear term in y.

x⊤Aiy + b⊤
i y ≤ ci (i = 1, . . . , ℓ)

Dy ≤ e

x ≥ 0
x ∈ Zm, y ∈ Rn .

(3)

The transformation of (2) to standard form is based on writing S := {x ∈ Zm : Cx ≤ d}
as a semi-linear set L(B, P), following Proposition 5, where B ⊆ Zm and P ∈ Zm×d with d

the dimension of the affine hull of S. For each vector w ∈ B we can apply the change of
variables x = Pz + w to (2) to obtain a problem in standard form: Thus we obtain a finite
collection of problems in standard form, whose solutions are in one-one correspondence with
the solutions of the original system (2).

CSL 2025

18:8 Reachability for Multi-Priced Timed Automata with Positive and Negative Rates

4.2 Relaxation and Rounding
In this section we introduce a relaxed version of a bounded MIB system, in which all variables
range over the reals. The relaxation is such that a satisfying assignment to the relaxed
problem can be rounded to an integer solution of the original system, while unsatisfiability of
the relaxed version permits a branch-and-bound step which leads to an equisatisfiable finite
collection of MIB instances in one fewer integer variable.

The rounding is based on an application of the Flatness Theorem in Diophantine approx-
imation – Theorem 7, below. To state this result we first recall some standard terminology
related to this. Let K ⊆ Rn be a convex set and let u ∈ Zn. Define the width of K with
respect to u to be

widthu(K) := sup{u⊤(x− y) : x, y ∈ K} .

The lattice width of K is the minimum width in all directions:

width(K) := min{widthu(K) : u ∈ Zn \ {0}} .

▶ Theorem 7 (Flatness Theorem). There exists a constant ω(n), depending only on n, such
that every convex polyhedron K ⊆ Rn with width(K) > ω(n) contains an integer point.

The constant ω(n) in Theorem 7 is called the flatness constant. The best-known upper bound
on ω(n) = O(n3/2) [5], although a linear upper bound was conjectured in [18].

We will need the following proposition about definability of lattice width for classes of
polyhedral sets.

▶ Proposition 8. There is a quantifier-free formula in the theory of real closed fields, whose
free variables respectively represent a matrix A ∈ Rn×m, vector b ∈ Rn, and scalar c > 0,
that expresses the property widthu(P) ≥ c where P := {x ∈ Rm : Ax ≥ b, x ≥ 0}.

Proof. A necessary condition that widthu(P) ≥ c is that P be non-empty and hence, since it
lies in the positive orthant, contain a vertex. Now each vertex of P , being the intersection of
n linearly independent bounding hyperplanes, has the form B−1b′, where B is a non-singular

n× n sub-matrix of
(

A

In

)
, where In denotes the identity matrix of dimension n, and b′ is a

corresponding sub-vector of
(

b

0

)
. Hence the vertices of P are definable by quantifier-free

formulas.
Assume that P contains a vertex. Then widthu(P) is infinite if and only if either u

or −u lie in the recession cone of P , for which a sufficient and necessary condition is that
Au ≥ 0 or Au ≤ 0. If widthu(P) is finite then there exist two vertices x0, x1 of P such that
widthu(P) = u⊤(x0−x1). The proposition follows by combining the above observations. ◀

We now commence the detailed description of the relaxation construction. The input is
a bounded MIB program S in standard form (3) and a slack ε > 0. Assume that S has at
least one non-linear constraint. We start with the observation that for a given y ∈ Rn the
system (3) admits a solution x ∈ Zm if and only if the polyhedral set

P (y) := {x ∈ Rm : x ≥ 0, x⊤Aiy + b⊤
i y ≤ ci, i = 1, . . . , ℓ} , (4)

contains an integer point.

A. Scoones, M. Shirmohammadi, and J. Worrell 18:9

Let H be an upper bound of the absolute value of the integer constants in the system (3).
Since S is bounded, by [14, Lemma 3.1.25] the set {y ∈ Rn : Dy ≤ e} is contained in the
ball of radius κ1 := m1/2H(m2+m) centred at the origin.

For a matrix A, let ∥A∥ denote the spectral norm. Recall that if A has entries of absolute
value at most H and has m columns then ∥A∥ ≤

√
mH. Now write

δ := min(δ0, 1), where δ0 := min
{

ε

∥Ai∥κ1
: i = 1, . . . , ℓ

}
≥ ε

m1/2Hκ1
(5)

and define U := {u ∈ Zm \ {0} : 2δ∥u∥ < ω(m)}, where ω(m) is as in Theorem 7.
Write U = {u1, . . . , us} and consider the following relaxed system S ′ of linear and bilinear
constraints in exclusively real variables (where the notation P (y) is as in (4) and we use
Proposition 8 to formulate the constraint widthuj (P (y)) ≥ ω(m)):

x⊤Aiy + b⊤
i y ≤ ci − ε (i = 1, . . . , ℓ)

widthuj
(P (y)) ≥ ω(m) (j = 1, . . . , s)

Dy ≤ e, x ≥ 1
x ∈ Rm, y ∈ Rn

(6)

▶ Proposition 9. If the relaxed system S ′ is satisfiable, then so is the original system S.

Proof. Let x∗, y∗ be a solution of the system S ′, as shown in (6). Consider the set P (y∗) as
defined in (4). By construction we have

min
u∈U

widthu(P (y∗)) ≥ ω(m) . (7)

But from the fact x∗ satisfies each constraint x⊤Aiy
∗ + b⊤

i y∗ ≤ ci with slack ε and that
x∗ ≥ 1, we see that the ball Bδ(x∗) is contained in P (y∗), for δ as defined in (5). It follows
that

widthu(P (y∗)) ≥ 2δ∥u∥
≥ ω(m)

for all u ̸∈ U . Together with (7), we have that width(P (y∗)) ≥ ω(m) and hence, by
Theorem 7, P (y∗) contains an integer point. This entails that the original system S is
satisfiable. ◀

▶ Proposition 10. If the relaxed system S ′ has no solution then every solution x∗ ∈ Zm of
the original system S that has slack ε either has some component equal to zero or satisfies
|u⊤x∗| ≤ κ2 for some u ∈ U , where κ2 is an explicit constant depending only on S and ε.

Proof. Assume that S ′ has no solution. Let x∗ ∈ Zm and y∗ ∈ Rn be a solution of S with
slack ε. If some component of x∗ is zero then we are done, so we may suppose that x∗ ≥ 1.
By assumption, x∗, y∗ is not a solution of S ′ and so it must hold that

min
u∈U

widthu(P (y∗)) < ω(m) , (8)

where P (y∗) is as defined in (4).
Let u ∈ U be the vector achieving the minimum on the left-hand side of (8). We will

exhibit an upper bound on |u⊤x∗| that does not depend on y∗.
Assume first that P (y∗) contains the origin. Then by (8),

|u⊤x∗| = |u⊤(x∗ − 0)| ≤ ω(m) .

CSL 2025

18:10 Reachability for Multi-Priced Timed Automata with Positive and Negative Rates

Assume now that P (y∗) does not contain the origin. Let L be the line segment connecting
the origin to x∗, and denote by x the point at which L intersects the boundary of P (y∗).
Then we have x∗ − x = λx for some λ > 0. Moreover, since x lies on the boundary of P (y∗)
there exists i0 ∈ {1, . . . , ℓ} such that

x⊤Ai0y∗ + b⊤
i0

y∗ = ci0 , (9)

i.e., one of inequalities that define P (y∗) is tight at x. But since x∗, y∗ satisfies S with
slack ε, we also have that (x∗)⊤Ai0y∗ + b⊤

i0
y∗ ≤ ci0 − ε. Subtracting Equation (9) from the

previous inequality gives

−ε ≥ (x∗ − x)⊤Ai0y∗

= λ(x⊤Ai0y∗)
= λ(ci0 − b⊤

i0
y∗) .

Since ε, λ > 0 this entails that ci0 − b⊤
i0

y∗ < 0 and hence

λ−1 ≤ ε−1|ci0 − b⊤
i0

y∗|
≤ ε−1 (|ci0 |+ ∥bi0∥κ1) (10)

We deduce that

|u⊤x∗| ≤ |u⊤(x∗ − x)|+ |u⊤x|
= |u⊤(x∗ − x)| (1 + λ−1)
≤ ω(m)

(
1 + ε−1(|ci0 |+ ∥bi0∥κ1)

)
by (8) and (10).

Thus, defining

κ2 := ω(m) (1 + Hε−1(1 + m1/2κ1)) , (11)

we have |u⊤x∗| ≤ κ2.
In summary, we have that |u⊤x∗| ≤ κ2 for every integer point x∗ of P (y∗), as required

in the proposition. ◀

4.3 Decision Procedure
In this section we describe a decision procedure for the Gap Satisfiability Problem for bounded
MIB systems. This is a recursive procedure based on the relaxation construction in the
preceding section. We first present a conceptually simple version of the procedure, with
no complexity bound, and then give a more detailed treatment from which bounds can be
extracted.

▶ Theorem 11. The Gap Satisfiability Problem is decidable for bounded MIB systems.

Proof. The procedure to solve the Gap Satisfiability Problem is as follows. Consider an
instance of the problem, consisting of an MIB system in the form (3) and slack ε > 0. If there
are no non-linear constraints then the problem instance is just a system of linear inequalities
in real and integer variables, whose satisfiability is straightforward to discern. Thus we may
assume that there is at least one non-linear constraint. We construct the associated relaxed
system S ′, which has the form (6). Using a decision procedure for the existential theory of
real-closed fields we determine whether the system S ′ is satisfiable.

A. Scoones, M. Shirmohammadi, and J. Worrell 18:11

If S ′ is satisfiable then Proposition 9 guarantees that the original MIB system S is also
satisfiable. We can then find a satisfying assignment of S by enumerating over all values
x∗ ∈ Zm and solving a linear program to decide whether there exists y∗ ∈ Rn such that
x∗, y∗ satisfies S.

If the relaxed problem has no satisfying assignment then Proposition 10 furnishes a finite
set E of linear equations of the form u⊤x = b, with coefficients u ∈ Zm and b ∈ Z, such that
for any solution x∗ ∈ Zm, y∗ ∈ Rn of (2) that has slack ε, the integer part x∗ satisfies an
equation in E . We iterate through all such equations u⊤x = b and in each case we apply
Proposition 5 to write

{x ∈ Zm : u⊤x = b, x ≥ 0}

as a linear set L(B, P) for some finite set B ⊆ Zm and matrix P ∈ Zm×m−1. Then for each
vector w ∈ B, we apply the change of variables x = w + Pz to obtain a MIB system in
one fewer integer variable to which we can recursively apply the procedure to determine
satisfiability. ◀

In the following result we retrace the proof of Theorem 11, this time keeping track of the
size of the integers involved. We thereby obtain an upper bound on the smallest satisfying
assignment, showing that the gap satisfiability problem can be solved in nondeterministic
exponential time.

▶ Theorem 12. Consider a MIB system (3) in which the integer constants have absolute
value at most H. If such a system is satisfiable with slack ε then there is a satisfying
assignment under which the integer variables have absolute value at most 2κ3

O(m3(m+n)) , where
κ3 :=

(
mHm2

ε

)
.

Proof. We first analyse the effect of a single variable-elimination step on the size of the integers
in the system (3). Recall that to eliminate an integer variable we assert a linear equation
u⊤x = b, where ∥u∥ ≤ 2w(m)

δ and |b| ≤ κ2. Combining the lower bound δ ≥ ε
m1/2Hκ1

from (5), the definition κ1 := m1/2H(m2+m), the definition of κ2 in (11), and the bound
ω(m) = O(m3/2), we obtain that ∥u∥, |b| = κ

O(1)
3 , for κ3 :=

(
mHm2

ε

)
.

Employing Proposition 5, the equation u⊤x = b, x ≥ 0, determines a substitution
x = Pz + w in which the elements of P and w have absolute value at most κ

O(m)
3 . Since

there are m integer variables, the constants appearing over all MIB instances arising through
the process of variable elimination have absolute value at most κ

O(m2)
3 .

Consider a version of the relaxed system (6) in which the integer constants have magnitude
at most κ

O(m2)
3 . For the purposes of our complexity analysis we augment the system with a

new variable r and constraints r ≥ ∥x∥+ 1 and r ≥ ∥w ± w(m)u∥ for each vertex w of the
polyhedron P (y) (as defined in (4)) and u ∈ U . The integer constants in the resulting system
have absolute value at most κ

O(m3)
3 by Hadamard’s determinant inequality. By construction,

if x∗, y∗ is a satisfying assignment of (6) then the convex set {x ∈ P (y∗) : ∥x∥ ≤ r} has
lattice width at most w(m) and hence contains an integer point. By Proposition 6 an upper
bound for r is 2κ

O(m3(m+n))
3 , which concludes the proof. ◀

▶ Remark 13. It is evident that the double exponential dependence of the magnitude of the
smallest satisfying assignment on the number of variables in Theorem 12 is unavoidable.
Indeed, consider the following MIB system:

CSL 2025

18:12 Reachability for Multi-Priced Timed Automata with Positive and Negative Rates

xiyi ≤ 1 (i = 1, . . . , n)
xi+1yi ≥ xiy0 (i = 1, . . . , n− 1)
x1 = 2, y0 = 1
x1, . . . , xn ∈ Z≥0, y0, . . . , yn ∈ R≥0

Then any satisfying assignment satisfies xi+1 ≥ xi

yi
≥ x2

i for I = 1, . . . , n − 1, whence
xn ≥ 22n−1 . The system moreover has a satisfying assignment with slack ε for any ε > 0,
obtained by successively setting yi := 1+ε

xi
and xi+1 := ⌊xi+ε

yi
⌋ for i = 1, . . . , n− 1.

Proposition 1 and Corollary 2 give an exponential-time Turing reduction of the Gap
Domination Problem for MPTA to the Gap Satisfiability Problem for bounded MIB systems,
such that resulting instances of the Gap Satisfiability Problem have size polynomial in that
of the input MPTA. We thus obtain our second main result.

▶ Theorem 14. The Gap Domination Problem for MPTA is decidable in non-deterministic
exponential time.

5 Conclusion

Our main result shows that pareto curve of undominated reachable observer values of a given
MPTA can be approximated to arbitrary precision. This is in contrast with the situation for
weighted timed games, where it was recently shown that the optimal value of a weighted
timed game with positive and negative rates cannot be computed to arbitrary precision [15].

Throughout this paper we have worked with MPTA with clock guards defined by con-
junctions of non-strict inequalities. However, we claim that for an MPTA A with guards
comprising conjunctions of both strict and non-strict inequalities, there exists an MPTA A′

with exclusively closed guards over the same set Y of observers, such that every observer
valuation γ ∈ RY reachable in A is also reachable in A′ and, conversely, for every valuation
γ′ ∈ RY reachable in A′ and every ε > 0 there exists a valuation γ ∈ RY reachable in A
such that |γ(c)− γ′(c)| < ε for all c ∈ Y . Indeed, such an MPTA A′ is obtained by directly
applying the closure construction for timed automata in [22, Section 4] to MPTA. Then
the ability to compute the pareto curve of undominated reachable observer values of A′ to
arbitrary precision allows one to achieve the same end for A.

A direction for future work is to consider the feasibility of approximate pareto analysis
over infinite runs of MPTA. For double-priced timed automata, that is, MPTA with a single
cost and reward observer, it is known how to compute the optimal reward-to-cost ratio over
infinite computations using the corner-point abstraction [8]. For more general MPTA it is
natural to consider specifications that refer to multiple reward-to-cost ratios.

References
1 R. Alur and D. Dill. A theory of timed automata. TCS, 126(2):183–235, 1994. doi:

10.1016/0304-3975(94)90010-8.
2 R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata. In HSCC,

volume 2034 of LNCS, pages 49–62. Springer, 2001. doi:10.1007/3-540-45351-2_8.
3 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University

Press, 2006.
4 Devendra B., Krishna S., and Trivedi A. On nonlinear prices in timed automata. In Pro-

ceedings of the The First Workshop on Verification and Validation of Cyber-Physical Systems,
V2CPS@IFM, volume 232 of EPTCS, pages 65–78, 2016. doi:10.4204/EPTCS.232.9.

5 W. Banaszczyk, A. E. Litvak, A. Pajor, and S. J Szarek. The flatness theorem for nonsymmetric
convex bodies via the local theory of banach spaces. Mathematics of operations research,
24(3):728–750, 1999. doi:10.1287/MOOR.24.3.728.

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/3-540-45351-2_8
https://doi.org/10.4204/EPTCS.232.9
https://doi.org/10.1287/MOOR.24.3.728

A. Scoones, M. Shirmohammadi, and J. Worrell 18:13

6 G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J. Romijn, and F. W.
Vaandrager. Minimum-cost reachability for priced timed automata. In HSCC, volume 2034 of
LNCS, pages 147–161. Springer, 2001. doi:10.1007/3-540-45351-2_15.

7 P. Bouyer, E. Brinksma, and K. G. Larsen. Optimal infinite scheduling for multi-priced
timed automata. Formal Methods in System Design, 32(1):3–23, 2008. doi:10.1007/
S10703-007-0043-4.

8 P. Bouyer, K. G. Larsen, and N. Markey. Model checking one-clock priced timed automata.
Logical Methods in Computer Science, 4:1–28, 2008.

9 Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, and Nicolas Markey. Quantitative analysis
of real-time systems using priced timed automata. Commun. ACM, 54(9):78–87, 2011. doi:
10.1145/1995376.1995396.

10 T. Brihaye, V. Bruyère, and J.-F. Raskin. On model-checking timed automata with stopwatch
observers. Inf. Comput., 204(3):408–433, 2006. doi:10.1016/J.IC.2005.12.001.

11 I. Diakonikolas and M. Yannakakis. Small approximate pareto sets for biobjective shortest
paths and other problems. SIAM J. Comput., 39(4):1340–1371, 2009. doi:10.1137/080724514.

12 M Fränzle, M Shirmohammadi, M Swaminathan, and J Worrell. Costs and rewards in priced
timed automata. Inf. Comput., 282:104656, 2022. doi:10.1016/J.IC.2020.104656.

13 M. Fränzle and M. Swaminathan. Revisiting decidability and optimum reachability for multi-
priced timed automata. In The 7th International Conference on Formal Modelling and Analysis
of Timed Systems, pages 149–163. Springer Verlag, September 2009.

14 M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimiza-
tion, volume 2. Springer Science & Business Media, 2012.

15 Q. Guilmant and J. Ouaknine. Inapproximability in weighted timed games. In Proceedings of
CONCUR 24, volume 311 of LIPIcs, 2024.

16 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel. Nonlinear integer programming. Springer,
2010.

17 T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid
automata? J. Comput. Syst. Sci., 57(1):94–124, 1998. doi:10.1006/JCSS.1998.1581.

18 R. Kannan and L. Lovász. Covering minima and lattice-point-free convex bodies. Annals of
Mathematics, pages 577–602, 1988.

19 L. Khachiyan and L. Porkolab. Integer optimization on convex semialgebraic sets. Discrete &
Computational Geometry, 23:207–224, 2000. doi:10.1007/PL00009496.

20 K. G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson, and J. Romijn.
As cheap as possible: Efficient cost-optimal reachability for priced timed automata. In CAV,
volume 2102 of LNCS, pages 493–505. Springer, 2001. doi:10.1007/3-540-44585-4_47.

21 K. G. Larsen and J. I. Rasmussen. Optimal reachability for multi-priced timed automata.
TCS, 390(2-3):197–213, 2008. doi:10.1016/J.TCS.2007.09.021.

22 J. Ouaknine and J. Worrell. Revisiting digitization, robustness, and decidability for timed
automata. In 18th IEEE Symposium on Logic in Computer Science (LICS, Proceedings, pages
198–207. IEEE Computer Society, 2003. doi:10.1109/LICS.2003.1210059.

23 L. Pottier. Minimal solutions of linear diophantine systems: bounds and algorithms. In
International Conference on Rewriting Techniques and Applications, pages 162–173. Springer,
1991.

24 M. Schaefer and D. Stefankovic. Fixed points, nash equilibria, and the existential theory of
the reals. Theory Comput. Syst., 60(2):172–193, 2017. doi:10.1007/S00224-015-9662-0.

25 R. G. Tollund, N. S. Johansen, K. Ø. Nielsen, A. Torralba, and K. G. Larsen. Optimal
infinite temporal planning: Cyclic plans for priced timed automata. In Proceedings of the
Thirty-Fourth International Conference on Automated Planning and Scheduling, ICAPS, pages
588–596. AAAI Press, 2024. doi:10.1609/ICAPS.V34I1.31521.

26 Z. Zhang, B. Nielsen, K. G. Larsen, G. Nies, M. Stenger, and H. Hermanns. Pareto optimal
reachability analysis for simple priced timed automata. In ICFEM, volume 10610 of LNCS,
pages 481–495. Springer, 2017. doi:10.1007/978-3-319-68690-5_29.

CSL 2025

https://doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.1007/S10703-007-0043-4
https://doi.org/10.1007/S10703-007-0043-4
https://doi.org/10.1145/1995376.1995396
https://doi.org/10.1145/1995376.1995396
https://doi.org/10.1016/J.IC.2005.12.001
https://doi.org/10.1137/080724514
https://doi.org/10.1016/J.IC.2020.104656
https://doi.org/10.1006/JCSS.1998.1581
https://doi.org/10.1007/PL00009496
https://doi.org/10.1007/3-540-44585-4_47
https://doi.org/10.1016/J.TCS.2007.09.021
https://doi.org/10.1109/LICS.2003.1210059
https://doi.org/10.1007/S00224-015-9662-0
https://doi.org/10.1609/ICAPS.V34I1.31521
https://doi.org/10.1007/978-3-319-68690-5_29

Two-Way One-Counter Nets Revisited
Shaull Almagor # Ñ

Department of Computer Science, Technion, Haifa, Israel

Michaël Cadilhac #

DePaul University, Chicago, IL, USA

Asaf Yeshurun #

Department of Computer Science, Technion, Haifa, Israel

Abstract
One Counter Nets (OCNs) are finite-state automata equipped with a counter that cannot become
negative, but cannot be explicitly tested for zero. Their close connection to various other models
(e.g., PDAs, Vector Addition Systems, and Counter Automata) make them an attractive modeling
tool.

The two-way variant of OCNs (2-OCNs) was introduced in the 1980’s and shown to be more
expressive than OCNs, so much so that the emptiness problem is undecidable already in the
deterministic model (2-DOCNs).

In a first part, we study the emptiness problem of natural restrictions of 2-OCNs, under the light
of modern results about Vector Addition System with States (VASS). We show that emptiness is
decidable for 2-OCNs over bounded languages (i.e., languages contained in a∗

1a∗
2 · · · a∗

k), and decidable
and Ackermann-complete for sweeping 2-OCNs, where the head direction only changes at the
end-markers. Both decidability results revolve around reducing the problem to VASS reachability,
but they rely on strikingly different approaches. In a second part, we study the expressive power
of 2-OCNs, showing an array of connections between bounded languages, sweeping 2-OCNs, and
semilinear languages. Most noteworthy among these connections, is that the bounded languages
recognized by sweeping 2-OCNs are precisely those that are semilinear. Finally, we establish an
intricate pumping lemma for 2-DOCNs and use it to show that there are OCN languages that are
not 2-DOCN recognizable, improving on the known result that there are such 2-OCN languages.

2012 ACM Subject Classification Theory of computation → Automata extensions

Keywords and phrases Counter Net, Two way, Automata

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.19

Related Version Full Version: https://arxiv.org/abs/2410.22845

Funding Shaull Almagor : supported by the ISRAEL SCIENCE FOUNDATION (grant No. 989/22).

Acknowledgements We are grateful to Dmitry Chistikov for shedding light on some claims made
in [4] and to an anonymous reviewer for providing some key references.

1 Introduction

A One-Counter Net (OCN) is a finite state automaton equipped with a counter that cannot
decrease below zero, but cannot be explicitly tested for zero. It is a natural restriction of
several computational models: One-Counter Automata without zero tests, and Pushdown
Automata with a single letter stack alphabet. It can also be thought of as 1-dimensional
Vector Addition Systems with accepting States and an alphabet.

OCNs are an attractive model for studying the border of decidability, as several problems
for them lie close to the decidability frontier (e.g., both determinization and universality may
be decidable or undecidable, depending on the precise definition and context [16, 17, 2, 3, 1]).

© Shaull Almagor, Michaël Cadilhac, and Asaf Yeshurun;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 19; pp. 19:1–19:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shaull@technion.ac.il
https://shaull.cswp.cs.technion.ac.il/
https://orcid.org/0000-0001-9021-1175
mailto:michael@cadilhac.name
https://orcid.org/0000-0001-9828-9129
mailto:asafyeshurun@campus.technion.ac.il
https://doi.org/10.4230/LIPIcs.CSL.2025.19
https://arxiv.org/abs/2410.22845
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Two-Way One-Counter Nets Revisited

OCNs suffer from an unsettling asymmetry: the language L = {anbm | n ≥ m} is OCN-
recognizable (by counting +1 on a and −1 on b), whereas the language {anbm | n ≤ m} is not
OCN-recognizable. In particular, they are not closed under reversal (nor under intersection).
A natural way of making OCNs more robust is therefore to look at their two-way variant.

This approach was taken in [26, 7], where the model of two-way one-counter nets (2-
OCNs) is introduced and studies. A 2-OCN is a one counter net that receives its input on a
tape, surrounded by end-markers ⊢ and ⊣, and is allowed to move a read-only head back
and forth on the tape. As the following examples witness, the introduction of a two-way
tape significantly increases the expressive power of the model, as well as its deterministic
fragment (2-DOCN). For uniformity, we henceforth refer to one-way OCNs as 1-OCN.

▶ Example 1. Consider the language L1 = {anbn | n ∈ N}, which is easily shown not to
be 1-OCN-recognizable. L1 can be recognized by a 2-OCN (in fact 2-DOCN, see Fig. 1) by
using a “counter reset”: it starts with a forward scan verifying that the format is anbm while
counting +1 on a and −1 on b. Thus, upon reaching ⊣, the counter has value n−m (unless
n < m, in which case the run terminates due to the counter becoming negative, and the
word is not accepted), and in particular n ≥ m. It then moves backwards to ⊢, counting
−1 on a and +1 on b, thus resetting the counter back to 0. Next, it goes forward again to
⊣, then similarly computes m − n from right to left. Intuitively, this approach recognizes
{anbm | n ≥ m} ∩ {anbm | n ≤ m} and uses the closure of 2-DOCN under intersection [26].

check more a’s
than b’s

reset counter

goes right

check more b’s
than a’s

⊢, 0, +1

a, +1, +1

b, −1, +1

b, −1, +1

⊣, 0, −1 b, +1, −1
a, −1, −1

⊢, 0, +1

a/b, 0, +1
⊣, 0, −1

b, +1, −1
a, −1, −1

⊢, 0, +1

Figure 1 2-DOCN recognizing {anbn | n ∈ N} using counter-reset. A
transition σ, e, h means “read letter σ, change counter by e, and move
head by h”.

⊢ aaa#aa#aaa#a# ⊣
+3 0 -3

+60
-6 accept

an1 an2 an3 an4

Figure 2 An accept-
ing run of a 2-OCN for
L2. The dashed line sig-
nifies a nondeterministic
guess.

The next example demonstrates the fact [7] that 2-OCN are more expressive than 2-DOCN.
In addition, it demonstrates that sometimes it is (seemingly) necessary for the head to
“change direction” inside the tape, rather than at the end markers.

▶ Example 2. Let L2 be the language {an1# · · ·#ank # | k ∈ N ∧ (∃i > 1)[n1 = ni]}, i.e.,
words where the length of the first a-segment is matched in some later segment. This language
is not 1-OCN recognizable, and one may observe that a similar approach to Theorem 1 fails,
because we would need to guess the index i for which n1 = ni, but in order to reset the
counter, we must “forget” the guess. Thus, in order to recognize this with a 2-OCN, we must
compare n1 to ni via a single visit to the i-th segment.

To achieve this, the 2-OCN counts +1 on the first segment an1 , then scans forward
and guesses when the correct segment i is reached. It then counts −1 on ani . Thus, upon
reaching #, the counter holds n1 − ni (and so guarantees that n1 ≥ ni if it survives). Then,
a backward scan is performed from # counting +2 on a in ani , until # is reached, and then

S. Almagor, M. Cadilhac, and A. Yeshurun 19:3

continues left to ⊢ and finally counts −2 on the a’s in an1 . Thus, the counter ends with
value n1 − ni + 2ni − 2n1 = ni − n1. Again, if ni < n1 the run terminates, so the whole run
survives if n1 ≤ ni, which combined with n1 ≥ ni gives n1 = ni (see Fig. 2).

A 2-OCN that only changes its head direction at the end marks is called sweeping. Theorem 2
prompts studying the expressive power of sweeping 2-OCNs, which we take on in this work.

Related Work. Two-way automata have received much attention since their introduction
for finite automata in [30]. 2-PDAs were studied in [24, 14, 4, 27], focusing mainly on closure
properties and languages recognizable by 2-PDAs. As noted in [4], languages not expressible
by 2-PDA can be derived from the complexity results obtained in [14] (specifically, 2-PDA
languages are in linear space and polynomial time, and the time/space hierarchy theorems
offer languages outside of these classes). No automata-based, combinatorial techniques are
known to the authors to show that some languages is not expressible with a 2-PDA, and
most questions about 2-PDA, including whether the deterministic variant can recognize all
context-free languages, are open [13].

In the world of counter machines, [12] shows that DFAs with a “blind tape” (a form of a
nonnegative counter that cannot be 0-tested) are less expressive than 2-DPDAs. A significant
body of work by Ibarra et al. studies reversal bounded counters [19, 21, 18, 10, 20], i.e.,
counters that cannot increase and decrease unboundedly many times. The heavy reliance
on reversal-boundedness makes these works orthogonal to ours. Atig and Ganty [5] study
a VASS-CFG hybrid, and use also make use of reductions to VASS with 0-tests, but with
significant technical differences.

Closer to our setting are two-way one-counter automata (2-OCAs), that allow explicit zero
tests. In [29] certain languages computing squaring or exponentiation are shown not to be
2-DOCA recognizable (the deterministic variant), whereas [11] exhibit nonsemilinear 2-OCA
languages. Ibarra and Su [21] note that 1-sweep 2-DOCA have an undecidable emptiness
problem; in contrast, we show that this problem is decidable for sweeping 2-OCN. They
also note that, over bounded languages, emptiness of 2-DOCA is decidable provided that
the counter reaches zero only a constant number of times; in contrast, we show that this
emptiness over bounded languages is decidable for any 2-OCN.

A nearly identical model to 2-OCN has been introduced in [26] and further studied in [7].
In their model, the counter updates are ±1, which essentially amounts to encoding counters
in unary. In [26], the focus is on 2-DOCN recognizable languages. It is shown that this class is
closed under intersection, but not under complementation nor union. Further, over bounded
languages, 2-DOCN can be made sweeping1, and the Parikh images of their languages are
semilinear. An example is also given to show that 2-DOCN are less expressive than 2-OCN.

The algorithmic contribution in [7] is that the emptiness problem for 2-DOCN is undecid-
able. Additionally, it is shown that if a 2-OCN accepts a word of length n, then it accepts it
with a run of polynomial length in n. The latter result no longer holds for our model, due to
the binary encoding of the counters.

Contribution and Paper Organization. In this work we provide a modern view of 2-OCNs
and some of its interesting and decidable fragments, namely bounded-language 2-OCNs and
sweeping 2-OCNs. In Section 3.1 we give a counter-machine based proof of the undecidability
of 2-DOCN emptiness. In Section 3.2, we consider 2-OCNs whose languages are bounded, i.e.,

1 The proof in [26] is actually missing significant details, but those can be reconstructed.

CSL 2025

19:4 Two-Way One-Counter Nets Revisited

of the form L ⊆ a∗
1a∗

2 · · · a∗
k. We show that under this restriction, emptiness becomes decidable.

In Section 3.3, we consider sweeping 2-OCNs, i.e., 2-OCNs whose head-movement direction
only changes at the end-markers. We show that here too emptiness becomes decidable
and we give precise complexity bounds, using recent results regarding VASS reachability.
In Section 4, we investigate the relationship between semilinear languages and 2-OCN
languages. We show that for bounded languages, the set of lengths of words in the language
of a 2-OCN is semilinear, and derive explicit languages that are not 2-OCN-recognizable.
We also show that a bounded language is semilinear if and only if it is recognizable by a
sweeping 2-OCN. In Section 5, we show an elaborate pumping lemma for 2-DOCNs. Apart
from its independent usefulness for understanding 2-DOCNs, this enables us to demonstrate
a 1-OCN whose language is not 2-DOCN recognizable, establishing a new separation result.
We conclude in Section 6 with some open problems.

We encourage the reader to initially skip the proofs and garner a bird’s eye view of our
results. Thereafter, we note that Section 3.2 and Theorems 14, 15, and 17 have the most
interesting proofs. Detailed proofs appear in the appendix or in the full version.

2 Preliminaries

Two-Way OCN and Automata. For an alphabet set Σ, we denote Σ⊢⊣ = Σ ∪ {⊢,⊣}
where ⊢,⊣ are two symbols not appearing in Σ, called left end-marker and right end-marker,
respectively. A Two-Way One-Counter Net (2-OCN) is a tuple A = ⟨Q, Σ, ∆, qinit, qacc⟩
where Q is a finite set of states, Σ is a finite alphabet, ∆ ⊆ Q× Σ⊢⊣ × Z× {−1, +1} ×Q

is a finite set of transitions, qinit, qacc ∈ Q are the initial and accepting states, respectively.
Intuitively, a transition τ = (q, σ, e, h, q′) dictates that from state q, when reading letter σ, we
add e to the counter value, move the position of the head on the tape by h, and reach state q′.
We call e the effect and h the head shift of the transition. Unless explicitly stated otherwise,
we assume that the effect e is encoded in binary. We require that if (q,⊢, e, h, q′) ∈ ∆ then
h = 1 and if (q,⊣, e, h, q′) ∈ ∆ then h = −1. That is, upon reaching the end-markers, the
head cannot proceed beyond them.

We say that A is deterministic (denoted 2-DOCN) if for every q ∈ Q, σ ∈ Σ⊢,⊣ there is
at most one q′ ∈ Q and e, h such that (q, σ, e, h, q′). We say that A is one way (denoted
1-OCN) if every transition moves the head to the right (i.e., the head shift is 1).

A configuration of A is (q, c, p) ∈ Q×N×N representing the current state q, counter value
c, and head position p. Note that we do not consider configurations with negative counter
values, thus enforcing the semantics of Counter Nets. Consider a word w = σ1 · · ·σm ∈ Σ∗,
we augment it to ⊢ w ⊣ by setting σ0 =⊢ and σm+1 =⊣. A run of A on w is a finite sequence
of configurations ρ = (q1, c1, p1), (q2, c2, p2), . . . , (qn, cn, pn) such that 0 ≤ pi ≤ m + 1 for
all i, and for every 1 ≤ i < n we have (qi, σpi

, ci+1 − ci, pi+1 − pi, qi+1) ∈ ∆. That is,
each configuration follows from the previous one by the transition relation. A run is initial
if q1 = qinit and p1 = c1 = 0. A run is accepting if qn = qacc. We tacitly assume that
runs do not continue after the accepting state. The word w is accepted by A if A has an
initial and accepting run on it. We define L(A) = {w ∈ Σ∗ | A accepts w}. Note that,
just like OCNs, 2-OCNs are monotone, i.e., every word accepted from initial configuration
(q, c, p) is also accepted from (q, c′, p) for every c′ > c. We sometimes consider sequences of
pseudo-configurations where the counter value becomes negative. In such cases, we say that
the run is cut short by a counter violation, and we mean that the sequence of configurations
is a run up to a prefix in which the counter becomes negative.

S. Almagor, M. Cadilhac, and A. Yeshurun 19:5

Finally, we sometimes discuss classical Boolean automata (NFA, DFA, 2-NFA and 2-DFA).
For our purposes, they can be thought of as 2-OCN where all the counter updates are 0, and
are therefore omitted.

VASS and VASS with bounded 0-tests. A Vector Addition System with States (VASS)
is a tuple V = ⟨S, T ⟩ where S is a finite set of states and T ⊆ S × Zd × S is the transition
relation. A configuration of T is (s, v) where s ∈ S and v ∈ Nd (note that this is a vector
of nonnegative integers). We say that configuration (s2, y) is reachable from configuration
(s1, x) if there is a finite sequence of configurations (p1, v1), . . . , (pm, vm) such that (p1, v1) =
(s2, y), (pm, vm) = (s2, y) and for every 1 ≤ i < m we have (pi, vi+1 − vi, pi+1) ∈ T .
Intuitively, a VASS runs by repeatedly adding vectors to the configuration, as long as all the
counters (i.e., the entries of the vector) remain nonnegative. The reachability problem for
VASS asks whether (s2, y) is reachable from (s1, x) and is known to be decidable [9].

While VASS do not allow explicit 0-tests, it is possible to simulate a fixed number of
0-tests within the context of reachability [8, 9]. That is, we can extend the transition relation
so that T ⊆ S ×Zd × {= 0,≥ 0}d × S, and a transition can be taken only when the counters
that have = 0 tests are 0. As long as there is a constant B such that there are no more than
B 0-tests along every run of the VASS, then reachability remains decidable. The simplest
approach to achieve this is to increase the dimension by d · B, keeping B copies of every
counter, and whenever a counter needs to be tested for 0, a copy of it is “frozen” (i.e., never
changes again) and the reachability target has 0 on all frozen entries. Note that we can mark
which entries are frozen in the states of the VASS, since there are at most B of them. We
remark that more elaborate approaches can keep the number of added counters small [8, 9].
We call such machines VASS with bounded 0-tests.

3 The Emptiness and Membership Problems in 2-OCNs and Variants

3.1 Emptiness of 2-DOCNs is Undecidable
It is shown in [7] that already for 2-DOCNs, the emptiness problem, namely the problem
of deciding whether L(D) = ∅ for a given 2-DOCN D, is undecidable. This is shown by
a reduction from Hilbert’s 10th problem. More precisely, it is shown that 2-DOCN can
simulate multiplication, in a sense.

An arguably cleaner way of obtaining this result while staying in the world of counter
machines, is via reduction from the halting problem for Two-Counter Machines, as follows:

▶ Theorem 3 ([7]). The emptiness problem for 2-DOCN is undecidable.

Proof. We show the undecidability of 2-DOCN emptiness by reduction from the (complement
of the) halting problem for two-counter machines, which is known to be undecidable [25].

Given a two-counter machine M, we construct a 2-DOCA A which reads input words of
the form #(x∗y∗#)∗, representing the values of the counters x and y along the run of M,
with each step of the machine separated with #. Intuitively, A tracks the location of M in
its state, uses the counter values to determine the location after a jump, and at each steps
checks that the counter values between steps are consistent, similarly to Theorem 1. Then,
A accepts if at any point the computation reaches the location halt. If a counter violation
is encountered, A moves to a rejecting sink.

More precisely, A starts by checking (using a single right-to-left pass with a DFA) that
the word adheres to the format #(x∗y∗#)∗. It then resets the head to ⊢, records the location
l1 in its state, moves the head to the first # and begins the simulation. A simulates each step

CSL 2025

19:6 Two-Way One-Counter Nets Revisited

starting from the # preceding the segment xmyk representing the current counter values,
and along the simulation scans only the segment of the word of the form #xmyk#xm′

ym′#
starting at the current head location. Note that crucially, the format of the segment is fixed,
so that the head can end the simulation in the middle #, thus correctly viewing the counter
values of the next step.

If the command at the current location is goto li, then A checks that m = m′ and k = k′,
similarly to Theorem 1. Similarly, if the current command is inc(x) or dec(y), then A
checks that k′ = k + 1 and m = m′, or that k = k′ and m′ = m− 1, respectively, by a similar
comparison prefixed by a ±1 counter change.

If the current command is if x=0 goto li else goto lj , then A checks that k = k′ and
m = m′, and then checks whether k = 0 (by checking if there are any x’s after the first # in
the segment), and if so moves to li and otherwise to lj .

Finally, if A ever reaches the command halt, it accepts, and if any of the comparisons
fails, the counter goes below 0 and the word is rejected. If ⊣ is reached without reaching
halt, then A moves to a rejecting sink.

We then have that L(A) ̸= ∅ if and only if there exists a word representing the counter
values in a halting run of M, if and only if M halts. ◀

3.2 Emptiness of 2-OCNs over Bounded Languages is Decidable

Consider an alphabet Σ = {a1, . . . , ak}. A language L is bounded if L ⊆ a∗
1a∗

2 · · · a∗
k. In this

section, we show that the emptiness problem of 2-OCNs over bounded languages is decidable.

▶ Remark 4. Generally, a bounded language is a subset of x∗
1x∗

2 · · ·x∗
k where each xi ∈ Σ∗

(in particular, e.g., a∗b∗a∗ is also bounded). Our results readily extend to these languages,
but they add a cumbersome notational layer, which we opt to avoid.

▶ Theorem 5. The following problem is decidable: given a 2-OCN A is L(A)∩a∗
1a∗

2 · · · a∗
k = ∅?

We prove Theorem 5 in the remainder of this section. The proof is by reduction to the VASS
nonreachability problem, known to be Ackermann-complete [9].

Consider a 2-OCN A. We henceforth assume that membership in a∗
1a∗

2 · · · a∗
k is already

tested within A, i.e., that L(A) is a bounded language. We further assume that L(A) ⊆
a+

1 a+
2 · · · a

+
k , namely that every letter occurs at least once in every word in L (dubbed

properly-bounded). Indeed, for the purpose of emptiness we can split L(A) to a union over
all subsets Γ ⊆ Σ of properly-bounded languages over Γ.

We obtain from A a VASS with bounded 0-tests V such that L(A) ̸= ∅ iff (sinit, 0) reaches
(sfin, 0) for certain states sinit, sfin of V.

Construction of V – Intuitive Overview

We present the intuition behind V. The formal construction can be found in Appendix A.
V simulates the behavior of A in several components using several counters. We start by
describing the counters of V and their intuitive roles.

c – tracking the counter of A
c_freeze_1 – a copy of c, to be frozen at the beginning of a positive loop.
c_freeze_2 – a copy of c, to be frozen at the end of a positive loop.
L[1] . . . L[k] and R[1] . . . R[k] – pairs of counters marking the position of the head from
the Left and from the Right for each segment a∗

i .

S. Almagor, M. Cadilhac, and A. Yeshurun 19:7

The operation of V is as follows. The initialization component guesses a word an1
1 · · · a

nk

k by
guessing the numbers ni and storing them in the R[i] counters of V . This is done with self
loops that allow to arbitrarily increase each of the relevant counters.

Once initialization is complete, V moves to the simulation component. There, V aims
to simulate runs of A on the guessed word. Simulating the counter of A is straightforward,
using the counter c to match it. In addition, if at any point the accepting state of A is
reached, then V moves to the finalizing component (described below). In order to simulate
the head movement, we refer to each ani

i as a segment (treating ⊢ and ⊣ also as segments),
and we split the simulation to two types of moves:

A move within a segment simulates A reading ai and the head staying within the ai

segment. To do this, we set the two counters for the ai segment L[i], R[i] such that
L[i] keeps track of the head location within the segment ani

i and R[i] = ni−L[i] (using
the initialization counter). To simulate a move to the right we increase L[i] by 1 and
decrease R[i] by 1, and vice-versa for a move left. Note that since ni is constant after
initialization, the VASS semantics prevents the simulation from going over the segment
borders.
A move between segments occurs when V guesses that a border of the ai segment is
reached, and an adjacent segment should be moved to. If the move is to the right, then
R[i] should be 0, and we therefore perform a 0-test on it, and move to segment ai+1.
Note that from then on, the head movement counters are L[i+1] and R[i+1] (until ai is
reached again). This segment index is stored in the states of V.
Since we are only allowed a fixed number of 0-tests, we store in the states how many
moves from segment ai to ai+1 were performed. If this number exceeds |Q|+ 1, where
|Q| is the number of states of A, then the run cannot proceed (it reaches a sink). We
justify this in the proof.

An accepting run of A might require the counter to be “charged” by repeating a loop,
possibly involving moves between segments. Since we cannot simulate this with a bounded
number of 0-tests, we instead detect loops, as follows. While moving between segments, V
may guess that the current move leads to a repetition of the state and head position in the
run of V . Thus, V may nondeterministically record in its state the current state q of A (i.e.,
the state from which the move occurs), and also freezes a copy of the current counter of A
in c_freeze_1. Then, upon another move between the same two segments, V may check
whether the current state is again q. If so, V records the counter at the second move as well
in c_freeze_2, at which point the simulation moves to the 2-NFA Phase.

The 2-NFA Phase assumes (and later verifies) that during its run, A encountered a
positive loop, i.e., a path from configuration (q, c, p) to (q, c′, p) with c′ > c. In this case,
A can charge the counter to an arbitrarily large value. Then, the word is accepted if it is
accepted in the 2-NFA obtained from A by ignoring the counter, starting from (q, p). In this
phase we repeat the simulation phase above, ignoring the counter of A, but still limiting to
|Q| moves between each two segments, with the reasoning that more than |Q| moves imply a
cycle, and therefore if there is an accepting run, there is also a shorter one.

Finally, upon encountering the accepting state of A, we move to the finalizing component.
There, it remains to verify that if the 2-NFA phase was reached, then indeed a positive loop was
encountered. To do so, the two frozen counter values of the loop (c_freeze_1, c_freeze_2)
are decreased simultaneously, and at some point a nondeterministic transition decreases
only the (presumably higher) counter c_freeze_2 and moves to the state sfin. Then, all
the counters are allowed to be decreased, so that we can reach (sfin, 0). This ensures that
(sfin, 0) only if c_freeze_2 was indeed higher than c_freeze_1, witnessing that a positive
loop was encountered.

CSL 2025

19:8 Two-Way One-Counter Nets Revisited

3.3 Emptiness of Sweeping 2-OCNs is Decidable
In this section we consider the sweeping fragment of 2-OCNs. A run ρ of a 2-OCN is said to
be sweeping if the head shift of the transitions changes only at the end-markers (i.e., the run
“sweeps” forward from ⊢ to ⊣, and then sweeps backward to ⊢). A 2-OCN is sweeping if all
its runs are sweeping. We assume w.l.o.g. that a sweeping 2-OCN only accepts when reading
⊢ (otherwise we add states to complete a backward sweep and then accept). We show that
for sweeping 2-OCN, the emptiness problem is Ackermann-complete. The proof is split to
the upper bound (Theorem 6) and lower bound (Theorem 7).

▶ Theorem 6. The emptiness problem for sweeping 2-OCNs is decidable in Ackermannian
complexity.

Proof. We obtain the Ackermann upper bound of Theorem 6 by reducing nonemptiness
of Sweeping 2-OCN to VASS-reachability. Similarly to Theorem 5, our proof relies on the
observation that once a positive loop is encountered, we can replace the 2-OCN with a
Boolean automaton. The challenge here, however, is that the language is not bounded, and
therefore we cannot keep track of the head in a fixed number of segments. Instead, we use
the sweeping property to simulate all the sweeps of the 2-OCN within a single pass, in a
radically different approach than in the previous section.

Specifically, Consider a sweeping 2-OCN A = ⟨Q, Σ, ∆, qinit, qacc⟩. We obtain from A a
VASS with bounded 0-tests V such that L(A) ̸= ∅ iff (sinit, 0) reaches (sfin, 0) for certain
states sinit, sfin of V. Moreover, this can be done in single-exponential time, and the size of
V is single-exponential in that of A.

The formal construction appears in Appendix B. We present the intuition here.

Construction of V – Intuitive Overview. As an example, assume that A accepts a word
w ∈ Σ∗ using two forward sweeps and two backward sweeps, as depicted in Fig 3.

⊢ σ1σ2 · · · · · · σn ⊣
qinit, 0 q1, 7

q2, 3
q3, 9

qacc, 4

sinit,

0
0
0
0

 init.−−−→

qinit
q2
q2

qacc

 ,

0
3
3
4

 sim.−−−→

q1
q1
q3
q3

 ,

7
7
9
9

 fin.−−→

sfin,

0
0
0
0

Figure 3 Left: A run of a sweeping 2-OCN. The pairs represent the state and counter value at

the end of each sweep. Right: The corresponding successful run of V.

We can simulate the entire run of A on w using a VASS V by, intuitively, tracking all
the forward sweeps in parallel with all the backward sweeps, where for the backward sweeps
we simulate the reverse 2-OCN of A, denoted AR. The latter is a 2-OCN obtained from
reversing the transitions, as well as negating the counter effects and the head shifts in all
transitions. In order to make sure the sweeps concatenate correctly, we guess the states and
the counter values. Specifically, we proceed as follows. We start by guessing the state in
which each backward sweep ends. In this case, a successful guess is (qinit, q2, qacc) (note that
all guesses must start and end in the initial and accepting state). We then guess the counter
values with which each backward sweep ends. We store two copies of each guess, one used to
simulate the backward run, and the other to simulate the next forward run (except for the
last sweep). In our example, the successful guess is (0, 3, 3, 4) (where 0 is the initial counter
for the first forward sweep).

At each step, we now nondeterministically guess letters and corresponding transitions
from A for the forward sweep, and from AR for the backward sweep. After guessing the
correct word w and keeping track of the counters in all components, we would then reach the

S. Almagor, M. Cadilhac, and A. Yeshurun 19:9

counters (7, 7, 9, 9). Indeed, the forward run from 0 reaches counter 7, whereas the backward
run from 3 starts from counter 7, and hence AR would yield 7 along the reversal of the run.
In addition, we track the states of A and of AR along each run.

The last component of V verifies that the concatenation is correct, i.e., that each pair
of adjacent counters are equal, and that the reached states match. The latter is encoded
in the states, and the former is tested by decreasing both counters together, and checking
reachability of 0.

In order to generalize the example above, it is crucial that the number of sweeps be
uniformly bounded. To this end, we observe that if there are more than |Q| forward-backward
sweeps along a run, then a state is visited twice at ⊢, i.e., forms a loop. If this loop decreases
the counter, then there is a shorter run with higher counters, so we need not simulate
this former run. If this loop increases the counter, then by repeating it we can obtain an
arbitrarily high counter. We can then discard the counter and look for a short accepting run,
based on the 2-NFA obtained from A, similarly to Section 3.2. However, unlike Section 3.2,
we cannot simply simulate the 2-NFA, since we are committed to a single sweep on the
guessed word. In order to overcome this, we initially guess which state q will repeat in a
positive loop, and then simulate a DFA that is equivalent [31, 30, 32] to the 2-NFA above,
starting from state q. At the end of the run, we verify using the reachability query that the
loop is indeed positive. Combining these ideas yields a VASS with the conditions above. ◀

▶ Theorem 7. The emptiness problem for sweeping 2-OCN is Ackermann-hard.

Proof. We show a reduction from VASS reachability, known to be Ackermann-hard [23, 9],
to nonemptiness of sweeping 2-OCN. Specifically, we assume that the reachability query is
from (s1, 0) to (s2, 0), as this preserves the hardness.

Consider a VASS V = ⟨S, T ⟩ of dimension d and configurations (s1, 0) to (s2, 0). We
construct a sweeping 2-OCN A = ⟨Q, T, ∆, qinit, qacc⟩ where the alphabet is T , i.e., the
transitions of V . A works as follows: given a word w ∈ T ∗, first A sweeps forward and checks
that the states given by the transitions follow a run from s1 to s2 in V (ignoring the counter
values). If this fails, A rejects.

Next, A checks that the counter updates are valid and take the configuration from 0 to
0. This is done in two phases. In the first phase, A makes d forward sweeps, where sweep i

simulates the i-th counter of V in the transitions given by w, and each backward sweep resets
the counter to 0 by negating the effect of the transition. Thus, if the d sweeps complete
successfully, we are assured that w prescribes a run that reaches from (s1, 0) to (s2, v) for
some v ≥ 0. Then, A makes a forward sweep while keeping the counter at 0 and starts the
second phase, where we perform the same simulation but backwards: we check that the run
prescribed by wR (the reverse of w) leads from (s2, 0) to (s1, v′) for some v′ ≥ 0 (note that
here we negate the counter operations).

The main observation required to complete the proof is that a for a run ρ of V from
(s1, 0) to (s2, v) we have that ρR (with negated counters) is a valid run from (s2, 0) iff v = 0.
This follows immediately from the VASS semantics.

We conclude that L(A) ̸= ∅ iff (s2, 0) is reachable from (s1, 0) in V. ◀

3.4 The Membership Problem for 2-OCN is Polytime
Recall that by [7], if a 2-OCN A has counter updates in {−1, 0, 1}, we can compute in
polynomial time (in the description of A) a polynomial p such that if a word w is accepted,
then it is accepted with a run of length at most p(|w|). Unfortunately, this does not carry
through to our setting, where counters are encoded in binary, as the following example shows:

CSL 2025

19:10 Two-Way One-Counter Nets Revisited

a, +1, −1
⊢, +1, +1

a, 0, +1 b, −2k, +1

Figure 4 A 2-OCN Ak parameterized by k ∈ N. The word ⊢ ab ⊣ is accepted, but the shortest
accepting run is of length 2k + 1, since the counter “charges” for 2k steps reading only the ⊢ a prefix.

Nevertheless, we show that 2-OCN retain efficient membership even with binary counters:

▶ Theorem 8. The membership problem for 2-OCN (given a 2-OCN A and a word w, is
w ∈ L(A)?) is decidable in polynomial time.

Proof. Consider a 2-OCN A = ⟨Q, Σ, ∆, qinit, qacc⟩ and a word w ∈ Σ∗. We implicitly assume
that w already includes the end-markers. Similarly to the reasoning in Sections 3.2 and 3.3,
we observe that if an accepting run of A on w visits the same state/position pair (q, p) twice,
then if the counter effect between the visits is nonpositive, a shorter accepting run exists, and
if the counter effect is positive, then this cycle can be pumped arbitrarily, so that acceptance
is dependent only on the 2-NFA obtained by ignoring the counter effects starting from (q, p).
Since the number of state/position pairs is |w| · |Q|, it follows that within |w| · |Q|+ 1 steps
we visit a cycle. Similarly, in the 2-NFA if an accepting run exists, then there is also one of
length at most |w| · |Q|.

Deciding whether there exists an accepting run in the 2-NFA from (q, p) is straightforward:
we keep track of the reachable set of configurations (q′, p′) at each step of the run, up to
|w| · |Q| steps, and if qacc is reached then the run is accepting.

It remains to detect acceptance in the 2-OCN, or to detect a positive cycle. To do so, we
proceed as follows. We simulate A for |w| · |Q| steps, and for each step 1 ≤ i ≤ |w| · |Q| we
store a function fi : Q×{1, . . . , |w|} → N that stores for each configuration (q, p) the maximal
counter with which (q, p) can be reached after i steps. It is easy to compute fi from fi−1 in
polynomial time. Once this simulation is complete, if qacc does not appear, then we want to
look for a positive cycle. To this end, for each 1 ≤ j ≤ |w| · |Q| and configuration (q, p), we
again construct functions gj similarly to the above, with initial configuration fi(q, p). If at
any point we encounter (q, p) with a counter higher than fi(q, p), then we have a positive
cycle. Otherwise, the word is not accepted.

It is easy to verify that all the computations can be carried out in polynomial time. ◀

4 On the Semilinearity of 2-OCN Languages

Preliminaries. Emptiness decidability has been historically intimately tied to semilinearity.
A set E ⊆ Nd is semilinear if it is expressible in first-order logic with addition (there are
many equivalent definitions and we will not need a specific one). The Parikh image of a
language L over an alphabet {a1, . . . , ak} is the set of vectors (n1, . . . , nk) such that there is
a word in L with precisely ni letters ai (in any order), for all i. In other words, the Parikh
image counts the number |w|ℓ of times each letter ℓ appears in a word w ∈ L, resulting in a
set of vectors in N|Σ|. A class of languages is semilinear if for any language L in that class,
the Parikh image of L is semilinear. In that case, if there is an algorithmic way to obtain a
representation of that semilinear set from a representation of L, then one can check whether
L = ∅, since satisfiability is decidable for first-order logic with addition [6].

General 2-OCN. Since the emptiness problem is undecidable for 2-DOCN, it is an un-
surprising fact that there are nonsemilinear 2-DOCN languages (e.g., {(an#)n | n > 1}).
A tantalizing question surging from the study in Section 3.2 is: Are all 2-OCN bounded

S. Almagor, M. Cadilhac, and A. Yeshurun 19:11

languages semilinear? For 2-DOCN, it is proved in [26] that this is indeed the case. For
2-OCN, it is likely that a proof of this statement would provide an alternative proof to
Theorem 5. We conjecture that, indeed, 2-OCN are in good company with a wealth of
computational models whose bounded languages are precisely those with a semilinear Parikh
image. We come short of showing this, but prove, using the construction of Section 3.2 and
a result of [15], that:

▶ Theorem 9. For any 2-OCN A with L(A) ⊆ a∗
1a∗

2 · · · a∗
k and for any Γ ⊆ {a1, a2, . . . , ak},

the set
{∑

ℓ∈Γ |w|ℓ | w ∈ L(A)
}
⊆ N is effectively semilinear.

Proof. In [15, Corollary 4.3] the following is shown.2 Given a VASS V = ⟨S, T ⟩ of dimension
d and two states s1, s2, consider the set Rs1,s2 ⊆ Nd × Nd × NT such that (p, p′, t) ∈ Rs1,s2

iff (s2, p′) is reachable from (s1, p) via a run ρ that takes transition τ exactly t(τ) times.
Then the image of every morphism π : Rs1,s2 → N is effectively semilinear.

In our setting, take V to be the VASS obtained in Section 3.2 with the states sinit, sfin
and p = p′ = 0. Let π be the morphism that counts the number of transitions used to
initialize ni for all ai ∈ Γ, and recall that by the correctness of the construction of V , we have
that along a run from (sinit, 0) to (sfin, 0), the value of ni after the Initialization Component
corresponds to the length of the ai segment in an accepted word. Then, [15, Corollary 4.3]
readily shows that the set

{∑
ai∈Γ ni | an1

1 · · · a
nk

k ∈ L(A)
}

is effectively semilinear. ◀

The previous theorem implies that 2-OCN languages over a singleton alphabet are semilinear.
In addition, we have the following:

▶ Corollary 10. The languages {0n1n2 | n ≥ 1} and {0n12n | n ≥ 1}, known to be 2-DOCA
languages [29], are not 2-OCN languages.

Sweeping 2-OCN. We note that Theorem 9 also applies to sweeping 2-OCN without the
bounded language restriction, with a similar proof.

▶ Theorem 11. For any sweeping 2-OCN A over Σ and Γ ⊆ Σ,
{∑

ℓ∈Γ |w|ℓ | w ∈ L(A)
}

is
effectively semilinear.

However, unlike the case of bounded languages, here we can show that the Parikh image of
sweeping 2-OCN language are not always semilinear.

▶ Proposition 12. There are nonsemilinear languages recognized by sweeping 2-DOCN.

Proof. Consider the Dyck language over {a, b}, i.e., well-parenthesized expressions where a

corresponds to an opening parenthesis and b to a closing one. Write P for the prefixes of
that language. Clearly, P is a 1-DOCN language. Write P ′ for the language P where a and
b swap roles. We can construct a sweeping 2-DOCN that recognizes K = P ∩ a∗P ′ using the
closure of 2-DOCN under intersection [26] (which preserves the sweeping property). In any
word w in K, if n is the length of the first block of a’s, then 0 ≤ |w|a − |w|b ≤ n. Finally,
using a few more sweeps, we can express:

L = {cn#w | w ∈ K ∧ w ∈ an(b+a+)n−1bn}.

Indeed, this requires checking that the number of c’s is equal to the number of a’s in the
first block, the number of b’s in the last block, and the number of ab infixes.

Now, for a fixed value n, the longest word in L that can appear after cn# is (anbn)n, of
length 2n2, showing that this language is not semilinear. ◀

2 In [15] the result is phrased for Petri Nets, but the equivalence between Petri Nets and VASS gives a
straightforward translation. In [22], a slightly weaker result is presented in the language of VAS.

CSL 2025

19:12 Two-Way One-Counter Nets Revisited

We will show, in Section 5, that there is a 1-OCN language (thus a sweeping 2-OCN
language) this is not expressible using a 2-DOCN. Conversely, Theorem 12 provides an easy
way to show that:

▶ Corollary 13. There is a 2-DOCN language that is not expressible using a sweeping 2-OCN.

Proof. Consider the language L over the alphabet {a, b, c, #, b, x} defined as:

L = {an # bmxm # bmx2m # bmx3m # · · · # bmcnm | n, m > 0}

By applying the morphism h : Σ∗ → Σ∗ that erases b, #, and x, we have h(L) = {anbmcnm},
which can be seen as multiplication.

The language L is recognizable by a 2-DOCN A by repeatedly using a similar approach
to Theorem 1:

Check that the input has the form a∗#b∗(x∗#b∗)∗c∗,
Check that the number of a’s is the same as the number of #’s,
Check that the first sequence of b’s is as long as the sequence of b’s,
Check that the lengths of all sequences of b’s are equal, by checking that each neighboring
sequence #bix∗#bjx∗ satisfies i = j,
Check for each sequence xi#bmxj that i + m = j, and the same for the last segment
where x is replaced with c.

This 2-DOCN proceeds segment by segment, always making sure that the number of x’s
increases by exactly m. This, together with the initial test that the number of segments is n,
forces the number of c’s to be exactly nm.

However, the lengths of words in this language do not form a semilinear set, so by Theo-
rem 11 it cannot be recognized by a sweeping 2-OCN. ◀

Over bounded languages, the following exact characterization holds:

▶ Theorem 14. A bounded language is recognized by a sweeping 2-OCN iff it is semilinear.

Proof. The fact that any semilinear bounded language can be expressed with a sweeping
2-OCN is easily deduced from the fact that semilinear sets are those expressible with
quantifier-free first-order formulas with addition, order, and modulo. Putting such a formula
in DNF, we simply need to guess which conjunction is to hold, and the conjunction can be
checked by a sweeping 2-DOCN using the closure of 2-DOCN under intersection [26] (which
preserves the sweeping property).

We turn to the fact that bounded languages expressed by sweeping 2-OCN are semilinear.
We split the proof into two parts.

Constant number of sweeps. Let us first assume that the sweeping 2-OCN A executes a
constant number of sweeps, say C, with C odd, for each input word (we assume here that
the machine ends at the right end-marker). With L(A) ⊆ a∗

1 · · · a∗
k, consider the following

transformation that produces a word over the alphabet Γ = {ai,j | 1 ≤ i ≤ C ∧ 1 ≤ j ≤ k}:

w = an1
1 · · · a

nk

k ⇝ w′ = an1
1,1 · · · a

nk

1,k # ank

2,k · · · a
n1
2,1 # · · · # an1

C,1 · · · a
nk

C,k.

That is, the input is replicated C times, with every other copy reversed, and each copy on its
own alphabet. Let us call w′ the replica of w. Since A makes at most C sweeps, we can build
a 1-OCN B that reads the replica of any word w ∈ a∗

1 · · · a∗
k and accepts if and only if w is

accepted by the 2-OCN (and the input is of the format R = a∗
1,1 · · · a∗

1,k#a∗
2,k · · · a∗

2,1# · · ·
#a∗

C,1 · · · a∗
C,k). Naturally, B also accepts words that are not replicas.

S. Almagor, M. Cadilhac, and A. Yeshurun 19:13

We circumvent this problem by using an “external” semilinear set, as follows. Let E be
the Parikh image of the language where for all i, each a•,i appears the same number of times;
clearly, a word in R is a replica iff its Parikh image is in E. Since B is a 1-OCN language
(and in particular context-free), the Parikh image F of its language is semilinear by Parikh’s
Theorem [28]. It is then easy to check that E ∩ F is exactly the set of Parikh images of
replicas of words in L(A), showing that the Parikh image of L(A) itself is semilinear (as a
projection of the former).

Any number of sweeps. If A is sweeping but does not do a constant number of sweeps
for each input, we adapt the recurring idea of Sections 3.2 and 3.3. Let k be the number of
states of A. After 2k + 1 sweeps, a state is repeated at the left end-marker; if the counter
effect between the two repetitions is nonpositive, then that run is not useful for acceptance,
and can be disregarded. If the counter increases, then it can be increased arbitrarily, and the
behavior of the 2-OCN is the same as a 2-NFA N from that point on. Consider the 1-OCN
B constructed above, with C = 2k + 1. We can additionally have B guess the state that
repeats, if any, and check that it indeed repeats. Next, B assumes that the counter strictly
increases in the repetition, and branches into a DFA for N . In order to “kill” the runs of
B where this assumption is incorrect, any transition that B takes, in between the first and
second appearance of the repeated state, should be followed by input symbols indicating the
counter effect, increasing (+∗) or decreasing (-∗), and by how much. B then verifies that
the correct effect is matched to the transition of A it guesses. For instance, B may read
the following replica of aabbbc with extra counter information (here the original alphabet is
{a, b, c} and the replica alphabet has 1, . . . , 5 as indices):

a1a1b1b1b1c1#c2b2b2b2a2a2︸ ︷︷ ︸
B simulates two sweeps of A

#x
B guesses state repetition

a3++a3+b3-b3+b3-c3+#c4-b4+b4+b4-a4-a4-︸ ︷︷ ︸
counter updates appear in input
showing action of A’s transitions

#x
B checks state repetition

and assumes that counter increased

a5a5b5b5b5c5#︸ ︷︷ ︸
A DFA for N is ran

As mentioned, this modified version of B may jump into a DFA for N when it should not.
However, we can augment the external semilienar set E, checking that the input word is a
replica, to also check that the number of + is strictly greater than the number of -. This
corresponds to the counter updates between the state repetitions having a strict positive
impact, and that B correctly jumps into N ’s simulation. To conclude, let again F be the
(semilinear) Parikh image of the language of B. The vectors in E ∩ F correspond precisely
to the replicas (with possibly explicit counter updates) that are accepted by A, hence the
language of A is semilinear. ◀

5 2-DOCN vs 1-OCN: A Pumping Lemma for 2-DOCN

In [7] it is shown that the language {anbm | n ̸= m} is 2-OCN recognizable but not 2-DOCN
recognizable. We strengthen this result in two directions: first we present a general pumping
lemma that we can then use to establish that various languages are not 2-DOCN-recognizable.
Second, using our lemma we are able to find a language that is not 2-DOCN recognizable, but
is already 1-OCN recognizable. This shows that nondeterminism can be used to compensate
for two-wayness, in some settings.

▶ Lemma 15. Let Σ be an alphabet and a ∈ Σ. For every 2-DOCN-recognizable language
L ⊆ Σ∗ there exists K ∈ N such that for every x, y ∈ Σ∗, if xaKy /∈ L then there exists
K ′ ̸= K such that xaK′

y /∈ L as well.

CSL 2025

19:14 Two-Way One-Counter Nets Revisited

We give a rough sketch of the main ideas of the proof, see the full version for the complete
arguments and definitions. Consider a 2-DOCN A = ⟨Q, Σ, ∆, qinit, qacc⟩, and think of K as
some large constant. Our goal is to devise a way to pump certain infixes of a word xaKy,
so that we can reason about the resulting run of A on it. Naturally, the challenge lies in
synchronizing the behaviors of forward and backward head movements in the run.

We think of the aK infix as partitioned to three parts: two short a|Q| segments referred
to as outer left a’s and outer right a’s, and a long aK−2|Q| segment in the middle, called the
inner a’s. We depict the word xaKy as , with the grayed area representing the inner
a’s, and the vertical lines marking the end of x and the beginning of y.

We then consider the form of the run of A on xaKy. Specifically, we divide runs according
to whether they cross into the inner a’s. We show that runs that do reach the inner a’s,
must continue to the end of the tape (either from right or left). Runs that do not cross the
inner a’s must therefore get stuck in a small part of the tape. By depicting runs as going
from top to bottom upon head reversal, we have e.g., the type which depicts runs
going left, and depicts runs going right. The possible types of runs are then left loop
(), left sink (), left crossing () and their right counterparts. Each type
signifies a specific behavior of the runs, e.g., whether they repeat a state, or stop due to the
counter becoming negative.

We define a round trip to be a concatenation of runs of the form
, and show that either (1) A has a run on xaKy with many round-trips, or (2) it has

a run with a few round trips that gets stuck in a loop, or (3) its maximal run has few round
trips and ends with the counter becoming negative. We then provide pumping arguments
according to each type of run.

A crux of the proof lies in handling Form (3) above. The main idea is the following:
consider a run with several round-trips that ends due to a counter becoming negative. Since
the inner a’s are a long infix, we can find two indices that are visited with the same sequence
of states in the round trips. We can then attempt to “pump” or “cut” the infix between these
indices, but this may cause the counter to ultimately increase, thus yielding an accepting
run from a previously-rejecting one. We therefore carefully analyze the effect of the counter
between these two indices on each pass of the form or . If at any point the
cumulative sum of effects is negative, we can pump the run enough so that the counter
ultimately becomes negative, and the word is not accepted. Otherwise, all the cumulative
sums are non-negative, in which case we can cut the cycle, causing the counter to either
become negative or to complete the run in the same state as the original run, which is not
accepting. The precise details are involved and appear in the full version.

▶ Corollary 16. L = {aℓbmcn | ℓ > m ∨m > n} is 1-OCN but not 2-DOCN recognizable.

Proof. L is 1-OCN recognizable by guessing whether ℓ > m or m > n, and checking by either
increasing the counter on a and decreasing on b, or increasing on b and decreasing on c (with
another decrease at the end to make the inequality strict). Assume by way of contradiction
that L = L(D2) for a 2-DOCN D2. Let K be the constant provided by Theorem 15, then
aKbKcK /∈ L = L(D2). Then, Theorem 15 guarantees that there exists K ′ ≠ K such that
aKbK′

cK /∈ L(D2), but aKbK′
cK ∈ L, since either K > K ′ or K ′ > K, a contradiction. ◀

We remark that we can similarly show that L2 = {anbm | n ̸= m} is also not 2-DOCN
recognizable (but is recognizable by a sweeping 2-OCN), giving an alternative proof to the
result in [26].

S. Almagor, M. Cadilhac, and A. Yeshurun 19:15

6 Research Directions

Separations. The classes we consider, 1-OCN, 1-DOCN, 2-OCN, 2-DOCN, sweeping and
nonsweeping, over bounded languages or not, are all provably distinct, except for the following:
are all bounded 2-OCN languages expressible with a sweeping machine? We conjecture that
they are, and leave this question open (this is known for 2-DOCN from [7]).

Closure. The examples of languages outside 2-DOCN readily show that the class of languages
recognized by 2-DOCN is not closed under union nor complement, but is closed under
intersection (also shown in [26]). For 2-OCN, the class is closed under union, but we
conjecture that it is closed under neither intersection nor complement. We leave these
questions open, together with the same questions for sweeping 2-OCN.

Decidability. Beyond emptiness, our proofs imply that it is decidable whether the inter-
section of two (sweeping or bounded) 2-OCN is empty. The next natural question is then
the decidability of inclusion. We conjecture that this problem is decidable for sweeping and
bounded 2-OCN.

References
1 Shaull Almagor, Guy Avni, Henry Sinclair-Banks, and Asaf Yeshurun. Dimension-minimality

and primality of counter nets. In International Conference on Foundations of Software
Science and Computation Structures, volume 14575, pages 229–249. Springer, Springer, 2024.
doi:10.1007/978-3-031-57231-9_11.

2 Shaull Almagor, Udi Boker, Piotr Hofman, and Patrick Totzke. Parametrized universality
problems for one-counter nets. In 31st International Conference on Concurrency Theory
(CONCUR 2020). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/
LIPIcs.CONCUR.2020.47.

3 Shaull Almagor and Asaf Yeshurun. Determinization of one-counter nets. In 33rd International
Conference on Concurrency Theory (CONCUR 2022). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.CONCUR.2022.18.

4 Setsuo Arikawa. On some properties of length-growing functions on two-way pushdown
automata. Memoirs of the Faculty of Science, Kyushu University. Series A, Mathematics,
22(2):110–127, 1968.

5 Mohamed Faouzi Atig and Pierre Ganty. Approximating petri net reachability along context-
free traces. In IARCS Annual Conference on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS), pages 152–163. Dagstuhl, Germany: Leibniz-Zentrum
für Informatik, 2011. doi:10.4230/LIPIcs.FSTTCS.2011.152.

6 Leonard Berman. The complexity of logical theories. Theoretical Computer Science, 11(1):71–
77, 1980. doi:10.1016/0304-3975(80)90037-7.

7 Tat-hung Chan. On two-way weak counter machines. Mathematical systems theory, 20(1):31–41,
1987. doi:10.1007/BF01692057.

8 Wojciech Czerwiński, Sławomir Lasota, Ranko Lazić, Jérôme Leroux, and Filip Mazowiecki.
The reachability problem for petri nets is not elementary. Journal of the ACM (JACM),
68(1):1–28, 2020. doi:10.1145/3422822.

9 Wojciech Czerwiński and Łukasz Orlikowski. Reachability in vector addition systems is
ackermann-complete. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 1229–1240. IEEE, 2022. doi:10.1109/FOCS52979.2021.00120.

10 Zhe Dang, Oscar H Ibarra, and Zhi-Wei Sun. On two-way nondeterministic finite automata
with one reversal-bounded counter. Theoretical computer science, 330(1):59–79, 2005. doi:
10.1016/j.tcs.2004.09.010.

CSL 2025

https://doi.org/10.1007/978-3-031-57231-9_11
https://doi.org/10.4230/LIPIcs.CONCUR.2020.47
https://doi.org/10.4230/LIPIcs.CONCUR.2020.47
https://doi.org/10.4230/LIPIcs.CONCUR.2022.18
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.152
https://doi.org/10.1016/0304-3975(80)90037-7
https://doi.org/10.1007/BF01692057
https://doi.org/10.1145/3422822
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1016/j.tcs.2004.09.010
https://doi.org/10.1016/j.tcs.2004.09.010

19:16 Two-Way One-Counter Nets Revisited

11 Marzio De Biasi and Abuzer Yakaryılmaz. Unary languages recognized by two-way one-counter
automata. In International Conference on Implementation and Application of Automata, pages
148–161. Springer, 2014. doi:10.1007/978-3-319-08846-4_11.

12 Pavol Duris and Zvi Galil. Fooling a two way automation or one pushdown store is better
than one counter for two way machines. Theoretical Computer Science, 21(1):39–53, 1982.
doi:10.1016/0304-3975(82)90087-1.

13 Zvi Galil. Some open problems in the theory of computation as questions about two-way
deterministic pushdown automaton languages. Mathematical systems theory, 10(1):211–228,
1976. doi:10.1007/BF01683273.

14 James N Gray, Michael A Harrison, and Oscar H Ibarra. Two-way pushdown automata.
Information and Control, 11(1-2):30–70, 1967. doi:10.1016/S0019-9958(67)90369-5.

15 Dirk Hauschildt and Matthias Jantzen. Petri net algorithms in the theory of matrix grammars.
Acta Informatica, 31:719–728, 1994. doi:10.1007/BF01178731.

16 Piotr Hofman, Richard Mayr, and Patrick Totzke. Decidability of weak simulation on one-
counter nets. In 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science,
pages 203–212. IEEE, 2013. doi:10.1109/LICS.2013.26.

17 Piotr Hofman and Patrick Totzke. Trace inclusion for one-counter nets revisited. In Reacha-
bility Problems: 8th International Workshop, RP 2014, Oxford, UK, September 22-24, 2014.
Proceedings 8, pages 151–162. Springer, 2014. doi:10.1007/978-3-319-11439-2_12.

18 Oscar H Ibarra and Zhe Dang. On two-way fa with monotonic counters and quadratic
diophantine equations. Theoretical computer science, 312(2-3):359–378, 2004. doi:10.1016/j.
tcs.2003.10.027.

19 Oscar H Ibarra, Tao Jiang, Nicholas Tran, and Hui Wang. On the equivalence of two-way
pushdown automata and counter machines over bounded languages. In STACS 93: 10th Annual
Symposium on Theoretical Ascpects of Computer Science Würzburg, Germany, February 25–27,
1993 Proceedings 10, pages 354–364. Springer, 1993. doi:10.1007/3-540-56503-5_36.

20 Oscar H Ibarra, Tao Jiang, Nicholas Tran, and Hui Wang. New decidability results concerning
two-way counter machines. SIAM Journal on Computing, 24(1):123–137, 1995. doi:10.1137/
S0097539792240625.

21 Oscar H Ibarra and Jianwen Su. Counter machines: decision problems and applications. In
Jewels are Forever: Contributions on Theoretical Computer Science in Honor of Arto Salomaa,
pages 84–96. Springer, 1999.

22 Hans Kleine Büning, Theodor Lettmann, and Ernst W. Mayr. Projections of vector addition
system reachability sets are semilinear. Theoretical Computer Science, 64(3):343–350, 1989.
doi:10.1016/0304-3975(89)90055-8.

23 Jérôme Leroux. The reachability problem for petri nets is not primitive recursive. In 2021
IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 1241–1252.
IEEE, 2022. doi:10.1109/FOCS52979.2021.00121.

24 Daniel Martin and John Gwynn. Two results concerning the power of two-way deterministic
pushdown automata. In Proceedings of the ACM annual conference, pages 342–344, 1973.
doi:10.1145/800192.805729.

25 Marvin Lee Minsky. Computation. Prentice-Hall Englewood Cliffs, 1967.
26 Satoru Miyano. Two-way deterministic multi-weak-counter machines. Theoretical Computer

Science, 21(1):27–37, 1982. doi:10.1016/0304-3975(82)90086-X.
27 Burkhard Monien. Deterministic two-way one-head pushdown automata are very powerful.

Information processing letters, 18(5):239–242, 1984. doi:10.1016/0020-0190(84)90001-2.
28 Rohit J. Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966. doi:10.1145/

321356.321364.
29 Holger Petersen. Two-way one-counter automata accepting bounded languages. ACM SIGACT

News, 25(3):102–105, 1994. doi:10.1145/193820.193835.
30 Michael O Rabin and Dana Scott. Finite automata and their decision problems. IBM journal

of research and development, 3(2):114–125, 1959. doi:10.1147/rd.32.0114.

https://doi.org/10.1007/978-3-319-08846-4_11
https://doi.org/10.1016/0304-3975(82)90087-1
https://doi.org/10.1007/BF01683273
https://doi.org/10.1016/S0019-9958(67)90369-5
https://doi.org/10.1007/BF01178731
https://doi.org/10.1109/LICS.2013.26
https://doi.org/10.1007/978-3-319-11439-2_12
https://doi.org/10.1016/j.tcs.2003.10.027
https://doi.org/10.1016/j.tcs.2003.10.027
https://doi.org/10.1007/3-540-56503-5_36
https://doi.org/10.1137/S0097539792240625
https://doi.org/10.1137/S0097539792240625
https://doi.org/10.1016/0304-3975(89)90055-8
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1145/800192.805729
https://doi.org/10.1016/0304-3975(82)90086-X
https://doi.org/10.1016/0020-0190(84)90001-2
https://doi.org/10.1145/321356.321364
https://doi.org/10.1145/321356.321364
https://doi.org/10.1145/193820.193835
https://doi.org/10.1147/rd.32.0114

S. Almagor, M. Cadilhac, and A. Yeshurun 19:17

31 John C Shepherdson. The reduction of two-way automata to one-way automata. IBM Journal
of Research and Development, 3(2):198–200, 1959. doi:10.1147/rd.32.0198.

32 Moshe Y. Vardi. A note on the reduction of two-way automata to one-way automata.
Information Processing Letters, 30(5):261–264, 1989. doi:10.1016/0020-0190(89)90205-6.

A Detailed Construction of V in Section 3.2

We follow the intuition given in Section 3.2. Let A = ⟨Q, Σ, ∆, qinit, qacc⟩. Recall that
Σ = {a1, . . . , ak}. When constructing V we refer to vector entries as counters, and we specify
vector operations on individual counters, e.g., if c is a specific counter, then c← +1 refers
to the vector that is all 0 apart from +1 in the entry corresponding to c. Similarly, we can
combine several counter operations in a single vector (e.g., c1 ← +1, c2 ← −1).

We start by describing the counters of V and their intuitive roles.
c – tracking the counter of A
c_freeze_1 – a copy of c, to be frozen at the beginning of a positive loop.
c_freeze_2 – a copy of c, to be frozen at the end of a positive loop.
L[1] . . . L[k] and R[1] . . . R[k] – a pair of counters marking the position of the head
from the Left and from the Right of each segment.

We now describe the states and transitions of V by listing the information stored in each
state, and its intuitive meaning. We divide the states according to the components of V.

Initialization Component. This component consists of a single state sinit. The transitions
include a k self loops for i ∈ {1, . . . , k}, each with operation R[i]← +1. These transitions
allow V to “charge” the number of letters in each ai segment. Another transition (with
operation 0) leads to the simulation component with current state qinit and head position on
⊢ (i.e., current segment 0, see below).

Simulation Component. A state contains the following information:
cur_state ∈ Q – the current state of A.
cur_seg ∈ {0, . . . , k + 1} – the current segment, with 0 and k + 1 representing ⊢ and ⊣,
respectively.
num_moves : {(i, i + 1), (i + 1, i) | i ∈ {0, . . . , k}} → {0, . . . , |Q| + 1} – how many times
did we move from segment i to segment i + 1 (bounded by |Q|+ 1).
loop_seg_move ∈ {(i, i + 1), (i + 1, i) | i ∈ {0, . . . , k}} ∪ {⊥} – the border between
segments where we guess a loop occurs, or ⊥ if this is not guessed yet.
loop_state ∈ Q ∪ {⊥} – the state where we guess a loop occurs, or ⊥ if this is not
guessed yet.

The transitions within segments are induced by those of A: if cur_state = q and cur_seg = i,
then each transition (q, ai, e, h, q′) ∈ ∆ induces a transition to a state with cur_state = q′

and the counter operations c← +e, c_freeze_2← +e, L[i]← +h, R[i]← −h. Addition-
ally, if loop_seg_move = loop_state = ⊥ then c_freeze_1 behaves like c.

The transition between segments are similarly induced, but instead of updating L[i]
and R[i], if h = 1 then V guesses that we move to a state with cur_seg = i + 1. Then,
R[i] is 0-tested and num_moves(i, i + 1) is increased by 1, if possible (otherwise there is no
transition). The left moves (h = −1 are dual).

In addition, upon moving between segments, V may nondeterministically record the
current state and segments in loop_statea and loop_seg_move respectively. Note that
from then on, c_freeze_1 no longer changes. If those are already recorded then it may
check whether the current state and segments match the recorded ones, in which case we
move to the 2-NFA Component (which also freezes c_freeze_2).

CSL 2025

https://doi.org/10.1147/rd.32.0198
https://doi.org/10.1016/0020-0190(89)90205-6

19:18 Two-Way One-Counter Nets Revisited

If at any point we have cur_state = qacc, we move to the Finalizing Component.

2-NFA Component. A state contains the following information:
cur_state ∈ Q – the current state of A.
cur_seg ∈ {0, . . . , k + 1} – the current segment, with 0 and k + 1 representing ⊢ and ⊣,
respectively.
num_moves : {(i, i + 1), (i + 1, i) | i ∈ {0, . . . , k}} → {0, . . . , |Q| + 1} – how many times
did we move from segment i to segment i + 1 (bounded by |Q|+ 1).
loop_seg_move ∈ {(i, i + 1), (i + 1, i) | i ∈ {0, . . . , k}} ∪ {⊥} – the border between
segments where we guess a loop occurs, or ⊥ if this is not guessed yet.
loop_state ∈ Q ∪ {⊥} – the state where we guess a loop occurs, or ⊥ if this is not
guessed yet.

The transitions are similar to those of the Simulation Component, with the exception that
c, c_freeze_1, c_freeze_2 are no longer changed (i.e., the counter of A is no longer tracked).
Note that upon reaching the 2-NFA Component, the function num_moves is reset to 0 to
begin a fresh count.

Finalizing Component. This component consists of two states: scheck_loop and sfin.
scheck_loop has a self loop with operation c_freeze_1 ← −1, c_freeze_2 ← −1, and a
transition to sfin with operation c_freeze_2← −1. Lastly, sfin has a self loop allowing to
decrease each counter separately, except for c_freeze_1.

We prove the correctness of the construction in Appendix A.

▶ Lemma 17. L(A) ̸= ∅ iff (sfin, 0) is reachable from (sinit, 0) in V.

Proof. It is not hard to see that by construction, the states of the Simulation Component of
V correctly track the word guessed by V in the Initialization Component provided no more
than |Q| segment moves occur. Thus, in order to prove correctness, it is enough to prove that
if A accepts some word w, then it also accepts w with at most |Q| moves between segments
i and i + 1 for all i. Unfortunately, this is not always the case. However, note that if more
than |Q| moves between segments i and i + 1 occur, then there must be a state q that is
repeated in two of those moves. If the counter effect of this loop is nonpositive, then the loop
can be cut to obtain a “better” run (i.e., one whose counter values are not lower). Otherwise,
if the counter effect of the loop is positive, then it can be repeated to make the counter of A
arbitrarily high. Then, A accepts the word iff the 2-NFA obtained from A by discarding the
counter effects is accepted from the loop state q and the position of the head at the end of
segment i. Moreover, such an accepting run can be assumed not to loop, since otherwise a
shorter accepting run can be found. Thus, In the latter case, the 2-NFA component tracks
an accepting run, if one exists.

Finally, note that the finalization component can reach sfin with c_freeze_1 = 0 only if
c_freeze_1 < c_freeze_2, i.e., the loop taken was indeed strictly positive. ◀

B Proof of Theorem 6

We present the detailed construction of V from A, starting with the counters of V and their
intuitive roles.

f[1], . . . , f[|Q|+1] – the counter value before each forward sweep.
b[1], . . . , b[|Q|+1] – the counter value before each backward sweep.
f_loop_1 – the counter before the first forward sweep that starts with a loop state q.
f_loop_2 – the counter before the second forward sweep that starts with a loop state q.

We now turn to describe the states and transitions of V, split into three components.

S. Almagor, M. Cadilhac, and A. Yeshurun 19:19

Initialization Component. This component starts in state sinit and has other states con-
taining the following information:

qf[1], . . . , qf[|Q|+1] ∈ Q ∪ {⊥} – the state beginning each forward sweep, or ⊥ if the
sweep is not taken.
qb[1], . . . , qb[|Q|] ∈ Q∪{⊥} – the state ending each backward sweep, or ⊥ if the sweep
is not taken.
q_loop – a state that appears twice in the forward sweeps.

The transitions from sinit guess the components in the next state, with the following
restrictions:

if ⊥ appears at some entry, then all later entries are also ⊥ (i.e., once a certain sweep is
not taken, not further sweeps are taken).
the first forward state is forced to be qinit and if q_loop = ⊥ then the last forward state
that is not ⊥ is qacc.
qb[i] = qf[i+1] for all i ≤ |Q|, i.e., the backward sweep ends with the same state the
next forward sweep starts with.
The field q_loop is guessed in a consistent way, i.e., it must be the first state that appears
twice in the qf[i] states.

Each initialization state has self loops to charge the counters with the following operations: for
every i ∈ 1, . . . , |Q|, we have a loop with operations b[i]← +1, f[i+1]← +1, corresponding
to the fact that the counter with which the i-th backward sweep ends is the same as the counter
with which the i + 1-th forward sweep starts. In addition, if q_loop = qf[i] = qf[j] for
some i < j, then f_loop_1← +1 is applied together with f[i]← +1 and f_loop_2← +1
together with f[j]← +1. Thus enforcing the semantics mentioned above.

The initialization states can nondeterministically move to the Simulation Component.

Simulation Component. The initialization component keeps track of the forward and
backward runs of A, as well as acceptance in the DFA equivalent to A from the loop
state q_loop as follows. Each state in this component carries the same information as the
initialization component, but updates it using the transition function.

First, we obtain AR = ⟨Q, Σ, ∆R, qacc, qinit⟩ by defining ∆R = {(q′, σ,−e,−h, q) |
(q, σ, e, h, q′) ∈ ∆, σ ∈ Σ} (observe that we omit transitions on ⊢,⊣, this is explained
below). Thus, AR essentially reverses the runs of A. Furthermore, for each state q ∈ Q we
obtain from A a DFA Dq by discarding the counter effects of A, setting the initial state to q

and converting the resulting 2-NFA to a DFA [31, 30, 32] of single-exponential size.
The main behavior in this component is as follows. From state s of V, we guess a letter

σ ∈ Σ⊢,⊣ (the guesses of ⊢ and ⊣ have special status, see below). The transition then guesses,
for each state qf[i] in s, a transition on σ, and updates the corresponding f[i] counter
with the transition effect. Dually, for each [qb[i]] we guess a transition on σ in AR and
update b[i] accordingly. Finally, we update q_loop using the DFA Dq with the transition
on σ.

To treat the end-markers, we note that reading an end-marker is joint between the forward
and backward runs, and we therefore only want to simulate each end-marker in one of them,
and we choose the forward runs (which is why we omit these transitions from AR). We force
the first letter guessed to be ⊢, and we only update the forward elements (the qf[i] states
and f[i] counters). Upon guessing ⊣, we again only update the forward elements, and we
transition to the Finalizing Component.

CSL 2025

19:20 Two-Way One-Counter Nets Revisited

Finalizing Component. In order to verify that the sweeps are concatenated correctly, we
proceed as follows. In state scheck_sweeps we first check that qf[i] = qb[i], i.e., that the
forward and backward sweeps meet at the same state. We then have loops with operation
f[i]← −1, b[i]← −1 for all 1 ≤ i ≤ |Q|. Note that such transitions can be taken to reach
0 iff the counters are the same, implying that the forward and backward sweeps meet with
the same counter value.

The above checks that the forward and backward sweeps form a valid run of A on the
guessed word. If the last forward state is qacc, this ensures the word is accepted. It remains
to check acceptance in the case of a loop. To this end, if q_loop ̸= ⊥, we check that
the state reached in q_loop is an accepting state of Dq. However, we also need to check
that the loop taken is indeed positive. To achieve this we move to a state with operation
f_loop_1 ← −1, f_loop_2 ← −1, and then a final transition with only the operation
f_loop_2← −1 to sfin. Then, reaching 0 ensures that the loop was indeed positive, as the
counter increased between the first and second visits to the loop states.

The correctness of the construction follows from the observation that if w ∈ L(A), then
either w accepted within |Q| forward sweeps, or a positive loop is reached, and from this
loop there is a run to an accepting state. In this case, the loop can be arbitrarily pumped so
that the run to the accepting state can be taken in the corresponding DFA.

Finally, since the size of Dq is single-exponential in the size of A [31, 30, 32], the
construction is single-exponential. ◀

Boundedness of Cost Register Automata over the
Integer Min-Plus Semiring
Andrei Draghici #

Department of Computer Science, University of Oxford, UK

Radosław Piórkowski #

Department of Computer Science, University of Oxford, UK

Andrew Ryzhikov #

Department of Computer Science, University of Oxford, UK

Abstract
Cost register automata (CRAs) are deterministic automata with registers taking values from a
fixed semiring. A CRA computes a function from words to values from this semiring. CRAs are
tightly related to well-studied weighted automata. Given a CRA, the boundedness problem asks
if there exists a natural number N such that for every word, the value of the CRA on this word
does not exceed N . This problem is known to be undecidable for the class of linear CRAs over
the integer min-plus semiring (Z ∪ {+∞}, min, +), but very little is known about its subclasses. In
this paper, we study boundedness of copyless linear CRAs with resets over the integer min-plus
semiring. We show that it is decidable for such CRAs with at most two registers. More specifically,
we show that it is, respectively, NL-complete and in coNP if the numbers in the input are presented
in unary and binary. We also provide complexity results for two classes with an arbitrary number
of registers. Namely, we show that for CRAs that use the minimum operation only in the output
function, boundedness is PSPACE-complete if transferring values to other registers is allowed, and is
coNP-complete otherwise. Finally, for each fi in the hierarchy of fast-growing functions, we provide
a stateless CRA with i registers whose output exceeds N only on runs longer than fi(N). Our
construction yields a non-elementary lower bound already for four registers.

2012 ACM Subject Classification Theory of computation → Quantitative automata

Keywords and phrases cost register automata, boundedness, decidability

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.20

Funding All authors are supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (Grant agreement No. 852769, ARiAT).

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction

A cost register automaton (CRA), introduced by Alur et al. [3], is a deterministic finite
automaton over finite words equipped with a finite set of registers storing values from a fixed
semiring. When a CRA reads a word, the values of its registers are updated in a write-only
way using the semiring operations, and at the end it outputs a value from the semiring.
Thus, a CRA defines a function from finite words to elements of a semiring. CRAs can hence
be used to model quantitative behaviour of systems, and are tightly related to well-studied
weighted automata (WAs) introduced by Schützenberger in [36], see also surveys [18, 19].
In this context, a fundamental question is, given a CRA or WA, to decide if a certain property
of the function computed by it (or even just a property of the image of this function) holds.

In this paper, we study the boundedness problem, which, given a CRA, asks if there
exists a natural number N such that the output of the CRA on every input is smaller than N .
As discussed in more detail below, very little is known about decidability of this problem

© Andrei Draghici, Radosław Piórkowski, and Andrew Ryzhikov;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 20; pp. 20:1–20:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andrei.draghici@stcatz.ox.ac.uk
https://orcid.org/0009-0000-9308-1169
mailto:radoslaw.piorkowski@cs.ox.ac.uk
https://orcid.org/0000-0002-9643-182X
mailto:ryzhikov.andrew@gmail.com
https://orcid.org/0000-0002-2031-2488
https://doi.org/10.4230/LIPIcs.CSL.2025.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Boundedness of Cost Register Automata over the Integer Min-Plus Semiring

compared to other natural problems for WAs and CRAs. Our work thus addresses and
partially closes this gap, by studying it for restricted classes of CRAs. Below we provide an
overview of such classes, and put them in the context of known classes of WAs.

We concentrate on CRAs over the integer min-plus semiring (Z ∪ {+∞}, min, +). All
CRAs are thus assumed to be over this semiring unless stated otherwise. Such CRAs can
be seen as a variant of counter automata, specifically, as an extension of integer vector
addition systems with states [21, 8]. Reachability properties of the latter are characterised by
Presburger arithmetic, the first order theory of integer numbers with addition and order [21],
which has good algorithmic features. For CRAs over the integer min-plus semiring, the
situation changes significantly due to the presence of minimum operations in the updates.
This makes the computed functions highly nonlinear: for example, they can compute iterated
minimums. The results for integer vector addition systems thus cannot be directly used for
CRAs. On the positive side, for subclasses of CRAs with decidable properties, this opens a
possibility of finding new decidable extensions of Presburger arithmetic, by finding logical
characterisation of the functions computed by CRAs from such subclasses.

More generally, many fundamental properties of CRAs and WAs can be defined by simple
formulas in first-order logic, and can thus be considered as model checking CRAs against a
fixed formula. For example, boundedness can be expressed by the formula

∃N ∈ Z ∪ {+∞}. N < +∞∧ ∀v ∈ Z ∪ {+∞}. I(v)→ (v < N),

where I(v) is the predicate that holds true for v ∈ Z∪ {+∞} if and only if the CRA outputs
the value v on some word. Understanding the decidability landscape of natural properties
such as boundedness can thus be seen as a first step towards much more general model
checking algorithms for subclasses of CRAs and WAs.

Relations between CRAs and WAs

In general, CRAs are strictly more expressive than WAs [3]. However, WAs are equally
expressive to linear CRAs, which are CRAs where the updates of the registers are restricted
to affine transformations. Transforming a linear CRA into an equivalent WA and vice versa
can be done in polynomial time [3]. Hence, linear CRAs can be seen as a deterministic model
for inherently nondeterministic WAs. WAs, and thus CRAs, find their applications in the
areas of language and speech processing [34], verification [9], image processing [10], and the
analysis of on-line algorithms [5] and probabilistic systems [39]. Functions computable by
WAs are exactly those that can be defined in weighted monadic second order logic, a natural
extension of monadic second order logic [16, 17]. Functions computed by a subclass of CRAs
were also characterised in [31] by maximal partition logic, a logic with regular quantifiers that
allow to partition words into segments and then aggregate the values computed for them.

Ambiguity hierarchy of WAs

To make decision problems tractable for WAs, it is usually required to restrict their express-
iveness. The most well-studied way of doing that is by bounding the ambiguity, that is, the
number of accepting runs labelled by a word. A WA is called finitely (respectively, linearly,
polynomially or exponentially) ambiguous if there exists a constant (respectively, a linear,
polynomial or exponential) function f(n) such that for every word w the number of accepting
runs labelled by w is bounded by f(|w|). If f(n) = 1, a WA is called unambiguous. Most
classical decision problems, such as universality, inclusion and equivalence, are undecidable
already for linearly ambiguous WAs over the integer min-plus semiring [28, 1, 12]. For
finitely ambiguous WAs over this semiring, universality, inclusion and equivalence become
decidable [40, 23].

A. Draghici, R. Piórkowski, and A. Ryzhikov 20:3

For the boundedness problem, the situation is very different. A seminal paper [1]
establishes undecidability of several classical decision problems for linearly ambiguous WAs
over the integer min-plus semiring in a uniform fashion. However, it only proves boundedness
to be undecidable for general (that is, exponentially ambiguous) WAs, and provides no classes
with decidable boundedness. This indicates that boundedness is somehow different to other
mentioned decision problems.

We remark that boundedness is PSPACE-complete for WAs over the natural min-plus
semiring (N ∪ {+∞}, min, +) [1, 22, 29, 37], which requires completely different techniques
than the integer case. We also remark that it is decidable for copyless linear CRAs over
the semiring of positive rational numbers with usual addition and multiplication, and is
undecidable for general WAs over the same semiring [11]. Transferring any such results to
the min-plus semiring is unlikely, since these semirings has very different properties.

Restricted classes of CRAs

One useful feature of CRAs is that, by adding syntactic restrictions on them, it is possible to
introduce subclasses whose expressiveness is incomparable to known classes of WAs. This
allows to obtain a finer decidability landscape compared to the case where only the formalism
of WAs is used.

One notable example of that is the class of so called copyless linear CRAs. Informally,
a CRA is called copyless if for every transition, the value of each of its registers can only
be used once in the updates. Copyless linear CRAs are strictly less expressive than linearly
ambiguous WAs, and their expressivity is incomparable to unambiguous WAs [2]. A further
restriction of copyless linear CRAs to the case where the minimum operation is only allowed
in the output function makes them equally expressive to finitely sequential WAs, which are
unions of WAs whose underlying NFAs are deterministic [4, 13].

Restricting the number of registers in a class of CRAs also usually provides a subclass
whose expressivity is incomparable to that of known classes of WAs. For example, there exists
a copyless (but not linear) CRA with only 3 registers that computes a function not computed
by any polynomially ambiguous WA [32]. For copyless linear CRAs restricted to only three
registers universality is undecidable [15]. Moreover, there exist copyless linear CRAs with
only two registers that are not equivalent to any unambiguous WA [2], see Example 6 on
page 6 for one such CRA. All these results indicate that CRAs with few registers are quite
expressive. Results on finding a CRA with the minimum number of registers computing a
given function are presented in [13, 14, 25, 26].

More generally, for many problems the case of automata with two counters or registers often
turns out to be already difficult enough. For example, most decision problems are undecidable
for two-counter automata [33]. For vector addition systems with states, decidability of the
reachability problem in the two-counter case was established in a seminal paper [24] several
years before the proof that it is decidable for arbitrary number of counters was found [30],
and it took over 20 more years to establish the precise computational complexity of the
two-counter case [7].

Our contributions

The main technical contribution of the paper, Theorem 17, states that boundedness is
decidable for copyless linear CRAs with resets with at most two registers. Namely, we show
that it is NL-complete if the numbers in the updates are presented in unary, and is in coNP is
they are presented in binary. Functions computed by CRAs, even when they have only two

CSL 2025

20:4 Boundedness of Cost Register Automata over the Integer Min-Plus Semiring

registers, are highly nonlinear and complex, mainly due to the presence of nested minimum
operations. We illustrate this by providing in Section 6 a series of CRAs with very long
shortest runs outputting a given value. To show that the two-register case is decidable, we
identify several possible shapes of small witnesses of unboundedness (Section 4.2). The main
challenge is then showing that if a CRA is unbounded, it contains one of these witnesses,
which we do by carefully analysing the growth of the output value for a run providing a
large enough value, and showing how to rearrange the cycles of this run to obtain a witness
(Section 4.3). This requires in particular some geometrical arguments on the cones generated
by the weight vectors of the cycles.

Our second contribution is establishing the complexity of boundedness for copyless linear
CRAs with resets where the number of registers is arbitrary, but the minimum operation
only occurs in the output function. As mentioned above, such CRAs compute the same class
of functions as finitely sequential WAs. We show that boundedness is PSPACE-complete if
registers are allowed to transfer values to other registers (Theorem 33), and is coNP-complete
otherwise (Theorem 32). For upper bounds on the complexity, our techniques again rely on
the combinatorial and geometrical analysis of cycles.

2 Main definitions

Symbols N and Z stand for natural and integer numbers respectively. Let N+ := N \ {0}. We
assume that the reader is familiar with the basic concepts in the area of formal languages
and automata, see e.g. [38]. The Kleene star is denoted as (·)∗. In regular expressions, we
write ∪ for the sum and ε for the empty string. The language of a nondeterministic finite
automaton (NFA) A is denoted as L(A). When speaking of underlying digraphs of NFAs, we
use standard terms like simple cycle, reachability and backwards-reachability. We emphasise
that by a simple cycle we mean a cycle that does not visit the same vertex more than once,
except for its first and last vertex. General cycles do not have this restriction.

In this paper, we focus on CRAs over the integer min-plus semiring (Z ∪ {+∞}, min, +).
Hence, in what follows, we fix K := (Z∪ {+∞}, min, +). For the proofs we present, the main
focus lies on the operations on registers performed by CRAs, so we look at them in depth in
Section 2.1. Then, in Section 2.2, we define CRAs and the boundedness problem.

2.1 Expressions, valuations and substitutions
Fix a finite set of variables X. By Expr(X) we denote the set of expressions constructed
using operations min{· , ·} and +, variables from X and constants from K. Expressions can
be seen as polynomials over K. Due to associativity, we allow arbitrary arity of the semiring
operations in the expression notation. For an expression e ∈ Expr(∅) ⊆ Expr(X) without
variables, we denote by eval(e) ∈ K its value.

A substitution over X is a function ν : X → Expr(X). We denote the set of all sub-
stitutions over X by Sub(X). When defining substitutions, we often treat them as sets
of “argument ← value” pairs. When X is clear from the context, we implicitly extend
partial substitutions with the identity mapping for the omitted arguments. For example,
if X ′ = {x1, x2} ⊊ X, then ν = {x1 ← e1, x2 ← e2} denotes a substitution satisfying
ν(xi) = ei for xi ∈ X ′ and ν(x) = x for x ∈ X \X ′. A valuation over X is a substitution
µ : X → K. We denote by Val(X) ⊂ Sub(X) the set of all valuations over X. We write
0 ∈ Val(X) for the valuation with 0(x) = 0 for every x ∈ X. We assume that there is a
fixed order on the set of registers, and thus in particular consider valuations equivalently as
vectors.

A. Draghici, R. Piórkowski, and A. Ryzhikov 20:5

▶ Example 1 (An expression, a substitution and a valuation). Fix X := {x, y, z}.

e := min{10, x + 5, y + z} ∈ Expr(X) (an expression)
ν := {x← 2 + min{x, y}, y ← 3} ∈ Sub(X) (a substitution)
µ := {x← 2, y ← 5, z ← 10} ∈ Val(X) (a valuation)

Substitutions can be applied to expressions: given e ∈ Expr(X) and ν ∈ Sub(X), by e[ν]
we denote the result of simultaneously replacing each occurrence of x with ν(x) for every
x ∈ X. Substitutions can be composed: for ν, ν′ ∈ Sub(X), we define the composition
(ν; ν′) ∈ Sub(X) as (ν; ν′)(x) = ν′(x)[ν]. Applying a valuation µ to an expression e yields
an expression without variables – thus, with a defined value from K. We hence define
evalµ(e) := eval(e[µ]). For a valuation µ and a substitution ν, we let evalµ(ν) := eval(µ; ν).

▶ Example 2 (Application and composition of substitutions). Continuing Example 1, we have

e[ν] = min{10, (2 + min{x, y}) + 5, (3) + (z)} ∈ Expr(X) (e with ν applied to it)
e[µ] = min{10, (2) + 5, (5) + (10)} ∈ Expr(∅) (e with µ applied to it)

evalµ(e) = eval(e[µ]) = 7 ∈ K (the value of e[µ])

For e, e′ ∈ Expr(X), we write e ≡ e′ if evalµ(e) = evalµ(e′) for every µ ∈ Val(X).
Additionally, for ν, ν′ ∈ Sub(X), we write ν ≡ ν′ whenever ν(x) ≡ ν′(x) for every x ∈ X.
For an expression e, by maxc(e) we denote the maximal absolute value of constants different
to +∞ appearing in e, and 0 if there are none. We extend maxc naturally to substitutions.

Copyless linear substitution with resets

In this paper, our main focus is on a special family of substitutions which are copyless and
linear with resets. An expression e is in a canonical linear form if

e = min{x1 + c1, x2 + c2, . . . , xk + ck}

for some pairwise-different x1, . . . , xk ∈ X, c1, . . . , ck ∈ K, and k ∈ N. Any expression e′ such
that e′ ≡ e for an expression e in a canonical linear form is called linear. A substitution ν is
linear with resets if for every x ∈ X, ν(x) is either linear or 0 (a reset). A linear substitution
with resets is in a canonical form if all its linear expressions are in a canonical linear form.
We remark that the only reason why we use linear substitutions with resets instead of
affine substitutions (that is, substitutions whose expressions are sums of linear and constant
expressions) is to simplify the presentation of our techniques. Clearly, by adding more
registers one can transform an affine CRA into a linear CRA with resets.

A substitution ν is copyless if for all pairs x, x′ ∈ X such that x ̸= x′ the expressions ν(x)
and ν(x′) feature disjoint sets of variables. By Exprlin(X) and Subclr(X) we denote the sets
of linear expressions and copyless linear substitutions with resets, respectively.

▶ Example 3 (Copyless linear substitutions with resets). Consider the substitutions ν and ν′:

ν :=

x← y + 5
y ← min{x, z − 2}
z ← 5− 5

≡

x← min{y + 5}
y ← min{x + 0, z + (−2)}
z ← 0

, ν′ :=
{

x← min{x}
y ← min{x, y}

We have that ν ∈ Subclr({x, y, z}) because it is equivalent to a linear substitution with resets
in a canonical form, and variables x, y, z occur at most once in its expressions. In contrast, ν′

is linear, but not copyless, because x occurs in both ν′(x) and ν′(y).

CSL 2025

20:6 Boundedness of Cost Register Automata over the Integer Min-Plus Semiring

p

min{x, y}

q

0

a,

{
x← x + 1
y ← y

#,

{
x← 0
y ← min{x, y}

a,

{
x← x + 1
y ← y

#,

{
x← 0
y ← min{x, y}

Figure 1 An example of a CRA over the semiring K.

2.2 Cost register automata
▶ Definition 4 (CRA). A copyless linear CRA with resets over K is a tuple

C = (X, Q, Σ, δ, qini, out)

consisting of a finite set X of registers, a finite alphabet Σ, a finite set Q of control states,
an initial state qini ∈ Q, and two functions:

a transition rule function δ : Q× Σ→ Q× Subclr(X),
an output function out : Q→ Exprlin(X).

We also make the following assumptions that clearly preserve the property of being bounded
or unbounded. We assume that all substitutions and expressions in C are in a canonical
form. Furthermore, we assume that +∞ never occurs as a constant in a substitution, since
every such transition can be replaced with a transition leading to a new state, a self-loop
incrementing the value of the corresponding register in this new state, and then a transition
back.

In this paper, we consider only copyless linear CRAs with resets, hence for the rest of the
paper we simply call them CRAs.

▶ Definition 5 (Semantics of a CRA). A CRA C = (X, Q, Σ, δ, qini, out) naturally induces a
(possibly infinite) deterministic labelled transition system JCK := (ConfC , Σ, ∆C , cini), where
ConfC := Q×Val(X) is the set of configurations, cini := (qini, 0) is the initial configuration
and ∆C : ConfC×Σ→ ConfC is a transition function defined as ∆C((q, µ), σ) := (q′, evalµ(ν)),
where (q′, ν) = δ(q, σ). We extend ∆C to words as usually: for a configuration t, a letter
σ ∈ Σ and a word w ∈ Σ∗, ∆C(t, σw) := ∆C(∆(t, σ), w) and ∆C(t, ε) := t. We further define
the function C : Σ∗ → K calculated by C as C(w) = evalµ(out(q)), where (q, µ) = ∆(cini, w).
Note that since we are only interested in the boundedness problem, the assumption that the
initial value of each register is zero does not restrict the expressiveness of CRAs.

▶ Example 6. In Figure 1, we give an example of a CRA over the semiring K and alphabet
Σ = {a, #}. It has two states p and q, where p is the initial state, and two registers x and y.
The output function for state p (words ending with a and the empty word) is min{x, y} and
for state q (words ending with #) is 0. Both registers are initialised with value 0. If the
input word ends with # or is empty, this CRA outputs 0. Call a sequence of consecutive a’s
a block. A block is maximal if it is not contained in a longer block. If the input word ends
with a, the CRA outputs the length of the shortest maximal block. Register x stores the
number of a’s read in the current block, and y stores the minimum length of maximal blocks
read so far. This CRA is a copyless linear CRA with resets.

We say that a CRA C is bounded if there is N ∈ N such that C(w) < N for all w ∈ Σ∗.
We are now ready to state the main decision problem we are interested in.

▶ Problem 7 (CRA boundedness).
Input CRA C.

Question Is C bounded?

A. Draghici, R. Piórkowski, and A. Ryzhikov 20:7

3 Regular substitution languages

3.1 Substitution languages associated to CRAs
In the boundedness problem, the input alphabet of a CRA is redundant, since the formulation
is existentially quantified for the word and the underlying finite automaton is deterministic.
For this reason, in this paper we focus on sequences of substitutions that a CRA can perform.

A language of substitutions is an arbitrary subset of Subclr(X)∗. Every word w ∈ Σ∗
read by a CRA C induces a sequence of substitutions that C performs when reading w. Fix
a CRA C = (X, Σ, Q, qini, δ, out). We define the language of substitutions Lx(C) induced by
it. Observe that the set of substitutions that occur in the transitions and output expressions
of C is finite. We denote it by ΓC,x. The regular language Lx(C) is then formally defined as
the language of the following automaton NFAx(C). To simplify the presentation, we assume
that the last substitution in the sequence corresponding to a word saves the output into a
designated output register x ∈ X.

▶ Definition 8 (NFAx(C)). Given a CRA C = (X, Q, Σ, δ, qini, out), define a nondeterministic
finite automaton NFAx(C) := (Q′, ΓC,x, δ′, qini, {qfin}) where Q′ := Q∪{qfin} and the transition
relation δ′ ⊆ Q′ × Γx,A ×Q′ contains transitions:

(q, ν, q′) ∈ δ′ for every q, q′ ∈ Q, and ν, σ such that δ(q, σ) = (q′, ν),
(q, {x← out(q)}, qfin) ∈ δ′ for every q ∈ Q.

Fix an NFA A = (Q, S, δ, qini, Qfin) and a set of registers X = {x1, . . . , xd} for the rest of
this subsection. An alternating sequence π = q0

ν1−→ q1
ν2−→ q2 → · · · → qn−1

νn−→ qn of states
from Q and letters from S is called a run in A labelled by the word w = ν1ν2 · · · νn. We write
q0

π,w−−→→ qn to denote the fact that π is a run labelled by w that begins in q0 and ends in qn.
For such a run and µ ∈ Val(X), we define evalµ(π) := evalµ(w). We identify words with
compositions of the corresponding sequences of substitutions. The set of runs of A is denoted
by Runs(A). A run π is accepting if qini

π−→→ qfin. An NFA A accepts w ∈ S∗ whenever there
exists an accepting run of A labelled by w. The language of A, denoted L(A), is the set of
words accepted by A.

To be able to refer to segments of runs, we combine the notation for single transitions
p

ν−→ q and runs q
π,w−−→→ r. For example, we may consider a run π = p

ν−→ q
π′,w−−−→→ r labelled

by a word ν · w. When the labelling is not important, we write q
π−→→ r.

There is an obvious correspondence between runs in JCK and in NFAx(C). In particular,
for k ∈ K, there exists w ∈ Σ∗ such that C(w) = k if, and only if, there exists u ∈ L(A)
such that eval0(u)(x) = k. This allows us to restate the boundedness problems in terms
of languages of substitutions. We say that a regular language L ⊆ Subclr(X)∗ has bounded
output in x ∈ X if there exists N ∈ N such that for every w ∈ L we have eval0(s)(x) < N .

▶ Problem 9 (Boundedness of regular d-register substitution languages).
Input NFA A over a finite set S ⊂ Subclr(X), |X| = d, output register x ∈ X.

Question Does L(A) have bounded output in x?

Note that boundedness for CRAs (Problem 7) easily reduces to this problem in determ-
inistic logarithmic space. Indeed, it suffices to compute NFA(A) for a given CRA with
Definition 8. This reformulation allows us to use a rich framework of regular languages,
which streamlines the proofs presented in later sections.

CSL 2025

20:8 Boundedness of Cost Register Automata over the Integer Min-Plus Semiring

▶ Definition 10 (Elementary substitutions). We say that a substitution ν ∈ Subclr(X) is
elementary if it has one of the following forms for some x, y ∈ X, c ∈ K:

{x← x + c} (additive sub.) {x← y, y ← x} (transposition)
{x← min{x, y}, y ← 0} (minimum sub.) {x← 0} (reset sub.)

Let Subelem(X) ⊆ Subclr(X) be the set of elementary substitutions, and let TX ∪ RX ∪
AX ∪MX be its partition into sets of transpositions, and reset, additive, and minimum
substitutions.

▶ Lemma 11. For every ν ∈ Subclr(X) in a canonical form, there exists a word of substitu-
tions u ∈ Subelem(X)∗ of length O(d2) such that u ≡ ν.

Note that the statement of the above lemma is not true in the general setting of Sub(X),
as its proof relies on copylessness. Note also that Lemma 11 implies the existence of a
homomorphism to-elem : Subclr(X)∗ → Subelem(X)∗ such that ν ≡ to-elem(ν) for every
ν ∈ Subclr(X). For a finite set S ⊂ Sub(X), we define maxc(S) := max{maxc(ν) | ν ∈ S}.
The following two claims are not difficult to prove.

▷ Claim 12 (Maximal constant grows linearly w.r.t. length). Fix a finite S ⊂ Subelem(X). For
every w ∈ S∗, we have maxc(w) ≤ |w| ·maxc(S).

▷ Claim 13 (Elementary substitutions assumption). We may assume w.l.o.g. that the alphabet
S of A consists only of elementary substitutions, i.e., S ⊂ Subelem(X).

3.2 The structure of witnesses with additive and reset substitutions only
In this subsection, we show how to simplify and decompose runs that do not contain any
minimum substitutions or transpositions. We then use these results in the complexity upper
bounds and to analyse runs with a more complex structure.

For the rest of this subsection, fix a set of registers X = {x1, . . . , xd}, an output register
x ∈ X, and an NFA A over a finite alphabet S ⊂ AX ∪ RX ⊂ Subelem(X) of elementary
additive and reset substitutions. Similarly to Claim 13, this covers a more general case
where the alphabet of A consists of substitutions adding integer values to some registers and
resetting other registers.

Let w ∈ A∗X be such that w ≡ {x1 ← x1 + c1, . . . , xd ← xd + cd} for some c1, . . . , cd ∈ K.
We define eff (w) := (c1, . . . , cd) ∈ KX , and we call it the effect of w. The integer conic hull
ConeN(V) of a set of vectors V is the set of linear combinations of vectors from V with
nonnegative integer coefficients. The following theorem is a direct consequence of a classical
result by Carathédory, see, e.g., [35].

▶ Theorem 14 (Only d vectors are sufficient to represent a positive point). Let V ⊆ Zd. If all
components of a vector b⃗ are strictly positive and b⃗ ∈ ConeN(V), then there exists V ′ ⊆ V

with |V ′| ≤ d and a constant λ > 0 such that λ⃗b ∈ ConeN(V ′).

We now state two important lemmas describing the shape of runs labelled by words over
AX and AX ∪RX , respectively.

▶ Lemma 15 (Decomposition lemma for additive runs). For every run q
π,w−−→→ q′ of A such

that w ∈ A∗X , there exist n ∈ N, words w1, . . . , wn, , w′, z1, . . . , zn+1 ∈ A∗X , and integers
a1, . . . , an ∈ N such that

for every word z ∈ z1w∗1z2 . . . znw∗nzn+1, there exists a run q
z−→→ q′,

eff (w) = eff (w′) + a1eff (w1) + · · ·+ aneff (wn), and
|w1|, . . . , |wn|, |w′| ≤ |Q| and |z1 . . . zn+1| ≤ |Q|2.

A. Draghici, R. Piórkowski, and A. Ryzhikov 20:9

Proof idea. We iterate a process that eliminates all the simple cycles from π. These simple
cycles are labelled by some words w1, . . . , wd and the process returns a cycle-free run π′ that
is labelled by a word w′. We can describe the additive effect of the run π as the effect of w′

plus the effect of all the simple cycles that we eliminated. Finally, we argue there exists a
short run from q to q′ that contains a vertex from each of these simple cycles. ◀

Proof. Consider the following iterative process on π. Initialise b⃗ = 0 ∈ QX .
Identify the first simple cycle r

πi,wi−−−→→ r in π and replace it by r. By simple cycle we
mean a run where only the first and last states are equal.
Update the value of the vector b⃗ to b⃗ + eff (wi).

Let q
π′,w′

−−−→→ q′ be the resulting run. This process guarantees that π′ is cycle-free and that
eff (w) = eff (w′) + b⃗ = eff (w′) + a1eff (w1) + · · ·+ aneff (wn), where ai is the number of times
we have eliminated a simple cycle with effect wi, for all 1 ≤ i ≤ n.

Let Q′ ⊆ Q be the set of states visited by π. The shortest run that visits all states of
Q′ has length at most |Q|2. Since every word wi corresponds to a simple cycle eliminated
by the process, it follows that there exists words z1, . . . , zn+1 such that for every word
z ∈ z1w∗1z2 . . . znw∗nzn+1, there exists a run q

z−→→ q′ and |z1 . . . zn+1| ≤ |Q|2 even if n can be
as large as 2|Q|. ◀

▶ Lemma 16 (Pumping lemma). If S ⊆ AX ∪ RX , then there exists a word w ∈ L(A)
with eval0(w) > 2d|Q|C, where C := maxc(S) if and only if there exist words α1, . . . , αd+1,
β1, . . . , βd ∈ A∗X such that

α1β+
1 α2 . . . αdβ+

d αd+1ηX ⊆ L(A),
|β1|, . . . , |βd| ≤ |Q|
|α1 . . . αd+1| < (d + 1)|Q|2, and
for each N ∈ N, there are a1, . . . , ad ∈ N with eval0(α1βa1

1 α2 . . . αdβad

d αd+1ηX)(x1) > N .

Proof idea. Given a run in A of sufficiently large value, we can split it into different segments
such that in each segment we know for every register if it is going to be reset in the future
or not. Thus, for every register, we can determine if a segment of the run is relevant for
determining its final value. Subsequently, we identify all cycles of this run and argue that
since all the registers hold large values at the end of the run, the total !! effect of the relevant
cycles (the ones after the last reset of the register) must be a large positive number for each
register. This allows us to use Lemma 15 to conclude that we do not have too many such
cycles and that we can pump them up in order to achieve unbounded register values. ◀

Proof. The right to left implication of this lemma is immediate, so we focus on the left to
right implication. Assume there exists a run π = qini

w−→ qfin, for some qfin ∈ Qfin such that
eval0(w)(x1) > 2d|Q|C.

We can assume that the value of each register is reset at least once along π, since we
can add additional reset substitutions to the beginning of w without changing the value of
eval0(w)(x1). For each i, 1 ≤ i ≤ d, the νi be the last reset substitution for register xi in w.
Without loss of generality, we can assume that in w the registers are reset for the last time
in the increasing order of their indices. Then π can be represented as

π = qini
π1,w1−−−−→→ q1

ν1−→ q′1
π2,w2−−−−→→ q2

ν2−→ . . .
πd,wd−−−−→→ qd

νd−→ q′d
πd+1,wd+1−−−−−−−→→ qd+1

ηX−−→ qfin .

Observe that for each i, 1 ≤ i ≤ d−1, we can replace in wi all reset substitutions of registers
xi+1, . . . , xd with the identity substitution without changing the value of eval0(w)(x1).

CSL 2025

20:10 Boundedness of Cost Register Automata over the Integer Min-Plus Semiring

Thus, w1, . . . , wd+1 become words over additive substitutions only. Hence we now get
that eval0(w1ν1 · · ·wd+1) = eff (w1) + · · ·+ eff (wd+1). By applying Lemma 15 to each run
π1, . . . , πd+1, we obtain that

eval0(w1ν1 . . . wd+1) = eff
(
w′1
)

+ a
(1)
1 eff

(
w

(1)
1

)
+ · · ·+ a(1)

n1
eff
(

w(1)
n1

)
...

...
...

eff
(
w′d+1

)
+ a

(d+1)
1 eff

(
w

(d+1)
1

)
+ · · ·+ a(d+1)

nd+1
eff
(

w(d+1)
nd+1

)
where w

(1)
1 , . . . , w

(d+1)
nd+1 , w′1, . . . , w′d+1 are all words of length smaller than |Q|. Since

eval0(w1ν1 · · ·wd+1)(x) > 2d|Q|C and eff
(
w′1 · · ·w′d+1

)
(x) ≤ (d + 1)|Q|C

for every x ∈ X, there must exists a vector b⃗ ∈ NX
+ such that b⃗ ∈ ConeN

({
w

(1)
1 , . . . , w

(d+1)
d+1

})
.

By Theorem 14, there exists a subset {β1, . . . , βd} ⊆
{

w
(1)
1 , . . . , w

(d+1)
d+1

}
such that b⃗′ ∈

ConeN({β1, . . . , βd}) and b⃗′ > 0 (pointwise).
It remains to show that there exist words α1, . . . , αd+1 such that |α1 . . . αd+1| < (d+1)|Q|2

and α1β+
1 α2 . . . αdβ+

d αd+1ηX ∈ L(A). Indeed, consider a run πi for some 1 ≤ i ≤ d + 1.
Either πi contains no cycles from {β1, . . . , βd}, in which case there exists a word w′i of length
at most |Q| corresponding to the run π′i, or it does contain some cycles {βj , . . . , βj+h} from
{β1, . . . , βd}. In the latter case, we can use Lemma 15 to argue that there exist words
z′j , . . . , z′j+h+1 such that for every word z ∈ z′jβ∗j z′j+1 . . . z′j+hβ∗j+hz′j+h+1, there exists a run
q′i−1

z−→→ qi. In both cases, either |w′| ≤ |Q| or |z′j . . . z′j+h+1| ≤ |Q|2. Thus, we can obtain
the required words α1, . . . , αd+1 by possibly concatenating the w′i and z′i words that we
identified. ◀

4 CRAs with two registers

In this section, we prove the following result.

▶ Theorem 17. The boundedness problem for CRAs with two registers is NL-complete if the
numbers in the substitutions are presented in unary, and in coNP if they are in binary.

By the results of the previous section, this theorem is equivalent to the following statement.

▶ Proposition 18. Boundedness of regular 2-register substitution languages is NL-complete
if the numbers in the substitutions are presented in unary, and in coNP if they are in binary.

The remainder of the section is devoted to proving Proposition 18. For the rest of this section,
fix the set of registers X := {x, y} and the output register x. Let us also fix for the rest of the
section an input NFA A = (Q, S, δ, qini, Qfin) such that S ⊂ TX∪AX∪MX∪RX ⊂ Subelem(X)
(which we can assume by Claim 13). We begin by providing a series of simplifying assumptions
for the automaton A in the input.

4.1 Simplifying assumptions
In this subsection, we introduce a normal form that significantly simplifies our arguments.

▶ Definition 19 (Graphical notation for Subelem(X)). We depict elementary substitutions in
Subelem(X) as shown in Figure 2; details of the notation are discussed in its caption.

A. Draghici, R. Piórkowski, and A. Ryzhikov 20:11

x

y{
x← y

y ← x
∈ TX

(a) Transposition.

x

y

0

{
x← 0
y ← y

∈ RX

(b) Reset substitution.

x

y{
x← x + c

y ← y
∈ AX

(c) Additive substitution.

x

y0{
x← min{x, y}
y ← 0

∈MX

(d) Minimum substitution.

Figure 2 Pictorial representation of elementary substitutions in Subelem({x, y}). Register x is
always drawn above y. A black dot stands for adding a constant – our graphical notation disregards
the particular values of constants in the substitutions. A branching depicts the minimum operation.
For the operations on y, the diagrams are symmetric. The effect of gluing several drawings together
horizontally naturally corresponds to composition of depicted substitutions.

For a word w = ν1ν2 · · · νn ∈ Subelem(X)∗, we define the output derivation tree out-tree(w)
as the derivation tree of the expression w(x). This tree can have three kinds of leaves:
constants 0 originating from reset or minimum substitutions, arbitrary constants from K
coming from additive substitutions, and variables occurring in ν1(x) or ν1(y) of the first
substitution ν1. We say that a path from a leaf to the root in out-tree(w) is leading if its
starting leaf comes from a substitution νi with the smallest i among all leaves that have
a path to the root. A path is called x-aligned if all its vertices originate from expressions
(νi(x))1≤i≤n. A word w is called x-aligned if the leading path of out-tree(w) is x-aligned.

▶ Example 20 (Depiction of out-tree(w)). For w ∈ Subelem(X)∗, out-tree(w) corresponds to
the tree rooted at the rightmost position corresponding to x in the pictorial representation.
Consider

w :=
{

x← x

y ← y + 3

{
x← x

y ← 0

{
x← x + 2
y ← y

{
x← x

y ← y + 2

{
x← min{x, y}
y ← 0

{
x← y

y ← x

{
x← x + 3
y ← y{

x← x + 3
y ← y

{
x← min{x, y}
y ← 0

{
x← x

y ← y + 5

{
x← x

y ← 0

{
x← min{x, y}
y ← 0

The depiction of w, in line with Definition 19, is as follows:

x

y0 0 0 0 0

The out-tree(w) corresponds to the subgraph drawn in black. The leading path π of
out-tree(w) is marked with a blue outline. Expressions in w corresponding to vertices of π

are typeset on blue background. As not all of them come from x← e mappings, path π is
not x-aligned. An x-aligned word w′ such that w(x) ≡ w′(x) has the following shape:

x

y0 0 0 0 0

▶ Lemma 21 (Leading branch x-aligned assumption). We can assume that each w ∈ L(A) is
x-aligned.

Therefore, in the remainder of this section we assume that each w ∈ L(A) is x-aligned.
This means that only parts (b), (c) and (d) from Figure 2 (and not their symmetric y-
counterparts) can be segments of runs.

CSL 2025

20:12 Boundedness of Cost Register Automata over the Integer Min-Plus Semiring

4.2 Unboundedness witnesses
In this subsection, we define the shape of witnesses that prove unboundedness of CRAs. Next
subsection shows that if a CRA is unbounded, it must contain such a witness. For the rest
of this section, fix two substitutions

η = {x← min{x, y}, y ← 0} and ρ = {x← x, y ← 0},

which will be referred to throughout the whole section. Let N := |Q| and C := maxc(S). We
introduce two new notations for special types of runs of A:

r1 s1
α1, w1

and
r2 s2

α2, w2

used to signify that w1 ∈ A∗X (i.e., has additive substitutions only), and w2 ∈ (AX ∪ {ρ})∗.

▶ Definition 22 (Unboundedness witness). A run π in A is called a trivial unboundedness
witness if it has the form

qini r r qfin
α1 θ α2

π =

such that |π| ≤ 3N , eff (θ)(x) > 0 and qfin ∈ Qfin.
A run π in A is called a nontrivial unboundedness witness if it has the form

π = qini
πa−→→ qa

πb−→→ qb
πc−→→ qc

such that |πa| ≤ N , |πb|, |πc| ≤ 3N2, run πb is pumpable, and πc is sustainable, where
pumpable and sustainable runs are defined below.

A trivial or nontrivial unboundedness witness is called just an unboundedness witness.

Intuitively, πa from this definition is used to reach a gadget enabling pumping, πb witnesses
that we can pump up the value of x to an arbitrarily large number and then end up in qb,
and πc certifies that we can maintain a large value of x to be output in qc ∈ Qfin.

▶ Definition 23 (Pumpable run). A run πb is called pumpable if it has one of the four forms:

Type A.1 (a cycle with a positive effect on x, then a reset of y)

qa qa s qb
θ α ρ

πb =

0
()

such that θ is a cycle with eff (θ)(x) > 0 and α is a run with no η substitutions.
Type A.2 (a cycle with a positive effect on both x and y, then a minimum substitution)

qa qa s qb
θ α η

πb =

0
()

such that θ is a cycle with no η and no ρ substitutions and with eff (θ) ∈ N2
+, and α is a

run with no η and no ρ substitutions.

A. Draghici, R. Piórkowski, and A. Ryzhikov 20:13

Type A.3 (two cycles combining for a positive effect on both x and y, then a minimum)

qa qa r r s qb
θ1 α1 θ2 α2 η

πb =

0
()

such that θ1, θ2 are cycles with no η and no ρ substitutions and with a1eff (θ1)+a2eff (θ2) ∈
N2

+, for some a1, a2 ∈ N. Furthermore, α1, α2 are runs with no η and no ρ substitutions.
Type B (a cycle with a positive effect on x together with cycles supporting its value)

π = p1
π1−→→ p2

π2−→→ p3 −→→ · · · −→→ pn−1
πn−1−−−→→ pn

πn−−→→ p1

for some n ∈ N, where p1 = qa = qb, and for every i, 1 ≤ i ≤ n:

pi ri ri si pi+1
αi θi βi η

πi =

0
()

such that αi is a run with no η substitutions, θi is a cycle with no η and no ρ substitutions
with eff (θi) ∈ N× N+ and βi is a run with no η substitutions. Furthermore, we require
eff (α1θ1β1α2θ2β2 · · ·αnθnβn)(x) > 0.

▶ Definition 24 (Sustainable run). A run πc is called sustainable if it is labelled by wc ∈
(AX ∪ {ρ, η})∗ and has the following form:

qb r1 r1 s1 t1 tn−1 rn rn sn tn qc
α1 θ1 β1 η αn θn βn η αn+1

. . .

. . .

. . .

0 00

for n ∈ N, runs αi, βi of the form as depicted in the picture, and cycles θi such that
eff (θi) ∈ Z× N+ for every i, 1 ≤ i ≤ n.

▶ Proposition 25. Given A, deciding if there exists a run in it which is an unboundedness
witness is in NL if the numbers in the substitutions are presented in unary, and in NP if
they are in binary.

Proof. Intuitively, using nondeterminism, we can guess a nontrivial witness π = πaπbπc as in
Definition 22 and verify that it has all the required properties. The case of a trivial witness
is handled in a similar way and is thus omitted.

Indeed, starting in qini, we guess one transition at a time until we verify the existence of
a witness or exceed the bound N + 4N2 on its length. During the traversal, we guess the
positions of states qa, qb, qc at appropriate distances from qini. This splits the search into
three phases corresponding to πa, πb and πc. We need to verify that πb is of one of four types
of pumpable runs (cf. Definition 23). At any point in time, if the definition of a pumpable
run requires it, we can guess that the current state r marks the start of the occurrence of a
simple cycle θ. In this case, we store r, follow only labels from AX ∪ {ρ} and compute the
effect of the run until r occurs again. This can easily be done in NL or NP depending on the
representation of the numbers in the substitutions. ◀

In order to complete the proof of Proposition 18, we need to show that the existence of
an unboundedness witness is equivalent to the fact that A is not bounded. We show it by
two implications stated below. We start with proving Lemma 26, and Lemma 29 is proved
in the next subsection.

CSL 2025

20:14 Boundedness of Cost Register Automata over the Integer Min-Plus Semiring

▶ Lemma 26. If there exists an unboundedness witness then L(A) is not bounded.

Proof. The proof is straightforward in case of a trivial unboundedness witness. Fix a
nontrivial unboundedness witness π as in Definition 22:

π = qini
πa−→→ qa

πb−→→ qb
πc−→→ qc .

Fix an arbitrary number N ∈ N. We construct a run π′ such that eval0(π′)(x) ≥ N . We
first prove that

▷ Claim 27. For every M ∈ N there is a run π′b of A from qa to qb such that eval0(πaπ′b) =
(M ′, 0) for some M ′ > M .

First, by Claim 12 we have that −CN ≤ eval0(πa)(x) ≤ CN . The claim is immediate
if πb contains a certificate of type A.1, A.2, or A.3. Indeed, we simply repeat the cycles
that occur there a sufficient number of times. If πb contains a certificate of type B, then
πb = p1

π1−→→ p2
π2−→→ p3 −→→ · · · −→→ pn−1

πn−1−−−→→ pn
πn−−→→ p1 is a cycle such that the overall effect

on x is positive. Since every sub-path π1, . . . , πn contains a cycle with a positive effect on y

and a non-negative effect on x, there is a path π′′b that repeats each such cycle M + CN

times. Note that π′′b is now a cycle with positive effect on x for any value of x smaller than
M + CN . Thus, we can take π′b to be the cycle π′′b taken M + CN times.

This finishes the proof of the claim. Now, it suffices to show the following:

▷ Claim 28. For every M ∈ N there exists a run π′c such that eval0(πaπ′bπ′c)(x) ≥M .

We prove this claim by induction on the number of occurrences of η in πc. Assume that
πc does not contain any occurrences of η. By Claim 27, there exists a path π′b such that
eval0(πaπ′b)(x) ≥M + CN . Thus, eval0(πaπ′bπc)(x) ≥M by Claim 12, since the length of πc

is bounded.
Assume now that there is at least one occurrence of η in πc. Then πc can be represented

as follows:

πc = qb
ρ1,α1−−−→→ q1

ρ2,α2−−−→→ q2
ρ3,α3−−−→→ · · · ρr,αr−−−→→ qfin ,

where the cutting points are states reached after reading η. Assume that there is a run
qini

πi−1,wi−1−−−−−−→→ qi−1 such that eval0(wi−1)(x) ≥ M ′, for every M ′ ∈ N. Then we can use
the cycle with positive effect on y inside ρi in order to conclude that there exists a run
qini

πi,wi−−−→→ qi such that eval0(wi) ≥M ′, for every M ′ ∈ N. This concludes the proof. ◀

▶ Lemma 29. If L(A) is not bounded, there exists an unboundedness witness.

4.3 Unboundedness implies the existence of a witness
Proof of Lemma 29. Assume that L(A) is not bounded. Let M := 15C2N3 and W :=
12CN2. Let π be the shortest accepting run of A such that eval0(π)(x) > M + W , and let w

be the word labelling π. Since π is x-aligned, it can be split into two parts

π = qini
πpre−−→→ q0

πsuf−−→→ qfin

for some q0 ∈ Q and qfin ∈ Qfin, such that πsuf is the shortest suffix of π satisfying
out-tree(π) = out-tree(πsuf). Note that eval0(πpref)(x) = 0, and πsuf features no substitu-
tion ν that resets x (i.e., for which ν(x) = 0). Recall that we defined

η = {x← min{x, y}, y ← 0} and ρ = {x← x, y ← 0}.

A. Draghici, R. Piórkowski, and A. Ryzhikov 20:15

Since π is x-aligned, we have that wsuf ∈ (AX ∪ {η, ρ})∗, where wsuf is the word labelling πsuf .
Let n ∈ N be the number of substitutions η in w. Split the run πsuf into segments (some
possibly empty)

q0
π1,w1−−−−→→ q1

π2,w2−−−−→→ q2 −→→ · · · −→→ qn
πn+1,wn+1−−−−−−−→→ qn+1

such that q1, . . . , qn are all the states reached directly after reading η each time. Define
vi := eval0(πprefπ1 · · ·πi)(x) for 0 ≤ i ≤ n + 1. Observe that v0 = 0 and vn+1 ≥M + W .

▶ Example 30. Consider a run π partitioned into segments as defined above:

qini q0

v0

q1

v1

q2

v2

q3

v3

q4

v4

q5

v5

πpre, wpre π1, w1 π2, w2 π3, w3 π4, w4 π5, w5

πsuf

0

0 0 0 0 0 0

Let us overlook the slight inaccuracy that a run reaching a large value would have many
more additive transitions (cf. Claim 12). The out-tree(w) is drawn in black, other (irrelevant)
lines are drawn in light grey. Run πsuf is the shortest one that contains all black lines. There
are n = 4 occurrences of η in wsuf , thus πsuf is split into 5 parts, and runs π1, . . . , π4 end
with a transition labelled by η.

We first show that unboundedness guarantees the existence of a sustainable part πc of a
witness. Define m := max{i | vi < M}.

▷ Claim 31. For every i > m and every transition s
ν−→ t in A such that t is a state visited

by πi and ν(y) = 0, there exists a sustainable run πc from t to qfin of length at most 3N2.

We prove the claim by downward induction on i, the index of the segment πi incident with
the state t of ν. Base case (i = n + 1) is trivial, as wn+1 ∈ A∗X . Assume our claim holds for
i + 1. Fix a transition s

ν−→ t such that t is a state visited by πi, and ν(y) = 0. Similarly
to the case of a trivial boundedness witness, a steep increase on y implies existence of a
run π′c = t

α−→→ r
θ,wθ−−−→→ r

β,wβ−−−→→ s
η−→ qi such that wθ, wβ ∈ A∗X , α, β are simple paths and θ a

simple cycle, and that eff (θ)(y) > 0. Finally, by applying the inductive hypothesis to s
η−→ qi,

we get a pumpable π′′c from qi to qfin; we have thus constructed a sustainable run π′cπ′′c , as
required.

It remains to show how to find πb, the pumpable part of the run. We consider two cases.

Case 1: vi+1 − vi > 4CN for some i ∈ N ∩ [m, n]. (aim: pumpable run of type A)
Fix such i ∈ N. Let A′ = (S, Q ∪ {q′i+1}, qi, {q′i+1}, δ′), where δ′ is constructed from δ by
removing transitions with minimum substitutions, and adding q

η−→ q′i+1 whenever q
η−→ qi+1

for some q ∈ Q. Note that wi ∈ L(A′) and that eval0(wi)(x) > 4CN , thus automaton A′
satisfies the premises of Lemma 16. Using this lemma, we obtain a short pumpable run π′b of
type A of A′ – cases A.1, A.2 and A.3 were designed to match all possible loop arrangements.
It naturally induces πb in A from qi to qi+1 of the same properties. Since qi is reachable
from qini, there exists a short run πa between them. Finally, by Claim 31, we obtain a
sustainable part πc of the witness, which completes the analysis of this case.

Case 2: vi+1 − vi ≤ 4CN for all i ∈ N ∩ [m, n]. (aim: witness exists or contradiction)
This case proves to be more difficult, as it involves a more complicated type B pumpable
run. The proof is by contradiction. Here, since vn+1 − vm > (M + W) −M = 12CN2

CSL 2025

20:16 Boundedness of Cost Register Automata over the Integer Min-Plus Semiring

and each vi+1 provides an increase of at most 4CN compared to the previous value vi, any
maximal increasing subsequence of (vi)m≤i≤n must have at least 12CN2

4CN = 3N elements.
Therefore, there exist k, ℓ ∈ N such that

m ≤ k < ℓ ≤ n, vk < vℓ, M < vi < M + W for k ≤ i ≤ ℓ, and qk = qℓ

thus π(kℓ] := πk+1 · · ·πl is a cycle. For each i, k ≤ i ≤ l, define ci ∈ K to be the effect
on x of the run πi without its last transition labelled with η. We have vi+1 ≤ vi + ci, and
therefore

∑ℓ−1
i=k ci > vℓ − vk > 0. Assume that A has no pumpable run of type B from qk

to qℓ (otherwise we obtain a witness easily). Therefore, there exists i ∈ N∩ [k, l] such that πi

decomposes into

πi := qi−1
α,u−−→→ r1

β,v−−→→ r2
η−→ qi,

where β is the run of maximal length labelled by some v ∈ A∗X without ρ, run α is labelled by
u ∈ (AX ∪ {ρ})∗ (possibly empty), and no simple cycle θ with eff (θ) ∈ N× N+ is reachable
from r1 and backwards-reachable from r2. Note that eval0(πpreπ1π2 · · ·πi−1α)(y) = 0.

Assume that α contains a simple cycle θ. If eff (θ)(x) ≤ 0, this cycle can be removed
from π without decreasing the output value, which contradicts the assumption that π is the
shortest. If otherwise eff (θ)(x) > 0, we obtain a pumpable run of type A.1 featuring θ and a
simple path to r1. Again, a sustainable run to the final state qfin is guaranteed by Claim 31,
and thus in this case the proof is finished.

Hence, we can assume that α does not have simple cycles. Due to Claim 12, we have that
eff (α)(x) ∈ [−CN, CN]. By Lemma 15, eff (β) decomposes into eff (β) = eff (β′) + (A, B)
for a run β′ from r1 to r2 of length ≤ N , and (A, B) ∈ ConeN(Θ), where Θ is the set of
simple cycles that are reachable from r1 and backwards-reachable from r2 by transitions
not involving ρ. By assumption, eff (θ) ̸∈ N × N+ for any θ ∈ Θ. Thus, for each θ ∈ Θ,
either eff (θ)(x) < 0 or eff (θ)(y) ≤ 0. Hence, for θ with eff (θ)(y) > 0, we have eff (θ)(x) < 0.
Take θ⟳ such that eff (θ⟳) = (a, b), b > 0 (and hence a < 0) and b

−a is the largest possible
among cycles satisfying these conditions. Every simple cycle has length at most N , therefore
its effect belongs to [−CN, CN]2. Thus, CN

1 ≥
b
−a . Let ℓ(t) := b

a t. If there exists θ′ such
that eff (θ′) lies above line ℓ, then we have identified two cycles that span a cone having a
nonempty intersection with the positive quadrant; this yields a pumpable run of type A.3,
and, by Claim 31, we get a sustainable run starting at qi.

Otherwise, ConeN(Θ) lies below ℓ. Since πi ends with η and has effect at least M ,
eff (β)(y) > M , therefore B > 0. This in turn implies A < 0, because (A, B) is bellow ℓ.
Hence B < ℓA = b

a A ≤ −CNA. We know that eval(vi−1,0)(πi) ≥M , therefore

{
eval(vi−1,0)(αβ)(x) ≥M

eval(vi−1,0)(αβ)(y) ≥M
and thus

{
vi−1 + eff (α)(x) + eff (β′)(x) + A ≥M

0 + eff (β′)(y) + B ≥M

Since vi < M + W , and effects of simple runs α and β′ are bounded by Claim 12, we get{
✚✚M + W + 2CN + A ≥✚✚M

CN + B ≥M
and

{
12C2N3 + 2C2N2 ≥ −CNA

B ≥ 15C2N3 − CN

Since B < −CNA, we have 15C2N3 − CN < 12C2N3 + 2C2N2 and finally 3C2N3 <

2C2N2 + CN which yields a contradiction that concludes the proof. ◀

A. Draghici, R. Piórkowski, and A. Ryzhikov 20:17

5 Output-minimum CRAs

In this section, we consider CRAs in which minimum substitutions can only appear in the
output function. We call such CRAs output-minimum for brevity.

The main results of this section are as follows.

▶ Theorem 32. Boundedness of output-minimum CRAs with no transpositions is coNP-
complete, even if the numbers in the substitutions are presented in unary.

▶ Theorem 33. Boundedness of output-minimum CRAs is PSPACE-complete, even if the
numbers in the substitutions are presented in unary.

For the rest of the section, fix the set of registers X := {x1, . . . , xd}. Let ηX′ :=
{x1 ← min{x | x ∈ X ′}} for X ′ ⊆ X. Once again, we use the formalism of regular languages
of substitutions presented in Section 3. Recall that Subelem(X) = TX ∪RX ∪AX ∪MX . Since
we are considering output-minimum CRAs, similarly to Claim 13, we can assume that the
alphabet contains only elementary substitutions from TX ∪RX ∪AX , with the only exception
of a minimum transition which comes at the end of the word. Thus, in Section 5.1 and
Section 5.2 we consider the language boundedness problem for NFAs A such that for some
X ′ ⊆ X, we have, respectively, L(A) ⊆ (AX ∪RX)∗ηX′ and L(A) ⊆ (AX ∪RX ∪ TX)∗ηX′ .
As shown in Section 3, this is enough to prove Theorems 32 and 33.

5.1 Output-minimum CRAs with no transpositions
▶ Proposition 34. Boundedness for regular subsets of (AX ∪RX)∗ηX′ is coNP-complete,
even if the numbers in the substitutions are presented in unary.

Proof. As a certificate of unboundedness, we consider substitutions α1, . . . , αd+1, β1, . . . , βd

respecting the conditions of Lemma 16, together with a run π of A witnessing that
α1β+

1 α2 . . . αdβ+
d αd+1ηX′ ⊆ L(A). Checking the second and third conditions of Lemma 16

is trivial and by having π in the certificate, it is also easy to check the first condition in
linear time.

Checking the last conditions requires a bit more work. As argued in the proof of Lemma 16,
all substitutions in β1, . . . , βd can be modified so that they become additive substitutions
without changing the value of eval0(α1βa1

1 α2 . . . αdβad

d αd+1ηX′)(x1). Now, let the vectors
v⃗1, . . . , v⃗d be the effects of the modified substitutions β1, . . . , βd. By Theorem 14, we only
need to solve the following linear program

∃a1, . . . , ad ∈ Q≥0 s.t. a1v⃗1 + a2v⃗2 + · · ·+ adv⃗d > 0,

which can be done in polynomial time.
To prove coNP-hardness, we reduce the satisfiability problem, which is NP-complete [20],

to the complement of the boundedness problem.

▶ Problem 35 (Satisfiability).
Input A set C = {c1, . . . , cm} of clauses over boolean variables p1, . . . , pn.

Question Does there exist an assignment of Boolean values to the variables satisfying all
the clauses?

As registers, we take the set of all clauses: X = C = {c1, . . . , cm}. Let Cp :=
{c ∈ C | p ⊨ c} and C¬p := {c ∈ C | ¬p ⊨ c} be the sets of clauses satisfied by p = ⊤ and
p = ⊥, respectively. Also, for a literal x, let inc(x) := {c← c + 1 | c ∈ Cx}. Consider the
generalised NFA A in Figure 3.

CSL 2025

20:18 Boundedness of Cost Register Automata over the Integer Min-Plus Semiring

q0 q1 q2 qn qf
ηX

inc(p1)∗

inc(¬p1)∗

inc(pn)∗

inc(¬pn)∗

· · ·

· · ·

Figure 3 Generalised NFA A for satisfiability. Transitions are labelled by regular expressions.

It is readily seen that for any N ∈ N, there exists a word

w ∈
(

inc(Cp1)N ∪ inc(C¬p1)N
)
· · ·
(

inc(Cpn
)N ∪ inc(C¬pn

)N
)

ηX

such that eval0(w)(x1) ≥ N if and only if the variable assignment induced by w for variables
p1, . . . , pn satisfies all the clauses c1, . . . , cm. ◀

5.2 Output-minimum CRAs with transpositions
▶ Proposition 36. Boundedness for regular subsets of (AX ∪RX ∪ TX)∗ηX is in PSPACE.

Proof idea. We prove containment in PSPACE by operating on an exponentially larger
NFA PA, called permutation NFA. This NFA encodes all possible register permutations
inside its state space, and hence its alphabet contains only additive and reset substitutions.
It can be checked in NPSPACE whether this larger NFA admits a certificate of the type
presented in Lemma 16. By Savitch’s theorem we get that the problem is in PSPACE [38]. ◀

Proof. Fix a finite alphabet S ⊂ AX ∪ RX ∪ TX and let C = maxc(S). Fix NFA A =
(Q, S ∪ {ηX′}, δ, qini, Qfin) such that L(A) ⊆ S∗ηX′ . Let GX be the set of all permutations
of the set X and let PA = (Q′, S′ ∪ {ηX′}, δ′, q′ini, Q′fin), where Q′ = Q×GX , S′ = S \ TX ,
and Q′fin = Qfin ×GX . We also take qini

′ = (qini, τ0), where τ0 is the identity permutation.
Let id ∈ S be the additive substitution that adds 0 to every register. For s ∈ TX and τ ∈X

we define (τ ◦ s)(x) = s(τ(x)). Finally, δ′contains transitions

((q, τ), id, (q′, τ ◦ s)) ∈ δ′ for every (q, s, q′) ∈ δ such that s ∈ AX ,

((q, τ), s, (q′, τ)) ∈ δ′ for every (q, s, q′) ∈ δ such that s /∈ TX .

Clearly, A is unbounded if and only if PA is unbounded if and only if there exist words
α1, . . . , αd+1, β1, . . . , βd that adhere to the conditions of Lemma 16 and run π of PA witnessing
that α1β+

1 α2 . . . αdβ+
d αd+1ηX′ ⊆ L(PA). Since |Q′| = |Q| · d!, we can store one state with

polynomial space. Hence, an NPSPACE algorithm can non-deterministically search for the
run π without constructing PA explicitly. Verifying the first three conditions of Lemma 16
can be done on the fly in linear space. Also, a non-deterministic algorithm can guess and
verify that v⃗1 . . . , v⃗d are the effects of cycles β1, . . . , βd on the fly. Finally, it is easy to verify
that a positive linear combination of them has positive effect on all registers. Thus, we can
conclude the argument by recalling that NPSPACE = PSPACE by Savitch’s theorem [38]. ◀

▶ Proposition 37. Boundedness for regular subsets of (AX ∪RX ∪ TX)∗ηX is PSPACE-hard,
even if the numbers in the substitutions are presented in unary.

Proof idea. We reduce the DFA intersection problem, which is PSPACE-complete [27]. For
every state of each DFA, we create a separate register in the constructed CRA C. We simulate
reading a letter by all the DFAs by moving a large value to the registers corresponding to

A. Draghici, R. Piórkowski, and A. Ryzhikov 20:19

the new active states of the DFAs, and keeping the values of all remaining registers zero.
These large values come from a self-loop transition in the initial state of C, and C cannot
return to the initial state afterwards. All DFAs accept the same word if and only the large
values can be simultaneously brought to the registers corresponding to the final states of the
DFAs. The output of C is thus set to be the minimum of these registers. ◀

Proof. We reduce from the following PSPACE-complete problem [27]:

▶ Problem 38 (DFA intersection).
Input n ∈ N, alphabet Σ, n DFAs Ai = (Qi, Σ, δi, q

(i)
ini , Q

(i)
fin), 1 ≤ i ≤ n.

Question Does there exist a word accepted by all the DFAs?

We can assume that each DFA has only one final state, which can be ensured as follows:
add a new letter # to Σ and two new states q+

i , q−i to each Ai. For each i, make this new
letter # send all states from Q

(i)
fin to q+

i , and all other states of Ai to q−i . Make the new
letter induce a self-loop for both q+

i , q−i and make q+
i to be the only final state in each DFA.

We construct an NFA A such that the language L(A) is bounded if and only if⋂
1≤i≤n L(Ai) is empty. Let X =

{
q

(j)
i | 1 ≤ j ≤ n, qi ∈ Qj

}
. The idea is that the re-

gisters correspond to the states of the DFAs, and register r
(j)
i has a positive value after

reading w ∈ Σ if and only if the i’th state in Aj is active after reading w. Next, we
describe L(A) in terms of a regular language.

Let νinc =
{

q
(i)
ini ← q

(i)
ini + 1 | 1 ≤ i ≤ n

}
be a substitution that increments the registers

representing initial states for each Ai. Also, for every σ ∈ Σ, let

Ti,σ = {{q′ ← q} ∪ {q ← 0 | q ̸= q′} | (q, σ, q′) ∈ δi, q ̸= q′} and
Tσ = T1,σ · T2,σ · · · · · Tn,σ,

T =
⋃

σ∈Σ
Tσ.

There is a substitution in Ti,σ that simulates every transition inside Ai for letter σ ∈ Σ.
The idea is that after we guess the next letter σ ∈ Σ, for each Ai we need to simulate the
transition that is executed when reading this letter. If we pick the correct transition, we move
our positive value from register qi to q′i, and resetting all other registers does not change
their values. However, if we pick a wrong transition, we reset our positive value and we can
never recover. Then, a substitution from Tσ simulates executing a transition labelled by
letter σ in all Ai and a substitution from T simulates choosing a letter σ ∈ Σ and executing
a transition labelled by σ in all Ai. Finally let νout =

{
x← min{q(i)

fin | 1 ≤ i ≤ n}
}

. We
argue that L(A) = ν∗inc · T ∗ · νout is unbounded if and only if

⋂
1≤i≤n L(Ai) is non-empty.

Consider a word w = σ1 . . . σm ∈ Σ∗ and an integer N ∈ N. For every 1 ≤ i ≤ n

it follows inductively that there exists a word w′j ∈ incN+1 · Tσ1 · Tσ2 · · · · · Tσj such that
eval0

(
w′j
)
(q(i)) = N + 1, for q ∈ Qi if and only if q

(i)
ini

σ1...σj−−−−→ q(i). Thus, there exists a
word w′m ∈ ν∗inc · T ∗ · νout such that eval0(w′m) = N + 1 if and only if

⋂
1≤i≤n L(Ai) is

non-empty. ◀

6 Stateless CRAs

In this section, for every d ≥ 2 we present a fairly restricted family of unbounded CRAs with d

registers such that the length of a shortest run outputting a value N ∈ N is lower bounded by
Fd−1(N), the (d− 1)st function in the hierarchy of fast-growing functions. These functions

CSL 2025

20:20 Boundedness of Cost Register Automata over the Integer Min-Plus Semiring

are defined as follows. Let F1(n) = 2n and for every k ≥ 2 let Fk(n) = Fk−1 ◦ · · · ◦ Fk−1(1),
where ◦ denotes the composition of functions, and this composition is taken n times. For

example, F2(n) = 2n and F3(n) = 22···2

= Tower(n), where exponentiation is taken n times.
We construct these CRAs inductively in the following theorem.

▶ Theorem 39. For every d ≥ 2, there exists a stateless CRA C with d registers and d

transitions such that for every N ∈ N+, any run of Cd that outputs a value of at least N

must have length at least Fd−1(N).

Proof. For d = 2 and d = 3 consider the two CRAs in Figure 4.

q

min x1, x2

q

min x1, x2, x3

a1,

{
x1 ← x1 + 1
x2 ← 0

a2,

{
x1 ← x1 − 1
x2 ← x2 + 1

a1,

{
x1 ← x1 + 1
x2 ← 0
x3 ← 0

a2,

{
x1 ← x1 − 1
x2 ← x2 + 1
x3 ← x3

a3,

{
x1 ← min{x1, x2}
x2 ← 0
x3 ← x3 + 1

Figure 4 Unbounded CRAs C2 (left) and C3 (right) with 2 and 3 registers.

Let us prove that C2 and C3 satisfies the statement of the lemma. Let N ∈ N+ be an
arbitrary positive integer. Since we are dealing with stateless CRAs, we denote a configuration
(q, {x1 ← k1, x2 ← k2, . . . , xn ← kn}) by a vector (k1, k2, . . . , kn). Clearly, for both C2 and C3,
the transitions labelled by a1 are the only ones that can increase the value of register x1 and
since these transitions reset the values of all other counters, any run outputting N must start
by taking this transition m many times, m > 0, reaching in C2 and C3 the configurations
(m, 0) and (m, 0, 0), respectively. The value m can be seen as the initial budget that is
necessary for increasing the values of other registers. Clearly, the shortest run that outputs N

in C2 reaches the configuration (2N, 0), then takes N times the transition labelled by a2 and
outputs. Since it must start by getting to the configuration (2N, 0), its length is at most
F1(N) = 2N .

Let now π3 be a shortest run in C3 that outputs N . Clearly, π3 needs to increase the
value of register x3. The transition labelled by a3 is the only one that increases x3, however,
it contains a minimum update for x1. Since π3 is a shortest path outputting N , before
reading a3 it reaches a configuration in which the values of registers x2, x3 are equal, otherwise
some transitions can be removed from it without changing the output value.

Thus, π3 initialises the budget by reading am
1 , and then, before reading a3, it reads a

word in a∗2 which applies the function F−1
1 (·) = ·

2 to the value of register x1. We argue that
in order to output N , m = F−1

2 (N) = 2N . Indeed, π3 must reach a value m in register x1
and then apply N many times the function F−1

1 (·) to register x1, so m = F−1
2 (N). Thus,

the length of π3 must be longer than F2(N). Furthermore, we see that π3 has the following
shape (0, 0, 0) −→→ (F2(N), 0, 0) −→→ (N, N, N).

Assume now that there exists Cd−1 with the property from the statement of the lemma.
We modify it by adding a new letter ad to the alphabet Σ, and extend the substitutions of
the transitions as follows:

add xd ← 0 to a1,
add xd ← xd to ai for 1 < i < d− 1, and
let the substitution of ad be
{x1 ← min{x1, . . . , xd−1}, x2 ← 0, . . . , xd−1 ← 0, xd ← xd + 1}.

A. Draghici, R. Piórkowski, and A. Ryzhikov 20:21

We know that there exists a shortest path πd−1 with the following shape (0, . . . , 0) −→→
(Fd−2(N), 0, . . . , 0) −→→ (N, N, . . . , N, 0). So, in order to increase the register xd by one, we
need to have enough budget on register x1 to be able to apply the function F−1

d−2 to its value.
Since we need to increase the value of xd by one N times, it follows that we need to repeat this
process N times so that πd has shape (0, . . . , 0) −→→ (Fd−1(N), 0, . . . , 0) −→→ (N, N, . . . , N, N).
Thus its length must be at least Fd−1(N). ◀

7 Conclusions and open problems

The most obvious open problem left by this work is the decidability of boundedness for
copyless linear CRAs with resets with more than two registers. We conjecture that it is
decidable for arbitrary number of registers. Our techniques and the shapes of the witnesses
for the two-register case might be useful for proving that.

Another interesting open problem is the precise complexity of the two-register case where
numbers in the substitutions are presented in binary. We have proved that this problem
is NL-hard and in coNP, but no better bound is known even if minimum substitutions are
only allowed in the output. In the latter case, it follows from our results that the witness
of unboundedness consists of at most two cycles and some paths connecting them. This
relates to the following natural problem whose complexity we were not able to find in the
literature. Let G = (V, E) be a digraph, and ω : E → Z2 be a (bi-criteria) weighting function
on its edges. Given G and ω, find a cycle in G such that the sum of weights of its edges
is component-wise positive. This is of course a generalisation of the problem of finding
a cycle of negative weight in a digraph, which can be solved in polynomial time by e.g.
Bellman-Ford-Moore algorithm [6].

References

1 Shaull Almagor, Udi Boker, and Orna Kupferman. What’s decidable about weighted automata?
Information and Computation, 282:104651, 2022. doi:10.1016/j.ic.2020.104651.

2 Shaull Almagor, Michaël Cadilhac, Filip Mazowiecki, and Guillermo A. Pérez. Weak cost
register automata are still powerful. International Journal of Foundations of Computer Science,
31(6):689–709, 2020. doi:10.1142/S0129054120410026.

3 Rajeev Alur, Loris D’Antoni, Jyotirmoy Deshmukh, Mukund Raghothaman, and Yifei Yuan.
Regular functions and cost register automata. In 28th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS 2013), pages 13–22, 2013. doi:10.1109/LICS.2013.65.

4 Rajeev Alur and Mukund Raghothaman. Decision problems for additive regular functions. In
Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, Automata,
Languages, and Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia,
July 8-12, 2013, Proceedings, Part II, volume 7966 of Lecture Notes in Computer Science,
pages 37–48. Springer, 2013. doi:10.1007/978-3-642-39212-2_7.

5 Benjamin Aminof, Orna Kupferman, and Robby Lampert. Reasoning about online algorithms
with weighted automata. ACM Transactions on Algorithms, 6(2):28:1–28:36, 2010. doi:
10.1145/1721837.1721844.

6 Jørgen Bang-Jensen and Gregory Z Gutin. Digraphs: theory, algorithms and applications.
Springer Science & Business Media, 2008.

7 Michael Blondin, Alain Finkel, Stefan Göller, Christoph Haase, and Pierre McKenzie. Reach-
ability in two-dimensional vector addition systems with states is pspace-complete. In 30th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,
July 6-10, 2015, pages 32–43. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.14.

CSL 2025

https://doi.org/10.1016/j.ic.2020.104651
https://doi.org/10.1142/S0129054120410026
https://doi.org/10.1109/LICS.2013.65
https://doi.org/10.1007/978-3-642-39212-2_7
https://doi.org/10.1145/1721837.1721844
https://doi.org/10.1145/1721837.1721844
https://doi.org/10.1109/LICS.2015.14

20:22 Boundedness of Cost Register Automata over the Integer Min-Plus Semiring

8 Michael Blondin, Christoph Haase, Filip Mazowiecki, and Mikhail A. Raskin. Affine extensions
of integer vector addition systems with states. Log. Methods Comput. Sci., 17(3), 2021.
doi:10.46298/LMCS-17(3:1)2021.

9 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.
ACM Transactions on Computational Logic, 11(4):23:1–23:38, 2010. doi:10.1145/1805950.
1805953.

10 Karel Culík and Jarkko Kari. Digital images and formal languages. In Grzegorz Rozenberg
and Arto Salomaa, editors, Handbook of Formal Languages, Volume 3: Beyond Words, pages
599–616. Springer, 1997. doi:10.1007/978-3-642-59126-6_10.

11 Wojciech Czerwiński, Engel Lefaucheux, Filip Mazowiecki, David Purser, and Markus A.
Whiteland. The boundedness and zero isolation problems for weighted automata over non-
negative rationals. In Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual
ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022,
pages 15:1–15:13. ACM, 2022. doi:10.1145/3531130.3533336.

12 Laure Daviaud. Containment and equivalence of weighted automata: Probabilistic and max-
plus cases. In Alberto Leporati, Carlos Martín-Vide, Dana Shapira, and Claudio Zandron,
editors, Language and Automata Theory and Applications - 14th International Conference,
LATA 2020, Milan, Italy, March 4-6, 2020, Proceedings, volume 12038 of Lecture Notes in
Computer Science, pages 17–32. Springer, 2020. doi:10.1007/978-3-030-40608-0_2.

13 Laure Daviaud. Register complexity and determinisation of max-plus automata. ACM SIGLOG
News, 7(2):4–14, 2020. doi:10.1145/3397619.3397621.

14 Laure Daviaud, Pierre-Alain Reynier, and Jean-Marc Talbot. A generalised twinning property
for minimisation of cost register automata. In 31st Annual ACM/IEEE Symposium on Logic
in Computer Science, (LICS 2016), pages 857–866, 2016. doi:10.1145/2933575.2934549.

15 Laure Daviaud and Andrew Ryzhikov. Universality and forall-exactness of cost register
automata with few registers. In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors,
48th International Symposium on Mathematical Foundations of Computer Science, MFCS 2023,
August 28 to September 1, 2023, Bordeaux, France, volume 272 of LIPIcs, pages 40:1–40:15.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.MFCS.2023.
40.

16 Manfred Droste and Paul Gastin. Weighted automata and weighted logics. Theoretical
Computer Science, 380(1-2):69–86, 2007. doi:10.1016/J.TCS.2007.02.055.

17 Manfred Droste and Paul Gastin. Weighted automata and weighted logics. In Handbook of
weighted automata, pages 175–211. Springer, 2009.

18 Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata. Springer
Berlin, Heidelberg, 1st edition, 2009. doi:10.1007/978-3-642-01492-5.

19 Manfred Droste and Dietrich Kuske. Weighted automata. In Jean-Éric Pin, editor, Handbook
of Automata Theory, pages 113–150. European Mathematical Society Publishing House, Zürich,
Switzerland, 2021. doi:10.4171/Automata-1/4.

20 Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman
San Francisco, 1979.

21 Christoph Haase and Simon Halfon. Integer vector addition systems with states. In Joël
Ouaknine, Igor Potapov, and James Worrell, editors, Reachability Problems - 8th International
Workshop, RP 2014, Oxford, UK, September 22-24, 2014. Proceedings, volume 8762 of Lecture
Notes in Computer Science, pages 112–124. Springer, 2014. doi:10.1007/978-3-319-11439-2_
9.

22 Kosaburo Hashiguchi. New upper bounds to the limitedness of distance automata. Theor.
Comput. Sci., 233(1-2):19–32, 2000. doi:10.1016/S0304-3975(97)00260-0.

23 Kosaburo Hashiguchi, Kenichi Ishiguro, and Shuji Jimbo. Decisability of the equivalence
problem for finitely ambiguous automata. International Journal of Algebra and Computation,
12(03):445–461, 2002. doi:10.1142/S0218196702000845.

https://doi.org/10.46298/LMCS-17(3:1)2021
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1007/978-3-642-59126-6_10
https://doi.org/10.1145/3531130.3533336
https://doi.org/10.1007/978-3-030-40608-0_2
https://doi.org/10.1145/3397619.3397621
https://doi.org/10.1145/2933575.2934549
https://doi.org/10.4230/LIPICS.MFCS.2023.40
https://doi.org/10.4230/LIPICS.MFCS.2023.40
https://doi.org/10.1016/J.TCS.2007.02.055
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.4171/Automata-1/4
https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.1016/S0304-3975(97)00260-0
https://doi.org/10.1142/S0218196702000845

A. Draghici, R. Piórkowski, and A. Ryzhikov 20:23

24 John E. Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-dimensional
vector addition systems. Theoretical Computer Science, 8:135–159, 1979. doi:10.1016/
0304-3975(79)90041-0.

25 Daniel Kirsten and Sylvain Lombardy. Deciding Unambiguity and Sequentiality of Polynomially
Ambiguous Min-Plus Automata. In 26th International Symposium on Theoretical Aspects of
Computer Science (STACS 2009), volume 3 of LIPIcs, pages 589–600, 2009. doi:10.4230/
LIPIcs.STACS.2009.1850.

26 Ines Klimann, Sylvain Lombardy, Jean Mairesse, and Christophe Prieur. Deciding unambiguity
and sequentiality from a finitely ambiguous max-plus automaton. Theoretical Computer Science,
327(3):349–373, 2004. doi:10.1016/j.tcs.2004.02.049.

27 Dexter Kozen. Lower bounds for natural proof systems. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pages 254–266. IEEE Computer Society,
1977. doi:10.1109/SFCS.1977.16.

28 Daniel Krob. The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. International Journal of Algebra and Computation, 4(3):405–426,
1994. doi:10.1142/S0218196794000063.

29 Hing Leung and Viktor Podolskiy. The limitedness problem on distance automata: Hashiguchi’s
method revisited. Theor. Comput. Sci., 310(1-3):147–158, 2004. doi:10.1016/S0304-3975(03)
00377-3.

30 Ernst W. Mayr. An algorithm for the general petri net reachability problem. In Proceedings
of the 13th Annual ACM Symposium on Theory of Computing, May 11-13, 1981, Milwaukee,
Wisconsin, USA, pages 238–246. ACM, 1981. doi:10.1145/800076.802477.

31 Filip Mazowiecki and Cristian Riveros. Maximal partition logic: Towards a logical characteriz-
ation of copyless cost register automata. In Stephan Kreutzer, editor, 24th EACSL Annual
Conference on Computer Science Logic, CSL 2015, September 7-10, 2015, Berlin, Germany,
volume 41 of LIPIcs, pages 144–159. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015.
doi:10.4230/LIPICS.CSL.2015.144.

32 Filip Mazowiecki and Cristian Riveros. Copyless cost-register automata: Structure, express-
iveness, and closure properties. Journal of Computer and System Sciences, 100:1–29, 2019.
doi:10.1016/j.jcss.2018.07.002.

33 Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, USA, 1967.
34 Mehryar Mohri. Finite-state transducers in language and speech processing. Computational

Linguistics, 23(2):269–311, 1997. URL: https://aclanthology.org/J97-2003.
35 Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, Inc.,

USA, 1986.
36 Marcel-Paul Schützenberger. On the definition of a family of automata. Information and

Control, 4(2):245–270, 1961. doi:10.1016/S0019-9958(61)80020-X.
37 Imre Simon. On semigroups of matrices over the tropical semiring. RAIRO Theor. Informatics

Appl., 28(3-4):277–294, 1994. doi:10.1051/ITA/1994283-402771.
38 Michael Sipser. Introduction to the Theory of Computation. Course Technology, Boston, MA,

third edition, 2013.
39 Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In

26th Annual Symposium on Foundations of Computer Science (FOCS 1985), pages 327–338,
1985. doi:10.1109/SFCS.1985.12.

40 Andreas Weber. Finite-valued distance automata. Theoretical Computer Science, 134(1):225–
251, 1994. doi:10.1016/0304-3975(94)90287-9.

CSL 2025

https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.4230/LIPIcs.STACS.2009.1850
https://doi.org/10.4230/LIPIcs.STACS.2009.1850
https://doi.org/10.1016/j.tcs.2004.02.049
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1142/S0218196794000063
https://doi.org/10.1016/S0304-3975(03)00377-3
https://doi.org/10.1016/S0304-3975(03)00377-3
https://doi.org/10.1145/800076.802477
https://doi.org/10.4230/LIPICS.CSL.2015.144
https://doi.org/10.1016/j.jcss.2018.07.002
https://aclanthology.org/J97-2003
https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.1051/ITA/1994283-402771
https://doi.org/10.1109/SFCS.1985.12
https://doi.org/10.1016/0304-3975(94)90287-9

The Algebras for Automatic Relations
Rémi Morvan # Ñ

LaBRI, Univ. Bordeaux, CNRS & Bordeaux INP, France

Abstract
We introduce “synchronous algebras”, an algebraic structure tailored to recognize automatic relations
(a.k.a. synchronous relations, or regular relations). They are the equivalent of monoids for regular
languages, however they conceptually differ in two points: first, they are typed and second, they are
equipped with a dependency relation expressing constraints between elements of different types.

The interest of the proposed definition is that it allows to lift, in an effective way, pseudovarieties
of regular languages to that of synchronous relations, and we show how algebraic characterizations
of pseudovarieties of regular languages can be lifted to the pseudovarieties of synchronous relations
that they induce. Since this construction is effective, this implies that the membership problem is
decidable for (infinitely) many natural classes of automatic relations. A typical example of such a
pseudovariety is the class of “group relations”, defined as the relations recognized by finite-state
synchronous permutation automata.

In order to prove this result, we adapt two pillars of algebraic language theory to synchronous
algebras: (a) any relation admits a syntactic synchronous algebra recognizing it, and moreover, the
relation is synchronous if, and only if, its syntactic algebra is finite and (b) classes of synchronous
relations with desirable closure properties (i.e. pseudovarieties) correspond to pseudovarieties of
synchronous algebras.

2012 ACM Subject Classification Theory of computation → Algebraic language theory

Keywords and phrases synchronous automata, automatic relations, regular relations, transductions,
synchronous algebras, Eilenberg correspondence, pseudovarieties, algebraic characterizations

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.21

Related Version Full Version: https://arxiv.org/abs/2404.15496

Acknowledgements We thank Pablo Barceló, Mikołaj Bojańczyk, and Diego Figueira for helpful
discussions, and some anonymous reviewers for valuable feedback.

Y This pdf contains internal links: clicking on a notion leads to its definition.

1 Introduction

1.1 Background
The landscape of rationality for k-ary relations of finite words (k ≥ 2) is far more complex
than for languages – recall that languages can be seen as unary relations of finite words – as
depicted in Figure 4 on page 20. Perhaps the most natural class is that of rational relations,
defined as relations accepted by non-deterministic two-tape automata – an input (u, v) is
described by writing u on the first tape and v and the second tape – that can move its two
heads independently, from left to right – see [13, §2.1] for a formal definition. For instance,
the suffix relation is rational.

Our paper focuses on synchronous relations, a.k.a. automatic relations or regular relations,
defined as the rational relations that can be recognized by synchronous automata, a subclass
of the machines described above obtained by keeping a single head that moves synchronously
from left to right, reading one pair of letters after the other; we add padding symbols at the
end of the shorter word – see Figure 1. While the suffix relation is not synchronous, typical
examples include the prefix relation, the same-length relation, etc. Synchronous relations play

© Rémi Morvan;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 21; pp. 21:1–21:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:remi.morvan@u-bordeaux.fr
https://www.morvan.xyz
https://orcid.org/0000-0002-1418-3405
https://doi.org/10.4230/LIPIcs.CSL.2025.21
https://arxiv.org/abs/2404.15496
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 The Algebras for Automatic Relations

a central role in the definitions of automatic structures – introduced by Hodgson [23, 24, 25]
and rediscovered by Khoussainov & Nerode [26], see [7, §XI, pp. 627–762]. They also have
been studied in the context of graph databases [5, Definition 3.1, p.7 & Theorem 6.3, p. 13],
see [18, §8, p. 17] for more context & results on extended conjunctive regular path queries.

(a
a) ,

(
b
b

)
,Pad

(a
b) ,

(
b
a

)
(a

b) ,
(

b
a

)
(a

a) ,
(

b
b

)
,Pad

Figure 1 Encoding a pair of words of Σ∗ × Σ∗ into an element of (Σ2)∗ where Σ2 =̂ (Σ ×
Σ) ∪ (Σ × { }) ∪ ({ } × Σ) (left) and a deterministic complete synchronous automaton (right)
over Σ = {a, b} accepting the binary relation of pairs (u, v) such that the number of a’s in u1 . . . uk

and in v1 . . . vk are the same mod 2, where k = min(|u|, |v|). Pad denotes the set of transitions
{(a) , (b) , (a) , (b)}.

▶ Remark 1.1. All our results are described for binary relations, but can be extended to
k-ary synchronous relations, see Section 5.

Synchronous relations stand at the frontier between expressiveness and undecidability: for
instance, Carton, Choffrut and Grigorieff showed that it is decidable whether an automatic
relation is recognizable [13, Proposition 3.9, p. 265], meaning that it can be written as a finite
union of Cartesian products of regular languages.12 Synchronous relations are effectively
closed under Boolean operations – see e.g. [7, Lemma XI.1.3, p. 627], and moreover, inclusion
(and subsequent problems: universality, emptiness, equivalence. . .) is decidable for them, by
reduction to classical automata, contrary to the equivalence problem over rational relations
which is undecidable [6, Theorem 8.4, p. 81].

However, some seemingly easy problems are undecidable: Köcher showed that it is
undecidable if the (infinite) graph defined by a synchronous relation is 2-colourable – [28,
Proposition 6.5, p. 43], and Barceló, Figueira and Morvan showed that undecidability also
holds for regular 2-colourability [3, Theorem 4.4, p. 8]. On the other hand, one can decide if
said graph contains an infinite clique, see [27, Corollary 5.5, p. 32]: this is a consequence of
[35, Theorem 3.20, p. 185].

1.2 Motivation

Any synchronous relation can be seen as a regular language over the alphabet Σ2 =̂ (Σ ×
Σ) ∪ (Σ × { }) ∪ ({ } × Σ) of pairs. On the other hand any regular language L over Σ2

produces a synchronous relation when intersected with the language of all well-formed words –
namely words where the padding symbols are consistently placed; see Section 2 for precise
definitions. In fact, the semantics of synchronous automata such as the one in Figure 1 is
precisely defined this way: it is the intersection of the “classical semantic” of the automaton,
seen as an NFA, intersected with well-formed words.

1 For instance, the relation “having the same length modulo 2” is recognizable, since it can be written as
(aa)∗ × (aa)∗ ∪ a(aa)∗ × a(aa)∗.

2 The problem was latter shown to be NL-complete and PSpace-complete depending on whether the
input automaton is deterministic or not in [4, Theorem 1, p. 3].

R. Morvan 21:3

Figure 2 Drawing in (Σ2)∗ of a V-relation R and ¬R =̂ {(u, v) ∈ Σ∗ × Σ∗ | (u, v) ̸∈ R}, where
R is defined as L ∩ WellFormedΣ with L ∈ V.

In particular, a class V of regular languages over Σ2 (e.g. first-order definable languages,
group languages, etc.) induces a class of so-called V-relations, defined as the relations over Σ
obtained as the intersection of some language of V with well-formed words, see Figure 2. For
instance, the relation of Figure 1 is a V-relation where V is the class of all group languages –
these relations can be alternatively described as those recognized by a deterministic complete
synchronous automaton whose transitions functions are permutations of states.

▶ Question 1.2. Given a class V of languages, can we characterize and decide the class of
V-relations?

As we will see in Example 2.4, for a relation to be VΣ2 is not necessary for it to be a
V-relation.

1.3 Contributions
We answer positively to this question. For this we first need to develop an algebraic theory
of synchronous relations, which enables us to prove the lifting theorem. In short, the lifting
theorem states that algebraic characterizations of classes of word languages can be lifted in a
canonical way to algebraic characterizations of classes of word relations.

The algebraic approach usually provides more than decidability: it attaches canonical
algebras to languages/relations (e.g. monoids for languages of finite words), and often
simple ways to characterize complex properties (e.g. first-order definability, see e.g. [10,
Theorem 2.6, p. 40]). Our synchronous algebras differ from monoids in two points:

they are typed – a quite common feature in algebraic language theory, shared e.g. by
ω-semigroups [29, §4.1, p. 91];
they are equipped with a dependency relation, which expresses constraints between
elements of different types – to our knowledge, this feature is entirely novel.3

Importantly, some variations are possible on the definition of synchronous algebras: in
particular, one could get rid of the notion of dependency relation and Lemmas 3.11 and 4.7
would still hold. However, we show in the full version that these simplified synchronous
algebras cannot characterize the property of being a V-relation. Therefore, the notion of

3 Note that algebras equipped with binary relations have been studied before, e.g. Pin’s ordered ω-
semigroups – see [30, §2.4, p. 7] – but the constraints (here the orderings) are always defined between
elements of the same type.

CSL 2025

https://arxiv.org/abs/2404.15496

21:4 The Algebras for Automatic Relations

dependency seems necessary to tackle Question 1.2. Moreover, we show that these algebras
arise from a monad, but to our knowledge none of the meta-theorems developing algebraic
language theories over monads apply to it, see the full version for more details.

We show that assuming that V is a ∗-pseudovariety of regular languages – in short, a class
of regular languages with desirable closure properties – , then the algebraic characterization
of V can be easily lifted to characterize V-relations.

▶ Theorem 4.2 (Lifting theorem: Elementary Formulation). Given a relation R and a ∗-
pseudovariety of regular languages V corresponding to a pseudovariety of monoids V, the
following are equivalent:
1. R is a V-relation,
2. R is recognized by a finite synchronous algebra A whose underlying monoids are all in V,
3. all underlying monoids of the syntactic synchronous algebras AR of R are in V.

This theorem rests on a solid algebraic theory. First, we show the existence of syntactic
algebras (Lemma 3.11): each relation R admits a unique canonical and minimal algebra
AR , which is finite iff the relation is synchronous, and then, we exhibit a correspondence
between classes of finite algebras and classes of synchronous relations (Lemma 4.7) – we
assume suitable closure properties; these classes are called “pseudovarieties”. While the proof
structures of Lemmas 3.11 and 4.7 follow the classic proofs, see e.g. [31], the dependency
relation has to be taken into account quite carefully, leading for instance to a surprising
definition of residuals, see Definition 4.5.

Organization. After giving preliminary results in Section 2, we introduce the synchronous
algebras in Section 3 and show the existence of syntactic algebras. We then proceed to prove
the lifting theorem for ∗-pseudovarieties in Section 4, and after introducing ∗-pseudovarieties
of synchronous relations, we provide a more algebraic reformulation of the lifting theorem
(Theorem 4.9). We conclude the paper with a short discussion in Section 5.

1.4 Related Work
The algebraic framework has been extended far beyond languages of finite words: let us cite
amongst other Reutenauer’s “algèbre associative syntactique” for weighted languages [33,
Théorème I.2.1, p. 451] and their associated Eilenberg theorem [33, Théorème III.1.1, p. 469];
for languages of ω-words, Wilke’s algebras and ω-semigroups, see [29, §II, pp. 75–131 &
§VI, pp. 265–306]; more generally, for languages over countable linear orderings, see Carton,
Colcombet & Puppis’ “⊛-monoids” and “⊛-algebras” [14, §3, p. 7]. A systemic approach has
been recently developed using monads, see the full version. Non-linear structures are also
suited to such an approach, see e.g. Bojańczyk & Walukiewicz’s forest algebras [11, §1.3,
p. 4] [10, §5, p. 159], or Engelfriet’s hyperedge replacement algebras for graph languages [15,
§2.3, p. 100] [9, §6.2, p. 194]. For relations over words (a.k.a. transductions), recognizable
relations are exactly the ones recognized by monoid morphisms Σ∗ × Σ∗ → M where M
is finite. This can be trivially generalized to show that a relation R is a finite union of
Cartesian products of languages in V if, and only if, it is recognized by a monoid from V,
the pseudovariety of monoids corresponding to V, see the full version. In 2023, Bojańczyk
& Nguyễn managed to develop an algebraic structure called “transducer semigroups” for
“regular functions” [8, Theorem 3.2, p. 6], an orthogonal class of relations to ours – see
Figure 4.

https://arxiv.org/abs/2404.15496
https://arxiv.org/abs/2404.15496
https://arxiv.org/abs/2404.15496

R. Morvan 21:5

The counterpart of V-relations for rational relations – that we call here V-rational relations
– was studied by Filiot, Gauwin & Lhote [20]: they show that if V has decidable membership,
then “V-rational transductions” also have decidable membership [20, Theorem 4.10, p. 26].
“Rational transductions” correspond in Figure 4 to the intersection of functional relations
with rational relations: this class is orthogonal to synchronous relations, but is included in
the class of “regular functions”. A different problem – focussing more on the semantics of
the transduction – , called “V-continuity” was studied by Cadilhac, Carton & Paperman
[12, Theorem 1.3, p. 3], although it has to be noted that their results only concern a finite
number of pseudovarieties.

2 Preliminaries

2.1 Automata & Relations
We assume familiarity with basic algebraic language theory over finite words, see [10, §1, 2, 4,
pp. 3–66 & pp. 107–156] for a succinct and monad-driven approach, or [31, §I–XIV, pp. 3–247]
for a more detailed presentation of the domain. We also refer to [36] for a presentation on
pseudovarieties.4 More precise pointers are given in the full version.

A relation is a subset of Σ∗ × Σ∗, where Σ is an alphabet – i.e. a non-empty finite
set. We define its complement ¬R as the relation {(u, v) ∈ Σ∗ × Σ∗ | (u, v) ̸∈ R}. Letting
Σ2 =̂ (Σ×Σ) ∪ (Σ×{ }) ∪ ({ }×Σ), a synchronous automaton is a finite-state machine with
initial states, final states, and non-deterministic transitions labelled by elements of Σ2 . We
denote by WellFormedΣ the set of well-formed words over Σ2 where the padding symbols are
placed consistently, namely: if some padding symbol occurs on a tape/component, then the
following symbols of this tape/component must all be padding symbols. From this constraint,
and since () ̸∈ Σ2 , there can never be padding symbols on both tapes.

Note that elements of WellFormedΣ are in natural bijection with Σ∗ × Σ∗ – see Figure 1.
The relation recognized by a synchronous automaton is the set of pairs (u, v) ∈ Σ∗ × Σ∗

such that their corresponding element in WellFormedΣ is the label of an accepting run of the
automaton. We say that a relation is synchronous if it is recognized by such a machine.
▶ Remark 2.1. Crucially, in the semantics of synchronous automata we never try to feed
them inputs where the padding symbols are not consistent: for instance, while(

aab
b a

)
, or

(
aba
a b

)
are sequences in (Σ2)∗, the behaviour of a synchronous automaton on such sequences is
completely disregarded to define the relation it recognizes.

We can then reformulate the definition of the semantics of a synchronous automaton, to
make the connection with V-relations – see the next subsection – explicit.

▶ Fact 2.2. Given a synchronous automaton, its semantics as a synchronous automaton
can be written as the intersection of its semantics as a classical automaton over Σ2 with
WellFormedΣ.

In particular a relation R is synchronous if, and only if, it is a regular language when
seen as a subset of (Σ2)∗.

4 “Pseudovarieties of foo” and “varieties of finite foo” – where foo is e.g. “groups” or “semigroups” – are
used interchangeably in the literature.

CSL 2025

https://arxiv.org/abs/2404.15496

21:6 The Algebras for Automatic Relations

2.2 Induced Relations
Given a class V of regular languages, the class of V-relations over Σ consists of all relations
of the form L ∩ WellFormedΣ for some L ∈ VΣ2 – see Figure 2.5

For instance, if V is the class of all regular languages, then by Fact 2.2, V-relations are
exactly the regular relations, a.k.a. synchronous relations! However, because of Remark 2.1,
the minimal automaton for a relation, seen as a language over Σ2 , can be significantly more
complex than a deterministic complete synchronous automaton recognizing it, see Figure 3
in page 19 – while the size blow-up is only polynomial, it breaks many of the structural
properties of the automaton, such as the property of being a permutation automaton.

Note that if R belongs to V when R is seen as a language over Σ2 , then R is a V-relation.
The converse implication holds under some strong assumption on V (Fact 2.3), but is not
true in general (Example 2.4).

▶ Fact 2.3. If V is a class of languages closed under intersection and that contains
WellFormedΣ, then a relation R is a V-relation if, and only if, it belongs to V when seen as
a language over Σ2 .

Classes of languages V satisfying the previous assumption (e.g. first-order definable
languages, piecewise-testable languages, etc.) are easy to capture when it comes to V-
relations since this class reduces to V-languages. So, in the remaining of the paper, we will
focus on classes V which do not satisfy the assumptions of Fact 2.3, such as group languages.

▶ Example 2.4 (Group relations). If V is the class of group languages, namely languages
recognized by permutation automata6 or equivalently by a finite group, then we call V-
relations “group relations”. They can be characterized as relations recognized by permutation
synchronous automata. For instance, the relation of Figure 1 is a group relation as witnessed
by the permutation synchronous automaton of Figure 1. Note however that it is not a group
language, when seen as a language over Σ2 , since its minimal automaton over Σ2 is not a
permutation automaton, see Figure 3 on Page 19.

▶ Fact 2.5. Given a relation R and a class V of languages, the following are equivalent:
1. R is a V-relation;
2. R and ¬R are V-separable as languages over Σ2 , i.e. there is a language in V which

contains R and does not intersect ¬R.

Proof. By definition, see Figure 2, on page 3. ◀

And so, if the V-separability problem is decidable, then the class of V-relations is
decidable. However, there are pseudovarieties V with decidable membership but undecidable
separability problem [34, Corollary 1.6, p. 478].7 Moreover, some of these classes do not
contain WellFormedΣ [34, Corollary 1.7, p. 478]. But beyond this, even when a separation
algorithm exists, it can be conceptually much harder than its membership counterpart: for

5 The notation L ∈ VΣ2 means that L is a language over the alphabet Σ2 . See [31, introduction of
§XIII.1] for why classes of regular languages are defined in such a way.

6 A permutation automaton is a finite-state deterministic complete automaton whose transition functions
are all permutations of states.

7 The paper cited only claims undecidability of pointlikes, but it was noted in [21, §1, pp. 1–2] that
undecidability of the 2-pointlikes also holds, which is a problem equivalent to separability by [1,
Proposition 3.4, p. 6].

R. Morvan 21:7

instance, deciding membership for group languages is trivial – it boils down to checking if a
monoid is a group – , yet the decidability of the separation problem for group languages is
considered to be one of the major results in semigroup theory: it follows from Ash’s infamous
type II theorem [2, Theorem 2.1, p. 129], see [22, Theorem 1.1, p. 3] for a presentation
of the result in terms of pointlike sets, see also [32, §III, Theorem 8, p. 5] for an elegant
automata-theoretic reformulation.

3 Synchronous Algebras

In this section, we introduce and study the “elementary” properties of synchronous algebras.

3.1 Types & dependent Sets

Motivation. The axiomatization of a semigroup reflects the algebraic structure of finite
words: these objects can be concatenated, in an associative way – reflecting the linearity
of words. Now observe that elements of WellFormedΣ are still linear, but not all words can
be concatenated together: for instance, (a) cannot be followed by (ab). Formally, given two
words u, v ∈ WellFormedΣ, to decide if uv ∈ WellFormedΣ it is necessary and sufficient to
know if the last pair of u and first pair of v consists of a pair of proper letters (denoted by
l⁄l), a pair of a proper letter and a blank/padding symbol (l⁄b) or a pair of a blank/padding
symbol and a proper letter (b⁄l). This information is called the letter-type of an element
of Σ2 .

We then define the type of a word of (Σ2)+ as the pair (α, β), usually written α → β, of
the letter-types of its first and last letters. It is then routine to check that the possible types
of well-formed words are

T =̂
{

l⁄l → l⁄l , l⁄l → l⁄b , l⁄b → l⁄b , l⁄l → b⁄l , b⁄l → b⁄l
}
.

For the sake of readability, we will write α instead of α → α for α ∈ {l⁄l , l⁄b , b⁄l}.
One non-trivial point lies in the following innocuous question: what is the type of the

empty word? Any type of T sounds like an acceptable answer. But then it would be natural
to say that the concatenation of (aaaaaa) of type l⁄l with the empty word of type l⁄l → l⁄b
should be (aaaaaa) of type l⁄l → l⁄b . Automata-wise, this would represent a sequence of
transitions (aa) , (aa) , (aa) together with the promise that the next transition would have a
padding symbol on its second tape. But then, one has to formalize the idea that the two
elements (aaaaaa) of type l⁄l and l⁄l → l⁄b represent the same underlying pair of words of
Σ∗ × Σ∗: this idea will be captured by what we call a dependency relation. A more natural
solution would be to simply introduce a new type for the empty word (or to forbid it), but
we show in the full version that the resulting notion of algebras cannot capture the property
of being a V-relation.

A T-typed set (or typed set for short) consists of a tuple X = (Xτ)τ∈T, where each Xτ is a
set. Instead of x ∈ Xτ , we will often write xτ ∈ X. A map between typed sets X and Y is a
collection of functions Xτ → Yτ for each type τ . Similarly, a subset of X is a tuple of subsets
of Xτ for each type τ . To make the notations less heavy, we will often think of typed sets
as sets with type annotations rather than tuples, and ask that all operators/constructions
should preserve this type.

CSL 2025

https://arxiv.org/abs/2404.15496

21:8 The Algebras for Automatic Relations

▶ Definition 3.1. A dependency relation over a typed set X consists of a reflexive and
symmetric relation ≍ over ⊎X =̂

⋃
τ∈TXτ × {τ}, such that for all xσ, yσ ∈ X, if xσ ≍ yσ,

then xσ = yτ .
Crucially, we do not ask for this relation to be transitive – in some examples the dependency

relation will be an equivalence relation, but not always (see the full version), and this
non-transitivity is actually an important feature, motivated amongst other by the syntactic
congruence and Corollary 3.14.

A dependent set is a T-typed set together with a dependency relation over it. A closed
subset of a dependent set ⟨X,≍⟩ is a subset C ⊆ X such that for all x, x′ ∈ X, if x ≍ x′

then x ∈ C ⇐⇒ x′ ∈ C.8

▶ Example 3.2. Given a finite alphabet Σ, let S2Σ be9 the dependent set of synchronous
words defined by:

(S2Σ)l⁄l =̂ (Σ × Σ)∗,
(S2Σ)l⁄l→l⁄b =̂ (Σ × Σ)∗(Σ ×)∗,
(S2Σ)l⁄b =̂ (Σ ×)∗,
(S2Σ)l⁄l→b⁄l =̂ (Σ × Σ)∗(× Σ)∗,
(S2Σ)b⁄l =̂ (× Σ)∗.

Moreover, ≍ is the reflexive and symmetric closure of the relation that identifies ul⁄l with
ul⁄l→β for all u ∈ (Σ × Σ∗) and β ∈ {l⁄b , b⁄l}, and ul⁄l→l⁄b with ul⁄b for u ∈ (Σ ×)∗,
and ul⁄l→b⁄l with ub⁄l for u ∈ (× Σ)∗. This structure is depicted in Figure 5.

Given a relation R ⊆ Σ∗ ×Σ∗, we denote by R = {(u, v)τ | (u, v)τ ∈ S2Σ and (u, v) ∈ R}
the closed subset of S2Σ induced by R.

▶ Fact 3.3. The map R 7→ R is a bijection between relations and closed subsets of S2Σ.

Proof. Let f be the function which maps a closed subset C of S2Σ to {(u, v) ∈ Σ∗ × Σ∗ |
(u, v)τ ∈ C for some τ ∈ T}. It then follows that f ◦ − (resp. f(−)) is the identity on subsets
of Σ∗ × Σ∗ (resp. closed subsets of S2Σ). ◀

3.2 Synchronous Algebras
One key property of types is that some of them can be concatenated to produce other
types. We say that two types σ, τ ∈ T are compatible when there exists non-empty words
u, v ∈ WellFormedΣ of type σ and τ , respectively, such that uv is well-formed. Said otherwise,
α → β is compatible with β′ → γ if either β = β′ or β = l⁄l – indeed, for this last case note
that e.g. the concatenation of (aaaaaa) of type l⁄l with (aa) of type b⁄l is well-formed. Lastly,
if α → β is compatible with β′ → γ, we define their product as (α → β)·(β′ → γ) =̂ α → γ.
Note that this partial operation is associative, in the following sense: for ρ, σ, τ ∈ T, (ρ·σ)·τ
is well-defined if and only if ρ·(σ·τ) is well-defined, in which case both types are equal. This
implies that the notion of compatibility of types can be unambiguously lifted to finite lists of
types τ1, . . . , τn.

8 In other words, C is a union of equivalence classes of the transitive closure of ≍.
9 The index refers to the arity of the relations we are considering: here we focus on binary relations, but

all constructions can be generalized to higher arities.

https://arxiv.org/abs/2404.15496

R. Morvan 21:9

▶ Definition 3.4. A synchronous algebra ⟨A, ·,≍⟩ consists of a dependent set ⟨A,≍⟩ together
with a partial binary operation · on A, called product such that:

for xσ, yτ ∈ A, xσ · yτ is defined iff σ and τ are compatible,
associativity: for all xρ, yσ, zτ ∈ A, if ρ, σ, τ are compatible:

(xρ · yσ) · zτ = xρ · (yσ · zτ),

“monotonicity”: for all xσ, x′
σ′ , yτ ∈ A, if xσ ≍ x′

σ′ and both σ, τ and σ′, τ are compatible,
then xσ · yτ ≍ x′

σ′ · yτ , and dually if τ, σ and τ, σ′ are compatible, then yτ · xσ ≍ yτ · x′
σ′ ,

units: for each type τ there is an element 1τ ∈ A such that for any xσ ∈ A, then
1τ · xσ ≍ xσ if τ and σ are compatible, and xσ · 1τ ≍ xσ if σ and τ are compatible, and
moreover, 1l⁄l→β = 1l⁄l · 1β for β ∈ {l⁄b , b⁄l}.

Note in particular that for any type τ ∈ {l⁄l , l⁄b , b⁄l}, then 1τ ·xτ ≍ xτ but since 1τ ·xτ
has type τ and ≍ is a dependency relation, then 1τ · xτ = xτ . This implies in particular
that restricting ⟨A, ·⟩ to a type l⁄l , l⁄b or b⁄l yields a monoid. These are called the three
underlying monoids of A. The canonical example of synchronous algebras is synchronous
words S2Σ under concatenation. Its underlying monoids are (Σ × Σ)∗, (Σ × { })∗ and
({ } × Σ)∗.

▶ Fact 3.5. Any closed subset of A either contains all units, or none of them.

Proof. From 1l⁄l→l⁄b = 1l⁄l · 1l⁄b we have 1l⁄l ≍ 1l⁄l→l⁄b and 1l⁄l→l⁄b ≍ 1l⁄b .
By symmetry between l⁄b and b⁄l , we also have 1l⁄l ≍ 1l⁄l→b⁄l and 1l⁄l→b⁄l ≍ 1b⁄l .
Hence, if a closed subset of A contains at least one unit, then it must contain them all. ◀

Note that the product induces a monoid left (resp. right) action of the underlying monoid
Al⁄l (resp. Al⁄b) on the set Al⁄l→l⁄b . Moreover, xl⁄l 7→ xl⁄l · 1l⁄b identifies any
element of type l⁄l with an element of type l⁄l → l⁄b . Over S2Σ, these identifications are
injective, but it need not be the case in general. Note also that in general, xl⁄l · 1l⁄l→l⁄b =
xl⁄l · 1l⁄l · 1l⁄b = xl⁄l · 1l⁄b .

▶ Remark 3.6. There exists a monad over the category of dependent sets whose Eilenberg-
Moore algebras exactly correspond to synchronous algebras, see the full version.

Morphisms of synchronous algebras are defined naturally as maps that preserve the type,
units, the product and the dependency relation.

Free algebras. S2Σ is free in the sense that for any synchronous algebra A, there is a
natural bijection between synchronous algebra morphisms S2Σ → A and maps of typed sets
Σ2 → A. Said otherwise, synchronous algebra morphisms are uniquely defined by their value
on Σ2 .

3.3 Recognizability

Given a synchronous algebra A, a morphism φ : S2Σ → A and a closed subset Acc ⊆ A
called “accepting set”, we say that ⟨φ,A,Acc⟩ recognizes a relation R ⊆ Σ∗ × Σ∗ when
R = φ−1[Acc]. We extend the notion of recognizability to ⟨φ,A⟩ or to simply A by existential
quantification over the missing elements in the tuple ⟨φ,A,Acc⟩.

CSL 2025

https://ncatlab.org/nlab/show/algebra+over+a+monad
https://ncatlab.org/nlab/show/algebra+over+a+monad
https://arxiv.org/abs/2404.15496

21:10 The Algebras for Automatic Relations

Synchronous algebra induced by a monoid. A monoid morphism φ : (Σ2)∗ → M naturally
induces a synchronous algebra morphism φ̃ : S2Σ → AM , where:

AM has for every type τ a copy of M , and ≍ is {(xσ, xτ) | x ∈ M,σ, τ ∈ T},
for all xσ, yτ ∈ AM with compatible type, xσ · yτ =̂ (x · y)σ·τ ,
φ̃ (ab) =̂

(
φ (ab)

)
l⁄l , φ̃ (a) =̂

(
φ (a)

)
l⁄b , and φ̃ (a) =̂

(
φ (a)

)
b⁄l .

The algebra simply duplicates M as many times as needed and identifies two elements
together when they originated from the same element of M .

▶ Fact 3.7. If φ recognizes R for some relation R ⊆ Σ∗ × Σ∗ seen as a language over Σ2 ,
then φ̃ recognizes R.

Consolidation of a synchronous algebra. Given a synchronous algebra morphism φ : S2Σ →
A, define its consolidation10 as the semigroup morphism φ0 : (Σ2)∗ → A0, where A0 is the
monoid obtained from ⊎A by first merging units, by adding a zero (denoted by 0), and
extending · to be a total function by letting all missing products equal 0, and φ0 sends a
word u ∈ (Σ2)∗ to

0 if u is not well-formed,
φ(ul⁄l) if u ∈ (Σ × Σ)∗,
φ(ul⁄b) if u ∈ (Σ ×)+,
φ(ub⁄l) if u ∈ (× Σ)+,
φ(ul⁄l→l⁄b) if u ∈ (Σ × Σ)+(Σ ×)+,
φ(ul⁄l→b⁄l) if u ∈ (Σ × Σ)+(× Σ)+.

Note that this operation disregards the dependency relation of A.

▶ Fact 3.8. If φ recognizes some relation R, then φ0 recognizes R, when seen as a language
over Σ2 .

The following result follows from Facts 2.2, 3.7, and 3.8.

▶ Proposition 3.9. A relation is synchronous if and only if it is recognized by a finite
synchronous algebra.

Let us continue with a slightly less trivial example of algebra.

▶ Example 3.10 (Group relations: Example 2.4, cont’d.). Fix p, q ∈ N>0. Let Zp,q denote the
algebra whose underlying monoids are:

the trivial monoid (0,+) for type l⁄l ,
the cyclic monoid (Z/pZ,+) for type l⁄b ,
the cyclic monoid (Z/qZ,+) for type b⁄l .

Moreover, the sets Zl⁄l→l⁄b and Zl⁄l→b⁄l are defined as Z/pZ and Z/qZ, respectively.
The product is addition – we identify 0l⁄l with the zero of Z/pZ and of Z/qZ. We denote
by k̄ the equivalence class of k ∈ Z in Z/nZ when n is clear from context. The dependency
relation identifies (1) all units together and (2) xσ with 1τ · xσ and xσ · 1τ when the types
are compatible.

Let φ : S2Σ → Zp,q be the synchronous algebra morphism defined by

φ (ab) =̂ 0̄l⁄l , φ (a) =̂ 1̄l⁄b , φ (a) =̂ 1̄b⁄l and φ(ετ) =̂ 0̄τ for τ ∈ T.

10 Named by analogy with Tilson’s construction [37, §3, p. 102].

R. Morvan 21:11

This morphism recognizes any relation of the form

RI,J =̂
{

(u, v)
∣∣ |u| > |v| and (|u| − |v| mod p) ∈ I, or

|u| < |v| and (|v| − |u| mod q) ∈ J.
}
,

where I ⊆ Z/pZ and J ⊆ Z/qZ are such that 0̄ ̸∈ I and 0̄ ̸∈ J . This last condition is
necessary because the accepting set has to be a closed subset of Zp,q: if 0̄ was in I, then we
would need 0̄ ∈ J , but also to add 0̄l⁄l to the accepting set: this would recognize{

(u, v)
∣∣ |u| > |v| and (|u| − |v| mod p) ∈ I, or

|u| < |v| and (|v| − |u| mod q) ∈ J, or |u| = |v|
}
.

Note also that all relations RI,J with 0̄ ̸∈ I and 0̄ ̸∈ J are group relations: letting G

be the group Z/pZ × Z/qZ, R can be written as WellFormedΣ ∩ ψ−1[I × {0} ∪ {0} × J]
where ψ : (Σ2)∗ → G is the monoid morphism defined by ψ (ab) =̂ (0̄, 0̄), ψ (a) =̂ (1̄, 0̄) and
ψ (a) =̂ (0̄, 1̄).

3.4 Syntactic Morphisms & Algebras

▶ Lemma 3.11 (Syntactic morphism theorem). For each relation R, there exists a surjective
synchronous algebra morphism

ηR: S2Σ ↠ AR

that recognizes R and is such that for any other surjective synchronous algebra morphism
φ : S2Σ ↠ B recognizing R, there exists a synchronous algebra morphism ψ : B ↠ AR such
that the diagram

S2Σ AR

B,

ηR

φ
ψ

commutes. The objects ηR and AR are called the syntactic synchronous algebra morphism
and syntactic synchronous algebra of R, respectively. Moreover, these objects are unique up
to isomorphisms of the algebra.

▶ Corollary 3.12 (of Proposition 3.9 and Lemma 3.11). A relation is synchronous if and only
if its syntactic synchronous algebra is finite.

The proof of Lemma 3.11 – see the full version – relies, as in the case of monoids, on the
notion of congruence.

Given a synchronous algebra ⟨A,≍, ·⟩, a congruence is any reflexive, symmetric relation
⌢
⌣ over A which is coarser than ≍, and which is locally transitive, meaning that for all
xσ, x

′
σ, yτ , y

′
τ ∈ X, if x′

σ ⌢
⌣ xσ, xσ ⌢

⌣ yτ and yτ ⌢
⌣ y′

τ , then x′
σ ⌢

⌣ y′
τ .11

The quotient structure A/⌢⌣ of A by a congruence ⌢
⌣ is defined as follows:

its underlying typed set consists of the equivalence classes of A under the equivalence
relation {(xσ, yσ) | xσ ⌢

⌣ yσ}, such a class being abusively denoted by [x]⌢⌣,
its product is the product induced by A, in the sense that [x]⌢⌣ · [y]⌢⌣ =̂ [xy]⌢⌣, and

11 In particular, it implies that ⌢
⌣ is transitive when restricted to elements of the same type.

CSL 2025

https://ncatlab.org/nlab/show/isomorphism
https://arxiv.org/abs/2404.15496

21:12 The Algebras for Automatic Relations

its dependency relation is the relation induced by ⌢
⌣, i.e. [x]⌢⌣ ≍ [y]⌢⌣ whenever x ⌢

⌣ y,
its units are defined as the equivalence classes of the units of A.

Moreover, x 7→ [x]⌢⌣ defines a surjective morphism of synchronous algebras from A to A/⌢⌣.
Given a synchronous algebra ⟨A,≍, ·⟩ and a closed subset C ⊆ A, we define a congruence

⌢
⌣
C , called syntactic congruence of C over A by letting aσ ⌢

⌣
C bτ when for all x, y ∈ A

if both xaσy and xbτy are defined, then xaσy ∈ C iff xbτy ∈ C, and
if both xaσ and xbτ are defined, then xaσ ∈ C iff xbτ ∈ C, and
if both aσy and bτy are defined, then aσy ∈ C iff bτy ∈ C.

It is routine to check that the syntactic congruence is indeed a congruence. For instance,
to prove that ⌢

⌣
C is coarser than ≍, observe that if aσ ≍ bτ , then for all x, y s.t. both xaσy

and xbτy are defined, then xaσy ≍ xbτy, and since C is a closed subset of A, xaσy ∈ C iff
xbτy ∈ C. The other two conditions are proven in the same fashion. Note however that
while the relation is locally transitive, it is not transitive in general.

When R ⊆ Σ∗ × Σ∗ is a relation, we abuse the notation and write ⌢
⌣
R to denote the

syntactic congruence ⌢
⌣
R of R in S2Σ. The existence of the syntactic morphism then follows

from the next proposition, proven in the full version.

▶ Proposition 3.13. Let φ : S2Σ ↠ A be a surjective synchronous algebra morphism that
recognizes R, say R = φ−1[Acc] for some closed subset Acc ⊆ A, then

φ/⌢
⌣Acc : S2Σ ↠ A/⌢

⌣Acc

u 7→ [φ(u)]⌢
⌣

Acc

is the syntactic morphism of R.

▶ Corollary 3.14. In the syntactic synchronous algebra AR , the syntactic congruence ⌢
⌣Acc

and the dependency relation ≍ coincide.

Proof. By Proposition 3.13 applied to the syntactic morphism, x 7→ [x]⌢⌣Acc is an isomorphism
from AR to AR/⌢⌣Acc. Hence, [x]⌢⌣Acc ≍ [y]⌢⌣Acc in AR/⌢⌣Acc iff x ≍ y in AR , for all x, y ∈ AR .
But then, the dependency relation ≍ of AR/⌢⌣Acc is, by definition, such that [x]⌢⌣Acc ≍ [y]⌢⌣Acc

iff x ⌢
⌣Acc y. Putting both equivalences together, we get that x ⌢

⌣Acc y iff x ≍ y for all
x, y ∈ AR . ◀

We provide in the full version a simple example of syntactic synchronous algebra whose
dependency relation is not an equivalence relation.

Boolean operations. Given two synchronous algebras A and B, define their Cartesian
product A × B by taking, for each type τ , the Cartesian product Aτ ×Bτ . Units, product are
defined naturally, and the dependency relation is defined by taking the conjunction over each
component. Then ¬R is recognized by A, and R ∪ S and R ∩ S are recognized by A × B.

4 The Lifting Theorem & Pseudovarieties

4.1 Elementary Formulation
▶ Example 4.1 (Group relations: Example 3.10 cont’d). We want to decide when the relation

RI,J =̂
{

(u, v)
∣∣ |u| > |v| and (|u| − |v| mod p) ∈ I, or

|u| < |v| and (|v| − |u| mod q) ∈ J.
}

from Example 3.10 is a group relation. By definition this happens if and only if there exists
a finite group G, together with a monoid morphism φ : (Σ2)∗ → G and a subset Acc ⊆ G s.t.
∀u ∈ WellFormedΣ, u ∈ RI,J iff φ(u) ∈ Acc. We claim:

https://arxiv.org/abs/2404.15496
https://arxiv.org/abs/2404.15496

R. Morvan 21:13

RI,J is a group relation iff
(
0̄ ̸∈ I and 0̄ ̸∈ J

)
. (7)

The right-to-left implication was shown in Example 3.10. We prove the implication from
left to right: let n be the order of G so that xn = 1 for all x ∈ G. In particular, we have:
φ

(
(a)pqn

)
= 1 = φ

(
(aa)pqn

)
. Since φ

(
(aa)pqn

)
̸∈ RI,J , it follows that (a)pqn ̸∈ RI,J i.e.

0̄ ̸∈ I. Also, 0̄ ̸∈ J by symmetry, which concludes the proof.

Even more generally, we can decide if a relation R is a group relation by simply looking
at the syntactic synchronous algebra of R.

▶ Theorem 4.2 (Lifting theorem: Elementary Formulation). Given a relation R and a ∗-
pseudovariety of regular languages V corresponding to a pseudovariety of monoids V, the
following are equivalent:
1. R is a V-relation,
2. R is recognized by a finite synchronous algebra A whose underlying monoids are all in V,
3. all underlying monoids of the syntactic synchronous algebras AR of R are in V.

See the proof in the full version.

▶ Remark 4.3. In light of Theorem 4.2, one can wonder whether the notion of synchronous
algebra is necessary to characterize V-relations, or if it is enough to look at the languages
corresponding to the underlying monoids. Said otherwise, is the membership of R in the class
of V-relations uniquely determined by the regular languages R ∩ (Σ × Σ)∗, R ∩ (Σ × { })∗

and R ∩ ({ } × Σ)∗? Unsurprisingly, synchronous algebras are indeed necessary, as there are
relations R such that:

R ∩ (Σ × Σ)∗ ∈ VΣ×Σ, R ∩ (Σ ×)∗ ∈ VΣ× and R ∩ (× Σ)∗ ∈ V ×Σ, (9)

but R is not a V-relation. This can happen even if V is the ∗-pseudovariety of all regular
languages: for instance for the relation

R =̂ {(u, v) | |u| > |v| > 0 and |u| − |v| is prime}.

Notice that there is a subtle but crucially important difference between (9) and the second
item of the Lifting Theorem: while the underlying monoids of a synchronous algebra A
recognizing R only accept words of the form (Σ × Σ)∗, (Σ ×)∗ or (× Σ)∗, elements of
(Σ × Σ)+(Σ ×)+ or (Σ × Σ)+(× Σ)+ influence the underlying monoids of A via the axioms
of synchronous algebras.

Also, note that the existence the Lifting Theorem follows from the careful definition of
synchronous algebras: more naive definitions of these algebras simply cannot characterize
V-relations, see the full version.

From Theorem 4.2 and the implicit fact that all our constructions are effective, we obtain
a decidability (meta-)result for V-relations.

▶ Corollary 4.4. The class of V-relations has decidable membership if, and only if, V has
decidable membership.

For instance, a relation is a group relation if, and only if, all underlying monoids of its
syntactic synchronous algebra are groups.

CSL 2025

https://arxiv.org/abs/2404.15496
https://arxiv.org/abs/2404.15496

21:14 The Algebras for Automatic Relations

4.2 Pseudovarieties of Synchronous Relations

We introduce the notion of pseudovariety of synchronous algebras and ∗-pseudovariety of
synchronous relations. We show an Eilenberg correspondence between these two notions. We
then reformulate the Lifting Theorem to show that any Eilenberg correspondence between
monoids and regular languages lifts to an Eilenberg correspondence between synchronous
algebras and synchronous relations.

Say that a synchronous algebra A is a quotient of B when there exists a surjective
synchronous algebra morphism from B to A. A subalgebra of B is any closed subset of B
closed under product and containing the units. We then say that synchronous algebra A
divides B when A is a quotient of a subalgebra of B.

Observe that S2Σ admits the following property: elements of type l⁄l → l⁄b and
l⁄l → b⁄l are generated by the underlying monoids. Since syntactic synchronous algebras
are homomorphic images of S2Σ, they also satisfy this property. In general, we say that a
synchronous algebra A is locally generated if every element of type l⁄l → l⁄b (resp. l⁄l →
b⁄l) can be written as the product of an element of type l⁄l with an element of type l⁄b

(resp. b⁄l).
A pseudovariety of synchronous algebras is any class V of locally generated finite syn-

chronous algebras closed under
finite product: if A,B ∈ V then A × B ∈ V,
division: if some finite locally generated algebra A divides B for some B ∈ V, then
A ∈ V.

Because of Lemma 3.11, a synchronous relation is recognized by a finite synchronous
algebra of a pseudovariety V iff its syntactic synchronous algebra belongs to V.

A ∗-pseudovariety of synchronous relations is a function V : Σ 7→ VΣ such that for any
finite alphabet Σ, VΣ is a set of synchronous relations over Σ such that V is closed under

Boolean combinations: if R,S ∈ VΣ, then ¬R, R ∪ S and R ∩ S belong to VΣ too,
Syntactic derivatives: if R ∈ VΣ, then any relation recognized by the syntactic synchronous
algebra morphism of R also belongs to VΣ.
Inverse morphisms: if φ : S2Γ → S2Σ is a synchronous algebra morphism and R ∈ VΣ
then φ−1[R] ∈ VΓ.

To recover a more traditional definition (of the form “closure under Boolean operations,
residuals12 and inverse morphisms”), we need to properly define what are the residuals of
a relation. It turns out that the answer is quite surprising and less trivial than what one
would expect.

▶ Definition 4.5 (Residuals). Let A be a synchronous algebra, xσ ∈ A, and C ⊆ A be a
closed subset. The left residual and right residual of C by xσ are defined by

x−1
σ C =̂

{
yτ ∈ A | ∃y′

τ ′ ⌢
⌣
C yτ , xσy

′
τ ′ ∈ C

}
, and

Cx−1
σ =̂

{
yτ ∈ A | ∃y′

τ ′ ⌢
⌣
C yτ , y

′
τ ′xσ ∈ C

}
,

respectively. We refer indiscriminately to both these notions as residuals. We extend these
notions to sets, by letting X−1C =̂

⋃
x∈X x

−1C and CX−1 =̂
⋃
x∈X Cx

−1.

12 Also called “quotient” e.g. in [31, §III.1.3, p. 39], or “polynomial derivative” in [9, §4, p. 19].

R. Morvan 21:15

For the sake of readability, we will sometimes drop the type of elements when dealing with
residuals. It is routine to check that residuals are always closed subsets (since ⌢

⌣
C is coarser

than the dependency relation), or that (x−1C)y−1 = x−1(Cy−1). Equivalently, Cx−1
σ can be

defined as the smallest closed subset containing the “naive residual”
{
yτ ∈ A | yτxσ ∈ C

}
.

This latter set is always contained in Cx−1
σ (by reflexivity of ⌢

⌣
C), and moreover, if it is

empty, then so is Cx−1
σ .

As an example, consider the relation R from the full version. Then the “naive right
residual” of R by (a)l⁄b consists of εl⁄l and all elements of type l⁄b and l⁄l → l⁄b . But
it does not contain any element of type b⁄l or l⁄l → b⁄l because such elements cannot be
concatenated with (a)l⁄b on the right. Yet, the residual R (a)−1

l⁄b contains all elements of
type b⁄l (and also l⁄l → b⁄l): for instance, (a)b⁄l ∈ R (a)−1

l⁄b since (a)b⁄l ⌢
⌣
R (a)l⁄b

and (a)l⁄b (a)l⁄b ∈ R.
On the other hand, in the algebra S2a consider the relation S = (aa)∗ × a(aa)∗. Then

S (aa)−1
l⁄l is empty since its “naive residual” {yτ ∈ S2a | yτ · (aa) ∈ S} is empty. Indeed, for

yτ · (aa)l⁄l to be well-defined, one needs τ to be l⁄l , i.e. y encodes a pair of two words (u, v)
of the same length. But then (ua, va) ̸∈ S.

▶ Lemma 4.6. A class V : Σ 7→ VΣ is a ∗-pseudovariety of synchronous relations if, and
only if, it is closed under Boolean combinations, residuals and inverse morphisms.

See the proof in the full version.
Let V→V denote the map (called correspondence) that takes a pseudovariety of syn-

chronous algebras and maps it to

V : Σ 7→ {R ⊆ Σ∗ × Σ∗ | AR ∈ V}.

Dually, let V→V denote the correspondence that takes a ∗-pseudovariety of synchronous
relations V and maps it to the pseudovariety of synchronous algebras generated by all AR

for some R ∈ VΣ. Here, the pseudovariety generated by a class C of finite locally generated
synchronous algebras is the smallest pseudovariety containing all finite locally generated
algebras of C, or equivalently,13 the class of all finite locally generated synchronous algebras
that divide a finite product of algebras of C.14

▶ Lemma 4.7 (An Eilenberg theorem for synchronous relations). The correspondences V→V

and V→V define mutually inverse bijections between pseudovarieties of synchronous algebras
and ∗-pseudovarieties of synchronous relations.

See the proof in the full version.
As consequence of Lemma 4.7, if V is a ∗-pseudovariety of synchronous relations and V

is a pseudovariety of synchronous algebras, we write V↔V to mean that either V→V or,
equivalently, V→V. This relation is called an Eilenberg-Schützenberger correspondence.

13 The proof is straightforward, see e.g. [31, Proposition XI.1.1, p. 190] for a proof in the context of
semigroups.

14 Note that “being locally generated” is not preserved by taking subalgebras, but this is not an issue: we
restrict the construction to (finite) locally generated algebras.

CSL 2025

https://arxiv.org/abs/2404.15496
https://arxiv.org/abs/2404.15496
https://arxiv.org/abs/2404.15496

21:16 The Algebras for Automatic Relations

▶ Proposition 4.8. If V is a pseudovariety of monoids, then

Vsync =̂ {A locally generated finite synchronous algebra
s.t. all underlying monoids of A are in V}

is a pseudovariety of synchronous algebras. Similarly, if V is an ∗-pseudovariety of regular
languages, then the class of V-relations, namely

Vsync : Σ 7→ {R ⊆ Σ∗ × Σ∗ | ∃L ∈ VΣ2 , R = L ∩ WellFormedΣ},

is a ∗-pseudovariety of synchronous relations.

Proof. The first point is straightforward. The second one follows from it and Lemma 4.7
and Theorem 4.2. ◀

Finally, Theorem 4.2 can be elegantly rephrased by saying that correspondences between
pseudovarieties of monoids and ∗-pseudovarieties of regular languages lift to correspond-
ences between pseudovarieties of synchronous algebras and ∗-pseudovarieties of synchronous
relations.

▶ Theorem 4.9 (Lifting Theorem: Pseudovariety Formulation). If, in the Eilenberg corres-
pondence between pseudovarieties of monoids and ∗-pseudovarieties of regular languages we
have V↔V, then in the Eilenberg correspondence between the pseudovariety of synchronous
algebras Vsync and the ∗-pseudovariety of synchronous relations Vsync, we have Vsync ↔Vsync.

5 Discussion

A natural next step is to generalize Question 1.2 by replacing WellFormedΣ by a fixed regular
language Ω.

▶ Question 5.1. Given a class of regular languages V, can we characterize (and decide) all
languages of the form L ∩ Ω for some L ∈ V?

We claim that the construction of synchronous algebras can be generalized for any Ω,
giving rise to the notion of “path algebras”. The lifting theorem for monoids can be shown
to hold for some Ω, including well-formed words for n-ary relations with n ≥ 3, and that it
cannot effectively hold for all Ω.

A natural next step would then be to study the relationship between “path algebras” and
Figueira & Libkin’s L-controlled relations [19, §3], see also [16].

Lastly, it would be interesting to extend the results on algebras to automata: for instance,
can we adapt our proof to show the existence of a minimal synchronous automaton for each
relation?

References
1 Jorge Almeida. Some algorithmic problems for pseudovarieties. Publ. Math. Debrecen, 52(1):531–

552, 1999. Consulted version: https://www.researchgate.net/profile/Jorge-Almeida-14/
publication/2510507_Some_Algorithmic_Problems_for_Pseudovarieties/links/
02e7e531d968b4fe8f000000/Some-Algorithmic-Problems-for-Pseudovarieties.pdf.

2 C. J. Ash. Inevitable graphs: a proof of the type II conjecture and some related decision
procedures. International Journal of Algebra and Computation, 01(01):127–146, March 1991.
doi:10.1142/S0218196791000079.

https://www.researchgate.net/profile/Jorge-Almeida-14/publication/2510507_Some_Algorithmic_Problems_for_Pseudovarieties/links/02e7e531d968b4fe8f000000/Some-Algorithmic-Problems-for-Pseudovarieties.pdf
https://www.researchgate.net/profile/Jorge-Almeida-14/publication/2510507_Some_Algorithmic_Problems_for_Pseudovarieties/links/02e7e531d968b4fe8f000000/Some-Algorithmic-Problems-for-Pseudovarieties.pdf
https://www.researchgate.net/profile/Jorge-Almeida-14/publication/2510507_Some_Algorithmic_Problems_for_Pseudovarieties/links/02e7e531d968b4fe8f000000/Some-Algorithmic-Problems-for-Pseudovarieties.pdf
https://doi.org/10.1142/S0218196791000079

R. Morvan 21:17

3 Pablo Barceló, Diego Figueira, and Rémi Morvan. Separating Automatic Relations. In
Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, 48th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2023), volume 272 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 17:1–17:15, Dagstuhl, Germany, 2023.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. Consulted version: https://arxiv.org/
abs/2305.08727v2. doi:10.4230/LIPIcs.MFCS.2023.17.

4 Pablo Barceló, Chih-Duo Hong, Xuan-Bach Le, Anthony W. Lin, and Reino Niskanen.
Monadic Decomposability of Regular Relations. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019), volume 132 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 103:1–103:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. Consulted version: https://arxiv.org/abs/1903.00728v1.
doi:10.4230/LIPIcs.ICALP.2019.103.

5 Pablo Barceló, Leonid Libkin, Anthony W. Lin, and Peter T. Wood. Expressive languages
for path queries over graph-structured data. ACM Trans. Database Syst., 37(4), December
2012. Consulted version: https://homepages.inf.ed.ac.uk/libkin/papers/pods10-tods.
pdf (saved on http://web.archive.org). doi:10.1145/2389241.2389250.

6 Jean Berstel. Transductions and Context-Free Languages. Vieweg+Teubner Verlag, Wiesbaden,
1979. Consulted version: http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/
LivreTransductions.pdf (saved on http://web.archive.org/). URL: http://link.
springer.com/10.1007/978-3-663-09367-1.

7 Achim Blumensath. Monadic Second-Order Model Theory. Version of 2023-12-19 (saved on
http://web.archive.org/), 2023. URL: https://www.fi.muni.cz/~blumens/MSO.pdf.

8 Mikołaj Bojańczyk and Lê Thành Dũng (Tito) Nguyễn. Algebraic Recognition of Regular
Functions. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International
Colloquium on Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 117:1–117:19, Dagstuhl, Germany,
2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. Consulted version: https://hal.
science/hal-03985883v2. doi:10.4230/LIPIcs.ICALP.2023.117.

9 Mikołaj Bojańczyk. Recognisable Languages over Monads. In Igor Potapov, editor, De-
velopments in Language Theory, Lecture Notes in Computer Science, pages 1–13. Springer
International Publishing, 2015. Consulted version: https://arxiv.org/abs/1502.04898v1.
doi:10.1007/978-3-319-21500-6_1.

10 Mikołaj Bojańczyk. Languages recognised by finite semigroups, and their generalisations to
objects such as trees and graphs, with an emphasis on definability in monadic second-order
logic, August 2020. Lecture notes. arXiv:2008.11635, doi:10.48550/arXiv.2008.11635.

11 Mikołaj Bojańczyk and Igor Walukiewicz. Forest algebras. In Jörg Flum, Erich Grädel, and
Thomas Wilke, editors, Logic and Automata: History and Perspectives [in Honor of Wolfgang
Thomas], volume 2 of Texts in Logic and Games, pages 107–132. Amsterdam University Press,
2008. Consulted version: https://hal.science/hal-00105796v1.

12 Michaël Cadilhac, Olivier Carton, and Charles Paperman. Continuity of Functional Trans-
ducers: A Profinite Study of Rational Functions. Logical Methods in Computer Science,
Volume 16, Issue 1, February 2020. doi:10.23638/LMCS-16(1:24)2020.

13 Olivier Carton, Christian Choffrut, and Serge Grigorieff. Decision problems among the
main subfamilies of rational relations. RAIRO - Theoretical Informatics and Applications,
40(2):255–275, April 2006. Consulted version: http://www.numdam.org/item/10.1051/ita:
2006005.pdf. doi:10.1051/ita:2006005.

14 Olivier Carton, Thomas Colcombet, and Gabriele Puppis. An algebraic approach to MSO-
definability on countable linear orderings. The Journal of Symbolic Logic, 83(3):1147–1189,
September 2018. Consulted version: https://arxiv.org/abs/1702.05342v2. doi:10.1017/
jsl.2018.7.

CSL 2025

https://arxiv.org/abs/2305.08727v2
https://arxiv.org/abs/2305.08727v2
https://doi.org/10.4230/LIPIcs.MFCS.2023.17
https://arxiv.org/abs/1903.00728v1
https://doi.org/10.4230/LIPIcs.ICALP.2019.103
https://homepages.inf.ed.ac.uk/libkin/papers/pods10-tods.pdf
https://homepages.inf.ed.ac.uk/libkin/papers/pods10-tods.pdf
http://web.archive.org
https://doi.org/10.1145/2389241.2389250
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.pdf
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.pdf
http://web.archive.org/
http://link.springer.com/10.1007/978-3-663-09367-1
http://link.springer.com/10.1007/978-3-663-09367-1
http://web.archive.org/
https://www.fi.muni.cz/~blumens/MSO.pdf
https://hal.science/hal-03985883v2
https://hal.science/hal-03985883v2
https://doi.org/10.4230/LIPIcs.ICALP.2023.117
https://arxiv.org/abs/1502.04898v1
https://doi.org/10.1007/978-3-319-21500-6_1
https://arxiv.org/abs/2008.11635
https://doi.org/10.48550/arXiv.2008.11635
https://hal.science/hal-00105796v1
https://doi.org/10.23638/LMCS-16(1:24)2020
http://www.numdam.org/item/10.1051/ita:2006005.pdf
http://www.numdam.org/item/10.1051/ita:2006005.pdf
https://doi.org/10.1051/ita:2006005
https://arxiv.org/abs/1702.05342v2
https://doi.org/10.1017/jsl.2018.7
https://doi.org/10.1017/jsl.2018.7

21:18 The Algebras for Automatic Relations

15 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Lo-
gic: A Language-Theoretic Approach. Encyclopedia of Mathematics and its Applications.
Cambridge University Press, Cambridge, 2012. Consulted version: https://hal.science/
hal-00646514v1. doi:10.1017/CBO9780511977619.

16 María Emilia Descotte, Diego Figueira, and Gabriele Puppis. Resynchronizing Classes of Word
Relations. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella,
editors, 45th International Colloquium on Automata, Languages, and Programming (ICALP
2018), volume 107 of Leibniz International Proceedings in Informatics (LIPIcs), pages 123:1–
123:13, Dagstuhl, Germany, 2018. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. Consul-
ted version: https://hal.science/hal-01721046v2. doi:10.4230/LIPIcs.ICALP.2018.123.

17 Joost Engelfriet and Hendrik Jan Hoogeboom. Mso definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Logic, 2(2):216–254, April 2001. Consulted
version: SciHub. doi:10.1145/371316.371512.

18 Diego Figueira. Foundations of Graph Path Query Languages (Course Notes). In Reasoning
Web Summer School 2021, volume 13100 of Reasoning Web. Declarative Artificial Intelligence -
17th International Summer School 2021, Leuven, Belgium, September 8-15, 2021, Tutorial
Lectures, pages 1–21, Leuven, Belgium, September 2021. Springer. Consulted version: https:
//hal.science/hal-03349901. doi:10.1007/978-3-030-95481-9_1.

19 Diego Figueira and Leonid Libkin. Synchronizing Relations on Words. Theory of Com-
puting Systems, 57(2):287–318, August 2015. Consulted version: https://hal.science/
hal-01793633v1/. doi:10.1007/s00224-014-9584-2.

20 Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote. Logical and Algebraic Characterizations
of Rational Transductions. Logical Methods in Computer Science, Volume 15, Issue 4, December
2019. doi:10.23638/LMCS-15(4:16)2019.

21 S. J. v. Gool and B. Steinberg. Pointlike sets for varieties determined by groups. Advances
in Mathematics, 348:18–50, May 2019. Consulted version: https://arxiv.org/abs/1801.
04638v1. doi:10.1016/j.aim.2019.03.020.

22 Karsten Henckell, Stuart W. Margolis, Jean-Éric Pin, and John Rhodes. Ash’s type II theorem,
profinite topology and Malcev products: part I. International Journal of Algebra and Compu-
tation, 01(04):411–436, December 1991. Consulted version: https://www.irif.fr/~jep/PDF/
HMPR.pdf (saved on http://web.archive.org/). doi:10.1142/S0218196791000298.

23 Bernard R. Hodgson. Théories décidables par automate fini. PhD thesis, Université de
Montréal, 1976. Not available online.

24 Bernard R. Hodgson. On direct products of automaton decidable theories. Theoretical
Computer Science, 19(3):331–335, September 1982. doi:10.1016/0304-3975(82)90042-1.

25 Bernard R. Hodgson. Décidabilité par automate fini. Annales des Sciences Mathématiques du
Québec, 7(1):39–57, 1983. Consulted version: https://www.mat.ulaval.ca/fileadmin/mat/
documents/bhodgson/Hodgson_ASMQ_1983.pdf (saved on http://web.archive.org/).

26 Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures. In Gerhard
Goos, Juris Hartmanis, Jan Leeuwen, and Daniel Leivant, editors, Logic and Computational
Complexity, volume 960, pages 367–392. Springer Berlin Heidelberg, Berlin, Heidelberg, 1995.
doi:10.1007/3-540-60178-3_93.

27 Dietrich Kuske and Markus Lohrey. Some natural decision problems in automatic graphs.
The Journal of Symbolic Logic, 75(2):678–710, June 2010. Consulted version: https://www.
eti.uni-siegen.de/ti/veroeffentlichungen/08-euler-hamilton.pdf (saved on http://
web.archive.org/). doi:10.2178/jsl/1268917499.

28 Chris Köcher. Analyse der Entscheidbarkeit diverser Probleme in automatischen Graphen. PhD
thesis, Technische Universität Ilmenau, Ilmenau, 2014. (Saved on http://web.archive.org/).
URL: https://people.mpi-sws.org/~ckoecher/files/theses/bsc-thesis.pdf.

29 Dominique Perrin and Jean-Éric Pin. Infinite Words, Automata, Semigroups, Logic and Games,
volume 141. Elsevier, 2004. Consulted version: Libgen.

https://hal.science/hal-00646514v1
https://hal.science/hal-00646514v1
https://doi.org/10.1017/CBO9780511977619
https://hal.science/hal-01721046v2
https://doi.org/10.4230/LIPIcs.ICALP.2018.123
https://doi.org/10.1145/371316.371512
https://hal.science/hal-03349901
https://hal.science/hal-03349901
https://doi.org/10.1007/978-3-030-95481-9_1
https://hal.science/hal-01793633v1/
https://hal.science/hal-01793633v1/
https://doi.org/10.1007/s00224-014-9584-2
https://doi.org/10.23638/LMCS-15(4:16)2019
https://arxiv.org/abs/1801.04638v1
https://arxiv.org/abs/1801.04638v1
https://doi.org/10.1016/j.aim.2019.03.020
https://www.irif.fr/~jep/PDF/HMPR.pdf
https://www.irif.fr/~jep/PDF/HMPR.pdf
http://web.archive.org/
https://doi.org/10.1142/S0218196791000298
https://doi.org/10.1016/0304-3975(82)90042-1
https://www.mat.ulaval.ca/fileadmin/mat/documents/bhodgson/Hodgson_ASMQ_1983.pdf
https://www.mat.ulaval.ca/fileadmin/mat/documents/bhodgson/Hodgson_ASMQ_1983.pdf
http://web.archive.org/
https://doi.org/10.1007/3-540-60178-3_93
https://www.eti.uni-siegen.de/ti/veroeffentlichungen/08-euler-hamilton.pdf
https://www.eti.uni-siegen.de/ti/veroeffentlichungen/08-euler-hamilton.pdf
http://web.archive.org/
http://web.archive.org/
https://doi.org/10.2178/jsl/1268917499
http://web.archive.org/
https://people.mpi-sws.org/~ckoecher/files/theses/bsc-thesis.pdf

R. Morvan 21:19

30 Jean-Éric Pin. Positive varieties and infinite words. In Cláudio L. Lucchesi and Arnaldo V.
Moura, editors, LATIN’98: Theoretical Informatics, Lecture Notes in Computer Science,
pages 76–87, Berlin, Heidelberg, 1998. Springer. Consulted version: https://hal.science/
hal-00113768v1. doi:10.1007/BFb0054312.

31 Jean-Éric Pin. Mathematical Foundations of Automata Theory, 2022. Version of February 18,
2022 (saved on http://web.archive.org/); MPRI lecture notes. URL: https://www.irif.
fr/~jep/PDF/MPRI/MPRI.pdf.

32 Thomas Place and Marc Zeitoun. Group separation strikes back. In 2023 38th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13, 2023. Consulted
version: https://arxiv.org/abs/2205.01632v2. doi:10.1109/LICS56636.2023.10175683.

33 Christophe Reutenauer. Séries formelles et algèbres syntactiques. Journal of Algebra, 66(2):448–
483, October 1980. doi:10.1016/0021-8693(80)90097-6.

34 John Rhodes and Benjamin Steinberg. Pointlike sets, hyperdecidability and the identity
problem for finite semigroups. International Journal of Algebra and Computation, November
2011. Consulted version: SciHub. doi:10.1142/S021819679900028X.

35 Sasha Rubin. Automata presenting structures: A survey of the finite string case. Bulletin
of Symbolic Logic, 14(2):169–209, 2008. Consulted version: SciHub. doi:10.2178/bsl/
1208442827.

36 Howard Straubing and Pascal Weil. Varieties. In Jean Éric Pin, editor, Handbook of Auto-
mata Theory, volume I: Theoretical Foundations, pages Chapter 16, pp. 569–614. European
Mathematical Society Publishing House, September 2021. doi:10.4171/Automata.

37 Bret Tilson. Categories as algebra: An essential ingredient in the theory of monoids. Journal
of Pure and Applied Algebra, 48(1):83–198, 1987. doi:10.1016/0022-4049(87)90108-3.

Appendix

(a
a) ,

(
b
b

)
(a

b) ,
(

b
a

)
(a

b) ,
(

b
a

)
(a

a) ,
(

b
b

)

(a) , (b) (a) , (b)

(a) , (b) (a) , (b)

∗
∗

∗

∗

Figure 3 Minimal (deterministic complete) “classical” automaton for the binary relation of
pairs (u, v) such that the number of a’s in u1 . . . uk and in v1 . . . vk are the same mod 2, where
k = min(|u|, |v|), seen as a language over Σ2 . Said otherwise, this is automaton rejects exactly all
words in (Σ2)∗ which (1) are not the valid encoding of a pair of words and (2) are the encoding of a
pair which does not satisfy the property above. Each label ∗ is defined so that the automaton is
deterministic and complete.

CSL 2025

https://hal.science/hal-00113768v1
https://hal.science/hal-00113768v1
https://doi.org/10.1007/BFb0054312
http://web.archive.org/
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://arxiv.org/abs/2205.01632v2
https://doi.org/10.1109/LICS56636.2023.10175683
https://doi.org/10.1016/0021-8693(80)90097-6
https://doi.org/10.1142/S021819679900028X
https://doi.org/10.2178/bsl/1208442827
https://doi.org/10.2178/bsl/1208442827
https://doi.org/10.4171/Automata
https://doi.org/10.1016/0022-4049(87)90108-3

21:20 The Algebras for Automatic Relations

Figure 4 The landscape of rationality for binary relations. Dashed regions are empty: the
intersection of functional relations and two-way rational relations collapses to regular functions by
[17, Theorem 22, p. 243].

R. Morvan 21:21

Figure 5 Representation of the dependent set S2Σ of synchronous words. Coloured edges represent
the dependency relation, and self-loops are not drawn.

CSL 2025

On the Minimisation of Deterministic and
History-Deterministic Generalised (Co)Büchi
Automata
Antonio Casares # Ñ

University of Warsaw, Poland

Olivier Idir
IRIF, Université Paris-Cité, France

Denis Kuperberg # Ñ

LIP, CNRS, ENS Lyon, France

Corto Mascle # Ñ

LaBRI, Université de Bordeaux, France
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Aditya Prakash # Ñ

University of Warwick, UK

Abstract
We present a polynomial-time algorithm minimising the number of states of history-deterministic
generalised coBüchi automata, building on the work of Abu Radi and Kupferman on coBüchi
automata. On the other hand, we establish that the minimisation problem for both deterministic
and history-deterministic generalised Büchi automata is NP-complete, as well as the problem of
minimising at the same time the number of states and colours of history-deterministic generalised
coBüchi automata.

2012 ACM Subject Classification Theory of computation → Verification by model checking

Keywords and phrases Automata minimisation, omega-regular languages, good-for-games automata

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.22

Related Version Long version with appendices: https://arxiv.org/abs/2407.18090

Funding Antonio Casares: Supported by the Polish National Science Centre (NCN) grant “Polyno-
mial finite state computation” (2022/46/A/ST6/00072).

This document contains hyperlinks. On an electronic device, the reader can click on
words or symbols (or just hover over them on some PDF readers) to see their definition.

1 Introduction

First introduced by Büchi to obtain the decidability of monadic second order logic over
(N, succ) [14], automata over infinite words (also called ω-automata) have become a well-
established area of study in Theoretical Computer Science. Part of its success is due to its
applications to model checking (verify whether a system satisfies some given specifications) [5,
42, 24] and synthesis (given a set of specifications, automatically construct a system satisfying
them) [13, 35]. In many of these applications, mainly in problems related to synthesis, non-
deterministic models of automata are not well-suited, and costly determinisation procedures
are usually needed [38].

© Antonio Casares, Olivier Idir, Denis Kuperberg, Corto Mascle, and Aditya Prakash;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 22; pp. 22:1–22:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antoniocasares@mimuw.edu.pl
https://antonio-casares.github.io/
https://orcid.org/0000-0002-6539-2020
mailto:denis.kuperberg@ens-lyon.fr
https://www.perso.ens-lyon.fr/denis.kuperberg/
https://orcid.org/0000-0001-5406-717X
mailto:corto.mascle@labri.fr
https://corto-mascle.github.io/
https://orcid.org/0009-0007-7976-7480
mailto:aditya.prakash@warwick.ac.uk
https://apitya.github.io/
https://orcid.org/0000-0002-2404-0707
https://doi.org/10.4230/LIPIcs.CSL.2025.22
https://arxiv.org/abs/2407.18090
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 On the Minimisation of (History-)Deterministic Generalised (co)Büchi Automata

In 2006, Henzinger and Piterman [26] proposed1 a model of automata, called history-
deterministic (HD)2, presenting a restricted amount of non-determinism so that they exactly
satisfy the properties that are needed for applications in synthesis. Namely, these automata
do not need to guess the future: an automaton is history-deterministic if it admits a strategy
resolving the non-determinism on the fly, in such a way that the run built by the strategy is
accepting whenever the input word belongs to the language of the automaton. Since their
introduction, several lines of research have focused on questions such as the succinctness of
history-deterministic automata [30, 18], the problem of recognising them [4, 8], or extensions
to other settings [32, 9, 10].

Minimisation of automata stands as one of the most fundamental problems in automata
theory, for various reasons. Firstly, for its applications: when employing algorithms that rely
on automata, having the smallest possible ones is crucial for efficiency. Secondly, beneath
the problem of minimisation lies a profoundly fundamental question: What is the essential
information needed to represent a formal language? A cornerstone result about automata over
finite words is that each regular language admits a unique minimal deterministic automaton,
in which states corresponds to the residuals of the language (the equivalence classes of the
Myhill-Nerode congruence). Moreover, this minimal automaton can be obtained from an
equivalent deterministic automaton with n states in time O(n log n) [27].

However, the situation is quite different in the case of ω-automata. Contrary to the
case of finite words, the residuals of a language are not sufficient to construct a correct
deterministic automaton in general. In 2010, Schewe proved that the minimisation of
deterministic Büchi automata is NP-complete [39]. That appeared to be a conclusion to the
minimisation problem, but a crucial aspect of his proof was that the NP-completeness is
established for automata with the acceptance condition over states, and this proof does not
generalise to transition-based automata. A surprising positive result was obtained in 2019 by
Abu Radi and Kupferman: we can minimise history-deterministic coBüchi automata using
transition-based acceptance in polynomial time [1]. One year later, Schewe showed that the
very same problem becomes NP-complete if state-based acceptance is used [40]. Multiple
other results have backed the idea that transition-based acceptance is a better-suited model;
we refer to [16, Chapter VI] for a detailed discussion. The work of Abu Radi and Kupferman
raised the question of what is the complexity of the minimisation problem for other classes
of transition-based automata such as (history-)deterministic Büchi automata. Since then, to
the best of our knowledge, the only further result concerning minimisation of transition-based
automata is Casares’ NP-completeness proof for the problem of minimising deterministic
Rabin automata [15].

In this paper, we focus our attention on generalised Büchi and generalised coBüchi
automata, in which the acceptance condition is given, respectively, by conjunctions of clauses
“see colour c infinitely often”, and by disjunctions of “eventually avoid colour d”. Generalised
(co)Büchi automata are as expressive as (co)Büchi automata, but they can be more succinct,
due to their more complex acceptance condition. These automata appear naturally in the
model-checking and synthesis of temporal properties [21, 25, 41]; for instance, SPOT’s LTL-
synthesis tool transforms a given LTL formula into a generalised Büchi automaton [22, 33].
Also, many efficient algorithms for their emptiness check have been developed [36, 37, 6].

1 Similar ideas had been previously investigated by Kupferman, Safra and Vardi [31], and Colcombet
studied history-determinism in the context of cost functions [20].

2 These automata were first introduced under the name good-for-games (GFG). Currently, these two
notions are no longer used interchangeably, although they coincide in the case of ω-automata. We refer
to the survey [11] for further discussions.

A. Casares, O. Idir, D. Kuperberg, C. Mascle, and A. Prakash 22:3

Several works have approached the problem of reducing the state-space of generalised
Büchi automata, which is usually done either by the use of simulations [41, 29] (which do
not yield minimal automata), or by the application of SAT solvers [23, 3]. However, to the
best of our knowledge, no theoretical result about the exact complexity of this minimisation
problem appears in the literature.

Contributions
We provide a polynomial-time minimisation algorithm for history-deterministic generalised
coBüchi automata (Theorem 11). Our algorithm uses Abu Radi-Kupferman’s minimal
history-deterministic coBüchi automaton as a starting point, and reduces the state-space of
this automaton in an optimal way to use a generalised coBüchi condition.

We prove that the minimisation problem is NP-complete for history-deterministic gen-
eralised Büchi automata (Theorem 28), as well as for deterministic generalised Büchi and
generalised coBüchi automata (Theorem 29). We remark that both the NP-hardness and the
NP-upper bound are challenging. Indeed, to obtain that the problem is in NP, we first need
to prove that a minimal HD generalised Büchi automaton only uses a polynomial number of
output colours. Additionally, we adapt a proof from [19] to show that minimising at the same
time the number of states and colours is NP-complete for all the previous models, including
history-deterministic generalised coBüchi automata (Theorem 30).

We summarise the results about the state-minimisation of transition-based automata in
Table 1.

Table 1 Complexity of the minimisation problem for different types of transition-based automata.

Model

Condition
coBüchi Büchi generalised

coBüchi
generalised

Büchi

Deterministic Unknown Unknown NP-complete
(Theorem 29)

NP-complete
(Theorem 29)

History-deterministic PTIME [2] Unknown PTIME
(Theorem 11)

NP-complete
(Theorem 28)

We note that the PTIME complexity of recognising HD automata can be lifted from
Büchi and coBüchi conditions to their generalised versions (Corollary 10). This result can
be considered folklore, although we have not find it explicitly in the literature. In the long
version, we also lift the characterisation based on the G2 game from (co)Büchi automata to
generalised ones (a similar remark was suggested in the conclusion of [8]).

State-minimality. In this paper, we primarily focus our attention on the minimisation of
the number of states of the automata. In Theorem 30 we also consider the minimisation of
both the number of states and colours of the acceptance condition. We highlight that the
decision on how we measure the size of the automata is orthogonal to putting the acceptance
condition over transitions.

The reader may wonder why we focus on these quantities and not, e.g., on the number of
transitions. This choice, which is standard in the literature ([2, 39]), is justified by various
reasons. First, the number of transitions of an automaton is polynomial in the number of
states. Indeed, we can assume that there are no two transitions between two states over the

CSL 2025

22:4 On the Minimisation of (History-)Deterministic Generalised (co)Büchi Automata

same input letter (see [18, Prop.18]), therefore, |∆| ≤ |Q|2|Σ|. Maybe more importantly, in
the case of automata over finite words, each state of the minimal automaton carry a precise
information about the language it recognises: a residual of it. Ideally, a construction for a
state-minimal automaton for an ω-regular language should lead to an understanding of the
essential information necessary to represent it.

The interest of minimising both the number of states and the number of colours comes
from the fact that the number of colours can be exponential on the number of states, but
the size of the representation of the automaton is polynomial in the sum of these quantities.

2 Preliminaries

The disjoint union of two sets A, B is written A ⊎ B. The empty word is denoted ε. A factor
of a word w is a word u such that there exist words x, y with w = xuy. For an infinite word
w ∈ Σω, we denote Inf(w) the set of letters occurring infinitely often in w.

2.1 Automata
We let Σ be a finite alphabet. An automaton is a tuple A = (Q, Σ, qinit, ∆, Γ, col, W), where
Q is its set of states, qinit its initial state, ∆ ⊆ Q × Σ × Q its set of transitions, Γ its output
alphabet, col : ∆ → Γ a labelling with colours, and W ⊆ Γω its acceptance condition. A state
q is called reachable if there exists a path from qinit to q. The size of an automaton is its
number of states, written |Q|. We write p

a:c−−→ q if (p, a, q) ∈ ∆ and col((p, a, q)) = c.
A run ρ on an infinite word w = a1a2 · · · ∈ Σω is an infinite sequence of transitions

ρ = (q0, a1, q1)(q1, a2, q2)(q2, a3, q3), · · · ∈ ∆ω with q0 = qinit. It is accepting if the infinite
word c1c2 · · · ∈ Γω defined by ci = col(qi−1, ai, qi), called the output of ρ, belongs to W .

The language of an automaton A, denoted L(A), is the set of words that admit an
accepting run. We say that two automata A and B over the same alphabet are equivalent if
L(A) = L(B).

An automaton A is deterministic (resp. complete) if, for all (p, a) ∈ Q × Σ, there exists
at most (resp. at least) one q ∈ Q such that (p, a, q) ∈ ∆. We note that if A is deterministic,
a word w ∈ Σω admits at most one run in A.

2.2 Acceptance conditions
In this paper we will focus on automata using generalised Büchi and generalised coBüchi
acceptance conditions. A generalised Büchi condition can be seen as a conjunction of Büchi
conditions, while a generalised coBüchi condition can be seen as a disjunction of coBüchi
conditions.

A generalised Büchi condition with k colours is defined over the output alphabet Γ = 2C ,
with C a set of k output colours, as

genBC = {w ∈ Γω |
⋃

Inf(w) = C}.

It contains sequences of sets of colours such that every colour is seen infinitely often. Usually,
we take C = [k] = {1, 2, . . . , k}.

The dual condition is the generalised coBüchi condition with k colours. That is, we define:

genCoBC = {w ∈ Γω |
⋃

Inf(w) ̸= C}.

It contains sequences of sets of colours such that at least one colour is seen finitely often.

A. Casares, O. Idir, D. Kuperberg, C. Mascle, and A. Prakash 22:5

The size of the representation of an automaton using a generalised (co)Büchi condition
with k colours is |Q| + |Σ| + k; such an automaton can be described in polynomial space in
this measure.

A Büchi condition (resp. coBüchi condition) can be defined as a generalised Büchi (resp.
generalised coBüchi) condition in which k = 1. In this case, we call Büchi transitions (resp.
coBüchi transitions) the transitions (p, a, q) ∈ ∆ such that col((p, a, q)) = {1}. An automaton
using an acceptance condition of type X is called an X-automaton.

A language L ⊆ Σω is (co)Büchi recognisable if there exists a deterministic (co)Büchi
automaton A such that A recognises L. These coincide with languages recognised by gener-
alised (co)Büchi automata (see Corollary 9). We note that non-deterministic (generalised)
Büchi automata are strictly more expressive, while non-deterministic (generalised) coBüchi
automata are as expressive as deterministic ones [34].

2.3 History-determinism
An automaton is called history-deterministic (or HD for short), if there exists a function,
called a resolver, that resolves the non-determinism of A depending only on the prefix of the
input word read so far. Formally, a resolver for an automaton A is a function σ : Σ+ → ∆ such
that for all words w = a0a1 · · · ∈ Σω, the sequence σ∗(w) = σ(a0)σ(a0a1)σ(a0a1a2) · · · ∈ ∆ω

(called the run induced by σ over w) satisfies:
1. σ∗(w) is a run on w in A,
2. if w ∈ L(A), then σ∗(w) is an accepting run.

An automaton is history-deterministic if it admits a resolver. We say that a (determinis-
tic/history-deterministic) automaton is minimal if it has a minimal number of states amongst
equivalent (deterministic/history-deterministic) automata.
▶ Remark 1. Every deterministic automaton is HD. While the converse is false (see Exam-
ple 2 below), we note that any language L ⊆ Σω recognised by an HD Büchi automaton
(resp. coBüchi automaton), can be recognised by a deterministic Büchi automaton (resp.
deterministic coBüchi automaton) [31].

▶ Example 2 (From [17, Ex. 2.3]). Let Σ = {a, b, c} and L = {w ∈ Σω | {b, c} ⊈ Inf(w)},
that is, L is the set of words that contain either b or c only finitely often.

In Figure 1 we show an automaton recognising L that is not determinisable by prunning,
that is, it cannot be made deterministic just by removing transitions.

We claim that this automaton is history-deterministic. First, we remark that the only
non-deterministic choice appears when reading letter a from the state q1. A resolver can be
defined as follows: whenever we have arrived at q1 from q0 (by reading letter c), if we are
given letter a we go to state q2; if we have arrived at q1 from q2 (by reading letter b), we will
go to state q0. Therefore, if after some point letter b (resp. letter c) does not appear, we will
stay forever in state q2 (resp. state q1) and accept.

q0 q1 q2

a, b

c
•

a, b
•

a, c
•

b
•

a, c

Figure 1 A history-deterministic coBüchi automaton recognising the language L = {w ∈ Σω |
{b, c} ⊈ Inf(w)}. CoBüchi transitions are represented with a dot on them.

CSL 2025

22:6 On the Minimisation of (History-)Deterministic Generalised (co)Büchi Automata

2.4 Residuals and prefix-independence
Let L ⊆ Σω and u ∈ Σ∗. The residual of L with respect to u is the language

u−1L = {w ∈ Σω | uw ∈ L}.

We write [u]L = {v ∈ Σ∗ | u−1L = v−1L}, and Res(L) for the set of residuals of a language L.
Given an automaton A and a state q, we denote Aq the automaton obtained by setting

q as initial state, and we refer to L(Aq) as the language recognised by q. We say that two
states q, p are equivalent, written q ∼ p, if they recognise the same language. We note [q]A
the set of states equivalent to q (we simply write [q] when A is clear from the context).

We say that an automaton A is semantically deterministic if non-deterministic choices
lead to equivalent states, that is, if for every state q and pair of transitions q

a−→ p1, q
a−→ p2

we have p1 ∼ p2.
If A is semantically deterministic and u ∈ Σ∗ is a word labelling a path from the initial

state to q, then L(Aq) = u−1L. We say then that u−1L is the residual associated to q. For
a residual R ∈ Res(L) we denote QR the set of states of A recognising R. We remark that
QR = [q]A for any state q recognising R.

We say that L is prefix-independent if for all w ∈ Σω and u ∈ Σ∗, w ∈ L ⇐⇒ uw ∈ L.
▶ Remark 3. A language L is prefix-independent if and only if it has a single residual.

2.5 Morphisms of automaton structures
An automaton structure over an alphabet Σ is a tuple S = (Q, ∆), where ∆ ⊆ Q × Σ × Q.
Let S1 = (Q1, ∆1) and S2 = (Q2, ∆2) be two automaton structures over the same alphabet.
A morphism of automaton structures is a mappings ϕ : Q1 → Q2 such that for every
(q, a, q′) ∈ ∆1, (ϕ(q), a, ϕ(q′)) ∈ ∆2. We note that such a morphism induces a function
ϕ∆ : ∆1 → ∆2 sending (q, a, q′) to (ϕ(q), a, ϕ(q′)). We also denote this function ϕ, whenever
no confusion arises, and denote a morphism of automaton structures by ϕ : S1 → S2.

3 First properties and examples

We discuss a further example of a history-deterministic automaton and state some well-known
facts about these automata that will be relevant for the rest of the paper.

3.1 A central example
The following automata will be used as a running example in Section 4.

▶ Example 4. Let Σn be an alphabet of size n, and let

Ln = {w ∈ Σω
n | for some x ∈ Σn the factor xx appears only finitely often in w}.

On the left of Figure 2 we show a history-deterministic generalised coBüchi automaton
recognising Ln with just 2 states (we show it for Σ3 = {a, b, c}, but the construction clearly
generalises to any n). The set of colours is C = {1, 2, 3}, and we accept if eventually some
colour is not produced. A resolver can be defined as follows: in a round-robin fashion, we
bet that the factor that does not appear is aa, then bb, then cc. While factor aa is not seen,
we will take transition q0

a−→ q1 whenever letter a is read, to try to avoid colour 1. Whenever
factor aa is read, we switch to the corresponding strategy with letter b, trying to avoid
colour 2. If eventually factor xx is not produced, for x ∈ {a, b, c}, then some colour will
forever be avoided.

A. Casares, O. Idir, D. Kuperberg, C. Mascle, and A. Prakash 22:7

We show a deterministic coBüchi automaton for L3 on the right of Figure 2. Applying
the characterisation of Abu Radi and Kupferman [2] (see Lemma 15), we can prove that this
automaton is minimal amongst HD coBüchi automata. More generally, we can prove that a
minimal HD coBüchi automaton for Ln has at least 2n states , and in fact, in this case, this
optimal bound can be achieved with a deterministic automaton.

q0 q1

a : 1

b : 2

c : 3

a, b, c

a : 1

b : 2

c : 3

q0 q1

p0 p1

t0 t1

b, c
a

b, c

a•

a, c
b

a, c

b•

a, b

c

a, b

c•

Figure 2 On the left, a history-deterministic generalised coBüchi automaton recognising the
language L3 of words eventually avoiding factor xx for some letter x. On the right, a minimal
deterministic coBüchi automaton for the same language (coBüchi transitions have a dot on them).
In both cases, the initial state is irrelevant, as the language is prefix-independent.

3.2 Duality Büchi - coBüchi

▶ Remark 5. Let A be a deterministic generalised Büchi automaton of size n and using k

output colours. It suffices to replace the acceptance condition genB[k] with genCoB[k] to
obtain a deterministic generalised coBüchi automaton of size n and using k output colours
recognising the complement language Σω\L(A). Symmetrically, we can turn any deterministic
generalised coBüchi automaton into a deterministic generalised Büchi automaton with the
same number of states and colours recognising the complement language. As a consequence,
the minimisations of deterministic generalised Büchi automaton and deterministic generalised
coBüchi automaton are linear-time-equivalent problems.

We highlight that the hypothesis of determinism in the previous remark is crucial. This
duality property no longer holds for non-deterministic (or history-deterministic) automata.

▶ Lemma 6. There exists a history-deterministic generalised coBüchi automaton A such
that any history-deterministic generalised Büchi automaton recognising Σω \ L(A) has strictly
more states than A.

Such an example is provided by the language L3 from Example 4 (in the long version we
prove that any non-deterministic generalised Büchi automaton recognising Σω \ L(A) has
at least 3 states). Relatedly, for the non-generalised conditions, Kuperberg and Skrzypczak
showed that the gap between an HD coBüchi and an HD Büchi automaton for the complement
language can be exponential as well [30], using the link between complementation and
determinisation of HD automata from [7, Thm 4].

CSL 2025

22:8 On the Minimisation of (History-)Deterministic Generalised (co)Büchi Automata

3.3 From generalised (co)Büchi to (co)Büchi
The idea of this construction is to define a particular deterministic coBüchi automaton
recognizing genCoBC , and to associate it to the input generalised coBüchi automaton via a
cascade composition (defined below) in order to obtain the wanted coBüchi automaton. We
will now detail these different steps.

Deterministic coBüchi automaton for genCoBC . Let C = {1, 2, · · · , k} be a set of k

colours; for convenience, in the context of colours, we will use the symbol + to denote
addition modulo k, in particular, k + 1 = 1. We build a deterministic coBüchi automaton
DcoB

C over the alphabet Γ = 2C recognising the language genCoBC . It has as a state qi for
each colour i ∈ C and contains the transitions qi

X:∅−−→ qi, if i /∈ X, and qi
X:1−−→ qi+1, if i ∈ X,

for all X ∈ Γ. The initial state is arbitrary.
We claim that the automaton DcoB

C recognises the language genCoBC . First, we remark
that the accepting runs of DcoB

C are exactly those that eventually remain forever in a state qi.
Let w = w1w2 · · · ∈ 2C . If w is accepted by DcoB

C , then the run on w eventually stays in a qi,
so w eventually does not contain colour i, and w ∈ genCoBC . Conversely, if w is rejected by
DcoB

C , it takes all transitions qi
X:1−−→ qi+1 infinitely often, so w must contain all colours in C

infinitely often.
We define in a similar fashion a deterministic Büchi automaton DB

C recognising the
language genBC , simply by changing the acceptance condition of genCoBC to genBC .
▶ Remark 7. The automaton DcoB

C has k states, but exponentially many transitions. This is
made possible by the fact that its alphabet Γ is exponential in the number of colours k.

Cascade composition of automata. Let A = (QA, ΣA, qA
init, ∆A, ΓA, colA, WA) and B =

(QB, ΣB, qB
init, ∆B, ΓB, colB , WB) be two automata such that ΣB = ΓA (i.e., B is an automaton

over the set of output colours of A). The cascade composition of A and B is the automaton
over ΣA defined as:

B ◦ A = (QA × QB, ΣA, (qA
init, qB

init), ∆′, ΓB, col′, WB),

with transitions (pA, pB) a:c−−→ (qA, qB) if pA
a:b−−→ qA ∈ ∆A and pB

b:c−−→ qB ∈ ∆B.
Intuitively, given a word in Σω

A, we feed the output of colA directly as input to B, while
keeping track of the progression in both automata. We accept according to the acceptance
condition of B.

▶ Lemma 8 (Folklore). Let A be an automaton with acceptance condition W ⊆ Γω, and let
B be a deterministic automaton over Γ recognising W . Then B ◦ A recognises L(A), and the
automaton B ◦ A is history-deterministic (resp. deterministic) if and only if A is.

Thus, to convert a generalised coBüchi automaton A to an equivalent coBüchi one, we
can just compose it with DcoB

C . The symmetric result holds for generalised Büchi automata.

▶ Corollary 9 (Folklore). Let A be a generalised coBüchi automaton using C as output
colours. The automaton DcoB

C ◦ A is a coBüchi automaton equivalent to A which is (history-
)deterministic if and only if A is. Moreover, DcoB

C ◦ A can be computed in polynomial time
in the size of the representation of A. The same is true for generalised Büchi automata.

We note that DcoB
C ◦ A has k · |A| states, where k = |C|, but it might have exponentially

many transitions in k. However, we underline that we can compute DcoB
C ◦ A from A in

polynomial time in the size of its representation. Indeed, we just need to compose A with
the restriction of DcoB

C to transitions whose letters are subsets of colours that appear in A.

A. Casares, O. Idir, D. Kuperberg, C. Mascle, and A. Prakash 22:9

Deciding history-determinism. The problem of deciding whether an automaton is HD is
known to be in PTIME for Büchi and coBüchi automata [30, 4, 8]. Combining this fact with
Corollary 9, we directly obtain:

▶ Corollary 10. Given a generalised Büchi (resp. generalised coBüchi) automaton, it is in
PTIME to decide whether it is history-deterministic.

A different proof of Corollary 10, which goes through the G2 game [4], is presented in the
long version.

4 Polynomial-time minimisation of HD generalised coBüchi automata

In this section we present one of the main contributions of the paper (Theorem 11): history-
deterministic generalised coBüchi automata can be minimised in polynomial time.

▶ Theorem 11. Given a history-deterministic generalised coBüchi automaton, we can build in
polynomial time in its representation an equivalent history-deterministic generalised coBüchi
automaton with a minimal number of states.

The proof of this result strongly relies on the construction of minimal coBüchi automata
by Abu Radi and Kupferman [2]. We will show that, for a coBüchi recognisable language L,
we can extract a minimal HD generalised coBüchi automaton for L from its minimal HD
coBüchi automaton.

In Section 4.1 we introduce some terminology and state the main property satisfied by
the minimal HD coBüchi automaton of Abu Radi and Kupferman. We then present our
construction, decomposing it in two steps for simplicity: first we construct a minimal HD
generalised coBüchi automaton in the case of prefix-independent languages in Section 4.2,
and in Section 4.3, we show how to get rid of the prefix-independence assumption.

4.1 Minimisation of HD coBüchi automata
Safe components and safe languages. A path q q′ in a coBüchi automaton is safe if
no coBüchi transition appears on it. Let Asafe be the automaton obtained by removing from
A all coBüchi transitions. A safe component of A is a strongly connected component (i.e., a
maximal set of states which are all reachable from each other) of Asafe; formally, this is an
automaton structure S = (S, ∆S) with S ⊆ QA and ∆S ⊆ ∆A. We let Safe(A) be the set of
safe components of A.

We define the safe language of a state q as:

LSafe(Aq) = {w ∈ Σω | there is a run q
w in Asafe}.

▶ Example 12. The safe components of the automaton on the right of Figure 2 (page 7)
have as set of states: S1 = {q0, q1}, S2 = {p0, p1} and S3 = {t0, t1}. The safe language of q0
is LSafe(Aq0) = {w ∈ Σω | w does not contain the factor aa}.

Nice coBüchi automata. We say that a coBüchi automaton A is in normal form if all
transitions between two different safe components are coBüchi transitions. We note that any
coBüchi automaton can be put in normal form without modifying its language by setting
all transitions between two different safe components to be coBüchi. We say that A is safe
deterministic if Asafe is a deterministic automaton. That is, if the non-determinism of A
appears exclusively in coBüchi transitions. We say that A is nice if all its states are reachable,
it is semantically deterministic, in normal form, and safe deterministic.

CSL 2025

22:10 On the Minimisation of (History-)Deterministic Generalised (co)Büchi Automata

It is not difficult to see that any history-deterministic automaton A can be assumed to
be semantically deterministic. This means that different choices made by a resolver from the
same state with different histories must be consistent with the residual, i.e. must lead to
states accepting the same language, which is the language u−1L(A) after reading a word u.
Kuperberg and Skrzypczak showed the more involved result that we can moreover assume
safe determinism [30]. All in all, we have:

▶ Lemma 13 ([30]). Every history-deterministic coBüchi automaton A can be turned in
polynomial time into an equivalent nice HD coBüchi automaton Anice such that:

|Anice| ≤ |A|,
For every safe component S of Anice, there is some safe component S ′ of A with |S| ≤ |S ′|.

Although the second item of the previous proposition is not explicitly stated in [30], it
simply follows from the fact that all the transformations used to turn A into a nice automaton
either add coBüchi transitions to A or remove transitions from it. These operations can only
subdivide safe components.

Minimal HD coBüchi automata. We present the necessary conditions for the minimality
of history-deterministic coBüchi automata identified by Abu Radi and Kupferman [2].

We say that a coBüchi automaton A is safe centralised if for all equivalent states q ∼ p, if
the safe languages of q and p are comparable for the inclusion relation (LSafe(Aq) ⊆ LSafe(Ap)
or vice versa), then they are in the same safe component of A. It is safe minimal if for all
states q ∼ p, the equality LSafe(Aq) = LSafe(Ap) implies q = p.

▶ Example 14. The automaton on the right of Figure 2 is safe minimal and safe centralised.
However, the automaton from Figure 1 is not safe centralised, as LSafe(Aq1) = ∅ ⊆ LSafe(Aq2),
but q1 and q2 appear in different safe components.

▶ Lemma 15 ([2, Lemma 3.5]). Let Amin be a nice, safe minimal and safe centralised HD
coBüchi automaton. Then, for any equivalent nice HD coBüchi automaton A there is an
injection η : Safe(Amin) → Safe(A) such that for every safe component S ∈ Safe(Amin), it
holds that |S| ≤ |η(S)|.

Minimality of such automata directly follows:

▶ Corollary 16. Let Amin be a nice, safe minimal and safe centralised HD coBüchi automaton.
Then, the number of states of Amin is minimal among all HD coBüchi automata recognising
the same language.

▶ Theorem 17 ([2, Theorem 3.15]). Any coBüchi recognisable language L can be recognised
by a nice, safe minimal and safe centralised HD coBüchi automaton AcoB

L . Moreover, such
an automaton AcoB

L can be computed in polynomial time from any HD coBüchi automaton
recognising L.

4.2 Minimal HD generalised coBüchi automata: prefix-independent case
In this subsection, we show how to minimise history-deterministic generalised coBüchi
automata recognising prefix-independent languages. The prefix-independence hypothesis will
be removed in the next subsection.

Let L ⊆ Σω be a prefix-independent coBüchi recognisable language, and let A be a
history-deterministic generalised coBüchi automaton recognising it.

A. Casares, O. Idir, D. Kuperberg, C. Mascle, and A. Prakash 22:11

Combining Corollary 9 and Theorem 17, we obtain that we can build in polynomial
time the minimal HD coBüchi automaton AcoB

L for L. Let Safe(AcoB
L) = {S1, . . . , Sk} be an

enumeration of the safe components of AcoB
L , with Si and ∆i the sets of states and transitions

of each safe component, respectively. We show how to build an HD generalised coBüchi
automaton AgenCoB

L of size nmax = max1≤i≤k |Si| and using k output colours.
Intuitively, AgenCoB

L will be the full automaton (it contains transitions between all pairs of
states, for all input letters). Since |Si| ≤ nmax, we can map each safe component Si to this
full automaton via a morphism ϕi, and use (the non-appearance of) colour i to accept runs
that eventually would have stayed in the safe component Si in AcoB

L . That is, the transitions
of AgenCoB

L that are “safe-for-colour i” will be exactly those in ϕi(Si).
Formally, let AgenCoB

L = (Q, Σ, qinit, ∆, Γ, col, genCoB) with:
Q = {p1, p2, . . . , pnmax},
qinit = p1 (any state can be chosen as initial),
∆ = Q × Σ × Q,
Γ = 2{1,...,k}.

Finally, we define the colour labelling col : ∆ → Γ. For each 1 ≤ i ≤ k, let ϕi : Si → (Q, ∆)
be any injective morphism of automaton structures (such a morphism exists since |Si| ≤ nmax
and (Q, ∆) is the full automaton structure). We put colour i in a transition e ∈ ∆ if and
only if there is no transition e′ ∈ ∆i such that ϕi(e′) = e. That is, col(e) = {i | ϕ−1

i (e) = ∅}.
▶ Remark 18. We remark that this colour labelling uses some arbitrary choices, namely, the
way we map the different safe components of AcoB

L to the full automaton of size nmax. In
particular, there is no unique minimal HD generalised coBüchi automaton recognising L. By
a slight abuse of notation, we denote AgenCoB

L one automaton originated by this procedure.

▶ Example 19. The automaton on the left of Figure 2 (page 7) (almost) corresponds to this
construction. Indeed, it has been obtained by assigning a colour to each safe component
of AcoB

L (on the right) and superposing them in a 2-state automaton. To simplify its
presentation, we have removed some unnecessary transitions of AgenCoB

L , that is why the
automaton displayed is not the full-automaton.

▶ Proposition 20 (Correctness). Let L be a prefix-independent language that is coBüchi
recognisable. The automaton AgenCoB

L is history-deterministic and recognises L.

Proof sketch. If w admits an accepting run ρ in AgenCoB
L , then its run eventually does

not produce some colour i in its output. This means that, eventually, such a run is the
ϕi-projection of a run in a safe component of AcoB

L , so w ∈ L. This is where we use prefix-
independence: as soon as there is a witness that a suffix of w is also a suffix of a word in L,
then the whole word w is in L as well.

A resolver for AgenCoB
L can be defined as follows: in a round-robin fashion we follow the

different safe components of AcoB
L . If a colour i is produced while we are trying to avoid it,

we go back to p1 and try to avoid colour i′ = (i + 1) mod k by following the safe component
Si′ . If a word w belongs to L, it eventually admits a safe path in AcoB

L , so it will be accepted
by this resolver. ◀

▶ Proposition 21 (Minimality). Let B be a history-deterministic generalised coBüchi automa-
ton recognising a prefix-independent language L. Then, |AgenCoB

L | ≤ |B|.

Proof. Let C = {1, . . . , k} be the set of output colours used by the acceptance condition of
B and let DcoB

C be the coBüchi automaton recognising genCoBC presented in Section 3.3. By
Corollary 9, DcoB

C ◦ B is a history-deterministic automaton recognising L. Moreover, the
states of DcoB

C ◦ B are a disjoint union Q1 ⊎ Q2 ⊎ · · · ⊎ Qk such that:

CSL 2025

22:12 On the Minimisation of (History-)Deterministic Generalised (co)Büchi Automata

|Qi| = |B|,
all transitions leaving Qi are coBüchi transitions going to Qi+1, where Qk+1 = Q1.

Therefore, each safe component S of DcoB
C ◦ B is included in some Qi, so |S| ≤ |B|. By

Lemma 13, we can turn DcoB
C ◦ B into a nice HD coBüchi automaton B′ satisfying that none

of its safe components is larger than |B|.
By Lemma 15 there is an injection η : Safe(AcoB

L) → Safe(B′) such that |S| ≤ |η(S)| for
all safe component S of AcoB

L . In particular, if Smax is a safe component of maximal size in
AcoB

L , we obtain: |AgenCoB
L | = |Smax| ≤ |η(Smax)| ≤ |B|. ◀

4.3 Minimal HD generalised coBüchi automata: general case
We now describe the polynomial-time construction for minimising a given HD generalised
coBüchi automaton (without the prefix-independence assumption). For the optimality proof,
we can reduce to the simplest prefix-independent case.

We fix an HD generalised coBüchi automaton A recognising a language L. As before,
using Corollary 9 and the minimisation procedure of Abu Radi and Kupferman, we can
obtain the minimal HD coBüchi automaton AcoB

L in polynomial time. We show how to
convert it to an equivalent HD generalised coBüchi automaton AgenCoB

L of minimal size.
Let R1, R2, · · · , Rm be all the distinct residual languages of L, i.e., languages of the form

u−1L for some finite word u ∈ Σ∗. The case m = 1 corresponds to the prefix-independent
case treated in Section 4.2. We note that these residuals induce a partition of the states of
AcoB

L into QR1 , . . . , QRm , where the states in QRj recognise Rj . We assume that R1 = L

is the residual corresponding to the initial state of AcoB
L . Let S1, S2, · · · , Sk be the safe

components of AcoB
L , with Si and ∆i as sets of states and transitions, respectively. For each

residual language Rj , define nj as the largest number of states recognising Rj appearing in a
safe component of AcoB

L . That is,

nj = max
1≤i≤k

|Si ∩ QRj |.

We shall construct a language-equivalent HD generalised coBüchi automaton AgenCoB
L with

n1+n2+· · ·+nm states. Towards this, for each residual language Rj , let Pj = {p1
j , p2

j , · · · , p
nj

j }
be a set of nj elements. The automaton AgenCoB

L = (Q, Σ, qinit, ∆, Γ, col, genB) is given by:
Q = P1 ⊎ P2 ⊎ · · · ⊎ Pm.
qinit = p1

1 (any state corresponding to the residual of the initial state of AcoB
L would work).

Let (q, a, q′) be a transition in AcoB
L , with q ∈ QRj and q′ ∈ QRj′ . Then, (p, a, p′) ∈ ∆

for all p ∈ Pj and p′ ∈ Pj′ .
Γ = 2{1,...,k}.

One way of picturing AgenCoB
L is by taking the automaton of residuals of L and making

nj copies of the state corresponding to each residual Rj (while keeping all transitions).
We now describe the colour labelling col : ∆ → Γ. Informally, each safe component Si is

mapped into AgenCoB
L so that the states of Si ∩Rj are mapped into Pj . These safe components

are then “superimposed” upon each other and coloured appropriately, so that a run eventually
staying in Si in AcoB

L corresponds to a run in AgenCoB
L that eventually avoids colour i.

More formally, for i ∈ [1, k], let ϕi : Si → AgenCoB
L be an injective morphism such that

ϕi(q) ∈ Pj if q ∈ QRj . Such injective morphism does indeed exist, by the choice of nj and
the fact that AgenCoB

L contains all transitions consistent with the residuals. The transitions of
∆ that are i-safe are defined to be exactly those that are the image by ϕi of some transition
in Si. That is, for e ∈ ∆, the labelling col(e) contains exactly the colours in {i | ϕ−1

i (e) = ∅}.

A. Casares, O. Idir, D. Kuperberg, C. Mascle, and A. Prakash 22:13

▶ Remark 22. We remark that the automaton AgenCoB
L obtained in this way uses a polynomial

number of output colours in the size of the minimal HD coBüchi automaton AcoB
L (see also

long version). More precisely, the number k of colours is the number of safe components of
AcoB

L . However, this number of colours is not necessarily optimal (see Theorem 30).

The correctness of our construction, stated below, is proven similarly to Proposition 20.

▶ Proposition 23 (Correctness). Let L be a coBüchi recognisable language. The automaton
AgenCoB

L is history-deterministic and recognises L.

In particular, the resolver for AgenCoB
L is defined as in Proposition 20: it follows the

different safe components of AcoB
L in a round-robin fashion, by trying to avoid colour some

colour i while moving in ϕi(Si), then if colour i is seen it switches to i′ = (i + 1) mod k, etc.
We explain how to obtain the minimality of AgenCoB

L , stated below. We reduce to the
prefix-independent case, using a technique from [12].3 Full proofs can be found in the long
version.

▶ Proposition 24 (Minimality). Let B be a history-deterministic generalised coBüchi automa-
ton recognising a language L. Then, |AgenCoB

L | ≤ |B|.

For each residual R = u−1L ∈ Res(L), we define the local alphabet at R, as:

Σ↾R = {v ∈ Σ+ | [uv] = [u] and for any proper prefix v′ of v, [uv′] ̸= [v]}.

That is, if A is a semantically deterministic automaton with states Q, then Σ↾R is the set
of words that connect states in QR. Note that in general Σ↾R may be infinite, however this
is harmless in this context, and we will freely allow ourselves to talk about automata over
infinite alphabets. Also, Σ↾R is empty if and only if all the states of QR are transient, that is,
they do not occur in any cycle of the automaton. For simplicity, in the following we assume
that no state of A is transient; the general case is treated in detail in the long version.

We define the localisation of L to a residual R ∈ Res(L) as the language over the alphabet
Σ↾R given by: L↾R = {w ∈ Σ↾Rω | w ∈ R}.

▶ Remark 25. For every residual R, L↾R is a prefix-independent language. It corresponds to
infinite words whose letters are in Σ↾R that is, going from QR to QR, and eventually avoid
seeing some colour on such paths. The prefix-independence of L↾R follows from the fact that
L↾R has only itself as residual, on alphabet Σ↾R.

Let A be a semantically deterministic generalised coBüchi automaton with k colours
recognising L ⊆ Σω. For each recurrent residual R of L we define A↾R to be the generalised
coBüchi automaton over Σ↾R given by:

the set of states is QR, that is, the set of states of A recognising R.
the initial state is arbitrary,
the acceptance condition is genCoBC (for C the output colours of A),
there is a transition q

w:X−−−→ p, with w ∈ Σ↾R, X ∈ 2{1,...,k}, if there is a path from q to p

labelled w and producing the set of colours X in A.

3 An alternative proof scheme is to extend the proof of Proposition 21 to the general case, by taking into
account the residuals of the language. For this, we need a refinement of Lemma 15, stating that the
injection η satisfies that, for every residual R and safe component S of AcoB

L , |S ∩ R| ≤ |η(S) ∩ R|. The
proof of Abu Radi and Kupferman [2] does indeed lead to this result, but it is not explicitly stated in
this form.

CSL 2025

22:14 On the Minimisation of (History-)Deterministic Generalised (co)Büchi Automata

▶ Lemma 26. The automaton (A↾R)q recognises L↾R for each q ∈ QR. Moreover, if Aq is
history-deterministic, so is (A↾R)q.

Using the fact that (safe) paths between states in QR are the same in A or in A↾R,
combined with Lemma 15, we can prove:

▶ Lemma 27. AcoB
L ↾R is a minimal HD coBüchi automaton recognising L↾R. Moreover, a

maximal safe component of this automaton has size nj.

To conclude the proof of Proposition 24, we combine Lemma 27 with Proposition 21 to
show that |QRj

B | ≥ nj . This implies: |B| ≥ n1 + · · · + nm = |AgenCoB
L |.

5 NP-completeness of minimisation of deterministic and HD
generalised Büchi automata

In this section we contrast the polynomial-time complexity previously obtained for minimising
history-deterministic generalised coBüchi automata with the NP-hardness of the minimisation
of deterministic generalised (co)Büchi and history-deterministic generalised Büchi automata.

▶ Theorem 28. The following problem is NP-complete: Given a history-deterministic
generalised Büchi automaton A and a number n, decide whether there is an equivalent
history-deterministic generalised Büchi automaton with at most n states.

▶ Theorem 29. The minimisation of the number of states of deterministic generalised Büchi
and deterministic generalised coBüchi automata is NP-complete.

We show NP-hardness of the minimisation problems in the deterministic and history-
deterministic Büchi cases simultaneously. The NP-hardness for the deterministic coBüchi
case follows directly. Our reduction is from a suitable version of the 3-colouring problem.

We further consider the problem of minimising both colours and states simultaneously for
generalised (co)Büchi automata. For the automata classes appearing in the previous theorems
(deterministic and history-deterministic generalised Büchi automata), it easily follows that this
problem is NP-complete. We focus therefore in the case of history-deterministic generalised
coBüchi, for which the minimisation of states has proven to be polynomial (Theorem 11).
We show that, even in this case, minimising both states and colours is NP-complete.

▶ Theorem 30. The following problem is NP-complete: Given a history-deterministic
generalised coBüchi automaton A, and numbers n and k, decide whether there is an equivalent
history-deterministic generalised coBüchi automaton with at most n states and k colours.

We obtain the lower bound by adapting the proof of NP-hardness of the minimising of
Rabin pairs, given in [19], itself inspired from [28]. Details can be found in the long version.

5.1 Containment in NP and bounds on the necessary number of colours
In this section we address an important subtlety of our minimisation problems: We minimise
the number of states, but the number of colours used by a generalised Büchi or generalised
coBüchi automaton may be exponential in its number of states.

In order to show that the problems at hand are in NP, we need to show that the
minimal deterministic and history-deterministic automata require a number of colours that
is polynomial in the size of the input (that is, the number of states and colours of the input
automaton). This turns out to be true, although not trivial. Full proofs are in the long
version.

A. Casares, O. Idir, D. Kuperberg, C. Mascle, and A. Prakash 22:15

▶ Lemma 31. Let A be a deterministic generalised Büchi automaton with n states and
k colours. Then there is an equivalent deterministic generalised Büchi automaton with a
minimal number of states and using O(n2k) colours.

▶ Lemma 32. Let A be a history-deterministic generalised Büchi automaton with n states
and k colours. Then there is an equivalent history-deterministic generalised Büchi automaton
with a minimal number of states and using O(n3k2) colours.

This allows us to obtain an NP algorithm as we only need to guess an automaton with
polynomially many states and colours, and check equivalence with the input automaton. The
latter test can be done in polynomial time (see for instance [40, Thm. 4]).

As an additional result, we show that the previous lemmas do not hold for general
non-deterministic automata: minimising an automaton may blow up its number of colours.

▶ Proposition 33. There exists a family of non-deterministic generalised Büchi automata
(An)n∈N such that for all n, An uses n + 1 states and 2 colours and a minimal automaton
equivalent to An requires 2n colours.

5.2 Hardness of state minimisation
We provide a reduction from the 3-colouring problem. We construct from a given graph G a
deterministic automaton AG such that:

If G is 3-colourable then there is a 3-state deterministic automaton equivalent to AG, and
if G is not 3-colourable then there is no automaton B (deterministic or not) with 3 states
equivalent to AG.

This establishes the hardness of state-minimisation for deterministic and history-deterministic
automata simultaneously. The full proof is in the long version. We only present here the
languages we use and a sketch of the first item. The second item is obtained by a refined
case analysis over the cycles of generalised Büchi automata with three states.

Given an undirected graph G = (V, E), we define the neighbourhood of a vertex v as the
set N [v] = {v′ ∈ V | {v, v′} ∈ E}, and its strict neighbourhood as n(v) = N [v] \ {v}.

We consider the alphabet Σ = V . For each v ∈ V , we define the language:

Lv = (V ∗vv)ω ∪ (V ∗(V \ N [v]))ω and we let LG =
⋂

v∈V

Lv.

In words, a sequence of nodes is in LG if for all v ∈ V it either has infinitely many factors vv

or sees a vertex that is not a neighbour of v infinitely many times.
The first item is proven by the following more general lemma. We actually show that from

a k-colouring of G we can build a deterministic automaton with k states for LG. This also
allows us to construct the automaton AG by applying this lemma on a trivial |V |-colouring.

▶ Lemma 34. For all graph G = (V, E) and k ∈ N, if G is k-colourable then there exists a
complete deterministic generalised Büchi automaton B with k states which recognises LG.

Proof sketch. Suppose G is k-colourable, let c : V → {1, . . . , k} be a k-colouring of G. We
define the deterministic generalised Büchi automaton B as follows:

The set of states is Q = {1, . . . , k}, we pick any state as the initial one.
For q ∈ Q and v ∈ Σ = V , the v-transition from q is q

v−→ c(v).
The set of output colours is V , hence the output alphabet is Γ = 2V .
If q ̸= c(v), the transition q

v−→ c(v) is coloured with V \ N [v]. Transitions of the form
c(v) v−→ c(v) are coloured with V \ n(v).

CSL 2025

22:16 On the Minimisation of (History-)Deterministic Generalised (co)Büchi Automata

It is then quite straightforward to show that a word is accepted by B if and only if for
each v it goes infinitely many times through the v-loop on c(v) or sees infinitely many times
vertices outside of N [v]. The structure of the automaton ensures that those words are exactly
the ones in Lv. In particular, the fact that c(u) ̸= c(v) for all neighbours u and v implies
that we cannot go through the v loop on c(v) without reading a v or a non-neighbour of v

just before. Figure 3 shows an example of this construction. ◀

a

b c

d

c : 3, 4

d : 1, 3, 4

a : 1, 4

b : 2

b

c : 4

d : 1, 3

a : 4

a : 4

b

c : 4

d : 1, 3

Figure 3 A graph with a 3-colouring, and the corresponding automaton as defined in Lemma 34.
The output colours a, b, c, d have been replaced by 1, 2, 3, 4 for readability.

6 Conclusion

We believe that one of the key novel insights of this work is to compare the complexity of the
minimisation of HD generalised coBüchi automata (polynomial) with both HD generalised
Büchi automata and deterministic models (NP-complete). For history-deterministic and
deterministic Büchi automata the minimisation problem is still open; our results are an
important step in this direction, and seem to indicate that the polynomial-time minimisation
algorithm for the HD coBüchi case will not extend to the Büchi or the deterministic case.

References
1 Bader Abu Radi and Orna Kupferman. Minimizing GFG transition-based automata. In ICALP,

volume 132 of LIPIcs, pages 100:1–100:16, 2019. doi:10.4230/LIPIcs.ICALP.2019.100.
2 Bader Abu Radi and Orna Kupferman. Minimization and canonization of GFG transition-based

automata. Log. Methods Comput. Sci., 18(3), 2022. doi:10.46298/lmcs-18(3:16)2022.
3 Souheib Baarir and Alexandre Duret-Lutz. Mechanizing the minimization of deterministic

generalized Büchi automata. In FORTE, volume 8461 of Lecture Notes in Computer Science,
pages 266–283, 2014. doi:10.1007/978-3-662-43613-4_17.

4 Marc Bagnol and Denis Kuperberg. Büchi good-for-games automata are efficiently recognizable.
In FSTTCS, page 16, 2018. doi:10.4230/LIPICS.FSTTCS.2018.16.

5 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
6 Frantisek Blahoudek, Alexandre Duret-Lutz, and Jan Strejcek. Seminator 2 can complement

generalized Büchi automata via improved semi-determinization. In CAV, volume 12225 of
Lecture Notes in Computer Science, pages 15–27, 2020. doi:10.1007/978-3-030-53291-8_2.

7 Udi Boker, Denis Kuperberg, Orna Kupferman, and Michal Skrzypczak. Nondeterminism
in the presence of a diverse or unknown future. In Automata, Languages, and Programming
- 40th International Colloquium, ICALP 2013, volume 7966 of Lecture Notes in Computer
Science, pages 89–100. Springer, 2013. doi:10.1007/978-3-642-39212-2_11.

https://doi.org/10.4230/LIPIcs.ICALP.2019.100
https://doi.org/10.46298/lmcs-18(3:16)2022
https://doi.org/10.1007/978-3-662-43613-4_17
https://doi.org/10.4230/LIPICS.FSTTCS.2018.16
https://doi.org/10.1007/978-3-030-53291-8_2
https://doi.org/10.1007/978-3-642-39212-2_11

A. Casares, O. Idir, D. Kuperberg, C. Mascle, and A. Prakash 22:17

8 Udi Boker, Denis Kuperberg, Karoliina Lehtinen, and Michał Skrzypczak. On succinctness
and recognisability of alternating good-for-games automata. CoRR, abs/2002.07278, 2020.
arXiv:2002.07278.

9 Udi Boker and Karoliina Lehtinen. Good for games automata: From nondeterminism to
alternation. In CONCUR, volume 140, pages 19:1–19:16, 2019. doi:10.4230/LIPIcs.CONCUR.
2019.19.

10 Udi Boker and Karoliina Lehtinen. History determinism vs. good for gameness in quantitative
automata. In FSTTCS, volume 213, pages 38:1–38:20, 2021. doi:10.4230/LIPIcs.FSTTCS.
2021.38.

11 Udi Boker and Karoliina Lehtinen. When a little nondeterminism goes a long way: An
introduction to history-determinism. ACM SIGLOG News, 10(1):24–51, 2023. doi:10.1145/
3584676.3584682.

12 Patricia Bouyer, Antonio Casares, Mickael Randour, and Pierre Vandenhove. Half-positional
objectives recognized by deterministic Büchi automata. In CONCUR, volume 243, pages
20:1–20:18, 2022. doi:10.4230/LIPIcs.CONCUR.2022.20.

13 J. Richard Büchi and Lawrence H. Landweber. Solving sequential conditions by finite-state
strategies. Transactions of the American Mathematical Society, 138:295–311, 1969. URL:
http://www.jstor.org/stable/1994916.

14 J. Richard Büchi. On a decision method in restricted second order arithmetic. Proc. Internat.
Congr. on Logic, Methodology and Philosophy of Science, pages 1–11, 1962.

15 Antonio Casares. On the minimisation of transition-based Rabin automata and the chromatic
memory requirements of Muller conditions. In CSL, volume 216, pages 12:1–12:17, 2022.
doi:10.4230/LIPIcs.CSL.2022.12.

16 Antonio Casares. Structural properties of automata over infinite words and memory for
games (Propriétés structurelles des automates sur les mots infinis et mémoire pour les jeux).
PhD thesis, Université de Bordeaux, France, 2023. URL: https://theses.hal.science/
tel-04314678.

17 Antonio Casares, Thomas Colcombet, Nathanaël Fijalkow, and Karoliina Lehtinen. From
Muller to Parity and Rabin Automata: Optimal Transformations Preserving (History) Deter-
minism. TheoretiCS, Volume 3, April 2024. doi:10.46298/theoretics.24.12.

18 Antonio Casares, Thomas Colcombet, and Karoliina Lehtinen. On the size of good-for-games
Rabin automata and its link with the memory in Muller games. In ICALP, volume 229, pages
117:1–117:20, 2022. doi:10.4230/LIPIcs.ICALP.2022.117.

19 Antonio Casares and Corto Mascle. The complexity of simplifying ω-automata through
the alternating cycle decomposition. CoRR, abs/2401.03811, 2024. arXiv:2401.03811, doi:
10.48550/arXiv.2401.03811.

20 Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In ICALP,
pages 139–150, 2009. doi:10.1007/978-3-642-02930-1_12.

21 Costas Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and Mihalis Yannakakis. Memory-
efficient algorithms for the verification of temporal properties. Formal Methods Syst. Des.,
1(2/3):275–288, 1992. doi:10.1007/BF00121128.

22 Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne
Renault, and Laurent Xu. Spot 2.0 - A framework for LTL and ω-automata manipulation.
In ATVA, volume 9938 of Lecture Notes in Computer Science, pages 122–129, 2016. doi:
10.1007/978-3-319-46520-3_8.

23 Rüdiger Ehlers. Minimising deterministic Büchi automata precisely using SAT solving. In
Theory and Applications of Satisfiability Testing - SAT, volume 6175 of Lecture Notes in
Computer Science, pages 326–332, 2010. doi:10.1007/978-3-642-14186-7_28.

24 Javier Esparza, Orna Kupferman, and Moshe Y. Vardi. Verification. In Jean-Éric Pin, editor,
Handbook of Automata Theory, pages 1415–1456. European Mathematical Society Publishing
House, Zürich, Switzerland, 2021. doi:10.4171/AUTOMATA-2/16.

CSL 2025

https://arxiv.org/abs/2002.07278
https://doi.org/10.4230/LIPIcs.CONCUR.2019.19
https://doi.org/10.4230/LIPIcs.CONCUR.2019.19
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.1145/3584676.3584682
https://doi.org/10.1145/3584676.3584682
https://doi.org/10.4230/LIPIcs.CONCUR.2022.20
http://www.jstor.org/stable/1994916
https://doi.org/10.4230/LIPIcs.CSL.2022.12
https://theses.hal.science/tel-04314678
https://theses.hal.science/tel-04314678
https://doi.org/10.46298/theoretics.24.12
https://doi.org/10.4230/LIPIcs.ICALP.2022.117
https://arxiv.org/abs/2401.03811
https://doi.org/10.48550/arXiv.2401.03811
https://doi.org/10.48550/arXiv.2401.03811
https://doi.org/10.1007/978-3-642-02930-1_12
https://doi.org/10.1007/BF00121128
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-642-14186-7_28
https://doi.org/10.4171/AUTOMATA-2/16

22:18 On the Minimisation of (History-)Deterministic Generalised (co)Büchi Automata

25 Rob Gerth, Doron A. Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In IFIP, volume 38, pages 3–18, 1995.

26 Thomas A. Henzinger and Nir Piterman. Solving games without determinization. In Computer
Science Logic, pages 395–410, 2006. doi:10.1007/11874683_26.

27 John E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. Technical
report, Stanford University, 1971. doi:10.5555/891883.

28 Christopher Hugenroth. Zielonka DAG acceptance, regular languages over infinite words. In
DLT, 2023.

29 Sudeep Juvekar and Nir Piterman. Minimizing generalized Büchi automata. In CAV, pages
45–58, 2006. doi:10.1007/11817963_7.

30 Denis Kuperberg and Michał Skrzypczak. On determinisation of good-for-games automata.
In ICALP, pages 299–310, 2015. doi:10.1007/978-3-662-47666-6_24.

31 Orna Kupferman, Shmuel Safra, and Moshe Y. Vardi. Relating word and tree automata. In
LICS, pages 322–332, 1996. doi:10.1109/LICS.1996.561360.

32 Karoliina Lehtinen and Martin Zimmermann. Good-for-games ω-pushdown automata. In
LICS, pages 689–702, 2020. doi:10.1145/3373718.3394737.

33 Thibaud Michaud and Maximilien Colange. Reactive synthesis from LTL specification with
Spot. In SYNT@CAV, Electronic Proceedings in Theoretical Computer Science, 2018.

34 Satoru Miyano and Takeshi Hayashi. Alternating finite automata on omega-words. Theor.
Comput. Sci., 32:321–330, 1984. doi:10.1016/0304-3975(84)90049-5.

35 Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In POPL, pages 179–190,
1989. doi:10.1145/75277.75293.

36 Etienne Renault, Alexandre Duret-Lutz, Fabrice Kordon, and Denis Poitrenaud. Three SCC-
based emptiness checks for generalized Büchi automata. In LPAR, volume 8312 of Lecture
Notes in Computer Science, pages 668–682, 2013. doi:10.1007/978-3-642-45221-5_44.

37 Etienne Renault, Alexandre Duret-Lutz, Fabrice Kordon, and Denis Poitrenaud. Variations on
parallel explicit emptiness checks for generalized Büchi automata. Int. J. Softw. Tools Technol.
Transf., 19(6):653–673, 2017. doi:10.1007/S10009-016-0422-5.

38 Schmuel Safra. On the complexity of ω-automata. In FOCS, pages 319–327, 1988. doi:
10.1109/SFCS.1988.21948.

39 Sven Schewe. Beyond hyper-minimisation—minimising DBAs and DPAs is NP-complete. In
FSTTCS, volume 8, pages 400–411, 2010. doi:10.4230/LIPIcs.FSTTCS.2010.400.

40 Sven Schewe. Minimising Good-For-Games automata is NP-complete. In FSTTCS, volume
182, pages 56:1–56:13, 2020. doi:10.4230/LIPIcs.FSTTCS.2020.56.

41 Fabio Somenzi and Roderick Bloem. Efficient Büchi automata from LTL formulae. In CAV,
volume 1855 of Lecture Notes in Computer Science, pages 248–263, 2000. doi:10.1007/
10722167_21.

42 M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Compu-
tation, 115(1):1–37, 1994. doi:10.1006/inco.1994.1092.

https://doi.org/10.1007/11874683_26
https://doi.org/10.5555/891883
https://doi.org/10.1007/11817963_7
https://doi.org/10.1007/978-3-662-47666-6_24
https://doi.org/10.1109/LICS.1996.561360
https://doi.org/10.1145/3373718.3394737
https://doi.org/10.1016/0304-3975(84)90049-5
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/978-3-642-45221-5_44
https://doi.org/10.1007/S10009-016-0422-5
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.56
https://doi.org/10.1007/10722167_21
https://doi.org/10.1007/10722167_21
https://doi.org/10.1006/inco.1994.1092

Permissive Equilibria in Multiplayer Reachability
Games
Aline Goeminne #

F.R.S.-FNRS & UMONS – Université de Mons, Belgium

Benjamin Monmege #

Aix-Marseille Univ, CNRS, LIS, Marseille, France

Abstract
We study multi-strategies in multiplayer reachability games played on finite graphs. A multi-strategy
prescribes a set of possible actions, instead of a single action as usual strategies: it represents a set
of all strategies that are consistent with it. We aim for profiles of multi-strategies (a multi-strategy
per player), where each profile of consistent strategies is a Nash equilibrium, or a subgame perfect
equilibrium. The permissiveness of two multi-strategies can be compared with penalties, as already
used in the two-player zero-sum setting by Bouyer, Duflot, Markey and Renault [3]. We show that
we can decide the existence of a multi-strategy profile that is a Nash equilibrium or a subgame
perfect equilibrium, while satisfying some upper-bound constraints on the penalties in PSPACE, if
the upper-bound penalties are given in unary. The same holds when we search for multi-strategies
where certain players are asked to win in at least one play or in all plays.

2012 ACM Subject Classification Software and its engineering → Formal methods; Theory of
computation → Logic and verification; Theory of computation → Solution concepts in game theory

Keywords and phrases multiplayer reachability games, penalties, permissive equilibria

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.23

Related Version Full Version: https://arxiv.org/abs/2411.13296 [14]

Funding Aline Goeminne: Postdoctoral Researcher of the Fonds de la Recherche Scientifique –
FNRS.
Benjamin Monmege: This author was partially funded by ANR JCJC Quasy ANR-23-CE48-0008.

1 Introduction

Nowadays, computer systems are ubiquitous and increasingly complex. Errors in such systems
can have dramatic consequences. This is why model checking provides a formal tool to ensure
these systems are correct and meet certain specifications. Synthesis, on the other hand, allows
for the construction of a correct-by-construction system model: concepts from game theory
can be used for this purpose.

Two-player zero-sum games are commonly used to model a system interacting with its
environment. In this model, the system aims to achieve a goal while the environment acts
antagonistically to prevent it. This situation can be abstracted as a game played on a graph
involving two players (the system and the environment). The graph represents the different
possible configurations of the system, and an infinite path in this graph is a sequence of
interactions between the system and the environment. In this model, building a correct
system amounts to synthesizing a winning strategy, that is, a way for the system to play
that ensures its goal is met regardless of the environment’s behavior.

Unlike the purely antagonistic view of two-player zero-sum games, multiplayer games
allow for modeling situations where the environment may have its own goals, or where the
system consists of different interacting components, each with its own specification. In this
context, the notion of a winning strategy is no longer appropriate, hence notions of equilibria

© Aline Goeminne and Benjamin Monmege;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 23; pp. 23:1–23:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aline.goeminne@umons.ac.be
mailto:benjamin.monmege@univ-amu.fr
https://orcid.org/0000-0002-4717-9955
https://doi.org/10.4230/LIPIcs.CSL.2025.23
https://arxiv.org/abs/2411.13296
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Permissive Equilibria in Multiplayer Reachability Games

are studied: Nash equilibria or subgame perfect equilibria, which more adequately account for
the sequential aspect of games played on graphs (avoiding non-credible threats). Intuitively,
an equilibrium can be seen as a contract among players such that no player has an incentive
to unilaterally change his strategy.

It is well known that different equilibria can coexist in the same game. In particular,
a game may include an equilibrium where no player achieves his goal and an equilibrium
where all players achieve their goals. The latter equilibrium is more relevant than the former.
Therefore, it seems appropriate to focus on the existence and synthesis of relevant equilibria
(according to certain relevance criteria).

Even if the synthesis process provides an equilibrium, its implementation may fail. This
can be due to the occurrence of errors; for example, the action prescribed by the equilibrium
may be unavailable. Synthesizing robust equilibria against such perturbations is therefore
essential. To address these robustness issues, the classic notion of a player’s strategy can be
replaced by the notion of a multi-strategy: unlike a classic strategy that provides a single
action at each decision point, a multi-strategy provides a subset of possible actions (see, for
example, [2, 3]).

Intuitively, a multi-strategy is more permissive than another if the first allows more
behaviors than the second. There are different ways to express this permissiveness. A qualit-
ative view of permissiveness is studied in [2], where a multi-strategy is more permissive than
another if the set of resulting plays includes those of the second multi-strategy. A quantitative
view is addressed in [3] via the notion of penalty of multi-strategies, where a cost is associated
with each edge not chosen by the multi-strategy. Thus, the penalty of a multi-strategy is the
highest sum of blocked edges along a play consistent with the multi-strategy.

Related works. In [2], permissiveness in parity games (a highly expressive winning condition)
is studied: considering the qualitative view of permissiveness, there does not necessarily exist
a most permissive strategy. However, one exists when restricted to memoryless strategies
(which always make the same decision in any given vertex of the game). By reducing to
safety games, the authors show that it is possible to compute the most permissive strategy.
In [3], the above-mentioned quantitative view of permissiveness is implemented. Several
penalty measures and games are used, and the complexity of computing the most permissive
strategies in this context is given. More general parity objectives are then studied in [5].
Recently, other methods have explored permissiveness in two-player games using templates
to concisely represent multiple strategies in graph games [1]. This approach is also used in
multiplayer games for the synthesis of secure equilibria [16].

Independently, different equilibria (Nash or subgame perfect) have been studied in
multiplayer games to ensure a strategy profile where no player has an incentive to deviate.
Several works have characterized such equilibria and studied the complexity of decision
problems related to the existence of relevant equilibria. Notably, these works have focused on
the study and characterization of (i) Nash equilibria in games where players have classical ω-
regular objectives [17, 11], (ii) weak subgame perfect equilibria (a variant of subgame perfect
equilibria) where players have classical ω-regular objectives [9] (this work also characterizes
subgame perfect equilibria when the studied objectives are either qualitative reachability or
safety objectives); (iii) subgame perfect equilibria for games with quantitative reachability
objectives [10]; (iv) subgame perfect equilibria for games with parity objectives [6] or
(v) mean-payoff objectives [8, 7].

A. Goeminne and B. Monmege 23:3

Contribution. Our goal is to combine these two research directions by studying permissive-
ness in strategy profiles that describe equilibria (Nash or subgame perfect). In this first work,
we focus on reachability games only. We study permissive strategy profiles such that all
the fully described strategy profiles they contain are equilibria. The motivation is to allow
greater latitude and robustness of equilibrium profiles without losing quality in the final goal
of secure synthesis. With the qualitative view, as in the two-player game framework [2], it is
not difficult to show that there does not necessarily exist most permissive profiles that are
Nash equilibria (or subgame perfect equilibria). We will thus consider a quantitative view of
permissiveness similar to the penalty measures introduced in [3] for two-player games. We
obtain a characterization based on trees, and decision algorithms with penalties bounded by
a given threshold in polynomial space with respect to the size of the game and the maximal
penalty bound (if this is encoded in unary). We also solve the problem of synthesis of robust
and relevant equilibria, where the relevance is the constraint that all derived equilibria ensure
that all players in a fixed subset satisfy their objective (strongly winning), or that at least
one derived equilibrium ensures this guarantee (weakly winning).

All missing proofs can be found in the long version of this article [14].

2 Multiplayer reachability games

A (multiplayer) reachability games is a tuple (N, V, (Vi)i∈N, E, (Fi)i∈N, v0), that we denote
(G, v0) to emphasize the v0 component, where N = {1, . . . , n} is a finite set of n players,
(V, E) is a finite directed graph without deadlocks (for all v ∈ V , there exists v′ ∈ V such
that (v, v′) ∈ E), (Vi)i∈N is a partition of V between the players, Fi ⊆ V is the set of target
vertices, called target set, of player i ∈ N, and v0 is an initial vertex. Given a vertex v ∈ V ,
we let Succ(v) = {v′ ∈ V | (v, v′) ∈ E} be the set of all successors of v.

A play in G is an infinite sequence of vertices consistent with the graph structure, i.e.,
if ρ = ρ0ρ1 · · · is a play, then for all k ∈ N, ρk ∈ V and (ρk, ρk+1) ∈ E. The set of plays
is denoted by Plays, while Plays(v) denotes the set of plays beginning in v. Given a play
ρ = ρ0ρ1 · · · and k ∈ N, ρ≥k is the suffix ρkρk+1 · · · of ρ.

For each player i ∈ N, we let Gaini be the gain function that associates with each play
the value 1 if the play is winning for player i, 0 if it is losing. For a reachability game as
above, we have Gaini(ρ) = 1 iff player i reaches his target set in ρ, i.e., ρ = ρ0ρ1 · · · and
there exists k ∈ N with ρk ∈ Fi. In the rest of this article, (G, v0) will always denote
a reachability game associated with these gain functions.

A history is a finite sequence of vertices h = h0h1 · · · hk with k ∈ N defined similarly.
The set of histories is denoted by Hist, while Hist(v) denotes the set of histories beginning
in v. For all i ∈ N, we write Histi to denote the set of histories ending in a vertex owned by
player i. If h = h0 · · · hk with k ∈ N is a history, Last(h) denotes the last vertex hk, while |h|
denotes its length k. Given a history h = h0 · · · hk, Visit(h) = {i ∈ N | ∃1 ≤ ℓ ≤ k hℓ ∈ Fi}
is the set of players who visit their target set along h.

A strategy of player i is a function σi : Histi(v0) → V that assigns to each history
hv ∈ Histi(v0) a vertex v′ such that (v, v′) ∈ E. A play ρ = ρ0ρ1 · · · is consistent with a
strategy σi if for all ρk ∈ Vi, σi(ρ0 · · · ρk) = ρk+1. A strategy profile is a tuple σ = (σi)i∈N
of strategies, one per player: there is a unique play from v0 which is consistent with each
strategy σi, and we call this play the outcome of σ, denoted by ⟨σ⟩v0 . To highlight the role
of player i, we sometimes write σ = (σi, σ−i) where σ−i denotes the strategy profile of the
players other than player i.

CSL 2025

23:4 Permissive Equilibria in Multiplayer Reachability Games

The strategy profile σ is a Nash equilibrium (NE) in (G, v0) if no player has an incentive
to deviate unilaterally from his strategy to increase his gain, i.e., if for all players i ∈ N and
all strategies σ′

i of player i, Gaini(⟨σ⟩v0) ≥ Gaini(⟨σ′
i, σ−i⟩v0).

The concept of subgame perfect equilibrium (SPE) takes more into account the sequential
nature of games played on graphs by avoiding non-credible threat, a well-known weakness of
NEs in this setting. Informally, a strategy profile is an SPE if it is an NE in all subgames.
Given a history hv ∈ Hist(v0), the subgame (G↾h, v) is obtained from G by changing the
initial vertex to v, and by considering the gain functions (Gaini↾h)i∈N taking into account
the players that have won in history h: we thus write, for each i ∈ N, Gaini↾h(ρ) = Gaini(hρ)
for all ρ ∈ Plays(v). Moreover, if σi is a strategy of player i in G, then σi↾h is the strategy of
player i in the subgame (G↾h, v) such that for all h′ ∈ Histi(v), σi↾h(h′) = σi(hh′). In the
same way, from a strategy profile σ in G, we can derive a strategy profile σ↾h in (G↾h, v). We
now define formally the concept of SPEs: a strategy profile σ is an SPE in G if for all i ∈ N,
for all hv ∈ Histi(v0), σ↾h is an NE in (G↾h, v). Notice that an SPE is an NE and that there
always exists an SPE (and thus an NE) in a reachability game [17].

3 Permissiveness in strategies

Our goal is to allow for some permissiveness in strategies of all players, i.e., being able to
underspecify the strategies of the players, while maintaining that they describe an NE or an
SPE.

A multi-strategy of player i is a function Θi : Histi(v0) → 2V \ {∅} that assigns to
each history hv ∈ Histi(v0) a non-empty set of vertices A ⊆ V such that for all v′ ∈ A,
(v, v′) ∈ E. Notice that a strategy σi can be seen as a multi-strategy Θi where, for all
hv ∈ Histi(v0), Θi(hv) is the singleton {σi(hv)}. A multi-strategy profile Θ = (Θi)i∈N is a
tuple of multi-strategies, one per player.

Unlike strategies, when we fix a game G and a multi-strategy profile Θ, there exist several
plays beginning in v0 that are consistent with all the multi-strategies Θi. To describe them,
we say that a strategy σi is consistent with a multi-strategy Θi, written σi ≲ Θi if for
all hv ∈ Histi(v0), σi(hv) ∈ Θi(hv). We extend this notation to profiles of strategies, as
expected. Then, we let ⟨Θ⟩v0 be the set of plays ⟨σ⟩v0 for all profiles σ of strategies consistent
with the multi-strategy Θ. We call this set the outcomes of Θ. We also let ⟨Θ⟩H

v0
be the set

of histories consistent with the multi-strategy Θ, i.e., the finite prefixes of plays in ⟨Θ⟩v0 .
Our goal is to compute profiles of multi-strategies such that all profiles of consistent

strategies are NEs or SPEs: such profiles of multi-strategies are called permissive NEs or
permissive SPEs. By the existence of NEs and SPEs in reachability games, we straightfor-
wardly obtain the existence of permissive NEs and permissive SPEs. We thus want to study
most permissive NEs or SPEs, i.e., profiles of multi-strategies that are permissive NEs or
SPEs, and such that no “more permissive” multi-strategies are still permissive NEs or SPEs.

The natural first attempt would be to look for a notion of “more permissive” that is
set-theoretic, with respect to a given solution concept. We would thus say that a profile of
multi-strategies Θ is at least as permissive as a profile of multi-strategies Θ′ if for all i ∈ N,
for all histories h ∈ Histi(v0), Θi(h) ⊇ Θ′

i(h). Then, Θ would be more permissive than Θ′

if it is at least as permissive, while being different (for at most one history). Finally, Θ
would be a most permissive NE or SPE if it is a permissive NE or SPE, respectively, and no
permissive NE or SPE, respectively, is more permissive than Θ.

This natural definition is very problematic in the realm of reachability games (as already
noticed in the context of winning strategies in parity games by [2]) where no most permissive
NE or SPE could exist, as demonstrated by the game in Figure 1.

A. Goeminne and B. Monmege 23:5

v0 v1

Figure 1 In this game, player 1 owns all vertices and wants to reach v1. For all k ∈ N, we
define the multi-strategy Θk

1 such that for all h ∈ Hist(v0), Θk
1(h) = {v0, v1} if Last(h) = v0 and

|{n ∈ N | hn = v0}| ≤ k, and Θk
1(h) = {v1} otherwise. We have that for all k ∈ N, for all σ1 ≲ Θk

1 ,
Gain1(⟨σ1⟩v0) = 1 (and thus Θk

1 is a permissive SPE), but for all k ∈ N, ⟨Θk
1⟩v0 ⊆ ⟨Θk+1

1 ⟩v0 .

We thus propose another way to measure the permissiveness of a multi-strategy, inspired
by the definition of penalty used in [3] to describe permissive winning strategies in two-player
games. To define the notion of penalty in our context, we equip the game with a function
w : E → N assigning a non-negative weight to each edge: if unspecified, we will consider that
every edge has weight 1. The player who owns the vertex at the source of an edge e will pay
the penalty w(e) if he decides to not include the edge e in his multi-strategy. All penalties
are then counted additively. Formally, for a multi-strategy profile Θ, we first define for each
player i ∈ N the penalty of player i w.r.t. Θ in a play ρ = ρ0ρ1 · · · by induction on the length
of its prefixes:

PenaltyΘ
i (ε) = 0 where ε denotes the empty prefix;

for h = ρ0 · · · ρk, PenaltyΘ
i (hv) =

PenaltyΘ

i (h) +
∑

v′∈Succ(v)\Θi(hv)

w(v, v′) if v ∈ Vi

PenaltyΘ
i (h) otherwise

;

PenaltyΘ
i (ρ) = limk→+∞ PenaltyΘ

i (ρ0 · · · ρk): this limit exists (it may be equal to +∞)
since (PenaltyΘ

i (ρ0 · · · ρk))k is a non-decreasing sequence of natural numbers.

There are several ways to associate a penalty with a multi-strategy profile Θ, depending
on how we take into account the non-determinism offered in the multi-strategies. A first
choice consists in considering a worst-case scenario in the outcomes (without considering
the possible deviations). A second choice consists in considering only the deviations of one
player, i.e., to consider that the retaliation of other players with respect to the deviation of a
player will count in the final penalty. It is then possible to combine both types of penalties,
though we will treat them separately in the rest of this article.

▶ Definition 1 (Penalties). Let Θ be a multi-strategy profile in (G, v0). The main penalty
and retaliation penalty of player i with respect to Θ are defined respectively as

MPenaltyi(Θ, v0) = sup
ρ∈⟨Θ⟩v0

PenaltyΘ
i (ρ)

RPenaltyi(Θ, v0) = sup
hv∈Histi(v0)\⟨Θ⟩H

v0

sup{PenaltyΘ
i (ρ) | ρ ∈ ⟨Θ↾hv⟩v}

If there are no histories hv in Histi(v0) \ ⟨Θ⟩H
v0

, we let RPenaltyi(Θ, v0) = 0.

The existence of a multi-strategy profile which satisfies some upper-bounds on penalties
does not provide any certainty about the satisfaction of the reachability objectives of the
players. For this reason, we also consider multi-strategy profiles that satisfy some properties
on the set of players who satisfy their objective. Let Win be a subset of players and Θ be a
multi-strategy profile. Then, Θ is said weakly winning if there exists a strategy profile σ

which is consistent with Θ and such its outcome is winning for all players in Win. Similarly,
Θ is said strongly winning if for each strategy profile σ which is consistent with Θ, its
outcome is winning for all players in Win.

CSL 2025

23:6 Permissive Equilibria in Multiplayer Reachability Games

v0

v2

v1

v3

v4

v5

v6

v7

v8

v9 10

Figure 2 An example of a reachability game where player 1 (resp. player 2) owns circle (resp.
rectangle) vertices. The initial vertex is v0. Target vertices F1 = {v3, v6, v8, v9} of player 1 and
F2 = {v4, v6} of player 2 are drawn with gray vertices and double-bordered vertices respectively.

v0

v2

v1

v3

v4

v5

v6

v7

v8

v9 10

(a)

v0

v2

v1

v3

v4

v5

v6

v7

v8

v9 10

(b)

Figure 3 Examples of permissive equilibria: (a) a permissive NE and (b) a permissive SPE.

▶ Definition 2 (Weakly and strongly winning). Given a subset of player Win ⊆ N and a
multi-strategy profile Θ,

Θ is said weakly winning with respect to Win if there exists a strategy profile σ such that
σ ≲ Θ and for all i ∈ Win, Gaini(⟨σ⟩v0) = 1.
Θ is said strongly winning with respect to Win if for all strategy profiles σ such that
σ ≲ Θ, we have that for all i ∈ Win, Gaini(⟨σ⟩v0) = 1.

▶ Example 3. An example of a reachability game with two players is depicted in Figure 2.
The edge labelled with 10 corresponds to the penalty if player 2 decides not to allow this
edge: all other penalties are set to 1 by default. A multi-strategy is represented with red
edges (black dotted edges are thus the ones that are not selected in the multi-strategy) in
Figure 3(a).1 All strategy profiles that are consistent with this multi-strategy depend on the
choice of successor for v0 among {v1, v2}. It is indeed a permissive NE since the consistent
strategies are NEs: player 1 has no interest in deviating from either v1 or v2 in v0, since all
strategies lead to plays where he visits his target set, while going to v5 make him lose. It
has a main penalty of 2 for player 1 and 0 for player 2. Player 1 can do slightly better by
allowing the edge (v1, v4) in the multi-strategy: this remains a permissive NE (now player 2
wins in certain plays, but he is left with no real choices to make), and player 1 now gets a
main penalty of 1. This modified permissive NE is strongly winning w.r.t. {1}, and weakly
winning w.r.t. {1, 2}. It is not a permissive SPE since player 2 has a profitable deviation
from v5 by going to v6 where he wins. A permissive SPE is depicted in Figure 3(b), that
is strongly winning w.r.t. {1}, but only weakly winning w.r.t {1, 2}. Player 2 has a main
penalty of 11 (because he cuts edges (v5, v5) and (v5, v7)), while player 1 has a retaliation
penalty of 1 (because he cuts edge (v7, v9)). If we want a permissive SPE that is strongly
winning w.r.t. {1, 2}, we need to increase the main penalty of player 1 to 2 by removing
edges (v1, v3) and (v0, v2). However, we may decrease to 0 the retaliation penalty of player 1
by adding the edge (v7, v9) (since it is equally good to him anyway).

1 Notice that, in this example, the set of successors prescribed by multi-strategies only depends on the
current vertex and not on the past history.

A. Goeminne and B. Monmege 23:7

We now define the problems we study in the rest of the article, where we use the word
“equilibrium” to either mean NE or SPE, depending on the solution concept we want to
check. In all these problems, we give different penalty bounds for the main penalty and
the retaliation penalty. Notice though that the bounds can be set to +∞, relaxing the
constraints in this case.

▶ Problem 1 (Constrained penalty problem). Given a reachability game (G, v0), m ∈ (N ∪
{∞})n and r ∈ (N ∪ {∞})n, does there exist a permissive equilibrium Θ in (G, v0) such that
for all i ∈ N, MPenaltyi(Θ, v0) ≤ mi and RPenaltyi(Θ, v0) ≤ ri?

▶ Problem 2 (Weakly winning with constrained penalty problem). Given a reachability
game (G, v0), m ∈ (N ∪ {∞})n, r ∈ (N ∪ {∞})n and Win ⊆ N, does there exist a per-
missive equilibrium Θ in (G, v0) such that (i) for all i ∈ N, MPenaltyi(Θ, v0) ≤ mi and
RPenaltyi(Θ, v0) ≤ ri and (ii) Θ is weakly winning w.r.t. Win?

▶ Problem 3 (Strongly winning with constrained penalty problem). Given a reachability
game (G, v0), m ∈ (N ∪ {∞})n, r ∈ (N ∪ {∞})n and Win ⊆ N, does there exist a per-
missive equilibrium Θ in (G, v0) such that (i) for all i ∈ N, MPenaltyi(Θ, v0) ≤ mi and
RPenaltyi(Θ, v0) ≤ ri and (ii) Θ is strongly winning w.r.t. Win?

We show in the rest of this article that all these problems, for NEs and SPEs, are decidable
in PSPACE, if the upper-bound penalties are encoded in unary. To do so, we characterize
the permissive equilibria in the various problems in Section 4. In Section 5, we then show
that tree-like witnesses can be found if the according permissive equilibria exist. These
witnesses have a height bounded by a polynomial depending on the size of the game and the
largest upper-bound on penalties. We use these witnesses to obtain the PSPACE decision
procedures.

4 Characterizations of permissive equilibria

We now characterize permissive equilibria of the reachability game (G, v0). This is a first step
towards their computation in the next section. We provide a characterization for permissive
NEs in Section 4.1 and one for permissive SPEs in Section 4.2. These characterizations are
inspired by existing ones for classical NEs (resp. SPEs) [11, 9]. The latter rely on properties
that a play (resp. a set of plays) must satisfy in order to be the outcome of an NE (resp. the
set of subgame outcomes of an SPE). However, the outcomes of permissive equilibria are
a set of plays and not a simple play. For that reason, the characterizations of permissive
equilibria employ trees that we first formally define.

Trees. We call tree over G rooted at v (for some v ∈ V) any subset T of non-empty histories
of G that contains v and such that if hu ∈ T then h ∈ T . All h ∈ T are called nodes of the
tree, the particular node v is called the root of the tree, and for all hu ∈ T , h is called the
parent of hu, and hu a child of h.

As for histories in an arena, for all hu ∈ T , we let Last(hu) = u. The depth of a node
h ∈ T , written depth(h), is equal to |h| and its height, denoted by height(h), is given by
sup{| Last(h)h′| | h′ ∈ Hist and hh′ ∈ T }. The height of the tree corresponds to the height
of its root. A node h ∈ T is called a leaf if height(h) = 0.

We denote by T ↾hu, the subtree of T rooted at u for some hu ∈ T , that is the set of
non-empty histories h′ ∈ Hist(u) such that hh′ ∈ T .

CSL 2025

23:8 Permissive Equilibria in Multiplayer Reachability Games

A (finite or infinite) branch of the tree is a maximal (finite or infinite) sequence of nodes
h0h1 · · · such that for all k ∈ N, hk is the parent of hk+1. Finally, we denote by T ∞ the set
of plays in G represented by infinite branches in T , i.e.,

T ∞ = {ρ0ρ1 · · · ∈ Plays | there exists a branch h0h1 · · · ∈ T st. ∀k ∈ N, ρk = Last(hk)}

In what follows, we consider outcomes of multi-strategies as trees. Indeed, given a
multi-strategy Θ, ⟨Θ⟩H

v0
can be seen as a tree T over G rooted at v0 and ⟨Θ⟩v0 corresponds

to T ∞. In particular, penalties can also be defined on trees, mimicking the definition for
profiles of multi-strategies. The penalty of a tree T for a player i, denoted by Penaltyi(T), is
the maximal penalty of a branch of T , the penalty of a branch being equal to the penalty of
the associated play ρ w.r.t. any profile of multi-strategies that is consistent with the choices
appearing in T along the play ρ. Formally, let T be a tree and i ∈ N be a player. For each
hv = v1 · · · vkv ∈ T , we define Blocked(h) = {u ∈ Succ(vk) | hu ̸∈ T } as the set of blocked
successors of h in T and

Penaltyi(hv) =

0 if h = ε

Penaltyi(h) +
∑

u∈Blocked(h) w(vk, u) if vk ∈ Vi

Penaltyi(h) otherwise.

Moreover, for all plays ρ = ρ0ρ1 · · · ∈ T ∞, we let Penaltyi(ρ) = limk→+∞ Penaltyi(ρ0 · · · ρk).
Thus, the penalty of a tree T for a player i ∈ N is naturally defined as:

Penaltyi(T) = sup{Penaltyi(ρ) | ρ ∈ T ∞}.

4.1 Characterization of permissive Nash equilibria
In order to characterize permissive Nash equilibria, we start by defining good trees, by
checking two conditions. The first one, called resistance to internal deviations, means that at
any node h of the tree such that Last(h) belongs to player i, if h has at least two children, the
plays starting with h are either all losing, or all winning, for player i. The second one, called
resistance to external deviations, means that at any node hu of the tree with u belonging to
player i, if player i has the possibility to play to a successor u′ not in the tree from which he
has a winning strategy, then all plays in the subtree from hu must be winning for player i.

▶ Definition 4. Let T be a tree over (G, v0).
1. Given a subset of players D ⊆ N, the tree T is D-resistant to internal deviations if for all

i ∈ D and for all hv ∈ T such that v ∈ Vi and |{hvv′ ∈ T | v′ ∈ V }| ≥ 2, we have that
for all ρ, ρ′ ∈ T ∞

↾hv, Gaini(hρ) = Gaini(hρ′). If D = N, we simply say that T is resistant
to internal deviations.

2. The tree T is resistant to external deviations if for all hu ∈ T with u ∈ Vi and i ̸∈
Visit(hu), if there exists u′ ∈ Succ(u) such that huu′ /∈ T and player i has a winning
strategy from u′ (against the coalition of the other players), then for all plays ρ ∈ T ∞

↾hu,
Gaini(ρ) = 1.

3. The tree T is good if it is resistant to internal and external deviations.

The resistance to internal and external deviations leads to the characterization of outcomes
of permissive NEs (Theorem 5): given a good tree T , there exists a permissive NE such that
its outcomes are the plays corresponding to the infinite branches of T iff T is good.

A. Goeminne and B. Monmege 23:9

v0

v ∈ Vi

h

u u′

ρ ρ′

(a)

v0

u ∈ Vi

h

u′
ρ

(b)

Figure 4 Examples of trees that do not respect: (a) the resistance to internal deviations since
Gaini(ρ′) = 0 but Gaini(ρ) = 1; (b) the resistance to external deviations since Gaini(ρ) = 0 but
Player i can win from u′.

▶ Theorem 5. Let T be a tree over (G, v0) rooted at v0. The following assertions are
equivalent:
1. There exists a permissive NE Θ in (G, v0) such that ⟨Θ⟩H

v0
= T ;

2. The tree T is good.

▶ Remark 6. For all multi-strategies Θ, and all players i ∈ N, the penalty MPenaltyi(Θ, v0) is
equal to the penalty of player i in the good tree ⟨Θ⟩H

v0
, i.e., Penaltyi(⟨Θ⟩H

v0
). The construction

of Theorem 5 thus also preserves the main penalties.

Proof sketch. For (1 ⇒ 2) let us assume that Θ is a permissive NE and that ⟨Θ⟩H
v0

= T .
We have to prove that T is good. If T is not resistant to internal deviations that means
that from some vertex v there exists two plays ρ, crossing u, and ρ′, crossing u′ ≠ u, such
that: ρ is winning for player i and ρ′ is losing for player i, see Figure 4(a). In particular, we
can build a strategy profile σ consistent with Θ such that ⟨σ↾h⟩v = ρ′ and ⟨σ↾hv⟩u = ρ≥1.
Meaning that player i should deviate by choosing u instead of u′ from v, meaning that σ is
not an NE and Θ is not a permissive NE. If T is not resistant to external deviations, that
means that from some vertex u of player i there exists a play ρ such that Gaini(ρ) = 0 and
u′ a successor of u outside T from which player i can win, see Figure 4(b). Thus we can
build a strategy profile σ consistent with Θ such that ⟨σ⟩v0 = hρ. In this way, player i should
choose to go in u′ and then follow a winning strategy meaning that σ is not an NE and Θ
not a permissive NE.

For (2 ⇒ 1), let us assume that T is a good tree. We build a permissive NE Θ such that
its outcomes are the plays corresponding to the infinite branches of T . Additionally, if a
player i deviates from T , the coalition of the other players plays its retaliation2 strategy to
prevent player i from deviating. ◀

4.2 Characterization of permissive subgame perfect equilibria
Permissive subgame perfect equilibria are intrinsically more complex than permissive Nash
equilibria. Thus their characterization cannot only rely on the outcomes from the initial
vertex, it should also take into account the outcomes in all subgames. This is the reason
why, in order to deal with a compact representation of outcomes of a permissive SPE and its
subgames, we introduce the notion of forest. Then, we generalize the definition of good trees
to define good forests needed to characterize SPEs instead of NEs.

2 This retaliation strategy corresponds to the winning strategy of player 2 in a two-player zero-sum
reachability game in which player 1 is player i and wants to reach Fi and player 2 is the coalition of the
other players and wants to avoid visiting Fi [15, Chapter 2].

CSL 2025

23:10 Permissive Equilibria in Multiplayer Reachability Games

Forests and penalties of forests. Trees of the forest are indexed by tuples (i, v, I) ∈
N ×V × 2N. More precisely, we let

I = {(0, v0, I0)}∪{(i, v, I) ∈ N ×V ×2N | ∃hv′ ∈ Histi(v0) st. v ∈ Succ(v′) ∧ I = Visit(hv′v)}

where I0 = {i ∈ N | v0 ∈ Fi}. Apart from the special tuple (0, v0, I0), a tuple (i, v, I)
represents the fact that v is a vertex played by player i and reachable from v0, and that all
players in I have already seen their target when v is reached. A forest in (G, v0) is thus a
set of trees F = {T i,v,I | (i, v, I) ∈ I} such that T i,v,I is a tree without leaves over G rooted
at v. The intuition behind this object is that the tree T 0,v0,I0 represents the outcomes of a
multi-strategy Θ and the other trees T i,v,I represent the outcomes of Θ↾hv′ in the subgames
(G↾hv′ , v) for all hv′ ∈ Histi(v0) such that Visit(hv′v) = I.

Moreover the main (resp. retaliation) penalty of a forest F for a player i ∈ N are
respectively given by

MPenaltyi(F) = Penaltyi(T 0,v0,I0) and RPenaltyi(F) = sup
T i,v,I ∈F

(i,v,I)∈Out

Penaltyi(T i,v,I)

where Out = {(i, v, I) ∈ I \ {(0, v0, I0)} | ∃hv ∈ Hist(v0) st. hv ̸∈ T (0,v0,I0) ∧ Last(h) ∈
Vi ∧ I = Visit(hv)} described the indices of trees in the forest that are deviations from the
main tree T 0,v0,I0 . If Out is empty, we let RPenaltyi(F) = 0.

Characterization. Following the same philosophy as for permissive NEs, a forest is good if
each tree T i,v,I of the forest satisfies two properties. The first one is that T i,v,I has to be
(N \ I)-resistant to internal deviations, exactly as for permissive NEs except that we take into
account players who have already visited their target set, i.e., players in I. The second one,
called resistance to constrained external deviations, means that at any node hu of the tree
such that u belongs to player j, if player j has the possibility to jump to another tree T j,u′,I′

by playing to a successor u′ not in the tree and if there exists a play in this latter tree which
is winning for player j, then all plays after hu in T i,v,I have to be winning for player j.

▶ Definition 7 (Good forest). Let F be a forest in (G, v0).
1. A tree T i,v,I ∈ F is resistant to constrained external deviations if it satisfies the following

property: for all hu ∈ T i,v,I and j ∈ N such that we have that (i) u ∈ Vj and j ̸∈
I ∪ Visit(hu) and (ii) there exists u′ ∈ Succ(u) such that huu′ ̸∈ T i,v,I, if there exists
ρ′ ∈ T ∞

j,u′,I′ , where I′ = I ∪ Visit(huu′), such that Gainj(ρ′) = 1, then for all ρ ∈ T ∞
i,v,I↾hu,

Gainj(ρ) = 1.
2. The forest F is good if each tree T i,v,I ∈ F is (N \ I)-resistant to internal deviations

(see (1) in Definition 4) and resistant to constrained external deviations.

Thanks to good forests, we are able to characterize the outcomes of permissive SPEs:
given a good tree T ∗, there exists a permissive SPE such that its outcomes correspond to
T ∗ iff there exists a good forest whose “main” tree is T ∗, i.e., T 0,v0,I0 = T ∗. With some
other constraints, this also preserves strongly (resp. weakly) winning and penalty properties.

▶ Theorem 8. Let m ∈ (N ∪ {∞})n and r ∈ (N ∪ {∞})n be upper thresholds. Let T ∗ be a
tree rooted at v0 and Win ⊆ N be a set of players. The following assertions are equivalent:
1. There exists a permissive SPE Θ in (G, v0) such that:

a. ⟨Θ⟩H
v0

= T ∗;
b. Θ is strongly winning w.r.t. Win;
c. for all i ∈ N, MPenaltyi(Θ, v0) ≤ mi and RPenaltyi(Θ, v0) ≤ ri.

A. Goeminne and B. Monmege 23:11

v

T i,v,I

u ∈ Vj

h

ρ

u′

T j,u′,I′

ρ′

Figure 5 Example of forest that does not respect the resistance to constrained external deviations
since Gaini(ρ) = 0 but Gaini(ρ′) = 1.

2. There exists a good forest F in (G, v0) such that:
a. T 0,v0,I0 = T ∗;
b. for all ρ ∈ T ∞

0,v0,I0
, for all i ∈ Win, Gaini(ρ) = 1;

c. for all i ∈ N, MPenaltyi(F) ≤ mi and RPenaltyi(F) ≤ ri.
These assertions are still equivalent by replacing 1b by “Θ is weakly winning w.r.t. Win” and
2b by “there exists ρ ∈ T ∞

0,v0,I0
such that for all i ∈ Win, Gaini(ρ) = 1”.

Proof sketch. For (1 ⇒ 2), let us assume that Θ is a permissive SPE. We build a good
forest F such that T 0,v0,I0 is the outcomes of Θ, i.e., T 0,v0,I0 = ⟨Θ⟩H

v0
, and a tree T i,v,I is a

representative of the outcomes of Θ↾hv′ in some subgame (G↾hv′ , v) such that v′ ∈ Vi and
Visit(hv′v) = I. In order to obtain a good forest and since several hv′v could satisfy those
properties, each representative T i,v,I has to be chosen in a proper way: it has to minimize
the maximal gain of player i for plays in T i,v,I. More formally, for each (i, v, I) ∈ I, we let
O(i, v, I) = {⟨Θ↾hv′⟩H

v | hv′v ∈ Hist(v0) ∧ v′ ∈ Vi ∧ I = Visit(hv′v)} and we choose T i,v,I ∈
O(i, v, I) such that max{Gaini(ρ) | ρ ∈ T ∞

i,v,I} = minT ∈O(i,v,I) max{Gaini(ρ) | ρ ∈ T ∞}.
Thanks to this latter property, F is good. Indeed, let T i,v,I be a tree of F . Exactly as

for permissive NEs, if T i,v,I is not (N \ I)-resistant to internal deviations, we can build a
strategy profile σ consistent with Θ such that the restriction of σ is not an NE in a subgame
corresponding to T i,v,I. If T i,v,I is not resistant to constrained external deviations that
means that from some node u, owned by player j, there exists a play ρ losing for player j and
player j could choose to play outside T i,v,I by jumping to a tree T j,u′,I′ in which there exists
a play ρ′ winning for him, see Figure 5. Let g be the history such that T i,v,I represents the
outcomes of Θ↾g in (G↾g, v). Notice that ⟨Θ↾gh⟩u′ may be different from T j,u′,I′ . However
thanks to the way in which this representative is chosen, we have that there exists a play
ρ′′ in ⟨Θ↾gh⟩u′ with Gainj(ρ′′) = 1. Thus, we can build a strategy σ consistent with Θ such
that ⟨σ↾gh⟩u = ρ and ⟨σ↾ghu⟩u′ = ρ′′. This means that player j could deviate by choosing
u′ instead of u from v in the subgame (G↾g, v), thus σ would not be an SPE and Θ not a
permissive SPE.

For (2 ⇒ 1), from a good forest F a multi-strategy is build such that its subgame
outcomes are the trees of F . This forms a permissive SPE because F is good. ◀

For now, good trees and trees in good forests are infinite, but Section 5 will show that we
can represent some trees using a finite representation (intuitively, by supposing that every
branch ends with a lasso in the game). It is this finite representation of good trees and good
forests that will be used to decide the constrained penalty problems for permissive NEs and
permissive SPEs, thanks to the characterizations of Theorems 5 and 8.

CSL 2025

23:12 Permissive Equilibria in Multiplayer Reachability Games

5 Computation of permissive equilibria

Theorems 5 and 8 characterize permissive NEs and SPEs with respect to infinite tree-shaped
objects. In this section, we use these characterizations in order to decide the various penalty
problems defined in Section 3: we check the existence of the good infinite tree-shaped
objects by checking the existence of finite symbolic representations of such objects. We start
by describing for a single tree this symbolic representation, and show that there exists a
polynomial-size such representation (when the penalty upper-bounds are encoded in unary).

5.1 Symbolic trees and forests
▶ Definition 9. A symbolic tree is a pair U = (T , f) with T a finite tree (i.e., a finite subset
of non-empty histories of G), and f a function mapping each leaf h of U to a non-empty set
of successor nodes h′ that are ancestors of h in U such that (Last(h), Last(h′)) ∈ E.

A symbolic tree can be unfolded into an infinite tree by repeatedly expanding the leaves of
U using as successors the choice prescribed by f . We denote by Ũ the infinite tree obtained
by unfolding the symbolic tree U . Similarly, the notions of symbolic forest F , where every
tree in it is a symbolic tree, and unfolding of symbolic forest F̃ can be defined.

In order to treat simultaneously NEs and SPEs, we introduce a new definition generalizing
the resistance to external deviations and constrained external deviations. For a vector
γ ∈ {0, 1}N ×V ×2N of gains, and a subset D ⊆ N of players (that represent players that did
not already win at the beginning of the tree), we say that a tree T is (γ, D)-resistant if
for all hu ∈ T with u ∈ Vi and u′ ∈ Succ(u) with huu′ /∈ T , if γi,u′,(N \D)∪Visit(huu′) = 1, if
i ̸∈ (N \D) ∪ Visit(hu), then for all plays ρ ∈ T ∞

↾hu, Gaini(ρ) = 1.
▶ Remark 10. The notion of (γ, D)-resistance is close to the resistance to external deviations
and constrained external deviations, so that we directly obtain from Theorems 5 and 8:

Let γG be defined as follows: for all (i, u, I), we let γG
i,u,I equals 1 iff player i belongs to I

or can win from u against the coalition of the other players in G. Let T be a tree. Then,
T is a good tree iff T is resistant to internal deviations and (γG , N)-resistant.
Let F be a forest and let γF defined as follows: for all (j, u, J), we let γF

j,u,J equals 1
iff player j belongs to J or the tree T j,u,J contains at least one branch with a vertex of
Fj . Then, F is a good forest iff each each tree T i,v,I of F is (N \ I)-resistant to internal
deviations and (γF , N \ I)-resistant.

The challenge to make this remark a decision procedure is to make the tree and forest
finitely representable. We treat each tree independently of each other, thus explaining how
to symbolically represent one single tree in the following proposition:

▶ Proposition 11. Let T be a tree that is D-resistant to internal deviations, with D ⊆ N.
We let γ ∈ {0, 1}N ×V ×2N be a vector of gains such that T is (γ, D)-resistant, and (Pi)i∈N′ be
finite constraints on penalties for a subset N′ ⊆ N of players. There exists a symbolic tree U ,
that is a subtree of T , of height polynomial in the number of players and vertices of G, and in
the largest bound on penalty Pi, such that the infinite tree Ũ satisfies the following properties:
1. Ũ is D-resistant to internal deviations;
2. in Ũ , every player i ∈ N′ has a penalty at most Pi;
3. Ũ is (γ, D)-resistant.
Moreover, for a subset Win of players, if we start with T that is strongly (respectively, weakly)
winning w.r.t. Win, then we can make the above construction so that moreover Ũ is strongly
(respectively, weakly) winning w.r.t. Win.

A. Goeminne and B. Monmege 23:13

core

expanded core⋯

⋯ completion of branches

Figure 6 Construction of the symbolic tree.

The proof of this result goes by several steps, that we briefly sketch here only in the case
where T is strongly winning w.r.t. Win. Figure 6 depicts the notions used in the construction
of the symbolic tree. First, we consider the smallest subtree of T where leaves are such
that all players of Win have visited their target set: this subtree is finite by König’s lemma,
since all branches of T have such a node where all players of Win have won, and the tree
is finitely branching. This subtree is called the core. We then continue considering the
parts of T outside the core, in order to complete the branches so that: the D-resistance to
internal deviations is fulfilled (if a player has won in a certain branch of a subtree, he must
win in all of them), the (γ, D)-resistance is fulfilled (if γ gives a constraint in the current
node for a player i, all the branches of this subtree should visit a target vertex of i). This
extension of the core is cut into two parts: the expanded core that ends in places where all the
new players that must visit their target because of D-resistance to internal deviations and
(γ, D)-resistance have indeed won; the completion of branches in order to then find leaves of
the symbolic tree where all successors can be replaced (with function f) by similar nodes in
the same branch, and the lassos thus formed are such that the penalty of players that have a
finite penalty threshold does not increase along them. We show that these completions of
branches can be chosen of polynomial length. We then compress the core and expanded core
so that they also have polynomial height.

The symbolic tree U thus built is a subtree of T (even if its unfolding Ũ is not): in
particular, as a corollary, if a player j has no winning play in T , he does not have a winning
play in U neither. In particular, when we apply independently this proposition to all the
trees of a forest F , to obtain a symbolic forest H, this remark allows us to check that the
new vector γH̃ has all its components not above the corresponding ones in γF (if γF

i,v,I = 0
then γH̃

i,v,I = 0). In particular, if the tree T i,v,I of the forest F is (γF , N \ I)-resistant, then
the tree Ũi,v,I of the symbolic forest H is (γH̃, N \ I)-resistant.

Finally, by combining this result with Remark 10, we obtain the following corollaries that
allow us to obtain the PSPACE decision procedures:

▶ Corollary 12. Let m ∈ (N ∪ {∞})n be upper thresholds, and M be the largest such upper
threshold. The following assertions are equivalent:
1. There exists a permissive NE Θ in (G, v0) such that:

(a) Θ is strongly winning w.r.t. Win; (b) for all i ∈ N, MPenaltyi(Θ, v0) ≤ mi.
2. There exists a symbolic tree T̃ in (G, v0) of height polynomial in the number of players

and vertices of G and in M , such that
(a) T̃ is resistant to internal deviations, and (γG , N)-resistant, with γG defined in Re-
mark 10; and (b) for all ρ ∈ T̃

∞
and i ∈ Win, Gaini(ρ) = 1; and (c) for all i ∈ N,

Penaltyi(T̃) ≤ mi.
These assertions are still equivalent by replacing 1(a) by “Θ is weakly winning w.r.t. Win”
and 2(b) by “there exists ρ ∈ T̃

∞
such that for all i ∈ Win, Gaini(ρ) = 1”.

CSL 2025

23:14 Permissive Equilibria in Multiplayer Reachability Games

▶ Corollary 13. Let m ∈ (N ∪ {∞})n and r ∈ (N ∪ {∞})n be upper thresholds, and M be
the largest such upper threshold. The following assertions are equivalent:
1. There exists a permissive SPE Θ in (G, v0) such that:

(a) Θ is strongly winning w.r.t. Win; and (b) for all i ∈ N, MPenaltyi(Θ, v0) ≤ mi and
RPenaltyi(Θ, v0) ≤ ri.

2. There exists a symbolic forest F in (G, v0), where each symbolic tree has a height polynomial
in the number of players and vertices of G and in M , such that (a) each tree T̃ i,v,I is (N \ I)-
resistant to internal deviations, and (γF , N)-resistant, with γF defined in Remark 10;
(b) for all ρ ∈ T̃

∞
0,v0,I0

and i ∈ Win, Gaini(ρ) = 1; and (c) for all i ∈ N, MPenaltyi(F̃) ≤
mi and RPenaltyi(F̃) ≤ ri.

These assertions are still equivalent by replacing 1(a) by “Θ is weakly winning w.r.t. Win”
and 2(b) by “there exists ρ ∈ T̃

∞
0,v0,I0

such that for all i ∈ Win, Gaini(ρ) = 1”.

5.2 Decision problems over permissive Nash equilibria
For permissive NEs, it makes little sense to take into consideration the retaliation penalties,
since the punishment after a deviation should definitely make the deviator lose whatever the
penalty from now on. We thus obtain the following decision result:

▶ Theorem 14. The constrained penalty problem, the weakly winning with constrained penalty
problem and the strongly winning with constrained penalty problem, all with infinite (and
thus no) constraints on retaliation penalties and for NEs are decidable in PSPACE (when
the penalty bounds are encoded in unary).

Proof. We build upon Corollary 12, looking for a finite symbolic tree with the corresponding
properties. We first explain how to solve the constrained penalty problem, and explain
afterwards the adaptation for the two other problems. The idea is to use an alternating
polynomial time Turing machine (since AP = PSPACE [12]) to guess a symbolic tree, checking
the various constraints over it by using branch per branch. We describe the construction by
supposing that the states of the Turing machine are split between existential states (where
the machine accepts if at least one execution accepts) and universal states (where the machine
accepts if all the executions accept). Existential states thus allow us to non-deterministically
guess the finite symbolic tree node after node. We use a polynomial counter to keep track
of the polynomially bounded height of the tree: if the counter goes over the polynomial
bound, the execution of the alternating machine fails. At each node, existential states guess
non-deterministically the set of successors on the working tape.

Universal states allow us to check several pieces of information on the guessed symbolic
tree: the resistance to internal deviations, the constraint on the penalty for each player, and
the (γG , N)-resistance, with γG as in Remark 10. Notice that this vector has exponential size,
but the index I in a triple (i, v, I) is useless (apart from knowing if i ∈ I), and can thus be
ignored: moreover, this set I will be maintained along the execution of the algorithm. This
vector can thus be precomputed in (deterministic) polynomial time by determining, for each
player, their set of winning vertices (against the coalition of the other players) [15].

The various checks can be performed branch per branch by keeping some pieces of
information in memory, not only for the current node of the symbolic tree, but also for the
whole current branch (this remains in polynomial space). Universal states are thus used to
perform the checks on all the branches of the guessed tree.

Checking the penalty for player i. If we have to check that the main penalty of player i is
bounded by a threshold mi (i.e., that the penalty of player i over each branch is bounded
by mi), we keep in memory the current penalty, forbidding for it to go above mi.

A. Goeminne and B. Monmege 23:15

Checking the resistance to internal deviations and (γG , N)-resistance. At each node of the
guessed tree, if the existential states guessed at least two successors, or depending on the
vector γG (for a vertex v where γG has value 1, and that has not been chosen among the
set of successors), we must remember constraints on the successors: either (a) all plays in
their subtrees must be winning for a certain player i, or (b) none. We could add neither
constraint (a) nor (b) for a certain player (if only one successor has been chosen, and the
γG value of all the other successors is 0). In the case where only the resistance to internal
deviation applies (if at least two successors have been chosen, and the γG value of all the
other successors is 0), the choice of constraint (a) or (b) is guessed non-deterministically.
These constraints are kept all along the guessed branch except if a vertex of the target set
of player i is visited; in this case the constraint (a) is released. Moreover, the constraint
(b) for a player i forbids to select a successor in the future where player i visits one of his
target vertices.
The end of the branches. The existential states decide when to stop the branch of the
symbolic tree (before the counter runs out of the polynomial bound). Notice that the
branch cannot stop if one of the type (a) constraints is not released. Then existential
states provide the set of successors taken in the ancestors so that for players that have a
finite upper threshold on their penalty, ancestors must have the same current penalty as
the leaf (to ensure that their penalty does not raise to +∞ in the long run).

For the strongly winning variants, universal states also check the constraint that every player
of Win must win at the end of each branch. For the weakly winning variant, the existential
states are also used to propose a branch where all players of Win will win. The universal
states moreover check whether this condition is fulfilled for this particular branch. ◀

5.3 Decision problems over permissive subgame perfect equilibria
▶ Theorem 15. The constrained penalty problem, the weakly winning with constrained penalty
problem and the strongly winning with constrained penalty problem for SPEs are decidable in
PSPACE (when the penalty bounds are encoded in unary).

Proof. The proof is the same as for NEs, instead of the fact that we use Corollary 13, with
a vector γF that is partially guessed non-deterministically when it is needed. When the
existential states extend a branch of the tree T from a vertex of player i, the universal states
does not only explore the chosen successors (with constraints (a) or (b) as in the previous
proof), but now also explores the other vertices u by starting a fresh exploration of another
tree T i,u,I of the forest. Existential states also non-deterministically guess if player i is
weakly winning in T i,u,I . If so, this gives new constraints (a) in the tree T . The guessed
weakly winning constraints are then checked in the fresh exploration: if player i must be
weakly winning, this is a constraint of the same type as a weakly winning constraint in the
“main” tree; if player i must not be weakly winning, this is a constraint of type (b) (none of
the play must be winning for player i) that we deal as before.

Main penalties are checked as before. For the retaliation penalties, for each player, we
check that the total penalty of all new symbolic trees T i,u,I is below the given upper threshold.
To ensure polynomial time termination, we maintain a polynomial counter, and the set of
trees (more precisely, the set of triples (i, u, I) used to index the trees of the forest) we jumped
in so far. The polynomial counter again takes care of the depth of the branch we explore in
the current tree (we reset this counter when we jump from a tree to another one). The set of
trees we jumped in so far is maintained to forbid several explorations of the same tree of the
forest. As for NEs, the exploration is losing if the depth of the current branch is longer than

CSL 2025

23:16 Permissive Equilibria in Multiplayer Reachability Games

the polynomial bound. The cardinal of the set of triples (i, u, I) we must maintain is also
polynomial (bounded by | N | × |V | × | N |, even though there are exponentially many trees
in a forest), since the subset I of winning players does not decrease along the jumps from a
tree to the next one. This also implies that the total length of the executions of the Turing
machine is indeed polynomial.

Notice that weakly and strongly winning conditions have only to be checked on the “main”
tree as for permissive NEs. ◀

6 Conclusion

We studied the permissiveness in Nash, and subgame perfect equilibria over multiplayer
reachability games. We showed that several associated problems are decidable in PSPACE:
they ask for the existence of such equilibria with various constraints, both on the set of players
who reach their target set, and on the penalties that allow us to compare the permissiveness
of two equilibria. The polynomial space depends on the size of the game, and the largest
upper threshold on the penalties. We were not able to decrease the space dependency to
be only polynomial in the logarithm of the penalty thresholds: we leave for future work to
investigate if this is possible, or if there is a matching lower bound on complexity.

As other ideas for future works, we would like to extend our study to other objectives than
reachability, like more general ω-regular objectives (e.g., parity games), but also weighted
games like mean-payoff games, discounted-payoff games, or shortest-path games (where the
reachability objective is combined with an objective to reach the target with the smallest
possible total weight). An even more challenging problem is to extend this study to the
setting of timed games, where the permissiveness is not only on the choice of edges, but also
on the choice of delays spent in a given vertex. Work along these lines has been carried out
on timed automata and two-player timed games [4, 13].

References
1 Ashwani Anand, Satya Prakash Nayak, and Anne-Kathrin Schmuck. Synthesizing permissive

winning strategy templates for parity games. In CAV 2023, volume 13964 of LNCS, pages
436–458. Springer, 2023. doi:10.1007/978-3-031-37706-8_22.

2 Julien Bernet, David Janin, and Igor Walukiewicz. Permissive strategies: from parity games
to safety games. RAIRO Theor. Informatics Appl., 36(3):261–275, 2002. doi:10.1051/ITA:
2002013.

3 Patricia Bouyer, Marie Duflot, Nicolas Markey, and Gabriel Renault. Measuring permissivity
in finite games. In CONCUR 2009, volume 5710 of LNCS, pages 196–210. Springer, 2009.
doi:10.1007/978-3-642-04081-8_14.

4 Patricia Bouyer, Erwin Fang, and Nicolas Markey. Permissive strategies in timed automata
and games. Electron. Commun. Eur. Assoc. Softw. Sci. Technol., 72, 2015. doi:10.14279/
TUJ.ECEASST.72.1015.

5 Patricia Bouyer, Nicolas Markey, Jörg Olschewski, and Michael Ummels. Measuring per-
missiveness in parity games: Mean-payoff parity games revisited. In ATVA 2011, volume 6996
of LNCS, pages 135–149. Springer, 2011. doi:10.1007/978-3-642-24372-1_11.

6 Léonard Brice, Jean-François Raskin, and Marie van den Bogaard. On the Complexity of SPEs
in Parity Games. In CSL 2022, volume 216 of LIPIcs, pages 10:1–10:17. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CSL.2022.10.

7 Léonard Brice, Jean-François Raskin, and Marie van den Bogaard. The Complexity of SPEs
in Mean-Payoff Games. In ICALP 2022, volume 229 of LIPIcs, pages 116:1–116:20. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.116.

https://doi.org/10.1007/978-3-031-37706-8_22
https://doi.org/10.1051/ITA:2002013
https://doi.org/10.1051/ITA:2002013
https://doi.org/10.1007/978-3-642-04081-8_14
https://doi.org/10.14279/TUJ.ECEASST.72.1015
https://doi.org/10.14279/TUJ.ECEASST.72.1015
https://doi.org/10.1007/978-3-642-24372-1_11
https://doi.org/10.4230/LIPIcs.CSL.2022.10
https://doi.org/10.4230/LIPIcs.ICALP.2022.116

A. Goeminne and B. Monmege 23:17

8 Léonard Brice, Jean-François Raskin, and Marie van den Bogaard. Subgame-perfect equilibria
in mean-payoff games. Logical Methods in Computer Science, 19, 2023. doi:10.46298/
LMCS-19(4:6)2023.

9 Thomas Brihaye, Véronique Bruyère, Aline Goeminne, and Jean-François Raskin. Constrained
existence problem for weak subgame perfect equilibria with ω-regular boolean objectives. In
GandALF 2018, volume 277 of EPTCS, pages 16–29, 2018. doi:10.4204/EPTCS.277.2.

10 Thomas Brihaye, Véronique Bruyère, Aline Goeminne, Jean-François Raskin, and Marie
van den Bogaard. The complexity of subgame perfect equilibria in quantitative reachability
games. In CONCUR 2019, volume 140 of LIPIcs, pages 13:1–13:16. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.CONCUR.2019.13.

11 Thomas Brihaye, Véronique Bruyère, Aline Goeminne, and Nathan Thomasset. On relevant
equilibria in reachability games. In RP 2019, volume 11674 of LNCS, pages 48–62. Springer,
2019. doi:10.1007/978-3-030-30806-3_5.

12 Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114–133, 1981. doi:10.1145/322234.322243.

13 Emily Clement, Thierry Jéron, Nicolas Markey, and David Mentré. Computing maximally-
permissive strategies in acyclic timed automata. In FORMATS 2020, volume 12288 of LNCS,
pages 111–126. Springer, 2020. doi:10.1007/978-3-030-57628-8_7.

14 Aline Goeminne and Benjamin Monmege. Permissive equilibria in multiplayer reachability
games. Technical Report 2411.13296, arXiv, 2024. doi:10.48550/arXiv.2411.13296.

15 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume
2500 of LNCS. Springer, 2002. doi:10.1007/3-540-36387-4.

16 Satya Prakash Nayak and Anne-Kathrin Schmuck. Most general winning secure equilibria
synthesis in graph games. In TACAS 2024, volume 14572 of LNCS, pages 173–193. Springer,
2024. doi:10.1007/978-3-031-57256-2_9.

17 Michael Ummels. Rational behaviour and strategy construction in infinite multiplayer games.
In FSTTCS 2006, volume 4337 of LNCS, pages 212–223. Springer, 2006. doi:10.1007/
11944836_21.

CSL 2025

https://doi.org/10.46298/LMCS-19(4:6)2023
https://doi.org/10.46298/LMCS-19(4:6)2023
https://doi.org/10.4204/EPTCS.277.2
https://doi.org/10.4230/LIPICS.CONCUR.2019.13
https://doi.org/10.1007/978-3-030-30806-3_5
https://doi.org/10.1145/322234.322243
https://doi.org/10.1007/978-3-030-57628-8_7
https://doi.org/10.48550/arXiv.2411.13296
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-031-57256-2_9
https://doi.org/10.1007/11944836_21
https://doi.org/10.1007/11944836_21

Propositional Logics of Overwhelming Truth
Thibaut Antoine #

Univ Rennes, CNRS, IRISA, France

David Baelde #

Univ Rennes, CNRS, IRISA, France

Abstract
Cryptographers consider that asymptotic security holds when, for any possible attacker running in
polynomial time, the probability that the attack succeeds is negligible, i.e. that it tends fast enough
to zero with the size of secrets. In order to reason formally about cryptographic truth, one may
thus consider logics where a formula is satisfied when it is true with overwhelming probability, i.e. a
probability that tends fast enough to one with the size of secrets. In such logics it is not always the
case that either φ or ¬φ is satisfied by a given model. However, security analyses will inevitably
involve specific formulas, which we call determined, satisfying this property – typically because they
are not probabilistic. The Squirrel proof assistant, which implements a logic of overwhelming truth,
features ad-hoc proof rules for this purpose.

In this paper, we study several propositional logics whose semantics rely on overwhelming truth.
We first consider a modal logic of overwhelming truth, and show that it coincides with S5. In
addition to providing an axiomatization, this brings a well-behaved proof system for our logic in
the form of Poggiolesi’s hypersequent calculus. Further, we show that this system can be adapted
to elegantly incorporate reasoning on determined atoms. We then consider a logic that is closer to
Squirrel’s language, where the overwhelming truth modality cannot be nested. In that case, we show
that a simple proof system, based on regular sequents, is sound and complete. This result justifies
the core of Squirrel’s proof system.

2012 ACM Subject Classification Security and privacy → Formal methods and theory of security;
Theory of computation → Modal and temporal logics; Theory of computation → Proof theory

Keywords and phrases Cryptography, Modal Logic, Sequent Calculus

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.24

Funding This work received funding from the France 2030 program managed by the French National
Research Agency under grant agreement No. ANR-22-PECY-0006.

1 Introduction

In modern cryptography, one cannot hope for absolute truth. Considering a signature
primitive sign with a freshly generated pair of secret and public keys sk and pk, it is expected
that an attacker cannot forge a valid signature sign(m, k), even if he has had access to
honestly generated signatures sign(mi, k) for i ∈ [1;n] – unless of course m = mi for some i.
However, one cannot rule out the possibility that the attacker guesses the secret key: brute
force attacks are always possible. Hence, cryptographers must work with a complex notion of
truth, restricting attackers to limited resources and admitting a small probability of success.
In provable cryptography, a system is said to be asymptotically secure when, for any attacker
represented as a probabilistic polynomial-time Turing machine, the probability that an attack
succeeds is negligible, i.e. asymptotically smaller than the inverse of any positive polynomial
in the length of secret keys increases [18]. Dually, we expect that the system remains secure
with overwhelming probability, i.e. that tends fast enough to one as key lengths increase. In
other words, overwhelming truth is the working notion of truth for cryptographers.

© Thibaut Antoine and David Baelde;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 24; pp. 24:1–24:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thibaut.antoine@ens-rennes.fr
https://orcid.org/0009-0007-1319-5512
mailto:david.baelde@irisa.fr
https://orcid.org/0009-0003-3619-1232
https://doi.org/10.4230/LIPIcs.CSL.2025.24
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Propositional Logics of Overwhelming Truth

In order to ease formal proofs in presence of this complex notion of cryptographic
truth, cryptographers have developped specific proof techniques, such as game hopping
and reasoning up-to failure [27]. Going further, formal systems have been developed and
implemented to mechanize cryptographic proofs [13, 10, 11, 1], successfully bringing together
proof techniques coming from both cryptography, program verification and theorem proving –
see [9] for a survey. All of the above mentionned systems allow the explicit manipulation
of probabilities. This may be desired, e.g. to formalize concrete security arguments where
precise, explicit bounds are derived for the attacker’s advantage. However, this level of
detail makes for very tedious proofs, and seems unnecessary to formalize the large body of
work on e.g. the asymptotic security of cryptographic protocols. Bana and Comon have
proposed to solve this issue with the CCSA approach [7, 8], which builds on the standard
framework of first-order logic to provide a formal language that abstracts away probabilities
and asymptotic reasoning. After some successful uses on paper [14, 21, 26, 6], the CCSA
approach has been mechanized in the Squirrel proof assistant [2, 3, 16], which implements a
higher-order version of the CCSA logic [5]. In that logic, one may write e.g. an authentication
property as a formula of the form [∀τ. happens(τ) ⇒ condition@τ ⇒ ∃τ ′. τ ′ < τ ∧event@τ ′]
which intuitively expresses that, in any execution trace of a protocol, if some participant
checks a condition at any time point inside the trace, some event must have happened earlier
in the trace. Crucially, the [φ] construct expresses that the enclosed formula φ holds with
overwhelming probability. Such authentication formulas might be consequences of axioms
expressing (overwhelmingly true) cryptographic assumptions, e.g. about signatures, and they
might have more complex formulas as consequences – the CCSA logics feature a predicate
expressing computational indistinguishability, which we will leave aside in this work. In
typical Squirrel proofs, one often works with formulas of the form ∀τ. [happens(τ)] ⇒ φ,
where we say that φ holds for any time point τ in the trace. If the considered protocol only
features actions A and B, an axiom will allow to rewrite this as ∀τ. [τ = A ∨ τ = B] ⇒ φ.
At this point it would be tempting to conclude that our formula holds provided that both
φ[τ := A] and φ[τ := B] hold; proving these properties might then rely on the specification
of the actions A and B. However, such a case analysis is in general unsound due to the
probabilistic nature of the logic: τ ∈ {A,B} might be true with overwhelming probability for
a random variable τ that is equal to A (resp. B) with probability 1/2, in which case neither
τ = A nor τ = B will be true with overwhelming probability. If relevant, this problem might
be worked around by assuming that τ is actually deterministic, i.e. considering the formula
∀τ. det(τ) ⇒ [τ = A ∨ τ = B] ⇒ φ.

Research in the CCSA line of work has been mainly concerned with justifying the
soundness of the logic wrt. the cryptographic model, the soundness of the proposed proof
systems wrt. the logic, and with concretely verifying cryptographic protocols to justify the
practicality of the approach. In comparison, few investigations have looked carefully into the
fine structure of the logic and associated proof systems. Scerri and Koutsos have established
the decidability of provability for some CCSA systems [15, 22], and a recent work in a variant
of the CCSA logic with explicit bounds improves these bounds via proof transformations [4].
However, no completeness result has ever been proved for a CCSA logic, and the proof
systems proposed in [2, 3, 5] are just sound collections of rules, some of which may be deemed
ad-hoc. Over time, these systems have been structured around notions of local and global
sequents [3] which are only justified by their practical usefulness. Moreover, proof systems
incorporate a few ad-hoc rules [5] that can take into account the det(_) assumptions: for
instance, a rule essentially allows to treat [φ ∨ ψ] as [φ] ∨ [ψ] when det(φ). The complexity
of the logic, as well as its practical relevance, calls for a more careful design.

T. Antoine and D. Baelde 24:3

In this paper, we provide the first answers to these concerns. We restrict to the proposi-
tional fragment of Squirrel’s logic [5], which we naturally reframe as a modal logic: we view
[φ] as □φ, where the □ modality is interpreted as overwhelming truth. This allows us to
apply the well-established concepts and techniques of modal logic and proof theory. We define
in Section 2 (several possible variants of) a modal logic of overwhelming truth and show in
Section 3 that it coincides with the modal logic S5. This result allows to transfer existing
proof systems and model-theoretic techniques from S5 to our modal logic of overwhelming
truth. In particular, we show in Section 4 that Poggiolesi’s hypersequent calculus can be
nicely adapted to incorporate reasoning about determined formulas – a slight variant of the
det(_) predicate presented above. We also show that, for the fragment of our logic that
most closely corresponds to the language of Squirrel, hypersequents are not necessary: we
introduce in Section 5 a sound and complete sequent calculus based on Squirrel’s notions
of local and global sequents. We conclude in Section 6 with some discussion of related and
future works.

2 Modal logics of overwhelming truth

We define several modal logics of overwhelming truth, whose formulas are standard modal logic
formulas, interpreted as families of random variables with the box modality corresponding to
overwhelming truth.

We recall that a probability space is a triple X = (S,Ω, µ) where S is a non-empty set of
samples, the set of events Ω ⊆ 2S is a σ-algebra1, and µ : Ω → [0; 1] is a measure2 assigning
a probability to each event of Ω, such that µ(S) = 1. A random variable V : X → Y from
probability space X = (S,Ω, µ) to probability space Y = (S′,Ω′, µ′) is a function from S to
S′ such that the pre-image of any event in Y is an event in X: for all E′ ∈ Ω′, V −1(E′) ∈ Ω.
This allows us to define Prx∈X

(
V (x) ∈ E′) as µ(V −1(E′)) for any event E′ ∈ Ω′.

As is common, we will identify a probability space X = (S,Ω, µ) with its sample space,
saying for instance that x ∈ X when x ∈ S. Conversely, we identify a finite set S with the
discrete probability space (S, 2S , µ) where µ(E) = |E|/|S| – we typically take S to be {0, 1}
or {0, 1}k.

▶ Definition 1 (Modal formulas). We assume a set P of propositional variables. Modal
formulas are then built from the following grammar: φ ::= ⊥ | p | φ ⇒ φ | □φ. As usual, we
will use other logical connectives as they can be defined from the above ones. For instance,
we will write φ ∨ ψ for ¬φ ⇒ ψ and ♢φ for ¬□¬φ.

We define next an abstract modal logic of overwhelming truth, where validity corresponds
to overwhelming truth in a general class of models. Several variants of this logic are then
obtained by restricting to particular classes of models. As we shall see in the next section,
all these variants are actually equivalent.

2.1 The abstract modal logic of overwhelming truth
We will interpret formulas as families of random variables, indexed by the security parameter
η ∈ N. To do so, we use an abstract notion of cryptographic structure that provides a family
of measure spaces, and interprets each variable as a family of random variables over these
spaces.

1 A σ-algebra must be non-empty and closed under complement, countable unions and intersections.
2 A measure must satisfy µ(

⊎
i∈N Ei) =

∑
i∈N µ(Ei).

CSL 2025

24:4 Propositional Logics of Overwhelming Truth

▶ Definition 2 (Cryptographic structure). A cryptographic structure S is given by:
A sequence of probability spaces (XS

η)η∈N. For η ∈ N, we let RVS
η be the set of random

variables from XS
η to {0, 1}, and RVS = { (Uη)η∈N | Uη ∈ RVS

η for all η }.
For each propositional variable p ∈ P, an interpretation pS ∈ RVS .

When U = (Uη)η∈N ∈ RVS , η ∈ N and ρ ∈ XS
η , we write U(η, ρ) for Uη(ρ). Conversely,

we may define an element U ∈ RVS by defining U(η, ρ) for each η ∈ N and ρ ∈ RVS
η .

A function f : N → [0, 1] is negligible when f is asymptotically smaller than η 7→ η−k for
any k ∈ N. The function is overwhelming when η 7→ 1−f(η) is negligible. For conciseness, we
will also say that a family of random variables U ∈ RVS (for some cryptographic structure S)
is overwhelming when η 7→ Prρ∈XS

η

(
U(η, ρ) = 1

)
is overwhelming.

▶ Definition 3. Given a cryptographic structure S and a formula φ, we define the interpret-
ation JφKS ∈ RVS as follows, for all η ∈ N and ρ ∈ XS

η :
JpKS (η, ρ) = pS(η, ρ) for p ∈ P;
J⊥KS (η, ρ) = 0;
Jφ ⇒ ψKS (η, ρ) = 1 iff JφKS (η, ρ) ≤ JψKS (η, ρ);
J□φKS (η, ρ) = 1 iff JφKS is overwhelming.

▶ Definition 4 (Validity). A formula φ is valid wrt. a class of cryptographic structures when
JφKS is overwhelming for any S in that class. We simply say that φ is valid when it is valid
wrt. all cryptographic structures.

We can now define our first logic. As is standard, we define a logic as a set of formulas
called the theorems of that logic.

▶ Definition 5. The abstract modal logic of overwhelming truth is the set of modal formulas
that are valid wrt. all cryptographic structures.

▶ Example 6. Let φ and ψ be arbitrary modal formulas.
We have that φ is valid iff □φ is valid: for any S, JφKS is overwhelming iff J□φKS is
overwhelming.
The formula □(φ ∧ ψ) ⇒ □φ ∧ □ψ is valid. Indeed, in any S where Jφ ∧ ψKS is over-
whelming, so are JφKS and JψKS .
The formula □(φ∨ψ) ⇒ □φ∨□ψ is not valid. Indeed, φ and ψ might both be true with
probability 1/2 (for all η) in such a way that their disjunction is true with probability 1
(for all η).

Unlike Squirrel’s logic, our modal logic allows the nesting of modal boxes expressing over-
whelming truth. Our logic is otherwise much less expressive than Squirrel’s, not only because
that logic allows (higher-order) quantifications. In our modal logic, propositional variables
are interpreted as families of random variables, where the random variables corresponding
to different values of η might be completely unrelated. In contrast, Squirrel’s logic features
predicates that allow to restrict to families of random variables that do not vary with η, or
to deterministic families, i.e. families of constant random variables. Finally, Squirrel’s logic
features the computational indistinguishability predicate, absent from our modal logic, which
allows to state, e.g., that two propositional formulas yield probability distributions that are
negligibly different.

▶ Proposition 7. The abstract logic of overwhelming truth is a normal modal logic: its
theorems are closed under substitution and modus ponens; they contain classical tautologies
and the K axiom □(p ⇒ q) ⇒ □p ⇒ □q; moreover, □φ is a theorem whenever φ is.

This interested reader may find the proof of this result in Section A.

T. Antoine and D. Baelde 24:5

2.2 Variants
It is natural to consider several variations on the abstract modal logic of overwhelming truth,
obtained by considering validity wrt. restricted classes of cryptographic structures. The first
variant is of particular interest to us, since it corresponds to the class of models considered
in Squirrel, i.e., to the term structures that are suitable for interpreting names over large
types [5].

▶ Definition 8. We say that a cryptographic structure S is concrete when each XS
η = {0, 1}ℓη

for some ℓη, with η 7→ ℓη strictly increasing. The concrete modal logic of overwhelming truth
is the set of modal formulas that are valid wrt. concrete cryptographic structures.

The next variant is a modal logic of “truth with probability 1”, obtained by restricting to
a class of structures where overwhelming truth is the same as truth with probability 1.

▶ Definition 9. The static modal logic of overwhelming truth is the set of modal formulas
that are valid wrt. all cryptographic structures S such that the same probability space is used
for all η (i.e., XS

η = XS
η′ for all η, η′).

Restricting even further the considered set of structures to discrete probability spaces,
we obtain a logic where □φ reads as “φ is true for all samples (with non-zero probability)”.

▶ Definition 10. The static discrete modal logic of overwhelming truth is the set of modal
formulas that are valid wrt. all cryptographic structures S such that the same discrete
probability space is used for all η.

Note that the observations of Example 6 still hold if one considers validity wrt. any of
the above classes. Proposition 7 also holds for all of our variant logics. As we shall see, all of
the above variants are actually the same logic. Other variants are possible that would yield
the same logic, e.g. considering infinite concrete cryptographic structures where samples are
infinite bitstrings. We do not intend to exhaustively list equivalent variants, and believe that
the reader should be able to adapt our techniques to handle new variants.

3 Soundness and completeness with respect to S5

We now prove that our modal logics of overwhelming truth coincide with S5, the smallest
normal modal logic containing the following axioms:

(axiom T) □p ⇒ p

(axiom 4) □p ⇒ □□p

(axiom 5) ♢p ⇒ □♢p

We can immediately observe that S5 is included in our modal logics; a detailed proof is
given in Section B.

▶ Lemma 11. All S5 theorems are theorems of the modal logics of overwhelming truth.

In order to prove the converse, a model-theoretic characterization of S5 will be useful.

▶ Definition 12 (Kripke structure). A Kripke structure K is given by:
a frame (WK,RK) where W is a set of worlds, and R is a binary relation over W ;
for each world w ∈ W , a set of propositional variables V K(w) ⊆ P.

CSL 2025

24:6 Propositional Logics of Overwhelming Truth

▶ Definition 13 (Equivalence and clique frames). A Kripke frame (W,R) is an equivalence
relation when R is symmetric, reflexive and transitive. It is a clique when R is the full
binary relation over W . Further, it is a finite clique when W is finite.

We may omit the K superscripts when they are clear from the context.

▶ Definition 14 (Satisfaction). Given a modal logic formula φ, a Kripke structure K and a
world w ∈ WK, we define the satisfaction relation K, w |= φ as follows:

K, w |= p iff p ∈ V K(w);
K, w ̸|= ⊥;
K, w |= φ ⇒ ψ iff K, w |= φ implies K, w |= ψ;
K, w |= □φ iff K, w′ |= φ for all w′ ∈ WK such that w RK w′.

A formula is valid wrt. a class of frames when it is satisfied at all worlds of all Kripke
structures whose frame belongs to the class. For instance, a formula is valid wrt. clique
frames when it is satisfied at all worlds of all Kripke structures whose frame is a clique.

We summarize next some well-known characterizations of S5, proved e.g. in [12]. More
details are given in Section B.

▶ Proposition 15. For any modal formula φ, the following conditions are equivalent:
1. φ is a theorem of S5;
2. φ is valid wrt. equivalence frames;
3. φ is valid wrt. clique frames.
4. φ is valid wrt. finite clique frames.

▶ Lemma 16. Our modal logics of overwhelming truth are contained in S5.

Proof. We prove the result for the concrete logic of overwhelming truth, and then explain
how the argument can be adapted for the other logics.

By Proposition 15 it suffices to show that, if there is a finite clique counter-model of a
modal formula, then there is a concrete cryptographic structure in which the formula is not
overwhelmingly true. Let K be a finite clique Kripke structure, with WK = {w1, . . . , wn}.
We define a concrete cryptographic structure S with XS

η = {0, 1}η, for all η. We can partition
each XS

η into n disjoint sets called XS
η,i for i ∈ [1;n], such that asymptotically (in η) they all

have size η/n. We define the interpretation of propositional variables in S so that, for each
η, the same variables are true in wi and XS

η,i. Formally, for p ∈ P in S, we define:

pS(η, ρ) = 1 iff p ∈ V K(wi) for the unique i ∈ [1;n] such that ρ ∈ XS
η,i

As a result of our construction, JψKS (η, ρ) = JψKS (η, ρ′) for any modal formula ψ, η ∈ N,
and ρ, ρ′ ∈ XS

η,i. Further, we shall see that, for any modal formula ψ, wi ∈ WK, η ∈ N and
ρ ∈ XS

η,i, we have:

K, wi |= ψ iff JψKS (η, ρ) = 1.

This is proved by induction on ψ. The cases where ψ is ⊥, ψ ∈ P or ψ is an implication are
easily verified. Assume now that ψ = □θ. We have:

K, wi |= ψ iff K, wj |= θ for all j ∈ [1;n] (K is a clique)
iff JθKS (η′, ρ′) for all η′, ρ′ (induction hypothesis, and XS

η = ∪jXS
η,j)

As a result K, wi |= ψ does imply that JθKS is overwhelming, i.e. JψKS (η, ρ) = 1. Conversely,
if JθKS is overwhelming in S, then because the XS

η,i have asymptotic size η/n, we must have
JθKS (η, ρ) = 1 for η large enough and any ρ ∈ XS

η . Hence K, wj |= θ for all i, and K, wi |= ψ.

T. Antoine and D. Baelde 24:7

To conclude, observe that if K is a finite clique counter-model of a modal formula φ, then
K, wi ̸|= φ for some i. By our observation, JφKS (η, ρ) = 0 for all η and ρ ∈ XS

η,i. Because
XS
η,i has asymptotic size η/n, JφKS is not overwhelming. Hence the concrete modal logic of

overwhelming truth is contained in S5.
This argument also shows that the abstract modal logic of overwhelming truth is contained

in S5. To obtain the result for the static and static discrete3 modal logics of overwhelming
truth, the argument can be easily adapted: it suffices to take XS

η = {w1, . . . , wn} for each η,
with XS

η,i = {wi}. ◀

Putting our two lemmas together, we obtain the characterization of our modal logics of
overwhelming truth. In the rest of the paper, we shall indiscriminately talk of the modal
logic of overwhelming truth, and we will interchangeably use this logic and S5.

▶ Theorem 17. S5 coincides with all of our modal logics of overwhelming truth.

4 Hypersequents for overwhelming truth with determined formulas

Having proved that the modal logic of overwhelming truth coincides with S5 directly provides
a deductive system for overwhelming truth, in the form of the S5 axioms. More interestingly,
it allows to benefit from better structured proof systems for S5, such as Poggiolesi’s sound and
complete hypersequent calculus for S5 [25]. This system is analytical, enjoys cut elimination
and is well-adapted to proof-search. As we shall see, Poggiolesi’s system can also be elegantly
adapted to incorporate reasoning on determined formulas.

4.1 A variant of Poggiolesi’s hypersequent calculus for S5
In [25], Poggiolesi introduces the hypersequent calculus CSS5s and proves that it is complete
for S5 using syntactical methods. A semantical proof is also possible, which will provide a
more convenient foundation for our needs. We introduce below a slight modification of her
calculus that facilitates such a proof – we explain these modifications afterwards. Unlike
Poggiolesi, we view sequents and hypersequents as sets rather than multisets.

▶ Definition 18. A classical sequent Γ ⊢ ∆ is composed of two finite sets of formulas Γ and
∆. We use the comma to denote the union of sets of formulas, also writing Γ, φ for Γ ∪ {φ}.

▶ Definition 19. A hypersequent is a finite set of classical sequents. We use the letter
H to denote hypersequents, and the vertical bar to denote the addition of a sequent to a
hypersequent, i.e. H | Γ ⊢ ∆ stands for H ∪ {Γ ⊢ ∆}.

When H = (Γ1 ⊢ ∆1 | . . . | Γn ⊢ ∆n) is a hypersequent, we note rhs(H) = ∪i∆i the union
of the right-hand sides of its sequents. We define similarly lhs(H) = ∪iΓi.

▶ Definition 20. The formula interpretation of a hypersequent Γ1 ⊢ ∆1 | . . . | Γn ⊢ ∆n is
the modal formula □(

∧
Γ1 ⇒

∨
∆1) ∨ . . . ∨ □(

∧
Γn ⇒

∨
∆n).

We present in Figure 1 a slight variant of Poggiolesi’s CCS5s hypersequent calculus.
Rules on the first two lines are immediate embeddings of classical propositional rules of
sequent calculus in hypersequents: they apply to any sequent in the hypersequent, and the

3 The result should not come as a surprise for the static discrete modal logic of overwhelming truth,
given the analogy between the S5 characterization in terms of clique Kripke structure and the fact that
overwhelming truth in static discrete structures is equivalent to truth for all samplings.

CSL 2025

24:8 Propositional Logics of Overwhelming Truth

H | Γ, φ ⊢ φ,∆ H | Γ,⊥ ⊢ ∆

H | Γ, φ ⇒ ψ ⊢ φ,∆ H | Γ, φ ⇒ ψ,ψ ⊢ ∆
H | Γ, φ ⇒ ψ ⊢ ∆

H | Γ, φ ⊢ ψ,φ ⇒ ψ,∆
H | Γ ⊢ φ ⇒ ψ,∆

H | Γ,□φ,φ ⊢ ∆
H | Γ,□φ ⊢ ∆

H | Γ,□φ ⊢ ∆ | Γ′, φ ⊢ ∆′

H | Γ,□φ ⊢ ∆ | Γ′ ⊢ ∆′
H | Γ ⊢ □φ,∆ | · ⊢ φ

H | Γ ⊢ □φ,∆
φ ̸∈ rhs(H),∆

Figure 1 Rules of Poggiolesi’s (modified) hypersequent calculus for S5.

surrounding hypersequent structure is simply copied in the usual premisses. The axiom rule
(top left) derives any hypersequent featuring a sequent that has the same formula on both
sides. As usual, this rule can be restricted to the case where φ is atomic [25] without loosing
completeness. The implication left rule applies to any hypersequent featuring a sequent that
has an implication formula φ ⇒ ψ on its left side; it features two premisses, one where φ has
moved to the right-hand side of the corresponding sequent and one where ψ has replaced
φ ⇒ ψ. In both the left and right implication rules, we keep the principal formula φ ⇒ ψ

(shown in gray) in the premises rather than removing it, as would be more usual. This minor
technical difference makes it easier to prove that proof search is terminating, with no negative
effect on the efficiency of proof search because the strategies that we will consider can never
introduce twice the same formula. Hence, from the proof-search point of view, the grayed
out formulas can be seen as pure book-keeping devices.

The system features a right modal rule (bottom right of Figure 1) which, from a (top-
down) proof search perspective, creates a new sequent ⊢ φ when □φ is found on the right of
a sequent – note that formula interpretations of the premise and conclusion hypersequents
of this rule are (propositionally) equivalent. Here again, we keep the principal formula □φ
(shown in gray) in the premise. Importantly, the right modal rule can only be applied with
principal formula □φ when the φ does not occur (at toplevel) on the right-hand side of any
sequent of the conclusion hypersequent. There are two left rules, which may be seen as
two versions of the same rule: from a proof-search perspective, it allows to add φ on the
left-hand side of any sequent in the hypersequent if one sequent features □φ on its left; the
first variant of the rule is for when φ is added to the sequent that contains □φ, while the
second one if for when φ is added to another sequent.

The rules of our system differ from Poggiolesi’s [25] in several minor ways. We use
(hyper)sequents as sets rather than multisets, due to our focus on proof-search and semantical
methods, while Poggiolesi focuses on syntactic methods, including cut elimination. Poggiolesi’s
calculus also treats conjunction and negation as elementary connectives, while we only
consider implication as an elementary connectives. However, our rule for implication is the
straightforward combination of her rules for conjunction and negation, applied on φ ⇒ ψ

seen as ¬(φ ∧ ¬ψ). The more important difference is our inclusion of the principal formulas
φ ⇒ ψ and □φ in the premisses of the corresponding rules, i.e. the occurrences shown in
gray in Figure 1, and the addition of the side condition on the right modal rule. These
modifications allow for a simple proof that proof-search is terminating.

Before providing a proof of this result, let us discuss it in more details. When considering
(top-down) proof search in Poggiolesi’s calculus, without our gray formulas, the number of
logical connectives in a hypersequent decreases strictly with the application of any rule other
than the left modal rules. Indeed, it is possible to repeatedly apply a left modal rule, adding

T. Antoine and D. Baelde 24:9

...
□¬□p ⊢ p | · ⊢ p | · ⊢ p

□¬□p ⊢ p | · ⊢ □p, p

□¬□p ⊢ p | ¬□p ⊢ p

□¬□p ⊢ p | · ⊢ p

□¬□p ⊢ □p, p
□¬□p,¬□p ⊢ p

□¬□p ⊢ p

Figure 2 Non-terminating proof-search in CSS5s.

an even increasing number of copies of φ to the left-hand sides of sequents. However, as
observed in [25], this behaviour is useless: only a single application of the left rule (for any
given φ and target sequent) is present in derivations of minimal height. Building on this
observation, [25, Theorem6.5] claims that CSS5s allows terminating proof-search: while this
is true, the proof seems to overlook the non-terminating behaviour induced by the right
modal rule. Indeed, non-termination can arise because of the right modal rule (in its original
version without the side condition present in Figure 1), despite the parcimonious use of left
modal rules, as illustrated in Figure 2.

In order to avoid this issue, proof-search must not only avoid repeated applications of
the left modal rules but also forbid the application of the right modal rule on □φ when φ is
already present in the right-hand side of some sequent, but also when φ has been present in
a right-hand side of a previously encountered hypersequent. We incorporate this condition
in our version of the right modal rule, which can be formulated in a local manner thanks to
the inclusion of the (otherwise superfluous) gray formulas.

▶ Proposition 21. The rules of Figure 1 allow terminating top-down proof-search.

Proof. Consider an initial hypersequent H and an attempt at deriving H by applying any
rule of conclusion H, and then recursively deriving the obtained premisses in the same
manner. We only impose a progress condition: at any point in this process, the applied rule
must produce as premisses hypersequents that are all distinct from the rule’s conclusion – this
forbids, e.g., the repeated application of a propositional rule on the same formula of the same
sequent. This proof-search attempt may eventually succeed by deriving an hypersequent
using an initial rule, or stop. Our concern here is to show that it cannot run forever.

It is clear from our rules that any hypersequent H′ arising in this process can only be
formed from subformulas of the initial hypersequent H. Moreover, if at any point in the
derivation some formula φ appears on the left-hand (resp. right-hand) side of a sequent, it will
remain present on the left-hand (resp. right-hand) side of some sequent in all hypersequents
of that subderivation.

In particular, this means that the right modal rule can only be applied on a finite number
of distinct formulas. Applying the rule on □φ creates a new sequent with φ on its right-hand
side, which will remain present in the rest of the derivation. Therefore, the right modal rule
cannot be applied again on the same formula in that subderivation, due to its side condition.
Thus, the number of applications of the right modal rule is bounded in any branch of the
proof-search process by the number of boxed subformulas of H.

Now, consider the application of a rule other than the right modal rule, with conclusion
H′ and H′′ as one of its premise. We observe that |H′′| ≤ |H′| – the inequality can be strict,
when the addition of a new formula in a sequent of H′ results in a sequent that was already

CSL 2025

24:10 Propositional Logics of Overwhelming Truth

present in H′. Moreover, for any sequent Γ′ ⊢ ∆′ of H′′, there exists a sequent Γ ⊢ ∆ of H′

such that Γ ⊆ Γ′ and ∆ ⊆ ∆′. Therefore, the repeated application of rules other than the
right modal, subject to our progress condition, can only go on for at most 2 × n× k where n
is the number of sequents in the initial hypersequent H and k is the number of subformulas
of H.

Because proof-search is bounded between any two applications of the right modal rule,
and the number of such applications is itself bounded, the whole proof-search process must
terminate. ◀

As is standard, we will combine this proof-search termination result with the invertibility
of rules to obtain the completeness of our calculus. We rely on semantic invertibility, i.e. the
validity of the conclusion of a rule implies the validity of all of its premisses. Recall that
an hypersequent H is valid when its formula interpretation is in S5, which is equivalent to
saying that it is satisfied in all worlds of all clique Kripke structures. Thus it is not valid iff
it has a counter-model, that is a clique Kripke structure K such that, for each sequent Γ ⊢ ∆
of H, there exists a world w of K which satisfies all formulas of Γ but no formula of ∆ (we
say that w falsifies Γ ⊢ ∆). Such clique counter-models provide a convenient tool for proving
the following result, by the contrapositive (see Section C for details).

▶ Proposition 22. The rules of Figure 1 are invertible.

▶ Theorem 23. The calculus of Figure 1 is sound and complete wrt. S5.

Proof. Soundness is easily verified by checking that each rule is sound – or observing that
our rules can be obtained from Poggiolesi’s and contraction.

For completeness, we show that, for some appropriate proof-search procedure, proof-search
fails on a hypersequent H only when this hypersequent has a counter-model. To obtain this
result we only need to assume that proof-search is progressing (cf. proof of Proposition 21)
and that it only stops when no rule applies – we do not even need to assume that it applies
initial rules eagerly, though of course this would make proof-search more efficient. By the
previous result, this proof-search is terminating. In case of failure, it yields a finite partial
derivation, i.e. a proof tree featuring at least one unjustified leaf H′, which cannot be the
conclusion of any rule. We shall exhibit a counter-model for H′, which, by invertibility, will
prove that H has a counter-model as expected.

We thus construct a counter-model for H′, exploiting the fact that any rule instance
whose conclusion is H′ would also have H′ as one of its premisses. We consider the Kripke
clique over worlds {wΓ⊢∆ | (Γ ⊢ ∆) ∈ H′}, where wΓ⊢∆ |= p iff p ∈ Γ. We verify, for any
world wΓ⊢∆, that wΓ⊢∆ |= φ for any φ ∈ Γ, and wΓ⊢∆ ̸|= φ for any φ ∈ ∆. This is proved by
induction over φ. The cases for ⊥ and atoms is immediate. Assume now that φ is of the
form φ1 ⇒ φ2:

If φ ∈ Γ then, because the implication left rule would have H′ itself as premise, it must
be that either φ2 ∈ Γ or φ1 ∈ ∆. In either case we conclude, by induction hypotheses on
φ1 and φ2, that wΓ⊢∆ |= φ.
Similarly, if φ ∈ ∆, we obtain that φ1 ∈ Γ and φ2 ∈ ∆ by hypothesis on H′, and conclude
by induction hypotheses on φ1 and φ2.

Finally, consider the case where φ is some □φ′:
If φ ∈ Γ, then because the left modal rules yield H′ as a premise, the subformula φ′ is on
the left-hand side of all sequents of H′, thus wΓ⊢∆ |= φ.
If φ ∈ ∆, the right modal rule does not apply without creating a repetition, thus there
exists a sequent of H′ which has φ′ on its right-hand side, providing a world w′ which
does not satisfy φ′, hence wΓ⊢∆ ̸|= φ. ◀

T. Antoine and D. Baelde 24:11

H | Γ, φ ⊢ ∆ | Γ′ ⊢ φ,∆′ φ determined

Figure 3 Additional axiom rule for determined formulas.

4.2 Reasoning on determined formulas in hypersequent calculus
Now that we have presented Poggiolesi’s hypersequent calculus for S5, in a slightly refor-
mulated form, we show that it can easily adapted to elegantly incorporate reasoning on
determined formulas. In the context of the logic of overwhelming truth, way say that a
formula φ is determined if it is either overwhelmingly true or overwhelmingly false (i.e.
negligibly true). In our modal language, this can simply be expressed as □φ ∨ □¬φ. When
reasoning about cryptographic protocols, determined formulas often arise, and it is necessary
to take this property into account to carry out formal proofs. We are thus interested in
designing proof systems that can take the determined character of formulas into account.

To formally define our problem, we first parameterize our logic with a subset of atoms
D that are assumed to be determined – this is a modelling assumption. We consider the
problem of deciding whether a formula φ is a consequence of {□d∨□¬d | d ∈ D} – of course,
this can also be phrased in terms of cryptographic structures or clique Kripke structures
by the previous results. More precisely, we would like to find a proof system with nice
proof-search behaviour for proving such formulas.

▶ Example 24. Take D = {q} for some q ∈ P . Then □(q ∨ψ) ⇒ □q ∨□ψ is valid for any ψ.
Moreover, for some p ∈ P \ D, we have □φ ∨ □¬φ for φ ∈ {q ⇒ ⊥, □p, q ∧ (p ⇒ p)}. For
φ = (p ⇒ q), □φ ∨ □¬φ is however not valid.

A naive solution to our problem can be obtained from any complete proof system for our
modal logic: it suffices to look for proofs of (

∧
d∈D □d∨□¬d) ⇒ φ, using the proof system at

hand (assuming wlog. that D is finite). This is however unsatisfactory, as the addition of the
hypotheses □d ∨ □¬d would yield an explosion of the size of proofs in a typical proof-search,
as is the case with our hypersequent calculus.

We propose a better solution, where the determined character of formulas is only used
when relevant. Strikingly, it is obtained by adding to the rules of Figure 1 a single rule,
shown in Figure 3: instead of adding hypotheses expressing D in the conclusion hypersequent,
we incorporate D in a modified axiom rule. As with the standard axiom rule, our modified
axiom rule can be restricted to the case where φ is atomic, without losing completeness – in
that case, the side condition is equivalent to requiring that φ ∈ D. In fact, it seems that any
reasonable use of this rule in a proof-search would rely on a side condition that is easier to
verify than the fact that φ is determined: although this is decidable, it is costly; a syntactic
criterion for detecting simple determined formulas can be used instead, e.g. checking that
the formula is built using propositional connectives from atoms in D and boxed formulas.

▶ Theorem 25. The proof system of Figure 1 augmented with the rule of Figure 3 is
sound and complete for the logic of overwhelming truth with determined formulas in D: a
hypersequent H is derivable in this system iff the formula interpretation of H is valid in all
structures satisfying □ψ ∨ □¬ψ for all ψ ∈ D.

Proof. For soundness, it suffices to observe that the conclusion of our new rule cannot have
counter-models consistent with D: we would then have a world satisfying ψ and another
satisfying ¬ψ.

CSL 2025

24:12 Propositional Logics of Overwhelming Truth

For completeness, we adapt the argument provided for S5 in the previous section, to
show that any hypersequent for which proof-search fails admits a counter-model. We do
this with a proof-search procedure that makes use of our additional rule, and ensure that
in that case the counter-model is consistent with D. Clearly, proof-search still terminates
in our system, and rules are still invertible: all we need to do is adapt the counter-model
construction for an hypersequent H′ on which proof-search cannot conclude nor progress. We
adapt the construction of Theorem 23, taking the same set of worlds as before, but setting
K, wΓ⊢∆ |= p iff p ∈ Γ or p ∈ D ∩ lhs(H′). In this way, we ensure that the atoms in D are
determined in K. We then verify, for any world wΓ⊢∆, that wΓ⊢∆ |= φ for any φ ∈ Γ, and
wΓ⊢∆ ̸|= φ for any φ ∈ ∆. This is proved by induction on φ as before, and only the case
where φ is an atom p is modified:

If p ∈ Γ, we have wΓ⊢∆ |= p by construction.
If p ∈ ∆ and p ̸∈ D, we know that the axiom rule of Figure 1 does not apply, hence p ̸∈ Γ,
from which wΓ⊢∆ ̸|= p follows.
If p ∈ ∆ and p ∈ D, we know that the axiom rules of Figure 1 and Figure 3 do not apply,
hence p ̸∈ lhs(H′) and wΓ⊢∆ ̸|= p. ◀

5 Sequent calculus for a non-nested logic of overwhelming truth

In this section, we consider a fragment of modal formulas that corresponds to the propositional
fragment of the logic underlying Squirrel [5]. Essentially, it is obtained by forbidding nested
modalities and requiring that all atoms occur under modalities. In the style of [5], we present
these restrictions by organizing formulas into local and global ones: local formulas may
contain atoms but no modalities; global formulas may not contain atoms but can contain
□φ subformulas, under the condition that φ is local.

▶ Definition 26. We define local formulas (denoted by φ,ψ) and global formulas (denoted by
F,G) by the following grammar:

φ,ψ ::= ⊥ | p | φ ⇒ ψ F,G ::= ⊥ | □φ | F ⇒ G

▶ Example 27. The formula □(p ∧ q) ⇒ □p is a global formula. The formula □p ⇒ p is
neither a local nor a global formula.

To understand why the move to global formulas is not a strong restriction, it is useful to
recall the well-known fact that nested modalities do not bring extra expressiveness in S5.
The next proposition, proved in Section D, states this result more precisely.

▶ Proposition 28. For any modal formula φ, there exist families of propositional for-
mulas (ψi)i, (θi,j)i,j, (χi,j)i,j such that φ and the following formula are equivalent in all
cryptographic structures (or, equivalently, in all clique Kripke structures):

n∧
i=1

ψi ∨

 li∨
j=1

□χi,j

 ∨

(
mi∨
k=1

¬□θi,k

)
Moreover, if φ is a boxed formula, then ψi = ⊥ for all i.

▶ Example 29. The formula □(□p ⇒ q) is equivalent to the global formula ¬□p ∨ □q.

Because the validity of φ and that of □φ are equivalent, checking the validity of arbitrary
modal formulas can be reduced to checking the validity of global formulas. The catch,
however, is that the transformation underlying Proposition 28 may induce an exponential

T. Antoine and D. Baelde 24:13

Global rules

Θ, F ⊢ F,Π Θ,⊥ ⊢ Π

Θ ⊢ F,Π Θ, G ⊢ Π
Θ, F ⇒ G ⊢ Π

Θ, F ⊢ G,Π
Θ ⊢ F ⇒ G,Π

Local rules

Θ; Γ, φ ⊢ φ,∆ Θ; Γ,⊥ ⊢ ∆

Θ; Γ ⊢ φ,∆ Θ; Γ, ψ ⊢ ∆
Θ; Γ, φ ⇒ ψ ⊢ ∆

Θ; Γ, φ ⊢ ψ,∆
Θ; Γ ⊢ φ ⇒ ψ,∆

Mixed rules

Θ; · ⊢ φ

Θ ⊢ □φ,Π
Θ; Γ, φ ⊢ ∆

Θ,□φ; Γ ⊢ ∆

Figure 4 A sequent calculus for the global logic of overwhelming truth.

blowup. However, this is not a concern in the context of Squirrel, where formulas are given
as local and global ones from the beginning: it appears that these fragments are natural for
specifying and reasoning about cryptographic protocols.

We now present a simple sequent calculus proof system for global formulas. It involves
sequents featuring several kinds of sets of formulas: we will use the letters Γ and ∆ to denote
a set of local formulas, and the letters Θ and Π for sets of global formulas.

▶ Definition 30. A global sequent Θ ⊢ Π is formed from two sets of global formulas Θ and
Π. A local sequent Θ; Γ ⊢ ∆ is formed from a set of global formulas Θ and two sets of local
formulas Γ and ∆.

▶ Definition 31. The formula interpretation of a global sequent Θ ⊢ Π is the formula∧
F∈Θ F ⇒

∨
G∈Π G. The formula interpretation of a local sequent Θ; Γ ⊢ ∆ is:

∧
F∈Θ

F ⇒ □

∧
φ∈Γ

φ ⇒
∨
ψ∈∆

ψ

The rules of our system are shown in Figure 4. The global rules are the usual rules of

classical sequent calculus, and local rules are straightforward adaptations of the same rules
for local sequents, occurring under the global context Θ. Mixed rules articulate the two kinds
of sequents. The first one allows to derive a global sequent from a local one: considering the
formula interpretation of sequents, this rule is a mere weakening; its application requires to
choose one formula on the right-hand side, and put it under focus by moving it to a local
sequent, forgetting at this point all other formulas from the conclusion’s right-hand side.
The second mixed rule allows to derive a local sequent with a global hypothesis □φ from a
local sequent with a local hypothesis φ. Logically speaking, it is essentially the K axiom:
focusing on the relevant parts of the formula interpretation of our sequents, we are deriving

CSL 2025

24:14 Propositional Logics of Overwhelming Truth

□φ ⇒ □(Γ ⇒ ∆) from □(φ ⇒ Γ ⇒ ∆). It is worthwhile to note that the □φ formula is not
kept in this rule’s premise. Overall, our rules do not embed any strong principles underlying
S5, yet as we shall see they form a complete system for our fragment of S5.

The proof system underlying Squirrel uses global and local sequents similar to ours. One
difference is that Squirrel’s sequents have a single conclusion, and its proof system is given
in a natural deduction style. This choice has been motivated by usability considerations:
users of the Squirrel proof assistant may not be experts in logic, and might have found
multiple-conclusion sequents confusing. As a consequence, Squirrel’s proof system features
reductio ad absurdum rules at both the local and global levels [5]. Beyond this common
difference of style, both proof systems share an apparent weakness. As observed above, our
first mixed rule is not invertible. Relatedly, Squirrel’s proof system does not allow to perform
a mixed reduction ad absurdum, shown next:

Θ,¬□(Γ ⇒ φ) ⊢ ⊥
Θ; Γ ⊢ φ

We do not imply that such a rule should be considered, but its absence essentially forces the
same kind of strong choices in Squirrel proofs as our first mixed rule.

We now prove the key lemma explaining the completeness of our proof system.

▶ Proposition 32. Let φ and (ψj)j∈[1;n] be some propositional formulas such that □φ ⇒
∨j∈[1;n]□ψj is valid. There exists k ∈ [1;n] such that φ ⇒ ψk is a propositional tautology.

Proof. If φ is propositionally unsatisfiable, φ ⇒ ψk is a propositional tautology for any k,
hence the result holds.

Assume now that φ is propositionally satisfiable, and consider the clique Kripke structure
K over the non-empty set of worlds W = { ν : P → {0, 1} | ν |= φ}. In words, the worlds of
K are the propositional interpretations ν that satisfy the (propositional) formula φ. We set
the propositional variables satisfied by the world ν to be the ones indeed satisfied by ν. It
immediately follows that K, ν |= φ for all ν ∈ W , and thus K, ν |= □φ for all ν ∈ W .

Let F be the global formula □φ ⇒ ∨j∈[1;n]□ψj . Let ν be an arbitrary element of W .
By hypothesis, F is valid, hence K, ν |= F . Since K, ν |= □φ, we conclude that there exists
k such that K, ν |= □ψk. This means that K, ν′ |= ψk for all ν′ ∈ W . In other words,
the propositional formula ψk is satisfied in all propositional interpretations that satisfy φ:
φ ⇒ ψk is propositionally valid. ◀

▶ Theorem 33. The rules of Figure 4 are sound and complete: a global (resp. local) sequent
is derivable iff its formula interpretation is a theorem of the modal logic of overwhelming
truth (or, equivalently, of S5).

Proof. Soundness is easily verified; we only detail the completeness argument. We proceed
by induction on the number of connectives of the sequents. Any (local or global) sequent
featuring an implication formula or the ⊥ constant at toplevel is the conclusion of one of
our propositional rules. These rules are invertible and yield premises with one less logical
connective, allowing to conclude by induction hypothesis.

Next, consider a valid global sequent of the form □φ1, . . . ,□φm ⊢ □ψ1, . . . ,□ψn. Note
that its formula interpretation is equivalent to □φ ⇒ □ψ1 ∨ . . . ∨ □ψn for φ = ∧iφi. By
Proposition 32, there exists k such that φ ⇒ ψk is a propositional tautology. Equivalently,
·;φ1, . . . , φm ⊢ ψk is derivable in our system using only local rules. From there we can derive
our initial sequent using the first mixed rule to select ψk and m applications of the second
mixed rule to transfer the □φi global hypotheses to the local context.

T. Antoine and D. Baelde 24:15

A similar argument can be used to show that any valid local sequent of the form
□φ1, . . . ,□φm; Γ ⊢ ∆ can be derived in our system. This concludes the proof. ◀

6 Discussion

We have defined the modal logic of overwhelming truth, and shown that it coincides with
S5, and that this result remains for several variants of the logic. Next, we have shown that
Poggiolesi’s CCS5s hypersequent calculus for S5 can be elegantly adapted to incorporate
reasoning over determined formulas – a problem that arises naturally when carrying out
formal proof involving both probabilistic and deterministic formulas. In passing, we have
refined the analysis of proof-search in Poggiolesi’s system, providing clean foundations for
semantic proofs of completeness in that setting. Finally, considering the fragment of global
formulas (that is, the propositional fragment of Squirrel’s logic) we have shown that the
hypersequent structure is not necessary, providing instead a sound and complete proof system
based on simple (local and global) sequents. Overall, our work provides the first completeness
results for logics in the CCSA line of work.

Related works. The idea of giving a probabilistic semantics to propositional or modal logics
is not new; see e.g. [17] for a survey. For instance, [19] considers a modal logic where a
threshold t ∈ [0; 1] is chosen and □φ reads as “φ holds with probability more than t”. With
this interpretation, (□φ∧□ψ) ⇒ □(φ∧ψ) is not valid, while it is in our overwhelming truth
semantics. Charles G. Morgan also worked on developping a characterization of many logics
in terms of conditional probabilities [23, 24]. In particular, he provided an axiomatization
of conditional probability measures that is sound and complete wrt. S5. Our approach
and motivation is different: we start from a concrete probabilistic semantics and seek to
characterize the resulting logic in terms of modal logic axioms.

There has been much work on designing well-structured proof systems for S5, culminating
but not ending with Poggiolesi’s [25]. While hypersequents provide a satisfying answer to
this quest, it appears that this is not possible using simple sequent calculus, at least not
without making some sacrifices. We note the work of Indrzejczak [20] which proposes a
simple sequent calculus for S5, which he essentially obtains by incorporating into his sequent
calculus some rewrite rules that simplify modal formulas to removed nested modalities. This
is related in spirit to the results of Section 5, where we propose a simple proof system for
formulas that may result from such rewriting. However, our proof system does not feature
more rewriting, and thus notably satisfies the subformula property. Indrzejczak’s work does
not seem to yield a sub-system with such properties, but it would be interesting to try to
obtain such a result.

Directions for future work. We have only established weak completeness results, at the level
of validity, and it would be interesting to investigate whether the modal logic of overwhelming
truth coincides with S5 at the level of logical implications. This would yield the strong
completeness for the hypersequent calculus wrt. the logic of overwhelming truth, as well as
compacity for that logic.

We have used semantical arguments to establish several completeness results, refining in
particular Poggiolesi’s proof-search analysis to obtain semantical proofs of completeness for
hypersequent calculi. It is also possible to establish the completeness of our hypersequent
calculus with special axiom for determined formulas, using syntactic methods. Looking for a
syntactic proof of completeness for our simple sequent calculus would also be worthwhile.

CSL 2025

24:16 Propositional Logics of Overwhelming Truth

In both cases, syntactic arguments might provide results that carry over more smoothly to
richer fragments, e.g. the first-order case. More generally, it would naturally be desirable to
extend our results to richer fragments of the logic of overwhelming truth: one possibility is
to extend our language of formulas to the first-order case; it is also possible to stick to the
propositional case but incorporate the computational indistinguishability predicate of the
CCSA logics. Both directions seem very challenging.

References
1 Carmine Abate, Philipp G. Haselwarter, Exequiel Rivas, Antoine Van Muylder, Théo Win-

terhalter, Catalin Hritcu, Kenji Maillard, and Bas Spitters. Ssprove: A foundational
framework for modular cryptographic proofs in coq. In CSF, pages 1–15. IEEE, 2021.
doi:10.1109/CSF51468.2021.00048.

2 David Baelde, Stéphanie Delaune, Charlie Jacomme, Adrien Koutsos, and Solène Moreau.
An interactive prover for protocol verification in the computational model. In 42nd IEEE
Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021,
pages 537–554. IEEE, 2021. doi:10.1109/SP40001.2021.00078.

3 David Baelde, Stéphanie Delaune, Adrien Koutsos, and Solène Moreau. Cracking the stateful
nut: Computational proofs of stateful security protocols using the squirrel proof assistant. In
CSF, pages 289–304. IEEE, 2022. doi:10.1109/CSF54842.2022.9919665.

4 David Baelde, Caroline Fontaine, Adrien Koutsos, Guillaume Scerri, and Théo Vignon. A
Probabilistic Logic for Concrete Security. In CSF 2024 - 37th IEEE Computer Security
Foundations Symposium, Enschede, Netherlands, July 2024. URL: https://hal.science/
hal-04577828.

5 David Baelde, Adrien Koutsos, and Joseph Lallemand. A Higher-Order Indistinguishability
Logic for Cryptographic Reasoning. In LICS’23. ACM, 2023. URL: https://inria.hal.
science/hal-03981949.

6 Gergei Bana, Rohit Chadha, and Ajay Kumar Eeralla. Formal analysis of vote privacy using
computationally complete symbolic attacker. In ESORICS (2), volume 11099 of Lecture Notes
in Computer Science, pages 350–372. Springer, 2018. doi:10.1007/978-3-319-98989-1_18.

7 Gergei Bana and Hubert Comon-Lundh. Towards unconditional soundness: Computationally
complete symbolic attacker. In International Conference on Principles of Security and Trust,
pages 189–208. Springer, 2012. doi:10.1007/978-3-642-28641-4_11.

8 Gergei Bana and Hubert Comon-Lundh. A computationally complete symbolic attacker for
equivalence properties. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale,
AZ, USA, November 3-7, 2014, pages 609–620. ACM, 2014. doi:10.1145/2660267.2660276.

9 Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, Kevin
Liao, and Bryan Parno. Sok: Computer-aided cryptography. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 777–795, 2021. doi:10.1109/SP40001.2021.00008.

10 Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin. Computer-
aided security proofs for the working cryptographer. In CRYPTO, volume 6841 of Lecture Notes
in Computer Science, pages 71–90. Springer, 2011. doi:10.1007/978-3-642-22792-9_5.

11 David A. Basin, Andreas Lochbihler, and S. Reza Sefidgar. Crypthol: Game-based proofs in
higher-order logic. J. Cryptol., 33(2):494–566, 2020. doi:10.1007/S00145-019-09341-Z.

12 Patrick Blackburn, Maarten De Rijke, and Yde Venema. Modal logic, volume 53. Cambridge
University Press, 2001. doi:10.1017/CBO9781107050884.

13 Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated verification of selected
equivalences for security protocols. The Journal of Logic and Algebraic Programming, 75(1):3–
51, 2008. doi:10.1016/J.JLAP.2007.06.002.

14 Hubert Comon and Adrien Koutsos. Formal computational unlinkability proofs of RFID
protocols. In CSF, pages 100–114. IEEE Computer Society, 2017. doi:10.1109/CSF.2017.9.

https://doi.org/10.1109/CSF51468.2021.00048
https://doi.org/10.1109/SP40001.2021.00078
https://doi.org/10.1109/CSF54842.2022.9919665
https://hal.science/hal-04577828
https://hal.science/hal-04577828
https://inria.hal.science/hal-03981949
https://inria.hal.science/hal-03981949
https://doi.org/10.1007/978-3-319-98989-1_18
https://doi.org/10.1007/978-3-642-28641-4_11
https://doi.org/10.1145/2660267.2660276
https://doi.org/10.1109/SP40001.2021.00008
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/S00145-019-09341-Z
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1016/J.JLAP.2007.06.002
https://doi.org/10.1109/CSF.2017.9

T. Antoine and D. Baelde 24:17

15 Hubert Comon-Lundh, Véronique Cortier, and Guillaume Scerri. Tractable inference systems:
An extension with a deducibility predicate. In Maria Paola Bonacina, editor, Automated
Deduction - CADE-24 - 24th International Conference on Automated Deduction, Lake Placid,
NY, USA, June 9-14, 2013. Proceedings, volume 7898 of Lecture Notes in Computer Science,
pages 91–108. Springer, 2013. doi:10.1007/978-3-642-38574-2_6.

16 Cas Cremers, Caroline Fontaine, and Charlie Jacomme. A logic and an interactive prover for
the computational post-quantum security of protocols. In SP, pages 125–141. IEEE, 2022.
doi:10.1109/SP46214.2022.9833800.

17 Lorenz Demey, Barteld Kooi, and Joshua Sack. Logic and Probability. In Edward N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford Uni-
versity, summer 2019 edition, 2019. URL: https://plato.stanford.edu/archives/sum2019/
entries/logic-probability/.

18 Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270–299, 1984. doi:10.1016/0022-0000(84)90070-9.

19 Charles L Hamblin. The modal" probably". Mind, 68(270):234–240, 1959.
20 Andrzej Indrzejczak. Simple Decision Procedure for S5 in Standard Cut-Free Sequent Calculus.

Bulletin of the Section of Logic, 45(2), June 2016. doi:10.18778/0138-0680.45.2.05.
21 Adrien Koutsos. The 5G-AKA authentication protocol privacy. In EuroS&P, pages 464–479.

IEEE, 2019. doi:10.1109/EUROSP.2019.00041.
22 Adrien Koutsos. Decidability of a sound set of inference rules for computational indistin-

guishability. In 32nd IEEE Computer Security Foundations Symposium, CSF 2019, Hoboken,
NJ, USA, June 25-28, 2019, pages 48–61. IEEE, 2019. doi:10.1109/CSF.2019.00011.

23 Charles G. Morgan. Simple Probabilistic Semantics for Propositional K, T, B, S4, and S5.
Journal of Philosophical Logic, 11(4):443–458, 1982. URL: https://www.jstor.org/stable/
30226261, doi:10.1007/BF00284979.

24 Charles G. Morgan. There Is a Probabilistic Semantics for Every Extension of Classical
Sentence Logic. Journal of Philosophical Logic, 11(4):431–442, 1982. URL: https://www.
jstor.org/stable/30226260, doi:10.1007/BF00284978.

25 Francesca Poggiolesi. A cut-free simple sequent calculus for modal logic S5. The Review of
Symbolic Logic, 1(1):3–15, 2008. doi:10.1017/S1755020308080040.

26 Guillaume Scerri and Ryan Stanley-Oakes. Analysis of key wrapping apis: Generic policies,
computational security. In CSF, pages 281–295. IEEE Computer Society, 2016. doi:10.1109/
CSF.2016.27.

27 Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. cryptology
eprint archive, 2004.

A Proofs of Section 2

▶ Proposition 7. The abstract logic of overwhelming truth is a normal modal logic: its
theorems are closed under substitution and modus ponens; they contain classical tautologies
and the K axiom □(p ⇒ q) ⇒ □p ⇒ □q; moreover, □φ is a theorem whenever φ is.

Proof. It is clear, by definition of our semantics, that the set of theorems of our logic is
closed under substitution. It is also obvious that the validity of φ entails that of □φ.

Next, we verify that any classical tautology φ is a theorem of our logic. For any S, η and
ρ ∈ XS

η , notice that JφKS (η, ρ) only relies on the interpretation of its subformulas for the
same values of η and ρ. In other words, JφKS (η, ρ) can be seen as the classical interpretation
of φ in the boolean structure S(η, ρ) defined by pS(η,ρ) = pS(η, ρ). Because φ is a tautology,
we thus have JφKS = 1, hence JφKS is overwhelming in any S.

The K axiom is valid: indeed, if both Jp ⇒ qKS and JpKS are overwhelming in a structure
S, then so is JqKS because Pr(JqKS = 0) ≤ Pr(Jp ⇒ qKS = 0) + Pr(JpKS = 0) and the sum of
negligible functions is negligible. By the same argument, theorems are closed under modus
ponens. ◀

CSL 2025

https://doi.org/10.1007/978-3-642-38574-2_6
https://doi.org/10.1109/SP46214.2022.9833800
https://plato.stanford.edu/archives/sum2019/entries/logic-probability/
https://plato.stanford.edu/archives/sum2019/entries/logic-probability/
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.18778/0138-0680.45.2.05
https://doi.org/10.1109/EUROSP.2019.00041
https://doi.org/10.1109/CSF.2019.00011
https://www.jstor.org/stable/30226261
https://www.jstor.org/stable/30226261
https://doi.org/10.1007/BF00284979
https://www.jstor.org/stable/30226260
https://www.jstor.org/stable/30226260
https://doi.org/10.1007/BF00284978
https://doi.org/10.1017/S1755020308080040
https://doi.org/10.1109/CSF.2016.27
https://doi.org/10.1109/CSF.2016.27

24:18 Propositional Logics of Overwhelming Truth

B Proofs of Section 3

▶ Lemma 11. All S5 theorems are theorems of the modal logics of overwhelming truth.

Proof. Since modal logics of overwhelming truth are normal, it suffices to check that the
three axioms defining S5 are valid wrt. arbitrary cryptographic structures.

Axiom 4 is obvious, as J□pKS = J□□pKS for all S.
For axiom T, consider an arbitrary S, and proceed by case analysis on whether JpKS
is overwhelming. If this is the case, then J□pKS = 1 thus J□p ⇒ pKS = JpKS , which is
overwhelming by hypothesis. Otherwise, J□pKS = 0 and J□p ⇒ pKS = 1 is overwhelming.
For axiom 5, note that J♢φKS = 1 when JφK is non-negligible, and 0 otherwise – in both
cases, J♢φKS (η, ρ) = J♢φKS (η′, ρ′) for all η, ρ, η′, ρ′. Thus J□♢pKS = J♢pKS , hence the
result. ◀

▶ Proposition 15. For any modal formula φ, the following conditions are equivalent:
1. φ is a theorem of S5;
2. φ is valid wrt. equivalence frames;
3. φ is valid wrt. clique frames.
4. φ is valid wrt. finite clique frames.

Proof sketch. The equivalence between (1) and (2) is a classic result [12]. Equivalence
between (2) and (3) is an easy observation: for any equivalence structure K and w ∈ WK, let
Kw be the (clique) substructure corresponding to the equivalence class of w in K; it is easy to
see that, for any φ, K, w |= φ is equivalent to Kw, w |= φ. Finally, the equivalence between
(3) and (4) is obtained by using the filtration technique [12]: given any initial formula φ,
it allows to extract from a clique structure K a finite clique structure K′ whose worlds are
equivalence classes of worlds of K, such that K, w |= ψ is equivalent to K′, [w] |= ψ for any
subformula ψ of φ. ◀

C Proofs of Section 4

▶ Proposition 22. The rules of Figure 1 are invertible.

Proof. We prove the contrapositive: assuming a counter-model of a premise H′ of some rule
instance, we build a counter-model of the conclusion H. This is immediate for all rules except
the right modal rule. We thus consider the case where H is of the form H0 | Γ ⊢ □φ,∆
and H′ is of the form H0 | Γ ⊢ □φ,∆ | · ⊢ φ. By hypothesis, we have a counter-model of
H, that is a Kripke structure K with worlds w⃗ falsifying the sequents of H0, and a world
w′ falsifying Γ ⊢ □φ,∆. In particular, w′ ̸|= □φ, hence there exists w′′ such that w′′ ̸|= φ.
Thus, K, together with the worlds w⃗, w′ and w′′, provide a counter-model for H′. ◀

D Proofs of Section 5

▶ Lemma 34. Let φ and ψ be any modal formulas. Then for Kripke equivalence models:
1. □(φ ∧ ψ) ≡ □φ ∧ □ψ,
2. □(φ ∨ □ψ) ≡ □φ ∨ □ψ,
3. □(φ ∨ ¬□ψ) ≡ □φ ∨ ¬□ψ

T. Antoine and D. Baelde 24:19

Proof. Let S = (W,R, V) be an equivalence Kripke model, w ∈ W .
1. By definition, (S, w) |= □(φ ∧ ψ) iff for all successor v of w by R, (S, v) |= φ ∧ ψ iff

(S, v) |= φ and (S, v) |= ψ.
This is the case if and only if for all successor v of w by R, (S, v) |= φ and for all
successor u, (S, u) |= ψ, i.e. (S, w) |= □φ and (S, w) |= □ψ, i.e. (S, w) |= □φ ∧ □ψ,
which concludes the proof.

2. Assume (S, w) |= □(φ∨□ψ). Then for all successor v of w by R, (S, v) |= φ∨□ψ. Then
there are two cases:

Either for all successor v of w by R, (S, v) |= φ. In this case (S, w) |= □φ.
Either there is a successor v of w by R such that (S, v) ̸|= φ. In this case, (S, v) |= □ψ.
Let u be a successor of w for R. Then since R is an equivalence relation, u is also a
successor of v and (S, u) |= ψ.
Since this holds for all successors of w, (S, w) |= □ψ.

Now for the converse, assume (S, w) |= □φ∨□ψ. Since R is transitive, (S, w) |= □φ∨□□ψ.
It is easy to check next that (S, w) |= □(φ ∨ □ψ).

3. The proof in this case is very similar to the previous one, except in the proof of the
converse. We have to use the transitivity as well as the symmetry of R to prove that
(S, w) |= □φ ∨ ¬□ψ implies (S, w) |= □φ ∨ □¬□ψ. ◀

Proof of Proposition 28. We proceed by induction on φ, considering for this proof that the
elementary propositional connectives are negation and conjunction. The case of propositional
variables and the inductive case of conjunctions are clear using equivalence 1 of the previous
lemma.

Case φ = ¬φ′

By induction hypothesis on φ′ and using De Morgan’s laws, we know that there are
families of propositional formulas (ψi), (χi,j), (θi,j) such that

φ ≡
n∨
i=1

¬ψi ∧

 li∧
j=1

¬□χi,j

 ∧

(
mi∧
k=1

□θi,k

) .

Then, by distributivity of disjunction over conjunction, there is an integer N such that

φ ≡
N∧
i=1

(ωi,1 ∨ · · · ∨ ωi,hi)

where each ωi,j is either a ¬ψi′ , a □θi′,k′ or a ¬□χi′,j′ .
Finally by grouping for each i the ¬ψi′ into a single propositional formula, the □θi′,k′

together and the ¬□χi′,j′ , we prove φ is equivalent to a formula having the desired shape.
Case φ = □φ′

By induction hypothesis on φ′ and using the first equivalence in the previous lemma, we
know there are families of propositional formulas (ψi), (χi,j), (θi,j) such that

φ ≡
n∧
i=1

□

ψi ∨

 li∨
j=1

□χi,j

 ∨

(
mi∨
k=1

¬□θi,k

) .

Then, applying equivalences 2 and 3 of the previous lemma on each one of the □χi,j and
¬□θi,k, we have that

φ ≡
n∧
i=1

□ψi ∨

 li∨
j=1

□χi,j

 ∨

(
mi∨
k=1

¬□θi,k

)
which is what we wanted since for all i, the □ψi can be grouped with the □χi,j . ◀

CSL 2025

Exponential Lower Bounds on Definable Fixed
Points
Konstantinos Papafilippou #

Department of Mathematics, University of Ghent, Belgium

David Fernández-Duque #

Department of Philosophy, University of Barcelona, Spain

Abstract
It is known that the µ-calculus is no more expressive than basic modal logic over the class of finite
partial orders, as well as over the class of finite, strict partial orders. Nevertheless, we show that the
µ-calculus is exponentially more succinct, even when a reflexive modality is added as primitive. As
corollaries, we obtain a lower bound for the fixed-point theorem for Gödel-Löb logic and a variant
for Grzegorczyk logic, as well as lower bounds on interpolants for the interpolation theorem of
Gödel-Löb logic.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Complexity theory and logic

Keywords and phrases Modal logic, Provability Logic, Fixed-Point Theorem, mu-calculus, Interpol-
ation, Succinctness

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.25

Funding This work has been partially supported by FWO-FWF grant G030620N/I4513N and
SNSF–FWO Lead Agency Grant 200021L_196176/G0E2121N.

1 Introduction

Expressivity and complexity are two crucial criteria in the design of formal languages for
logical reasoning. However, these two properties alone only paint part of the picture, as
a more succinct language may have advantages over an equally (or even more) expressive
language if formula size is reduced sufficiently to considerably save on storage space and
improve processing time. Two formal languages L1 and L2 may be equally expressive, yet
certain properties may be expressed in L1 by much shorter expressions than in L2; when the
size difference is e.g. exponential, it may dwarf any potential advantage offered by L2 on
account of purely complexity-theoretic considerations.

Modal logics are an appealing framework for computational logic precisely due to the
balance between expressivity and complexity, making them more adaptable than propositional
logic but more tractable than first or higher order logic. But a well-informed choice of the
“right” modal logic for a given task should also involve an understanding of how it fares in
terms of succinctness.

In particular, Gödel-Löb logic (GL) provides a textbook example of a success story in
modal logic: it is the logic of finite (or, more generally, converse well-founded) strict partial
orders, hence it governs the behaviour of computational processes that terminate in finite
time. It is obtained from the basic modal logic K by adding Löb’s axiom, ✷(✷φ → φ) → ✷φ.
It is also the logic of provability in Peano arithmetic and related theories, as well as the
logic of scattered topological spaces, granting it applications in foundations of mathematics
and spatial reasoning. For the first setting, one interprets modal formulas as arithmetical
statements, with variables representing arbitrary statements in the language of PA and ✷φ

being interpreted as Gödel’s Bew(⌜φ⌝), which formalises the statement that φ is provable
in PA. Solovay [23] showed that the set of valid formulas (i.e., those that correspond to

© Konstantinos Papafilippou and David Fernández-Duque;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 25; pp. 25:1–25:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Konstantinos.Papafilippou@ugent.be
https://orcid.org/0000-0002-2831-0575
mailto:fernandez-duque@ub.edu
https://orcid.org/0000-0001-8604-4183
https://doi.org/10.4230/LIPIcs.CSL.2025.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Exponential Lower Bounds on Definable Fixed Points

theorems of PA) in this setting are precisely those provable in GL. For the second, one
interprets ✸ as a topological Cantor derivative operator, e.g. ✸φ is the set of limit points of
those points satisfying φ. GL once again captures the set of validities in this context (see
e.g. [6]).

Moreover, GL is remarkably well-behaved, being decidable, finitely axiomatizable, and
enjoying Craig interpolation [8] and definable fixed points [21]. The latter in particular
means that the µ-calculus adds no expressive power to GL [2]. This is also true for the class
Grz of Grzegorczyk frames, based on Noetherian posets; essentially, the reflexive closures of
GL frames [9]. Grz is also the logic of “provably true” over Peano arithmetic and is the
greatest modal companion of intuitionistic propositional logic [26, 8] and is characterised by
the axiom ✷(✷(φ → ✷φ) → φ) → ✷φ.

One could thus jump to the conclusion that the µ-calculus over finite posets (either reflexive
or irreflexive) is not worth considering. However, such disinterest would be misguided, as it
does not take questions of succinctness into account. The fixed-point theorem for GL states
that for any formula φ(x) where x occurs only in the scope of ✷ (or ✸), there is a formula ψ
such that ψ ↔ φ(ψ) is derivable. All proofs [7, 16, 20, 21, 22] yield some ψ that is at least
exponentially larger than φ. This raises the question of whether this bound is optimal, to
which we provide a positive answer. In contrast, the µ-calculus formula µx.φ(x) yields a
fixed point of φ and is only slightly larger than φ itself.1 Thus we conclude that, despite
fixed points already being definable in the basic modal language, there is much to be gained
by passing to a language with explicit fixed point constructors.

Research in succinctness involves delicate techniques and it has been an active area in the
last decades; see e.g. [17, 10, 1]. Closest to the present work, [11] show that over GL frames,
a language with the reflexive modality ✸· is exponentially more succinct than a language with
✸. As a corollary, exponential succinctness of the µ-calculus is obtained for a language with
✸ alone, given that ✸· can be defined succinctly in the µ-calculus. However, this result has
two shortcomings with regards to our current goal. First, it does not clarify if the µ-calculus
is more succinct than a language with the reflexive modality ✸· , so that the results cannot
be applied to the logic Grz which enjoys a restricted version of the fixed-point theorem.
Second, succinctness is obtained via nested fixed point operators, and the lower bound for the
fixed-point theorem would require a single application of µ. We thus aim for a sharper result
for the µ-calculus, for which we extend known techniques and provide new constructions not
contingent on the distinction between ✸ and ✸· .

Intuitively, proving that one language L1 is more succinct than another language L2
ultimately boils down to proving a sufficiently big lower bound on the size of L2-formulas
expressing some semantic property. If we want to show that L1 is exponentially more succinct
than L2, we must find an infinite sequence of semantic properties (i.e., classes of models)
P1,P2, . . . definable in both L1 and L2, show that there are L1-formulas φ0, φ1, . . . defining
P1,P2, . . . and prove that, for every n, every L2-formula ψn defining Pn has size exponential
in the size of φn. There are various techniques used for achieving such results; here we use
formula-size games developed in the setting of Boolean function complexity by [19] and in
the setting of first-order logic and some temporal logics by [1]. By now, the formula-size
games have been adapted to a host of modal logics (see for example [14], [18], [13], [25]) and
used to obtain lower bounds on modal formulas expressing properties of Kripke models.

1 Normally the µ-calculus requires that x appear only positively in φ(x), but over GL this condition can
be weakened to allow for modalized formulas.

K. Papafilippou and D. Fernández-Duque 25:3

2 Modal logic

In this section, we present the modal µ-calculus and formalize its Kripke semantics. Let us
begin by defining the base modal language we will work with. We will consider logics over
variants of the language L✸ given by the following grammar (in Backus-Naur form). Fix a
set P of propositional variables (also called atoms), and define:

φ,ψ := ⊤ | ⊥ | p | p | φ ∨ ψ | φ ∧ ψ | ✸φ | ✷φ

Here, p ∈ P and p denotes the negation of p. For the game-theoretic techniques we will use,
it is convenient to allow negations only at the atomic level, and thus we include all duals as
primitives, but not negation or implication; however, we may use the latter as shorthands,
defined via De Morgan’s laws. Formulas of the forms p, p are literals. The size of a formula
φ is denoted |φ| and is defined as follows.

▶ Definition 1. We define a function | · | : L✸ → N recursively by
|p| = |p| = 1
|φ ∧ ψ| = |φ ∨ ψ| = |φ| + |ψ| + 1
|✸φ| = |✷φ| = |φ| + 1.

Next we review semantics for modal logic in general, and for GL in particular.

▶ Definition 2. A Kripke frame is a structure A = (|A|, RA) where RA is a binary relation
on |A|. If A is a Kripke frame, a valuation on A is a function V : |A| → 2P (recall that P is
the set of atoms). A frame A equipped with a valuation V (often denoted VA) is a Kripke
model.

By abuse on notation we will write x ∈ A instead of x ∈ |A|. The valuation V can be
extended recursively to define truth of all formulas of the modal language.

▶ Definition 3. Let A = (A, RA) be any Kripke frame and V a valuation. We define the
truth set

∥φ∥A =: {w ∈ A : (A, w) ⊩ φ}

by structural induction on φ:

w ∈ ∥p∥A ⇔ p ∈ V (w)
w ∈ ∥p∥A ⇔ p ̸∈ V (w)
w ∈ ∥φ ∧ ψ∥A ⇔ w ∈ ∥φ∥A ∩ ∥ψ∥A
w ∈ ∥φ ∨ ψ∥A ⇔ w ∈ ∥φ∥A ∪ ∥ψ∥A
w ∈ ∥✸φ∥A ⇔ ∃v(wRAv&w ∈ ∥φ∥A)
w ∈ ∥✷φ∥A ⇔ ∀v(wRAv ⇒ w ∈ ∥φ∥A)

Given a model A and formulas φ,ψ, we say that φ is equivalent to ψ on A if ∥φ∥A = ∥ψ∥A.
If A is a class of models, we say that φ,ψ are equivalent over A if they are equivalent on
any element of A. We may also say that φ ≡ ψ over A and omit mention of A if it is the
class of all Kripke models.

We will focus our attention mostly on the logics GL and Grz, which as we will see
can be regarded as a fragment. GL may be interpreted over structures with a converse
well-founded relation and for our purposes we may restrict our attention to models based on
trees, presented as strict partial orders.

CSL 2025

25:4 Exponential Lower Bounds on Definable Fixed Points

▶ Definition 4. A tree is a pair (T,≺), where T is a set and ≺ is a strict partial order such
that, if η ∈ T then {ζ ∈ T : ζ ≺ η} is finite and linearly ordered, and T has a minimum
element called its root. We will sometimes notationally identify (T,≺) as T , and write ⪯
for the reflexive closure of ≺.

Maximal elements of T are leaves. For η, ζ ∈ T , we say that ζ is a child of η if ζ is
the least element ξ (if it exists) such that η ≺ ξ. A path (of length m) on T is a sequence
η⃗ = (ηi)i≤m such that ηi+1 is the child of ηi.

For our purposes, a GL model is a model A where (A, RA) is a finite tree, in which case
we write ❁A instead of RA. As we will be working exclusively with GL frames and models,
in the sequel we write simply frame or model instead of GL frame or GL model.

▶ Remark 5. It should be stressed that working in a more restrictive class of models yields
stronger results as far as succinctness is concerned: for example, if no small modal formula ψ
is equivalent to some µ-calculus expression φ over the class of GL models as we have defined
them, then certainly no small ψ′ is equivalent to φ over the class of all Kripke models, as in
particular ψ′ would still have to be equivalent to φ over the smaller class of GL models.

3 Extensions and fixed points

The modal language, as we have presented it, may be naturally extended to include other
operations. Even when these operations do not add expressive power to our language, they
can yield considerable gains in terms of succinctness, as we will see later in the text. We
begin by discussing the reflexive modality.

3.1 The reflexive modality
We may define a modality based on ⊑ rather than ❁. This may be defined in L✸ by letting
⊡φ be a shorthand for φ ∧ ✷φ. Dually, ✸· φ is defined as a shorthand for φ ∨ ✸φ. Let L✸✸·
be the extension of L✸ that includes ✸· ,⊡ as primitives. Semantics for L✸✸· are defined
by setting ∥φ∥A = ∥φ′∥A, where φ′ is obtained by replacing instances of ✸· ,⊡ by their
definitions; note that in general, φ′ tends to be exponentially larger than φ [11]. We extend
Definition 1 to L✸✸· in the obvious way, by

|✸· φ| = |⊡φ| = |φ| + 1.

Closely related to GL is the logic Grz of Noetherian (reflexive) partial orders, but it is
easy to see that Grz is also the logic of GL frames, although based on L✸· rather than L✸.
By working over the combined language L✸✸· , our succinctness results apply to both GL
and Grz, as well as many weaker logics.

3.2 Fixed Point Theorems
The celebrated De Jongh-Sambin theorem states that fixed points for modalized formulas are
definable in GL, where x is modalized in φ if it only appears in the scope of ✸ or ✷.2 For
example, the formula ¬✷p has a fixed point ψ such that ψ ≡ ¬✷ψ over GL; in this case, we
can take ψ = ✸⊤. An upper bound on the size of ψ can be obtained by analyzing existing
proofs.

2 In other words, φ is of the form ψ(✷(χ1(x)), . . . ,✷(χn(x))) with x not occuring in ψ(p1, . . . , pn).

K. Papafilippou and D. Fernández-Duque 25:5

▶ Theorem 6 (De Jongh ~1975, Sambin [21]). Given a formula φ(x) in which x is modalized,
there is a formula ψ such that φ(ψ) ≡ ψ over the class of GL models. The formula ψ is
unique up to equivalence, and is of size 2O(|φ| log(|φ|)).

Proof. We follow the construction of the fixed point formula in [21]. Since x is modalized
in φ, we have that φ = ψ

(
✷χ1(x), . . . ,✷χn(x)

)
. Let σn

i be the fixed point of ψ[✷χi(x)/⊤],
then the fixed point σn+1 of φ is ψ

(
✷χ1(σn

1), . . . ,✷χn(σn
n)

)
. Let m = |φ| and k ≤ |ψ|. Then

by induction on n, one readily shows that |σ1| ≤ m+ k and then |σn + 1| ≤ m+ n · |σn−1| ≤
m · 2(n+1) log(n+1). ◀

The logic Grz also enjoys a fixed point property, but in this case for formulas φ(x) where
x is positive, i.e. with the restriction that x may not appear in φ.

Observe how in the case of GL, we ask for x to be modalized in φ(x) while in Grz and
in the µ-calculus we want it to be positive. Positivity is typically required in order to avoid
pathological cases. For example if ✷¬p were to have a definable fixed point ψ in Grz, then
over Grz the following would hold ψ ≡ ✷¬ψ ≡ ¬ψ ∧ ✷¬ψ, a contradiction. Naturally, there
is always a fixed point for any φ(x) over GL as well when x is positive in φ(x), however it is
not necessarily unique up to equivalence.

▶ Theorem 7. Given a formula φ(x) in which x is positive, there is a formula ψ such that
φ(ψ) ≡ ψ over the class of Grz models. The size of ψ may be bounded by a 2O(|φ|3) function.

This does not seem to have been stated in this form in the literature, but it is a consequence
of Theorem 8 below, which states that the µ-calculus is no more expressive than modal
logic over the classes of GL or Grz models. In order to make this precise, let us review the
µ-calculus.

3.3 The µ-calculus
The µ-calculus is obtained from L✸✸· by adding formula constructors µx.φ and νx.φ, where
x is positive in φ. We denote the resulting language by Lµ

✸✸· . For a model A, a variable x and
X ⊆ |A|, let A[x/X] be a model which is the same as A except that VA[x/X](x) = X. Then,
∥µx.φ∥A is the least fixed point of the map X 7→ ∥φ∥A[x/X] ; in other words, ∥µx.φ∥A =
∥φ∥A[x/∥µx.φ∥A] , and every other set with this property contains ∥µx.φ∥A. Syntactically, we
obtain µx.φ(x) ≡ φ(µx.φ(x)). Similarly, ∥νx.φ∥A is the greatest fixed point of the map
X 7→ ∥φ∥A[x/X] . This definition is known to be sound due to the Knaster-Tarski theorem [24],
which entails that monotone operators on a powerset always have least and greatest fixed
points.

Sub-languages of the µ-calculus are denoted by indicating the modalities allowed, e.g. Lµ
✸

allows the modalities ✸,✷ but not ✸· ,⊡. Formula complexity is extended by setting

|µx.φ| = |νx.φ| = |φ| + 1.

Normally the µ-calculus provides a far-reaching extension of modal logic, but surprisingly
this is no longer the case over GL [2] and Grz [9]. The bounds given are obtained from a
separate construction by [12].

▶ Theorem 8. Given a formula φ ∈ Lµ
✸✸· of the µ-calculus, there are formulas φGL and

φGrz of L✸ such that φGL ≡ φ over GL and φGrz ≡ φ over Grz. The sizes of φGL and
φGrz are of size 2O(|φ|3).

CSL 2025

25:6 Exponential Lower Bounds on Definable Fixed Points

Proof. In [12], an explicit translation from the µ-calculus into an extension of modal logic
is given, with an operator ♦∞(φ0, φ1, . . . , φn−1). Over both GL and Grz, this operator
is equivalent to ✸·

∧
φi, and thus one obtains a translation of the µ-calculus into L✸. By

examining the formulas involved, and essentially repeating the same calculation as in [12],
we may compute an upper bound of 2O(|φ|3). ◀

Note that in general φGL and φGrz may be distinct. In view of these results, it may seem
that over GL and Grz, the µ-calculus is merely a cosmetic extension of L✸. However, note
that the fixed-point formulas provided by Theorems 6 and 7 are quite large. As we will see,
this is unavoidable and thus the µ-calculus offers a substantial advantage when succinctness
is taken into account. In order to simultaneously provide lower bounds for Theorems 6–8, in
our succinctness results, we will work with formulas that are both positive and modalized.

4 Model equivalence games

In this section, we set up the model equivalence games tailored for a language with ✸ and ✸·
interpreted over GL models. The game is based on sets of rooted GL models; that is, GL
models A which are generated from some a ∈ A in the sense that A = a↑A := {b ∈ A : a ⊑ b}.
Henceforth we simply call these rooted models and we will usually designate the root by
writing the model as the pair (A, a). The following operations will be useful in describing
the game.

▶ Definition 9. Given a set of rooted models A, we define:
✷A := {(b↑A, b) : a ❁A b for some (A, a) ∈ A};
⊡A := {(b↑A, b) : a ⊑A b for some (A, a) ∈ A};
given f : A →

⋃
A∈A A where f(A) ∈ ✷A, then ✸f A := rng(f);

given f : A →
⋃

A∈A A where f(A) ∈ ⊡A, then ✸· f A := rng(f).
We write ✷A for ✷{A} and ⊡A for ⊡{A} respectively. We also write A ⊩ φ to mean that φ
holds in the root of every model A ∈ A.

▶ Definition 10. Let M be a class of rooted models and φ be a formula. The (φ,M) model
equivalence game ((φ,M)-meg) is played by two players, Hercules and the Hydra, according
to the following rules.

SETTING UP THE PLAYING FIELD.
The Hydra’s only move is in the initiation of the game by choosing two sets of models
A,B ⊆ M such that A ⊩ φ and B ⊩ ¬φ.

After that, Hercules constructs a finite game-tree T . Each node η ∈ T will be labelled
with a pair (L(η),R(η)) of sets of rooted models, and a symbol that is either a literal or one
of {∧,∨,✸,✷,✸· ,⊡}. We will usually write A(η) ◦ B(η) instead of (A,B) for pairs of sets
of rooted models.

At each step of the construction, a leaf η can be either declared a head or a stub in
accordance to the rules of the game. Once it has been declared a stub, no further moves can
be played on it. The root λ of the tree is labelled as L(λ) ◦ R(λ) = A ◦ B and declared a
head.

Afterwards, the game continues so long as there is at least one head. In each turn,
Hercules chooses a head η labelled by L ◦ R and plays one of the following moves.

K. Papafilippou and D. Fernández-Duque 25:7

literal-move.
Hercules chooses a literal ι such that L ⊩ ι and R ̸⊩ ι. The node η is declared a stub and
labelled with the symbol ι.

∨-move.
Hercules labels η with the symbol ∨ and chooses two sets L1,L2 ⊆ L such that L = L1 ∪L2.
Two new heads, labelled by L1 ◦ R and L2 ◦ R, are added to the tree as children of η.

∧-move.
Analogous to a ∨-move, except that Hercules instead chooses R1,R2 ⊆ R.

✸-move.
Hercules labels η with the symbol ✸ and chooses a function f , as in Definition 9, for
which ✸f L exists (if it does not exist i.e. for some A ∈ L we have ✷A = ∅, Hercules
cannot play this move). We let L1 be ✸f L and R1 to be ✷R.3 A new head labelled by
L1 ◦ R1 is added as a child to η.

✷-move.
Analogous to a ✸-move, except that Hercules instead chooses a function f for which
✸f R exists and the new head is labelled by ✷L ◦ ✸f R.

✸· -move and ⊡-move.
Analogous to ✸- and ✷-moves, but with ⊡ and ✸· in place of ✷ and ✸ respectively.

The (φ,M)-meg game concludes when there are no heads. If the game-tree is finite (in
size) and it has no heads, we call it closed and Hercules has won. We say that Hercules has
a winning strategy in n moves in the (φ,M)-meg if no matter how the Hydra sets up the
playing field, the resulting game tree has at most n nodes and is closed.

If there is an L✸✸· formula ψ equivalent to φ on M, Hercules can read a winning strategy
off of ψ for the (φ,M)-meg. Conversely, if Hercules has a winning strategy then such a ψ
can be read off of the game tree when Hydra plays optimally, i.e. always choosing as many
rooted models as allowed. We thus obtain the following.

▶ Theorem 11. Hercules has a winning strategy in n moves in the (φ,M)-meg iff there is a
L✸✸· formula ψ equivalent to φ on M such that |ψ| ≤ n. (See e.g. [18])

It moreover should be clear that Hercules cannot win if there are isomorphic models on the
left and right, since there will be no formula distinguishing them.

▶ Proposition 12. No closed game tree contains a node η such that there are A ∈ L(η),
B ∈ R(η) that are isomorphic. (See e.g. [18])

5 The playing field

We will use the model equivalence games to show that the µ-calculus with a single application
of the least fixed point operator is exponentially more succinct than modal logic over the
class of GL frames, even when equipped with both ✸ and ✸· . Our proof will be based on an
infinite sequence of formulas that convey the existence of a certain binary tree: the root is
labelled by q0

n, with two children labelled by q0
n−1 and q1

n−1, respectively, and so on until
we reach leaves labelled by q0

0 and q1
0 . To maintain control over the tree structure, we use

auxiliary variables pk which “remember” the parent’s label.

3 In particular, if ✷B = ∅ for some B ∈ R, then nothing is added to R1 for the rooted model B.

CSL 2025

25:8 Exponential Lower Bounds on Definable Fixed Points

▶ Definition 13. For every n ≥ 0, let the open formulas φ∗
n(x) be defined as follows. First,

for n ∈ N set θn(x) to be the formula∧
j≤2

(
qj

n+1 →
∧
k≤2

✸(qk
n ∧ pj ∧ x ∧ ¬qj

n+1)
)

and define φ∗
n(x) =

∧
i≤n θi(x). Then, for n ≥ 0, let φn and φn be defined as:

φn := q0
n+1 ∧ µx.φ∗

n(x);
φn := q1

n+1 ∧ µx.φ∗
n(x).

By the fixed-point theorem for GL, we know there are L✸✸· formulae ψn ≡ φn over GL of
size at most 2O(n log(n)).4 Due to the occurrence of ¬qj

n+1, the formulae θn are equivalent to
the formulae θ′

n obtained by substituting ✸· for ✸. As such, any lower bound results for the
size of L✸✸· formulae equivalent to the formulae φn in GL will also produce succinctness
results for Lµ

✸· , hence also for Grz.
Observe that the formulas φ∗

n(x) are all positive over x and modalized. We therefore
know by the fixed-point theorem for GL that their fixed-point is unique and since they are
positive for x, their fixed point will also be equivalent to their greatest and least fixed point.

As promised, the above formulas will define a tree embedding property as this is a
sufficient condition a rooted model should satisfy in order for some φn to hold in its root. If
we are to be more precise, consider the following model Tn = ⟨Tn,≺, VTn⟩, where Tn is the
set of binary sequences of length ≤ n+ 1, rooted at the empty sequence ⟨⟩ and:
1. VTn(q0

n+1) := {⟨⟩};
2. VTn(qj

i) = {s ∈ Tn : |s| := n+ 1 − i ∧ s(|s| − 1) = j} for i ≤ n;
3. VTn(pj) = {s ∈ Tn : ∃ k s := r ⌢ ⟨k⟩ ∧ r ∈ VTn(qj

n−|r|)};
where s ⌢ r denotes the concatenation of the sequences s and r. Intuitively, q0

i is true on
paths of length n+ 1 − i that go “left” on the last step, and q1

i holds instead when they go
“right” on the last step. The truth value of pj on the world mimics that of qj

i+1 on its parent.
Note that the lower index of the variables goes “backward” from the root to the leaves.

A model embedding is a function f : M → N such that:
1. For every a, b ∈ M, if a ❁M b then f(a) ❁N f(b);
2. For every p ∈ P(M) and a ∈ M, a ∈ VM(p) iff f(a) ∈ VN (p);
where P(M) denotes the set of propositional variables occurring in the valuation of some
world in M; i.e. P(M) := {p ∈ P : ∃v ∈ Mv ⊩ p}.

By construction, for every n, Tn ⊩ φn. While we will mostly focus on φn in our inductive
arguments, down the line we will need models satisfying φn at the root. Models of φn and
φn vary on whether q0

n or q1
n holds at the root, i.e. in φn the tree starts on the “left” and in

φn on the “right”. Hence we use the following notational convention:
Given a rooted model (A, a), let N+(a) be the set of children of a, i.e. the set of direct

successors of a. Define A := (A,❁A, VA) where for j = 1 − j:
The valuations of qj

i and qj
i are swapped at the root;

The valuations of pj and pj are swapped at the children of a.
All unmentioned propositional variables will be evaluated the same as before.
Observe that in the case of the tree models we have defined, the symmetric counterpart Tn

satisfies φn at its root.

4 Since the size of φn is linear in n, we substitute n for |φn| in the above expression.

K. Papafilippou and D. Fernández-Duque 25:9

▶ Lemma 14. Let n ∈ N and (A, a) be a rooted model such that for all b ∈ A, there is at
most one pair ⟨i, j⟩ such that b ∈ VA(qj

i), and at most one j such that b ∈ VA(pj).
1. The model (A, a) satisfies φn iff there is a model embedding f : Tn → A such that

f(⟨⟩) = a.
2. The model (A, a) satisfies φn iff there is a model embedding f : Tn → A such that

f(⟨⟩) = a.

Proof. We prove both items simultaneously by induction on n.

Left-to-Right. For n = 0 assume first that (A, a) is a model satisfying the assumptions
of the Lemma and additionally A, a ⊩ φ0. Thus A, a ⊩ q0

1 and since A, a ⊩ µx.φ∗
0(x), then

A, a ⊩ φ∗
0(µx.φ∗

0(x)) and hence for k ∈ 2 there are bk ❂ a such that A, bk ⊩ qk
0 ∧ p0. This

naturally gives us the embedding from T1 into A.
Assume that the induction step holds for n and we will show the equivalence for n+ 1. Let
A, a ⊩ φn+1, then A, a ⊩ q0

n+1 and A, a ⊩ φ∗
n+1(µx.φ∗

n+1(x)), so there are bk ❂ a for k ∈ 2
such that A, bk ⊩ qk

n ∧pj ∧µx.φ∗
n+1(x) while also A, bk ̸⊩ q0

n+1. Since A, bk ̸⊩ q0
n+1, it follows

that A, bk ⊩ φ∗
n+1(x) iff A, bk ⊩ φ∗

n(x). Therefore:

A, bk ⊩ µx.φ∗
n+1(x) ⇔

A, bk ⊩ φ∗
n+1(µx.φ∗

n+1(x)) ⇔
A, bk ⊩ φ∗

n(µx.φ∗
n+1(x)) ⇒

A, bk ⊩ φ∗
n(µx.φ∗

n(x)). (1)

The last implication holds by monotonicity. Thus, we can use the induction hypothesis for
b0↑A and b1↑A to obtain the desired embedding. The case for φn is symmetrical.

Right-to-Left. Let f : T0 → A be a model embedding; we just need to show that A, a ⊩
φ∗

0(µx.φ∗
0(x)). By our assumption there will be elements bk ❂ a for k ∈ 2 such that

A, bk ⊩ qk
0 ∧ p0 and A, bk ̸⊩ qj

1 for any j ∈ 2. Therefore A, bk ⊩ φ∗
0(⊥) and since x occurs

positively in φ∗
0, it follows that A, bk ⊩ φ∗

0(µx.φ∗
0(x)). Hence A, a ⊩ φ∗

0(φ∗
0(µx.φ∗

0(x))), and
so A, a ⊩ µx.φ∗

0(x).
Assume now that the induction step holds for n and let f : Tn+1 → A be a model embedding.
Thus A, a ⊩ q0

n+1 and there are bk ❂ a for k ≤ 2 and model embeddings g0 : Tn → b0↑A,
g1 : Tn → b1↑A. By the induction hypothesis, A, b0 ⊩ φn and A, b1 ⊩ φn. Item 2 is proved
similarly. ◀

Our models will be designed so that they have a critical branch on which Hercules will be
forced to play. This critical branch is described using a “successor” function which goes up
the tree along said branch. This and other technical notions needed to describe Hercules’
strategy are given by the following definition.

▶ Definition 15. Given a rooted model (A, a) and a propositional variable p, we will denote
by A(p) the model ⟨A,❁A, V

′⟩ where V ′ is the same as VA except that p will also hold in the
root of the model. In the interest of distinguishing the root of A(p) from A(q) we will write
them as a(p) and a(q), respectively (even though it’s technically the same element).

A model with successors is a model A equipped with a partial function SA : A → A such
that SA(a) is always a child of a.

If A is a rooted model with successors, the critical branch of A is the maximal path
w⃗ = (wi)i≤m such that w0 is the root of A and wi+1 = SA(wi) for all i < m; we say that m
is the critical height of A.

CSL 2025

25:10 Exponential Lower Bounds on Definable Fixed Points

We denote by S [A] the generated submodel of SA(w0) with SA(w0) as its root and its
induced successor function being SS [A](w0). For a natural number r, we define the rth
iteration of SA by induction so that S(0)[A] := A, S(0)

A (w) := w and on the inductive step
S(r+1)[A] := S [S(r)[A]], S(r+1)

A (w) := SA(S(r)
A (w)).

The partial function SA will not be used in the semantics, but it will help us to describe
Hercules’ strategy. We will begin by defining sets of rooted models An and Bn recursively on
n containing 2n+1 models each. Of those, the former 2n will be used to prove our succinctness
lower bound while the latter 2n are auxiliary5 and used solely in our recursive construction.
The following definition is illustrated in Figures 1 and 2.

▶ Definition 16. First, for n = 0 and for i < 2 we define A0
i with domains the sequences

s of length at most 1 on the natural numbers {0, 1, 2}. Then ❁A0
i

is the prefix relation and
valuations VA0

i
(pi) = {⟨k⟩ : k ≤ 2}, VA0

i
(qi

1) = {⟨⟩} and VA0
i
(qj

0) = {⟨j⟩} for j < 2. Set
SA0

i
(⟨⟩) = ⟨1 − i⟩ and SA0

i
is undefined otherwise. The B0

i have as domain the sequences s of
length at most 1 in the natural numbers ≤ 1. Their relations are the prefix relations and the
valuations are the following: VB0

i
(pi) = {⟨k⟩ : k ≤ 1}, VB0

i
(qi

1) = {⟨⟩} and VB0
i
(qi

0) = {⟨0⟩}.
Set SB0

i
= {(⟨⟩, ⟨1⟩)}.

For 2 ≤ i < 4, we let A0
i := A0

i−2 and B0
i := B0

i−2. Their successor functions remain the
same. Now, given n, we will define the models An+1

i and Bn+1
i with a case distinction in i.

In this paper, given models A and B, we let A ⨿ B be the model with domain the disjoint
union of A and B,6 accessibility relation ❁A⨿B being the disjoint union of the accessibility
relations ❁A and ❁B, and similarly the valuation. This is the set of all the elements in A
and B with each element labelled by the set to which it belongs.

Case i < 2n+1. First, set X to be(2n+1−1∐
k=0

An
k (p1)

)
⨿ An

i (p0) ⨿ An
i (p0) ⨿ Bn

i (p0),

and construct An+1
i by adding a (fresh) irreflexive root an+1

i which is below all elements
of X and satisfies q0

n+2. We set

SAn+1
i

:= SAn
i

∪ {(an+1
i , an

i (p0))}.

The models Bn+1
i are defined similarly by setting

Y =
(2n+1−1∐

k=0
An

k (p1)
)

⨿ An
i (p0) ⨿ Bn

i (p0),

and, as before, adding an irreflexive root bn+1
i that satisfies q0

n+2. Set

SBn+1
i

:= SBn
i

∪ {(bn+1
i , bn

i (p0))}.

Case 2n+1 ≤ i < 2n+2. Here we construct our auxiliary models where An+1
i = An+1

i−2n+1

and Bn+1
i = Bn+1

i−2n+1 .

We remark that the auxiliary models were only used to help us inductively construct the
An

i and Bn
i models. Letting An = {An

i : i < 2n}, Bn = {Bn
i : i < 2n} and Mn = An ∪ Bn,

we will study the (φn,Mn)-meg where φn are the formulae in Definition 13.

5 They are the “right” versions of the former models.
6 Hence elements in the intersection A ∩ B will appear twice; once labelled by A and once labelled by B.

K. Papafilippou and D. Fernández-Duque 25:11

q0
1

▷a0
0

p0 q0
0 p0 q1

0 p0

q1
1

▷a0
1

p1 q0
0 p1 q1

0 p1

q0
1

▷b0
0

p0 q0
0 p0

q1
1

▷b0
1

p1 q1
0 p1

q0
2

▷a1
0

p1 q0
1

p0 q0
0 p0 q1

0 p0

A0
0(p1)

p1 q1
1

p1 q0
0 p1 q1

0 p1

A0
1(p1)

p0 q0
1

p0 q0
0 p0 q1

0 p0

A0
0(p0)

p0 q1
1

p1 q0
0 p1 q1

0 p1

A0
1(p0)

p0 q0
1

p0 q0
0 p0

B0
0(p0)

q0
2

▷b1
0

p1 q0
1

p0 q0
0 p0 q1

0 p0

A0
0(p1)

p1 q1
1

p1 q0
0 p1 q1

0 p1

A0
1(p1)

p0 q1
1

p1 q0
0 p1 q1

0 p1

A0
1(p0)

p0 q0
1

p0 q0
0 p0

B0
0(p0)

q0
2

▷a1
1

p1 q0
1

p0 q0
0 p0 q1

0 p0

A0
0(p1)

p1 q1
1

p1 q0
0 p1 q1

0 p1

A0
1(p1)

p0 q1
1

p1 q0
0 p1 q1

0 p1

A0
1(p0)

p0 q0
1

p0 q0
0 p0 q1

0 p0

A0
0(p0)

p0 q1
1

p1 q1
0 p1

B0
1(p0)

q0
2

▷b1
1

p1 q0
1

p0 q0
0 p0 q1

0 p0

A0
0(p1)

p1 q1
1

p1 q0
0 p1 q1

0 p1

A0
1(p1)

p0 q0
1

p0 q0
0 p0 q1

0 p0

A0
0(p0)

p0 q1
1

p1 q1
0 p1

B0
1(p0)

Figure 1 The figure illustrates models in M0 and M1. At the very top, we see the rooted models
of A0,B0 as well as their auxiliary models. These are then used in the construction of the models of
A1,B1 that we can see in the rest of the graphic.

Each copy of the smaller models being used in the construction is indicated by a box and a label.
It is easy to see that A0

0 embeds T0 (with the image being all but the rightmost leaf) and A0
1 embeds

T 0, but B0
0 and B0

1 do not, hence A0
0 satisfies φ0 while B0

0 does not, and similarly A0
1 satisfies φ0

while B0
1 does not. A similar analysis shows that e.g. A1

0 satisfies φ1 but B1
0 does not.

The successor function will point from the root towards the sub-model in the red, dashed boxes;
for example, S [A1

0] = A0
0(p0). The models S [A1

0] and S [B1
0] are similar enough that Hercules is not

able to tell them apart before reaching their topmost worlds. The remaining branches are there to
make this task as difficult as possible.

CSL 2025

25:12 Exponential Lower Bounds on Definable Fixed Points

6 The lower bound

In this section, we show that if Hydra sets up the playing field with Mn, then Hercules
cannot win the game in fewer than 2n moves. This is our main technical result and will
require several preparatory lemmas.

As mentioned, each model has a critical branch. More specifically, each An+1
i is very

similar to the respective Bn+1
i , and can only be distinguished by Hercules if he plays along

the critical branch. The number i can be seen as coding a binary string simply by writing
i = en+12n+1 + . . .+ e020 in binary. Then each en+1−r indicates whether the critical branch
goes left or right at step i; note that this includes step 0, corresponding to the label of the
root, i.e. the critical branch of An+1

i goes left first while that of An+1
i goes right.

▶ Lemma 17. For all n, i < 2n+2 and r < n+ 2, the following hold:
1. S(r)[An+1

i] is isomorphic to An+1−r
k (pe);

2. S(r)[Bn+1
i] is isomorphic to Bn+1−r

i (pe);
where k ≡ i mod 2n+2−r with k < 2n+2−r and e is the digit en+2−r+1 in the binary expansion
of i.

Proof. We will only prove Item 1 as the case for the Bn+1
i model is identical. The case for

r = 1 is immediate from the definitions of the models and the S function. So assume that
the lemma holds for r < n+ 1. By the induction hypothesis, S(r+1)[An+1

i] is isomorphic to
S [An+1−r

k (pen+1−r)], which by the induction hypothesis for r = 1, this is in turn isomorphic
to An+1−r

k (pen−r). ◀

By construction, Tn embeds into An
i but not into Bn

i , yielding the following.

▶ Lemma 18. For all n and all i < 2n, An
i ⊩ φn and Bn

i ⊩ ¬φn.

Proof. For this proof, we will extend our definition of · into embeddings as follows: Given
an embedding f : A → B, we define f : A → B to be such that f(a) = f(a) for all a ∈ A.
Notice that f will still be an embedding if it preserves the root r and maps children of the
root of A into children of the root of B (i.e. f [N+(r)] ⊆ N+(f(r))).

We will make use of Lemma 14. First, we show An
i ⊩ φn by proving the existence of

embeddings fn
i : Tn → An

i for i < 2n by induction on n. Notice that since An
i and Tn have

the same depth, we will also obtain fn
i [N+(⟨⟩)] ⊆ N+(fn

i (⟨⟩)); thus, fn
i will also be an

embedding from Tn to An
i+2n = An

i .
For n = 0, one needs only look at the definition of A0

0. Now assume that the statement holds
for n, let i < 2n+1 be arbitrary, j ≡ i mod 2n and fn

j : Tn → An
j be an embedding given

from our induction hypothesis. We can then define fn+1
i : Tn+1 → An+1

i by mapping:
⟨⟩ to an+1

i ;
⟨0⟩⌢ s to the point corresponding to fn

j (s) on the copy of An
j (p0) in An+1

i ;
⟨1⟩⌢ s to the point corresponding to fn

j (s) on the copy of An
j (p0) in An+1

i .
An+1

i satisfies the base conditions of Lemma 14 and thus our induction step holds for all
i < 2n+1 and so An

i ⊩ φn.
We now show Bn

i ⊩ ¬φn by proving that there are no embeddings as in Lemma 14
f : Tn → Bn

i for all i < 2n by induction on n.
For n = 0, this is clear. Assume that the induction hypothesis holds for n, and suppose, for a
contradiction, that there is an embedding f : Tn → Bn+1

i with f(⟨⟩) = bn+1
i for some i < 2n.

As f is an embedding, {q0
n+1, p

0} ⊆ V −1
Bn+1

i

(
f(⟨0⟩)

)
and the only world that satisfies this

condition in Bn+1
i is the root bn

i of the Bn
i (p0) part of the model. This implies the existence

of a root-preserving embedding f ′ : Tn → Bn
i which contradicts our induction hypothesis.

The case for 2n ≤ i < 2n+1 is done in a similar way. ◀

K. Papafilippou and D. Fernández-Duque 25:13

q0
n+1

▷

an
i

p1

An−1
0

p1

An−1
2n−1

p0

An−1
i

p0

An−1
i

p0

Bn−1
i

q1
n+1

▷

an
j

p0

An−1
0

p0

An−1
2n−1

p1

An−1
j

p1

An−1
j

p1

Bn−1
j

q0
n+1

▷

bn
i

p1

An−1
0

p1

An−1
2n−1

p0

An−1
i

p0

Bn−1
i

q1
n+1

▷

bn
j

p0

An−1
0

p0

An−1
2n−1

p1

An−1
j

p1

Bn−1
j

.

.

Figure 2 The inductive structure of the models for n > 0 with the models of An and Bn to the
left and the auxiliary models to the right (0 ≤ i < 2n ≤ j < 2n+1).

Hence, Hydra can set up the playing field by placing the models An
i on the left and the

models Bn
i on the right. In this case, Hercules requires exponentially many moves to win the

game.

▶ Definition 19. Suppose that M, N are two finite rooted models with successors. We
say that r ∈ N distinguishes M and N if S(r)[M] and S(r)[N] differ on the truth of a
propositional variable at their roots, but whenever i < r, then S(i)[M] and S(i)[N] agree on
the truth of all propositional variables at their respective roots. We call r the distinguishing
value of M and N .

Note that the distinguishing value of two models M,N need not be defined, but when it is,
it is unique. Moreover, the distinguishing values of the models we have constructed always
exist.

▶ Lemma 20. Fix n ≥ 1 and 0 ≤ i < j < 2n+1. Then, An
i and An

j are distinguished at some
r < n, satisfying the following properties:
(a) If i < 2n and 2n ≤ j, then An

i and An
j have distinguishing value 0.

(b) If An
i and An

j have distinguishing value r, then An+1
i , An+1

j have distinguishing value
r + 1. The same holds for An+1

2n+1+i, An+1
2n+1+j.

Proof. Item a is immediate since the roots of An
i and An

j are evaluated differently. For
Item b, observe that i, j < 2n+1 implies that An+1

i and An+1
j have roots with the same

valuation. Thus, they are distinguished at r+1. Since An+1
2n+1+i = An+1

i and An+1
2n+1+j = An+1

j ,
these are also distinguished at r + 1. ◀

▶ Lemma 21. Fix n and i < 2n+1. Then, An
i and Bn

i are distinguished at n+ 1.

Proof. By an easy induction on n. ◀

By twins of height k we mean a pair of the form (S(k)[An
i], S(k)[Bn

i]), where i < 2n and
k ≤ n+ 1. If L is a set of rooted models from An and R a set of rooted models from Bn, we
say that there are twins of height k in L ◦ R if there are twins (S(k)[An

i], S(k)[Bn
i]) such that

S(k)[An
i] ∈ L and S(k)[Bn

i] ∈ R.

CSL 2025

25:14 Exponential Lower Bounds on Definable Fixed Points

We will study how pairs of the form (S(k)[An
i], S(r)[Bn

i]) in L(η) ◦ R(η) affect the viability
of the various modal moves for Hercules. This will place restrictions on the relationship
between k and r. For example, we see that Item b below states that if k < r then Hercules
couldn’t play any ⊡ moves as Hydra can get from S(k)[An

i] into a model isomorphic to any
choice of Hercules in ⊡S(r)[Bn

i]. Clearly, that also excludes any ✷ moves for Hercules, as two
isomorphic models are of the same height and hence any isomorphic model the Hydra would
produce for the corresponding ⊡ move, would also show up in a ✷ move. In Lemma 22, all
of the restrictions applying to a reflexive modality will not only just apply to the irreflexive
modality, but also, they will apply even if we substitute ≤ for <.

At this point, let us fix n ≥ 0 and assume that Hydra labels the root with An ◦ Bn.

▶ Lemma 22. For any node η in a closed game tree (T,≺) for the (φn,GL)-meg
(a) If there are twins S(k)[An

i], S(k)[Bn
i] in L(η) ◦ R(η) with k < n+ 1 then no literal move

was played in the node η.
(b) If there are S(k)[An

i], S(r)[Bn
i] in L(η) ◦ R(η) and k < r then ⊡ was not played in the

node η. If k ≤ r then no ✷ move was played in η either.
(c) If there are twins S(k)[An

i], S(k)[Bn
i] in L(η) ◦ R(η) and a ⊡ move was played in the node

η, then S(k)[Bn
i] was chosen.

(d) If there are twins S(k)[An
i], S(k)[Bn

i] in L(η) ◦ R(η) and a ✸· move was played in the node
η, then either S(k)[An

i] or S(k+1)[An
i] was chosen. Hence, if a ✸ move was played in η,

then S(k+1)[An
i] was chosen.

(e) If there are two distinct twins S(k)[An
i], S(k)[Bn

i] and S(r)[An
j], S(r)[Bn

j] in L(η) ◦ R(η),
then

(i) if r + 1 < k, then no ✸· or ⊡ move was played in η. Similarly, if r < k, then no ✸

or ✷ move was played in η.
(ii) If An

i ,Bn
j are distinguished at r and r = k then no ✸ move was played in η. If

instead k = r + 1, then no ✸· -move was played in η either.

Proof. Item a is immediate by Lemma 21 as no literal move can be played if there are models
(A,B) ∈ L(η) ◦ R(η) with distinguishing value r > 0.

For Item b, if r = n+ 1, then the statement is clear by the definition of the B0
j . Thus, assume

r < n + 1. Then observe that S(r)[Bn
i] ⊆ ⊡S(k)[An

i] and hence ⊡S(r)[Bn
i] ⊆ ⊡S(k)[An

i].
Hence, no matter where S(r)[Bn

i] is mapped in ⊡S(r)[Bn
i] by Hercules, Hydra will include an

isomorphic model in its response. Observe that if k = r then we still have that ✷S(k)[Bn
i] ⊆

✷S(k)[An
i].

In Item c, since ⊡A = ✷A ∪ {A} for any model A, we get that ✷S(k)[Bn
i] ⊆ ⊡S(k)[An

i] and
thus only S(k)[Bn

i] can be used by Hercules.

Moving into Item d, the cases for k = n+1 and for n = 0 are trivial; therefore, let k < n+1 and
0 < n. By Lemma 17 it is sufficient to prove the statement for k = 0.7 Now assume, aiming
towards a contradiction, that neither of An

i and S [An
i] were chosen by Hercules. We will show

that all of the remaining alternatives are isomorphic to some model in ✷Bn
i . Let us assume

that i < 2n, then Hercules could not choose any model in ⊡{An−1
j (p1), An−1

i (p0), Bn−1
i (p0)}

as all those models belong by definition in Bn
i . Finally, Hercules could not have chosen a

model in ✷An−1
i (p0) since ✷An−1

i (p0) = ✷An−1
i (p1) ⊆ ⊡Bn

i .

7 Formally we should prove it for An
i (pe), Bn

i (pe), but the proof is otherwise identical.

K. Papafilippou and D. Fernández-Duque 25:15

In Item e-i, we can assume by Lemma 17 that r = 0 and k ≥ 2, and we will show that
S(2)[An

i] ∈ ⊡Bn
j . This will imply that ⊡S(2)[An

i] ⊆ ⊡Bn
j , thus giving us S(k)[An

i] ∈ ⊡Bn
j .

Since i ≠ j, An−1
i (pe) is one of the model branches of Bn

j by definition for some e. Then
S(2)[An

i] = S [An−1
i (pe)] ∈ ⊡Bn

j .

Finally, we prove Item e-ii. The case for k = n+ 1 is trivial by the definition of the game.
Since r = k < n + 1 is the distinguishing value, by Lemma 17 it follows that S(k)[An

i] is
isomorphic to An−k

i′ (pe) and S(k)[An
j] is isomorphic to An−k

j′ (pe) for some i, j, e. Thus we can
without loss of generality assume that r = k = 0. We can assume without loss of generality
that i < 2n ≤ j, then by definition An−1

i ∈ ✷Bn
i . ◀

▶ Definition 23. In the closed game tree (T,≺), let Λ(i) be the set of leaves η such that
1. for every η′ ⪯ η there is r ≥ 0 such that the twins (S(r)[An

i], S(r)[Bn
i]) appear in

L(η′) ◦ R(η′) and,
2. for every ζ ≺ η, every child σ of ζ with ζ ≺ σ ⪯ η and every other child σ′ of ζ, if

S(r)[An
i], S(r)[Bn

i] are in L(σ′) ◦ R(σ′) then S(k)[An
i], S(k)[Bn

i] are in L(σ) ◦ R(σ) for
some k < r.

More informally, if η ∈ Λ(i) then the path to η from the root is exactly the path that by
Condition 2 “locally” minimises the height r of the (S(r)[An

i], S(r)[Bn
i]) twins is chosen.

▶ Lemma 24. For a closed (φn,GL)-meg game tree (T,≺) in which the Hydra plays
optimally, the following hold:
(a) ∀ i < 2n, Λ(i) ̸= ∅;
(b) ∀ i < 2n ∀ η ∈ Λ(i) ∀ k ≤ n + 1 there is a ζ ⪯ η such that k is least with the property

that S(k)[An
i], S(k)[Bn

i] are in L(ζ) ◦ R(ζ);
(c) if 0 ≤ i < j < 2n, then Λ(i) ∩ Λ(j) = ∅.

Proof. We will prove each Item by contradiction, starting with Item a. Assume otherwise
and let ζ be a maximal node of (T,≺) for which Conditions 1 and 2 of Definition 23 hold.
Let k be the least natural number such that (S(k)[An

i], S(k)[Bn
i]) ∈ L(ζ) ◦ R(ζ). As ζ is not

a leaf, Hercules has not played a literal move. If Hercules plays a ∨-move, then at least one
of the two children of ζ, call it ζ ′, will have S(k)[An

i] ∈ L(ζ ′). But since R(ζ) = R(ζ ′), we
get that (S(k)[An

i], S(k)[Bn
i]) ∈ L(ζ ′) ◦ R(ζ ′) and this is the least k with such property since

L(ζ ′) ⊆ L(ζ). The case for the ∧-move comes contrary to our maximality assumption for ζ
in the same way as the ∨-move case. If Hercules plays a ✸ or a ✸· -move, then by Lemma 22
(S(k)[An

i], S(k)[Bn
i]) or (S(k+1)[An

i], S(k+1)[Bn
i]) will belong to L(ζ ′) ◦ R(ζ ′) with ζ ′ being the

only child of ζ. This satisfies Condition 1, while Condition 2 holds trivially; this contradicts
our minimality assumption for ζ. By Lemma 22, Hercules has not played a ✷-move, and this
leaves only the ⊡-move. In this case, Lemma 22 once more dictates that (S(k)[An

i], S(k)[Bn
i])

will belong in the only child of ζ. As with the ✸· -case, this comes contrary to the minimality
condition for ζ. As such, we have reached a contradiction and so ∀i < 2n, Λ(i) ̸= ∅.

Now for Item b, assume otherwise for some η and k and let ζ ⪯ η be greatest with an r < k

where (S(r)[An
i], S(r)[Bn

i]) ∈ L(ζ) ◦ R(ζ). Clearly ζ ≺ η as otherwise a literal move could
be played, something only possible if n + 1 = r < k ≤ n + 1. Thus there is a child σ ⪯ η

of ζ. By Lemma 22 and by the definition of Λ(i), no matter what move Hercules performs,
(S(s)[An

i], S(s)[Bn
i]) ∈ L(σ) ◦ R(σ) for some s ≤ k, contradicting either the maximality of ζ

or our original assumption.

CSL 2025

25:16 Exponential Lower Bounds on Definable Fixed Points

Finally we prove Item c. Assume the statement doesn’t hold, then there are i < j < 2n such
that η ∈ Λ(i) ∩ Λ(j) for some leaf η ∈ T . By Lemma 20 An

i and An
j have some distinguishing

value m ≤ n. Let ζ ≺ η be maximal such that the least r and k with

(S(r)[An
i], S(r)[Bn

i]), (S(k)[An
j], S(k)[Bn

j]) ∈ L(ζ) ◦ R(ζ) (2)

are such that r ≤ m or k ≤ m. Assume that r = m ≤ k; it will always be the case that one
of them will be m from the proof of Item b. Clearly no ∨ or ∧-move could have been played
at ζ, as then the child σ ≺ η of ζ would either invalidate the choice of ζ, or otherwise, σ
would then be a witness of a failure of Condition 2 for η, thus invalidating the assumption
η ∈ Λ(i) ∩ Λ(j). Similarly, no ⊡-move could have been played either as it would contradict
our choice of the node ζ. If a ✸· -move was played at ζ then by Lemma 22 it has to be that
r = k. Hence, the choice of ζ will be violated as (2) will also hold for its child σ ⪯ η. Finally,
the ✸ and ✷-moves are simpler cases of the ✸· and ⊡-moves. ◀

It follows that any closed game tree has at least 2n leaves, yielding our main technical
result.

▶ Proposition 25. For every n ≥ 1, Hercules has no winning strategy of less than 2n + 2
moves on the (φn,Mn)-meg.

Proof. Let (T,≺) be a closed game tree of (φn,Mn)-meg. By Lemma 24, the sets of leaves
{Λ(i) : i < 2n} are non-empty and disjoint. Since each leaf represents a literal move being
played, Hercules must have played at least 2n literal moves. As there are at least 2n leaves,
at least one branching move must have been played. Furthermore, by the definition of Λ(i),
at least one modal rule must have been played. As such, Hercules must have played at least
2n + 2 moves. ◀

7 Succinctness

This section contains the main results of our study, first showing an exponential succinctness
result in a wide range of Kripke frames. An example of such an application can be found
in [12]. We will then examine some additional benefits we can obtain from the connection of
the interpolation and the fixed point theorems of GL.

7.1 Succinctness of definable fixed points
Proposition 25 is a powerful tool for proving succinctness results. In general, succinctness
results for a class of models apply to any larger class. Thus, our results apply not only to
GL models, but also to a wide range of classes of Kripke models.

▶ Theorem 26. Let C be any class of Kripke models containing all finite GL models or all
finite Grz models. Then, there is a sequence of formulas (φ0(x), φ1(x), . . .) which are both
modalized and positive on x with |φi(x)| = O(i) such that for any i ∈ N and any ψ ∈ L✸✸· ,
if φi(ψ) ≡ ψ over C, then |ψ| ≥ 2i.

Proof. The sequence consists of the formulae φ∗
i in Definition 13. Counting the symbols

present in the formulas, we get, by a simple induction, |φ∗
n| ≤ 41 · n. Assume, towards a

contradiction, that there is some ψn ∈ L✸ such that ψ ≡ µx.φ∗
n(x) over C and |ψn| < 2n.

But ψ′
n := q0

n ∧ψn ≡ φn by Definition 13, making it an L✸ equivalent to φn of size < 2n + 2.
However, by Theorem 11, this contradicts Proposition 25. ◀

K. Papafilippou and D. Fernández-Duque 25:17

▶ Corollary 27. Let C be any class of Kripke models containing all finite GL models or
all finite Grz models. Then, the languages Lµ

✸ and Lµ
✸· are exponentially more succinct

than L✸✸· over C. To be precise, for Lµ ∈ {Lµ
✸,Lµ

✸· }, there is a sequence of Lµ formulas
(φ0, φ1, . . .) with |φi| = O(i) such that for any i ∈ N and any ψ ∈ L✸✸· , if φi ≡ ψ over C,
then |ψ| ≥ 2i.

Proof. Observe that if φ ≡ ψ over C, then it is also the case over GL or Grz. As such, by
Theorem 26, the sequence of Lµ

✸ formulae φi of Definition 13 is exponentially more succinct
than their L✸✸· counterparts. Finally, if we consider the sequence of Lµ

✸· formulae ψi that
are the same as φi if we were to substitute ✸ by ✸· , we know that ψi ≡ φi. ◀

7.2 Size of interpolants
A somewhat surprising link to this study is that with the interpolation theorem. The
interpolation has been studied in many logics and via both model theoretic and proof
theoretic means [8, 15]. However, while proof theoretic proofs of the interpolation theorem
give us bounds for the proof size, no good bounds on the interpolants can be immediately
derived. The link in this case is primarily tied to one of the proofs of the fixed-point theorem
which we will briefly present here. Let us first recall the interpolation theorem.

▶ Theorem 28 (Craig interpolation for GL). Let φ and ψ be such that GL ⊢ φ → ψ. There
exists some formula σ containing only variables occurring in both φ and ψ such that

GL ⊢ φ → σ and GL ⊢ σ → ψ.

Proof. See e.g. [8]. ◀

Interpolation then easily implies the definability theorem of Beth.

▶ Theorem 29 (Beth’s definability theorem for GL [5]). For any φ(x) and y different from
x, if GL ⊢ φ(x) ∧φ(y) → (x ↔ y) then there is some formula ψ containing only variables in
φ(x) excluding x such that GL ⊢ φ(x) → (ψ ↔ x).

Proof. By the assumptions GL ⊢ φ(x) ∧ x → (φ(y) → y), then ψ is the formula given by
Craig’s interpolation theorem. For more details, see e.g. [7]. ◀

The proof proceeds by one proving uniqueness of fixed points in the following sense by
Bernardi.

▶ Theorem 30 (Bernardi [3]). Let φ(x) be modalized in x. Then

GL ⊢ ⊡(φ(x) ↔ x) ∧ ⊡(φ(y) ↔ y) → (x ↔ y).

Proof. See [3, 4, 7]. ◀

Then by the Beth definability theorem we can find some appropriate ψ such that GL ⊢
⊡(φ(x) ↔ x) → (ψ ↔ x). As a result, succinctness results for the fixed-point theorem of
GL can be directly applied to provide succinctness results on the size of the interpolants.

▶ Corollary 31. There exist sequences of formulae (φ0, φ1, . . .) and (ψ0, ψ1, . . .) both of size
|φi| , |ψi| ≤ O(i) and such that GL ⊢ φi → ψi for every i, while every interpolant σi of φi

and ψi is of size |σi| = 2Ω(i).

Proof. The sequences consist of the formulae φi(x) := ⊡(φ∗
i (x) ↔ x) ∧ x and ψi(y) :=

⊡(φ∗
i (y) ↔ y) → y. Then any interpolant σi of φi and ψi is necessarily a fixed point of φ∗

i (x)
which by Theorem 26 must have size at least exponential in i. ◀

CSL 2025

25:18 Exponential Lower Bounds on Definable Fixed Points

8 Conclusion

We have shown that the µ-calculus with only one occurrence of a fixed point operator is
exponentially more succinct than basic modal logic, even when equipped with a reflexive
modality and even in the setting of GL, where fixed points are already definable. This yields
a lower bound on the fixed point formulas provided by Theorems 6 and 7, hence providing
the first lower bounds for these celebrated results. This places the µ-calculus over GL or
Grz as a powerful formal system in terms of expressivity, despite the theoretical definability
of fixed points.

There is a small gap between the upper and lower bound for the fixed-point theorem for
GL, with the lower bound being 2Ω(n) and the upper 2O(n log(n)); it is unclear which of the
two is tighter. In contrast, for Grz we obtain a larger gap of 2Ω(n) vs. 2O(n3); in this case
we believe that the upper bound can be significantly improved, which we plan to address in
future work.

Our proof of succinctness of the interpolants is a rather Post Hoc expansion of our
succinctness for the fixed-point results coming directly from the bibliography. As such it is
restricted to interpolants over GL. As far as we know, a result of this form is new and hence,
a lucrative open problem would be expanding the methods of model equivalence games to
get succinctness lower bounds for interpolants over S4 or K4 frames as an example.

Finally, we note that our techniques provide lower bound on formula length but not on
the number of subformulas, or equivalently, the size of dag-like representations of formulas.
This is particularly relevant since issues such as complexity can be bounded with respect to
the latter measure, which may in fact be much smaller. Finding lower bounds on the number
of subformulas would require a non-trivial modification of the model equivalence game; we
leave the development of such games and the question of whether the µ-calculus remains
exponentially succinct over dag-like formulas as challenging avenues for future research.

References
1 M. Adler and N. Immerman. An n! lower bound on formula size. ACM Transactions on

Computational Logic, 4(3):296–314, 2003. doi:10.1145/772062.772064.
2 Gaëlle Fontaine Balder ten Cate and Tadeusz Litak. Some modal aspects of xpath. Journal

of Applied Non-Classical Logics, 20(3):139–171, 2010. doi:10.3166/JANCL.20.139-171.
3 Claudio Bernardi. The fixed-point theorem for diagonalizable algebras. Studia Logica, 34(3):239–

251, 1975. doi:10.1007/bf02125226.
4 Claudio Bernardi. The uniqueness of the fixed-point in every diagonalizable algebra. Studia

Logica, 35(4):335–343, 1976. doi:10.1007/bf02123401.
5 E.W. Beth. On padoa’s method in the theory of definition. Indagationes Mathematicae

(Proceedings), 56:330–339, 1953. doi:10.1016/S1385-7258(53)50042-3.
6 A. Blass. Infinitary combinatorics and modal logic. Journal of Symbolic Logic, 55(2):761–778,

1990. doi:10.2307/2274663.
7 G. S. Boolos. The Logic of Provability. Cambridge University Press, 1993.
8 A. Chagrov and M. Zakharyaschev. Modal Logic, volume 35 of Oxford logic guides. Oxford

University Press, 1997.
9 A. Dawar and M. Otto. Modal characterisation theorems over special classes of frames. Annals

of Pure and Applied Logic, 161:1–42, 2009. doi:10.1016/J.APAL.2009.04.002.
10 K. Eickmeyer, M. Elberfeld, and F. Harwath. Expressivity and succinctness of order-invariant

logics on depth-bounded structures. In Proceedings of MFCS 2014, pages 256–266, 2014.
11 David Fernández-Duque and Petar Iliev. Succinctness in subsystems of the spatial µ-calculus.

FLAP, 5(4):827–874, 2018. URL: https://www.collegepublications.co.uk/downloads/
ifcolog00024.pdf.

https://doi.org/10.1145/772062.772064
https://doi.org/10.3166/JANCL.20.139-171
https://doi.org/10.1007/bf02125226
https://doi.org/10.1007/bf02123401
https://doi.org/10.1016/S1385-7258(53)50042-3
https://doi.org/10.2307/2274663
https://doi.org/10.1016/J.APAL.2009.04.002
https://www.collegepublications.co.uk/downloads/ifcolog00024.pdf
https://www.collegepublications.co.uk/downloads/ifcolog00024.pdf

K. Papafilippou and D. Fernández-Duque 25:19

12 David Fernández-Duque and Konstnatinos Papafilippou. The universal tangle for spatial
reasoning. In Sarah Alice Gaggl, Maria Vanina Martinez, and Magdalena Ortiz, editors,
Logics in Artificial Intelligence - 18th European Conference, JELIA 2023, Dresden, Germany,
September 20-22, 2023, Proceedings, volume 14281 of Lecture Notes in Computer Science,
pages 814–827. Springer, 2023. doi:10.1007/978-3-031-43619-2_55.

13 S. Figueira and D. Gorín. On the size of shortest modal descriptions. Advances in Modal
Logic, 8:114–132, 2010.

14 T. French, W. van der Hoek, P. Iliev, and B. Kooi. Succinctness of epistemic languages. In
T. Walsh, editor, Proceedings of IJCAI, pages 881–886, 2011.

15 Dov M. Gabbay and Larisa Maksimova. Interpolation and Definability: Modal and Intuitionistic
Logics. Oxford University Press, May 2005. doi:10.1093/acprof:oso/9780198511748.001.
0001.

16 Zachary Gleit and Warren Goldfarb. Characters and fixed-points in provability logic. Notre
Dame Journal of Formal Logic, 31(1):26–36, 1989. doi:10.1305/ndjfl/1093635330.

17 M. Grohe and N. Schweikardt. The succinctness of first-order logic on linear orders. Logical
Methods in Computer Science, 1:1–25, 2005.

18 L. Hella and M. Vilander. The succinctness of first-order logic over modal logic via a formula
size game. In Advances in Modal Logic, volume 11, pages 401–419, 2016.

19 A. Razborov. Applications of matrix methods to the theory of lower bounds in computational
complexity. Combinatorica, 10(1):81–93, 1990. doi:10.1007/BF02122698.

20 Lisa Reidhaar-Olson. A new proof of the fixed-point theorem of probability logic. Notre Dame J.
Formal Log., 31:37–43, 1989. URL: https://api.semanticscholar.org/CorpusID:7685381,
doi:10.1305/NDJFL/1093635331.

21 Giovanni Sambin. An effective fixed-point theorem in intuitionistic diagonalizable algebras.
Studia Logica, 35(4):345–361, 1976. doi:10.1007/bf02123402.

22 Craig Smoryński. Modal logic and self-reference. In D. M. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, pages 1–53. Springer Netherlands, Dordrecht, 2004.
doi:10.1007/978-94-017-0466-3_1.

23 R. M. Solovay. Provability interpretations of modal logic. Israel Journal of Mathematics,
25:287–304, 1976.

24 A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math.,
5(2):285–309, 1955. URL: https://projecteuclid.org:443/euclid.pjm/1103044538.

25 W. van der Hoek, P. Iliev, and B. Kooi. On the relative succinctness of modal logics with
union, intersection and quantification. In Proceedings of AAMAS, pages 341–348, 2014.

26 VII Soviet Symposium on Logic. On modal “companions” of superintuitionistic logics, Kiev,
1976. Russian.

CSL 2025

https://doi.org/10.1007/978-3-031-43619-2_55
https://doi.org/10.1093/acprof:oso/9780198511748.001.0001
https://doi.org/10.1093/acprof:oso/9780198511748.001.0001
https://doi.org/10.1305/ndjfl/1093635330
https://doi.org/10.1007/BF02122698
https://api.semanticscholar.org/CorpusID:7685381
https://doi.org/10.1305/NDJFL/1093635331
https://doi.org/10.1007/bf02123402
https://doi.org/10.1007/978-94-017-0466-3_1
https://projecteuclid.org:443/euclid.pjm/1103044538

The Complexity of Deciding Characteristic
Formulae in Van Glabbeek’s Branching-Time
Spectrum
Luca Aceto # Ñ

Department of Computer Science, Reykjavik University, Iceland
Gran Sasso Science Institute, L’Aquila, Italy

Antonis Achilleos # Ñ

Department of Computer Science, Reykjavik University, Iceland

Aggeliki Chalki # Ñ

Department of Computer Science, Reykjavik University, Iceland

Anna Ingólfsdóttir # Ñ

Department of Computer Science, Reykjavik University, Iceland

Abstract
Characteristic formulae give a complete logical description of the behaviour of processes modulo
some chosen notion of behavioural semantics. They allow one to reduce equivalence or preorder
checking to model checking, and are exactly the formulae in the modal logics characterizing classic
behavioural equivalences and preorders for which model checking can be reduced to equivalence or
preorder checking.

This paper studies the complexity of determining whether a formula is characteristic for some
process in each of the logics providing modal characterizations of the simulation-based semantics in
van Glabbeek’s branching-time spectrum. Since characteristic formulae in each of those logics are
exactly the satisfiable and prime ones, this article presents complexity results for the satisfiability and
primality problems, and investigates the boundary between modal logics for which those problems
can be solved in polynomial time and those for which they become computationally hard.

Amongst other contributions, this article also studies the complexity of constructing characteristic
formulae in the modal logics characterizing simulation-based semantics, both when such formulae
are presented in explicit form and via systems of equations.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Complexity theory and logic

Keywords and phrases Characteristic formulae, prime formulae, bisimulation, simulation relations,
modal logics, complexity theory, satisfiability

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.26

Related Version Full Version: https://doi.org/10.48550/arXiv.2405.13697 [1]

Funding This work has been funded by the projects “Open Problems in the Equational Logic of
Processes (OPEL)” (grant no. 196050), “Mode(l)s of Verification and Monitorability” (MoVeMnt)
(grant no. 217987), and “Learning and Applying Probabilistic Systems” (grant no. 206574-051) of
the Icelandic Research Fund.

Acknowledgements The authors thank the anonymous reviewers for comments that led to improve-
ments in the paper. This paper is dedicated to the memory of Rance Cleaveland (1961–2024), who
used characteristic formulae to compute behavioural relations, logically and efficiently.

© Luca Aceto, Antonis Achilleos, Aggeliki Chalki, and Anna Ingólfsdóttir;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 26; pp. 26:1–26:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luca@ru.is
https://en.ru.is/the-university/faculty-and-staff/luca/
https://orcid.org/0000-0001-8554-6907
mailto:antonios@ru.is
https://sites.google.com/view/antonisachilleos
https://orcid.org/0000-0002-1314-333X
mailto:angelikic@ru.is
https://aggelikichal.github.io/
https://orcid.org/0000-0001-5378-0467
mailto:annai@ru.is
https://en.ru.is/the-university/faculty-and-staff/annai
https://orcid.org/0000-0001-8362-3075
https://doi.org/10.4230/LIPIcs.CSL.2025.26
https://doi.org/10.48550/arXiv.2405.13697
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 The Complexity of Deciding Characteristic Formulae

1 Introduction

Several notions of behavioural relations have been proposed in concurrency theory to describe
when one process is a suitable implementation of another. Many such relations have been
catalogued by van Glabbeek in his seminal linear-time/branching-time spectrum [22], together
with a variety of alternative ways of describing them including testing scenarios and axiom
systems. To our mind, modal characterizations of behavioural equivalences and preorders are
some of the most classic and pleasing results in concurrency theory – see, for instance, [25] for
the seminal Hennessy-Milner theorem and [12, 16, 17, 22] for similar results for other relations
in van Glabbeek’s spectrum and other settings. By way of example, in their archetypal modal
characterization of bisimilarity, Hennessy and Milner have shown in [25] that, under a mild
finiteness condition, two processes are bisimilar if, and only if, they satisfy the same formulae
in a multi-modal logic that is now often called Hennessy-Milner logic. Apart from its intrinsic
theoretical interest, this seminal logical characterization of bisimilarity means that, when
two processes are not bisimilar, there is always a formula that distinguishes between them.
Such a formula describes a reason why the two processes are not bisimilar, provides useful
debugging information and can be algorithmically constructed over finite processes – see,
for instance, [8, 14] and [35], where Martens and Groote show that, in general, computing
minimal distinguishing Hennessy-Milner formulae is NP-hard.

On the other hand, the Hennessy-Milner theorem seems to be less useful to show that two
processes are bisimilar, since that would involve verifying that they satisfy the same formulae,
and there are infinitely many of those. However, as shown in works such as [3, 6, 12, 23, 39], the
logics that underlie classic modal characterization theorems for equivalences and preorders
over processes allow one to express characteristic formulae. Intuitively, a characteristic
formula χ(p) for a process p gives a complete logical characterization of the behaviour of p
modulo the behavioural semantics of interest ≲, in the sense that any process is related to p
with respect to ≲ if, and only if, it satisfies χ(p).1 Since the formula χ(p) can be constructed
from p, characteristic formulae reduce the problem of checking whether a process q is related
to p by ≲ to a model checking problem, viz. whether q satisfies χ(p). See, for instance, the
classic reference [15] for applications of this approach.

Characteristic formulae, thus, allow one to reduce equivalence and preorder checking to
model checking. But what model checking problems can be reduced to equivalence/preorder
checking ones? To the best of our knowledge, that question was first studied by Boudol and
Larsen in [11] in the setting of modal refinement over modal transition systems. See [3, 4]
for other contributions in that line of research. The aforementioned articles showed that
characteristic formulae coincide with those that are satisfiable and prime. (A formula is
prime if whenever it entails a disjunction φ1 ∨ φ2, then it must entail φ1 or φ2.) Moreover,
characteristic formulae with respect to bisimilarity coincide with the formulae that are
satisfiable and complete [7]. (A modal formula is complete if, for each formula φ, it entails
either φ or its negation.) The aforementioned results give semantic characterizations of
the formulae that are characteristic within the logics that correspond to the behavioural
semantics in van Glabbeek’s spectrum. Those characterizations tell us for what logical
specifications model checking can be reduced to equivalence or preorder checking. However,

1 Formulae akin to characteristic ones first occurred in the study of equivalence of structures using first-
order formulae up to some quantifier rank. See, for example, the survey paper [40] and the textbook [20].
The existence of formulae in first-order logic with counting that characterize graphs up to isomorphism
has significantly contributed to the study of the complexity of the Graph Isomorphism problem – see,
for instance, [13, 30].

L. Aceto, A. Achilleos, A. Chalki, and A. Ingólfsdóttir 26:3

given a specification expressed as a modal formula, can one decide whether that formula
is characteristic and therefore can be model checked using algorithms for behavioural equi-
valences or preorders? And, if so, what is the complexity of checking whether a formula is
characteristic? Perhaps surprisingly, those questions were not addressed in the literature
until the recent papers [2, 7], where it is shown that, in the setting of the modal logics that
characterize bisimilarity over natural classes of Kripke structures and labelled transition
systems, the problem of checking whether a formula is characteristic for some process modulo
bisimilarity is computationally hard and, typically, has the same complexity as validity
checking, which is PSPACE-complete for Hennessy-Milner logic and EXP-complete for its
extension with fixed-point operators [26, 33] and the µ-calculus [31].

The aforementioned hardness results for the logics characterizing bisimilarity tell us that
deciding whether a formula is characteristic in bisimulation semantics is computationally
hard. But what about the less expressive logics that characterize the coarser semantics in
van Glabbeek’s spectrum? And for what logics characterizing relations in the spectrum does
computational hardness manifest itself? Finally, what is the complexity of computing a
characteristic formula for a process?

The aim of this paper is to answer the aforementioned questions for some of the simulation-
based semantics in the spectrum. In particular, we study the complexity of determining
whether a formula is characteristic modulo the simulation [36], complete simulation and ready
simulation preorders [10, 34], as well as the trace simulation and the n-nested simulation
preorders [24]. Since characteristic formulae are exactly the satisfiable and prime ones for each
behavioural relation in van Glabbeek’s spectrum [3], the above-mentioned tasks naturally
break down into studying the complexity of satisfiability and primality checking for formulae
in the fragments of Hennessy-Milner logic that characterize those preorders. By using a
reduction to the, seemingly unrelated, reachability problem in alternating graphs, as defined
by Immerman in [28, Definition 3.24], we discover that both those problems are decidable in
polynomial time for the simulation and the complete simulation preorders, as well as for the
ready simulation preorder when the set of actions has constant size. On the other hand, when
the set of actions is unbounded (that is, it is an input of the algorithmic problem at hand),
the problems of checking satisfiability and primality for formulae in the logic characterizing
the ready simulation preorder are NP-complete and coNP-complete respectively. We also
show that deciding whether a formula is characteristic in that setting is US-hard [9] (that is,
it is at least as hard as the problem of deciding whether a given Boolean formula has exactly
one satisfying truth assignment) and belongs to DP, which is the class of languages that are
the intersection of one language in NP and of one in coNP [38].2 These negative results are
in stark contrast with the positive results for the simulation and the complete simulation
preorder, and indicate that augmenting the logic characterizing the simulation preorder
with formulae that state that a process cannot perform a given action suffices to make
satisfiability and primality checking computationally hard. In passing, we also prove that, in
the presence of at least two actions, (1) for the logics characterizing the trace simulation
and 2-nested simulation preorders, satisfiability and primality checking are NP-complete and
coNP-hard respectively, and deciding whether a formula is characteristic is US-hard, (2) for
the logic that characterizes the trace simulation preorder, deciding whether a formula is
characteristic is fixed-parameter tractable [18], with the modal depth of the input formula
as the parameter, when the size of the action set is a constant, and (3) deciding whether

2 The class DP contains both NP and coNP, and is contained in the class of problems that can be solved
in polynomial time with an NP oracle.

CSL 2025

26:4 The Complexity of Deciding Characteristic Formulae

a formula is characteristic in the modal logic for the 3-nested simulation preorder [24] is
PSPACE-hard. (The proof of the last result relies on “simulating” Ladner’s reduction proving
the PSPACE-hardness of satisfiability for modal logic [32] using the limited alternations of
modal operators allowed by the logic for the 3-nested simulation preorder.)

We also study the complexity of computing characteristic formulae for finite, loop-free
processes modulo the above-mentioned simulation semantics. To do so, we consider two
different representations for formulae, namely an explicit form, where formulae are given by
strings of symbols generated by their respective grammars, and a declarative form, where
formulae are described by systems of equations. We prove that, even for the coarsest
semantics we consider, such as the simulation and complete simulation preorders, computing
the characteristic formula in explicit form for a finite, loop-free process cannot be done in
polynomial time, unless P = NP. On the other hand, the characteristic formula for a process
modulo the preorders we study, apart from the trace simulation preorder, can be computed in
polynomial time if the output is given in declarative form. Intuitively, this is due to the fact
that, unlike the explicit form, systems of equations allow for sharing of subformulae and there
are formulae for which this sharing leads to an exponentially more concise representation.
Finally, in sharp contrast to that result, we prove that, modulo the trace simulation preorder,
even if characteristic formulae are always of polynomial declaration size and polynomial
equational length, they cannot be efficiently computed unless P = NP. In passing, we remark
that all the aforementioned lower and upper bounds hold also for finite processes with loops,
provided that, as done in [6, 29, 39], we add greatest fixed points or systems of equations
interpreted as greatest fixed points to the modal logics characterizing the semantics we study
in this article.

We summarize our results in Table 2. We provide their proofs in the technical appendices
of the full version of the paper [1].

2 Preliminaries

In this paper, we model processes as finite, loop-free labelled transition systems (LTS). A
finite LTS is a triple S = (P,A,−→), where P is a finite set of states (or processes), A is
a finite, non-empty set of actions and −→ ⊆ P × A× P is a transition relation. As usual,
we use p a−→ q instead of (p, a, q) ∈ −→. For each t ∈ A∗, we write p t−→ q to mean that
there is a sequence of transitions labelled with t starting from p and ending at q. An LTS is
loop-free iff p

t−→ p holds only when t is the empty trace ε. A process q is reachable from
p if p t−→ q, for some t ∈ A∗. We define the size of an LTS S = (P,A,−→), denoted by
|S|, to be |P | + |−→|. The size of a process p ∈ P , denoted by |p|, is the cardinality of
reach(p) = {q | q is reachable from p} plus the cardinality of the set −→ restricted to reach(p).
We define the set of initials of p, denoted I(p), as the set {a ∈ A | p a−→ p′ for some p′ ∈ P}.
We write p a−→ if a ∈ I(p), p

a

̸→ if a ̸∈ I(p), and p ̸→ if I(p) = ∅. A sequence of actions
t ∈ A∗ is a trace of p if there is a q such that p t−→ q. We denote the set of traces of p by
traces(p). The depth of a finite, loop-free process p, denoted by depth(p), is the length of a
longest trace t of p.

In what follows, we shall often describe finite, loop-free processes using the fragment of
Milner’s CCS [37] given by the following grammar:

p ::= 0 | a.p | p+ p,

where a ∈ A. For each action a and terms p, p′, we write p a−→ p′ iff
(i) p = a.p′ or
(ii) p = p1 + p2, for some p1, p2, and p1

a−→ p′ or p2
a−→ p′ holds.

L. Aceto, A. Achilleos, A. Chalki, and A. Ingólfsdóttir 26:5

In this paper, we consider the following relations in van Glabbeek’s spectrum: simula-
tion, complete simulation, ready simulation, trace simulation, 2-nested simulation, 3-nested
simulation, and bisimilarity. Their definitions are given below.

▶ Definition 1 ([37, 22, 3]). We define each of the following preorders as the largest binary
relation over P that satisfies the corresponding condition.
(a) Simulation preorder (S): p ≲S q ⇔ for all p a−→ p′ there exists some q a−→ q′ such that

p′ ≲S q
′.

(b) Complete simulation (CS): p ≲CS q ⇔
(i) for all p a−→ p′ there exists some q a−→ q′ such that p′ ≲CS q

′, and
(ii) I(p) = ∅ iff I(q) = ∅.

(c) Ready simulation (RS): p ≲RS q ⇔
(i) for all p a−→ p′ there exists some q a−→ q′ such that p′ ≲RS q

′, and
(ii) I(p) = I(q).

(d) Trace simulation (TS): p ≲T S q ⇔
(i) for all p a−→ p′ there exists some q a−→ q′ such that p′ ≲T S q

′, and
(ii) traces(p) = traces(q).

(e) n-Nested simulation (nS), where n ≥ 1, is defined inductively as follows: The 1-nested
simulation preorder ≲1S is ≲S, and the n-nested simulation preorder ≲nS for n > 1 is
the largest relation such that p ≲nS q ⇔

(i) for all p a−→ p′ there exists some q a−→ q′ such that p′ ≲nS q
′, and

(ii) q ≲(n−1)S p.
(f) Bisimilarity (BS): ≲BS is the largest symmetric relation satisfying the condition defining

the simulation preorder.

It is well-known that bisimilarity is an equivalence relation and all the other relations
are preorders [22, 37]. We sometimes write p ∼ q instead of p ≲BS . Moreover, we have that
∼ ⊊ ≲3S ⊊ ≲2S ⊊ ≲T S ⊊ ≲RS ⊊ ≲CS ⊊ ≲S – see [22].

▶ Definition 2 (Kernels of the preorders). For each X ∈ {S,CS,RS, TS, 2S, 3S}, the kernel
≡X of ≲X is the equivalence relation defined thus: for every p, q ∈ P , p ≡X q iff p ≲X q and
q ≲X p.

Each relation ≲X , where X ∈ {S,CS,RS, TS, 2S, 3S,BS}, is characterized by a fragment
LX of Hennessy-Milner logic, HML, defined as follows [22, 3].

▶ Definition 3. For X ∈ {S,CS,RS, TS, 2S, 3S,BS}, LX is defined by the corresponding
grammar given below (a ∈ A):
(a) LS: φS ::= tt | ff | φS ∧ φS | φS ∨ φS | ⟨a⟩φS .

(b) LCS: φCS ::= tt | ff | φCS ∧φCS | φCS ∨φCS | ⟨a⟩φCS | 0, where 0 =
∧

a∈A[a]ff .
(c) LRS: φRS ::= tt | ff | φRS ∧ φRS | φRS ∨ φRS | ⟨a⟩φRS | [a]ff .
(d) LT S: φT S ::= tt | ff | φT S ∧ φT S | φT S ∨ φT S | ⟨a⟩φT S | ψT S, where

ψT S ::= ff | [a]ψT S.
(e) L2S: φ2S ::= tt | ff | φ2S ∧ φ2S | φ2S ∨ φ2S | ⟨a⟩φ2S | ¬φS .

(f) L3S: φ3S ::= tt | ff | φ3S ∧ φ3S | φ3S ∨ φ3S | ⟨a⟩φ3S | ¬φ2S .

(g) HML (LBS): φBS ::= tt | ff | φBS∧φBS | φBS∨φBS | ⟨a⟩φBS | [a]φBS | ¬φBS .

Note that the explicit use of negation in the grammar for LBS is unnecessary. However,
we included the negation operator explicitly so that LBS extends syntactically each of the
other modal logics presented in Definition 3.

CSL 2025

26:6 The Complexity of Deciding Characteristic Formulae

Given a formula φ ∈ LBS , the modal depth of φ, denoted by md(φ), is the maximum
nesting of modal operators in φ. (See [1, Appendix A] for the formal definition.)

Truth in an LTS S = (P,A,−→) is defined via the satisfaction relation |= as follows:

p |= tt and p ̸|= ff ;
p |= ¬φ iff p ̸|= φ;
p |= φ ∧ ψ iff both p |= φ and p |= ψ;
p |= φ ∨ ψ iff p |= φ or p |= ψ;

p |= ⟨a⟩φ iff there is some p a−→ q such that q |= φ;

p |= [a]φ iff for all p a−→ q it holds that q |= φ.

If p |= φ, we say that φ is true, or satisfied, in p. If φ is satisfied in every process in every
LTS, we say that φ is valid. Formula φ1 entails φ2, denoted by φ1 |= φ2, if every process
that satisfies φ1 also satisfies φ2. Moreover, φ1 and φ2 are logically equivalent, denoted
by φ1 ≡ φ2, if φ1 |= φ2 and φ2 |= φ1. A formula φ is satisfiable if there is a process that
satisfies φ. Finally, Sub(φ) denotes the set of subformulae of formula φ.

For L ⊆ LBS , we define the dual fragment of L to be L = {φ | ¬φ ∈ L}, where ¬tt = ff ,
¬ff = tt, ¬(φ ∧ ψ) = ¬φ ∨ ¬ψ, ¬(φ ∨ ψ) = ¬φ ∧ ¬ψ, ¬[a]φ = ⟨a⟩¬φ, ¬⟨a⟩φ = [a]¬φ, and
¬¬φ = φ. It is not hard to see that p |= ¬φ iff p ̸|= φ, for every process p. Given a process p,
we define L(p) = {φ ∈ L | p |= φ}. A simplification of the Hennessy-Milner theorem gives a
modal characterization of bisimilarity over finite processes. An analogous result is true for
every preorder examined in this paper.

▶ Theorem 4 (Hennessy-Milner theorem [25]). For all processes p, q in a finite LTS, p ∼ q

iff LBS(p) = LBS(q).

▶ Proposition 5 ([22, 3]). Let X ∈ {S,CS,RS, TS, 2S, 3S}. Then p ≲X q iff LX(p) ⊆ LX(q),
for all p, q ∈ P .

▶ Remark 6. Neither ff nor disjunction are needed in several of the modal characterizations
presented in the above result. The reason for adding those constructs to all the logics is
that doing so makes our subsequent results more general and uniform. For example, having
ff and disjunction in all logics allows us to provide algorithms that determine whether a
formula in a logic L is prime with respect to a sublogic.

▶ Definition 7 ([11, 4]). Let L ⊆ LBS. A formula φ ∈ LBS is prime in L if for all φ1, φ2 ∈ L,
φ |= φ1 ∨ φ2 implies φ |= φ1 or φ |= φ2.

When the logic L is clear from the context, we say that φ is prime. Note that every
unsatisfiable formula is trivially prime in L, for every L.

▶ Example 8. The formula ⟨a⟩tt is prime in LS . Indeed, let φ1, φ2 ∈ LS and assume that
⟨a⟩tt |= φ1 ∨ φ2. Since a.0 |= ⟨a⟩tt, without loss of generality, we have that a.0 |= φ1. We
claim that ⟨a⟩tt |= φ1. To see this, let p be some process such that p |= ⟨a⟩tt – that is,
a process such that p a−→ p′ for some p′. It is easy to see that a.0 ≲S p. Since a.0 |= φ1,
Proposition 5 yields that p |= φ1, proving our claim and the primality of ⟨a⟩tt. On the other
hand, the formula ⟨a⟩tt ∨ ⟨b⟩tt is not prime in LS . Indeed, ⟨a⟩tt ∨ ⟨b⟩tt |= ⟨a⟩tt ∨ ⟨b⟩tt, but
neither ⟨a⟩tt ∨ ⟨b⟩tt |= ⟨a⟩tt nor ⟨a⟩tt ∨ ⟨b⟩tt |= ⟨b⟩tt hold.

The definition of a characteristic formula within logic L is given next.

L. Aceto, A. Achilleos, A. Chalki, and A. Ingólfsdóttir 26:7

▶ Definition 9 ([5, 23, 39]). Let L ⊆ LBS. A formula φ ∈ L is characteristic for p ∈ P

within L iff, for all q ∈ P , it holds that q |= φ ⇔ L(p) ⊆ L(q). We denote by χ(p) the unique
characteristic formula for p with respect to logical equivalence.

▶ Remark 10. Let X ∈ {S,CS,RS, TS, 2S, 3S,BS}. In light of Theorem 4 and Proposition 5,
a formula φ ∈ LX is characteristic for p within LX iff, for all q ∈ P , it holds that q |= φ ⇔
p ≲X q. This property is often used as an alternative definition of characteristic formula for
process p modulo ≲X . In what follows, we shall employ the two definitions interchangeably.

In [3, Table 1 and Theorem 5], Aceto, Della Monica, Fabregas, and Ingólfsdóttir presented
characteristic formulae for each of the semantics we consider in this paper, and showed that
characteristic formulae are exactly the satisfiable and prime ones.

▶ Proposition 11 ([3]). For every X ∈ {S,CS,RS, TS, 2S}, φ ∈ LX is characteristic for
some process within LX iff φ is satisfiable and prime in LX .

▶ Remark 12. Proposition 11 is the only result we use from [3] and we employ it as a “black
box”. The (non-trivial) methods used in the proof of that result given in that reference do
not play any role in our technical developments.

We note, in passing, that the article [3] does not deal explicitly with 3S. However, its
results apply to all the n-nested simulation preorders.

We can also consider characteristic formulae modulo equivalence relations as follows.

▶ Definition 13. Let X ∈ {S,CS,RS, TS, 2S, 3S,BS}. A formula φ ∈ LX is characteristic
for p ∈ P modulo ≡X iff for all q ∈ P , it holds that q |= φ ⇔ LX(p) = LX(q).3

When studying the complexity of finding a characteristic formula for some process p with
respect to the behavioural relations we have introduced above, we will need some way of
measuring the size of the resulting formula as a function of |p|. A formula in LX , where
X ∈ {S,CS,RS, TS, 2S, 3S,BS}, can be given in explicit form as in Definition 3 or by means
of a system of equations. In the latter case, we say that the formula is given in declarative
form. For example, formula ϕ = ⟨a⟩(⟨a⟩tt ∧ ⟨b⟩tt) ∧ ⟨b⟩(⟨a⟩tt ∧ ⟨b⟩tt) can be represented by
the equations ϕ = ⟨a⟩ϕ1 ∧ ⟨b⟩ϕ1 and ϕ1 = ⟨a⟩tt ∧ ⟨b⟩tt. We define:

the size of formula φ, denoted by |φ|, to be the number of symbols that appear in the
explicit form of φ,
the declaration size of formula φ, denoted by decl(φ), to be the number of equations that
are used in the declarative form of φ, and
the equational length of formula φ, denoted by eqlen(φ), to be the maximum number of
symbols that appear in an equation in the declarative form of φ.

For example, for the aforementioned formula ϕ, we have that |ϕ| = 13, decl(ϕ) = 2, and
eqlen(ϕ) = 5. Note that decl(φ) ≤ |Sub(φ)| ≤ |φ|, for each φ.

3 The complexity of deciding characteristic formulae modulo preorders

In this section, we address the complexity of deciding whether formulae in LS , LCS , LRS ,
LT S , L2S , and L3S are characteristic. Since characteristic formulae in those logics are
exactly the satisfiable and prime ones [3, Theorem 5], we study the complexity of checking
satisfiability and primality separately in Subsections 3.1 and 3.2.

3 The above definition can also be phrased as follows: A formula φ ∈ LX is characteristic for p modulo
≡X iff, for all q ∈ P , it holds that q |= φ ⇔ p ≡X q. This version of the definition is used, in the setting
of bisimilarity, in references such as [2, 29].

CSL 2025

26:8 The Complexity of Deciding Characteristic Formulae

3.1 The complexity of satisfiability
To address the complexity of the satisfiability problem in LS , LCS , or LRS , we associate
a set I(φ) ⊆ 2A to every formula φ ∈ LRS . Intuitively, I(φ) describes all possible sets of
initial actions that a process p can have, when p |= φ.

▶ Definition 14. Let φ ∈ LRS. We define I(φ) inductively as follows:
(a) I(tt) = 2A,
(b) I(ff) = ∅,
(c) I([a]ff) = {X | X ⊆ A and a ̸∈ X},

(d) I(⟨a⟩φ) =
{

∅, if I(φ) = ∅,
{X | X ⊆ A and a ∈ X}, otherwise

(e) I(φ1 ∨ φ2) = I(φ1) ∪ I(φ2),
(f) I(φ1 ∧ φ2) = I(φ1) ∩ I(φ2).
Note that I(0) = {∅}.

▶ Lemma 15. For every φ ∈ LRS, the following statements hold:
(a) for every S ⊆ A, S ∈ I(φ) iff there is a process p such that I(p) = S and p |= φ.
(b) φ is unsatisfiable iff I(φ) = ∅.

When the number of actions is constant, I(φ) can be computed in linear time for every
φ ∈ LRS . For LCS , we need even less information; indeed, it is sufficient to define I(φ) so
that it encodes whether φ is unsatisfiable, or is satisfied only in deadlocked states (that
is, states with an empty set of initial actions), or is satisfied only in processes that are
not deadlocked, or is satisfied both in some deadlocked and non-deadlocked states. This
information can be computed in linear time for every φ ∈ LCS , regardless of the size of the
action set.

▶ Corollary 16.
(a) Satisfiability of formulae in LCS and LS is decidable in linear time.
(b) Let |A| = k, where k ≥ 1 is a constant. Satisfiability of formulae in LRS is decidable in

linear time.

On the other hand, if we can use an unbounded number of actions, the duality of ⟨a⟩
and [a] can be employed to define a polynomial-time reduction from Sat, the satisfiability
problem for propositional logic, to satisfiability in LRS . Moreover, if we are allowed to
nest [a] modalities (a ∈ A) and have at least two actions, we can encode n propositional
literals using formulae of log n size and reduce Sat to satisfiability in LT S in polynomial
time. Finally, satisfiability in L2S is in NP, which can be shown by an appropriate tableau
construction.

▶ Proposition 17. Let either X = RS and |A| be unbounded or X ∈ {TS, 2S} and |A| > 1.
Satisfiability of formulae in LX is NP-complete.

Deciding satisfiability of formulae in L2S when |A| > 1, turns out to be PSPACE-complete.
(A proof is provided in [1, Appendix B.6].) This means that satisfiability of L3S is also
PSPACE-complete, since L2S ⊆ L3S .

▶ Proposition 18. Let |A| > 1. Satisfiability of formulae in L3S is PSPACE-complete.

3.2 The complexity of primality
We now study the complexity of checking whether a formula is prime in the logics that
characterize some of the relations in Definition 1.

L. Aceto, A. Achilleos, A. Chalki, and A. Ingólfsdóttir 26:9

Table 1 Rules for the simulation preorder. If |∀ is displayed in the conclusion of a rule, then the
rule is called universal. Otherwise, it is called existential.

φ1 ∨ φ2, φ ⇒ ψ
(L∨1)

φ1, φ ⇒ ψ |∀ φ2, φ ⇒ ψ

φ1 ∧ φ2, φ ⇒ ⟨a⟩ψ
(L∧1)

φ1, φ ⇒ ⟨a⟩ψ |∃ φ2, φ ⇒ ⟨a⟩ψ

φ1, φ2 ⇒ ψ1 ∧ ψ2 (R∧)
φ1, φ2 ⇒ ψ1 |∀ φ1, φ2 ⇒ ψ2

⟨a⟩φ1, ⟨a⟩φ2 ⇒ ⟨a⟩ψ
(⋄)

φ1, φ2 ⇒ ψ

φ,φ1 ∨ φ2 ⇒ ψ
(L∨2)

φ1, φ ⇒ ψ |∀ φ2, φ ⇒ ψ

φ,φ1 ∧ φ2 ⇒ ⟨a⟩ψ
(L∧2)

φ1, φ ⇒ ⟨a⟩ψ |∃ φ2, φ ⇒ ⟨a⟩ψ

φ1, φ2 ⇒ ψ1 ∨ ψ2 (R∨)
φ1, φ2 ⇒ ψ1 |∃ φ1, φ2 ⇒ ψ2

φ1, φ2 ⇒ tt
(tt)

True

Primality in LS. Unsatisfiable formulae are trivially prime. Note also that in the case that
|A| = 1, all satisfiable formulae in LS are prime. To address the problem for any action set,
for every satisfiable formula φ ∈ LS we can efficiently compute a logically equivalent formula
φ′ given by the grammar φ ::= tt | ⟨a⟩φ | φ ∧ φ | φ ∨ φ. We examine the complexity of
deciding primality of such formulae.

▶ Proposition 19. Let φ ∈ LS such that ff ̸∈ Sub(φ). Deciding whether φ is prime is in P.

Proof. We describe algorithm PrimeS that, on input φ, decides primality of φ. PrimeS
constructs a rooted directed acyclic graph, denoted by Gφ, from the formula φ as follows.
Every vertex of the graph is either of the form φ1, φ2 ⇒ ψ – where φ1, φ2 and ψ are
sub-formulae of φ – , or True. The algorithm starts from vertex x = (φ,φ ⇒ φ) and applies
some rule in Table 1 to x in top-down fashion to generate one or two new vertices that are
given at the bottom of the rule. These vertices are the children of x and the vertex x is
labelled with either ∃ or ∀, depending on which one is displayed at the bottom of the applied
rule. If x has only one child, PrimeS labels it with ∃. The algorithm recursively continues
this procedure on the children of x. If no rule can be applied on a vertex, then this vertex
has no outgoing edges. For the sake of clarity and consistency, we assume that right rules,
i.e. (R∨) and (R∧), are applied before the left ones, i.e. (L∨i) and (L∧i), i = 1, 2, by the
algorithm. The graph generated in this way is an alternating graph, as defined by Immerman
in [28, Definition 3.24] (see also [1, Appendix A]). In Gφ, the source vertex s is φ,φ ⇒ φ,
and the target vertex t is True. Algorithm PrimeS solves the problem Reacha on input
Gφ, where Reacha is Reachability on alternating graphs and is defined in [28, pp. 53–54].
It accepts φ iff Reacha accepts Gφ. Intuitively, the source vertex (φ,φ ⇒ φ) can reach the
target vertex True in the alternating graph Gφ exactly when for each pair of disjuncts ψ1
and ψ2 in the disjunctive normal form of φ there is a disjunct ψ3 in the disjunctive normal
form of φ that is entailed by both ψ1 and ψ2. It turns out that this is a necessary and
sufficient condition for the primality of φ. For example, consider the formula ⟨a⟩tt ∨ ⟨b⟩tt.
There is no disjunct of ⟨a⟩tt ∨ ⟨b⟩tt that is entailed by both ⟨a⟩tt and ⟨b⟩tt. This is because
that formula is not prime, as we observed in Example 8. On the other hand, the formula
⟨a⟩tt ∨ ⟨a⟩⟨b⟩tt is prime since each of its disjuncts entails ⟨a⟩tt. The full technical details
are included in [1, Appendix C.1]. Note that graph Gφ is of polynomial size and there is a
linear-time algorithm solving Reacha [28]. ◀

CSL 2025

26:10 The Complexity of Deciding Characteristic Formulae

Primality in LCS. Note that, in the case of LCS , the rules in Table 1 do not work any
more because, unlike LS , the logic LCS can express some “negative information” about the
behaviour of processes. For example, let A = {a} and φ = ⟨a⟩tt. Then, PrimeS accepts
φ, even though φ is not prime in LCS . Indeed, φ |= ⟨a⟩⟨a⟩tt ∨ ⟨a⟩0, but φ ̸|= ⟨a⟩⟨a⟩tt
and φ ̸|= ⟨a⟩0. However, we can overcome this problem as described in the proof sketch of
Proposition 20 below.

▶ Proposition 20. Let φ ∈ LCS be a formula such that every ψ ∈ Sub(φ) is satisfiable.
Deciding whether φ is prime is in P.

Proof. Consider the algorithm that first computes the formula φ⋄ by applying rule ⟨a⟩tt →⋄
tt, and rules tt ∨ ψ →tt tt and tt ∧ ψ →tt ψ modulo commutativity on φ. It holds that φ is
prime iff φ⋄ is prime and φ⋄ |= φ. Next, the algorithm decides primality of φ⋄ by solving
reachability on a graph constructed as in the case of simulation using the rules in Table 1,
where rule (tt) is replaced by rule (0), whose premise is 0,0 ⇒ 0 and whose conclusion is
True. To verify φ⋄ |= φ, the algorithm computes a process p for which φ⋄ is characteristic
within LCS and checks whether p |= φ. In fact, the algorithm has also a preprocessing phase
during which it applies a set of rules on φ and obtains an equivalent formula with several
desirable properties. See [1, Appendix C.2] for full details. ◀

Primality in LRS. The presence of formulae of the form [a]ff in LRS means that a prime
formula φ ∈ LRS has at least to describe which actions are necessary or forbidden for
any process that satisfies φ. For example, let A = {a, b}. Then, ⟨a⟩0 is not prime, since
⟨a⟩0 |= (⟨a⟩0 ∧ [b]ff) ∨ (⟨a⟩0 ∧ ⟨b⟩tt), and ⟨a⟩0 entails neither ⟨a⟩0 ∧ [b]ff nor ⟨a⟩0 ∧ ⟨b⟩tt.
Intuitively, we call a formula φ saturated if φ describes exactly which actions label the
outgoing edges of any process p such that p |= φ. Formally, φ is saturated iff I(φ) is a
singleton.

If the action set is bounded by a constant, given φ, we can efficiently construct a formula
φs such that (1) φs is saturated and for every ⟨a⟩φ′ ∈ Sub(φs), φ′ is saturated, (2) φ is
prime iff φs is prime and φs |= φ, and (3) primality of φs can be efficiently reduced to
Reacha(Gφs).

▶ Proposition 21. Let |A| = k, where k ≥ 1 is a constant, and φ ∈ LRS be such that if
ψ ∈ Sub(φ) is unsatisfiable, then ψ = ff and ψ occurs in the scope of some [a]. Deciding
whether φ is prime is in P.

As the following result indicates, primality checking for formulae in LRS becomes compu-
tationally hard when |A| is not a constant.

▶ Proposition 22. Let |A| be unbounded. Deciding primality of formulae in LRS is coNP-
complete.

Proof. We give a polynomial-time reduction from Sat to deciding whether a formula in
LRS is not prime. Let φ be a propositional formula over x0, . . . , xn−1. We set φ′ =
(φ∧ ¬xn) ∨ (xn ∧

∧n−1
i=1 ¬xi) and φ′′ to be φ′ where xi is substituted with ⟨ai⟩0 and ¬xi with

[ai]ff , where A = {a0, . . . , an}. As φ′′ is satisfied in an.0, it is a satisfiable formula, and so
φ′′ is prime in LRS iff φ′′ is characteristic within LRS . We show that φ is satisfiable iff φ′′ is
not characteristic within LRS . Let φ be satisfiable and let s denote a satisfying assignment
of φ. Consider p1, p2 ∈ P such that:

p1
ai−→ 0 iff s(xi) = true, for 0 ≤ i ≤ n− 1, and p1

an

̸→, and
p2

an−→ 0 and p2
a

̸→ for every a ∈ A \ {an}.

L. Aceto, A. Achilleos, A. Chalki, and A. Ingólfsdóttir 26:11

It holds that pi |= φ′′, i = 1, 2, p1 ̸≤RS p2, and p2 ̸≤RS p1. Suppose that there is a process q,
such that φ′′ is characteristic for q within LRS . If q an−→, then q ̸≤RS p1. On the other hand,
if q

an

̸→, then q ̸≤RS p2. So, both cases lead to a contradiction, which means that φ′′ is not
characteristic within LRS . For the converse implication, assume that φ is unsatisfiable. This
implies that there is no process satisfying the first disjunct of φ′′. Thus, φ′′ is characteristic
for p2, described above, within LRS .

Proving the matching upper bound is non-trivial. There is a coNP algorithm that uses
properties of prime formulae and rules of Table 1, carefully adjusted to the case of ready
simulation. We describe the algorithm and prove its correctness in [1, Appendix C.3.2]. ◀

Primality in LT S. If we have more than one action, a propositional literal can be encoded
by using the restricted nesting of modal operators that is allowed by the grammar for LT S .
This observation is the crux of the proof of the following result.

▶ Proposition 23. Let |A| > 1. Deciding primality of formulae in LT S is coNP-hard.

Proof. Let A = {0, 1}. The proof follows the steps of the proof of Proposition 22. The initial
and basic idea is that given an instance φ of Sat over x1, . . . , xn, every xi is substituted
with [bi1]ff ∧ ⟨bi1⟩([bi2]ff ∧ ⟨bi2⟩(. . . ([bik]ff ∧ ⟨bik⟩0) . . .)) and ¬xi with [bi1][bi2] . . . [bik]ff ,
where bi1 . . . bik is the binary representation of i and b = 0, if b = 1, and b = 1, if b = 0. For
more technical details, see [1, Appendix C.4.1]. ◀

In contrast to the case for LRS , bounding the size of the action set is not sufficient for
deciding primality of formulae in LT S in polynomial time. However, we show that both
satisfiability and primality become efficiently solvable if we bound both |A| and the modal
depth of the input formula.

▶ Proposition 24. Let |A| = k and φ ∈ LT S with md(φ) = d, where k, d ≥ 1 are constants.
Then, there is an algorithm that decides whether φ is satisfiable and prime in linear time.

Proof. It is necessary and sufficient to check that there is a process p with depth(p) ≤ d

such that (1) p |= φ and (2) for every q with depth(q) ≤ d+ 1, if q |= φ then p ≲T S q. Since
k and d are considered to be constants, there is an algorithm that does so and requires linear
time in |φ|. In particular, the algorithm runs in O(22kd+1 · kd+1 · |φ|). ◀

To classify the problem of deciding whether formulae in LT S are characteristic when |A| is
bounded, let us briefly introduce fixed-parameter tractable problems – see, for instance, [19, 21]
for textbook accounts of this topic. Let L ⊆ Σ∗ × Σ∗ be a parameterized problem. We
denote by Ly the associated fixed-parameter problem Ly = {x | (x, y) ∈ L}, where y is the
parameter. Then, L ∈ FPT (or L is fixed-parameter tractable) if there are a constant α
and an algorithm to determine if (x, y) is in L in time f(|y|) · |x|α, where f is a computable
function [18].

▶ Corollary 25. Let |A| = k, where k ≥ 1 is a constant. The problems of deciding whether
formulae in LT S are satisfiable, prime, and characteristic are in FPT, with the modal depth
of the input formula as the parameter.

We note that the coNP-hardness argument from Proposition 23 applies also to logics that
include LT S . Since LT S ⊆ L2S , the coNP-hardness of deciding primality of formulae in LT S

with |A| > 1 implies the same lower bound for deciding primality of formulae in L2S when
|A| > 1. Next, we show that in L3S with |A| > 1 the problem becomes PSPACE-hard.

CSL 2025

26:12 The Complexity of Deciding Characteristic Formulae

Primality in L3S. Let |A| > 1. PSPACE-hardness of L3S-satisfiability implies PSPACE-
hardness of L3S-validity. Along the lines of the proof of [2, Theorem 26], we prove the
following result.

▶ Proposition 26. Let |A| > 1. Deciding prime formulae within L3S is PSPACE-hard.

▶ Remark 27. Note that primality within LBS coincides with primality modulo ∼. In [2],
primality modulo ∼ is called completeness and it is shown to be decidable in PSPACE.
However, the algorithm used in [2] does not immediately imply that primality within L3S is
in PSPACE.

Interestingly, PSPACE-hardness of L2S-validity implies the following theorem.

▶ Theorem 28. Let X ∈ {CS,RS, TS, 2S, 3S} and |A| > 1. The problem of deciding whether
a formula in L2S is prime in LX is PSPACE-hard.

Proof. We reduce L2S-validity to this problem. Let φ ∈ L2S . The reduction will return a
formula φ′, such that φ is L2S-valid if and only if φ′ is prime in LX . If 0 ̸|= φ, then let
φ′ = tt; in this case, φ is not valid and tt is not prime in LX . Otherwise, let φ′ = 0 ∨ ¬φ.
If φ is valid, then φ′ ≡ 0 and therefore φ′ is prime in LX . On the other hand, if φ is
not valid, then there is some process p |= ¬φ. From 0 |= φ, it holds that p a−→. Then,
φ′ |= 0 ∨

∨
a∈A⟨a⟩tt, but φ′ ̸|= 0 and φ′ ̸|=

∨
a∈A⟨a⟩tt. Since 0 ∨

∨
a∈A⟨a⟩tt ∈ LCS , φ′ is

not prime in LX , where X ∈ {CS,RS, TS, 2S, 3S}. ◀

Theorem 28 shows that when deciding primality in LX , if we allow the input to be in a
logic L that is more expressive than LX , the computational complexity of the problem can
increase. It is then reasonable to constrain the input of the problem to be in LX in order to
obtain tractable problems as in the case of LS and LCS .

Before we give our main result summarizing the complexity of deciding characteristic
formulae, we introduce two classes that play an important role in pinpointing the complexity
of deciding characteristic formulae within LRS , LT S , and L2S . The first class is DP =
{L1 ∩ L2 | L1 ∈ NP and L2 ∈ coNP} [38] and the second one is US [9], which is defined
thus: A language L ∈ US iff there is a non-deterministic Turing machine T such that, for
every instance x of L, x ∈ L iff T has exactly one accepting path. The problem UniqueSat,
viz. the problem of deciding whether a given Boolean formula has exactly one satisfying
truth assignment, is US-complete and US ⊆ DP [9].

▶ Theorem 29.
(a) Deciding characteristic formulae within LS, LCS, or LRS with a bounded action set is

in P.
(b) Deciding characteristic formulae within LRS with an unbounded action set is US-hard

and belongs to DP.
(c) Deciding characteristic formulae within LT S or L2S is US-hard.
(d) Deciding characteristic formulae within L3S is PSPACE-hard.

4 Finding characteristic formulae: The gap between trace simulation
and the other preorders

Let X ∈ {S,CS} or X = RS and |A| is bounded by a constant. The complexity of finding
characteristic formulae within LX depends on the representation of the output. If the
characteristic formula has to be given in explicit form, then the following result holds.

L. Aceto, A. Achilleos, A. Chalki, and A. Ingólfsdóttir 26:13

Table 2 The complexity of deciding satisfiability and primality, and of finding characteristic
formulae for different logics. Findingdecl (resp. Findingexpl) denotes the problem of finding the
characteristic formula for a given finite loop-free process, when the output is given in declarative
(resp. explicit) form. Superscripts = k, > k, and > 1 mean that the action set is bounded by
a constant, unbounded, and has more than one action, respectively. FP is the class of functions
computable in polynomial time. All the results shown in white cells have been proven in this paper,
whereas results in light gray are from [2].

LS LCS L=k
RS L>k

RS L>1
T S L>1

2S L>1
3S LBS

Satisfiability P P P NP-
comp.

NP-
comp.

NP-
comp.

PSPACE-
comp.

PSPACE-
comp.

Primality P P P coNP-
comp.

coNP-
hard

coNP-
hard

PSPACE-
hard

PSPACE-
comp.

Findingdecl FP FP FP FP NP-
hard

FP FP FP

Findingexpl NP-hard

▶ Proposition 30. Let X ∈ {S,CS} or X = RS and |A| is bounded by a constant. If
finding the characteristic formula within LX for a given finite loop-free process can be done
in polynomial time when the output is given in explicit form, then P = NP.

Proof. If the assumption of the proposition is true, the results of this paper allow us to decide
trace equivalence of two finite loop-free processes in polynomial time. (For details, the reader
can see [1, Appendix E.1].) Since trace equivalence for such processes is coNP-complete [27,
Theorem 2.7(1)], this implies that P = NP. ◀

However, if output formulae are given in declarative form, then finding characteristic
formulae within LX , where X ∈ {nS,CS,RS,BS}, n ≥ 1, can be done in polynomial time.

▶ Proposition 31. For every X ∈ {nS,CS,RS,BS}, where n ≥ 1, there is a polynomial-time
algorithm that, given a finite loop-free process p, outputs a formula in declarative form that
is characteristic for p within LX .

Proof. The proof relies on inductive definitions of characteristic formulae within LX , where
X ∈ {S,CS,RS, 2S,BS}, given in [29, 6], and within LnS , n ≥ 3, given in [1, Appendix
E.1]. These definitions guarantee that there are polynomial-time recursive procedures which
construct characteristic formulae within LX . We prove the proposition for X = 2S below.

Given a finite loop-free process p, the characteristic formula for p within L2S is defined
as follows: χ2S(p) = χ̄S(p) ∧

∧
a∈A

∧
p

a−→p′

⟨a⟩χ2S(p′), where χ̄S(p) =
∧

a∈A

[a]
∨

p
a−→p′

χ̄S(p′).

Consider the algorithm that recursively constructs χ2S(p). The algorithm has to construct
χ2S(p′) and χ̄S(p′) for every p′ ∈ reach(p), yielding a linear number of equations. Moreover,
for every p′ ∈ reach(p), χ̄S(p′) is of linear size in |p′|. If p′ = 0, then χ̄S(p′) =

∧
a∈A[a]ff .

Otherwise, |χ̄S(p′)| = O(|{p′′ | p′ a−→ p′′}| + |A|), where |A| is added because for every a ∈ A

such that p′
a

̸→, [a]ff is a conjunct of χ̄S(p′). Note that for every p′′, if χ̄S(p′′) occurs in
χ̄S(p′), it is considered to add 1 to the size of χ̄S(p′). Therefore, |χ̄S(p′)| is of linear size in
|p′|. Using a similar argument, we can show that χ2S(p′) is of linear size. Thus, the algorithm
constructs a linear number of equations, each of which is of linear size in |p|. The proofs for
X ∈ {nS,CS,RS,BS}, n ̸= 2, are analogous. ◀

CSL 2025

26:14 The Complexity of Deciding Characteristic Formulae

▶ Remark 32. Note that the recursive procedures given in [29, 6] and [1, Appendix E.1]
provide characteristic formulae for finite processes with loops provided that we enrich the
syntax of our logics by adding greatest fixed points. See, for example, [6]. Consequently,
constructing characteristic formulae for finite processes within LX , X ∈ {nS,CS,RS,BS},
n ≥ 1, can be done in polynomial time.

We now present the complexity gap between finding characteristic formulae for preorders
CS,RS,BS, and nS, n ≥ 1, and the same search problem for preorder TS. In the former
case, there are characteristic formulae with both declaration size and equational length that
are polynomial in the size of the processes they characterize, and they can be efficiently
computed. On the contrary, for TS, even if characteristic formulae are always of polynomial
declaration size and polynomial equational length, they cannot be efficiently computed unless
P = NP.

▶ Proposition 33. Assume that for every finite loop-free process p, there is a characteristic
formula within LT S for p, denoted by χ(p), such that both decl(χ(p)) and eqlen(χ(p)) are
in O(|p|k) for some k ∈ N. Given a finite loop-free process p, if χ(p) can be computed in
polynomial time, then P = NP.

Next, we prove that we do not expect that a finite loop-free process p has always a short
characteristic formula within LT S when this is combined with a second condition. To show
that statement, we need the following lemma.

▶ Lemma 34. For every finite p and q, traces(p) = traces(q) iff p ≲T S p+q and q ≲T S p+q.

Proof. If traces(p) = traces(q), then p ≲T S p+ q. Indeed, for every p
a−→ p′, it holds that

p + q
a−→ p′ and, trivially, p′ ≲T S p′. Moreover, traces(p + q) = traces(p) ∪ traces(q) =

traces(p). Symmetrically, q ≲T S p + q. Conversely, if p ≲T S p + q and q ≲T S p + q, then
traces(p+ q) = traces(p) = traces(q), and we are done. ◀

▶ Proposition 35. Assume that the following two conditions hold:
1. For every finite loop-free process p, there is a characteristic formula within LT S for p,

denoted by χ(p), such that both decl(χ(p)) and eqlen(χ(p)) are in O(|p|k) for some k ∈ N.
2. Given a finite loop-free process p and a formula φ in declarative form, deciding whether φ

is characteristic for p within LT S is in NP.
Then NP = coNP.

Proof. We describe an NP algorithm A that decides non-membership in Sat and makes use
of conditions 1 and 2 of the proposition. Let ϕ be an input CNF formula to Sat. Algorithm
A computes the DNF formula ¬ϕ for which it needs to decide DNF-Tautology. Then, A
reduces DNF-Tautology to deciding trace equivalence of processes p0 and q constructed
as described in the proof of [27, Theorem 2.7(1)]. A can decide if traces(p0) = traces(q)
by checking p0 ≲T S p0 + q and q ≲T S p0 + q because of Lemma 34. Finally, A reduces
p0 ≲T S p0 +q (resp. q ≲T S p0 +q) to model checking: it needs to check whether p0 +q |= χ(p0)
(resp. p0 + q |= χ(q)). To this end, A guesses two formulae φp0 and φq in declarative form of
polynomial declaration size and equational length, and two witnesses that verify that φp0

and φq are characteristic within LT S for p0 and q, respectively. This can be done due to
conditions 1 and 2. A rejects the input iff both p0 +q |= χ(p0) and p0 +q |= χ(q) are true. ◀

L. Aceto, A. Achilleos, A. Chalki, and A. Ingólfsdóttir 26:15

5 A note on deciding characteristic formulae modulo equivalence
relations

So far, we have studied the complexity of algorithmic problems related to characteristic for-
mulae in the modal logics that characterize the simulation-based preorders in van Glabbeek’s
spectrum. As shown in [3], those logics are powerful enough to describe characteristic formulae
for each finite, loop-free process up to the preorder they characterize. It is therefore natural
to wonder whether they can also express characteristic formulae modulo the kernels of those
preorders. The following result indicates that the logics LX , where X ∈ {S,CS,RS}, have
very weak expressive power when it comes to defining characteristic formulae modulo ≡X .

▶ Proposition 36. No formula in LS is characteristic for some process p with respect to ≡S.
For X ∈ {CS,RS}, a formula φ is characteristic for some process p with respect to ≡X iff it
is logically equivalent to

∧
a∈A[a]ff .

Proof. Assume, towards contradiction, that there is a formula φS
c in LS that is characteristic

for some process p with respect to ≡S . Let ℓ be the depth of p and a ∈ A. Define process
q = p + aℓ+10 – that is, q is a copy of p with an additional path that has exactly ℓ + 1
a-transitions. It is easy to see that p ≲S q, but q ̸≲S p. Since p |= φS

c , it holds that q |= φS
c .

However, q ̸≡S p, which contradicts our assumption that φS
c is characteristic for p with

respect to ≡S . For X ∈ {CS,RS}, note that a formula φ is logically equivalent to
∧

a∈A[a]ff
iff it is satisfied only by processes without outgoing transitions, and so it is characteristic for
any such process modulo ≡X . To prove that no formula is characteristic for some process p
with positive depth modulo ≡CS or ≡RS , a similar argument to the one for ≡S can be used.
For ≡RS , the action a should be chosen such that p a−→ p′ for some p′. ◀

For TS and 2S, there are non-trivial characteristic formulae modulo ≡T S and ≡2S ,
respectively. For example, if A = {a, b}, the formula φa = ⟨a⟩([a]ff ∧ [b]ff) ∧ [b]ff ∧ [a][a]ff ∧
[a][b]ff is satisfied only by processes that are equivalent, modulo those equivalences, to process
pa = a.0 that has a single transition labelled with a. Thus, φa is characteristic for pa modulo
both ≡T S and ≡2S . We can use the following theorem as a tool to prove hardness of deciding
characteristic formulae modulo some equivalence relation. Theorem 37 below is an extension
of [2, Theorem 26], so that it holds for every X such that a characteristic formula modulo
≡X exists, namely X ∈ {CS,RS, TS, 2S, 3S,BS}.

▶ Theorem 37. Let X ∈ {CS,RS, TS, 2S, 3S,BS}. Validity in LX reduces in polynomial
time to deciding characteristic formulae with respect to ≡X .

Note that, from the results of Subsection 3.1, validity in LRS with an unbounded action
set, LT S with |A| > 1, and L2S with |A| > 1 is coNP-complete, whereas validity in L3S with
|A| > 1 is PSPACE-complete. Consequently, from Theorem 37, deciding whether a formula is
characteristic modulo ≡RS with an unbounded action set, ≡T S with |A| > 1, and ≡2S with
|A| > 1 is coNP-hard. That problem is PSPACE-hard modulo ≡3S with |A| > 1.

6 Conclusions

In this paper, we studied the complexity of determining whether a formula is characteristic
for some finite, loop-free process in each of the logics providing modal characterizations
of the simulation-based semantics in van Glabbeek’s branching-time spectrum [22]. Since,
as shown in [3], characteristic formulae in each of those logics are exactly the satisfiable
and prime ones, we gave complexity results for the satisfiability and primality problems,

CSL 2025

26:16 The Complexity of Deciding Characteristic Formulae

and investigated the boundary between logics for which those problems can be solved in
polynomial time and those for which they become computationally hard. Our results show
that computational hardness already manifests itself in ready simulation semantics [10, 34]
when the size of the action set is not a constant. Indeed, in that setting, the mere addition
of formulae of the form [a]ff to the logic that characterizes the simulation preorder yields a
logic whose satisfiability and primality problems are NP-hard and coNP-hard respectively.
Moreover, we show that deciding primality in the logic characterizing 3-nested simulation is
PSPACE-hard in the presence of at least two actions.

Amongst others, we also studied the complexity of constructing characteristic formulae in
each of the logics we consider, both when such formulae are presented in explicit form and in
declarative form. In particular, one of our results identifies a sharp difference between trace
simulation and the other semantics when it comes to constructing characteristic formulae.
For all the semantics apart from trace simulation, there are characteristic formulae that have
declaration size and equational length that are polynomial in the size of the processes they
characterize and they can be efficiently computed. On the contrary, for trace simulation,
even if characteristic formulae are always of polynomial declaration size and polynomial
equational length, they cannot be efficiently computed, unless P = NP.

Our results are summarized in Table 2 and open several avenues for future research
that we are currently pursuing. First of all, the precise complexity of primality checking
is still open for the logics characterizing the n-nested simulation semantics. We conjecture
that checking primality in L2S is coNP-complete and that PSPACE-completeness holds for
n-nested simulation when n ≥ 3. Next, we plan to study the complexity of deciding whether
formulae are characteristic in the extensions of the modal logics we have considered in
this article with greatest fixed points. Indeed, in those extended languages, one can define
characteristic formulae for finite processes. It is known that deciding whether a formula is
characteristic is PSPACE-complete for HML, but becomes EXP-complete for its extension
with fixed-point operators – see reference [2]. It would be interesting to see whether similar
results hold for the other logics. Finally, building on the work presented in [3], we plan to
study the complexity of the algorithmic questions considered in this article for (some of) the
linear-time semantics in van Glabbeek’s spectrum.

References

1 Luca Aceto, Antonis Achilleos, Aggeliki Chalki, and Anna Ingólfsdóttir. The complex-
ity of deciding characteristic formulae in van glabbeek’s branching-time spectrum. CoRR,
abs/2405.13697, 2024. doi:10.48550/arXiv.2405.13697.

2 Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. The complexity
of identifying characteristic formulae. J. Log. Algebraic Methods Program., 112:100529, 2020.
doi:10.1016/j.jlamp.2020.100529.

3 Luca Aceto, Dario Della Monica, Ignacio Fábregas, and Anna Ingólfsdóttir. When are prime
formulae characteristic? Theor. Comput. Sci., 777:3–31, 2019. doi:10.1016/j.tcs.2018.12.
004.

4 Luca Aceto, Ignacio Fábregas, David de Frutos-Escrig, Anna Ingólfsdóttir, and Miguel Pa-
lomino. Graphical representation of covariant-contravariant modal formulae. In Bas Luttik
and Frank Valencia, editors, Proceedings 18th International Workshop on Expressiveness in
Concurrency, EXPRESS 2011, Aachen, Germany, 5th September 2011, volume 64 of EPTCS,
pages 1–15, 2011. doi:10.4204/EPTCS.64.1.

5 Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri Srba. Reactive Systems:
Modelling, Specification and Verification. Cambridge University Press, USA, 2007.

https://doi.org/10.48550/arXiv.2405.13697
https://doi.org/10.1016/j.jlamp.2020.100529
https://doi.org/10.1016/j.tcs.2018.12.004
https://doi.org/10.1016/j.tcs.2018.12.004
https://doi.org/10.4204/EPTCS.64.1

L. Aceto, A. Achilleos, A. Chalki, and A. Ingólfsdóttir 26:17

6 Luca Aceto, Anna Ingólfsdóttir, Paul Blain Levy, and Joshua Sack. Characteristic formulae
for fixed-point semantics: a general framework. Math. Struct. Comput. Sci., 22(2):125–173,
2012. doi:10.1017/S0960129511000375.

7 Antonis Achilleos. The completeness problem for modal logic. In Proc. of Logical Foundations
of Computer Science - International Symposium, LFCS 2018, volume 10703 of Lecture Notes
in Computer Science, pages 1–21. Springer, 2018. doi:10.1007/978-3-319-72056-2_1.

8 Benjamin Bisping, David N. Jansen, and Uwe Nestmann. Deciding all behavioral equivalences
at once: A game for linear-time-branching-time spectroscopy. Log. Methods Comput. Sci.,
18(3), 2022. doi:10.46298/lmcs-18(3:19)2022.

9 Andreas Blass and Yuri Gurevich. On the unique satisfiability problem. Inf. Control.,
55(1-3):80–88, 1982. doi:10.1016/S0019-9958(82)90439-9.

10 Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be traced. J. ACM,
42(1):232–268, 1995. doi:10.1145/200836.200876.

11 Gérard Boudol and Kim Guldstrand Larsen. Graphical versus logical specifications. Theor.
Comput. Sci., 106(1):3–20, 1992. doi:10.1016/0304-3975(92)90276-L.

12 Michael C. Browne, Edmund M. Clarke, and Orna Grumberg. Characterizing finite Kripke
structures in propositional temporal logic. Theor. Comput. Sci., 59:115–131, 1988. doi:
10.1016/0304-3975(88)90098-9.

13 Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identification. Comb., 12(4):389–410, 1992. doi:10.1007/BF01305232.

14 Rance Cleaveland. On automatically explaining bisimulation inequivalence. In Edmund M.
Clarke and Robert P. Kurshan, editors, Computer Aided Verification, 2nd International
Workshop, CAV ’90, volume 531 of Lecture Notes in Computer Science, pages 364–372.
Springer, 1990. doi:10.1007/BFb0023750.

15 Rance Cleaveland and Bernhard Steffen. Computing behavioural relations, logically. In
Javier Leach Albert, Burkhard Monien, and Mario Rodríguez-Artalejo, editors, Automata,
Languages and Programming, 18th International Colloquium, ICALP91, Madrid, Spain, July
8-12, 1991, Proceedings, volume 510 of Lecture Notes in Computer Science, pages 127–138.
Springer, 1991. doi:10.1007/3-540-54233-7_129.

16 David de Frutos-Escrig, Carlos Gregorio-Rodríguez, Miguel Palomino, and David Romero-
Hernández. Unifying the linear time-branching time spectrum of process semantics. Log.
Methods Comput. Sci., 9(2), 2013. doi:10.2168/LMCS-9(2:11)2013.

17 Rocco De Nicola and Frits W. Vaandrager. Three logics for branching bisimulation. J. ACM,
42(2):458–487, 1995. doi:10.1145/201019.201032.

18 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness I:
Basic results. SIAM J. Comput., 24(4):873–921, 1995. doi:10.1137/S0097539792228228.

19 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

20 Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas. Mathematical logic (2. ed.).
Undergraduate texts in mathematics. Springer, 1994.

21 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

22 Rob J. van Glabbeek. The linear time - branching time spectrum I. In Jan A. Bergstra, Alban
Ponse, and Scott A. Smolka, editors, Handbook of Process Algebra, pages 3–99. North-Holland
/ Elsevier, 2001. doi:10.1016/b978-044482830-9/50019-9.

23 Susanne Graf and Joseph Sifakis. A modal characterization of observational congruence on finite
terms of CCS. Inf. Control., 68(1-3):125–145, 1986. doi:10.1016/S0019-9958(86)80031-6.

24 Jan Friso Groote and Frits W. Vaandrager. Structured operational semantics and bisimulation
as a congruence. Inf. Comput., 100(2):202–260, 1992. doi:10.1016/0890-5401(92)90013-6.

25 Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concurrency. J.
ACM, 32(1):137–161, 1985. doi:10.1145/2455.2460.

CSL 2025

https://doi.org/10.1017/S0960129511000375
https://doi.org/10.1007/978-3-319-72056-2_1
https://doi.org/10.46298/lmcs-18(3:19)2022
https://doi.org/10.1016/S0019-9958(82)90439-9
https://doi.org/10.1145/200836.200876
https://doi.org/10.1016/0304-3975(92)90276-L
https://doi.org/10.1016/0304-3975(88)90098-9
https://doi.org/10.1016/0304-3975(88)90098-9
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/BFb0023750
https://doi.org/10.1007/3-540-54233-7_129
https://doi.org/10.2168/LMCS-9(2:11)2013
https://doi.org/10.1145/201019.201032
https://doi.org/10.1137/S0097539792228228
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1016/b978-044482830-9/50019-9
https://doi.org/10.1016/S0019-9958(86)80031-6
https://doi.org/10.1016/0890-5401(92)90013-6
https://doi.org/10.1145/2455.2460

26:18 The Complexity of Deciding Characteristic Formulae

26 Sören Holmström. A refinement calculus for specifications in Hennessy-Milner logic with
recursion. Formal Aspects Comput., 1(3):242–272, 1989. doi:10.1007/BF01887208.

27 Harry B. Hunt III, Daniel J. Rosenkrantz, and Thomas G. Szymanski. On the equivalence,
containment, and covering problems for the regular and context-free languages. J. Comput.
Syst. Sci., 12(2):222–268, 1976. doi:10.1016/S0022-0000(76)80038-4.

28 Neil Immerman. Descriptive Complexity. Springer, 1999. doi:10.1007/978-1-4612-0539-5.
29 Anna Ingolfsdottir, Jens Christian Godskesen, and Michael Zeeberg. Fra Hennessy-Milner

logik til CCS-processer. Master’s thesis, Aalborg University, 1987. In Danish.
30 Sandra Kiefer, Pascal Schweitzer, and Erkal Selman. Graphs identified by logics with counting.

In Giuseppe F. Italiano, Giovanni Pighizzini, and Donald Sannella, editors, Mathematical
Foundations of Computer Science 2015 - 40th International Symposium, MFCS 2015, Milan,
Italy, August 24-28, 2015, Proceedings, Part I, volume 9234 of Lecture Notes in Computer
Science, pages 319–330. Springer, 2015. doi:10.1007/978-3-662-48057-1_25.

31 Dexter Kozen. Results on the propositional µ-calculus. Theor. Comput. Sci., 27:333–354, 1983.
doi:10.1016/0304-3975(82)90125-6.

32 Richard E. Ladner. The computational complexity of provability in systems of modal proposi-
tional logic. SIAM J. Comput., 6(3):467–480, 1977. doi:10.1137/0206033.

33 Kim Guldstrand Larsen. Proof systems for satisfiability in Hennessy-Milner logic with recursion.
Theor. Comput. Sci., 72(2&3):265–288, 1990. doi:10.1016/0304-3975(90)90038-J.

34 Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic testing. Inf.
Comput., 94(1):1–28, 1991. doi:10.1016/0890-5401(91)90030-6.

35 Jan Martens and Jan Friso Groote. Computing minimal distinguishing Hennessy-Milner
formulas is NP-hard, but variants are tractable. In Guillermo A. Pérez and Jean-François
Raskin, editors, 34th International Conference on Concurrency Theory, CONCUR 2023,
volume 279 of LIPIcs, pages 32:1–32:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPIcs.CONCUR.2023.32.

36 Robin Milner. An algebraic definition of simulation between programs. In D. C. Cooper,
editor, Proceedings of the 2nd International Joint Conference on Artificial Intelligence, IJCAI
1971, pages 481–489. William Kaufmann, 1971. URL: http://ijcai.org/Proceedings/71/
Papers/044.pdf.

37 Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
38 Christos H. Papadimitriou and Mihalis Yannakakis. The complexity of facets (and some facets

of complexity). J. Comput. Syst. Sci., 28(2):244–259, 1984. doi:10.1016/0022-0000(84)
90068-0.

39 Bernhard Steffen and Anna Ingólfsdóttir. Characteristic formulae for processes with divergence.
Inf. Comput., 110(1):149–163, 1994. doi:10.1006/inco.1994.1028.

40 Wolfgang Thomas. On the Ehrenfeucht-Fraïssé game in theoretical computer science. In
Marie-Claude Gaudel and Jean-Pierre Jouannaud, editors, TAPSOFT’93: Theory and Practice
of Software Development, International Joint Conference CAAP/FASE, volume 668 of Lecture
Notes in Computer Science, pages 559–568. Springer, 1993. doi:10.1007/3-540-56610-4_89.

https://doi.org/10.1007/BF01887208
https://doi.org/10.1016/S0022-0000(76)80038-4
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1007/978-3-662-48057-1_25
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1137/0206033
https://doi.org/10.1016/0304-3975(90)90038-J
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.4230/LIPIcs.CONCUR.2023.32
http://ijcai.org/Proceedings/71/Papers/044.pdf
http://ijcai.org/Proceedings/71/Papers/044.pdf
https://doi.org/10.1016/0022-0000(84)90068-0
https://doi.org/10.1016/0022-0000(84)90068-0
https://doi.org/10.1006/inco.1994.1028
https://doi.org/10.1007/3-540-56610-4_89

A Complete Diagrammatic Calculus
for Automata Simulation
Thibaut Antoine #

ENS Rennes, France

Robin Piedeleu #

University College London, UK

Alexandra Silva #

Cornell University, Ithaca, NY, USA

Fabio Zanasi #

University College London, UK

Abstract
We give a sound and complete (in)equational theory for simulation of finite state automata. Our
approach uses a string diagrammatic calculus to represent automata and a functorial semantics to
capture simulation in a compositional way. Interestingly, in contrast to other approaches based on
regular expressions, fixpoints are a derived notion in our calculus and the resulting axiomatisation is
finitary.

2012 ACM Subject Classification Theory of computation

Keywords and phrases finite-state automata, simulation, string diagrams, axiomatisation

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.27

Funding Fabio Zanasi acknowledges support from epsrc EP/V002376/1, miur P2022HXNSC (prin
2022 pnrr - Next Generation EU), and aria Safeguarded AI TA1.1 grant n.8777242. The other
authors acknowledge support from ERC grant Autoprobe (no. 101002697), ARIA Safeguarded AI
program, and epsrc Standard Grant CLeVer (EP/S028641/1).

Acknowledgements Fabio Zanasi conducted part of this research while affiliated with the University
of Bologna, Italy.

1 Introduction

Non-deterministic automata are basic models of computation which play a central role in
formal verification – for instance, the Kripke frames used in the semantics of modal and
temporal logics are non-deterministic automata. In verification, one often tries to answer a
question of the form: does state s of the model satisfy φ? This question can be rephrased in
terms of trace containment – do all the valid traces starting from s satisfy φ? To effectively
answer it, formulae can be compiled to models which are then compared to the original model,
using simulation for trace containment [2] (or, if one requires a finer semantics, bisimulation).

Another approach to reason about model behaviour is algebraic: one can design a language
into which both the models and the formulae can be compiled, and reason equationally about
their relationship in this common language. A very successful example of this approach
is Kleene algebra and extensions thereof [13, 15, 23, 10]. In the algebraic approach, it is
important that one has sufficient axioms to reason about the equivalence or refinement
of behaviours. This amounts to providing a sound and complete axiomatization of the
intermediary language with respect to model behaviour. Famously, Kozen was the first to
provide a sound and complete algebraic axiomatization of language-equivalence of regular
expressions [14]. The main challenge to overcome was the handling of loops (or Kleene star),
a challenge which reappears in extensions of Kleene algebra and in other process calculi.

© Thibaut Antoine, Robin Piedeleu, Alexandra Silva, and Fabio Zanasi;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 27; pp. 27:1–27:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thibaut.antoine@ens-rennes.fr
https://orcid.org/0009-0007-1319-5512
mailto:r.piedeleu@ucl.ac.uk
https://orcid.org/0000-0002-3945-2704
mailto:alexandra.silva@cornell.edu
https://orcid.org/0000-0001-5014-9784
mailto:f.zanasi@ucl.ac.uk
https://orcid.org/0000-0001-6457-1345
https://doi.org/10.4230/LIPIcs.CSL.2025.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 A Complete Diagrammatic Calculus for Automata Simulation

This paper builds on recent work connecting language theory and string diagrams [20] to
offer a novel perspective on non-deterministic finite-state automata (NFA) and simulation.
Remarkably, [20] provides a finitary axiomatization of NFA up to language equivalence. The
key point is that automata are represented in a more modular syntax of string diagrams, in
which loops/fixpoints are a derived notion. Moreover, the proposed diagrammatic language
is more expressive, exploiting the underlying lattice structure of languages. This allows
the authors to (i) encode not only the NFA themselves, but relations between the states of
NFA, as well as (ii) an equational proof that these relations satisfy the defining properties of
simulations [20]. The payoff is that it becomes possible to reason purely equationally (or
inequationally, since we allow inequalities between diagrams) about fixpoints, a feature that
is provably impossible to achieve in a traditional syntax [22].

Below, we give an example of a (bi)simulation (in blue) between two NFA, with their
diagrammatic representation below. These correspond to a∗(b(a + b)∗ + 1) and (a + b)∗;
proving that they are (bi)similar in a traditional syntax requires fixpoint axioms. Our
axiomatisation on the other hand will allow us to derive this fact using purely (in)equational
reasoning on the diagrams themselves (Example 38).

b
a, ba a, b

a

b
a

a

b

b

=

Contributions. Our main contribution is a complete axiomatisation of NFA simulation.
Contrary to language equivalence, the algebraic study of simulation has not been explored
in depth in previous work, with the notable exception of Frendrup and Jensen’s work on
CCS expressions modulo similarity [9]. Given the clear importance of simulation for program
refinement and bisimulation, it is worthwhile to develop different techniques to study it.
Here, we offer a novel perspective on simulation through a string diagrammatic calculus
with the same syntax as the one in [20], but a new semantics, capturing similarity instead
of language equivalence. Importantly, the added expressiveness of our calculus allows the
complete axiomatisation to be finite. Moreover, on the road to completeness, we prove several
results about the algebraic structure of automata up to simulation, in particular that they
form a lattice (Section 2.2, Theorem 5), and characterise fixed-points of systems of linear
inequalities (Theorem 8).

Outline. After introducing some preliminary material in Section 2, we recall the diagram-
matic calculus in which we encode NFA, together with a functorial (that is, compositional)
semantics expressed in terms of simulation, rather than language-equivalence (Section 3).
In Section 4 we provide constructions to translate between NFA and string diagrams. The
main technical result appears in Section 5: we prove that the calculus is sound and complete
to reason about simulation of NFA. We discuss related work and future research in Section 6,
including a discussion of how our approach could extend to NFA modulo bisimilarity.

T. Antoine, R. Piedeleu, A. Silva, and F. Zanasi 27:3

2 Background: automata and simulation

In this section we recall the necessary background regarding automata, simulation, as well
as some basic properties and algebraic operations first introduced by Milner [18]. Then, we
characterise the solutions of certain systems of equations (or rather, inequations, in this
case), a result which will be instrumental in showing the soundness of our diagrammatic
representation of NFA in later sections.

In what follows, we fix some finite alphabet Σ, over which all NFA will be defined and
write Pf (Σ) for the set of finite subsets of Σ.

2.1 Automata and their algebraic operations
We recall here the notion of automaton with which we will work throughout.

▶ Definition 1 (Nondeterministic Finite Automaton). A nondeterministic finite automaton
(NFA) A over Σ is a quadruple (Q, q0, F, α) where Q is a finite set of states, q0 ∈ Q is the
initial state of A, F ⊆ Q is a set of final states (also seen as a function Q→ {0, 1}), and
α ⊆ Q× Σ×Q is the transition relation. We will denote q

a−→A q′ for (q, a, q′) ∈ α, and will
omit the sub-scripted A in case it is clear in context. Note that we do not allow ϵ-transitions.

A path in A is a sequence (qi0 , . . . , qik
) ∈ Qk+1 where qij

−→A qij+1 , denoted qi0 ⇝A qik
.

We will use the following standard operations on NFA extensively: sum, (synchronous) product
and composition, including prefixing. Rigorous definitions can be found in Appendix A. Let
A = (Q, q0, F, α) and B = (S, s0, G, β) be two NFA.
Sum. A + B is defined by taking Q ∪ S ∪ {t0} where t0 is a new state which can transition

to the set of states reachable from q0 and s0.
Product. A × B is defined by taking the Q × S as set of states and allowing transitions

(q, s) a−→A×B (q′, s′) iff q
a−→A q′ and s

a−→B s′.
Composition. A.B is defined by attaching a copy of B to every final state in A and keeping

as final states those of B.
Prefix. a.A is the composition of ({q0, q1}, q0, {q1}, {(q0, a, q1)}) and A. We will also write

S.A for S ∈ Pf (Σ) as a shorthand for
(∑

a∈S a
)

.A =
∑

a∈S a.A.
Finally, we define three special NFA to which we will often refer:

⊥ = ({q0}, q0, 0,∅) 1 = ({q0}, q0, 1,∅) ⊤ = ({q0}, q0, 1, {(q0, a, q0) | a ∈ Σ})

2.2 The simulation lattice
We now define (strong) simulation of a NFA by another, the central concept of this paper.

▶ Definition 2 (Simulation Relation, Simulation preorder). Let A = (Q, q0, F, α), B =
(S, s0, G, β) be two NFAs. A simulation relation from A to B is a binary relation R ⊆ Q× S

such that (1) (q0, s0) ∈ R; (2) if (q, s) ∈ R, then F (q) ≤ G(s); (3) if (q, s) ∈ R and q
a−→A q′,

then there exists a state s′ ∈ S such that s
a−→B s′ and (q′, s′) ∈ R.

Note that condition (3) can also be phrased in terms of relational composition as
R−1;−→A⊆−→B ; R−1. In this case, we say that A is simulated by B (or that B simulates A)
and we write A ⪯ B, or A ⪯R B to specify the simulation relation.

It immediately follows that ⪯ is a preorder on NFAs: for all A, B, C NFAs we have
A ⪯id A, as well as A ⪯R B and B ⪯R′ C implies A ⪯R;R′ C.

CSL 2025

27:4 A Complete Diagrammatic Calculus for Automata Simulation

▶ Definition 3 (Similarity partial order). If A and B are two NFA such that A ⪯ B and
B ⪯ A, we say that they are similar and write A ≃ B.

We call Ω the set of all NFA modulo similarity. Given two equivalence classes X = [A],
Y = [B], we write X ≤ Y if A ⪯ B.

It is a standard fact about preorders that ≤ forms a partial order over Ω. Moreover, all
previously defined operations are monotone with respect to it.

▶ Proposition 4 (Monotony of composition). Let A = (Q, q0, F, α) and B = (S, s0, G, β) be
two NFAs and let A′ = (Q′, q′

0, F ′, α′), B′ = (S′, s′
0, G′, β′) such that A ⪯ A′, B ⪯ B′. Then

we have A.B ⪯ A′.B′. In particular, prefixing is monotone with respect to ⪯.

Proof. Assume in particular that A ⪯RA
A′, B ⪯RB

B′. Let R = RA ∪ {((i, s), (j, s′)) |
(s, s′) ∈ RB , (qi, q′

j) ∈ RA, F (qi) = 1}. We will show that A.B ⪯R A′.B′.
RA ⊆ R, thus (q0, q′

0) ∈ R.
Let (t, t′) ∈ R, and t

a−→A.B u. The interesting case happens when t = qi with F (qi) = 1
and u = (i, s) with s0

a−→B s. Since B ⪯RB
B′, (s0, s′

0) ∈ RB and there is a s′ ∈ S′ such
that s′

0
a−→B s′ and (s, s′) ∈ RB .

Moreover, since t = qi ∈ Q and (t, t′) ∈ R, t′ = q′
j ∈ Q′; and we also have F (qi) = 1 ≤

F ′(q′
j) thus q′

j is final in A′. By definition of A′.B′ this means that q′
j

a−→A′.B′ (j, s′), and
by definition of R we also have ((i, s), (j, s′)) ∈ R, which concludes the proof. ◀

Proposition 4 allows us to lift prefixing to equivalence classes of NFA modulo similarity as a
monotone operation: let a.[A] = [a.A] for [A] ∈ Ω.

The second key result of this subsection is the existence of a lattice structure on Ω. We
first state the necessary properties for NFA before lifting the sum and product to Ω.

▶ Theorem 5 (Bounded lattice operations). Let A, B be two NFAs. We have:
1. ⊥ ⪯ A ⪯ ⊤
2. A×B ⪯ A, B and if C ⪯ A, B then C ⪯ A×B (that is, product of NFAs acts as a meet)
3. A, B ⪯ A + B and if A, B ⪯ C then A + B ⪯ C (that is, sum of NFAs acts as a join)

Proof. We give the simulation relation for each:
1. The full relation suffices for each inequality.
2. A × B ⪯ A through the projection, i.e., the relation {((q, s), q) | q ∈ Q}. The same

goes for B symmetrically. Moreover if C ⪯RA
A and C ⪯RB

B then C ⪯R A×B with
R = {(t, (q, s)) | (t, q) ∈ RA and (t, s) ∈ RB}.

3. The simulation relations for A, B ⪯ A + B are given by the injections. If A ⪯RA
C and

B ⪯RB
C, then A + B ⪯R C with R = {(p0, t0)} ∪ {(q, t) | (q, t) ∈ RA} ∪ {(s, t) | (s, t) ∈

RB}, if p0 and t0 are the initial state of A + B and C respectively. ◀

Direct consequences of this theorem are the monotony of + and ×, their commutativity and
unitality (with ⊥ and ⊤ respectively). The monotony of + and × also allows us to lift the
sum and product to the set of NFA modulo similarity: for [A], [B] ∈ Ω, let [A]+[B] = [A+B]
and [A]× [B] = [A×B]; finally we let ⊥ and ⊤ denote [⊥] and [⊤] respectively.

▶ Corollary 6. Ω is a lattice, with + as join, × as meet, ⊥ as bottom, and ⊤ as top.

In what follows, we will often use NFA to denote their equivalence class modulo similarity.

T. Antoine, R. Piedeleu, A. Silva, and F. Zanasi 27:5

2.3 Systems of linear inequalities
In this section we introduce systems of linear inequalities and characterise their (least)
solutions. This is not only an original result of independent interest, but one we will use
later to show the soundness of the representation of NFA in our diagrammatic calculus.

▶ Definition 7 (System of linear inequations). Let n ∈ N and K0, . . . , Kn ∈ Ω, and for all
0 ≤ i, j ≤ n, let di,j ∈ Pf (Σ). These define a system of n + 1 inequations:

(E) :

Ki +
n∑

j=0
di,j .Xj ≤ Xi

0≤i≤n

where X0, . . . , Xn are variables taking value in Ω. Using matrix multiplication and vector
notations, we will write (E) as K + DX ≤ X.

The following theorem is the key result of this section: given a system of inequalities, we
construct the (equivalence class of) NFA that is its unique smallest solution. Frendrup and
Jensen prove a similar result [9, Theorem 7] for their syntax directly, but our methods are
different and of independent interest.

▶ Theorem 8. Let D be a matrix of coefficients in Pf (Σ).
1. For every vector K, the system K + DX ≤ X has a unique smallest solution S(K).
2. Let F ∈ {0, 1}n+1, K be a NFA and A = (Q, q0, F, α) where Q = {qi}0≤i≤n, and qi

a−→ qj

iff a ∈ di,j. Let A = (A0, . . . , An) where Ai = (Q, qi, F, α). Then S(F.K) = A.K.

Proof.
1. By monotony of prefixing and summing, X 7→ K + DX is monotonous; by the Knaster-

Tarski theorem it has a unique least fixed point, which is the solution we are looking
for.

2. One can see easily that A.K is a solution. We show that it is the smallest. For that
sake, let X = (X0, . . . , Xn) be a solution of the system. In all that follows we write x

(i)
0

for the initial state of Xi. For each 0 ≤ i ≤ n, let Yi = Fi.K +
∑n

j=0 di,j .Xj , si be its
initial state, and Ri be the simulation relation from Yi to Xi. We now fix a i, and build
a simulation relation S from Ai.K to Xi.
First, for all 0 ≤ j ≤ n we define Pj as follows:

Pj =
⋃

qi0 →Ai
···→Ai

qik

Rik−1 ; · · · ; Ri0

where i0 = i and ik = j. It is a simulation relation by union and composition. Then let

S′ =
⋃

qj s.t. qi⇝Ai
qj

{(qj , x) | (x(j)
0 , x) ∈ Pj}

S′′ =
⋃

qj s.t. qi⇝Ai
qj

F (qj)=1

{((j, t), x) | ∃x′ ∈ Xj : (t, x′) ∈ Rj and (x′, x) ∈ Pj}

and S = {(qi, x
(i)
0)} ∪ S′ ∪ S′′.

Note that S′′ is well defined since if qj is final, then K ⪯Rj
Xj . We show that S is a

simulation relation.

CSL 2025

27:6 A Complete Diagrammatic Calculus for Automata Simulation

By definition, (qi, x
(i)
0) ∈ S

Let (qj , x) ∈ S, and qj
a−→ qk. By definition, this means (qj , x) ∈ S′, i.e. (x(j)

0 , x) ∈ Pj .
By definition of Rj , we have (sj , x

(j)
0) ∈ Rj . Combined to the existence of a path

qi ⇝ qj → qk, this implies (sj , x) ∈ Pk. Moreover, we know by construction of A that
sj

a−→ x
(k)
0 since qj

a−→ qk. Therefore, Pk being a simulation relation, there is a y such
that x

a−→ y and (x(k)
0 , y) ∈ Pk i.e. (qk, y) ∈ S′.

Let qj be an accessible final state in A and (qj , x) ∈ S with qj
a−→ (j, t), meaning

t0
a−→K t. Moreover since qj is final, K ⪯Rj

Xj and thus (t0, x
(j)
0) ∈ Rj . By simulation

there is a x′ ∈ Xj such that x
(j)
0

a−→ x′ and (t, x′) ∈ Rj . Moreover (qj , x) ∈ S thus
(x(j)

0 , x) ∈ Pj . By simulation, there is a y with (x′, y) ∈ Pj such that x
a−→ y, which

concludes this case.
The proof in the case (j, t) a−→ (j, t′) is direct by applying the simulation property. ◀

3 Syntax and semantics

In this section, we define a diagrammatic calculus in which we can encode NFA in a natural
way. The syntax has appeared in previous work [20], but the semantics is new, reflecting the
focus of this work on simulation, rather than language-equivalence. We will then equip the
same syntax with an (in)equational theory which we will show in Section 5 fully axiomatises
the intended semantics. We proceed in three steps:

In Section 3.1, we define our syntax as a free coloured prop on a number of generators,
using string diagrams to depict its morphisms. For an introduction to string diagrammatic
syntax, we refer the reader to [21].
In Section 3.2, we formalise the intended semantics as a symmetric monoidal functor
into the symmetric monoidal category (SMC) of monotone relations with the Cartesian
product.
Finally, we equip the syntax with a partial order which is sound for the intended semantics.
This order is given by a finite number of (in)equalities of the same type.

3.1 Syntax
We build on a line of research that has sought to give a formal treatment of graphical models of
computation of varying expressive power within the unifying language of symmetric monoidal
categories. More specifically, we rely on the notion of coloured product and permutations
category (prop), a mathematical structure which generalises standard multisorted algebraic
theories [5]. Formally, a prop is a strict symmetric monoidal category (SMC) whose objects
are words of a finite alphabet and where the monoidal product ⊕ on objects is given by
concatenation. Equivalently, it is a strict SMC whose objects are all monoidal products of a
finite number of generating objects.

Our syntax is a prop PS , freely generated from a signature S = (G, M): a pair of a finite
set of objects G and a set M of morphisms g : v → w, where v and w are words over G.
There are two ways of describing the morphisms of the prop PS concretely. As terms of
(G∗, G∗)-sorted syntax whose constants are elements of M and whose operations are the
usual categorical composition (−); (−) : PS(u, v)× PS(v, w)→ PS(u, w) and the monoidal
product (−)⊕ (−) : PS(v1, w1)× PS(v2, w2)→ PS(v1v2, w1w2), quotiented by the laws of
SMCs. However, this quotient is cumbersome and unintuitive to work with.

T. Antoine, R. Piedeleu, A. Silva, and F. Zanasi 27:7

This is why we prefer a different representation: with their two forms of composition,
monoidal categories admit a natural two-dimensional notation of string diagrams. The idea
is that a morphism c : v → w of PS is better represented as a box with |v| ordered wires
labelled by the elements of v on the left and |w| wires labelled by the elements of w on
the right. We can compose these diagrams in two different ways: horizontally with ; by
connecting the right wires of the first diagram to the left wires of the second (when the types
match), and vertically with ⊕ by simply juxtaposing two diagrams: c ; d = c d

u v w

and d1 ⊕ d2 = c1

c2

v1

v2

w1

w2. Intuitively, morphisms of PS can be pictured as (directed acyclic)

graphs whose nodes are labelled by elements of M . The symmetry σa,b : ab→ ba is drawn
as a wire crossing which swaps the a-and b-wires, and the unit for ⊕, id0 : 0→ 0, as the
empty diagram (we use 0 to denote the empty word). With this representation the laws
of SMCs become diagrammatic tautologies.

In this work, we start with the same diagrammatic syntax as [20], which we call SynΣ. It
is the free two-coloured prop freely generated by the objects and morphisms below.

Two generating objects, ▶ (right) and ◀ (left), whose identities we will depict respectively
as and .
The following generating morphisms:

a (a ∈ Σ) (1)

(2)

Morphisms of SynΣ are thus vertical and horizontal compositions of these generators, poten-
tially including wire crossings. The direction of the arrows on the generators’ wires denotes
their type: for example, represents an operation of type ▶→▶▶, while has type
◀▶→ ε (where ε denotes the empty list, i.e., the unit for the monoidal product).

As in [20], we will use the generators (1) to represent NFA: , , allow
us to encode states by gathering incoming and outgoing transitions, while the transitions
themselves are encoded with a . The remaining two generators, and , allow us to
form feedback loops, with which we can encode iteration, as we will see in more details in
Section 4. The , , play another important role: they will allow us to
construct simulation relations directly in our syntax.

The white generators , , in (2) are not used to build automata-diagrams, but
will allow us to show that the diagrammatic simulation relations we construct do satisfy the
required properties, and thereby allow us to prove that one automaton simulates another
using purely (in)equational reasoning. As we will see next, these are not artificial syntactic
operations, but emerge naturally out of the chosen semantics.

Note that [20] also contained dual generators , which are not needed here.

3.2 Semantics
In this section, we explain how to interpret the diagrams of the previous section as relations.
We will formalise the intended semantics as a SMC, and the interpretation as a symmetric
monoidal functor from the syntax to the semantics.

Contrary to [20], the relations in our target semantics are not between languages, but
between elements of Ω, that is, equivalence classes of NFAs up to similarity. As in [20], each
generator is interpreted as a monotone relation between posets.

▶ Definition 9 (Monotone relation). Given two posets (X,≤X) and (Y,≤Y), a relation
R : X → Y is monotone whenever for (x, y) ∈ R, if x′ ≤X x, y ≤Y y′ then (x′, y′) ∈ R.

CSL 2025

27:8 A Complete Diagrammatic Calculus for Automata Simulation

▶ Proposition 10 (SMC of monotone relations). Posets and monotone relations form a SMC
ProfB with composition given by relational composition, where the identity for an object
(X,≤X) is the order relation ≤X itself, and with monoidal product the product of posets.

Moreover, monotone relations of the same type can be ordered by inclusion, making ProfB
into an order-enriched SMC.

The SMC ProfB of monotone relations has also appeared in the literature under the name of
Boolean(-enriched) [8, 20] and relational [11] profunctors, or weakening relations [19].

Since SynΣ is freely-generated, to define a symmetric monoidal functor J·K : SynΣ → ProfB,
it is sufficient to specify the image of each generating object and morphism.

▶ Definition 11 (Semantics). Let J·K be the following mapping.
For the generating objects, let J▶K = (Ω,≥) and J◀K = (Ω,≤). By Definition 9, this fixes
the interpretation of the corresponding identities to be the order relations themselves:

J K = {(X, Y) | Y ≤ X} J K = {(X, Y) | X ≤ Y }

We map generating morphisms to the following relations:
r z

=
{(

X, (Y1, Y2)
)
| Yi ≤ X, i = 1, 2

}
J K = {(X, •) | X ∈ Ω}

r z
=

{(
(X1, X2), Y

)
| Y ≤ Xi, i = 1, 2

}
J K = {(•, Y) | Y ∈ Ω}

r z
= {(•, (Y1, Y2)) | Y2 ≤ Y1}

r z
= {((X1, X2), •) | X1 ≤ X2}

J a K = {(X, Y) | a.Y ≤ X} (a ∈ Σ)
r z

=
{(

X, (Y1, Y2)
)
| Y1 × Y2 ≤ X,

}
J K = {(⊤, •)}

A few remarks about the semantics are in order.
The order relation is built into the identity wires and . The two directions
represent the identities on Ω ordered by ≥ := {(X, Y) : Y ≤ X} and ≤ respectively. This
is the opposite of the convention in [20], and is imposed by the use of prefixes (as opposed
to suffixes in [20]) to interpret the atomic actions a , cf. last item of this list.
The black primitives are standard monotone relations associated with any poset. One can
see them as copy, delete, and their duals, relative to the relevant partial order relation.
Similarly, the wire-bending primitives are interpreted as relations that exist for any poset,
making use of the fact that our semantic category is compact-closed [12].
The white generators are interpreted as the meet and top of the lattice structure obtained
in Corollary 6. Contrary to [20], we do not need generators for the join of the lattice –
this is one of the distinguishing features of language equivalence and simulation.
The action of a for each letter a ∈ Σ, relates a.Y to any NFA X simulating it.

▶ Proposition 12. J·K extends to a symmetric monoidal functor SynΣ → ProfB.

Proof. Since SynΣ is freely generated, we just need to check that each generator is a
monotone relation. The only non-immediate case is the monotony of J a K, which follows
from Proposition 4. ◀

This means that we can compute the semantics of arbitrary diagrams in a fully composi-
tional way, using the following rules for composition and monoidal product:

Jc ; dK =
q

c d
u v wy

=
{

(X, Z) | ∃Y (X, Y) ∈
q

c
y

, (Y, Z) ∈
q

d
y}

Jc1 ⊕ c2K =
s

c1

c2

v1

v2

w1

w2

{
=

{(
(X1, X2), (Y1, Y2)

)
| (Xi, Yi) ∈

q
ci

y
, i = 1, 2

}

T. Antoine, R. Piedeleu, A. Silva, and F. Zanasi 27:9

3.3 Inequational theory
In Figure 1 below we introduce MDA, the theory of Milner Diagram Algebra, a set of
axioms which will prove complete for simulation of NFA (once we have shown how to encode
them into the diagrammatic syntax). Some background on symmetric monoidal (inequality)
theories can be found in Appendix B.

Unsurprisingly MDA is close to the existing diagrammatic axiomatisation of NFA up to
language equivalence of [20, Section 3] and we use the same naming scheme to highlight the
similarities and differences between the two. There are two main differences: the lack of ,
and and (E1-E2) which only hold laxly here, witnessing the simulation a.b+a.c ⪯ a.(b+c).
This is akin to how regular expressions up to (bi)similarity do not satisfy left-distributivity
of composition over the sum, but still satisfy right-distributivity (E3-E4).

(A1)= (A2)= (A3)=

(B1)= (B2)= (B3)=

(B4)= (B5)= (B6)=

(B7)= (B8)= (B9)=

(B10)= (B11)= (B12)=

(C1)= (C2)= (C3)=

a
(E1)

≤ a

a
a

(E2)

≤ a
(E3)= a

a
a

(E4)=

(F1)

≤
(F2)

≤
(F3)

≤
(F4)

≤

(F9)

≤
(F10)

≤
(F11)

≤
(F12)

≤

Figure 1 Theory of Milner Diagram Algebra (MDA).

▶ Remark 13. Note that this theory is not minimal: for example, the lax distributivity axiom
(E1) can be proven using (F1), (B10) and (E3). A similar property holds for (E2). However,
we have preferred to keep them since they highlight the main difference with previous work
on language equivalence/inclusion [20].

CSL 2025

27:10 A Complete Diagrammatic Calculus for Automata Simulation

As we will explain more thoroughly in Section 4, we are interested in the properties of
diagrams that are closely related to NFA. We identify these in the following definition.

▶ Definition 14 (Automaton-diagram). We call automaton-diagram any diagram of SynΣ
composed entirely of generators from (1), namely , , , , , , a (a ∈ Σ)
In other words, automata-diagrams are the morphisms of the sub-prop freely generated by the
morphisms of (1). We call this sub-prop AutΣ.

We can now state the main result of this paper.

▶ Theorem 15 (Soundness and Completeness). For any two automata-diagrams c, d :▶→▶,

JcK ⊆ JdK if and only if c ≤MDA d.

The completeness of MDA is the most involved and will be the subject of Section 5. Its
soundness on the other hand is straightforward and is a matter of verifying that each axiom
holds in the semantics. Except for axioms of the E block (see Proposition 16), the soundness
of the remaining (in)equalities follows from properties which have been proven earlier:

The A and B blocks encode equalities that hold for any poset. They imply that our
category of interest is compact-closed (A) and that every object is equipped with a
(bi)commutative bimonoid (B1-B11), a common structure in diagrammatic calculi [16].
The E block encodes the interaction of the atomic actions with the simulation order. As
we already stated, here lies the main difference with [20] – (E1-E2) now only hold laxly.
The C and F blocks encode the lattice structure of (Ω,≤), and all (in)equalities follow
from the existence of meets. The F block in particular encodes a number of adjunctions
in the following 2-categorical sense: two morphisms f : X → Y and g : Y → X are
adjoints if idX ≤ f ; g and g ; f ≤ idY . We write f ⊣ g and say that f is left adjoint to
g. Here, we have four adjunctions: ⊣ ⊣ and ⊣ ⊣ . Note
that the adjunctions involving , , , are the key defining adjunctions
of Cartesian bicategories [6]. The remaining adjunctions hold whenever the supporting
poset is a semi-lattice (has binary meets and top), which is the case for simulation.

We prove here the soundness of axioms (E1-E4) and that the inequalities corresponding to
axioms (E1-E2) are strict.

▶ Proposition 16. We have the following (in-)equalities:
r

a

z
⊊

s
a

a

{ q
a

y
⊊ J K

r
a

z
=

s
a

a

{ q
a

y
= J K

Proof.
1. The proof of the inclusion is straightforward, but the fact that it is strict is more interesting.

Take X = a.b + a.c ∈ Ω. Then (X, (b, c)) ∈
s

a

a

{
. Suppose (X, (b, c)) ∈

r
a

z

too. Then there is a Y ∈ Ω such that a.y ≤ x, and b, c ≤ Y . By the join property of
+, we have b + c ≤ Y and therefore a.(b + c) ≤ X. However a.b + a.c does not simulate
a.(b + c) since there is no state in a.b + a.c having a b-labelled out-transition as well as a
c-labelled one. Thus (X, (b, c)) ̸∈

r
a

z
.

2. J K = {(X, •) : X ∈ Ω} ⊇ {(a.X, •) : X ∈ Ω} = J a K, and it is clear that for all
X ∈ Ω, 0 ̸= a.X because 0 has no transitions.

T. Antoine, R. Piedeleu, A. Silva, and F. Zanasi 27:11

3. We have
r

a

z
= {((X1, X2), Y) : a.Y ≤ X1, X2} and

s
a

a

{
=

((X1, X2), Y) : ∃U1, U2,

Y ≤ U1, U2
a.U1 ≤ X1
a.U2 ≤ X2

The “⊇” inclusion follows from the monotony of prefixing, which gives us a.Y ≤ a.Ui ≤ Xi

for i = 1, 2. For the other inclusion, choosing U1 = U2 = Y gives the desired result.
4. J a K = {(•, Y) : ∃X(a.Y ≤ X)} is clearly contained in {(•, Y) : Y ∈ Ω} = J K; for

the other direction, we can just set X = a.Y . ◀

4 Automata-diagrams

This section aims to explain and justify our representation of NFA using string diagrams.
Our encoding follows that of [20] – the aim of this section is not merely to reproduce it, but
to show that the same syntax is able to represent automata uniformly for different semantics,
and to define the notions we will use in the proof of completeness.

In Section 4.1, we first show that the same encoding is sound for the simulation semantics,
in the sense that the diagram cA which represents a given NFA A has the appropriate
semantics, i.e., JcAK = {(X, Y) : A.Y ≤ X}. This is Theorem 23 below.
In Section 4.2, we prove a converse result: any automaton-diagram ▶→▶ can be thought
of as a NFA, i.e., for any automaton diagram c, there exists some NFA Ac such that
JcK = {(X, Y) : Ac.Y ≤ X}. This is Corollary 27 below.

4.1 From automata to string diagrams...
First, we show how to encode relations into our calculus. We will use these to represent the
initial and final states of NFA, and simulation relations in the proof of completeness.

▶ Definition 17 (Relation-diagram). A relation-diagram is a diagram of SynΣ composed
entirely of , , , . We call RelDiag the corresponding sub-prop. A relation-
diagram is functional when it is composed only of , .

In what follows, we call block of a certain subset of the generators of SynΣ, any diagram
made up entirely of the prescribed generators using vertical and horizontal composition (and,
possibly, identities and wire crossings).

▶ Proposition 18 (Encoding relations). Given two finite sets Q = {qi}1≤i≤n and S =
{sj}1≤j≤m, and some relation R ⊆ Q×S, there exists a relation diagram dR :▶n→▶m such
that JdRK = {(X, Y) | Xi ≥ Yj if (qi, sj) ∈ R}.

Proof. We reproduce the construction from [20, Section 4]. The relation-diagram dR ▶n→▶m

is formed of two blocks: first, a block of , , followed by a block of , . The
left i-th port of dR is connected to the the right j-th port through an identity wire
precisely when (qi, sj) ∈ R; we use to accommodate multiple outgoing connections
from a single left port (or none, with), and for multiple incoming connections into
a right port (or none, with).

Finally, it is straightforward to see that we have constructed dR so that its semantics is
precisely {(X, Y) | Xi ≥ Yj if (qi, sj) ∈ R}. ◀

We now show how to encode the transition relation of any given automaton.

CSL 2025

27:12 A Complete Diagrammatic Calculus for Automata Simulation

▶ Definition 19 (Matrix-diagram). A matrix-diagram is a diagram ▶n→▶m that factors
as a composition of a block of , , another of a for a ∈ Σ, and a last one of

, , such that any path from a left to right port encounters exactly one a .

The intuition behind the condition of the previous definition are to (i) disallow multiple
transitions for the same letter between the same two states, and (ii) disallow ϵ-transitions
since our definition of NFA does not allow them. For example, the following is is a well-
formed matrix-diagram (with the three blocks highlighted), encoding the transition relation
{(q0, a, q1), (q1, b, q2), (q2, a, q1), (q2, a, q2)}.

a

b

a

a

Proposition 20 shows that we can encode any transition relation as a matrix-diagram with
the desired semantics.

▶ Proposition 20 (Encoding transition-relations). Given a set Q = {qi}1≤i≤n and transition
relation α ⊆ Q×Σ×Q, write D for the corresponding n× n matrix of coefficients in Pf (Σ).
There exists a matrix-diagram dα :▶n→▶n such that JdαK = {(X, Y) : DY ≤ X}.

Proof. Again, the idea is already present in [20, Section 4.2]. Let dα be the matrix-diagram
where the i-th input wire is linked to the j-th output wire via a whenever qi

a−→A qj . By
construction, JdαK = {(X, Y) : DY ≤ X}, as we wanted. ◀

The last ingredient of the correspondence between automata-diagrams and NFA is
iteration. As explained above, and allow us to form the diagrammatic counterpart of
iteration, aka the Kleene star, defined as follows.

▶ Definition 21 (Star). For a diagram d :▶n→▶n, let d∗ := d .

▶ Proposition 22 (Stars are least fixpoints). If d :▶n→▶n is a matrix-diagram whose
corresponding matrix is D, then Jd∗K = {(X, Y) : S(Y) ≤ X}, where S(Y) is the (unique)
least solution of the system Y + DX ≤ X.

Proof. The semantics of d∗ is given by {(X, Y) : Y + DX ≤ X}, which is equal to
{(X, Y) : S(Y) ≤ X} by Theorem 8. ◀

▶ Theorem 23 (Encoding of NFA). Let A = (Q, q0, F, α) be an automaton. There exists an
automaton-diagram cA :▶→▶ such that JcAK = {(X, Y) : A.Y ≤ X}.

Proof. We represent automata as in [20, Section 4.2]. First, fix some ordering of Q =
{qi}1≤i≤n. Then

e :▶→▶n is the relation-diagram encoding the singleton {(q0, •)}, using Proposition 18;
f :▶n→▶ is the relation-diagram encoding the {(qi, •) : qi ∈ F}, using Proposition 18;
d :▶n→▶n is the matrix-diagram representing α, using Proposition 20. It is such that
JdK = {(X, Y) : DY ≤ X}.

T. Antoine, R. Piedeleu, A. Silva, and F. Zanasi 27:13

Then, let cA = e; d∗; f where d∗ is defined as in Definition 21. By Proposition 22,
Jd∗K = {(X, Y) : S(Y) ≤ X}. Then we have:

JcAK =

(X, Y) : ∃X, Y,

∀i, qi ∈ F ⇒ Yi ≤ Y

S(Y) ≤ X
X0 ≤ X

We want to show that JcAK is equal to {(X, Y) : A.Y ≤ X} by double-inclusion.
(⊆) Let X, Y ∈ Ω be such that A.Y ≤ X. Then take Y = F.Y and X = S(Y). By

definition, if qi ∈ F then Yi ≤ Y , and S(Y) ≤ X.
Moreover S(Y) = S(F.Y) = A.Y by Theorem 8. Thus X0 = (S(Y))0 = (A.Y)0 =
A0.Y = A.Y ≤ X, and therefore (X, Y) ∈ JcAK.

(⊇) Let (X, Y) ∈ JcAK and X, Y be two vectors of behaviours witnessing this membership.
To conclude the proof of the second inclusion, we have A.Y = (A.Y)0 = (S(F.Y))0 ≤
(S(Y))0 ≤ X0 ≤ X where the third step is our hypothesis.

Finally, we need to show that this representation is independent of the choice of ordering
of Q. This is the case, because any other choice of total order induces a permutations of
the wires. In other words, given another ordering, from which we obtain two other relation-
diagrams e′ and f ′ encoding initial and final states, and a matrix-diagram d′ encoding the
transition relation of A, there exists some permutation π :▶n→▶n such that d′ = π ; d ; π−1,
e′ = e ; π−1, and f ′ = π ; f . A simple diagrammatic derivation shows that d′∗ = π ; d∗ ; π−1

and therefore e′ ; d′∗ ; f ′ = e ; d ; f . ◀

As a result, by soundness, an inequality between two automata-diagrams implies the existence
of a simulation between the corresponding NFA in the reverse order :

▶ Corollary 24. Let A, B be two NFA and cA, cB the corresponding automaton-diagram
obtained from Theorem 23. If cA ≤ cB, then B ≤ A.

Proof. The proof is straightforward: by soundness, cA ≤ cB means JcAK ⊆ JcBK. Since
A.1 = A ≤ A, we have (A, 1) ∈ JcAK. Thus (A, 1) ∈ JcBK, i.e., 1.B = B ≤ A. ◀

4.2 ...and back
Theorem 23 shows how to encode a given NFA as a string diagram into our diagrammatic
syntax. Conversely, given a ▶→▶ automaton-diagram, we can extract the NFA it represents,
by rewriting it into a form which mimics the encoding of NFA of the previous section – this
is what we call a representation.

▶ Definition 25 (Representation). For a diagram c :▶→▶, a representation is a triple
(e, d, f) of a matrix-diagram, d :▶ℓ→▶ℓ, one functional relation-diagram e :▶→▶ℓ, and one
relation-diagram f :▶ℓ→▶, such that

c = e fd∗

The intuition is that d represents the transition relation of the associated automaton, e the
initial state, and f its final states.

▶ Proposition 26. Any automaton-diagram ▶→▶ has a representation.

Proof. The proof is the same as [20, Proposition 4.7]. All axioms used in this proof are in
MDA – crucially, it does not use left-distributivity, but only right-distributivity (E3-E4). ◀

CSL 2025

27:14 A Complete Diagrammatic Calculus for Automata Simulation

From here it is easy to extract a diagrammatic representation of its initial state, final states,
and transition relations.

▶ Corollary 27 (NFA from automaton-diagram). Given an automaton-diagram c :▶→▶, there
exists a NFA A such that JcK = {(X, Y) | A.Y ≤ X}.

Proof. First, by Proposition 26, we can find a representation (e, d, f) of c. We construct
A = (Q, q0, F, α). First, if d :▶n→▶n, let Q = {1, . . . , n}. Then let q0 be the only i such that
(•, i) ∈ R (e) (remember that R (e) is a n× 1 Boolean matrix, which is moreover functional,
so that it is fully characterised by a single i between 1 and n). Let F := {j : (j, •) ∈ R (f)}.
Finally, the transition relation is determined by the matrix-diagram d. Call D be the n× n

matrix with coefficients in Pf (Σ) obtained from Proposition 33. Then, let (i, a, j) ∈ α if
Di,j contains a (remember that the coefficients are finite subsets of Σ). This is well-defined
because d is assumed to be ϵ-free. ◀

5 Completeness

The main idea to tackle completeness is that simulation relations themselves can be encoded
as relation-diagrams into our calculus.

We have already shown how to encode relations as relation-diagrams; now we explain how
to go in the other direction. From any relation-diagram d :▶n→▶m we can obtain a relation
between {1, . . . , n} and {1, . . . , n}, i.e., a matrix with Boolean coefficients. As we will need
to manipulate these relations in calculations below, we formalise the correspondence between
relation-diagrams and relations as a functor from RelDiag (the sub-prop freely generated by
these diagrams) to MatB, the SMC of Boolean matrices with the disjoint sum as monoidal
product. The latter has natural numbers as objects and m × n matrices with Boolean
coefficients as morphisms n→ m. Its morphisms can also be ordered by inclusion if we think
of them as relations: given two Boolean n×m matrices A = (aij) and B = (bij), we write
A ≤ B if aij ≤ bij for all i and j.

▶ Definition 28. Let R (·) be the mapping given by:

R
()

=
(

1
1

)
R () = 1 R

()
=

(
1 1

)
R () = 1

By the freeness of RelDiag, we obtain the following result immediately.

▶ Proposition 29. R (·) extends to a symmetric monoidal functor RelDiag→ MatB.

We will use extensively the fact that MDA is complete for relation-diagrams.

▶ Theorem 30 (Completeness for relation-diagrams). If c, d are two relation-diagrams, then
c ≤MDA d iff R (d) ≤ R (c).

Proof. This is a standard completeness result for the symmetric monoidal theory of an
idempotent (co)commutative bimonoid [7, Theorem 7.2], i.e. axioms (B1)-(B11). While it is
usually stated for equalities, the extension to inequalities is straightforward, since inequalities
can be recovered from the semi-lattice structure of the binary operation defined by and

, that is we can show that c ≤ d iff
d

c
= c. See [20, Propositions 5.2-5.3]

for the detailed proof. ◀

We will need the fact that we can (co)copy and (co)delete any relation-diagram.

T. Antoine, R. Piedeleu, A. Silva, and F. Zanasi 27:15

▶ Lemma 31 (Distributivity for relation-diagrams). Any relation-diagram d :▶m→▶n satisfies

(cpy)= (co-cpy)=

Proof. Since the corresponding equalities hold in MatB, we can deduce the two syntactic
equalities from Theorem 30 (completeness for relations). ◀

We will need a particularly simple form of simulation below for a single letter.

▶ Lemma 32. For any relation diagram , we have a ≤ a

Proof. By structural induction. The two inductive cases for composition and monoidal
product are straightforward. The base cases are the axioms (E1-E4). ◀

In the previous section, we have used matrix-diagrams (Definition 19) to encode the
transition relations of NFA (Proposition 20). Clearly, we can also go the other way, associating
a unique transition relation δ to each matrix-diagram.

▶ Proposition 33. For any matrix-diagram d :▶n→▶n, there exists a n× n matrix D with
coefficients in Pf (Σ) such that JdK = {(X, Y) : DY ≤ X}.

Proof. This is obvious from the way matrix-diagrams are defined. We can obtain the (i, j)-th
coefficient of D by plugging and into all other left and right ports of d. ◀

We can now show that the relation-diagram encoding a given simulation does satisfy the
diagrammatic analogues of the three defining properties of simulation from Definition 2.

▶ Lemma 34 (Simulation for representations). Given two NFA A and Â, let (e, d, f) and
(ê, d̂, f̂) be the representations associated to their respective encoding as automata-diagrams.
If A ≤ Â, there is a relation-diagram such that:

d̂
(1)

≤ d ê
(2)

≤ e f̂
(3)

≤ f

Proof. Assume that R is a simulation relation witnessing A ≤ Â and let be the
relation-diagram encoding R−1, using Proposition 18 with the ordering of the states of A

and Â already fixed by the choice of the representations in the statement of the lemma. Let
us prove satisfies the required inequalities.
(1) For a ∈ Σ, let da be relation-diagram encoding the relation a−→A. Then, if Σ =
{a1, . . . , an}, it is easy to check that

d =

a1

an

...

da1

dan

...

by applying the (E3-E4) axioms to merge letters, as well as the (co)unit axiom for the
black (co)monoid (recall that, as a relation-diagram can be described as a block of

, composed with a block of ,). Naturally, this also holds for d̂.
Then, we show that behaves like a simulation for all da:

CSL 2025

27:16 A Complete Diagrammatic Calculus for Automata Simulation

R
(

da

)
= R () ; R

(
da

)
≤ R

(
d̂a

)
; R () (R is a simulation)

= R
(

d̂a

)
By completeness for relations (Theorem 30), we get the reverse syntactic inequality:

d̂a

(*)

≤ da . Finally, putting it all together and using copy and
merge laws for relations, we have:

d̂ =

a1

an

...

d̂a1

d̂an

...
(Lemma 31)=

a1

an

...

d̂a1

d̂an

...
...

(Lemma 32)

≤

a1

an

...

d̂a1

d̂an

...
...

(*)

≤

a1

an

...

da1

dan

...
...

(Lemma 31)=

a1

an

...

da1

dan

... = d

(2-3) Those two inequalities are just straightforward applications of completeness for relations
and the definition of simulation. ◀

The first inequality of the previous lemma is insufficient, because automata-diagrams factor
as e; d∗; f , not e; d; f , for a given representation. The rest of the proof is thus dedicated to
lifting Lemma 34(1) to d∗ instead of just d, using a proof similar to that of [20, Section 5]
(of which we only sketch the main ideas). Crucially, this is where the white generators

, , and their associated axioms come into play.
First, we build a right adjoint to a given simulation relation(-diagram) using

, (see [20, Section 5.2] for the details). Then, the F axioms of MDA are enough to
show the necessary adjunction: ⊣ , this is [20, Lemma 5.14].

▶ Lemma 35. For any relation-diagram , there exists a diagram , such that the
following inequalities hold: (i) m ≤ and (ii) ≤ n .

We can now lift the simulation relation to d∗ as we wanted.

▶ Lemma 36. If d̂ ≤ d then d̂∗ ≤ d∗ .

T. Antoine, R. Piedeleu, A. Silva, and F. Zanasi 27:17

Proof. We have

d̂∗ := d̂
(Lemma 35 (i))

≤ d̂

(Lemma 31)= d̂
(assumption)

≤ d

(Lemma 35 (ii))

≤ d =: d∗ ◀

We are finally ready to finish our proof of the completeness of MDA.

Proof of Theorem 15 (completeness). Given two automata-diagrams c, ĉ :▶→▶, we can
first extract their respective representations (e, d, f) and (ê, d̂, f̂), using Proposition 26. From
Corollary 27, we can recover two a NFA A and Â such that JcK = {(X, Y) | A.Y ≤ X}
and JĉK = {(X, Y) | Â.Y ≤ X}. If we also assume, as in the statement of the theorem,
that JĉK ⊆ JcK, then, since Â.1 = Â ≤ Â, we have (Â, 1) ∈ JĉK. Thus also (Â, 1) ∈ JcK, i.e.,
A.1 = A ≤ Â. In other words, Â simulates A. Given such a simulation, we can encode it as
a relation diagram and conclude the proof using Lemma 34 as follows:

ĉ = ê f̂d̂∗
(Lemma 34 (2))

≤ ê fd̂∗
(Lemma 34 (1))

≤ ê fd∗

(Lemma 34 (3))

≤ e fd∗ = c ◀

▶ Remark 37 (Completeness for arbitrary automata-diagrams). The results in this paper are
stated for ▶→▶ automata-diagrams, which correspond precisely to NFA (cf. Section 4). It
is natural to wonder whether they extend to automata-diagrams of arbitrary type. The short
answer is yes. First of all, we can always bend the wires of any given automaton-diagram
d : v → w to obtain one of type ▶n→▶m. Semantically, this only amounts to changing
whether a given variable appears on the left or on the right of the relation JdK [20, Proposition
5.4]. Second, it is possible to show [20, Theorem 5.5] that any automaton-diagram ▶n→▶m

distributes over and . As a result, any automaton-diagram ▶n→▶m is fully
characterised by n diagrams of type ▶→▶m. Now, contrary to [20], automata-diagrams
▶n→▶m in this paper do not distribute over and in general (they do so only laxly).
This means that we cannot reduce the completeness for automata-diagrams ▶n→▶m to that
of automata-diagrams ▶→▶. However, it is possible to define a notion of NFA with multiple
sets of final states and to adapt the definition of simulation correspondingly: if (q, s) ∈ R for
some simulation relation R between two such NFA A and B, each with m sets of final states
{Fi}1≤i≤m and {Gi}1≤i≤m, then we have Fi(q) ≤ Gi(s) for all 1 ≤ i ≤ m. Then, all results
of this paper generalise to automata-diagrams ▶→▶m (with multiple right ports, but only
one left port) and we can prove that MDA is complete for all automata-diagrams. While
this is a stronger result, we have preferred to state our main result for the class of diagrams
that correspond more closely to plain NFA, as the more general notion is not standard and
introduces distracting complications.

▶ Example 38. We now come back to the example from the introduction and show how to
prove the similarity of the two NFA.

CSL 2025

27:18 A Complete Diagrammatic Calculus for Automata Simulation

b
a, ba

7→
a

a

b

b

(F9)

≤
a

a

b

b

(B4)=
a

a

b

b

(E3)=

a

b

(A1-A2)=

a

b (B7)=

a

b

(B4)=
a

b

(F11)

≤
a

b ←[
a, b

The other inequality can be proven entirely analogously, replacing with , axiom
(F9) with (F1), and axiom (F11) with (F3).

6 Conclusion

In this paper, we have successfully provided a finite axiomatisation of NFA modulo similarity,
using a string diagrammatic syntax.

Related work. In doing so, we have built on an earlier diagrammatic axiomatisation of
NFA up to language equivalence [20]. We have shown here that the same syntax is able
to accommodate a different semantics and can be axiomatised with a slight change of
(in)equational theory: left-distributivity of a over and is now lax. This change
reflects the well-known fact that simulation implies language-inclusion. Another interesting
corollary is that, for deterministic automata(-diagrams), lax left-distributivity is sufficient to
prove language-inclusion (i.e., if we can show that c ≤ d using the axioms of [20], we can
show it using only those of MDA).

Our axiomatisation is also closely related to an existing axiomatisation of regular CCS
expressions up to similarity [9]. That work builds on Milner’s axiomatisation of bisimilarity,
adding the axiom E ≤ E+F , an axiom which is derivable in our calculus. The main difference
with our work is that this axiomatisation contains implicational axioms for fixpoints. In
contrast, our axiomatisation is finite, as was the case in our earlier work on language
equivalence [20]. We were able to achieve this by using a more expressive diagrammatic
calculus, in which we can encode not only the simulation relations themselves, but the proof
that they satisfy the desired properties.

T. Antoine, R. Piedeleu, A. Silva, and F. Zanasi 27:19

Future work. First, we would like to characterise the expressiveness and give a complete
axiomatisation of the full syntax (including the white generators) for the simulation semantics.

Second, we want to axiomatise the same syntax up to bisimilarity. Recall that a relation
R is a bisimulation between two NFA when both R and R−1 are simulations. The present
completeness result implies it is possible to check “by hand” that a relation-diagram encoding
R witnesses the bisimulation between two automata-diagrams c and d: we have to prove that
c ≤ d and d ≤ c, as in the proof of Theorem 15, using R in one direction and R−1 in the
other. However, this requires us to keep track of which simulation relation we use in each
direction, since the relation ≤ itself omits this crucial piece of information.

Excitingly, this paves the way for a 2-categorical approach to the theory of bisimilarity, a
perspective which would allow us to track the way in which two diagrams are related explicitly:
for c, d two automata-diagrams and r a relation-diagram, r : c⇒ d is a 2-morphism whenever
r is a simulation. We aim to show that this defines a (symmetric monoidal) 2-category and
find a presentation for it, using 2-morphisms to replace the axioms of MDA and further
equalities between them. Since bisimulations would be 2-isomorphisms in this setting, such
a presentation would allow us to construct them as 2-morphisms and prove that they are
invertible and satisfy the required properties using the additional equalities.

Finally, we would like to translate the axioms of MDA into transformations of the
state-transition graph of the corresponding automata, building on the extensive work on
formulating string diagram rewriting as rewriting of hypergraphs [3, 4].

References
1 John Baez, Brandon Coya, and Franciscus Rebro. Props in network theory. Theory and

Applications of Categories, 33(25):727–783, 2018.
2 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.
3 Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Paweł Sobociński, and Fabio Zanasi. Re-

writing modulo symmetric monoidal structure. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), 2016.

4 Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Paweł Sobociński, and Fabio Zanasi. Re-
writing with Frobenius. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS), pages 165–174, 2018.

5 Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. Deconstructing Lawvere with distributive
laws. Journal of logical and algebraic methods in programming, 95:128–146, 2018. doi:
10.1016/J.JLAMP.2017.12.002.

6 Aurelio Carboni and RFC Walters. Cartesian bicategories I. Journal of pure and applied
algebra, 49(1-2):11–32, 1987.

7 Brandon Coya and Brendan Fong. Corelations are the prop for extraspecial commutative
frobenius monoids. Theory and Applications of Categories, 32(11):380–395, 2017.

8 Brendan Fong and David I Spivak. An invitation to applied category theory: seven sketches in
compositionality. Cambridge University Press, 2019.

9 Ulrik Frendrup and Jesper Nyholm Jensen. A complete axiomatization of simulation for
regular CCS expressions. BRICS, Department of Computer Science, Univ., 2001.

10 CAR Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. Concurrent Kleene algebra.
In Proceedings of the 20th International Conference on Concurrency Theory (CONCUR),
pages 399–414. Springer, 2009.

11 Martin Hyland and Andrea Schalk. Glueing and orthogonality for models of linear logic.
Theoretical Computer Science, 294(1-2):183–231, 2003. doi:10.1016/S0304-3975(01)00241-9.

12 Gregory M Kelly and Miguel L Laplaza. Coherence for compact closed categories. Journal of
Pure and Applied Algebra, 19:193–213, 1980.

CSL 2025

https://doi.org/10.1016/J.JLAMP.2017.12.002
https://doi.org/10.1016/J.JLAMP.2017.12.002
https://doi.org/10.1016/S0304-3975(01)00241-9

27:20 A Complete Diagrammatic Calculus for Automata Simulation

13 Stephen C Kleene. Representation of events in nerve nets and finite automata. Technical
report, RAND PROJECT AIR FORCE SANTA MONICA CA, 1951.

14 Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of regular events.
Information and Computation, 110(2):366–390, 1994. doi:10.1006/INCO.1994.1037.

15 Dexter Kozen. Kleene algebra with tests. ACM Transactions on Programming Languages and
Systems (TOPLAS), 19(3):427–443, 1997. doi:10.1145/256167.256195.

16 Stephen Lack. Composing PROPs. Theory and Application of Categories, 13(9):147–163, 2004.
17 F William Lawvere. Functorial semantics of algebraic theories. Proceedings of the National

Academy of Sciences of the United States of America, 50(5):869, 1963.
18 Robin Milner. A complete inference system for a class of regular behaviours. Journal of

Computer and System Sciences, 28(3):439–466, 1984. doi:10.1016/0022-0000(84)90023-0.
19 Andrew M Moshier. Coherence for categories of posets with applications. Topology, Algebra

and Categories in Logic (TACL), page 214, 2015.
20 Robin Piedeleu and Fabio Zanasi. A finite axiomatisation of finite-state automata using string

diagrams. Logical Methods in Computer Science, 19, 2023. doi:10.46298/LMCS-19(1:13)2023.
21 Robin Piedeleu and Fabio Zanasi. An introduction to string diagrams for computer scientists.

arXiv preprint arXiv:2305.08768, 2023. doi:10.48550/arXiv.2305.08768.
22 Valentin N Redko. On defining relations for the algebra of regular events. Ukrainskii

Matematicheskii Zhurnal, 16:120–126, 1964.
23 Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and Alexandra Silva.

Guarded Kleene algebra with tests: verification of uninterpreted programs in nearly linear
time. Proceedings of the 47th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL), 4:1–28, 2020. doi:10.1145/3371129.

A Algebraic operations on NFA

We define here precisely the operation we use in the paper. Fix two NFA A = (Q, q0, F, α)
and B = (S, s0, G, β).

▶ Definition 39 (Sum). We define the sum of A and B, denoted A + B as follows: A + B =
(T, t0, H, γ) where:

T = Q ⊔ S ⊔ {t0}, with t0 neither appearing in Q nor S.
H(t) = F (t) if t ∈ Q, H(t) = G(t) if t ∈ S and H(t0) = F (q0) ∨G(t0)
(t, a, t′) ∈ γ whenever (t, a, t′) ∈ α, or (t, a, t′) ∈ β, or t = t0 and (q0, a, t) ∈ α or
(s0, a, t) ∈ β.

Intuitively, summing A and B only consists in merging their initial states into one which
mimics the behaviour of both.

▶ Definition 40 (Synchronous Product). The product A× B = (T, t0, H, γ) of A and B is
defined as:

T = Q× S

t0 = (q0, s0)
H(q, s) = F (q) ∧G(s)
(q, s) a−→A×B (q′, s′) whenever q

a−→A q′ and s
a−→B s′

Intuitively, every path in A×B is also a path in both A and B.

▶ Definition 41 (Composition). The composition A.B = (T, t0, H, γ) of A and B is defined as:
T = Q ⊔ {i | F (qi) = 1} × (S \ {s0}).
t0 = q0
H(q) = F (q) ∧G(s0) for q ∈ Q, and H(i, s) = G(s) for s ∈ S

https://doi.org/10.1006/INCO.1994.1037
https://doi.org/10.1145/256167.256195
https://doi.org/10.1016/0022-0000(84)90023-0
https://doi.org/10.46298/LMCS-19(1:13)2023
https://doi.org/10.48550/arXiv.2305.08768
https://doi.org/10.1145/3371129

T. Antoine, R. Piedeleu, A. Silva, and F. Zanasi 27:21

There are three cases for transitions in A.B:
For q, q′ ∈ Q, q

a−→A.B q′ whenever q
a−→A q′,

For s, s′ ∈ S, (i, s) a−→A.B (i, s′) whenever s
a−→B s′

For qi ∈ Q such that F (qi) = 1 and s ∈ S, qi
a−→A.B (i, s) whenever s0

a−→B s

Intuitively, to every final state in A we “attach” an entire copy of B.

▶ Definition 42 (Prefix). If a ∈ Σ then A prefixed by a, written a.A, is the composition of
({q0, q1}, q0, {q0 7→ 0, q1 7→ 1}, {(q0, a, q1)}) and A.

We will also write S.A for S ∈ Pf (Σ) some finite subsets of Σ, as a shorthand for(∑
a∈S a

)
.A =

∑
a∈S a.A.

B Background on SMCs and props

B.1 Props, String Diagrams, and Symmetric Monoidal Theories
After having defined our syntax, the free prop PS over signature S, we give its interpretation
into Sem, a SMC that constitutes our target semantics. To guarantee a compositional
interpretation, we require J·K : PS → Sem, the mapping of terms to their intended semantics,
to be a symmetric monoidal functor.

Once we have specified J·K : PS → Sem, it is natural to look for equations to reason about
semantic equality directly on the diagrams themselves. Given a set of equations E, i.e., a set
containing pairs of morphisms of the same type, we write =E for the smallest congruence
w.r.t. the two composition operations ; and ⊕. We say that =E is sound if c =E d implies
JcK = JdK. It is moreover complete when the converse implication also holds. We call a
pair (S, E) a symmetric monoidal theory (SMT) and we can form the prop PS,E obtained
by quotienting each homset of PS by =E . There is then a prop morphism q : PS → PS,E

witnessing this quotient.
The reader familiar with categorical logic, may find it helpful to know that the concrete

description above can be described in more abstract categorical terms, in line with Lawvere’s
account of algebraic theories [17]: signatures can be organised into a category and the free
prop PS given as a monad structure over this category. Furthermore, the category of props
and prop morphisms is equivalent to the category of algebras for this monad. Then, by
standard abstract nonsense, the prop PS,E and the quotient morphism q arise as a coequaliser
of free props. A detailed account of this presentation can be found in [1, Appendix A.2].

B.2 (Pre-)Ordered Props and Symmetric Monoidal Inequality Theories
Our semantic prop Sem often carries additional structure that we wish to lift to the syntax:
monotone relations qua relations can be ordered by inclusion. The corresponding mathemat-
ical structure is that of an ordered (or order-enriched) prop, a prop whose homsets are also
posets, with composition and monoidal product monotone maps.

In the same way that props can be presented by SMTs, an ordered prop can be presented
by symmetric monoidal inequality theory (SMIT). Formally, the data of a SMIT is the same
as that of a SMT: a signature S and a set I of pairs c, d : X → Y of PS -arrows of the same
type, that we now read as inequalities c ≤ d.

As for plain props, we can construct a pre-ordered prop from a SMIT by building the
free prop PS and passing to a quotient PS,I : we first build the pre-order on each homset by
closing I under ⊕ and taking the reflexive and transitive closure of the resulting relation.
Finally, we obtain PS,I by quotienting the resulting prop by imposing anti-symmetry.

CSL 2025

27:22 A Complete Diagrammatic Calculus for Automata Simulation

SMITs subsume SMTs, since every SMT can be presented as a SMIT, by splitting each
equation into two inequalities. As a result, in the main text, we only consider SMITs, referring
to them simply as theories, and their defining inequalities as axioms. When referring to a
sound and complete theory, we will also use the term axiomatisation, as is standard in the
literature. The situation for a sound and complete theory is summarised as a commutative
diagram:

PS Sem

PS,I

q

J·K

s

Soundness simply means that J·K factors as s ◦ q through PS,E and completeness means that
s is a faithful prop morphism.

Strong Induction Is an Up-To Technique
Filippo Bonchi
Universitá di Pisa, Italy

Elena Di Lavore
Universitá di Pisa, Italy

Anna Ricci
Universitá di Pisa, Italy

Abstract
Up-to techniques are enhancements of the coinduction proof principle which, in lattice theoretic
terms, is the dual of induction. What is the dual of coinduction up-to? By means of duality, we
illustrate a theory of induction up-to and we observe that an elementary proof technique, commonly
known as strong induction, is an instance of induction up-to. We also show that, when generalising
our theory from lattices to categories, one obtains an enhancement of the induction definition
principle known in the literature as comonadic recursion.

2012 ACM Subject Classification Theory of computation → Proof theory; Theory of computation
→ Logic and verification

Keywords and phrases Induction, Coinduction, Up-to Techniques, Induction up-to, Lattices, Algebras

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.28

Funding This study was carried out within the National Centre on HPC, Big Data and Quantum
Computing - SPOKE 10 (Quantum Computing) and received funding from the European Union
Next-GenerationEU - National Recovery and Resilience Plan (NRRP) – MISSION 4 COMPONENT
2, INVESTMENT N. 1.4 – CUP N. I53C22000690001. This research was partly funded by the
Advanced Research + Invention Agency (ARIA) Safeguarded AI Programme.
Filippo Bonchi: Supported by the Ministero dell’Università e della Ricerca of Italy grant PRIN 2022
PNRR No. P2022HXNSC - RAP (Resource Awareness in Programming).

Acknowledgements The authors would like to thank Jurriaan Rot for the inspiring discussions.

1 Introduction

Induction is a fundamental tool frequently used by mathematicians, logicians, and computer
scientists without much thought. It includes both definition and proof principles. The
definition principle allows for the specification of data types, such as natural numbers, lists,
or trees, and to define functions from them; the proof principle enables proving properties on
such inductively defined structures.

The coinduction proof principle, which is formally the dual of induction, is less familiar.
It first emerged in the 1970s [33] in three independent fields: set theory [14], modal logic [40],
and concurrency theory [27]. Since then, it has been recognized as a fundamental principle in
computer science and has been applied in various contexts [24, 1, 11, 16, 12, 31, 25, 17, 22].

Up-to techniques are enhancements of the coinduction proof principle, originally intro-
duced by Milner in [23] to simplify coinductive arguments. Coinduction up-to has proven
useful, if not essential, in numerous proofs about concurrent systems (see [30] for refer-
ences). It has been used to establish decidability results [9], improve standard automata
algorithms [6], and prove the completeness of domains in abstract interpretation [3].

© Filippo Bonchi, Elena Di Lavore, and Anna Ricci;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 28; pp. 28:1–28:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3433-723X
https://orcid.org/0000-0002-7783-5079
https://doi.org/10.4230/LIPIcs.CSL.2025.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Strong Induction Is an Up-To Technique

Table 1 The lattices-to-categories correspondence. On the left, the proof and definition principles
with their enhacement; On the right, the corresponding inductive invariants and algebras.

induction proof principle induction definition principle
induction up-to comonadic recursion
strong induction course-of-value iteration

f(x) ⊑ x a : F X → X

fd(x) ⊑ x a : F DX → X

ff↓(x) ⊑ x a : F F ↓X → X

The theory of up-to techniques was initially developed by Sangiorgi [32] and later
generalized to the abstract setting of complete lattices by Pous [28, 29]. In particular, Pous
introduced the notion of f -compatible techniques for some monotone map f . Intuitively,
these are are sound up-to techniques with advantageous composition properties.

A curiosity that may have occurred to many is the following:

Since coinduction is the dual of induction, what is the dual of coinduction up-to?

In this paper, we introduce a theory of induction up-to by simply dualizing the work of
Pous [28]. Our main finding is that the well-known principle of strong induction over the set
natural numbers N, a principle familiar even to undergraduate students, is an example of an
inductive up-to technique.

More precisely, we dualize the notion of f -compatible techniques from [28] to that of
f -cocompatible (Definition 5) up-to techniques, which, as expected, are sound (Theorem 7)
and enjoy good composition properties (Proposition 8). We show that, under mild conditions,
any proof by coinduction up-to can equivalently be carried out by means of induction up-to,
and vice versa (Proposition 11).

For any monotone map f , its down-closure, denoted by f↓, is always f -cocompatible
(Corollary 9). We name induction up-to f↓ strong induction since, when f is the monotone
map with the least fixed point N, induction up-to f↓ coincides with the usual strong induction
over N (Section 6.1). Unsurprisingly, the same approach can be applied to obtain strong
induction on words (Section 6.2) and other inductive data types.

Overall, this shows that induction up-to, and in particular strong induction, provide
enhancements for the induction proof principle. At this point, another curiosity arises:

What are enhancements of the induction definition principle?

Intuitively, one can think of recursion schemes as enhancements of the induction definition
principle: they ensure that the specification of a recursive function is well-defined.

To formalize this intuition, we exploit the fact that Pous’ theory [28] has a beautiful
categorical meaning [5]: when generalizing this theory from lattices to categories, one obtains
Bartel’s λ-coinduction [2], an enhancement of the coinduction definition principle that
generalizes several specification techniques common in computer science [36, 20], notably the
abstract GSOS by Turi and Plotkin [37, 21].

We illustrate that, following the same pattern, the theory of induction up-to generalize to
a certain recursion scheme known as comonadic recursion by Capretta, Uustalu, Vene and
Pardo [39, 8] (Proposition 18). In particular, strong induction generalises to a scheme known
as course-of-value iteration [38, 7] (Proposition 20). These correspondences are summarised
in Table 1.

F. Bonchi, E. Di Lavore, and A. Ricci 28:3

Related Work

An elegant theory of inductive enhancements has been recently introduced by Sangiorgi
in [35]. This theory substantially differs from ours in its goals: Sangiorgi aims to enhance
the proof methods for those behavioural equivalences and preorders [41, 42], such as trace,
failure, and ready, that are defined inductively. These relations can usually be stratified, and
the proposed inductive enhancements are functions on relations preserving such stratification.
Like in the theory of coinductive enhancements [32, 28], the starting notion is the one of
(semi-)progression and enhancements are up-closures, which is a crucial difference from our
inductive invariants.

Another approach, similar in spirit to [35], is based on the techniques of unique solutions
of equations [13, 34]. However, to the best of our understanding, its applicability seems to
be strongly tailored to equivalence relations.

Synopsis

We begin our exposition in Section 2 with a simple example of proof by strong induction
for the Fibonacci sequence. We recall the lattice-theoretic understanding of induction and
coinduction in Section 3 and the theory of coinductive up-to techniques in Section 4; its dual,
the theory of inductive up-to techniques, is illustrated in Section 5. In particular, Section 5.1
links coinduction up-to and induction up-to by means of an involution operator; Example 12
illustrates how, following this link, the coinductive technique of up-to equivalence becomes
up-to apartness. Section 6.2 introduces strong induction as a certain up-to technique. The
fact that this generalises strong induction on N is not obvious and its proof is detailed in
Section 6.1. Strong induction on words is discussed in Section 6.2. In Section 7, we turn
from the proof principle to the definition principle: Section 7.1 quickly recalls the induction
definition principle by means of initial algebras; Section 7.2 recalls comonadic corecursion
and Section 7.3 course-of-value iteration, a special case of comonadic corecursion. Finally,
Section 7.4, revisits the Fibonacci, by recalling that its definition is by means of course of
value iteration. The appendix contains the missing proofs and some additional material.

Until Section 7, the reader only requires some familiarity with lattice theory. Then, we
expect the reader to be familiar with category theory.

2 Motivating Example: the Fibonacci sequence

Induction is a proof principle that applies to inductively defined structures. For instance, for
proving that a predicate P (n) hold for all natural numbers n ∈ N, one has to find a predicate
Q(n) that implies P (n), that is true for 0 and that, when true for n, then it is true for n + 1.

Q(0) ∀n ∈ N.Q(n) ⇒ Q(n + 1) Q ⇒ P

∀n ∈ N.P (n) (1)

Sometimes, induction might be too weak to prove certain properties. As an example,
consider the Fibonacci sequence defined as

fib(0) def= 1 fib(1) def= 1 fib(n + 2) def= fib(n + 1) + fib(n),

and suppose that one would like to prove that fib(n) ≥ n for all n ∈ N. One could start a
proof by induction by checking the base case, fib(0) = 1 ≥ 0. For the inductive case, one
would need to bound fib(n + 1) = fib(n) + fib(n − 1). At this point, one would be stuck
because there is no information on fib(n − 1) from the inductive hypothesis.

CSL 2025

28:4 Strong Induction Is an Up-To Technique

Strong induction comes to our rescue by allowing a stronger inductive hypothesis. We
still need to find a predicate Q(n) that implies P (n) and that holds at 0, but when showing
that it is true for n + 1, we may assume that it holds for all k ≤ n.

Q(0) ∀n(∀n′ ∈ [0, n] . Q(n′)) ⇒ Q(n + 1) Q ⇒ P

∀n ∈ N.P (n) (2)

We conclude the proof of fib(n) ≥ n for all n ∈ N by strong induction. For n = 0,
fib(0) = 1 ≥ 0. For the inductive step, we assume that fib(k) ≥ k for all k ≤ n + 1, and we
seek to bound fib(n+1) = fib(n)+fib(n−1). If n = 1 then fib(2) = fib(1)+fib(0) = 1+1 ≥ 2.
Otherwise, if n > 1, we use the strong inductive hypothesis:

fib(n + 2) = fib(n + 1) + fib(n) ≥ n + 1 + n ≥ n + 2 .

We want to draw the reader’s attention to the fact that, here, strong induction is necessary
because fib is not–strictly speaking–inductively defined: the value of fib(n + 1) does not
depend only on fib(n). We will revisit the relationship between definitions and proofs in
Section 7. Until then, we will focus only on the proof principles.

3 Preliminaries and notation

A complete lattice is a partially ordered set (L, ⊑) with joins (⊔), meets (⊓), a top (⊤) and
a bottom (⊥) elements, least upper bounds (

⊔
) and greatest lower bounds (⊔). Henceforth,

we use (L, ⊑), (L1, ⊑1), (L2, ⊑2) to range over complete lattices and x, y, z to range over their
elements. One lattice that we will often use is P(X), the power set of a set X, ordered by
set inclusion.

Recall that a function f : L1 → L2 is said to be a monotone map if it preserves the order:
for all x, y ∈ L1, if x ⊑1 y then f(x) ⊑2 f(y). The identity idL : L → L and the composition
f ◦g : L1 → L3 of two monotone maps g : L1 → L2 and f : L2 → L3 are monotone. Therefore,
if f : L → L is a monotone map, then its powers fn are also monotone, where the functions
fn : L → L are defined inductively as

f0 def= idL fn+1 def= f ◦ fn. (3)

We will implicitly use the fact that monotone maps form a complete lattice with their natural
point-wise order: whenever f, g : L1 → L2 we write f ⊑ g iff f(x) ⊑ g(x) for all x ∈ L1.

A monotone map f : L → L is an up-closure operator if x ⊑ f(x) and ff(x) ⊑ f(x).
It is a down-closure operator if f(x) ⊑ x and f(x) ⊑ ff(x). Particularly relevant to our
exposition are the up-closures and the down-closure generated by a (co)continuous map
f : L → L, namely a monotone map preserving arbitrary least upper bounds and greatest
lower bounds:

f↑ def=
⊔
i∈N

f i f↓ def= ⊔

i∈N
f i . (4)

Given a monotone map f : L → L, the element x ∈ L is said to be a post-fixed point iff
x ⊑ f(x); a pre-fixed point iff f(x) ⊑ x; a fixed point iff x = f(x). We write µf and νf

for the least and greatest fixed point. For a monotone map f on a complete lattice L, the
Knaster-Tarski fixed point theorem characterises µf as the least upper bound of all pre-fixed
points of f and µf as the greatest lower bound of all its post-fixed points:

µf = ⊔{x | f(x) ⊑ x} νf =
⊔

{x | x ⊑ f(x)}.

F. Bonchi, E. Di Lavore, and A. Ricci 28:5

This immediately leads to the induction and coinduction proof principles, illustrated by
the inference rules below, on the left and on the right, respectively [26].

f(y) ⊑ y y ⊑ x

µf ⊑ x

y ⊑ f(y) x ⊑ y

x ⊑ νf
(5)

The induction proof principle states that in order to prove that µf ⊑ x, one should provide an
inductive invariant –namely, a pre-fixed point of f– that is below x; dually, the coinduction
proof principle states that in order to prove that x ⊑ νf , one should provide a coinductive
invariant, i.e., a post-fixed point of f , that is above x.

▶ Remark 1. From this lattice theoretic perspective, it is easy to see that the coinduction
proof principle is simply the dual of induction. Indeed, whenever (L, ⊑) is a lattice, then so
is (L, ⊒). Similarly, if f : (L, ⊑) → (L, ⊑) is monotone, then so is f : (L, ⊒) → (L, ⊒), and
the greatest fixed point of f over (L, ⊑) becomes the least fixed point of f over (L, ⊒).

We illustrate inductive and coinductive invariants with an example from automata theory.

▶ Example 2 (cf. [6, Remark 2]). We denote by A∗ the set of words over an alphabet A; ϵ

denotes the empty word and u · w the word obtained by concatenating u ∈ A∗ with w ∈ A∗.
For a word w ∈ A∗, we indicate its length with |w|.

A deterministic automaton on the alphabet A is a triple (X, o, t), where X is a set of
states, o : X → {0, 1} is the output function, determining if a state x is accepting (o(x) = 1)
or not (o(x) = 0) and t : X → XA is the transition function which returns the next state, for
each letter a ∈ A. Every automaton (X, o, t) induces a function lan− : X → {0, 1}A∗ defined
inductively for all x ∈ X, a ∈ A and w ∈ A∗ as lanx(ε) = o(x) and lanx(a · w) = lant(x)(a)(w).
Two states x, y ∈ X are said to be language equivalent, in symbols x ∼ y, iff lanx = lany.

Alternatively, (∼) can be defined as the greatest fixed point of some map on P(X × X),
the lattice of relations over X. The functions l, q : P(X × X) → P(X × X) are defined as

l(R) def= {(x, y) | for all a ∈ A, (t(x)(a), t(y)(a)) ∈ R} q(R) def= {(x, y) | o(x) = o(y)} (6)

for all R ⊆ X × X. One can easily check that both l and q are monotone and that
ν(l ⊓ q) = (∼). Thanks to this characterisation, one can prove that two states x′, y′ ∈ X

are language equivalent by means of the coinduction proof principle in (5): to show that
{(x′, y′)} ⊆ (∼), it is enough to provide a relation R that is a post-fixed point of l ⊓ q and
such that {(x′, y′)} ⊆ R. Such coinductive invariants are often called bisimulations.

For an example, consider the following deterministic automaton, where final states are
overlined and the transition function is represented by labelled arrows. The relation consisting
of dashed and dotted lines is a bisimulation witnessing that {(x, u)} ⊆ (∼).

x
a,b // y

a,b // z a,bdd

v

a,b
**
w

a,b
oo

u

a 44

b

77

(7)

One can prove that {(x′, y′)} ⊆ (∼) by means of induction as well: for all R ⊆ X × X,
the functions l†, p : P(X × X) → P(X × X) are defined as follows.

l†(R) def= {(t(x)(a), t(y)(a)) | a ∈ A, (x, y) ∈ R} p(R) def= {(x′, y′)} (8)

CSL 2025

28:6 Strong Induction Is an Up-To Technique

Note that p above, as well as q in (6), are constant functions: we will sometime take the
freedom to identify them with the corresponding element in the lattice. Intuitively, µ(l† ⊔ p)
represents the subset of all pairs of states that are reachable from the pair (x′, y′). Thus,
{(x′, y′)} ⊆ (∼) if and only if all those pairs of states are in q, i.e., if and only if µ(l† ⊔ p) ⊆ q.
The latter can be proved by exhibiting a relation R that is a pre-fixed point of l† ⊔ p and
such that R ⊆ q: the relation formed by the dashed and dotted lines in (7) satisfies this
condition when taking (x′, y′) to be (x, u).

4 Coinduction up-to

Coinduction is a technique for proving x ⊑ νf for some map f on a lattice (L, ⊑) by providing
a coinductive invariant for f . In many situations, providing such an invariant is far too
complicated. Motivated by this fact, Milner [23] introduced enhancements of the coinduction
proof principle which are nowadays widely known as up-to techniques. In a nutshell, an
up-to technique is an up-closure d : (L, ⊑) → (L, ⊑). An f-coinductive invariant up-to d is
some y ∈ L such that y ⊑ fd(y), namely a post-fixed point of fd. An up-to technique d is
said to be sound w.r.t. f if the following coinduction up-to principle holds.

y ⊑ f(d(y)) x ⊑ y

x ⊑ νf
(Coinduction Up-To)

In (5), one has to find an invariant y such that y ⊑ f(y). In (Coinduction Up-To), the
search of such a y is simplified since it is enough that y ⊑ f(d(y)). Since d is an up-closure,
f(y) ⊑ f(d(y)), which simplifies the task of finding coinductive invariants.

▶ Example 3 (Up-to equivalence). We continue Example 2 to illustrate a coinductive invariant
up-to. We instantiate (Coinduction Up-To) by taking f to be l ⊓ q and d to be the function
e : P(X × X) → P(X × X) mapping any relation R ⊆ X × X into its equivalence closure.
One can check (∼) by exhibiting a relation R such that R ⊆ l ⊓ q(e(R)).

Consider for instance the relation S consisting of only the dashed lines in (7). Note
that (y, w) ∈ e(S) but (y, w) /∈ S. It is thus easy to see that S ⊆ l ⊓ q(e(S)), but S is not
included in l ⊓q(S). In other words, S is a coinductive invariant up-to e but not a coinductive
invariant. In Example 2, to prove that x ∼ u by means of coinduction, we need to take the
relation consisting of both dashed and dotted lines in (7). With coinduction up-to e, it is
thus enough to take only the dashed lines.

Of course, before using an up-to technique, one should prove it to be sound. Since this might
be quite challenging, several theories [32, 28, 10, 29, 4] have been introduced for simplifying
this task. In this paper we will consider the theory of Pous in [28] that focuses on the notion
of compatible techniques: d is f-compatible iff df ⊑ fd. The key results in [28] state that
compatible techniques are sound and can be nicely composed.

5 Induction up-to

Recall that for applying the induction proof principle in (5), one has to find a y ∈ L such that
f(y) ⊑ y. The idea of induction up-to is to simplify this task by weakening such constraint
to f(d(y)) ⊑ y for some d : L → L.

Note that if the map d is an up-closure, as it is the case of coinduction up-to, then this
would only complicate our task by imposing additional constraints; indeed f(y) ⊑ f(d(y)).

F. Bonchi, E. Di Lavore, and A. Ricci 28:7

▶ Example 4. Recall from Example 2 that the relation R consisting of both dashed and
dotted lines in (7) is an inductive invariant, i.e., (l† ⊔ p)(R) ⊆ R. Note that, instead
l† ⊔ p(e(R)) is not included into R since, e.g., (v, w) is in l† ⊔ p(e(R)) but not in R.

As expected, the solution consists in considering down closures. An (inductive) up-to technique
is a down closure d : (L, ⊑) → (L, ⊑). An f -inductive invariant up-to d is some y ∈ L such
that fd(y) ⊑ y, namely a pre-fixed point of fd. An up-to technique d is said to be sound
w.r.t. f if the following induction up-to principle holds.

f(d(y)) ⊑ y y ⊑ x

µf ⊑ x
(Induction Up-To)

To prove the soundness of inductive up-to techniques, we consider the dual of the notion
of compatible functions from [28].

▶ Definition 5 (Cocompatible map). Let f, d : (X, ⊑) → (X, ⊑) be two monotone maps. We
say that d is cocompatible with f , shortly f -cocompatible, if fd ⊑ df .

When d is f -cocompatible, any inductive invariant up-to gives rise to an inductive invariant.

▶ Proposition 6. Let d be a down closure that is cocompatible with some monotone map f .
If y is a pre-fixed point for fd, then d(y) is a pre-fixed point for f .

Proof.

fd(y) ⊑ fdd(y) (d down closure)
⊑ dfd(y) (d is f -cocompatible)
⊑ d(y) (y is a pre-fixed point of fd)

◀

▶ Theorem 7. If d is f -cocompatible, then it is sound.

Proof. We have to prove the conclusion of (Induction Up-To) assuming its premise. By
fd(y) ⊑ y and Proposition 6, it holds that

fd(y) ⊑ d(y).

Since d(y) ⊑ y, as d is a downclosure, and y ⊑ x it holds that

d(y) ⊑ x.

Thus by replacing y with d(y) in (5), it holds that µf ⊑ x. ◀

It is worth mentioning that the two results above also hold by dualising the theory in [28].
We have reported their proofs since they will be relevant in Section 7. The following result
also follows easily from [28]. For convenience of the reader we report its proof in Appendix A.

▶ Proposition 8 (The algebra of cocompatible maps). Let f, d, e : (X, ⊑) → (X, ⊑) be mono-
tone maps. Let {di}i∈N be an N-indexed family of monotone maps.
1. The identity idX is f -cocompatible;
2. f is f -cocompatible;
3. If d and e are f -cocompatible, then d ◦ e is f -cocompatible;
4. If d is f -cocompatible then, for all n ∈ N, dn is f -cocompatible;

CSL 2025

28:8 Strong Induction Is an Up-To Technique

5. If d and e are f -cocompatible, then d ⊓ e is f -cocompatible;
6. If, for all i ∈ N, di is f -cocompatible, then ⊔i∈N di is f -cocompatible;
7. If d is f -cocompatible, then d↓ is f -cocompatible.

▶ Corollary 9. Let f : (X, ⊑) → (X, ⊑) be a continuous monotone map. Then, its down-
closure f↓ is f -cocompatible.

Proof. By point 2 and 7 in Proposition 8. ◀

▶ Remark 10. Note that we have defined up-to techniques to be down-closures, while
compatible maps are defined as arbitrary monotone maps. This choice is justified by the
fact that monotone maps compose nicely, while down-closures do not. This motivated
Pous to introduce up-to techniques in the original theory in [28] as monotone maps rather
than up-closures. Here, we preferred to stay with closures, as this simplifies the proofs
of Proposition 6 and Theorem 7, which will be relevant in the categorical generalisation
illustrated in Section 7.

Note also that restricting to down-closures does not limit the applicability of the theory:
indeed, if d is an f -compatible monotone map, not necessarily a down-closure, then, by
Proposition 8.7, d↓ is also f -compatible. Moreover, if fd(y) ⊑ x, then

fd↓(y) ⊑ fd(y) ⊑ x

since d↓ ⊑ d. In other words, any proof up-to d is also a proof up-to d↓.

5.1 Relating Coinduction up-to and Induction Up-to via Involution
Coinduction and induction are equivalent whenever the lattice (L, ⊑) comes with an involution
operator ¬ : (L, ⊑) → (L, ⊒), namely a function on L such that

if x ⊑ y, then ¬x ⊒ ¬y ¬¬x = x (9)

for all x, y ∈ L. In this case, for any monotone map f on (L, ⊑), one has that f
def= ¬f¬ is a

monotone map. Moreover, assuming that f preserves ⊔of ω-chains, it holds that:

x ⊑ νf ⇔ ¬(νf) ⊑ ¬x ⇔ µf ⊑ ¬x.

Such correspondence lifts to up-to techniques: whenever one can prove the leftmost by
coinduction up-to d, for some f -compatible technique d, one can equivalently prove the
rightmost by induction up-to to d. This is made formal by the following result.

▶ Proposition 11. Let f, d : (L, ⊑) → (L, ⊑) be monotone maps and y be an element of L.
1. d is an up-closure iff d is a down-closure;
2. d is f -compatible iff d is f -cocompatible;
3. y is an f -coinductive invariant up-to d iff ¬y is an f -inductive invariant up-to d.

▶ Example 12 (Up-to apartness). Following the above considerations, one can transform
coinduction up-to equivalence in Example 3 into induction up-to apartnesses. Apartness
relations are standard in constructive reals analysis and has been first axiomatised in [19]:
R ⊆ X × X is a an apartness relation if it is

irreflexive: (x, x) /∈ R for all x ∈ X;
symmetric: if (x, y) ∈ R, then (y, x) ∈ R for all x, y ∈ X;
co-transitive: if (x, y) ∈ R, then (x, z) ∈ R or (z, y) ∈ R, for all x, y, z ∈ X.

F. Bonchi, E. Di Lavore, and A. Ricci 28:9

The reader can easily check that R is an apartness relation iff ¬R is an equivalence relation,
where ¬ indicates the complement of a relation. Recall from Example 3 that the up-
closure e : P(X × X) → P(X × X) mapping any relation R into its equivalence closure. By
Proposition 11.1, e is a down closure: it maps any R into the largest apartnesses relation
contained in R. Since e is (l ⊓ q)-compatible, by Proposition 11.2, e is (l ⊓ q)-cocompatible.
Since P(X × X) is a boolean algebra, then l ⊓ q = l ⊔ q; it is easy to check that l and q map
any R ⊆ X × X into the following relations.

l(R) = {(x, y) | exists a ∈ A, (t(x)(a), t(y)(a)) ∈ R} q(R) = {(x, y) | o(x) ̸= o(y)}.

With this characterisation, one can see that inductive invariants for l ⊔ q are exactly those
introduced [15, Definition 2.2]. Our work enhances this proof method with up-to apartness.

For an example of an inductive invariant up-to apartness, consider again the relation S

consisting of the dashed lines in (7). Since S is a (l ⊓ q)-coinductive invariant up to e, then
by Proposition 11.3, ¬S is a (l ⊔ q)-inductive invariant up-to e.

6 Strong Induction is an up-to technique

This section studies the proof principle given by a particular f -cocompatible map: the
down-closure of f . Indeed, by Corollary 9, f↓ is f -compatible and, by Theorem 7, the
following proof principle is always sound.

f(f↓(y)) ⊑ y y ⊑ x

µf ⊑ x
(Strong Induction)

We call such principle strong induction. Indeed, as we illustrate below, when instantiated to
usual induction on natural numbers, the above proof principle coincides with the well-known
strong induction illustrated in Section 2.

6.1 Strong Induction on natural numbers
We begin by illustrating how (5) generalises standard induction over natural numbers.
Consider the lattice P(N) and the monotone map b : P(N) → P(N) defined as

b(X) def= {0} ∪ {x + 1 | x ∈ X} (10)

for all X ∈ P(N). The least fixed point of b is the set of natural numbers, µb = N. We
take the sets X and Y to be the sets of natural numbers on which P (n) and Q(n) are true,
respectively.

X = {n ∈ N | P (n)} Y = {n ∈ N | Q(n)}

With these choices, set inclusion corresponds to predicate implication: Y ⊆ X iff Q ⇒ P .
The least fix point of b is contained in X iff all natural numbers are contained in X, which
means that P (n) holds for all n ∈ N.

µb ⊆ X iff N ⊆ X iff ∀n ∈ N.P (n)

Similarly, Y is a pre-fixed point of b iff Y contains 0 and it contains n + 1 for each n ∈ Y ,
which means that Q holds at 0 and it holds at n + 1 whenever it holds at n.

b(Y) ⊆ Y iff {0} ∪ {n + 1 | n ∈ Y } ⊆ Y iff Q(0) and ∀n ∈ N.Q(n) ⇒ Q(n + 1)

CSL 2025

28:10 Strong Induction Is an Up-To Technique

These considerations show that (1) is a particular instance of (5), when we instantiate it to
b : P(N) → P(N).

b(Y) ⊆ Y Y ⊆ X

µb ⊆ X
iff Q(0) ∀n ∈ N.Q(n) ⇒ Q(n + 1) Q ⇒ P

∀n ∈ N.P (n)

We can now illustrate our main observation: when instantiating (Strong Induction) to b

one obtains exactly the strong induction on natural numbers reported in (2). We start by
computing the powers bn of b.

▶ Lemma 13. For all n ∈ N, and all X ∈ P(N),

bn(X) = {x ∈ N | x < n} ∪ {x + n | x ∈ X}.

Proof. By induction. For the base case, we have the following derivation.

b0(X) = idP(N)(X) (3)
= X

= ∅ ∪ X

= {x ∈ N | x < 0} ∪ {x + 0 | x ∈ X}

For the inductive case, we have the following derivation.

bn+1(X) = bbn(X) (3)
= b({x ∈ N | x < n} ∪ {x + n | x ∈ X}) (Ind. Hyp.)
= {0} ∪ {x + 1 | x < n} ∪ {x + n + 1 | x ∈ X} (10)
= {0} ∪ [1, n] ∪ {x + n + 1 | x ∈ X}
= {x ∈ N | x < n + 1} ∪ {x + n + 1 | x ∈ X} ◀

The core of our argument relies on the following result, stating that b↓(X) is the largest
closed interval from including 0 that is a subset of X.

▶ Lemma 14. For any set X ∈ P(N), b↓(X) is characterised as b↓(X) = {x | [0, x] ⊆ X}.

Proof. By definition b↓ = ⊔∞n=0 bn. Thus,

m ∈ b↓(X) ⇔ ∀n ∈ N. m ∈ bn(X)
⇔ ∀n ∈ N. (m ∈ {x ∈| x < n} ∨ m ∈ {x + n | x ∈ X}) (Lemma 13)
⇔ ∀n ∈ N. (m < n ∨ m ∈ {x + n | x ∈ X})
⇔ ∀n ∈ N. (¬(m ≥ n) ∨ m ∈ {x + n | x ∈ X})
⇔ ∀n ∈ N. ((m ≥ n) ⇒ m ∈ {x + n | x ∈ X})
⇔ ∀n ∈ N. ((n ≤ m) ⇒ ∃x ∈ X. m = x + n)
⇔ ∀n ∈ N. ((n ≤ m) ⇒ ∃x ∈ X. x = m − n)
⇔ ∀n ∈ N. ((n ≤ m) ⇒ (m − n) ∈ X)

In short,

m ∈ b↓(X) ⇔ ∀n ∈ N.((n ≤ m) ⇒ (m − n) ∈ X) (11)

We use (11) to prove the two inclusions of b↓(X) = {x | [0, x] ⊆ X} separetely:

F. Bonchi, E. Di Lavore, and A. Ricci 28:11

b↓(X) ⊆ {x | [0, x] ⊆ X}. We assume that m ∈ b↓(X) and we need to prove that
[0, m] ⊆ X. Let us take an arbitrary y ∈ [0, m]. Since by (11), (m − n) ∈ X for all n ≤ m,
then one can take n to be m − y and have that m − (m − y) ∈ X, that is, y ∈ X.
b↓(X) ⊇ {x | [0, x] ⊆ X}. We assume that [0, m] ⊆ X. Thus ∀n ∈ N. ((n ≤ m) ⇒
(m − n) ∈ X) that, by (11), means that m ∈ b↓(X). ◀

▶ Proposition 15. For any set Y ∈ P(N), the following are equivalent
bb↓(Y) ⊆ Y ;
0 ∈ X and (∀n ∈ N . [0, n] ⊆ Y ⇒ n + 1 ∈ Y).

Proof.

b b↓(Y) ⊆ Y ⇔ {0} ∪ {y + 1 | y ∈ b↓(Y)} ⊆ Y (10)
⇔ 0 ∈ Y and {y + 1 | y ∈ b↓(Y)} ⊆ Y

⇔ 0 ∈ Y and ({y + 1 | y ∈ {n ∈ N | [0, n] ⊆ Y }} ⊆ Y) (Lemma 14)
⇔ 0 ∈ Y and (∀n ∈ N . [0, n] ⊆ Y ⇒ n + 1 ∈ Y)

◀

The above proposition allows us to easily see that strong induction (2) is induction
up-to b↓. The latter is illustrated below on the left. The former is reported on the right.

bb↓(Y) ⊆ Y Y ⊆ X

µb ⊆ X
iff Q(0) ∀n(∀n′ ∈ [0, n] . Q(n′)) ⇒ Q(n + 1) Q ⇒ P

∀n ∈ N.P (n)

The correspondence between the two rules mirrors that of induction. The conclusions of the
two rules coincide in the same way that they did for induction. For the premise, observe
that, by Proposition 15,

b b↓(Y) ⊆ Y iff Q(0) ∧ (∀n(∀n′ ∈ [0, n] . Q(n′)) ⇒ Q(n + 1)).

6.2 Strong Induction on Words
As expected, one can use strong induction not only on N but on any inductive data type.
Below, we illustrate strong induction on A∗, the set of words over an alphabet A.

As we did for natural numbers, we need to give a monotone map c : P(A∗) → P(A∗) that
gives induction on words, i.e. whose least fixed point is A∗. The candidate monotone map c

mimics the definition of the monotone map b for natural numbers: it maps a set X to the
set containing the empty word and all the successors of words in X.

c(X) def= {ϵ} ∪ {a · w | w ∈ X, a ∈ A} (12)

Since the least fixed point of c is A∗, the induction principle (5) instantiated to c give us the
usual induction principle on words.

c(Y) ⊆ Y Y ⊆ X

µc ⊆ X
iff Q(ϵ) ∀a ∈ A.∀w ∈ A∗.Q(w) ⇒ Q(a · w) Q ⇒ P

∀w ∈ A∗.P (w)

We now turn our attention to (Strong Induction) instantiated with c:

cc↓(Y) ⊆ Y Y ⊆ X

µc ⊆ X

CSL 2025

28:12 Strong Induction Is an Up-To Technique

What does this means in practice? To answer this question, the key is to have a handy
characterisation of c↓. This is going to resemble that of b↓ but, instead of the ordering on
natural numbers, we consider the suffix partial ordering of words:

v ⊑A∗ w iff ∃u ∈ A∗. w = u · v .

The analogue of the interval [0, n] for natural numbers is, then, the set of suffixes of a word,
Suf(w) def= {u ∈ A∗ | u ⊑ w}. With this, we obtain that the down closure of c gives the
biggest subset that is closed under suffixes.

c↓(X) = {x ∈ A∗ | Suf(x) ⊆ X}

With this result, we can explicit the strong induction principle on words.

Q(ϵ) ∀a ∈ A.∀w ∈ A∗.(∀y ∈ Suf(w) . Q(y)) ⇒ Q(a · w) Q ⇒ P

∀w ∈ A∗.P (w)

Compare this principle with strong induction on natural numbers: consider the singleton set
A = {∗}. Then, words on A are determined by their length, so A∗ is in bijection with the
natural numbers N. Through this bijection, Suf(w) coincides with the interval [0, |w|]. This
further justifies the name of strong induction.

7 From Lattice to Categories

Induction is both a proof principle and a definition principle. The latter can be obtained
as generalisation of the former by moving from lattices to categories. As (inductive) up-
to techniques are enhancements of the induction proof principle, by means of a similar
generalisation, one can obtain enhancements of the induction definition principle. In this
section, we illustrate that induction up-to generalises to a recursion scheme known as
comonadic recursion [8] and strong induction generalises to course-of-value iteration [38, 7].

7.1 Initial agebras and the induction definition principle
Hereafter, we write × and + for products and coproducts in some category C, ⟨a, b⟩ : X →
Y × Z for the pairing of a : X → Y and b : X → Z and [c, d] : Y + Z → X for the copairing
of c : Y → X and d : Z → X. The singleton set {ϵ} is denoted by 1.

Given a functor F : C → C on some category C, an F -algebra is a pair (X, a) where X

is an object of C and a : FX → X is an arrow. Given two F -algebras (X, a) and (Y, b), an
algebra morphism h : (X, a) → (Y, b) is an arrow h : X → Y of C making the diagram below
commute. An F -algebra (µF, i) is said to be initial if for any F -algebra (X, a), there exists a
unique algebra morphism (|a|)F : (µF, i) → (X, a).

X
h // Y

FX

a

OO

F h
// FY

b

OO

Initial algebras give the induction definition principle: in order to specify a morphism
from µF to some object X it is enough to give an F -algebra on X.
▶ Remark 16. When the category C is a complete lattice, a functor F on C is simply a
monotone map; an F -algebra is a pre-fixed point for F and an initial F -algebra is a least
fixed-point. In this perspective, the induction definition principle collapses to the induction
proof principle: specifying an arrow µF → X means exactly proving that µF ⊑ X.

F. Bonchi, E. Di Lavore, and A. Ricci 28:13

Consider Set –the category of sets and functions– and N : Set → Set the functor mapping
a set X into 1 + X and a function a into id1 + a. An initial algebra for N is provided by
(N, [0, s]) where 0 : 1 → N assigns to ϵ the number 0 and s : N → N assigns to any n ∈ N, its
successor n + 1. Now, given an F -algebra [p, a] : 1 + X → X, one obtains, by initiality, a
function (|[p, a]|)N : N → X, as illustrated below on the left.

N
(|[p,a]|)N // X

1 + N

[0,s]

OO

id1+(|[p,a]|)N

// 1 + X

[p,a]

OO (|[p, a]|)N (0) = p(ϵ)
(|[p, a]|)N (n + 1) = a((|[p, a]|)N (n))

The fact that the diagram on the left commutes is expressed by the conditions on the
right. The first condition provides the base case of an inductive definition; the second one
provides the inductive case. Note that, in order to define (|[p, a]|)N (n + 1), one uses the value
(|[p, a]|)N (n). Sometimes, as in the Fibonacci sequence in Section 2, functions are specified by
using not just their value at n but also their values at some smaller numbers. This can be
done by enhancing the induction definition principle by means of recursion schemes.

7.2 Comonadic Recursion
A comonad on a category C is a functor D : C → C together with two natural transformations,
the counit ε : D ⇒ Id and the comultiplication δ : D ⇒ DD, such that εDX ◦ δX = idDX =
DεX ◦ δX and DδX ◦ δX = δDX ◦ δX for all objects X. A distributive law of a functor
F : C → C over the comonad D is a natural transformation ζ : FD ⇒ DF such that
εF X ◦ ζX = FεX and δF X ◦ ζX = DζX ◦ ζDX ◦ FδX .

Comonadic recursion exploits a comonad D and a distributive law ζ : FD ⇒ DF to
enhance the induction definition principle. In order to define a morphism from µF to X,
rather than specifying an F -algebra, one can specify an FD-algebra a : FDX → X. Indeed,
such a gives rise to

a♭ def= FDX
F δX // FDDX

ζDX // DFDX
Da // DX

which is an F -algebra and thus, by initiality of µF , one obtains (|a♭|)F : µF → DX that can
be composed with the counit εX : DX → X to obtain the desired morphism from µF to X.

µF
(|a♭|)F // DX

εX // X

F (µF)

i

OO

F ((|a♭|)F

// FDX

a♭

OO

a

<<

▶ Remark 17. Following Remark 16, when C is a complete lattice, a comonad D is simply a
down-closure; a distributive law ζ : FD ⇒ DF witnesses that FD ⊑ DF , namely that D

is cocompatible with F . The algebra a : FDX → X is just an inductive invariant up-to D

and a♭ : FDX → DX is the corresponding inductive invariant provided by Proposition 6:
observe that the three arrows in the definition of a♭ are exactly the three steps in the proof
of Proposition 6. The morphism of εX ◦ (|a♭|)F : µF → X gives us the proof of Theorem 7.
All this justifies the following statement.

▶ Proposition 18. When C is a complete lattice, comonadic recursion is induction up-to.

CSL 2025

28:14 Strong Induction Is an Up-To Technique

7.3 Course-of-Value Iteration
Course-of-value iteration is a recursion scheme that is obtained from comonadic recursion by
taking D to be the cofree comonad generated by F . Below, we shortly recall this.

Coalgebras are the dual of algebras: a coalgebra for a functor F : C → C is a pair
(X, a) with a : X → FX. Given two F -coalgebras (X, a) and (Y, b), a coalgebra morphism
h : (X, a) → (Y, b) is an arrow h : X → Y of C such that Fh ◦ a = b ◦ h. An F -coalgebra
(νF, a) is said to be final if for any F -coalgebra (X, a), there exists a unique coalgebra
morphism [[a]]F : (X, a) → (νF, a).

For an object A of C, we denote with FA : C → C the functor mapping an object X into
FX × A and arrow a into Ff × idA. Whenever FA has a final coalgebra ⟨tA, oA⟩ : νFA →
F (νFA) × A for all objects A, one can define a comonad (F ↓, ε↓, δ↓) on C. The functor
F ↓ : C → C maps an object X into the final coalgebra νFX and an arrow a : X → Y into
the unique final coalgebra morphism [[⟨tX , a ◦ oX⟩]]FY

: νFX → νFY . For all objects X, the
counit ε↓ : F ↓ ⇒ Id is defined as oX : νFX → X; the comultiplication δ↓ : F ↓ ⇒ F ↓F ↓ as
[[⟨tX , idνFX

⟩]]FνFX
: νFX → νFνFX

.
Crucially, there exists a distributive law of F over F ↓, denoted by ζ↓ : FF ↓ ⇒ F ↓F , that

is defined for all objects X as [[⟨Fπ1, Fπ2⟩ ◦ F ⟨tX , oX⟩]]FF X
: F (νFX) → νFF X .

▶ Remark 19. Following Remarks 16 and 17, when C is a complete lattice, an F -coalgebra is
a post-fixed point for F and a final F -algebra is a greatest fixed-point. The cofree comonad
F ↓ simplifies to the down-closure generated by the monotone map F , as defined in (4). The
condition on the existence of a final FA-coalgebra for all objects A trivially holds when C is
a lattice. The existence of the distributive law ζ↓ : FF ↓ ⇒ F ↓F simplifies to Corollary 9.
All this justifies the following statement.

▶ Proposition 20. When C is a complete lattice, course of value iteration is strong induction.

7.4 Back to Fibonacci
We conclude by illustrating course of value iteration in the case when F is the functor N

introduced in Section 7.1. First, it is convenient to recall some auxiliary ingredients.
For a set A, we write A∞

ne for the set of all finite and infinite sequences over A that are
non-empty. For a sequence σ ∈ A∞

ne, we write σ(0) · σ(1) · . . . whenever σ is infinite and
σ(0) · σ(1) · . . . σ(n) · ϵ whenever σ has length n + 1. Appending ϵ at the end of the word is a
convenient notation to avoid confusing an element a ∈ A with the sequence a · ϵ ∈ A∞

ne. For
all σ ∈ A∞

ne, we define hd : A∞
ne → A and tl : A∞

ne → 1 + A∞
ne as follows.

hd(σ) def= σ(0) tl(σ) def=
{

σ(1) · σ(2) · · · · · σ(n) · ϵ if σ has length n + 1
σ(1) · σ(2) · · · · · otherwise

The pairing ⟨tl, hd⟩ : A∞
ne → (1 + A∞

ne) × A forms a coalgebra for the functor NA : Set → Set.
Actually, (A∞

ne, ⟨tl, hd⟩) is a final coalgebra for NA: for all NA-coalgebra ⟨t, o⟩ : X → (1+X)×A

there exists a unique morphism making the following diagram on the left commute.

X

⟨t,o⟩
��

[[⟨t,o⟩]]NA // A∞
ne

⟨tl,hd⟩
��

(1 + X) × A
(id1+[[⟨t,o⟩]]NA

)×idA

// (1 + A∞
ne) × A

hd([[⟨t, o⟩]]NA
(σ)) = o(σ)

tl([[⟨t, o⟩]]NA
(σ)) = [[⟨t, o⟩]]NA

(t(σ))

Commutation of the diagram is expressed by the conditions on the right: these provide a
coinductive definition for [[⟨t, o⟩]]NA

.

F. Bonchi, E. Di Lavore, and A. Ricci 28:15

Since for all sets A there exists a final NA-coalgebra, then there exists the cofree comonad
N↓ and a distributive law ζ↓ : NN↓ ⇒ N↓N (more details in Appendix B). Most importantly,
given a function a : 1 + A∞

ne → A (i.e, an NN↓-algebra), one can extend it to a function
a♭ : 1 + A∞

ne → A∞
ne (i.e, an N -algebra) coinductively defined for all x ∈ 1 + A∞

ne as

hd(a♭(x)) def= a(x) tl(a♭(x)) def=
{

ϵ if x = ϵ

a♭(tl(x)) otherwise.
(13)

By initiality of (N, [0, s]), one has a morphism (|a♭|)N inductively defined

(|a♭|)N (0) = a♭(ϵ)
(|a♭|)N (s(n)) = a♭((|a♭|)N (n)) (14)

that can be composed with the counit hd to obtain the desired morphism N → A.

N
(|a♭|)N // A∞

ne
hd // A

1 + N
id1+(|a♭|)N

//

[0,s]

OO

(1 + A∞
ne)

a♭

OO

f

88

The inductive case in (14) can be conveniently rephrased (see Lemma 22 in Appendix B) as

(|a♭|)N (s(n)) = a((|a♭|)N (n)) · (|a♭|)N (n).

In summary, (|a♭|)N (0) = a(ϵ) · ϵ and

(|a♭|)N (s(n)) = a((|a♭|)N (n)) · a((|a♭|)N (n − 1)) · . . . a((|a♭|)N (0)) · a(ϵ) · ϵ.

Intuitively,(|a♭|)N (n + 1) may depend on (|a♭|)N (n), (|a♭|)N (n − 1) ...
For a concrete example take A to be N and a to be fib : 1 + N∞

ne → N defined as

fib(x) def=
{

1 if x = ϵ or x has length 1
x(0) + x(1) otherwise

for all x ∈ 1 +N∞
ne. The reader can easily check that (|fib♭|)N (0) = 1 · ϵ, (|fib♭|)N (1) = 1 · 1 · ϵ,

(|fib♭|)N (2) = 2 · 1 · 1 · ϵ and so on. By composing (|fib♭|)N with hd : A∞
ne → A is clear that

one obtains the Fibonacci sequence recalled in Section 2.

8 Conclusions and future work

We have introduced induction up-to by dualising the framework of coinduction up-to from [28].
More precisely, we defined the notion of cocompatible functions (Definition 5) and proved
that such functions provide sound up-to techniques (Theorem 7) that can be conveniently
composed in various ways (Proposition 8). In particular, for any monotone function f , its
downclosure f↓ is always f -cocompatible (Corollary 9). We refer to induction up-to f↓ as
strong induction. Our main insight is that the well-known principle of strong induction over
the natural numbers is induction up-to b↓ (Section 6.1), where b is the map having N as its
least fixed point.

We then demonstrated that, by applying comonadic recursion [39] to lattices, we obtain
exactly our theory of induction up-to (Proposition 18), while strong induction corresponds
to the lattice-theoretic version of course-of-value iteration [38, 7] (Proposition 20).

CSL 2025

28:16 Strong Induction Is an Up-To Technique

We believe that these results shed light on the relationship between the schemes used to
define programs and the techniques employed to prove their properties. It is no coincidence
that, in Section 2, we required strong induction to prove properties of the Fibonacci sequence,
which is defined by course-of-value iteration.

By dualising the results in [5], which enhance the fibrational framework of Hermida and
Jacobs [18], we can distill compatible inductive up-to techniques from each comonad D.
Verifying all the details is a substantial task that we leave for future work.

References
1 Roberto M Amadio and Luca Cardelli. Subtyping recursive types. ACM Transactions on

Programming Languages and Systems (TOPLAS), 15(4):575–631, 1993. doi:10.1145/155183.
155231.

2 Falk Bartels. Generalised coinduction. Mathematical Structures in Computer Science, 13(2):321–
348, 2003. doi:10.1017/S0960129502003900.

3 Filippo Bonchi, Pierre Ganty, Roberto Giacobazzi, and Dusko Pavlovic. Sound up-to techniques
and complete abstract domains. In Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, pages 175–184, 2018. doi:10.1145/3209108.3209169.

4 Filippo Bonchi, Barbara König, and Daniela Petrisan. Up-to techniques for behavioural
metrics via fibrations. Math. Struct. Comput. Sci., 33(4-5):182–221, 2023. doi:10.1017/
s0960129523000166.

5 Filippo Bonchi, Daniela Petrisan, Damien Pous, and Jurriaan Rot. A general account of
coinduction up-to. Acta Informatica, 54(2):127–190, 2017. doi:10.1007/S00236-016-0271-4.

6 Filippo Bonchi and Damien Pous. Checking NFA equivalence with bisimulations up to
congruence. In Roberto Giacobazzi and Radhia Cousot, editors, The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, Rome,
Italy - January 23 - 25, 2013, pages 457–468. ACM, 2013. doi:10.1145/2429069.2429124.

7 Daniela Cancila, Furio Honsell, and Marina Lenisa. Generalized coiteration schemata.
Electronic Notes in Theoretical Computer Science, 82(1):76–93, 2003. doi:10.1016/
S1571-0661(04)80633-9.

8 Venanzio Capretta, Tarmo Uustalu, and Varmo Vene. Recursive coalgebras from comonads.
Information and Computation, 204(4):437–468, 2006. doi:10.1016/j.ic.2005.08.005.

9 Didier Caucal. Graphes canoniques de graphes algébriques. RAIRO Theor. Informatics Appl.,
24:339–352, 1990. doi:10.1051/ita/1990240403391.

10 Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Valeria Vignudelli. Up-to techniques
for generalized bisimulation metrics. In Josée Desharnais and Radha Jagadeesan, editors, 27th
International Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec
City, Canada, volume 59 of LIPIcs, pages 35:1–35:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPIcs.CONCUR.2016.35.

11 Thierry Coquand. Infinite objects in type theory. In International Workshop on Types for
Proofs and Programs, pages 62–78. Springer, 1993. doi:10.1007/3-540-58085-9_72.

12 Erik P. de Vink and Jan J.M.M. Rutten. Bisimulation for probabilistic transition systems:
a coalgebraic approach. Theoretical Computer Science, 221(1):271–293, 1999. doi:10.1016/
S0304-3975(99)00035-3.

13 Adrien Durier, Daniel Hirschkoff, and Davide Sangiorgi. Divergence and unique solution of
equations. Logical Methods in Computer Science, 15, 2019. doi:10.23638/LMCS-15(3:12)2019.

14 Marco Forti and Furio Honsell. Set theory with free construction principles. Annali della
Scuola Normale Superiore di Pisa-Classe di Scienze, 10(3):493–522, 1983.

15 Herman Geuvers and Bart Jacobs. Relating apartness and bisimulation. Logical Methods in
Computer Science, 17, 2021. doi:10.46298/lmcs-17(3:15)2021.

16 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction. Logical
Methods in Computer Science, 3, 2007. doi:10.2168/LMCS-3(4:11)2007.

https://doi.org/10.1145/155183.155231
https://doi.org/10.1145/155183.155231
https://doi.org/10.1017/S0960129502003900
https://doi.org/10.1145/3209108.3209169
https://doi.org/10.1017/s0960129523000166
https://doi.org/10.1017/s0960129523000166
https://doi.org/10.1007/S00236-016-0271-4
https://doi.org/10.1145/2429069.2429124
https://doi.org/10.1016/S1571-0661(04)80633-9
https://doi.org/10.1016/S1571-0661(04)80633-9
https://doi.org/10.1016/j.ic.2005.08.005
https://doi.org/10.1051/ita/1990240403391
https://doi.org/10.4230/LIPIcs.CONCUR.2016.35
https://doi.org/10.1007/3-540-58085-9_72
https://doi.org/10.1016/S0304-3975(99)00035-3
https://doi.org/10.1016/S0304-3975(99)00035-3
https://doi.org/10.23638/LMCS-15(3:12)2019
https://doi.org/10.46298/lmcs-17(3:15)2021
https://doi.org/10.2168/LMCS-3(4:11)2007

F. Bonchi, E. Di Lavore, and A. Ricci 28:17

17 Ichiro Hasuo, Shunsuke Shimizu, and Corina Cîrstea. Lattice-theoretic progress measures
and coalgebraic model checking. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 718–732, 2016. doi:10.1145/
2837614.2837673.

18 Claudio Hermida and Bart Jacobs. Structural induction and coinduction in a fibrational
setting. Information and computation, 145(2):107–152, 1998. doi:10.1006/inco.1998.2725.

19 Arend Heyting. Zur intuitionistischen axiomatik der projektiven geometrie. Mathematische
Annalen, 98(1):491–538, 1928.

20 Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization. In
International Workshop on Coalgebraic Methods in Computer Science, pages 109–129. Springer,
2012. doi:10.1007/978-3-642-32784-1_7.

21 Bartek Klin. Bialgebras for structural operational semantics: An introduction. Theor. Comput.
Sci., 412(38):5043–5069, 2011. doi:10.1016/j.tcs.2011.03.023.

22 Dexter Kozen and Alexandra Silva. Practical coinduction. Mathematical Structures in
Computer Science, 27(7):1132–1152, 2017. doi:10.1017/S0960129515000493.

23 Robin Milner. Communication and concurrency, volume 84 of PHI Series in computer science.
Prentice Hall, 1989.

24 Robin Milner and Mads Tofte. Co-induction in relational semantics. Theoretical computer
science, 87(1):209–220, 1991. doi:10.1016/0304-3975(91)90033-X.

25 Keiko Nakata and Tarmo Uustalu. Resumptions, weak bisimilarity and big-step semantics for
while with interactive I/O: An exercise in mixed induction-coinduction. In In Proceedings of
SOS 2010, pages 57–75, 2010. doi:10.4204/EPTCS.32.5.

26 David Park. Fixpoint induction and proofs of program properties. Machine intelligence, 5,
1969.

27 David Park. Concurrency and automata on infinite sequences. In Theoretical Computer
Science: 5th GI-Conference Karlsruhe, March 23–25, 1981, pages 167–183. Springer, 2005.

28 Damien Pous. Complete lattices and up-to techniques. In Zhong Shao, editor, Programming
Languages and Systems, 5th Asian Symposium, APLAS 2007, Singapore, November 29-
December 1, 2007, Proceedings, volume 4807 of Lecture Notes in Computer Science, pages
351–366. Springer, 2007. doi:10.1007/978-3-540-76637-7_24.

29 Damien Pous. Coinduction all the way up. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, pages 307–316, 2016. doi:10.1145/2933575.
2934564.

30 Damien Pous and Davide Sangiorgi. Enhancements of the bisimulation proof method. In
Davide Sangiorgi and Jan J. M. M. Rutten, editors, Advanced Topics in Bisimulation and
Coinduction, volume 52 of Cambridge tracts in theoretical computer science, pages 233–289.
Cambridge University Press, UK, 2012.

31 Jan J.M.M. Rutten. Behavioural differential equations: a coinductive calculus of streams,
automata, and power series. Theoretical Computer Science, 308(1):1–53, 2003. doi:10.1016/
S0304-3975(02)00895-2.

32 Davide Sangiorgi. On the bisimulation proof method. Mathematical Structures in Computer
Science , Volume 8 , Issue 5, 1998. doi:10.1017/S0960129598002527.

33 Davide Sangiorgi. On the origins of bisimulation and coinduction. ACM Transactions on
Programming Languages and Systems (TOPLAS), 31(4):1–41, 2009. doi:10.1145/1516507.
1516510.

34 Davide Sangiorgi. Equations, contractions, and unique solutions. ACM Transactions on
Computational Logic (TOCL), 18(1):1–30, 2017. doi:10.1145/2971339.

35 Davide Sangiorgi. From enhanced coinduction towards enhanced induction. Proceedings of the
ACM on Programming Languages, 6(POPL):1–29, 2022. doi:10.1145/3498679.

36 Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten. Generaliz-
ing the powerset construction, coalgebraically. In Kamal Lodaya and Meena Mahajan, editors,
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer

CSL 2025

https://doi.org/10.1145/2837614.2837673
https://doi.org/10.1145/2837614.2837673
https://doi.org/10.1006/inco.1998.2725
https://doi.org/10.1007/978-3-642-32784-1_7
https://doi.org/10.1016/j.tcs.2011.03.023
https://doi.org/10.1017/S0960129515000493
https://doi.org/10.1016/0304-3975(91)90033-X
https://doi.org/10.4204/EPTCS.32.5
https://doi.org/10.1007/978-3-540-76637-7_24
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1017/S0960129598002527
https://doi.org/10.1145/1516507.1516510
https://doi.org/10.1145/1516507.1516510
https://doi.org/10.1145/2971339
https://doi.org/10.1145/3498679

28:18 Strong Induction Is an Up-To Technique

Science, FSTTCS 2010, December 15-18, 2010, Chennai, India, volume 8 of LIPIcs, pages 272–
283. Schloss-Dagstuhl-Leibniz Zentrum für Informatik, Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2010. doi:10.4230/LIPIcs.FSTTCS.2010.272.

37 Daniele Turi and Gordon Plotkin. Towards a mathematical operational semantics. In
Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science, pages 280–291.
IEEE, 1997. doi:10.1109/LICS.1997.614955.

38 Tarmo Uustalu and Varmo Vene. Primitive (co) recursion and course-of-value (co) iteration,
categorically. Informatica, 10(1):5–26, 1999. doi:10.3233/INF-1999-10102.

39 Tarmo Uustalu, Varmo Vene, and Alberto Pardo. Recursion schemes from comonads. Nor-
dic Journal of Computing, 8(3):366–390, 2001. URL: http://www.cs.helsinki.fi/njc/
References/uustaluvp2001:366.html.

40 Johan Van Benthem. Modal logic and classical logic. 1983.
41 Rob J van Glabbeek. The linear time - branching time spectrum II: The semantics of sequential

systems with silent moves extended abstract. In International Conference on Concurrency
Theory, pages 66–81. Springer, 1993.

42 Rob J Van Glabbeek. The linear time - branching time spectrum I. In Jan A. Bergstra, Alban
Ponse, and Scott A. Smolka, editors, Handbook of Process Algebra, pages 3–99. North-Holland
/ Elsevier, 2001. doi:10.1016/b978-044482830-9/50019-9.

A Appendix to Section 5

Proof of Proposition 8. We prove in sequence each point.
1. f ◦ idX = f = idX ◦ f ;
2. f ◦ f = f ◦ f ;
3. By the following derivation

f ◦ d ◦ e ⊑ d ◦ f ◦ e (d is f − compatible)
⊑ d ◦ e ◦ f (e is f − compatible and d is monotone)

4. By induction.
Base case: n = 0. By (3) and point 1.
Inductive case: n = n + 1. By hypothesis d is f -compatible; by induction hypothesis dn

is f -compatible; by point 3, d ◦ dn is f -compatible. By definition, see (3), dn+1 = d ◦ dn.
Thus dn+1 is f -compatible.

5. Proving f(d ⊓ e) ⊑ (d ⊓ e)f means proving that: for all x ∈ X,

f(d ⊓ e)(x) ⊑ (d ⊓ e)f(x).

Since, for all x ∈ X,

d ⊓ e(x) = d(x) ⊓ e(x),

it holds that:

f(d ⊓ e)(x) = f(d(x) ⊓ e(x))
(d ⊓ e)f(x) = df(x) ⊓ ef(x)

In summary, to prove f(d ⊓ e) ⊑ (d ⊓ e)f , we need to prove that, for all x ∈ X,
f(d(x) ⊓ e(x)) ⊑ df(x) ⊓ ef(x). We can proceed separately:

https://doi.org/10.4230/LIPIcs.FSTTCS.2010.272
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.3233/INF-1999-10102
http://www.cs.helsinki.fi/njc/References/uustaluvp2001:366.html
http://www.cs.helsinki.fi/njc/References/uustaluvp2001:366.html
https://doi.org/10.1016/b978-044482830-9/50019-9

F. Bonchi, E. Di Lavore, and A. Ricci 28:19

First, f(d(x) ⊓ e(x)) ⊑ df(x) :

f(d(x) ⊓ e(x)) ⊑ fd(x) (d(x) ⊓ e(x) ⊑ d(x))
⊑ df(x) (d is f − compatible)

Similarly for f(d(x) ⊓ e(x)) ⊑ df(x).
Since f(d(x) ⊓ e(x)) is below both df(x) and ef(x), we have that

f(d(x) ⊓ e(x)) ⊑ df(x) ⊓ ef(x).

6. The proof is analogous to the one of Point 5. We need to prove that, for all x ∈ X,

f ⊔

i∈N
di(x) ⊑ ⊔

i∈N
dif(x)

Thus, it is enough to prove that ∀i ∈ N, f ⊔j dj(x) ⊑ dif(x). We proceed as follows:

f ⊔

j∈N
dj(x) ⊑ fdi(x) (⊔j∈N dj ⊑ di)

⊑ dif(x) (di is f − compatible)

7. By (4) and Lemmas 4 and 6. ◀

Proof of 11. We prove the two points separately.
1. Assume that d is an up-closure; Thus ¬x ⊑ d(¬x) and d(d(¬x)) ⊑ d(¬x) for all x ∈ L;

By (9), ¬¬x ⊒ ¬d(¬x) and ¬d(d(¬x)) ⊒ ¬d(¬x), i.e., x ⊒ d(x) and d d(x) ⊒ d(x). The
reverse implication has the same proof.

2. Observe that for all monotone maps i, j on L, it holds that i ⊑ j iff i¬ ⊑ j¬ iff ¬j ⊑ ¬i.
Thus

df ⊑ fd ⇔ df¬ ⊑ fd¬
⇔ ¬fd¬ ⊑ ¬df¬
⇔ ¬f¬¬d¬ ⊑ ¬d¬¬f¬
⇔ f d ⊑ d f

3. By the following derivation

y ⊑ fd(y) ⇔ ¬fd(y) ⊑ ¬y

⇔ ¬f¬ ¬d¬(¬y) ⊑ ¬y

⇔ f d(¬y) ⊑ ¬y ◀

B Details on Section 7.4

In Section 7.3, we give the recipe to compute the cofree comonad for an arbitrary functor
F and in Section 7.4 we used the cofree comonad for the functor N : Set → Set in order
to illustrate course-of-value Iteration for the natural numbers. For reader convenience, in
this appendix we illustrate in details the cofree comonad (N↓, ϵ↓, δ↓) and the distributive
law ζ : NN↓ ⇒ N↓N by simply unfolding the definitions of Section 7.3.

First we illustrate the endofunctor N↓ : Set → Set. It maps any set X into the set X∞
ne

since, as discussed in the main text, (X∞
ne, ⟨tl, hd⟩) is a final NX coalgebra. For a function

a : X → Y , N↓a : X∞
ne → Y ∞

ne is the unique map from the NY -coalgebra (X∞
ne, ⟨tlX , a ◦ hdX⟩)

to the final NY -coalgebra (Y ∞
ne , ⟨tl, hd⟩) as illustrated below.

CSL 2025

28:20 Strong Induction Is an Up-To Technique

X∞
ne

⟨tlX ,a◦hdX ⟩
��

N↓a // Y ∞
ne

⟨tl,hd⟩
��

(1 + X∞
ne) × Y

(id1+N↓a)×idY

// (1 + Y ∞
ne) × Y

Thus, the function N↓a : X∞
ne → Y ∞

ne can be defined conductively as follows.

hd(N↓a(σ)) = a(hdX(σ))

tl(N↓a(σ)) =
{

ϵ if tlX(σ) = ϵ;
N↓a(tlX(σ)) otherwise.

More explicitly, N↓a maps σ ∈ X∞
ne into

a(σ(0)) · a(σ(1)) · . . .

We can now illustrate the natural transformations. The counit ϵ : N↓ ⇒ Id is given,
for all sets X, by hdX : X∞

ne → X. The comultiplication δ↓ : N↓ ⇒ N↓N↓ is given by the
unique morphism from the NX∞

ne
-coalgebra (X∞

ne, ⟨tlX , idX∞
ne

⟩) to the final NX∞
ne

-coalgebra
((X∞

ne)∞
ne, ⟨tl, hd⟩), as illustrated below.

X∞
ne

⟨tlX ,idX∞
ne

⟩
��

δ↓
X // (X∞

ne)∞
ne

⟨tl,hd⟩
��

(1 + X∞
ne) × X∞

ne
(id1+δ↓

X
)×idX∞

ne

// (1 + (X∞
ne)∞

ne) × X∞
ne

Thus, the function δ↓
X : X∞

ne → (X∞
ne)∞

ne can be coinductively defined as follows.

hd(δ↓
X(σ)) = σ

tl(δ↓
X(σ)) =

{
ϵ if tlX(σ) = ϵ;
δ↓

X(tlX(σ)) otherwise.

Intuitively, σ ∈ X∞
ne is mapped into

σ(0) σ(1) σ(2) . . .

σ(1) σ(2) . . .

σ(2) . . .
...

So far, we have described the comonad (N↓, ϵ↓, δ↓). We can now move to the distributive
law. For all sets X, the distributive law ζ : NN↓ ⇒ N↓N is given by the unique morphism
from the N1+X -coalgebra illustrated below on the left to the final N1+X -coalgebra ((1 +
X)∞

ne, ⟨tl, hd⟩).

1 + X∞
ne

id1+⟨tlX ,hdX ⟩
��

ζX // (1 + X)∞
ne

⟨tl,hd⟩

��

1 + (X∞
ne × X)

⟨id1+π1,id1+π2⟩
��

(1 + X∞
ne) × (1 + X)

(id1+ζX)×id1+X

// (1 + (1 + X)∞
ne) × (1 + X)

F. Bonchi, E. Di Lavore, and A. Ricci 28:21

Thus, the function ζX : 1 + X∞
ne → (1 + X)∞

ne can be coinductively defined as follows.

hd(ζX(ϵ)) = ϵ

tl(ζX(ϵ)) = ϵ

hd(ζX(σ)) = hdX(σ)

tl(ζX(σ)) =
{

ϵ if tlX(σ) = ϵ;
ζX(tlX(σ)) otherwise.

Intuitively [[h]]1+X maps ϵ into the sequence ϵ · ϵ and any σ ∈ X∞
ne into the same sequence

σ ∈ (1 + X)∞
ne.

We conclude this appendix with some computation that allows for the handier character-
isation of (|a♭|)N illustrated in the main text.

▶ Lemma 21. For all n ∈ N, a♭(tl((|a♭|)N (n))) = (|a♭|)N (n).

Proof. By induction on N.
For 0,

a♭(tl((|a♭|)N (0))) = a♭(tl(a♭(ϵ))) (14)

= a♭(ϵ) (13)

= (|a♭|)N (0) (14)

For n + 1,

a♭(tl((|a♭|)N (n + 1))) = a♭(tl(a♭(|a♭|)N (n))) (14)

= a♭(a♭(tl((|a♭|)N (n)))) (13)

= a♭((|a♭|)N (n)) (Induction Hypothesis)

= (|a♭|)N (n + 1) (14)

◀

▶ Lemma 22. For all n ∈ N, (|a♭|)N (s(n)) = a((|a♭|)N (n)) · (|a♭|)N (n).

Proof.

(|a♭|)N (s(n)) = a♭((|a♭|)N (s(n))) (14)

= hd(a♭((|a♭|)N (s(n)))) · tl(a♭((|a♭|)N (s(n))))

= a((|a♭|)N (s(n))) · a♭(tl((|a♭|)N (s(n)))) (13)

= a((|a♭|)N (s(n))) · (|a♭|)N (n) (Lemma 21)

◀

CSL 2025

Correspondences Between Codensity and
Coupling-Based Liftings, a Practical Approach
Samuel Humeau #

ENS de Lyon, CNRS, LIP, UMR 5668, 69342, Lyon cedex 07, France

Daniela Petrisan #

CNRS, IRIF, Université Paris Diderot, Paris, France

Jurriaan Rot #

Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands

Abstract
The Kantorovich distance is a widely used metric between probability distributions. The Kantorovich-
Rubinstein duality states that it can be defined in two equivalent ways: as a supremum, based on
non-expansive functions into [0, 1], and as an infimum, based on probabilistic couplings.

Orthogonally, there are categorical generalisations of both presentations proposed in the literature,
in the form of codensity liftings and what we refer to as coupling-based liftings. Both lift endofunctors
on the category Set of sets and functions to that of pseudometric spaces, and both are parameterised
by modalities from coalgebraic modal logic.

A generalisation of the Kantorovich-Rubinstein duality has been more nebulous – it is known
not to work in some cases. In this paper we propose a compositional approach for obtaining such
generalised dualities for a class of functors, which is closed under coproducts and products. Our
approach is based on an explicit construction of modalities and also applies to and extends known
cases such as that of the powerset functor.

2012 ACM Subject Classification Theory of computation → Categorical semantics

Keywords and phrases Kantorovich distance, behavioural metrics, Kantorovich-Rubinstein duality,
functor liftings

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.29

Related Version Full Version: https://hal.science/hal-04789352 [13]

Funding This work was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de
Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX- 0007) operated by the French
National Research Agency (ANR), and supported by the NWO grant OCENW.M20.053.

Acknowledgements The authors would like to thank Pedro Nora for suggestions and discussions.

1 Introduction

The Kantorovich (or Wasserstein, or Monge-Kantorovich) distance [17] is a standard and
widely used metric between probability distributions, studied amongst others in transportation
theory [27]. In concurrency theory, the Kantorovich distance forms the basis of so-called
behavioural metrics, which are quantitative generalisations of bisimilarity. They allow a
more fine-grained and robust comparison of system behaviours than classical Boolean-valued
behavioural equivalences [8, 9, 26].

In its discrete version the Kantorovich distance takes as argument a (pseudo-)metric on a
set X, and lifts it to a (pseudo-)metric on the set of (finitely supported) distributions D(X).
The celebrated Kantorovich-Rubinstein duality [18] states that this distance can be computed
in two ways, yielding the same result: as an infimum indexed by probabilistic couplings, and
as a supremum indexed by non-expansive functions into the [0, 1] interval with the Euclidean

© Samuel Humeau, Daniela Petrisan, and Jurriaan Rot;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 29; pp. 29:1–29:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:samuel.humeau@ens-lyon.fr
https://orcid.org/0009-0007-1850-9744
mailto:petrisan@irif.fr
https://orcid.org/0000-0001-9712-930X
mailto:jurriaan.rot@ru.nl
https://orcid.org/0000-0002-1404-6232
https://doi.org/10.4230/LIPIcs.CSL.2025.29
https://hal.science/hal-04789352
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Correspondences Between Codensity and Coupling-Based Liftings

distance. This fundamental result is useful for analysis and computation of these distances
(e.g., [1, 7, 15, 25, 27]). A detailed proof in a broader context than just finitely supported
distributions can be found in [27].

Orthogonally to this duality, in the last years there have been several proposals to generalise
the Kantorovich distance from distributions to general endofunctors on the category Set
of sets and functions. The problem then becomes to lift such functors to the category of
(pseudo-)metric spaces. This is particularly useful in the context of a coalgebraic presentation
of systems, where the type of the system at hand is parametric in the given Set endofunctor.
In particular, this allows a uniform presentation of various types of probabilistic systems,
but also, for instance, metrics on deterministic automata [6].

There are categorical generalisations of both presentations of the Kantorovich distance:
the coupling-based approach and the one based on non-expansive maps [2, 5, 6, 11]. The
latter has recently been established as an instance of the so-called codensity liftings1 [24].
Both approaches are parametric in (sets of) modalities or evaluation maps, that allow a
degree of freedom in the choice of liftings.

We aim to relate the two approaches, by studying generalisations of the Kantorovich-
Rubinstein duality to a wide class of functors beyond D. This problem was first proposed
and studied in [2], where it is shown to hold in some concrete cases but also to fail in other
basic instances, even for very elementary functors such as the diagonal functor ∆ mapping a
set X to X × X. In the latter article the authors restrict the study to liftings parametric
in exactly one modality they call an evaluation map, which is assumed to be the same for
both codensity and coupling-based liftings. We depart from this by allowing modalities
to differ on both sides. This approach can already be found in [10]. There, it is shown
that every coupling-based lifting can be presented as a codensity lifting; but the proof is
non-constructive and yields a large collection of modalities.

In the current paper, we approach the problem of generalised Kantorovich-Rubinstein
dualities from a concrete perspective, with an emphasis on compositionality aspects. Given
a modality as parameter for a coupling-based lifting, we aim to explicitly translate it to
modalities for a codensity lifting, in such a way that the two correspond. More explicitly, we
show that the class of such correspondences between coupling-based and codensity liftings
is closed under coproducts and products (and conversely, that every correspondence for a
coproduct of functors can be recovered from correspondences on its constituents). We also
investigate correspondences for the identity functor, where there is flexibility in the choice of
modalities; and for the powerset functor, extending earlier correspondence results [2, 12].

These correspondence results then allow us to define a concrete grammar of functors for
which we obtain a correspondence between coupling-based and codensity liftings. In fact, we
obtain several grammars based on different assumptions on the underlying poset of truth
values (assumed to be a quantale). Base cases include the constant functors, distribution
functor, powerset functor and the identity functor; recursive constructions the product and
coproduct. These results allow us to obtain or recover induced codensity and coupling-based
presentations for a range of examples of behavioural metrics, including metrics on streams,
labelled Markov chains, deterministic automata, and non-deterministic automata.

1 Kantorovich metric is used interchangeably in the literature to refer to both presentations. We therefore
avoid this terminology by consistently referring to the two presentations as coupling-based and codensity
liftings respectively.

S. Humeau, D. Petrisan, and J. Rot 29:3

In the last part of the paper, we investigate the limitations of our approach through the
concrete example of conditional transition systems [4, 3]. In contrast to the earlier examples,
here, our grammar does give us a metric (and a correspondence result), but it is not the one
considered earlier in the literature. We prove that, in fact, the metric from the literature can
be expressed with a codensity lifting but not with a coupling-based lifting.

2 Codensity and coupling-based liftings: correspondences by example

In this section we motivate and describe the problem of correspondences between codensity
and coupling-based liftings at the general level of functors, and our approach in this paper, by
means of two examples: the Kantorovich-Rubinstein duality for distributions, and a similar
correspondence for the shortest-distinguishing-word-distance on deterministic automata [6].

Distributions. We start by recalling the classical Kantorovich distance, in the discrete case.
In this paper we focus on pseudometrics (defined like metrics except that different elements
can have distance 0) as is common in the use of these types of distances in concurrency
theory. For a pseudometric d : X × X → [0, 1], the Kantorovich distance is a pseudometric
on the set D(X) of distributions on X, defined, for µ, ν ∈ D(X) by:

D↓(d)(µ, ν) = inf
σ∈Ω(µ,ν)

∑
x,y∈X

d(x, y) · σ(x, y) (1)

where Ω(µ, ν) is the set of couplings between µ and ν, i.e., probability distributions on X ×X

whose marginals are µ and ν respectively. It can equivalently be computed as:

D↑(d)(µ, ν) = sup
f : X→[0,1] n.e.

∣∣∣∣∣∑
x∈X

f(x) · µ(x) −
∑
x∈X

f(x) · ν(x)

∣∣∣∣∣ (2)

where the supremum ranges over non-expansive functions f into [0, 1] equipped with the
Euclidean distance, i.e., such that |f(x) − f(y)| ≤ d(x, y) for all x, y ∈ X. The equality
D↑(d) = D↓(d) is an instance (see [27, Particular case 5.16]) of a general result known as the
Kantorovich-Rubinstein duality (see [27, Theorem 5.10]).

A different example. The Kantorovich distance can be seen as a lifting of the distribution
functor on the category Set of sets and functions to the category PMet of pseudometric
spaces and non-expansive functions between them. We proceed with a quite different example
of a similar phenomenon: a lifting of a functor from Set to PMet≤1 the category of
pseudometric spaces bounded by 1 presented in two ways, as an infimum over a variant of
couplings and a supremum over non-expansive functions. This example describes a distance
between deterministic finite automata (DFA). Empty infima and suprema are defined w.r.t.
the interval [0, 1] where the pseudometrics take their values: sup ∅ = 0 and inf ∅ = 1.2

We view DFA over an alphabet A as coalgebras for the functor F : Set → Set, F (X) =
2 × XA where 2 = {0, 1}. Coalgebras for this functor are of the form ⟨l, δ⟩ : X → 2 × XA,
where X is the set of states, the output function l : X → 2 describes which states are
accepting (l(x) = 1), and δ : X → XA is the transition function. As usual, a word ω ∈ A∗ is
accepted in a state x when, after reading ω starting on x we end up with an accepting state.

2 The knowledge package is used throughout the paper. Most of the introduced vocabulary and notations
are clickable and the associated links brings the reader to their definitions.

CSL 2025

29:4 Correspondences Between Codensity and Coupling-Based Liftings

Given c ∈ [0, 1), the shortest-distinguishing-word-distance dsdw(x, y) between states x, y

is 0 if they recognise the same language and c|ω| for ω a shortest word that belongs exactly
to one of the two languages recognised by x and y. As shown in [6], this distance can be
computed recursively as a fixpoint of the map Φ on pseudometrics X × X → [0, 1] given by

Φ(d)(x, y) =
{

1 if l(x) ̸= l(y)
c · maxa∈A{d(δ(x)(a), δ(y)(a))}

The shortest-distinguishing-word-distance can be obtained via a lifting F : PMet →
PMet of the Set functor F , mapping a pseudometric space (X, d) to a pseudometric space
(FX, Fd), that we will recall below. The operator Φ above factors through the pseudometric
Fd. Explicitly, it decomposes as Φ = Fd ◦ ⟨l, δ⟩.

In fact, just as in the Kantorovich-Rubinstein duality, the lifting F can be obtained in
two different ways. Given a pseudometric d : X × X → [0, 1] and (l1, δ1), (l2, δ2) ∈ 2 × XA, it
arises as a coupling-based lifting F

↓
d by:

F
↓(d)((l1, δ1), (l2, δ2)) = inf

(l,δ)∈F (X×X), F πi(l,δ)=(li,δi)

(
sup
a∈A

c · d(δ(a))
)

(3)

Here elements of 2 × (X × X)A are viewed as a variant of couplings.
Secondly we obtain F as a so-called codensity lifting by:

F
↑(d)((l1, δ1), (l2, δ2)) = sup

f : X→[0,1] n.e.
{|c · f(δ1(a)) − c · f(δ2(a))| | a ∈ A} ∪ {|l1 − l2|} (4)

where, as above, the supremum again ranges over non-expansive functions f . Just as for the
Kantorovich distance, we again obtain an equality of functors on PMet: F

↑ = F
↓.

Modalities as parameters. The abstract coupling-based and codensity liftings take as
input a single modality (coupling-based), or a set of modalities (codensity), known from
the semantics of coalgebraic modal logic. For the Kantorovich lifting, this modality is the
expected value function E : D([0, 1]) → [0, 1], which appears implicitly in both presentations.

In the case of deterministic automata, while a single modality suffices for the coupling-
based lifting, for the codensity lifting we actually use a set of modalities (one for each letter,
plus a modality for acceptance of states). This observation is important for the investigation
in this paper. Instead of aiming for a one-to-one matching of modalities, which we refer to as
a duality, we allow a coupling-based lifting specified by a single modality to be matched by a
codensity lifting specified by a set of modalities; we refer to this as a correspondence. This
allows us to cover examples such as DFA and way more, and circumvent the problem already
observed in [2]: even for the product functor with the modality max: [0, 1] × [0, 1] → [0, 1]
there is no duality. However, there is a correspondence, that is, multiple modalities are
needed for the codensity lifting to match the coupling-based one.

The idea of allowing multiple modalities for codensity liftings is not new and can be
found already at the origins of codensity liftings [19, 24, 21]. Here we show how it can be
used to generalise Kantorovich-Rubinstein dualities in a very concrete manner; the aim is to
define classes of functors and modalities for which we can explicitly describe correspondences
between associated coupling-based and codensity liftings.

Outline. We work at the general level of pseudometrics valued in a quantale; we recall the
definitions in Section 3. We then recall the abstract notions of coupling-based and codensity
liftings of functors along modalities, and formulate the problem of correspondences (Section 4).

S. Humeau, D. Petrisan, and J. Rot 29:5

In Section 5 we prove our main results on correspondences: we show that the class of functors
for which we have correspondences is closed under products and coproducts, and includes
constant and identity functors, yielding a family of correspondences for simple polynomial
functors including DFA. In Section 6 we revisit the duality results for the finite powerset and
finite probability distribution functors. As a consequence we are able to study in Section 7 a
class of functors for which we have correspondences, generated by a grammar. The case of
conditional transition systems, for which we prove that there are no correspondences possible,
is treated in Section 8.

3 Preliminaries: quantales and pseudometrics

We use quantales to model a general notion of truth object, including both Booleans and
real number intervals. In this section we recall the necessary preliminaries on quantales, and
the associated general notion of pseudometrics valued in a quantale; instances include the
standard notion of pseudometrics on real numbers as well as equivalence relations.

▶ Definition 1. A quantale V is a complete lattice with an associative “and” operation
⊗ : V × V → V which is distributive over arbitrary joins. We only consider quantales that are
commutative, i.e., the operation ⊗ is commutative, unital, meaning ⊗ admits a unit element,
and affine, which means that the top element ⊤ is the unit of ⊗: x ⊗ ⊤ = x = ⊤ ⊗ x for all
x ∈ V.

Given a quantale V, there is an operation [−, −] : V × V → V that is characterised by
x ⊗ y ≤ z ⇔ x ≤ [y, z]. It is simply defined by [y, z] =

∨
{x ∈ V | x ⊗ y ≤ z}.

▶ Example 2.
Any complete Boolean algebra is a quantale with ⊗ = ∧; in particular, the usual Boolean
algebra 2 = {⊥, ⊤} with ⊥ ≤ ⊤. In this case, [x, y] = ⊤ iff x ≤ y.
Any interval [0, M] with M ∈ (0, ∞], given with reversed order and x⊗y = min(x+y, M)
the truncated sum is a quantale. Here the top element is given by ⊤ = 0, and the bottom
element by ⊥ = M . For this quantale, we have [x, y] = max{y − x, 0}. We write R for
the case that M = ∞, i.e., the non-negative real numbers extended with a top element.

We use quantales as an abstract notion of truth object; accordingly, we define a V-predicate
on a set X to be a map p : X → V. Of particular interest are V-pseudometrics. These are
predicates on X × X that are reflexive, symmetric and transitive in a suitable sense that can
be expressed at the general level of quantales.

▶ Definition 3. A V-pseudometric on a set X is a map d : X × X → V which is:
reflexive: d(x, x) = ⊤ for all x ∈ X,
symmetric: d(x, y) = d(y, x) for all x, y ∈ X,
transitive:

∨
z∈X d(x, z) ⊗ d(z, y) ≤ d(x, y) for all x, y ∈ X.

▶ Example 4.
2-pseudometrics are equivalence relations.
R-pseudometrics are the “usual” pseudometrics, that is, maps d : X × X → R such that
d(x, x) = 0, d(x, y) = d(y, x) and d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ R. To see why
we obtain the triangle inequality from transitivity, recall that the order on the quantale
is reversed w.r.t. the usual order on real numbers, and that ⊗ = +.

CSL 2025

29:6 Correspondences Between Codensity and Coupling-Based Liftings

The order on a quantale V is extended pointwise to functions:

∀f, g : X → V, f ≤ g ⇔ (∀x ∈ X, f(x) ≤ g(x))

Given two V-pseudometrics dX and dY on sets X and Y respectively, a map f : X → Y

is a (V-pseudometric) morphism from dX to dY if dX ≤ dY ◦ (f × f). We write V-PMet for
the category whose objects are V-pseudometrics and arrows morphisms between them.
▶ Remark 5. Because of the reversal of the order on R, morphisms of R-pseudometrics are
non-expansive maps. To avoid confusion with the quantale definition, we refrain from using
the word non-expansive altogether, and replace it by (V-pseudometric) morphism instead.

The following canonical V-pseudometric is essential for the notion of codensity lifting.

▶ Definition 6. The Euclidean pseudometric de : V × V → V is defined as follows:

de(x, y) = [x, y] ∧ [y, x]

▶ Example 7.
For the quantale 2, the Euclidean pseudometric de : 2 × 2 → 2 sends equal elements to ⊤
and different ones to ⊥.
For the quantale R, the Euclidean pseudometric de : R × R → R instantiates to the usual
Euclidean distance, i.e., de(x, y) = |y − x|.

4 Liftings, dualities, and correspondences

In this section we recall the definitions of coupling-based and codensity liftings from the
literature (Section 4.2) and define the problem of their correspondence. This is followed by a
few technical tools that we use in the proofs of correspondence (Section 4.3). We start with
the notion of (well-behaved) modality (Section 4.1), used in these liftings.

4.1 Well-behaved modalities
Given a Set endofunctor F , a modality for F is a function τ : FV → V. Modalities are
standard in the semantics of coalgebraic modal logic [23]. Note that here we assume V to be
a quantale, to have a suitable notion of pseudometrics.

In order for coupling-based liftings to be well-defined some particular conditions on the
functor and the associated modalities are needed. The underlying functor F is assumed to
preserve weak pullbacks. In this context, we say τ is well-behaved [2] when:

it is monotone, meaning that for all V-predicates p ≤ q we have τ ◦ F (p) ≤ τ ◦ F (q),
for all V-predicates p and q, τ ◦ F (p ⊗ q) ≥ (τ ◦ Fp) ⊗ (τ ◦ Fq),
with i : {⊤} ↪→ V the inclusion map, Fi(F{⊤}) = τ−1(⊤).

▶ Example 8.
On the identity functor, with the quantale R, a modality is just a map τ : V → V. It is
well-behaved if and only if it is monotone, subadditive (i.e., τ(r + s) ≤ τ(r) + τ(s)), and
satisfies τ(0) = 0.
For the finite powerset functor P mapping a set X to the set of its finite subsets P(X),
with the same quantale R, the maximum function is well-behaved.
For the finite distribution functor D mapping a set X to the set of its finitely supported
probability distributions D(X), with the quantale [0, 1], the map E : D([0, 1]) → [0, 1]
giving the expected value of a probability distribution is well-behaved.

S. Humeau, D. Petrisan, and J. Rot 29:7

In the rest of this paper we consider constant, identity, finite powerset, finite probability
distribution functors, and combine them using products and coproducts. All these functors
preserve weak pullbacks (see [14, Propositions 4.2.6 and 4.2.10] for example), ensuring we
can consider well-behaved modalities for them.

Well-behaved modalities can be constructed from existing ones. The case of composition
is a generalisation to quantales of a particular case of [2, Theorem 7.2].

▶ Proposition 9. Given three arbitrary well-behaved modalities τ , τ ′ : FV → V and τ Id : V →
V, the following modalities are again well-behaved: τ Id ◦ τ , τ ⊗ τ ′ and τ ∧ τ ′.

4.2 Liftings and correspondences
Given a functor P : C → D, a lifting of a D-functor F : D → D from D to C is a functor
F : C → C such that P ◦ F = F ◦ P . Here we only consider the case when D = Set and
C = V-PMet, with P the forgetful functor sending a V-pseudometric of type X × X → V to
its underlying set X and acting as the identity on arrows. We define coupling-based liftings,
codensity liftings, and the associated notion of correspondence that we study here.

Given t1, t2 ∈ FX, a coupling of t1 and t2 is an element t ∈ F (X × X) such that
Fπi(t) = ti. The set of couplings of t1 and t2 is denoted by Ω(t1, t2). In particular, if
F = D is the distribution functor on Set, these are precisely probabilistic couplings: joint
distributions on X ×X whose marginals coincide with given distributions t1, t2. The following
lifting arises from [11]. See also [6]. It is not referred to in the literature as “coupling-based”;
we use this terminology to distinguish it from the codensity lifting.

▶ Definition 10. Let F : Set → Set be a functor which preserves weak pullbacks, and let τ

be a well-behaved modality for F . The coupling-based lifting of F to V-PMet is given by,
with d ∈ V-PMet and t1, t2 ∈ FX:

F ↓
τ (d)(t1, t2) =

∨
t∈Ω(t1,t2)

τ ◦ Fd(t)

▶ Example 11. In Section 2, we studied a coupling-based lifting for DFA, which yields
the shortest-distinguishing-word-distance. To see this as an instance of Definition 10, the
quantale is V = [0, 1] as introduced in Section 3, the functor F is the one mapping a set X

to 2 × XA. The well-behaved modality takes as argument an element (l, δ) ∈ 2 × VA and
returns

∧
a∈A c · δ(a) for some c ∈ [0, 1). The resulting lifting is precisely the one given in

Equation (3).

The codensity lifting is defined in a very general setting for monads in [19]. Here, we use
an instance, which appears in [24, 21] and, for a single modality, in [2].

▶ Definition 12. Let F : Set → Set, and let Γ be a family of modalities for F . The codensity
lifting of F along Γ to V-PMet is defined by, with d ∈ V-PMet and t1, t2 ∈ FX:

F ↑
Γ(d)(t1, t2) =

∧
τ∈Γ, f : d→de

de(τ ◦ Ff(t1), τ ◦ Ff(t2))

Note that the maps f : d → de in the definition of the codensity lifting are V-pseudometric
morphisms, so that, for instance, in R, they correspond to non-expansive maps (cf. Remark 5).

▶ Example 13. In the example of Section 2 the codensity lifting has one modality mapping
(l, δ) ∈ 2 × VA to l, as well as one modality τa for each letter a ∈ A given by τa(l, δ) = c · δ(a).
The resulting codensity lifting coincides with the lifting given in Equation (4).

CSL 2025

29:8 Correspondences Between Codensity and Coupling-Based Liftings

Note that the coupling-based liftings are only allowed to have one modality, whereas the
codensity ones may have multiple modalities. Informally, one of the reasons coupling-based
liftings do not require multiple modalities can be seen by looking again at the functor for
DFA. Recall that it maps a set X to 2 × XA for 2 = {0, 1} and A an alphabet. Considering
couplings forces comparisons using d to be done separately on each letter. Codensity liftings
instead use one modality per letter to ensure a similar condition. On a higher level of
abstraction, the multiple modalities of codensity liftings relate to the expressivity of some
modal logics (see, e.g., [20]). On the other hand, the unique modality for coupling-based
liftings has often been called an evaluation function (see [2]). Having only one way of
evaluating something seems natural in a given evaluation context.

In the rest of this paper we study possible equalities between the coupling-based and
codensity liftings. In general, we allow a well-behaved modality for the coupling-based
liftings to be matched by a set of (different) modalities for the codensity lifting. In case the
modalities are the same, we call this Kantorovich-Rubinstein duality.

▶ Definition 14. Let F : Set → Set be a weak-pullback preserving functor, τ : FV → V a
well-behaved modality, and Γ a set of modalities for F . A correspondence is a triple of the
form (F, τ , Γ) such that the associated coupling-based and codensity liftings coincide, as in:

F ↓
τ = F ↑

Γ

If Γ = {τ} then we refer to this as Kantorovich-Rubinstein duality, or simply duality.

Two correspondences (F, τ1, Γ1) and (F, τ2, Γ2) for the same functor are called equivalent
when they yield the same liftings:

F ↓
τ1

= F ↑
Γ1

= F ↑
Γ2

= F ↓
τ2

This is denoted by (F, τ1, Γ1) ∼ (F, τ2, Γ2).
When the associated liftings are not equal but one inequality holds nonetheless such as

F ↓
τ1

= F ↑
Γ1

≤ F ↑
Γ2

= F ↓
τ2

we write (F, τ1, Γ1) ≤ (F, τ2, Γ2).

4.3 Kantorovich-Rubinstein dualities and tools to get them
The focus of this paper is on general correspondences between coupling-based and codensity
liftings, but in some cases there is the stronger property of Kantorovich-Rubinstein duality,
meaning correspondences like (F, τ , {τ}). In the remainder of this section we consider a few
technical definitions and results that are useful in obtaining such duality results.

First, coupling-based liftings are always smaller than codensity liftings. This is a known
result; it is a direct consequence of codensity liftings being initial in a well-chosen category as
shown in [10]. It can also be found in [2, Theorem 5.27] in the particular case of the quantale
[0, M] as presented in Section 3.

▶ Proposition 15. Given a Set endofunctor F and an associated well-behaved modality, we
have F ↓

τ ≤ F ↑
{τ}.

Hence to get a Kantorovich-Rubinstein duality, we only need the other inequality. Two
tools are introduced for that: optimal couplings to know the value of coupling-based liftings
and optimal functions to know that of codensity liftings.

Given a functor F : Set → Set, an associated modality τ , a V-pseudometric d : X×X → V ,
and t1, t2 ∈ FX, an optimal coupling is a coupling t ∈ F (X × X) of t1 and t2 such that

F ↓
τ d(t1, t2) = τ ◦ Fd(t)

S. Humeau, D. Petrisan, and J. Rot 29:9

When for all d, t1, and t2 either an optimal coupling exists or no couplings of t1 and t2 exist
we say that F has all optimal couplings. Optimal couplings are well-known in the context of
transport theory [27] and in existing proofs of duality for the finite powerset functor [12, 2].
We note that, whenever all elements in a class of functors F have all optimal couplings, then
functors in the closure of F by coproducts and products do too.

An optimal function for a functor F , an associated modality τ , a V-pseudometric d : X ×
X → V, and t1, t2 ∈ FX is a morphism in V-PMet f : d → de such that:

F ↑
{τ}d(t1, t2) = de(τ ◦ Ff(t1), τ ◦ Ff(t2))

In the context of the general continuous Kantorovich-Rubinstein duality from optimal
transport theory such optimal functions do exist (see [27, proof of Theorem 5.10]) but are
not explicitly defined. As we will see they exist for all the functors we consider.

The following lemma is useful to design optimal functions. It is well-known in the context
of quantale-enriched categories. Instead of defining some pseudometric morphism f : d → de

on X as a whole, it can be defined on Y ⊆ X only, first as some morphism g : d ◦ i → de and
then extended using the lemma. This is useful when only parts of X are of interest, say some
subset of it for the powerset functor, or the support of some probability distribution for the
distribution functor. The extension of g to f from Y to X is done by giving the greatest
values to f on X\Y while ensuring it is a V-pseudometric morphism.

▶ Lemma 16. Let d : X × X → V be a V-pseudometric, and Y
i
⊆ X. For all V-pseudometric

morphisms g : d ◦ (i × i) → de there exists f : d → de s.t. g = f ◦ i and f is the least such
morphism.

5 Correspondences through coproducts and products

In this section we obtain new correspondences between coupling-based and codensity liftings,
for polynomial functors. More specifically, given a set of functors F and associated correspon-
dences (F, τF , ΓF), these are extended to correspondences for the coproduct (Section 5.1) and
product (Section 5.2) of the underlying functors. In Section 5.3 we study correspondences for
constant and identity functors. Finally in Section 5.4 we combine these results to describe
several collections of functors for which we have correspondences. Throughout this section
we fix a quantale V.

5.1 Coproduct functors
We start by showing that correspondences are closed under coproducts. Given sets Si we
write κj for the jth coprojection κj : Sj →

∐
Si.

▶ Proposition 17. Given correspondences (Fi, τi : FiV → V , Γi) there is a correspondence(∐
Fi, [τi],

⋃
Γi

)
where Γi = {τ | τ ∈ Γi} ∪ {τ⊤,i};

the map [τi] :
∐

FiV → V is the cotupling of the individual modalities; for τ ∈ Γi,

τ(x) =
{

τ(y) when there exists y ∈ FiV and x = κiy

⊤ otherwise

and finally, τ⊤,i(x) =
{

⊤ when there exists y ∈ FiV and x = κiy

⊥ otherwise
.

CSL 2025

29:10 Correspondences Between Codensity and Coupling-Based Liftings

When there are no couplings for two given elements, as it happens for instance for elements
in different components of a coproduct, the coupling-based lifting always gives the value ⊥.
The modalities τ⊤,i are there to ensure that the codensity lifting also gives the value ⊥ in
this case. The other modalities are just the extensions of the modalities from the components
of the coproduct to the coproduct itself.

▶ Remark 18. Proposition 17 gives a correspondence but not a duality, in the sense of Defi-
nition 14, that is, the correspondence relates a single modality for the coupling-based lifting
to a set of modalities for the codensity lifting. This is the case even if the correspondences of
the component functors Fi are dualities.

As it turns out, the inverse process of going from a correspondence at the level of the
coproduct to correspondences for its components is also possible:

▶ Proposition 19. If there is a correspondence (
∐

Fi, τ , Γ), then there are correspondences
(Fi, τ ◦ κi, Γ ◦ κi) for each i.

Going back and forth between the components of a coproduct and the coproduct itself using
the results above gives back the same correspondences:

▶ Proposition 20. Whenever one of the correspondences on the left exists we also have the
corresponding equivalence:

(Fi, τi, Γi) ∼
(

Fi, [τj] ◦ κi,
⋃

Γj ◦ κi

)
and(∐

Fi, τ , Γ
)

∼
(∐

Fi, [τ ◦ κi],
⋃

Γ ◦ κi

)
This shows that all correspondences on the coproduct arises as in Proposition 17.

5.2 Product functors

We turn to the construction of correspondences for products from ones on their components.
For this, we ask for some kind of distributivity condition on the quantale. In fact, the case
of products is more involved than that of coproducts. Each of the three propositions for
coproducts above has a version for products, but each gets their own specific restrictions in
the form of conditions on the quantale and modalities or even on the statement itself.

There are several possibilities depending on the number of couplings and on whether we
want finite or arbitrary products. Below, we say that a functor F has finite couplings if, for
any t1, t2 ∈ FX, the set Ω(t1, t2) ⊆ F (X × X) of couplings is finite.

▶ Proposition 21. Let (F, τF , ΓF) and (G, τG, ΓG) be correspondences. If one of the following
conditions holds:

1. F and G have finite couplings and V is distributive, meaning for all x, y, z ∈ V, we have
that (x ∨ z) ∧ (y ∨ z) = (x ∧ y) ∨ z; or,

2. V is join-infinite distributive: for all x ∈ V and V ⊆ V, x ∧
∨

V =
∨

{x ∧ v | v ∈ V };

then we have a correspondence (F × G, (τF ◦ π1) ∧ (τG ◦ π2), (ΓF ◦ π1) ∪ (ΓG ◦ π2)).

Under stronger distributivity conditions, this can be extended to infinite products.

S. Humeau, D. Petrisan, and J. Rot 29:11

▶ Proposition 22. Let (Fi, τFi
, ΓFi

) be correspondences. If one of the following holds:
1. Fi has finite couplings and V is meet-infinite distributive, meaning that for all x ∈ V and

V ⊆ V, x ∨
∧

V =
∧

{x ∨ v | v ∈ V }; or,
2. V is completely distributive, meaning that for all sets K ⊆ I × J such that K projects

onto I, and any subset {xij | (i, j) ∈ K} ⊆ V,
∧

i∈I

(∨
j∈K(i) xij

)
=
∨

f∈A

(∧
i∈I xif(i)

)
where A = {f : I → J | ∀i ∈ I, f(i) ∈ K(i)};

then we have a correspondence (
∏

Fi,
∧

(τFi
◦ πi),

⋃
(ΓFi

◦ πi)).

▶ Example 23. The quantales 2 and [0, M] from Example 2 are both completely distributive.

Replacing the infinite distributivity conditions on the quantale by countably infinite
versions directly gives similar statements for countable products.

In order for the inverse process from products to components to be uniquely defined
we first need to ensure that the functor has been decomposed as much as possible using
coproducts following Propositions 17, 19, and 20. The following well-known lemma is useful
for this (see [22, Proposition 1.3.12]):

▶ Lemma 24. Let F : Set → Set be a functor. There is a family of functors {Fi}i∈F {⊤}
indexed by F{⊤} such that F ≃

∐
Fi, and if Fi =

∐
Gj then all Gj but one are the empty

functor sending any set to the empty set.

Having characterised how functors decompose along coproducts and how correspondences
work with regard to such decompositions, we can now assume functors not to be writable as
non-trivial coproducts meaning that if a functor can be written as a coproduct, all but one
of the components must be the empty functor. Furthermore we assume for convenience that
functors are not empty functors. Those two hypotheses can be formalised as follows: by the
previous lemma, functors send {⊤} and by extension any singleton to a singleton. Hence,
given τ well-behaved, with i : {⊤} ↪→ V, Fi(F{⊤}) = τ−1(⊤) must be a singleton.

▶ Proposition 25. Given a correspondence
(∏

i∈I Fi, τ , Γ
)
, we again have correspondences(

Fi, τ |i, Γ|i
)

where τ |i(x) = τ(⊤1, . . . , ⊤i−1, x, ⊤i+1, . . . , ⊤I), with (⊤j)j = τ−1(⊤) and
similarly for modalities in Γ|i.

In a similar fashion as for the coproduct, we would like that going back and forth between
products and their components, following Proposition 21 or 22 and Proposition 25, preserves
correspondences. We can only do that partially:

▶ Proposition 26. Whenever the correspondences on the left exist and we have the right
distributivity conditions from Proposition 21 or 22 for the correspondence on the right to
exist, we have the following equivalence and inequality:

(Fi, τi, Γi) ∼
(

Fi,
(∧

(τ j ◦ πj)
)

|i
,
(⋃

(Γj ◦ πj)
)

|i

)
(∏

Fi, τ , Γ
)

≤
(∏

Fi,
∧

(τ |i ◦ πi),
⋃

(Γ|i ◦ πi)
)

The inequality comes from the following aspect of the proof. When using the correspondences
on the components of a product of functors to retrieve a correspondence on the product itself,
a choice is made to build modalities for the product. The natural choice of using a meet
ensures the inequality while there is no obvious way to get an equivalence of correspondences.

CSL 2025

29:12 Correspondences Between Codensity and Coupling-Based Liftings

5.3 Constant and identity functors
In this subsection we give correspondence results for constant functors, and for the identity
functor. For constant functors, the essence is given by the constant-to-1 functor.

▶ Proposition 27. The triple (1, τ , Γ) with the functor 1 sending any set to a fixed singleton
is a correspondence if and only if Γ = {τ} and τ is the constant to ⊤ modality.

Proof. We write 1 = {∗}.
⇒: as modalities τ : {∗} → V are assumed well-behaved, given the inclusion i : {⊤} ↪→ V

we must have 1i[1{⊤}] = τ−1(⊤) which translates to τ−1(⊤) = {∗}.
⇐: both liftings lift all pseudometrics to the one constant to ⊤. ◀

Next, we extend this result to arbitrary constant functors. There is only one correspondence
result in this case.

▶ Corollary 28. For A a set, denoting by A the associated constant functor mapping all sets
to A, there is a correspondence (A, τ⊤, {τa | a ∈ A}) with τ⊤ the constant to ⊤ modality and

τa(b) =
{

⊤ when b = a

⊥ otherwise

Furthermore, any other correspondence (A, τ , Γ) is equivalent to (A, τ⊤, {τa | a ∈ A}).

Proof. This is a direct consequence of Propositions 17, 19, 20 and 27 viewing the functor
constant and equal to A as a coproduct:

A ≃
∐
a∈A

1 ◀

We give a general duality result for the identity functor Id acting as the identity on both
sets and functions, generalising [2, Example 5.29]. An instance of well-behaved modalities
for the identity functor was discussed in Example 8.

▶ Proposition 29. For any well-behaved modality τ : V → V for the identity functor, there is
a correspondence (Id, τ , {τ}).

Proof. By Proposition 15 we need only prove

Id↓
τ ≥ Id↑

τ

Let X be a set, d : X × X → V a V-pseudometric, and x, y ∈ X. There is exactly one
coupling of x with y given by (x, y). In particular it is optimal:

Id↓
τ d(x, y) = τ(d(x, y))

Furthermore,

Id↑
τ d(x, y) =

∧
f : d→de

de(τ ◦ f(x), τ ◦ f(y))

Using Lemma 16, we define f : d|{x} → de by f(x) = ⊤ and extend it to a morphism
f : d → de. This gives f(y) = d(x, y) so that de(τ ◦ f(x), τ ◦ f(y)) = τ(d(x, y)). Hence

Id↑
τ d(x, y) ≤ τ ◦ d(x, y) = Id↓

τ d(x, y)

ending the proof. Note that f is a fortiori an optimal function. ◀

S. Humeau, D. Petrisan, and J. Rot 29:13

5.4 Putting it together: correspondences for polynomial functors
Having seen correspondences for products, coproducts, the identity functor, and constant
functors, we combine these results to obtain a “grammar” of functors with correspondences.

We start without products. Using Propositions 17 and 29 as well as Corollary 28 gives
correspondences for functors in the following grammar of Set endofunctors:

F ::= A | Idτ |
∐

Fi

where τ indicates choices of well-behaved modalities in the case of the identity functor.
Furthermore by Propositions 20 and 29 and Corollary 28, any coupling-based lifting of a
functor in this grammar is equivalent to a correspondence given by our construction.

Observing that for a set A,
∐

a∈A F ≃ A × F , the grammar can equivalently be defined as

F ::= A | Idτ | A × F |
∐

Fi

where τ is a well-behaved modality for the identity functor. We can also note that these
functors are exactly those isomorphic to A + B × Id for some sets A and B.

▶ Example 30 (Discounting on streams). Consider the stream functor X 7→ A × X for some
alphabet A. The associated final coalgebra is the set of streams Aω. The results above tell
us that to get a correspondence we need one well-behaved modality τ : V → V per letter
a ∈ A for the codensity lifting, through the isomorphism A × Id ≃

∐
a∈A Id: we have a

way of computing distance between streams in a specific way for each letter in A. When
V = ([0, M], ≥, +) for some real number M ∈ (0, ∞], choosing τa(x) = c · x, the constant
c is then a discount factor allowing one to give more value to the first letters of a stream.
We can choose a different constant ca for each letter a giving different values to different
letters. We can also go further: if we do not want a linear discount we can use arbitrary
well-behaved modalities for the identity functor. On the quantale ([0, M], ≥, +), those are
exactly sub-additive monotone maps mapping 0 to 0.

We also get correspondences for the following grammar of simple polynomial functors:

F ::= A | Idτ | A × F |
∐

Fi |
∏

Fi

These functors all have finite couplings. Following Propositions 21 and 22 we can either
get finite or arbitrary products in the grammar above by assuming V to be distributive or
meet-infinite distributive respectively.

▶ Example 31. We retrieve the correspondence of Section 2 as the particular case of the
quantale ([0, M], ≥, +), the functor 2×IdA, and indexed modalities τ for the identity functors
always mapping x ∈ [0, M] to c · x for some c ∈ [0, 1). Replacing [0, M] by the usual Boolean
quantale 2 = {⊤, ⊥} and indexed modalities by the identity functions gives a correspondence
equivalent to the usual relation lifting [14] associated to behavioural equivalence of DFA.

6 Dualities for the powerset and probability distribution functors

We give duality results for the powerset functor mapping a set X to the set of its subsets
PX, recovering a result from the literature [2, 12] reproduced here as Corollary 35, and
complementing it with a duality result where V is a total order (Corollary 34).

CSL 2025

29:14 Correspondences Between Codensity and Coupling-Based Liftings

▶ Remark 32. The non-empty powerset functor P≥1 mapping a set X to the set of its
non-empty subsets might have been chosen instead of P. Note that P = 1 + P≥1. Up-to
equivalence, as a consequence of Propositions 17, 19 and 27 a correspondence for P is exactly
given by one for P≥1 and conversely.

Given T1, T2 ∈ PX, t1 ∈ T1, and a V-pseudometric d : X × X → V, we write Mt1 for
the set of maximal elements of {d(t1, t2) | t2 ∈ T2}, and similarly for elements t2 ∈ T2.
Expressing a coupling-based lifting as a codensity one in a correspondence implies turning a
join in a meet. The following proposition gives a condition allowing one to do that in the
case of the powerset functor by making a modality absorb a meet.

▶ Proposition 33. Let τ : PV → V be a well-behaved modality. If for every V-pseudometric
d : X × X → V and sets T1, T2 ∈ PX the following equality holds

τ
{∨

Mt1 | t1 ∈ T1

}∧
τ
{∨

Mt2 | t2 ∈ T2

}
= τ

((⋃
t1∈T1

Mt1

)
∪

(⋃
t2∈T2

Mt2

))
then there is a duality (P, τ , {τ}).

▶ Corollary 34. Let τ : PV → V be a well-behaved modality. If the order on V is total then
there is a duality (P, τ , {τ}).

▶ Corollary 35. We assume V to be completely distributive. We have duality for the coupling-
based and codensity liftings of the powerset functor, both along the meet modality which maps
a subset of V to the meet of its elements.

For the probability distribution functor we fix a constant M ∈ (0, ∞] and use the quantale
([0, M], ≥, +). The following (Kantorovich-Rubinstein) duality result is well-known (see,
e.g., [27, Theorem 5.10] for a general proof in the continuous case and [16, Appendix A] for
the discrete finite case):

▶ Proposition 36. There is a duality (D,E, {E}) with D the finite probability distribution
functor and E giving the expectation of probability distributions.

We extend this result slightly to allow post-composition by well-behaved modalities:

▶ Proposition 37. Let τ : [0, M] → [0, M] be a well-behaved modality. If τ is additive, meaning
that for all x, y ∈ [0, M], τ(x + y) = τ(x) + τ(y), then there is a duality (D, τ ◦ E, {τ ◦ E}).

7 Correspondences for grammars of functors

In this section we combine the results from the previous two sections, allowing the construction
of correspondences for certain classes of functors including powerset, distribution, identity
and constant functors, as well as products and coproducts thereof.

Whenever V is totally ordered and completely distributive, using results from Sections 5
and 6 we can construct correspondences for the following grammar of functors:

F ::= A | Idτ | Pτ |
∏

Fi |
∐

Fi

where the indices τ are well-behaved modalities for either the identity or powerset functors.
Noting that P

(∐
i∈I Fi

) ∼=
∏

i∈I P(Fi), this grammar can be reformulated as follows:

G ::= A | Idτ | A × G |
∐

G

F ::= A | Idτ | P ◦ G |
∏

Fi |
∐

Fi

where the indices of the form τ indicate a choice of possible well-behaved modalities for the
identity functor when appearing in F and for the powerset functor when appearing in G.

S. Humeau, D. Petrisan, and J. Rot 29:15

▶ Example 38. In a similar fashion as in Example 31, considering the completely distributive
quantale ([0, M], ≥, +), the functor 2×PA which is associated to non-deterministic automata,
and indexed modalities for the powerset functors to be all mapping finite subsets V ⊂ [0, M]
to c · max(V) for a fixed c ∈ [0, 1), we get a lifting associated to a shortest-distinguishing-
word-distance for non-deterministic systems as is detailed in Section 2 for DFA.

▶ Remark 39. This grammar with finite products only defines a fragment of finitary Kripke
polynomial functors as defined in [14] which correspond to replacing P(G) by P(F), and
having only finite products but including arbitrary exponents.

▶ Remark 40. Using the identity modality for the identity functors and the meet modality
for the powerset functors, the modalities given by this construction for the coupling-based
liftings are exactly the canonical evaluation maps as defined in [6].

In the particular case of V = [0, M] we can extend the above grammar with the finite
probability distribution functor and get correspondence results for the following:

F ::= A | Idτ | Pτ | Dτ |
∏

Fi |
∐

Fi

where the indices τ indicate choices of well-behaved modalities for either the identity, powerset,
or distribution functors, furthermore of a modality of the form τ ◦E for the latter as described
in Proposition 37.

Observe that D
(∐

i∈I Fi

) ∼= D(I) ×
∏

i∈I D(Fi) so that the grammar above can be
expressed as follows:

G ::= A | Idτ | A × G |
∐

G

F ::= A | Idτ | P ◦ G | D ◦ G |
∏

Fi |
∐

Fi

where the indices τ indicate choices of possible well-behaved modalities for the identity
functor in Idτ and for the powerset or distribution functors when appearing in G for P ◦ G

and D ◦ G respectively.

▶ Example 41. We fix M = 1 so that V = [0, 1]. Consider the functor D(1 + Id)A for a
set of labels A and 1 a singleton as in Proposition 27. It is associated to labelled Markov
processes. To get a correspondence we need one modality τa : D[0, 1] → [0, 1] per label a ∈ A.
By Proposition 37 we can take them all to be τa(µ) = c ·E(µ) with c ∈ [0, 1) a fixed constant.
The resulting correspondence is associated to the usual metrics for labelled Markov processes
as introduced in [8]. This is a direct consequence of [26, Proposition 29] which expresses the
associated lifting for one label in a “codensity-like” manner.

8 A counter-example: conditional transition systems

We now highlight an example where a correspondence can not be provided by our construction:
some codensity lifting may not be obtained as a coupling-based lifting.

A conditional transition system (CTS) over an alphabet A and a partially ordered set
of conditions (L, ≤) is a tuple (X, A, L, δ) where X is a set of states and the transition
map δ : X × A → ((L, ≤) → (P(X), ⊇)) associates to each pair (x, a) ∈ X × A a monotone
function δx,a from the poset of conditions to P(X). For the associated functor to live in
Set we restrict to the CTSs for which L is trivially ordered by ∀x, y ∈ L, x ≤ y. Hence
any map δx,a : L → P(X) is monotone, and CTSs are exactly coalgebras for the functor
F = P(−)A×L (see [4]).

CSL 2025

29:16 Correspondences Between Codensity and Coupling-Based Liftings

The associated bisimulations, not detailed here, are related to a lifting F : P(L)-PMet →
P(L)-PMet of F defined by

Fr(T1, T2) = {l ∈ L | ∀a ∈ A,∀(x, y) ∈ T1(l, a) × T2(l, a),
∃(x′, y′) ∈ T1(l, a) × T2(l, a),

(l ∈ r(x, y′)) and (l ∈ r(x′, y))}

on objects and Ff = Ff on maps.

▶ Proposition 42. For a ∈ A consider a modality τa : P(P(L))L×A → P(L), defined by:

∀f : L × A → P(P(L)), τa(f) = {l ∈ L | l ∈ ∩f(l, a)}

The codensity lifting defined by the family (τa)a∈A of modalities is equal to F .

▶ Proposition 43. If A is non-empty and |L| ≥ 2 then there is no well-behaved modality
τ : P(P(L))L×A → P(L) such that the resulting coupling-based lifting is equal to F .

Proof. Let a ∈ A be some letter and c1, c2 ∈ L be two distinct conditions. Consider
d : X × X → P(L) constant to ⊤, that is, L. It is obviously a P(L)-pseudometric. Finally
we consider T1, T2 ∈ P(X)L×A such that T1(c1, a) = ∅ and T1(c2, a) = X, and T2(c1, a) =
T2(c2, a) = X. Directly, because T1(c1, a) = ∅ but T2(c1, a) ̸= ∅ there are no couplings of T1
and T2, and for all well-behaved modalities, F ↓

τ d(T1, T2) = ∅. On the other hand,

∀(x, y) ∈ T1(c2, a)×T2(c2, a), ∃(x′, y′) ∈ T1(c2, a)×T2(c2, a), (l ∈ d(x, y′)) and (l ∈ d(x′, y))

Hence c2 ∈ Fd(T1, T2) ̸= ∅. ◀

Hence, conditional transition systems give a limitation to the correspondence results
provided above. Note however that the associated functor has a correspondence induced by
a grammar above. The reason it is not equivalent to the lifting F is that it considers the
set L × A as being a set of actions, while we want conditions in L to be independent of one
another and compared separately. Indeed, conditions are fixed throughout the execution of a
CTS whereas actions may change at each step.

9 Conclusions and future work

We have studied correspondences between coupling-based and codensity liftings, moving
from the classical Kantorovich-Rubinstein duality for distributions to different types of
endofunctors on Set. In particular, we have shown that such types of correspondences are
closed under coproducts and products and used that to provide explicit correspondences for
several grammars of functors, including polynomial functors with the possibility of extending
them using the powerset and the probability distribution functors. This instantiates to
usual liftings of functors associated to (non)deterministic finite automata, or labelled Markov
processes, both with discount.

In [10] the authors have shown that on an abstract level all coupling-based liftings are
in fact codensity liftings, implying that all coupling-based liftings have some associated
correspondences. Section 8 shows that the converse does not hold by providing an example of
lifting that arises as a codensity lifting but not as a coupling-based one. Our work proves that
correspondences for coproducts of functors are characterised by ones for the components of the
coproducts, but gives no such result for products of functors. For example we could consider

S. Humeau, D. Petrisan, and J. Rot 29:17

the coupling-based lifting of the diagonal functor ∆: X 7→ X × X along the well-behaved
modality ⊗ : V × V → V . The question of whether it arises from coupling-based liftings of
the identity functors, and the problem of relating it to a codensity lifting in a correspondence
remain open. Note however that if coupling-based liftings require their modalities to be
well-behaved, codensity liftings, as defined in [10] need no such assumption and can be
defined along sets of any modalities. Hence it is possible that to see the coupling-based lifting
of ∆ along ⊗ as a codensity lifting it is needed to consider general modalities for the latter.

In Section 8 we have seen that a certain lifting for conditional transition systems can not
be obtained as a coupling-based lifting. This leads to the question of whether the definition
of coupling-based liftings could be extended somehow to encompass this example and obtain
a correspondence with the existing codensity lifting.

References
1 Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. On-the-fly computation

of bisimilarity distances. Log. Methods Comput. Sci., 13(2), 2017. doi:10.23638/LMCS-13(2:
13)2017.

2 Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König. Coalgebraic behavioral
metrics. Log. Methods Comput. Sci., 14(3), 2018. doi:10.23638/LMCS-14(3:20)2018.

3 Harsh Beohar, Barbara König, Sebastian Küpper, and Alexandra Silva. Conditional transition
systems with upgrades. Sci. Comput. Program., 186, 2020. doi:10.1016/J.SCICO.2019.
102320.

4 Harsh Beohar, Barbara König, Sebastian Küpper, Alexandra Silva, and Thorsten Wißmann. A
coalgebraic treatment of conditional transition systems with upgrades. Log. Methods Comput.
Sci., 14(1), 2018. doi:10.23638/LMCS-14(1:19)2018.

5 Filippo Bonchi, Barbara König, and Daniela Petrisan. Up-to techniques for behavioural
metrics via fibrations. In Sven Schewe and Lijun Zhang, editors, 29th International Conference
on Concurrency Theory, CONCUR 2018, September 4-7, 2018, Beijing, China, volume
118 of LIPIcs, pages 17:1–17:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPICS.CONCUR.2018.17.

6 Filippo Bonchi, Barbara König, and Daniela Petrisan. Up-to techniques for behavioural
metrics via fibrations. Math. Struct. Comput. Sci., 33(4-5):182–221, 2023. doi:10.1017/
S0960129523000166.

7 Y. Brenier, U. Frisch, M. Hénon, G. Loeper, S. Matarrese, R. Mohayaee, and A. Sobolevskĭı.
Reconstruction of the early Universe as a convex optimization problem. Monthly Notices of
the Royal Astronomical Society, 346(2):501–524, December 2003. doi:10.1046/j.1365-2966.
2003.07106.x.

8 Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics for
labelled markov processes. Theor. Comput. Sci., 318(3):323–354, 2004. doi:10.1016/J.TCS.
2003.09.013.

9 Alessandro Giacalone, Chi-Chang Jou, and Scott A. Smolka. Algebraic reasoning for prob-
abilistic concurrent systems. In Manfred Broy and Cliff B. Jones, editors, Programming
concepts and methods: Proceedings of the IFIP Working Group 2.2, 2.3 Working Conference
on Programming Concepts and Methods, Sea of Galilee, Israel, 2-5 April, 1990, pages 443–458.
North-Holland, 1990.

10 Sergey Goncharov, Dirk Hofmann, Pedro Nora, Lutz Schröder, and Paul Wild. Kantorovich
functors and characteristic logics for behavioural distances. In Orna Kupferman and Pawel
Sobocinski, editors, Foundations of Software Science and Computation Structures - 26th
International Conference, FoSSaCS 2023, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings,
volume 13992 of Lecture Notes in Computer Science, pages 46–67. Springer, 2023. doi:
10.1007/978-3-031-30829-1_3.

CSL 2025

https://doi.org/10.23638/LMCS-13(2:13)2017
https://doi.org/10.23638/LMCS-13(2:13)2017
https://doi.org/10.23638/LMCS-14(3:20)2018
https://doi.org/10.1016/J.SCICO.2019.102320
https://doi.org/10.1016/J.SCICO.2019.102320
https://doi.org/10.23638/LMCS-14(1:19)2018
https://doi.org/10.4230/LIPICS.CONCUR.2018.17
https://doi.org/10.1017/S0960129523000166
https://doi.org/10.1017/S0960129523000166
https://doi.org/10.1046/j.1365-2966.2003.07106.x
https://doi.org/10.1046/j.1365-2966.2003.07106.x
https://doi.org/10.1016/J.TCS.2003.09.013
https://doi.org/10.1016/J.TCS.2003.09.013
https://doi.org/10.1007/978-3-031-30829-1_3
https://doi.org/10.1007/978-3-031-30829-1_3

29:18 Correspondences Between Codensity and Coupling-Based Liftings

11 Dirk Hofmann. Topological theories and closed objects. Advances in Mathematics, 215(2):789–
824, 2007. doi:10.1016/j.aim.2007.04.013.

12 Dirk Hofmann and Pedro Nora. Hausdorff coalgebras. Appl. Categorical Struct., 28(5):773–806,
2020. doi:10.1007/S10485-020-09597-8.

13 Samuel Humeau, Daniela Petrisan, and Jurriaan Rot. Correspondences between codensity and
coupling-based liftings, a practical approach, 2024. Version of this paper with the appendix.
URL: https://hal.science/hal-04789352.

14 Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation,
volume 59 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2016. doi:10.1017/CBO9781316823187.

15 Bart Jacobs. Drawing from an urn is isometric. In Naoki Kobayashi and James Worrell, editors,
Foundations of Software Science and Computation Structures - 27th International Conference,
FoSSaCS 2024, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceedings,
Part I, volume 14574 of Lecture Notes in Computer Science, pages 101–120. Springer, 2024.
doi:10.1007/978-3-031-57228-9_6.

16 Bart Jacobs. Drawing with distance, 2024. arXiv:2405.18182, doi:10.48550/arXiv.2405.
18182.

17 Leonid Kantorovich. On the translocation of masses (in Russian). Doklady Akademii Nauk,
37(7–8):227–229, 1942. Translated to English in Management Science, 5, 1 (1958).

18 Leonid Kantorovich and Gennady S. Rubinstein. On a space of totally additive functions (in
Russian). Vestnik Leningrad. Univ, 13(7):52–59, 1958.

19 Shin-ya Katsumata, Tetsuya Sato, and Tarmo Uustalu. Codensity lifting of monads and its
dual. Log. Methods Comput. Sci., 14(4), 2018. doi:10.23638/LMCS-14(4:6)2018.

20 Yuichi Komorida, Shin-ya Katsumata, Clemens Kupke, Jurriaan Rot, and Ichiro Hasuo. Expres-
sivity of quantitative modal logics : Categorical foundations via codensity and approximation.
In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy,
June 29 - July 2, 2021, pages 1–14. IEEE, 2021. doi:10.1109/LICS52264.2021.9470656.

21 Barbara König and Christina Mika-Michalski. (metric) bisimulation games and real-valued
modal logics for coalgebras. In Sven Schewe and Lijun Zhang, editors, 29th International
Conference on Concurrency Theory, CONCUR 2018, September 4-7, 2018, Beijing, China,
volume 118 of LIPIcs, pages 37:1–37:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2018. doi:10.4230/LIPICS.CONCUR.2018.37.

22 Robert Paré. Taut functors and the difference operator, 2024. arXiv:2407.21129.
23 Lutz Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. In Vladimiro

Sassone, editor, Foundations of Software Science and Computational Structures, 8th Inter-
national Conference, FOSSACS 2005, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceed-
ings, volume 3441 of Lecture Notes in Computer Science, pages 440–454. Springer, 2005.
doi:10.1007/978-3-540-31982-5_28.

24 David Sprunger, Shin-ya Katsumata, Jérémy Dubut, and Ichiro Hasuo. Fibrational bisimula-
tions and quantitative reasoning: Extended version. J. Log. Comput., 31(6):1526–1559, 2021.
doi:10.1093/LOGCOM/EXAB051.

25 Franck van Breugel. Probabilistic bisimilarity distances. ACM SIGLOG News, 4(4):33–51,
2017. doi:10.1145/3157831.3157837.

26 Franck van Breugel and James Worrell. A behavioural pseudometric for probabilistic transition
systems. Theor. Comput. Sci., 331(1):115–142, 2005. doi:10.1016/J.TCS.2004.09.035.

27 Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009. doi:
10.1007/978-3-540-71050-9.

https://doi.org/10.1016/j.aim.2007.04.013
https://doi.org/10.1007/S10485-020-09597-8
https://hal.science/hal-04789352
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1007/978-3-031-57228-9_6
https://arxiv.org/abs/2405.18182
https://doi.org/10.48550/arXiv.2405.18182
https://doi.org/10.48550/arXiv.2405.18182
https://doi.org/10.23638/LMCS-14(4:6)2018
https://doi.org/10.1109/LICS52264.2021.9470656
https://doi.org/10.4230/LIPICS.CONCUR.2018.37
https://arxiv.org/abs/2407.21129
https://doi.org/10.1007/978-3-540-31982-5_28
https://doi.org/10.1093/LOGCOM/EXAB051
https://doi.org/10.1145/3157831.3157837
https://doi.org/10.1016/J.TCS.2004.09.035
https://doi.org/10.1007/978-3-540-71050-9
https://doi.org/10.1007/978-3-540-71050-9

A Complete Inference System for Probabilistic
Infinite Trace Equivalence
Corina Cîrstea #

University of Southampton, UK

Lawrence S. Moss #

Indiana University, Bloomington, IN, USA

Victoria Noquez #

Saint Mary’s College of California, Moraga, CA, USA

Todd Schmid #

Bucknell University, Lewisburg, PA, USA

Alexandra Silva #

Cornell University, Ithaca, NY, USA

Ana Sokolova #

Paris Lodron University of Salzburg, Austria

Abstract
We present the first sound and complete axiomatization of infinite trace semantics for generative
probabilistic transition systems. Our approach is categorical, and we build on recent results on
proper functors over convex sets. At the core of our proof is a characterization of infinite traces as
the final coalgebra of a functor over convex algebras. Somewhat surprisingly, our axiomatization of
infinite trace semantics coincides with that of finite trace semantics, even though the techniques
used in the completeness proof are significantly different.

2012 ACM Subject Classification Theory of computation → Logic; Theory of computation →
Formal languages and automata theory

Keywords and phrases Coalgebra, infinite trace, semantics, logic, convex sets

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.30

Funding This material is based upon work supported by the National Science Foundation under
Grant No. DMS-1928930, while the authors were in residence at the Mathematical Sciences Research
Institute in Berkeley, California, during the Summer Research in Mathematics program of 2024.
Corina Cîrstea: partly supported by the Leverhulme Trust Research Project Grant RPG-2020-232.
Lawrence S. Moss: Lawrence S. Moss was supported by grant #586136 from the Simons Foundation.
Alexandra Silva: ERC grant Autoprobe (no. 101002697). This work was done in part while the
author was visiting the Simons Institute for the Theory of Computing.

Acknowledgements We thank Wojtek Rozowski for insightful discussions on related topics and the
anonymous reviewers for helpful suggestions that improved the material presented in the paper. We
thank the National Science Foundation and the Simons Laufer Mathematical Sciences Institute for
their support of our work.

1 Introduction

Probabilistic transition systems have been studied in the semantics and verification literature
for decades. There are many variants, from the simplest Rabin model [16] to systems that
encompass multiple layers of randomized and non-deterministic choice. A good overview of
existing systems and an expressiveness hierarchy was provided in [26, 3].

© Corina Cîrstea, Lawrence S. Moss, Victoria Noquez, Todd Schmid, Alexandra Silva, and
Ana Sokolova;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 30; pp. 30:1–30:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cc2@ecs.soton.ac.uk
https://orcid.org/0000-0003-3165-5678
mailto:lmoss@iu.edu
https://orcid.org/0000-0002-9908-5774
mailto:vln1@stmarys-ca.edu
https://orcid.org/0000-0001-5517-0929
mailto:t.schmid@bucknell.edu
https://orcid.org/0000-0002-9838-2363
mailto:alexandra.silva@gmail.com
https://orcid.org/0000-0001-5014-9784
mailto:ana.sokolova@cs.uni-salzburg.at
https://orcid.org/0000-0002-8384-3438
https://doi.org/10.4230/LIPIcs.CSL.2025.30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 A Complete Inference System for Probabilistic Infinite Trace Equivalence

One important class of probabilistic systems are so-called generative probabilistic transition
systems (GPTS). These are much like ordinary (nondeterministic) labelled transition systems,
but each state is assigned a (sub-)probability distribution over outgoing transitions instead
of a set of outgoing transitions. Every state in a GPTS generates a probability distribution
of traces. The traces generated can be finite or infinite depending whether the GPTS models
explicit termination.

In this paper, we will consider GPTS without explicit termination, also widely known
in the literature as Labelled Markov Chains (LMCs), and therefore we are only interested
in including infinite traces in the semantics. That is, each state of an LMC we consider
generates a probability distribution on infinite traces (a.k.a. streams). The main goal of this
paper is to provide an axiomatic characterization of when two states in these LMCs generate
the same probability distribution on streams. We provide a syntax and an inference system
to reason about distributions on streams generated by a state of an LMC, and prove that
the axiomatization is both sound and complete.

Axiomatizing trace distribution semantics is difficult in general, and this is made more
challenging by the presence of infinite traces. One of the seminal works on axiomatizing
probabilistic behaviours is due to Stark and Smolka [29], but they studied probabilistic
bisimilarity (in the sense of [11]), which is a finer equivalence than trace distributions. A
decade later [25], Silva and Sokolova showed that adding one extra axiom to Stark and
Smolka’s axiomatization of probabilistic bisimilarity was enough to obtain a sound and
complete axiomatization of finite trace distribution equivalence. At the core of Silva and
Sokolova’s completeness result was the observation that finite trace distribution equivalence
coincides with bisimilarity after determinization in the category of convex algebras, algebraic
structures that model the closure of convex sets under convex combinations. Stark and
Smolka’s result is the probabilistic analogue of an earlier paper of Milner [15], whereas
Silva and Sokolova’s is the probabilistic analogue of an earlier paper of Rabinovich [17],
where it is shown that a sound and complete axiomatization of trace semantics of labelled
transition systems can be obtained from an axiomatization of bisimilarity. All these works,
non-deterministic and probabilistic, restrict themselves to finite traces.

To achieve our goal, we use a categorical perspective on the semantics of LMCs. This is
in the spirit of [25], but there are crucial technical hurdles to overcome: First, we need to
find an endofunctor on a category that models LMCs as coalgebras and allows the derivation
of the stream distribution semantics in a canonical way. More specifically, we need to give a
coalgebraic characterization of the map that assigns to every state of an LMC the distribution
on streams that the state generates. To this end, we carefully craft the endofunctor G on the
category CA of convex algebras and convex algebra homomorphisms in Section 5. Second,
we show that our endofunctor satisfies a number of desirable properties that enable a sound
and complete axiomatization, including the preservation of pullbacks and properness [14].
Finally, we need to find a suitable syntax for specifying finite LMCs where stream semantics
is of interest. Each of these steps pushes the boundaries of existing work on semantics and
decidability of trace equivalence for automata, and they require new technical results that
form the core contributions of our paper. We briefly describe our contributions below and
give an outline of the paper.

In Section 2, we recall basic definitions on labelled Markov chains and their semantics.
In Section 3, we recall the syntax of Stark and Smolka’s process algebra [29] and Silva
and Sokolova’s axioms for finite trace equivalence [23], which will form the basis of our
inference system and allow us to state our intended soundness and completeness results.
In Section 4, we explain our high-level strategy for proving completeness, which follows
the coalgebraic completeness method described in [22] that originates in [8, 24, 13].

C. Cîrstea, L. S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova 30:3

In Section 5, we define the endofunctor G, which forms the basis of all of our developments.
The functor G is defined on the category CA of convex algebras and convex algebra
homomorphisms (see Definition 4.1), and makes use of an important mass-splitting
property that resembles a side condition present in [6]. Crucially, we characterize stream
distribution semantics as a final G-coalgebra semantics, via a determinization construction
that turns LMCs into G-coalgebras. This construction is interesting in its own right, given
its simplicity compared to existing finality-based approaches to infinite trace semantics
[9, 5, 6].
In Section 6, we define a G-coalgebra structure on the set of process terms modulo axioms,
which endows the terms with an operational semantics. We show that this term coalgebra
is universal among the free and finitely generated G-coalgebras by providing unique
solutions to finite systems of equations arising from a coalgebra structure.
In Section 7, we conclude our proof of completeness by establishing that G satisfies a
property called properness, introduced by Milius in [14]. The proof that G is proper uses
a topological characterization of congruences of finitely generated convex algebras due to
Sokolova and Woraceck [27].
We conclude with a discussion of related and future work, and the implications of the
completeness theorem in Section 8.

Our completeness result is remarkable for two reasons: First and foremost, our axiomatiz-
ation is precisely the same as Silva and Sokolova’s for finite trace semantics. In other words,
both the (finite) trace distribution semantics and the stream distribution semantics give rise
to the same valid equations between term expressions. Second, the completeness result uses
a novel proof of properness [14, 28] that appears to hinge on the topology of bisimulations
between coalgebras over convex algebras. The latter is a significant point of departure from
the properness proof method of Sokolova and Woracek [28].

2 Labelled Markov Chains and Stream Semantics

In this section, we briefly recall basic definitions of labelled Markov chains, stream semantics,
and the framework of universal coalgebra.

Labelled Markov chains. Given a set X, define D(X) to be the set of finitely supported
probability distributions on X. That is, θ ∈ D(X) if and only if θ : X → [0, 1], θ(x) > 0 for
finitely many x ∈ X, and θ(X) =

∑
x∈X θ(x) = 1. Since the support is finite, each θ ∈ D(X)

can be written in the form
∑n

i=1 ri · xi such that ri ∈ (0, 1] and xi ∈ X for each i ≤ n. We
write 1 · x for the Dirac delta at x ∈ X.

For a fixed finite set A of formal symbols called actions, a labelled Markov chain (or LMC)
is a pair (X,β) consisting of a set X of states and a transition function β : X → D(A×X).
An LMC is said to be finite if it has finitely many states.

One graphical depiction of a finite LMC is the directed graph with a node for each state
and a decorated edge x a|r−−→β y between nodes x and y whenever β(x)(a, y) = r with r > 0.
We typically drop the β notation whenever the transition function is clear from context.

▶ Example 2.1. The LMC (X,β : X → D(A × X)) with A = {a, b}, X = {x, y}, and
β(x)(a, y) = β(x)(b, x) = β(y)(b, x) = β(y)(a, y) = 0.5 is depicted in (2.1).

x y
a | 0.5

b | 0.5
b | 0.5

a | 0.5 (2.1)

CSL 2025

30:4 A Complete Inference System for Probabilistic Infinite Trace Equivalence

Stream semantics. A word over a finite alphabet A is a finite sequence a1 · · · an (written
as a juxtaposition) of elements of A. We write ε for the empty word. A stream is an infinite
sequence (a1, a2, . . .) of elements from A. We write A∗ for the set of words and Aω for the
set of streams. The set Aω carries a topology, with basis given by the cylinder sets,

Bw = {(a1, . . . , an, . . .) | a1 · · · an = w}

where w ∈ A∗ is a word. In the notation above, Bε = Aω, as every stream begins with ε.
Recall that a Borel set is an element of the σ-algebra generated by the open sets of

a topological space, a Borel measure is a measure defined on the Borel sets, and a Borel
probability distribution is a Borel measure with total probability 1 [19].

▶ Definition 2.2. A stream distribution is a Borel probability distribution on the space Aω.
The set of all stream distributions on Aω is written Prob(Aω).

Each state of an LMC corresponds to a unique stream distribution that records the
probability of that state eventually emitting streams in a given Borel set. The following
proposition is a special case of [9, Proposition 3.12].

▶ Proposition 2.3. Let (X,β) be an LMC. There is a unique map J−Kβ : X → Prob(Aω)
such that for any x ∈ X and any w ∈ A∗ and a ∈ A,

JxKβ (Baw) =
∑
y∈X

β(x)(a, y) JyKβ (Bw)

The map J−Kβ above is the stream semantics of (X,β). Given states x, y ∈ X, we say x and
y are stream equivalent if JxKβ = JyKβ .

LMCs as coalgebras. Universal coalgebra is by now a standard framework for studying
state-based systems like LMCs [20]. The theory is sufficiently general for capturing systems
where the states come with additional structure. Systems with structured state spaces are
central to the main result of this paper, so we state the definitions below for more general
categories than the category Set of sets and functions.

▶ Definition 2.4. Given an endofunctor on a category F : C → C, an F -coalgebra is a
pair (X, c) consisting of an object X of C and an arrow c : X → F (X). A coalgebra
homomorphism h : (X, cX)→ (Y, cY) is an arrow h : X → Y such that cY ◦ h = F (h) ◦ cX .
We write CoalgC(F) for the category of F -coalgebras and their homomorphisms.

The set-mapping X 7→ D(X) is a functor, with action on functions given by

D(f)(θ) =
n∑

i=1
ri · f(xi)

where f : X → Y and θ =
∑n

i=1 ri · xi. The set-mapping X 7→ A×X is also a functor, with
the action on functions being f 7→ idA × f . By composition, D(A×−) is an endofunctor on
Set. The point is that LMCs are precisely D(A×−)-coalgebras. Unravelling the definitions,
a coalgebra homomorphism between LMCs h : (X,β)→ (Y, ϑ) is a function h : X → Y such
that for any x ∈ X, if β(x) =

∑n
i=1 ri · (ai, xi), then

ϑ(h(x)) =
n∑

i=1
ri · (ai, h(xi))

C. Cîrstea, L. S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova 30:5

Coalgebra homomorphisms are precisely the maps that preserve the branching-time behaviour
of probabilistic systems.

A category C is concrete if there is a faithful functor U : C → Set. An object X in a
concrete category C is essentially a set U(X) with additional structure, and arrows X → Y

are functions that preserve that structure. We write x ∈ X for x ∈ U(X). The category Set
is of course concrete, as witnessed by the identity functor.

▶ Definition 2.5. Let (X, cX) and (Y, cY) be F -coalgebras where F : C→ C and C is concrete,
x ∈ X and y ∈ Y . We say x and y are behaviourally equivalent and write x ∼ y if there is
a cospan (X, cX) h−→ (Z, cZ) k←− (Y, cY) in CoalgC(F) such that h(x) = k(y).

For LMCs, behavioural equivalence (which coincides with probabilistic bisimilarity)
implies stream equivalence [21, Theorem 6.7].

▶ Proposition 2.6. Let (X,β) and (Y, ϑ) be LMCs, x ∈ X, y ∈ Y . If x ∼ y, then JxKβ = JyKϑ.

The converse fails: for LMCs, behavioural equivalence is strictly finer than stream
equivalence (see, e.g., [21, Figure 8]). It follows that there is no LMC structure (Prob(Aω), c)
such that J−Kβ : (X,β)→ (Prob(Aω), c) is always a coalgebra homomorphism.

3 Axiomatizing Stream Semantics

In this section, we recall Stark and Smolka’s specification language for probabilistic transition
systems [29] and the axioms for trace equivalence proposed by Silva and Sokolova [25].

A Specification Language for LMCs

Fix an infinite set V of variables. Consider the set of terms generated by the grammar below,

e, f ::= v | ae | e⊕r f | µv e

where v ∈ V , a ∈ A, and r ∈ [0, 1]. A variable v is bound in a term e if it appears within the
scope of µv (−), and guarded if it appears within the scope of some a(−). The set PTerm of
productive process terms is the set of terms e such that every variable v appearing in e is
both guarded and bound. Given variables v1, . . . , vn, we write PTerm(v1, . . . , vn) for the set
of guarded terms whose free variables are contained in {v1, . . . , vn}.

Intuitively, the operation a(−) is prefixing by a, and ae denotes the process that makes
an a-labelled transition with probability 1 into e. The operations ⊕r are called convex sums,
and e⊕r f denotes the process whose outgoing transitions are the same as e and f , but with
probabilities scaled by r ∈ [0, 1] and 1− r respectively. The operation µv (−) is recursion
in v, and µv g behaves exactly as g[µv g/v] does, where g[µv g/v] denotes the productive
process term obtained by substituting every free occurrence of v in g with µv g. Recursion is
the source of loops in the LMCs specified by productive process terms. The intuition behind
each operation on productive process terms is formalized as follows.

▶ Definition 3.1. For any e, f ∈ PTerm, a ∈ A, v ∈ V , g ∈ PTerm(v), and r ∈ [0, 1], define

τ(ae) = 1 · (a, e) τ(e⊕r f) = r τ(e) + (1− r) τ(f) τ(µv g) = τ(g[µv g/v])

Then (PTerm, τ) is the syntactic LMC.

CSL 2025

30:6 A Complete Inference System for Probabilistic Infinite Trace Equivalence

Each probabilistic process term e shares its stream semantics with a state in a finite LMC.
In particular, let ⟨e⟩ be the set of probabilistic process terms f such that e a1|r1−−−→ · · · an|rn−−−→ f .
Then ⟨e⟩ is finite and τ restricts to a transition structure τ⟨e⟩ : ⟨e⟩ → D(A× ⟨e⟩) [21]. We
also have JeKτ = JeKτ⟨e⟩

, since JeKτ only depends on states reachable from e.
The converse is also true. The following theorem, analogous to Kleene’s theorem for

regular expressions [10], is a direct consequence of results presented in [29].

▶ Theorem 3.2. Let (X,β) be a finite LMC and let x ∈ X. There exists an e ∈ PTerm such
that e and x are behaviourally equivalent.

As an immediate consequence of Theorem 3.2 and Proposition 2.6, we have that PTerm
is a fully expressive specification language for states of finite LMCs.

▶ Corollary 3.3. Let (X,β) be a finite LMC and let x ∈ X. There exists an e ∈ PTerm such
that JeKτ = JxKβ.

From now on, we drop τ and simply write JeK instead of JeKτ , for e ∈ PTerm.

▶ Example 3.4. The state x in the LMC (2.1) has the same stream semantics as the term
µv (bv ⊕0.5 a(µu (au ⊕0.5 bv)))). However, it appears that there is a redundancy in the
LMC (2.1). Both x and y emit a and b with the same probability, and each transitions to the
other with the same probability. Thus, the stream semantics of both states x and y is the
unique Borel probability distribution ρ satisfying ρ(Ba1···an) = 0.5n for any a1 · · · an ∈ {a, b}∗,
making x and y stream equivalent to the state z below. This one-state LMC corresponds to
the process term µv (av ⊕0.5 bv).

z a | 0.5b | 0.5

It follows that Jµv (bv ⊕0.5 a(µu (au⊕0.5 bv))))K = Jµv (av ⊕0.5 bv)K .

Axioms for stream equivalence

As we have seen from Example 3.4, even very different looking productive process terms can
be stream equivalent. To facilitate reasoning about equivalence, we give a set of inference
rules for deducing algebraically that two productive process terms are stream equivalent.

▶ Definition 3.5 (Provable equivalence). Probabilistic process terms e, f ∈ PTerm are said
to be provably equivalent, written e ≡ f , if e = f can be proven from axioms in Fig. 1. We
write [e] for the ≡-equivalence class of e.

The main goal of the paper is to prove that the axioms in Fig. 1 are sound and complete
to reason about stream semantics of LMCs:

e ≡ f ⇐⇒ JeK = JfK (⇐=) : Completeness (=⇒) : Soundness

Soundness was established in [21, Theorem 6.9]. The main result in this paper is completeness,
which verifies [21, Conjecture 1].

▶ Theorem 3.6 (Completeness). Let e, f ∈ PTerm. If JeK = JfK, then e ≡ f .

C. Cîrstea, L. S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova 30:7

e = e⊕r e

e1 ⊕r e2 = e2 ⊕1−r e1

(e1 ⊕r e2)⊕s e3 = e1 ⊕rs (e2 ⊕ s(1−r)
1−rs

e3)

a(e1 ⊕r e2) = ae1 ⊕r ae2

µv g = µu g[u/v]
µv g = g[µv g/v]

f = g[f/v]
f = µv g

e1 = e2
ae1 = ae2

e1 = f1 e2 = f2
e1 ⊕r e2 = f1 ⊕r f2

e1 = f1 . . . en = fn

k[e⃗/v⃗] = k[f⃗/v⃗]

Figure 1 Axioms for probabilistic term equivalence. Above, e, ei, f, fi ∈ PTerm, e⃗ = (e1, . . . , en),
f⃗ = (f1, . . . , fn), g ∈ PTerm(v), and k ∈ PTerm(v1, . . . , vn). We assume that u is not bound in g in
the first axiom of the second column. The term k[e⃗/v⃗] is obtained by simultaneously replacing vi

with ei for each i ≤ n. Note that the equivalence relation axioms are implicit. The difference with
the axiomatization for bisimilarity is the distributivity axiom (lower-left).

4 Blueprint for Proving Completeness

The main goal of the rest of the paper is to prove Theorem 3.6, completeness of our inference
system. We begin with a high-level sketch of the proof to ease the flow into the upcoming
technical sections. At the core of our argument will be the fact that the semantics of terms,
as given by J−K, can be factorized:

PTerm PTerm/≡ Prob(Aω)
[−]

J−K
∂†

(4.1)

The existence of this factorization is a consequence of soundness, which implies that J−K
factors through the quotient PTerm/≡ for a particular function ∂† : PTerm/≡ → Prob(Aω).
Once we have such factorization, we can reason as follows:

JeK = JfK =⇒ ∂†([e]) = ∂†([f]) ⋆=⇒ [e] = [f] =⇒ e ≡ f

Now completeness follows if we can justify the ⋆ step, which amounts to injectivity of ∂†. In
other words, Theorem 3.6 follows if ∂† is injective. And that is precisely what we are going to
prove. Before we outline the completeness proof, we need a few notions from convex algebra.

▶ Definition 4.1. A convex algebra is an algebraic structure consisting of a set X and a
family of binary operations ⊕p : X ×X → X (written infix) satisfying

x⊕1 y = x x⊕r x = x x⊕r y = y ⊕1−r x (x⊕r y)⊕s z = x⊕rs

(
y ⊕ s(1−r)

1−rs

z
)

An affine map, or convex algebra homomorphism, between convex algebras (X,⊕X
p) and

(Y,⊕Y
p) is a function h : X → Y that satisfies h(x⊕X

p y) = h(x)⊕Y
p h(y) for each p ∈ [0, 1].

The category of convex algebras and affine maps is denoted CA.
A convex algebra (X,⊕X

p) is free and generated by a set B ⊆ X if every map f : B →
Y from B to the carrier of a convex algebra (Y,⊕Y

p) extends to a unique affine map
f# : (X,⊕X

p)→ (Y,⊕Y
p). The set B is then the set of generators of the free algebra (X,⊕X

p).
If B is a finite set, then the free algebra generated by B is free finitely generated, ffg, for
short. A convex algebra is finitely generated, fg, for short, if it is a homomorphic image of a
free finitely generated one.

Note that we will often write X instead of (X,⊕p) if the convex algebra structure is clear
from the context.

CSL 2025

30:8 A Complete Inference System for Probabilistic Infinite Trace Equivalence

Back to the intended completeness result as outlined above, we break the proof of
injectivity of ∂† into 3 steps, each of independent interest.

Step 1
We identify the category of convex algebras as the right base category to define the stream
semantics of LMCs. More precisely, we define a functor G on CA and show that the convex
algebra of Borel probability distributions Prob(Aω) carries a final G-coalgebra structure
(Prob(Aω), ζ). By turning any LMC (X,β) into a G-coalgebra (D(X), ∂β) via a determ-
inization construction (see Definition 5.11), we obtain the determinized stream semantics
(X,β), L−Mβ = ∂†

β ◦ η : X → D(X) → Prob(Aω) via the final coalgebra homomorphism
∂†

β : (D(X), ∂β)→ (Prob(Aω), ζ). We then relate this determinized stream semantics to the
original stream semantics J−K defined in Proposition 2.3 using the syntactic LMC (PTerm, τ)
as shown in the diagram (4.1).

Step 2
We provide a G-coalgebra structure (PTerm/≡, ∂) on the equivalence classes of terms modulo
provable equivalence and show that every ffg G-coalgebra (X,β) (i.e., X is ffg) has a unique
coalgebra homomorphism into (PTerm/≡, ∂). This is related to solving certain systems of
equations in PTerm/≡. We also show that (PTerm/≡, ∂) is locally fg, in the following sense:

▶ Definition 4.2. A G-coalgebra (X, γ) is locally fg if for any x ∈ X, there is a subcoalgebra
(U, γU) of (X, γ) such that x ∈ U and U is fg. A locally fg G-coalgebra (X, γ) is final if every
locally fg G-coalgebra admits a unique coalgebra homomorphism into (X, γ).

The significance of (PTerm/≡, ∂) being locally fg is related to the lemma below.

▶ Lemma 4.3. Every homomorphic image of a locally fg G-coalgebra is also locally fg.

Consider the surjective-injective factorization of the coalgebra homomorphism ∂† below.

(PTerm/≡, ∂) (J, ρ) (Prob(Aω), ζ)
q

∂†

ι

To show that ∂† is injective, it suffices to show that the map q has a left inverse, a coalgebra
homomorphism k : (J, ρ)→ (PTerm/≡, ∂) such that k ◦ q = id, as then

∂†([e]) = ∂†([f])⇔ ι◦q([e]) = ι◦q([f])⇒ q([e]) = q([f])⇒ k◦q([e]) = k◦q([f])⇔ [e] = [f].

One way to do this is to show that (PTerm/≡, ∂) is the final locally fg G-coalgebra. In
such a case, by Lemma 4.3, (J, ρ) is also locally fg, and therefore admits the desired
(necessarily unique) coalgebra homomorphism k. Indeed, by finality, since k ◦ q and id are
both homomorphisms from (PTerm/≡, ∂) to itself, they must be the same, i.e., k ◦ q = id.

Step 3
Lastly, we will establish sufficient conditions guaranteeing that (PTerm/≡, ∂) is the final
locally fg G-coalgebra. Our end goal will be to apply the following theorem, which can be
obtained from a combination of [14, Corollary 5.9] and [27, Corollary 5.5].

C. Cîrstea, L. S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova 30:9

▶ Theorem 4.4. Suppose that F is a finitary proper endofunctor on CA that preserves
surjective affine maps. Then an F -coalgebra (Y, ω) is a final locally fg coalgebra if and only
if (i) (Y, ω) is locally fg and (ii) for every ffg F -coalgebra (D(X), ∂β), there is a unique
coalgebra homomorphism (D(X), ∂β)→ (Y, ω).

Theorem 4.4 uses the notion of a proper functor, which we will define in Definition 7.6
below.

After having completed Step 2, we will have already seen that (PTerm/≡, ∂) is locally
fg, and furthermore that every ffg G-coalgebra admits a unique coalgebra homomorphism
into (PTerm/≡, ∂). Thus, completing Step 3 hinges on showing that the functor G is finitary,
that it preserves surjective affine maps, and that G is proper. Step 3 is the most technical of
the three steps.

To summarize, here are our obligations stated in the three steps above:
1. We must define G : CA→ CA, endow Prob(Aω) with a G-coalgebra structure ζ, turning

Prob(Aω, ζ) into a final G-coalgebra.
2. Given an LMC (X,β), we must explain how it is determinized to yield a G-coalgebra

(D(X), ∂β), and how its stream semantics J−K is obtained from the final coalgebra
homomorphism as J−K = ∂†

β ◦ η. In other words, we must relate the stream semantics to
the determinzed stream semantics L−Mβ .

3. We must define a coalgebra structure ∂ : PTerm/≡ → G(PTerm/≡) and show that
(PTerm/≡, ∂) is locally fg and that free fg G-coalgebras admit unique coalgebra homo-
morphisms into (PTerm/≡, ∂).

4. We must show that G is finitary, preserves surjective algebra homomorphisms, and is
proper.

5 Step 1: Convex (Co)Algebras and the Functor G

We begin executing each of the steps in Section 4. We first need some basic definitions on
the category CA of convex algebras.

Convex algebras. Recall that a convex algebra is an algebraic structure consisting of a
set X and a collection of convex sum operations ⊕r : X × X → X indexed by r ∈ [0, 1]
satisfying the equations in Definition 4.1, and recall that we write CA for the category of
convex algebras.

▶ Example 5.1. Prime examples of convex algebras are convex subsets of Rn, i.e., subsets
C ⊆ Rn such that p⃗, q⃗ ∈ C implies that p⃗⊕r q⃗ = rp⃗+ (1− r)q⃗ ∈ C for all r ∈ [0, 1]. Moreover,
for any subset U ⊆ Rn, there is a smallest convex algebra containing U , namely the convex
hull conv(U) = {rp⃗+ (1− r)q⃗ | p⃗, q⃗ ∈ U and r ∈ [0, 1]}.

We may use the following syntax as a generalized convex sum in an arbitrary convex
algebra: given r1, . . . , rn ∈ (0, 1) and x1, . . . , xn, define

n⊕
i=1

ri · xi = xn ⊕rn

(n−1⊕
i=1

ri

1− rn
· xi

)
(5.1)

It is important to note that, technically, the base case is n = 2. We can also use this notation
if ri = 0 for i ̸= j and rj = 1, but in that case we define

⊕n
i=1 ri · xi = xj . Up to the convex

algebra axioms, any two ways of reordering the summands of (5.1) produces equivalent terms.
This justifies the slight abuse of notation

⊕
x∈S rx · x, where S is a set and r(−) : S → [0, 1]

is a function such that
∑

x∈S rx = 1 and only finitely many of the rx are non-zero.

CSL 2025

30:10 A Complete Inference System for Probabilistic Infinite Trace Equivalence

Free convex algebras. (D(X),⊕p) is the free convex algebra generated by the set X.
Hence, for any convex algebra (Y,⊕Y

p), and any function f : X → Y , there is a unique linear
extension f# : (D(X),⊕p)→ (Y,⊕Y

p) of f such that f#(1 ·x) = f(x). The universal property
of free convex algebras gives rise to the adjunction F ⊣ U , where F(X) = (D(X),⊕p) is
the free functor that maps a set to the free convex algebra generated by it and a function
f : X → Y to D(f) : D(X) → D(Y), and U is the forgetful functor from CA to Set that
forgets the algebraic structure and is identity on homomorphisms.

The free functor F is a left adjoint to the forgetful functor, and clearly D = U ◦ F .
It follows that (D, η, µ) is a monad on Set with ηX(x) = 1 · x and µX = (idD(X))#, and
furthermore, CA is isomorphic to the category of Eilenberg-Moore algebras for D [31]. In
particular, the free convex algebra generated by a set X is the Eilenberg-Moore algebra
(D(X), µX). We often omit writing the forgetful functor when no confusion arises, and (in
accordance with our convention to drop the algebra structure when no confusion arises) also
often just write D(X) for the free algebra F(X).

Adding a fresh element ⊥ to a convex algebra. In order to define the endofunctor G,
we need the following construction on convex algebras. Given a convex algebra X, define
X⊥ = {⊥} ∪ {r · x | r ∈ (0, 1], x ∈ X}. The set X⊥ obtains a convex algebra structure with
respect to the convex sum operation defined

⊥⊕q ⊥ = ⊥ r · x⊕q ⊥ = (qr) · x ⊥⊕q s · y = ((1− q)s) · y
r · x⊕q s · y = (qr + (1− q)s) · (x⊕ qr

qr+(1−q)s
y)

▶ Lemma 5.2. Let X be a convex algebra. As defined above, (X⊥,⊕) is a convex algebra.
Moreover, given r · x and s · y in X⊥, r · x = s · y if and only if r = s and x = y.

▶ Remark 5.3. We introduce some notation going forwards. We often use the notation 0 · x
for ⊥, even implicitly, despite that 0 · x = 0 · y for all x, y ∈ X.

The construction (−)⊥ : CA→ CA is a functor whose action on convex algebra homomorph-
isms is given by h⊥(r·x) = r·h(x) for any convex algebra homomorphism h : (X,⊕p)→ (Y,⊕p)
and any x ∈ X. The homomorphism h⊥ additionally satisfies h⊥(⊥) = ⊥. Freely adjoining
⊥ is analogous to going from probability distributions to sub-probability distributions (maps
θ : X → [0, 1] such that

∑
x∈X θ(x) ≤ 1). The following lemma makes this precise.

▶ Lemma 5.4. Let D⊥ be the finitely supported sub-probability distribution functor, and let
Prob⊥(Aω) be the set of Borel sub-probability measures on Aω. Then as convex algebras,
D(X)⊥ ∼= D⊥(X) and Prob(Aω)⊥ ∼= Prob⊥(Aω).

The functor G : CA → CA

We are now ready to introduce the functor on CA needed to move from Set to CA. There are
different ways to define such a functor, e.g. Silva and Sokolova [25] use another functor for
the axiomatization of finite trace semantics. The choice of the “right” functor so that our
intended results go through, i.e., the choice of this particular functor G, is one of the main
contributions of this paper.

Given a convex algebra X and a convex algebra homomorphism h : X → Y , let

G(X) =
{
f : A→ X⊥ |

∑
a∈A

rf
a = 1

}
G(h)(f)(a) = rf

a · h(xf
a) (5.2)

C. Cîrstea, L. S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova 30:11

where f(a) = rf
a · xf

a for each f ∈ G(X) and a ∈ A. Equivalently, G(h)(f) = h⊥ ◦ f . Note
that in the definition of G(X) above, the sum is the usual sum of real numbers, and that we
define rf

a = 0 and leave xf
a undefined when f(a) = ⊥.

▶ Proposition 5.5. As it is defined in (5.2), G is an endofunctor on CA.

We use the following terminology to refer to the defining property of G: If f : A→ X⊥ has
the property that

∑
a r

f
a = 1, as mentioned in (5.2), we say that f satisfies the mass-splitting

property, or that f is mass splitting.1
In particular, a function f : A → D⊥(X) is mass splitting, i.e., f ∈ G(D(X)), if and

only if the total mass
∑

a∈A

∑
x∈X f(a)(x) is equal to 1. Given such a function, one can

reverse-engineer a unique probability distribution θ ∈ D(A×X) such that f computes the
marginal f(a) = θ({a} × X) for each a ∈ A. Thus, a G-coalgebra of the form (D(X), γ)
represents the same data as an LMC (X,β) by reverse-engineering β(x) from γ(1 · x) for
each x ∈ X. We think of G-coalgebras as the deterministic counterpart of LMCs. Their
exact relationship will be made precise at the end of this section.

▶ Remark 5.6. Note that as a set, X⊥ ∼= 1 + (0, 1]×X, and so the description of G(X) above
can also be taken as a definition of a functor H : Set→ Set. Indeed, G is a lifting of H to
CA. However, the convex algebra structure on X⊥ is not the convex algebra structure on
1 + (0, 1]×X obtained from (co)products in CA. The convex algebra structure is instead
hand-tailored to match the structure of sub-probability distributions.

In a given G-coalgebra (X, γ), we write massγ(a, x) for rγ(x)
a , and whenever rγ(x)

a > 0, we
write nextγ(a, x) for xγ(x)

a . Then whenever γ(x)(a) = ⊥, massγ(a, x) = 0 while nextγ(a, x) is
undefined; and when massγ(a, x) > 0,

γ(x)(a) = massγ(a, x) · nextγ(a, x). (5.3)

where the · symbol here is from X⊥. Note that we often drop γ and write simply mass
and next. In this notation, the mass-splitting property says that for all x ∈ X, we have∑

a∈A mass(a, x) = 1.
Given G-coalgebras (X, γ) and (Y, ω), unravelling the definitions of mass and next reveals

that a function h : X → Y is a coalgebra homomorphism if and only if

mass(a, x) · h(next(a, x)) = mass(a, h(x)) · next(a, h(x)) (5.4)

for any a ∈ A and x ∈ X. In other words, for all x ∈ X and a ∈ A, mass(a, x) = mass(a, h(x)),
and if this is greater than 0, then h(next(a, x)) = next(a, h(x)) as well.

A final G-coalgebra. We are now in the position to show that Prob(Aω) is the carrier of
a final G-coalgebra. First, observe that, like D(X), Prob(Aω) is a convex algebra with the
canonical convex sums, ρ⊕r θ = rρ+ (1− r)θ. In the proof of Theorem 5.13, we use the
D-algebra in the more general, Eilenberg-Moore, form (Prob(Aω),Σ), where

Σ(
n∑

i=1
ri · ρi)(B) =

n∑
i=1

riρi(B) (5.5)

1 The mass-splitting property was inspired by a condition in Goy and Rot’s paper [6, Proposition 4.5].

CSL 2025

30:12 A Complete Inference System for Probabilistic Infinite Trace Equivalence

▶ Definition 5.7. The G-coalgebra structure (Prob(Aω), ζ) is given by, for ρ ∈ Prob(Aω),

ζ(ρ)(a) =
{
⊥ if ρ(Ba) = 0
ρ(Ba) ·

(
B 7→ ρ(aB)/ρ(Ba)

)
if ρ(Ba) > 0 (5.6)

where for Borel B, aB = {(a, a1, . . .) | (a1, . . .) ∈ B} is the Borel set obtained by prefixing.

It is easy to check that ζ is a convex algebra homomorphism and that ζ(ρ) satisfies the
mass-splitting property for each ρ ∈ Prob(Aω).

▶ Remark 5.8. It is important to note that nextζ(a,−) : Prob(Aω) → Prob(Aω) is not (in
general) a convex algebra homomorphism.

▶ Theorem 5.9. The G-coalgebra (Prob(Aω), ζ) is final. That is, for any G-coalgebra (X, γ),
there is a unique coalgebra homomorphism γ† : (X, γ)→ (Prob(Aω), ζ).

Here is a hint of a hint. We define γ†(x)(Bw) ∈ [0, 1] by recursion on the length of w:

γ†(x)(Bε) = 1

γ†(x)(Baw) =
{

0 if γ(x)(a) = ⊥
mass(a, x) · γ†(next(a, x))(Bw) if γ(x)(a) ̸= ⊥

(5.7)

One needs to show that this specifies each function γ† as a finitely additive function on the
generators of the Borel algebra, that the resulting function γ† is a convex algebra morphism
as well as a G-coalgebra morphism, and finally that it is the unique such map.

▶ Remark 5.10. It is also true that (forgetting the convex algebra structure) Prob(Aω) is the
final coalgebra of the functor H : Set→ Set mentioned in Remark 5.6. This provides a way
to define the stream semantics of LMCs using finality (Proposition 2.3), i.e., without the
convex algebra structure. However, other ingredients in our completeness proof do require
convex algebras.

Determinization: Connecting LMCs and G-coalgebras

Earlier in this section, we mentioned that one can think of G-coalgebras as deterministic
counterparts to LMCs. We now make the relationship between LMCs and G-coalgebras
precise. Using the universal property of free convex algebras and the correspondence
between finitely supported probability distributions θ ∈ D(A × −) and functions f : A →
D⊥(−) satisfying the mass-splitting property, we can construct a determinization functor
∆: CoalgSet(D(A×−))→ CoalgCA(G) as follows.

First, we define the natural transformation λY : D(A× Y)→ G(D(Y)) by

λY (θ)(a) =
{
⊥ if sa = 0
sa · (1

sa
θ(a,−)) otherwise

(5.8)

for each set Y , θ ∈ D(A × Y), and a ∈ A, with sa =
∑

y∈Y θ(a, y). After making the
identification D(X)⊥ = D⊥(X), this amounts to λY (θ)(a)(x) = θ(a, x). A routine check
verifies that λY is natural in Y and that for any θ ∈ D(A × Y), λY (θ) satisfies the mass-
splitting property.

Having constructed λ, we can now define the determinization ∆(Y, β) of the LMC (Y, β)
to be the linear extension of the composition of λY after β.

C. Cîrstea, L. S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova 30:13

▶ Definition 5.11. The determinization functor ∆: CoalgSet(D(A × −)) → CoalgCA(G) is
the functor given by ∆(Y, β) = ((D(Y), µY), ∂β) with ∂β = (λY ◦ β)# for any LMC (Y, β),
and ∆(h) = D(h) for any coalgebra homomorphism h between LMCs.

Moreover, we can show that λ is a natural isomorphism, by providing an inverse trans-
formation χY : G(D(Y))→ D(A× Y). For h ∈ G(D(Y)) with h(a) = ra · ha, define

χY (h)(a, y) =
{

0 h(a) = ⊥
raha(y) otherwise

(5.9)

▶ Proposition 5.12. The natural transformations λ and χ are inverse to each other. Moreover,
given a G-coalgebra ((D(Y), µY), γ), let β : Y → D(A × Y) be given by β = χY ◦ γ ◦ ηY .
Then ((D(Y), µY), γ) = ∆(Y, β). As a result, a G-coalgebra is ffg iff it is a determinized
finite LMC.

By Theorem 5.9, (Prob(Aω), ζ) is a final G-coalgebra, so from any LMC (Y, β), we
may determinize to get a G-coalgebra ∆(Y, β) and then use finality to obtain a unique
coalgebra homomorphism ∂†

β : ∆(Y, β) → ((Prob(Aω),Σ), ζ). This yields a determinized
stream semantics map L−Mβ : Y → Prob(Aω) by composition, i.e., L y Mβ = ∂†

β(1 · y). Fulfilling
its intended purpose, determinized stream semantics does indeed coincide with stream
semantics as we previously defined it.

▶ Theorem 5.13. For every LMC (X,β), L−Mβ = J−Kβ .

Proof. Let α : D(A× Prob(Aω))→ Prob(Aω) be given by α(θ)(Bε) = 1, and for all a ∈ A,
w ∈ A∗,

α(θ)(Baw) =
∑

ρ∈Prob(Aω)

θ(a, ρ) ρ(Bw) (5.10)

For a fixed θ ∈ D(A × Prob(Aω)), let us use the notation sa for
∑

ρ∈Prob(Aω) θ(a, ρ). Note
that taking w in (5.10) to be the empty word ε gives sa = α(θ)(Ba).

Fix (X,β). Let us first check that a map f : X → Prob(Aω) satisfies the equation
mentioned in Proposition 2.3 if and only if f = α ◦ D(A × f) ◦ β. That is, f(x)(Baw) =∑

y∈X(β(x)(a, y))(f(y)(Bw)) for all a ∈ A and w ∈ A∗ if and only if f = α ◦ D(A× f) ◦ β.
This follows from:

(α ◦ D(A× f) ◦ β)(x)(Baw) =
∑

ρ∈Prob(Aω)

(D(A× f)(β(x))(a, ρ))ρ(Bw)

=
∑

ρ∈Prob(Aω)

 ∑
y:f(y)=ρ

β(x)(a, y)

 ρ(Bw)

=
∑
y∈X

(β(x)(a, y))(f(y)(Bw))

where the first equality is by the definition of α, the second equality is the definition of
D(A× f), and the third only rearranges the sum.

In the notation of Proposition 2.3, the map J−K = J−Kβ is the unique map so that
J−K = α ◦ D(A× J−K) ◦ β. So we shall show that the L−M has this same property. We thus
show the commutativity of the outer diagram below (with arrows in blue):

CSL 2025

30:14 A Complete Inference System for Probabilistic Infinite Trace Equivalence

X Prob(Aω)

DX Prob(Aω)

GDX GProb(Aω)

D(A × X) GDX GD(Prob(Aω)) D(A × Prob(Aω))

η

L−M

β

∂†
β

∂β ζ

G(∂†
β

)
ζ−1

λ

D(A × L−M)

GD(L−M)
G(Σ)

α

λ

The top square commutes by definition of L−M, the left part commutes as ∂β ◦ η = λ ◦ β by
definition of ∂β , the middle square commutes because ∂†

β is a coalgebra homomorphism, and
the part on the bottom commutes by naturality of λ. The commutativity of the remaining
two parts is shown below.

We first prove that ζ ◦ α = G(Σ) ◦ λ, giving commutativity of the part on the right. For
θ ∈ D(A× Prob(Aω)), a ∈ A, and w ∈ A∗, we have, on the one hand:

α(θ)(Baw) =
∑

ρ∈Prob(Aω)

θ(a, ρ)ρ(Bw)

ζ(α(θ))(a) =
{
⊥ if sa = 0
sa · (Bw 7→

∑
ρ∈Prob(Aω)

θ(a,ρ)
sa

ρ(Bw)) if sa ̸= 0 (5.11)

We have used definitions of α from (5.10) and ζ from (5.6), that aBw = Baw and that
α(θ)(Ba) = sa. On the other hand, we use the definitions of λ from (5.8) and Σ from (5.5):

λProb(Aω)(θ)(a) =
{
⊥ if sa = 0
sa · (ρ 7→ θ(a,ρ)

sa
) if sa ̸= 0

G(Σ)(λProb(Aω)(θ))(a) =
{
⊥ if sa = 0
sa · (Bw 7→

∑
ρ∈Prob(Aω)

θ(a,ρ)
sa

ρ(Bw)) if sa ̸= 0
(5.12)

Equations (5.11) and (5.12) now give ζ ◦ α = G(Σ) ◦ λ.
We turn to the commutativity of the remaining square. First, affineness of the map

∂†
β : DX → Prob(Aω) yields ∂†

β ◦ µX = Σ ◦ D(∂†
β). We precompose with D(ηX), and use the

monad law µX ◦ D(ηX) = idDX along with the definition of L−M. Thus ∂†
β = Σ ◦ D(L−M).

Now apply G to see the desired commutativity. ◀

Returning to our blueprint for completeness in Section 4, Theorem 5.13 shows that J−K
arises from the final coalgebra map of (PTerm, τ).

6 Step 2: PTerm/≡ as a G-coalgebra

The set PTerm/≡ of provable equivalence classes of productive process terms inherits a
canonical convex algebra structure from PTerm, given by [e] ⊕r [f] = [e ⊕r f]. These
operations are well-defined because Fig. 1 includes the necessary axiom and they are indeed
convex operations as Fig. 1 includes the convex algebra axioms. In this section, we show
that PTerm/≡ also carries a canonical G-coalgebra structure (PTerm/≡, ∂). We then focus
on two goals: The first goal is to show that the stream semantics of a productive process

C. Cîrstea, L. S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova 30:15

term e is equal to the stream distribution ∂†([e]) obtained from the finality of (Prob(Aω), ζ).
The second goal of this section is to show that (PTerm/≡, ∂) is locally fg and that every ffg
G-coalgebra admits a unique coalgebra homomorphism into (PTerm/≡, ∂).

Defining ∂. Let τ(e) =
∑n

i=1 ri · (ai, ei) and write sa =
∑

ai=a ri. We define the map
∂ : PTerm/≡ → G(PTerm/≡) using the formulas

mass∂(a, [e]) =
∑
ai=a

ri next∂(a, [e]) =
[n⊕

i=1
(ri/sa) · ei

]
(6.1)

for any ≡-equivalence class [e] ∈ PTerm/≡ and a ∈ A. It can be shown by induction on
derivations that (6.1) describes a well-defined map, i.e., e ≡ f implies the right-hand sides of
the equations in (6.1) agree.

The following characterization of (PTerm/≡, ∂) illustrates that this is a natural choice of
G-coalgebra structure on PTerm/≡.

▶ Lemma 6.1. Given e1, e2 ∈ PTerm, let

τ(e1) =
n∑

i=1
ri · (ai, fi) τ(e2) =

n∑
i=1

si · (ai, fi)

If e1 ≡ e2, then for any a ∈ A,

ra = sa and
n⊕

i=1
(ri/ra) · fi ≡

n⊕
i=1

(si/sa) · fi (6.2)

where ra =
∑

ai=a ri and sa =
∑

ai=a si.

The proof of Lemma 6.1 is a rather long induction on the proof of e ≡ f . As an immediate
consequence of this lemma, we obtain the following.

▶ Lemma 6.2. Let (D(PTerm), ∂τ) = ∆(PTerm, τ) and hΣ = ([−])# be the linear extension
of the quotient-by-≡ map. Then the following diagram commutes.

D(PTerm) PTerm/≡

G(D(PTerm)) G(PTerm/≡)

hΣ

∂τ ∂
G(hΣ)

(6.3)

In particular, ∂ is a convex algebra homomorphism, and (PTerm/≡, ∂) is a homomorphic
image of the determinized syntactic LMC.

▶ Theorem 6.3. For any e ∈ PTerm, JeK = ∂†([e]).

Proof. By Theorem 5.9 and Theorem 5.13, JeK = ∂†
τ (1 · e) = ∂† ◦ hΣ(1 · e) = ∂†([e]). ◀

▶ Theorem 6.4. The G-coalgebra (PTerm/≡, ∂) is locally fg.

Proof. It follows from results due to Stark and Smolka [29] that the syntactic LMC (PTerm, τ)
is locally finite, in the sense that for any e ∈ PTerm, there is a finite subcoalgebra (U, τU)
of (PTerm, τ) containing e. So, let [e] ∈ PTerm/≡ and find a finite subcoalgebra (U, τU)
of (PTerm, τ) containing e. Then ∆(U, τU) is a free fg subcoalgebra of ∆(PTerm, τ) =
(D(PTerm), ∂τ) containing 1 · e. Taking the image of ∆(U, τU) under hΣ, we obtain a finite
subcoalgebra (V, ∂V) = hΣ(∆(U, τU)) of (PTerm/≡, ∂) containing [e] = hΣ(1 ·e), as a quotient
of a free fg G-coalgebra. Thus, [e] is contained in a fg subcoalgebra. ◀

CSL 2025

30:16 A Complete Inference System for Probabilistic Infinite Trace Equivalence

Systems of equations from G-coalgebras and their unique solutions
The next goal is to show that every ffg G-coalgebra admits a unique coalgebra homomorphism
into (PTerm/≡, ∂). As we remarked after Definition 5.11, every ffg G-coalgebra is of the
form ∆(X,β) for some finite LMC (X,β). So, it suffices to show that every determinized
finite LMC admits a unique coalgebra homomorphism into PTerm/≡. As we will see, each
coalgebra homomorphism ∆(X,β)→ (PTerm/≡, ∂) corresponds to a solution to a particular
system of equations.

▶ Definition 6.5. The guarded system of equations corresponding to the finite LMC (X,β)
is the set of formal equations

S(X,β) =
{
x =

⊕
(a,y)∈A×X

β(x)(a, y) · ay
∣∣∣ x ∈ X}

(6.4)

A solution to the guarded system of equations (6.4) is a map

φ : X → PTerm such that (∀x ∈ X) φ(x) ≡
⊕

(a,y)∈A×X

β(x)(a, y) · aφ(y)

Two solutions φ,ψ are equivalent, written φ ≡ ψ, if φ(x) ≡ ψ(x) for all x ∈ X.

The following theorem was a key component of Stark and Smolka’s completeness proof
for bisimilarity.

▶ Theorem 6.6 (Stark-Smolka [29]). Every guarded finite system of equations has a unique
solution up to ≡ without the use of the distributivity axiom a(e⊕r f) = ae⊕r af .

An immediate consequence of the above theorem is the existence and uniqueness of
solutions for systems of equations that arise from LMCs.

▶ Corollary 6.7. Let (X,β) be a finite LMC. Then S(X,β) has a unique solution up to ≡.

Using the distributivity axiom, we can transform each equation in (6.4) into an equivalent
system of equations of the form

x =
⊕
a∈A

mass(a, x) · a next(a, x)

where mass and next are derived from ∂β . This tells us that a map φ : X → PTerm is a
solution to S(X,β) if and only if for all x ∈ X,

φ(x) ≡
⊕
a∈A

mass(a, x) · a φ(next(a, x))

Solving systems of equations of this form is equivalent to finding G-coalgebra homomorphisms
into (PTerm/≡, ∂).

▶ Lemma 6.8. Let (X,β) be a finite LMC, and let φ : X → PTerm. Define sβ : D(X) →
PTerm/≡ to be the linear extension of the composition [−] ◦ φ : X → PTerm/≡. Then φ is a
solution to S(X,β) if and only if s : ∆(X,β)→ (PTerm/≡, ∂) is a coalgebra homomorphism.

We immediately obtain the following theorem.

▶ Theorem 6.9. Let (X,β) be a finite LMC. There is a unique G-coalgebra homomorphism
sβ : ∆(X,β)→ (PTerm/≡, ∂).

Hence, recalling that every ffg coalgebra arises via determinisation (see Proposition 5.12)
yields that we have a unique homomorphism from any ffg coalgebra to (PTerm/≡, ∂).

C. Cîrstea, L. S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova 30:17

7 Step 3: Properness of G

In this section, we finish the outline of completeness that we stated in Section 4 by establishing
that G is finitary, preserves surjective affine maps, and is proper. By Theorems 4.4, 6.4,
and 6.9, this allows us to conclude that (PTerm/≡, ∂) is the final locally fg G-coalgebra.

▶ Lemma 7.1. G preserves pullbacks, and hence monomorphisms.

Let us mention that monomorphisms in CA are exactly those affine maps which are
injective as set functions. This follows from the fact that U : CA→ Set is a right adjoint and
thus preserves all limits, in particular all pullbacks. Recall that in any category monos are
characterized as special pullbacks as in the square below. In particular, let f : X → Y be a
monomorphism in CA. Then the square below is a pullback (and conversely) in CA.

X X

X Y

id

id f

f

Then its image under U is also a pullback and thus U(f) is a monomorphism in Set: that is,
f is an injective function.

For space reasons, we omit the proof that G preserves pullbacks. Using Lemma 7.1, we
can establish the first required property of G.

▶ Lemma 7.2. The functor G : CA→ CA on CA is finitary.

Proof. We are going to use the following results:
Fact 1. The forgetful functor U : CA→ Set creates directed colimits.
Fact 2. Let C be a category equipped with a functor U : C→ S that creates – hence, preserves

and reflects – directed colimits. Let G : C→ C be a lifting of an endofunctor H : S→ S,
i.e., U ◦G = H ◦ U . Then, if H preserves directed colimits, so does G.

In our situation, G is defined in Eq. (5.2), C = CA, and S = Set. The proof of Fact 1 is
routine, and similar to that of [1, Remark 3.4 (vii).(4)].

Let us briefly establish Fact 2. Let D : (I,≤) → C be a directed diagram in C, and
let (di : Di → Y)i∈I be a colimiting cocone for D. We want to show that (G(di) : GDi →
GY)i∈I is a colimiting cocone for G ◦D. Since U reflects colimits, it suffices to show that
(UG(di) : UGDi→ UGY)i∈I is a colimiting cocone for U ◦G ◦D. To this end, consider the
directed diagram U ◦D : (I,≤) → S. Since U preserves directed colimits, (U(di) : UDi →
UY)i∈I is a colimiting cocone for U ◦D. Now, since H is finitary, i.e., it preserves directed
colimits, (HU(di) : HUDi → HUY)i∈I is a colimiting cocone of the directed diagram
H ◦ U ◦D. But H ◦ U = U ◦G, so we can conclude that (UG(di) : UGDi→ UGY)i∈I is a
colimiting cocone of the directed diagram U ◦G ◦D, as desired.

We can now proceed with the proof of the lemma. Recall from Remark 5.6 that G
(from Eq. (5.2)) is a lifting of the endofunctor H. The functor H is finitary because for
any set X, and any function f ∈ HX, there is the finite set Z = {x ∈ X | ∃a ∈ A∃r >
0 such that f(a) = (r, x)} with f ∈ HZ. By Fact 1, the forgetful functor U : CA → Set
creates directed colimits. Thus, the conditions of Fact 2 are satisfied, and we may conclude
that G is finitary. ◀

▶ Lemma 7.3. G preserves surjective affine maps.

CSL 2025

30:18 A Complete Inference System for Probabilistic Infinite Trace Equivalence

Proof. Let h : X → Y be a surjective affine map. Consider G(h) : GX → GY . For a ∈ A,
we have G(h)(g)(a)(⊥) = ⊥ and G(h)(g)(a)(r · x) = r · h(x).

Take f ∈ GY . For each y ∈ Y , denote by xy an element of X with y = h(xy). Such exists
since h is surjective. We define g : A→ X⊥ as follows. For a ∈ A, if f(a) = ⊥, set g(a) = ⊥
and if f(a) = r · y, set g(a) = r · xy. Then g ∈ GX and G(h)(g) = f . ◀

The most interesting point in this section is the properness of G (see Definition 7.6). In
order to verify that G is proper, we need a few lemmas regarding bisimilarity and behavioural
equivalence for G-coalgebras.

▶ Lemma 7.4. Let (X, γ) be a G-coalgebra on CA. Then bisimilarity (the largest bisimulation)
on (X, c) coincides with behavioural equivalence, which in turn coincides with the final
coalgebra semantics.

Proof. Behavioural equivalence always coincides with the final coalgebra semantics if the
functor admits a final coalgebra, which is the case for our functor G on CA.

CA is complete and cocomplete [2, § 9.3, Prop. 4] and the functor G preserves (weak)
pullbacks by Lemma 7.1. So CA satisfies the requirements of [30, Theorem 4.1]. As a
consequence: (1) every bisimulation is contained in a kernel bisimulation, and hence bisimilar
states are behaviourally equivalent, and (2) every kernel bisimulation is a bisimulation,
yielding that behaviourally equivalent states are bisimilar. ◀

We need one more lemma that characterises bisimilarity for G in concrete terms. The
proof follows directly from the definition of bisimulation.

▶ Lemma 7.5. Let (X, γ) and (Y, ϑ) be G-coalgebras. Let R ⊆ X×Y be a subalgebra of X×Y .
Then R is a bisimulation between (X, γ) and (Y, ϑ) if and only if the following holds: whenever
a ∈ A and (x, y) ∈ R, massγ(a, x) = massϑ(a, y), and if massγ(a, x) = massϑ(a, y) ̸= 0, then
R contains (nextγ(a, x), nextϑ(a, y)).

Without further ado, let us now proceed with the proof that G is a proper functor, in
the following sense.

▶ Definition 7.6. Let T be a finitary monad on Set and write SetT for the Eilenberg-Moore
category of T . A zig-zag in CoalgSetT (F) is a diagram of the shape

(X, c)
f1

''

(Z2, e2)
f2
ww

f3
''

· · ·
f4
yy

f2n−1
((

(Y, d)
f2n

uu

(Z1, e1) (Z3, e3) (Z2n−1, e2n−1)

(7.1)

Write η for the unit of T . The zig-zag above relates x ∈ X with y ∈ Y , written x ∼ y, if
there exist elements z2k ∈ Z2k, k = 1, . . . , n− 1, with (setting z0 = x and z2n = y)

f2k(z2k) = f2k−1(z2k−2), k = 1, . . . , n

The endofunctor F is said to be proper if the following statement holds: for any pair of
ffg F -coalgebras (T (X), cX) and (T (Y), cY) and any two elements x ∈ X and y ∈ Y with
ηX(x) ∼ ηY (y), there exists a zig-zag in CoalgSetT (F) entirely consisting of ffg F -coalgebras
that relates ηX(x) with ηY (y). We may call such a zig-zag an ffg zig-zag.

▶ Theorem 7.7. The functor G : CA→ CA is proper.

C. Cîrstea, L. S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova 30:19

Proof. Consider two ffg G-coalgebras (D(X), ∂β) and (D(Y), ∂ϑ), with behaviourally equival-
ent states φ ∈ D(X) and ψ ∈ D(Y). We need to relate φ and ψ with a suitable, ffg, zig-zag.
We are going to use bisimilarity B on the coproduct coalgebra2 (D(X), ∂β) + (D(Y), ∂ϑ) ∼=
(D(X + Y), ∂β + ∂ϑ).

D(X) B D(Y)

D(X + Y) D(X + Y)

GD(X) G(B) GD(Y)

GD(X + Y) GD(X + Y)

ι1

∂β

ι1◦π1 ι2◦π2

ℓ

π1 π2

ι2

∂ϑ

∂β+∂ϑ ∂β+∂ϑ

Gι1 G(ι1◦π1) G(ι2◦π2)
Gπ1 Gπ2

Gι2

where ι1, ι2 denote the coproduct injections. It remains to show that B is finitely generated
as a subalgebra of the product CA, D(X + Y)×D(X + Y). This follows from results below,
using an analytic-algebraic characterization of finitely generated congruences (kernels of
convex algebra homomorphisms) of finitely generated convex algebras.

In more detail, note that we can identify any ffg algebra D(X) with the simplex in the
vector space RX . This can be done by seeing each Dirac delta 1 · x as a unit vector in
RX . Every congruence relation R ⊆ D(X) × D(X) of convex algebras is a subalgebra of
D(X)×D(X), and so by extension can be identified with a (convex) subset of RX×RX ∼= R2X .
In particular, our B can be identified with a convex subset of R2(X+Y). As turns out, B is
finitely generated as a subalgebra if and only if B is topologically closed in R2(X+Y). The
following theorem is a direct consequence of Sokolova-Woracek [27, Proposition 5.9].

▶ Theorem 7.8. Let R ⊆ R2X be a congruence on the ffg convex algebra D(X) ⊆ RX . Then
R is finitely generated as a subalgebra if and only if it is topologically closed (closed under
limits of Cauchy sequences).

▶ Lemma 7.9. Let (D(X), ∂β) be a G-coalgebra. Then for any a ∈ A, the maps ∂β(−)(a)
and massβ(a,−) are restrictions of R-linear maps RX → RX+1 and RX → R respectively.

Proof. Recall that we think of the Dirac distributions 1 · x as the basis vectors of RX . We
additionally have the unit vector 1 · ⊥ in RX+1. For x ∈ X, write

∂β(x)(a) =
∑
y∈X

rxy · y

and rx⊥ = 1−
∑

y∈X rxy. Define the matrix M by

M =
[
rxξ

∣∣ x ∈ X and ξ ∈ X ∪ {⊥}
]

indexed by X× (X∪{⊥}). A quick calculation verifies that indeed, for θ ∈ D(X), ∂β(θ)(a) =
Mθ by linear extension. Of course, here we are thinking of θ =

∑
x∈X qx · x as the column

vector [qx | x ∈ X].
Similarly, define the row matrix N = [1 | x ∈ X] of 1’s. Then for θ =

∑
x∈X qx · x,

Nθ =
[
1 · · · 1

]
[qx | x ∈ X] =

∑
x∈X

qx

2 Left adjoints preserve colimits, so indeed the coproduct of free convex algebras is given by the formula
D(X) + D(Y) ∼= D(X + Y), where the “+” on the left hand side is the coproduct in CA.

CSL 2025

30:20 A Complete Inference System for Probabilistic Infinite Trace Equivalence

We therefore have massβ(a, θ) = NMθ. Thus, both ∂β(−)(a) and massβ(a,−) are restrictions
of linear functions. ◀

▶ Corollary 7.10. Let (D(X), ∂β) be a G-coalgebra. Then for any a ∈ A, the maps ∂β(−)(a)
and massβ(a,−) are continuous.

Proof. Follows directly from Lemma 7.9 and that RX , RX+1, and R are finite dimensional.
◀

▶ Theorem 7.11. Let (D(X), ∂β) and (D(Y), ∂ϑ) be free finitely generated G-coalgebras.
Let (B, ℓ) be the largest bisimulation between D(X) and D(Y), and regard B as a subset of
D(X + Y)×D(X + Y) ⊆ R2(X+Y). Then B is a closed set and thus is finitely generated as
a subalgebra.

Proof. We show that the topological closure B of B ⊆ R2(X+Y) is a bisimulation between
(D(X), ∂β) and (D(Y), ∂ϑ). Since B is the largest bisimulation, B ⊆ B ⊆ B.

We appeal to Lemma 7.5: Let (θ, ψ) ∈ B. Then there is a Cauchy sequence (θi, ψi)i∈N
such that (θi, ψi)→ (θ, ψ) as i→∞. This, in particular, means that θi → θ and ψi → ψ in
the product topology. Now, for a ∈ A,

massβ(a, θ) = massβ(a, lim θi)
= lim massβ(a, θi) (Corollary 7.10)
= lim massϑ(a, ψi) (Lemma 7.5)
= massϑ(a, limψi) (Corollary 7.10)
= massϑ(a, ψ)

This verifies the first condition. To verify the second, suppose that massβ(a, θ) =
massϑ(a, ψ) ̸= 0. Then there is an N > 0 such that for all i > N , massβ(a, θi) =
massϑ(a, ψi) > 0. This allows for the following computation:

nextβ(a, θ) = ∂β(θ)(a)
massβ(a, θ)

(∗)= lim ∂β(θi)(a)
massβ(a, θi)

= lim nextβ(a, θi)

and similarly for ψ. Above, the step tagged (*) is due to the fact that a product of continuous
functions is continuous on the intersection of their domain, which in this case contains all of
the θi as well as θ. Simply put, we use a known rule for computing limits of sequences of
fractions: The limit of the pointwise-fractions of two sequences is the quotient of the two
limits, given that the denominator sequence has non-zero limit. This tells us that

(nextβ(a, θ), nextϑ(a, ψ)) = lim(nextβ(a, θi), nextϑ(a, ψi)) ∈ B

By Lemma 7.5, B is a bisimulation, as desired. ◀

At long last, we complete the proof of Theorem 7.7 with an appeal to Theorem 7.11. ◀

Recap of the proof of completeness, Theorem 3.6

We have taken the approach outlined in Section 4 to showing that the axioms in Fig. 1 are
complete with respect to the stream semantics of probabilistic process terms (Proposition 2.3).
In Step 1, we observed that the semantics map J−K coincides with determinized stream
semantics L−M (Theorem 5.13), and that in particular this meant that the final G-coalgebra

C. Cîrstea, L. S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova 30:21

homomorphism ∂† : (PTerm/≡, ∂)→ (Prob(Aω), ζ) satisfies JeK = ∂†([e]) for each e ∈ PTerm
(Theorem 6.3). Thus, it suffices to show that ∂† is injective. To this end, we observed in
Section 4 that it suffices to construct a left inverse k to q in the diagram below.

(PTerm/≡, ∂) (J, ρ) (Prob(Aω), ζ)
q

∂†

ι

k
(7.2)

The left inverse k in (7.2) exists if (PTerm/≡, ∂†) is the final locally fg G-coalgebra. In
Step 2, we saw that (PTerm/≡, ∂†) satisfies a slightly weaker universal property, that every
ffg G-coalgebra admits a unique coalgebra homomorphism into it (Theorem 6.9). In Step 3,
we verified the hypotheses of Theorem 4.4, in particular Theorem 7.7, which tells us that in
fact, (PTerm/≡, ∂†) is the final locally fg coalgebra, as desired. This finishes the proof of
completeness, Theorem 3.6.

8 Discussion and Related Work

We present the first sound and complete axiomatization of infinite trace semantics for
generative probabilistic transition systems, settling a recent conjecture of Schmid, Noquez,
and Moss [21]. Our completeness theorem on infinite traces is a new direction in a series
of coalgebraic completeness theorems on finite trace semantics for probabilistic process
calculi [25, 18], thus expanding the scope of this line of work. Our approach is categorical,
and we build on recent results on proper functors over convex sets. In our proof, we use an
analytic-algebraic result about convex congruences to show properness of G. The particular
functor which we prove to be proper has not been studied before, and the properness proof
technique of [28] does not apply to it, but remarkably we could use a result concerning the
geometry of convex congruences due to Sokolova and Woracek [27].

We provide a characterization of infinite traces as the final coalgebra semantics of a functor
over convex algebras. Infinite traces have been studied in the context of semantics of (variants
of GPTS) before: via a largest homomorphism in the (order enriched) Kleisli category of the
Giry monad [32] due to Urabe and Hasuo, via a greatest fixpoint in a category of generalised
relations [4] due to Cîrstea, as a final coalgebra on a free positive convex algebra (a convex
algebra with a distinguished element, i.e., in the Kleisli category of the subdistribution
monad) due to Kerstan and König [9], and as a subcoalgebra of the final Moore automaton
on a positive convex algebra (in the Eilenberg-Moore category of the subdistribution monad)
due to Goy and Rot [5, 6]. We offer a fourth characterization as a final coalgebra semantics
for a new functor on convex algebras (i.e., in the Eilenberg-Moore category of the finite
probability distribution monad) in Section 5. It is also the final coalgebra of a set functor.

In the future, we want to explore whether the argument we provided for properness
generalizes to other endofunctors on CA and to endofunctors on the category of positive
convex algebras used in [25, 18]. We would like to expand our completeness theorem to
incorporate hypotheses, especially in the context [21] where actions are interpreted concretely
as contractions on a space: If the space and the contractions are fixed, the actions might
satisfy additional relations. More speculatively, it might be interesting to also go in the
opposite direction: Given a set of hypotheses, can one construct a canonical space and a
contraction interpretation of the actions that satisfies the hypotheses? We would also like to
consider different syntax for specifying LMCs and stream measures, such as the so-called
formal language of recursion [7], which connects nicely to iterative algebra. Orthogonally, we
would like to explore axiomatizations of behavioural distances, in the style of quantitative
equational theories [12]. Last but not least, we would like to explore unifying the results of
Silva and Sokolova [25] with those of this paper.

CSL 2025

30:22 A Complete Inference System for Probabilistic Infinite Trace Equivalence

References
1 J. Adámek and J. Rosicky. Locally Presentable and Accessible Categories. London Mathematical

Society Lecture Note Series. Cambridge University Press, 1994.
2 M. Barr and Ch. Wells. Toposes, Triples and Theories. Springer, Berlin, 1985. Revised and

corrected version available from URL: www.cwru.edu/artsci/math/wells/pub/ttt.html.
3 F. Bartels, A. Sokolova, and E.P. de Vink. A hierarchy of probabilistic system types. Theoretical

Computer Science, 327:3–22, 2004. doi:10.1016/J.TCS.2004.07.019.
4 Corina Cîrstea. From branching to linear time, coalgebraically. Fundam. Informaticae,

150(3-4):379–406, 2017. doi:10.3233/FI-2017-1474.
5 Alexandre Goy. Trace semantics via determinization for probabilistic transition systems.

CoRR, abs/1802.09084, 2018. arXiv:1802.09084.
6 Alexandre Goy and Jurriaan Rot. (In)finite trace equivalence of probabilistic transition

systems. In Corina Cîrstea, editor, Coalgebraic Methods in Computer Science - 14th IFIP WG
1.3 International Workshop, CMCS 2018, volume 11202 of Lecture Notes in Computer Science,
pages 100–121. Springer, 2018. doi:10.1007/978-3-030-00389-0_7.

7 Antonius J. C. Hurkens, Monica McArthur, Yiannis N. Moschovakis, Lawrence S. Moss, and
Glen T. Whitney. The logic of recursive equations. J. Symb. Log., 63(2):451–478, 1998.
doi:10.2307/2586843.

8 Bart Jacobs. A bialgebraic review of deterministic automata, regular expressions and languages.
In Kokichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, editors, Algebra, Meaning,
and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday,
volume 4060 of Lecture Notes in Computer Science, pages 375–404. Springer, 2006. doi:
10.1007/11780274_20.

9 Henning Kerstan and Barbara König. Coalgebraic Trace Semantics for Continuous Probabilistic
Transition Systems. Logical Methods in Computer Science, Volume 9, Issue 4, December 2013.
doi:10.2168/LMCS-9(4:16)2013.

10 S. C. Kleene. Representation of events in nerve nets and finite automata. In Claude Shannon
and John McCarthy, editors, Automata Studies, pages 3–41. Princeton University Press,
Princeton, NJ, 1956.

11 Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic testing. Inf.
Comput., 94(1):1–28, 1991. doi:10.1016/0890-5401(91)90030-6.

12 Radu Mardare, Prakash Panangaden, and Gordon Plotkin. Quantitative algebraic reasoning.
In 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages
1–10, 2016.

13 Stefan Milius. A sound and complete calculus for finite stream circuits. In Proceedings of
the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, pages 421–430.
IEEE Computer Society, 2010. doi:10.1109/LICS.2010.11.

14 Stefan Milius. Proper functors and fixed points for finite behaviour. Log. Methods Comput.
Sci., 14(3), 2018. doi:10.23638/LMCS-14(3:22)2018.

15 Robin Milner. A complete inference system for a class of regular behaviours. J. Comput. Syst.
Sci., 28(3):439–466, 1984. doi:10.1016/0022-0000(84)90023-0.

16 Michael O. Rabin. Probabilistic automata. Inf. Control., 6(3):230–245, 1963. doi:10.1016/
S0019-9958(63)90290-0.

17 Alexander Moshe Rabinovich. A complete axiomatisation for trace congruence of finite state
behaviors. In Stephen D. Brookes, Michael G. Main, Austin Melton, Michael W. Mislove,
and David A. Schmidt, editors, Mathematical Foundations of Programming Semantics, 9th
International Conference, New Orleans, LA, USA, April 7-10, 1993, Proceedings, volume
802 of Lecture Notes in Computer Science, pages 530–543. Springer, 1993. doi:10.1007/
3-540-58027-1_25.

18 Wojciech Rozowski and Alexandra Silva. A completeness theorem for probabilistic regular
expressions. In Pawel Sobocinski, Ugo Dal Lago, and Javier Esparza, editors, Proceedings of
the 39th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2024, Tallinn,
Estonia, July 8-11, 2024, pages 66:1–66:14. ACM, 2024. doi:10.1145/3661814.3662084.

www.cwru.edu/artsci/math/wells/pub/ttt.html
https://doi.org/10.1016/J.TCS.2004.07.019
https://doi.org/10.3233/FI-2017-1474
https://arxiv.org/abs/1802.09084
https://doi.org/10.1007/978-3-030-00389-0_7
https://doi.org/10.2307/2586843
https://doi.org/10.1007/11780274_20
https://doi.org/10.1007/11780274_20
https://doi.org/10.2168/LMCS-9(4:16)2013
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1109/LICS.2010.11
https://doi.org/10.23638/LMCS-14(3:22)2018
https://doi.org/10.1016/0022-0000(84)90023-0
https://doi.org/10.1016/S0019-9958(63)90290-0
https://doi.org/10.1016/S0019-9958(63)90290-0
https://doi.org/10.1007/3-540-58027-1_25
https://doi.org/10.1007/3-540-58027-1_25
https://doi.org/10.1145/3661814.3662084

C. Cîrstea, L. S. Moss, V. Noquez, T. Schmid, A. Silva, and A. Sokolova 30:23

19 Walter Rudin. Real and Complex Analysis. McGraw-Hill, 1966.
20 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci.,

249(1):3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.
21 Todd Schmid, Victoria Noquez, and Lawrence S. Moss. Fractals from regular behaviours.

In Paolo Baldan and Valeria de Paiva, editors, 10th Conference on Algebra and Coalgebra
in Computer Science, CALCO 2023, June 19-21, 2023, Indiana University Bloomington,
IN, USA, volume 270 of LIPIcs, pages 14:1–14:18. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023. Also available at https://arxiv.org/pdf/2306.03894. doi:10.4230/LIPICS.
CALCO.2023.14.

22 Todd Schmid, Jurriaan Rot, and Alexandra Silva. On star expressions and coalgebraic
completeness theorems. In Ana Sokolova, editor, Proceedings 37th Conference on Mathematical
Foundations of Programming Semantics, MFPS 2021, Hybrid: Salzburg, Austria and Online,
30th August - 2nd September, 2021, volume 351 of EPTCS, pages 242–259, 2021. doi:
10.4204/EPTCS.351.15.

23 Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten. General-
izing determinization from automata to coalgebras. Log. Methods Comput. Sci., 9(1), 2013.
doi:10.2168/LMCS-9(1:9)2013.

24 Alexandra Silva, Marcello M. Bonsangue, and Jan J. M. M. Rutten. Non-deterministic kleene
coalgebras. Log. Methods Comput. Sci., 6(3), 2010. URL: http://arxiv.org/abs/1007.3769.

25 Alexandra Silva and Ana Sokolova. Sound and complete axiomatization of trace semantics
for probabilistic systems. In Michael W. Mislove and Joël Ouaknine, editors, Twenty-seventh
Conference on the Mathematical Foundations of Programming Semantics, MFPS 2011, Pitts-
burgh, PA, USA, May 25-28, 2011, volume 276 of Electronic Notes in Theoretical Computer
Science, pages 291–311. Elsevier, 2011. doi:10.1016/j.entcs.2011.09.027.

26 A. Sokolova and E.P. de Vink. Probabilistic automata: system types, parallel composition and
comparison. In C. Baier, B.R. Haverkort, H. Hermanns, J.-P. Katoen, and M. Siegle, editors,
Validation of Stochastic Systems: A Guide to Current Research, pages 1–43. LNCS 2925, 2004.
doi:10.1007/978-3-540-24611-4_1.

27 Ana Sokolova and Harald Woracek. Congruences of convex algebras. Journal of Pure and
Applied Algebra, 219(8):3110–3148, 2015. doi:10.1016/j.jpaa.2014.10.005.

28 Ana Sokolova and Harald Woracek. Proper semirings and proper convex functors. In FoSSaCS
2018, pages 331–347. LNCS 10803, 2018.

29 Eugene W. Stark and Scott A. Smolka. A complete axiom system for finite-state probabilistic
processes. In Gordon D. Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language,
and Interaction, Essays in Honour of Robin Milner, pages 571–596. The MIT Press, 2000.

30 Sam Staton. Relating coalgebraic notions of bisimulation. In CALCO 2009, volume 5728,
pages 191–205. LNCS 5728, 2009. doi:10.1007/978-3-642-03741-2_14.

31 T. Świrszcz. Monadic functors and convexity. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom.
Phys., 22:39–42, 1974.

32 Natsuki Urabe and Ichiro Hasuo. Coalgebraic infinite traces and Kleisli simulations. Log.
Methods Comput. Sci., 14(3), 2018. doi:10.23638/LMCS-14(3:15)2018.

CSL 2025

https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.4230/LIPICS.CALCO.2023.14
https://doi.org/10.4230/LIPICS.CALCO.2023.14
https://doi.org/10.4204/EPTCS.351.15
https://doi.org/10.4204/EPTCS.351.15
https://doi.org/10.2168/LMCS-9(1:9)2013
http://arxiv.org/abs/1007.3769
https://doi.org/10.1016/j.entcs.2011.09.027
https://doi.org/10.1007/978-3-540-24611-4_1
https://doi.org/10.1016/j.jpaa.2014.10.005
https://doi.org/10.1007/978-3-642-03741-2_14
https://doi.org/10.23638/LMCS-14(3:15)2018

Simple Types for Probabilistic Termination
Willem Heijltjes #

Department of Computer Science, University of Bath, UK

Georgina Majury #

Department of Computer Science, University of Bath, UK

Abstract
We present a new typing discipline to guarantee the probability of termination in probabilistic
lambda-calculi. The main contribution is a particular naturality and simplicity: our probabilistic
types are as simple types, but generated from probabilities as base types, representing a least
probability of termination. Simple types are recovered by restricting probabilities to one.

Our vehicle is the Probabilistic Event Lambda-Calculus by Dal Lago, Guerrieri, and Heijltjes,
which presents a solution to the issue of confluence in probabilistic lambda-calculi. Our probabilistic
type system provides an alternative solution to that using counting quantifiers by Antonelli, Dal
Lago, and Pistone, for the same calculus.

The problem that both type systems address is to give a lower bound on the probability that terms
head-normalize. Following the recent Functional Machine Calculus by Heijltjes, our development
takes the (simplified) Krivine machine as primary, and proceeds via an extension of the calculus
with sequential composition and identity on the machine. Our type system then gives a natural
account of termination probability on the Krivine machine, reflected back onto head-normalization
for the original calculus. In this way we are able to avoid the use of counting quantifiers, while
improving on the termination bounds given by Antonelli, Dal Lago, and Pistone.

2012 ACM Subject Classification Theory of computation → Lambda calculus; Theory of computation
→ Type theory; Theory of computation → Probabilistic computation

Keywords and phrases lambda-calculus, probabilistic termination, simple types

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.31

Acknowledgements We would like to thank Melissa Antonelli, Ugo Dal Lago, and Paolo Pistone
for the constructive conversation about both our approaches, and the anonymous referees for their
helpful commentary.

1 Introduction

While the study of probabilistic computation can be traced to the 1950s [11], the first study
of the probabilistic λ-calculus in particular is considered to be by Saheb-Djahromi in the
late 70s [30]. In the near half century since, many variations on higher-order probabilistic
computation have been considered [10, 12, 19, 20, 26, 29]. In recent years, perhaps due to
the potential for applications in machine learning and modelling of probabilistic systems,
the area has seen a return to popularity [5, 6, 16, 17, 24, 31]. An important computational
phenomenon in its own right, the study of probabilistic choice can also provide a “foot in the
door” for understanding how more general effects might manifest, leading for instance to the
recent Functional Machine Calculus (FMC) as a confluent λ-calculus with effects [3, 18] that
will play a central role in our development.

In this paper we consider the problem of probabilistic termination, the probability that
a given reduction mechanism reaches the normal form of a term, a key consideration for
probabilistic computation and the subject of significant recent attention [4, 7, 8, 15, 22]. 1

1 Note that this objective is distinct from almost-sure termination: it considers exact probabilities,
not those converging in the limit. Almost-sure termination is more commonly studied for iterative
constructs [21, 27]; extending the lambda-calculus with an almost-surely terminating iterator is the
subject of future work.

© Willem Heijltjes and Georgina Majury;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 31; pp. 31:1–31:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:w.b.heijltjes@bath.ac.uk
https://orcid.org/0009-0001-8941-1150
mailto:gvrm20@bath.ac.uk
https://orcid.org/0009-0004-4325-0699
https://doi.org/10.4230/LIPIcs.CSL.2025.31
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Simple Types for Probabilistic Termination

Termination being one of the prime considerations of type systems in general, the question of
type systems for probabilistic termination is pertinent [1, 7]. Our contribution in this paper
is a new typing discipline for probabilistic termination, following the recent line of work on
the probabilistic event λ-calculus [9] and the FMC. Their prime features are confluence for
probabilistic computation and other effects, and the encoding of multiple reduction strategies
within a single calculus.

One of the greatest challenges facing the study of probabilistic computation is confluence.
In most variants the outcome of duplicating a probabilistic term is strategy dependent.
Consider the instruction “write down the result of flipping a coin twice”: it is ambiguous
whether “twice” refers to “write” or “flipping”, and the choice of interpretation changes the
possible outcomes. In most of the literature results are therefore either restricted to a single
strategy, such as call–by–value or call–by–name, or rely on a modified definition of reduction.
This raises the question whether it is possible to have confluence for probabilistic computation,
while expressing different strategies, and rewriting without restriction on contexts, properties
which lend elegance to the λ-calculus. The probabilistic event λ-calculus [9] proposes a
solution to this problem by decomposing a probabilistic sum M ⊕ N into a choice operation
M a N , understood as a conditional “if a then M else N”, and a probabilistic generator
a . P , representing a coin toss whose outcome is bound to the boolean variable a in the

term P , which then determines the choice for M a N . When in argument position a . M acts
as a wrapper, similar to thunking in call–by–push value [25] and the bang-calculus [14, 15],
protecting the operator from evaluation. These factors combine to return confluence to the
calculus, allowing for arbitrary evaluation strategies with an unrestricted β-reduction.

The probabilistic event λ-calculus (PEΛ) was introduced in [9] with a simple type system,
corresponding to that on the lambda-calculus. This system ignored the probabilistic elements
of the calculus, and thus gave little insight into the properties of this extension. In a
deterministic calculus a type system provides various safety guarantees. These may be
qualitative: termination, outputs, composability; or quantitative: run time, term size. In
the probabilistic setting, however, it is natural to wonder what guarantees can be made,
when the behaviour of a single term can vary between iterations. If, as in the type system
mentioned, the probabilities are ignored, strong results can be obtained, albeit on a fairly
uninteresting fragment of the calculus. Once probability is acknowledged by the type system
the guarantees made become similarly qualified: probability of termination, almost-sure
termination, expected run time. Here, we consider the first of these.

One proposed type system for the PEΛ [1], labelled Cλ→, introduces counting quantifiers
as a Curry–Howard correspondent to an intuitionistic counting propositional logic. These
provide a mechanism to express “proportion of truth” by quantifying the number of satisfying
assignments to a formula within a given model, in the way that existential and universal
quantification may be understood via the existence of a satisfying assignment, respectively
the satisfaction of all assignments. By taking the assignments to a formula to describe
the branches of a probabilistic computation, counting quantifiers may be used to describe
probability bounds. By this mechanism, Cλ→ provides a lower bound on the probability
of head normalisation. However, as illustrated in [1], the bounds provided by Cλ→ are not
tight, even in situations where this would be expected (see Example 8).

In this paper we present an alternative approach to the same problem, for the same
calculus, using a different inspiration, to provide improved termination bounds. Deriving
from the PEΛ, the FMC provides an additional feature that, to us, seemed crucial to a
natural account of probabilistic termination via the type system. First, the “machine” in
question is the (simplified) Krivine machine [23], whose evaluation is closely related to head

W. Heijltjes and G. Majury 31:3

normalisation. The FMC here adds an intriguing aspect: it introduces sequential composition
and identity on the machine, where the latter, the imperative skip, provides a notion of
successful termination, notably absent from the machine for standard λ-calculus. Moreover,
this becomes the primary interpretation of types: a type derivation in the FMC is a proof
that the machine successfully terminates. Our main question for this work was how to adapt
this to capture probabilistic termination. The answer, described in Section 6, is an extended
sequential probabilistic event λ-calculus SPEΛ, with a type system SPEΛQ⇒ that naturally
describes probabilistic termination of the machine, as well as probabilistic termination of
head reduction.

The type system SPEΛQ⇒ for the extended sequential calculus reflects back onto a natural
type system for the original probabilistic event λ-calculus, PEΛQ→, which gives probabilistic
head normalization in the following way: types generalize simple types by replacing the base
type with a probability. Formally,

A, B ::= p | A → B

where p ∈ [0, 1] ∩Q is a rational number between zero and one inclusive. The intuition is that
the base type for simple types, o, may be understood as signifying successful evaluation, even
if it is uninhabited. After all, a constant base type such as for booleans or integers signifies
the successful return of a corresponding value. This further matches the interpretation in the
FMC, where the type o is inhabited by skip, and corresponds to termination of the machine
without producing a result. Our approach, then, is to replace certain termination with a
probability of termination, replacing the base type o with a probability p. We consider the
striking simplicity and natural intuition of this approach one of our main contributions.

2 The probabilistic event lambda-calculus

We recall the probabilistic event lambda-calculus PEΛ from [9]. Assume countable sets of
variables, ranged over by x, y, z, and of events, ranged over by a , b , c . The former are term
variables, to be instantiated by terms of the calculus, and the latter are boolean variables, to
be instantiated by ⊤ (true) or ⊥ (false). The PEΛ extends the λ-calculus with a generator
a . M , which flips a coin and binds the result (⊤ or ⊥) to a , and a choice or conditional

M a N , which evaluates to M if a is true, and to N otherwise. A traditional probabilistic
sum of terms, M ⊕ N , may be encoded as a . M a N . Generators are normally fair, with
equal probability for ⊤ or ⊥, though on occasion we may need a biased generator a p which
chooses ⊤ with probability p, and ⊥ with 1 − p.

▶ Definition 1. Terms are given by the following grammar,

M, N ::= x | λx. M | M N | a . M | M a N

with, from left to right: a variable; an abstraction, which binds x in M ; an application; a
generator, which binds a in M ; and a choice.

The free variables and free events of a term M are written fv(M) and fe(M) respectively.
Substitution is written prefix: {N/x}M is the capture-avoiding substitution of N for x in
M . For an event a we define two projection functions πa

⊤ and πa
⊥, which apply the effect of

instantiating a with true and false respectively, to a term M .

CSL 2025

31:4 Simple Types for Probabilistic Termination

▶ Definition 2. The projection functions πa
i for an event a and i ∈ {⊥, ⊤} are given as

follows, where a ̸= b.

πa
i x = x

πa
i (λx. M) = λx. πa

i M

πa
i (M N) = (πa

i M) (πa
i N)

πa
⊤(M a N) = πa

⊤M πa
i (M b N) = (πa

i M) b (πa
i N)

πa
⊥(M a N) = πa

⊥N πa
i (b . M) = b . πa

i M

We use the standard notions of context, head context, and applicative context to define
the reduction relations. Note that a head context is of the form λx1. . . λxn. {} M1. . . Mm

where m and n are potentially zero.

▶ Definition 3. Contexts C, head contexts H, and applicative contexts A are defined as
follows. A context C with the hole replaced by M , capturing variables, is written C{M}.

C ::= {} | λx. C | C M | M C H ::= λx. H | A

| a . C | C a M | M a C A ::= A M | {}

A probability p, q is a rational number between 0 and 1 inclusive. Probabilistic reduction
will return a multi-(sub-)distribution [2], a finite multiset of weighted terms M written as
[p1 ·M1, . . . , pn ·Mn] whose weight |M| =

∑
i≤n pi is (at most) one.2 For simplicity, we will

refer to these as distributions, and we convert implicitly between terms M and the singleton
distribution [1 ·M]. Multiset union is written S + T , and the empty multiset as ∅. A
distribution M is scaled to pM by multiplying each weight in M by p. The underlying
probability (sub-)distribution of M, the finite function from terms to probabilities obtained
by collecting like terms p ·M and q ·M as (p+q) ·M , is written ⌊M⌋.

▶ Definition 4. Beta-reduction β and head β-reduction βh are given by closing the
beta-rule below under all contexts C respectively under head contexts H, and implicitly return
a singleton distribution.

(λx. M)N β {N/x}M

Projective reduction π is the following reduction relation from terms to distributions.

H{ a . M} π [1
2 ·H{πa

⊤M} , 1
2 ·H{πa

⊤M}]

Head reduction (h) = (βh) ∪ (π) is the union of head β-reduction and projective
reduction. Reduction is lifted to distributions of terms in the expected way: if M N then
[p ·M] + M (pN) + M. We write for the reflexive-transitive closure of a reduction
relation .

The PEΛ features a second notion of reduction, permutative reduction p [9], which
gives a more fine-grained evaluation of probabilistic sums. It is this reduction for which
confluence is particularly significant. The effect of permutative reduction is to bridge the
gap between the decomposed operators a and M a N and the standard probabilistic sum
M ⊕ N , encoded as a . M a N , by internalizing the reduction of a . M to the sum of its two
projections [9, Proposition 29]:

a . M p a . (πa
⊤M) a (πa

⊥M) (if a ∈ fe(M)) .

2 We use multi-distributions rather than distributions to accommodate the reduction measure for the
proof of head normalization in Appendix A.2.

W. Heijltjes and G. Majury 31:5

Γ, x : A ⊢ x : A

Γ, x : A ⊢ M : B

Γ ⊢ λx. M : A → B

Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ M N : B

Γ ⊢ M : A Γ ⊢ N : A

Γ ⊢ M a N : A

Γ ⊢ M : A

Γ ⊢ a . M : A

Figure 1 The simple type system PEΛ→.

In this paper we will work with projective reduction, since we are interested in termination
of head reduction. We will, on occasion, consider terms where probabilistic sums are of the
traditional form M ⊕ N = a . M a N with a /∈ fe(M), fe(N). As per the above, these are
effectively the normal forms of permutative reduction.

3 Probabilistic types

Before introducing our probabilistic type system, we recall simple types for the PEΛ [9].

▶ Definition 5. Simple types are given by the following grammar.

A, B ::= o | A → B

A typing context Γ is a finite function from term variables to types, written as a sequence
x1 : A1, . . ., xn : An. A typing judgment Γ ⊢ M : A assigns the type A to the term M in the
context Γ. The simply-typed probabilistic event λ-calculus PEΛ→ is given by the typing rules
in Figure 1.

Simple types ignore the probabilistic constructs of the calculus, generator and choice,
requiring only that branches of a choice have equal types. This gives the expected result:
typed terms are strongly normalizing, since every possible branch of the computation is typed.
For probabilistic termination, we wish to capture that a given fraction of all branches of a
computation, terminates – where our notion of termination is given by head normalization.

Our approach derives from the following idea: if the base type o of simple types, even if
not inhabited, denotes certainty of termination, then we may generalise this to probability of
termination by replacing base types with arbitrary probabilities. This yields the following
notion of types.

▶ Definition 6. Probabilistic types are given by the following grammar, where p ∈ [0, 1] ∩ Q.

A, B ::= p | A → B

The intuitive meaning of, for example, assigning a term M a type A → B → p is: given
inputs of type A and B, M terminates with probability at least p. The identity term I = λx. x

may be assigned any type p → p: given an input N that terminates with probability p, the
term I N does so as well. The type system will include an axiom that any term, in particular a
non-terminating one such as Ω = (λx. xx)(λx. xx), may be assigned a termination probability
of zero. This is expressed by a type A1 → . . . → An → 0: for any inputs A1 through An, the
term will terminate with probability at least zero.

Note that these types generalise simple types with a single, uninhabited base type o. A
probabilistic system with multiple base types, say integers and booleans, would pair the
return type with a probability, for instance an integer with 1

2 probability, or a boolean with
1
4 probability. The extension of the calculus with sequencing, in Sections 5 and 6, will give a
more concrete account of how probabilities interact with return values and return types.

CSL 2025

31:6 Simple Types for Probabilistic Termination

E | Γ, x : A ⊢ x : A
var

E | Γ ⊢ M : A → 0
zero

E | Γ ⊢ M : A → q

E | Γ ⊢ M : A → p
low (p < q)

E | Γ, x : A ⊢ M : B

E | Γ ⊢ λx. M : A → B
abs

E | Γ ⊢ M : A → B E | Γ ⊢ N : A

E | Γ ⊢ M N : B
app

E, a 7→i | Γ ⊢ Mi : A

E, a 7→i | Γ ⊢ M⊤ a M⊥ : A
chc

E, a 7→⊤ | Γ ⊢ M : A → p E, a 7→⊥ | Γ ⊢ M : A → q

E | Γ ⊢ a . M : A → 1
2 p + 1

2 q
gen

Figure 2 The probabilistic type system PEΛQ→.

The term a . M a Ω gives a fair probabilistic choice between M and Ω. For the com-
putation to be well-typed regardless of the choice, M and Ω should have the same input
types, so that they can be applied to the same arguments. Hence, if M has type A → B → p,
we may choose A → B → 0 for Ω. Then the type for a . M a Ω should be A → B → 1

2 p: given
arguments of type A and B, the computation chooses M with probability 1

2 and so terminates
with probability at least 1

2 p.
These considerations motivate the shape of our probabilistic type system, with one further

aspect to explain. An arbitrary generator term a . M reduces with a fair probability to
either πa

⊤M or πa
⊥M , which may then terminate with different probabilities. However, using

projections would mean the type system loses the property of being inductive on terms. We
will instead record the assignment of a truth value to a in an additional context E, that
we call an event valuation. The type derivation then projects a term M a N to M or to N

according to the value of a in the event valuation E.

▶ Definition 7. The probabilistically typed probabilistic event λ-calculus PEΛQ→ is given by
the typing rules in Figure 2, using the following definitions. An event valuation E is a finite
function from events to {⊥, ⊤}, written as a sequence a1 7→i1, . . . , an 7→in. A typing context
Γ is a finite function from variables to types, written x1 : A1, . . . , xn : An. A probabilistic
typing judgement E | Γ ⊢ M : A assigns a type A to the term M in the context of E and Γ.
A sequence of antecedents A1 → . . . → An → p is abbreviated with vector notation as A → p.

The typing rules are syntax-driven, except for the low rule to lower a given bound. The
rule is not essential to the type system, since it is already implied in the meaning of types as
giving a lower bound; but for the same reason, since it is implied, including it brings more
clarity than omitting it. Note further that the typing rule gen assumes a fair coin toss for
the generator a , which gives the resulting probability of 1

2 p + 1
2 q. An unfair toss a r with

ratio r would give a probability rp + (1 − r)q.

▶ Example 8. To demonstrate our type system we reprise the example t[a, b] from [1, Section
6.2], written here as the term a . b . c . T below. In Figure 3 we derive the following type.

a . b . c . T : 1 → 3
8 where T = ((I c Ω) b Ω) a (Ω b I)

We will discuss a number of aspects of our type system. First, as a particularly natural
feature, observe that the rules var, abs and app make it conservative over standard simply-
typed λ-calculus – which, interestingly, is agnostic to the choice of base types.

W. Heijltjes and G. Majury 31:7

D⊥,⊥,⊥ =

a 7→⊥, b 7→⊥, c 7→⊥ | x : 1 ⊢ x : 1
var

a 7→⊥, b 7→⊥, c 7→⊥ | ⊢ λx. x : 1 → 1
abs

a 7→⊥, b 7→⊥, c 7→⊥ | ⊢ I c Ω: 1 → 1
chc

a 7→⊥, b 7→⊥, c 7→⊥ | ⊢ (I c Ω) b Ω: 1 → 1
chc

a 7→⊥, b 7→⊥, c 7→⊥ | ⊢ ((I c Ω) b Ω) a (Ω b I) : 1 → 1
chc

D⊥,⊥ =
D⊥,⊥,⊥

a 7→⊥, b 7→⊥, c 7→⊥ | ⊢ T : 1 → 1 a 7→⊥, b 7→⊥, c 7→⊤ | ⊢ T : 1 → 0
zero

a 7→⊥, b 7→⊥ | ⊢ c . T : 1 → 1
2

gen

D⊥ =

D⊥,⊥
a 7→⊥, b 7→⊥ | ⊢ c . T : 1 → 1

2 a 7→⊥, b 7→⊤ | ⊢ c . T : 1 → 0
zero

a 7→⊥ | ⊢ b . c . T : 1 → 1
4

chc

D⊤,⊤,i =

a 7→⊤, b 7→⊤, c 7→i | x : 1 ⊢ x : 1
var

a 7→⊤, b 7→⊤, c 7→i | ⊢ λx. x : 1 → 1
abs

a 7→⊤, b 7→⊤, c 7→i | ⊢ Ω b I : 1 → 1
chc

a 7→⊤, b 7→⊤, c 7→i | ⊢ ((I c Ω) b Ω) a (Ω b I) : 1 → 1
chc

D⊤,⊤ =
D⊤,⊤,⊥

a 7→⊤, b 7→⊤, c 7→⊥ | ⊢ T : 1 → 1
D⊤,⊤,⊤

a 7→⊤, b 7→⊤, c 7→⊤ | ⊢ T : 1 → 1
a 7→⊤, b 7→⊤ | ⊢ c . T : 1 → 1

gen

D⊤ = a 7→⊤, b 7→⊥ | ⊢ c . T : 1 → 0
zero D⊤,⊤

a 7→⊤, b 7→⊤ | ⊢ c . T : 1 → 1

a 7→⊤ | ⊢ b . c . T : 1 → 1
2

gen

D =
D⊥

a 7→⊥ | ⊢ b . c . T : 1 → 1
4

D⊤
a 7→⊤ | ⊢ b . c . T : 1 → 1

2

| ⊢ a . b . c . T : 1 → 3
8

gen

Figure 3 Typing derivations for Example 8, where T = ((I c Ω) b Ω) a (Ω b I).

CSL 2025

31:8 Simple Types for Probabilistic Termination

Second, a key difference with the simple type system of Figure 1 is that probabilistic
branching occurs in the generator rule, whereas for simple types it is the choice rule. This is
due to aiming for head normalization instead of strong normalization. Consider the example
term a . M a (Ω a N). Head reduction projects it to M and N , removing Ω, which will not
be reduced. This is reflected in the probabilistic type system, where the branches of the
generator typing rule project to M and N via the event valuation. The simple type system,
reflecting strong normalization, would require also Ω to be typed – which of course it cannot.

For terms of the form M ⊕ N = a . M a N this difference is moot: both type systems
branch similarly for this construct, to M and N . This leaves as only distinction the
generalisation of types themselves, from a single base type o to probabilities p. In accordance
with the meaning of a base type as the probability of termination, simple types are then
recovered by restricting to base type p = 1. This rules out the rules zero and low, assigning a
zero-weighted type A → 0 and reducing the weight of a type. It is easy to observe that the
remaining rules preserve the restriction p = 1, to give the following proposition.

▶ Proposition 9. For the fragment below left, the simply-typed PEΛ coincides with the
probabilistically-typed PEΛ restricted to the types below right.

M, N ::= x | λx. M | M N | a . M a N A, B ::= 1 | A → B

Our main result for the probabilistically-typed PEΛ is that a type A → p guarantees head
normalization with probability at least p. Formally, this is stated by a head reduction to a
distribution of which a proportion of at least p is in head-normal form.

▶ Theorem 10. For closed M , if M : A → p then M h N0 + N1 where all terms in N0 are
head normal and |N0| ≥ p.

The result will follow directly from the corresponding Theorem 22 for the expanded
probabilistic calculus with sequential composition, introduced in Section 5.

4 Comparison with counting quantifiers

In this section we will give a close comparison with the type system Cλ→ of Antonelli,
Dal Lago, and Pistone [1], and demonstrate that our approach gives tighter bounds on the
probability of termination.

The first distinction between Cλ→ and PEΛQ→ is that the former uses indexed event
variables xi

a for i ∈ N instead of events a. However, there is no formal need for this; since
the indices i are static, we may replace xi

a and xj
a for distinct i and j simply with distinct

events a and b. This simplification extends to the semantics. Probabilities in Cλ→ are
given by boolean formulas b over the variables xi

a, indicating a subset of the space (2N)X

where X is a finite set of events. However, since the indices i are fixed and bounded, it
is sufficient to consider finite spaces 2X . The elements of this set are the event valuations
E with domain X, and a boolean formula b over X indicates the set of event valuations
JbKX = {E ∈ 2X | E |= b}, where E |= b is characterized syntactically as expected:

E, a 7→⊤ |= a E, a 7→⊥ |= ¬a E |= ⊤
E |= b E |= c

E |= b∧ c

E |= b

E |= b∨ c

For a set E ⊆ 2X the measure µX(E) is given by

µX(E) = |E|
2|X|

W. Heijltjes and G. Majury 31:9

where |S| denotes the size of a set S. Then µ(b) is µX(JbKX) where X is the domain of b.
This coincides with the measure µ(b) over (2N)X in [1], as the latter makes no essential use
of the infinity offered by N.

The second difference is the syntax of types: Cλ→ introduces probabilities through
counting quantifiers Cp, where PEΛQ→ has probabilities as base types. Types are nevertheless
isomorphic: Cλ→ types s are of the form Cp(s1 → · · · → sn → o), with a fixed outer counting
quantifier, and map 1-to-1 onto PEΛQ→ types A of the form A1 → . . . → An → p by associating
the probability p instead with the consequent o. Formally, we encode types s and typing
contexts Γ of Cλ→ into our setting as follows.

JCq(o)K = q

JCq(s ⇒ τ)K = JsK → JCq(τ)K Jx1 : s1, . . . , xn : snK = x1 : Js1K, . . . , xn : JsnK

Having connected boolean formulas b to event valuations E, and Cλ→ types to PEΛQ→

types, we may state the following conservativity result of PEΛQ→ over Cλ→.

▶ Proposition 11. If E ∈ JbKX then

Γ ⊢X M : b↣ s implies E | JΓK ⊢ M : JsK .

Proof. By induction on the typing derivation for Γ ⊢X M : b↣ s. ◀

▶ Corollary 12. For a given closed term M the type system PEΛQ→ gives the same or higher
termination bounds than Cλ→.

In the reverse direction, Example 8 and its counterpart in [1, Section 6.2] show that the
two type systems do not give the exact same bounds, and in some cases PEΛQ→ gives a
strictly higher bound. The reason is that PEΛQ→ locates branching between alternatives at
the gen-rule for a . M , where Cλ→ branches for choice terms M a N or in a contraction rule.
Crucially, the gen-rule allows branches with different termination bounds. We illustrate this
further by attempting to simulate the rule for a . M in Cλ→.

E, a 7→⊤ | JΓK ⊢ M : A → p E, a 7→⊥ | JΓK ⊢ M : A → q

E | JΓK ⊢ a . M : A → 1
2 p + 1

2 q
gen

The branching at this rule in Cλ→ is captured with a contraction on the two premisses,
which requires the probabilities to be equal, i.e. p = q. The derivation is as follows, where
d = ⊤ and µ(d) = 1 for the counting rule.

Γ ⊢X∪{a} M : b∧ a ↣ Cpσ Γ ⊢X∪{a} M : b∧ ¬a ↣ Cpσ b |= (b∧ a) ∨ (b∧ ¬a)
Γ ⊢X∪{a} M : b↣ Cpσ

Γ ⊢X
a .M : b↣ Cpσ

This is the issue illustrated by Example 8 and its counterpart in [1, Section 6.2], for which
PEΛQ→ gives the actual termination probability of 3

8 , while Cλ→ gives a best approximation
of 1

4 . Reprising the example in Cλ→, the two sub-derivations for b . c . T , given in condensed
form below, assign probabilities of 1

4 and 1
2 . These may only be combined in a contraction

by lowering the first probability to match the 1
4 of the first.

⊢{a,b,c} T : a ∧ b ∧ c ↣ C1σ

⊢{a,b}
c . T : a ∧ b ↣ C 1

2 σ

⊢{a}
b . c . T : a ↣ C 1

4 σ

⊢{a,b,c} T : ¬a ∧ ¬b ↣ C1σ

⊢{a,b}
c . T : ¬a ∧ ¬b ↣ C1σ

⊢{a}
b . c . T : ¬a ↣ C 1

2 σ

CSL 2025

31:10 Simple Types for Probabilistic Termination

The above analysis suggests that this issue with Cλ→ may be fixed by adopting the generator
typing rule of PEΛQ→, adjusted appropriately as follows. The key here is that different
branches feature the dual atoms a and ¬a, not seen in either the simple type system PEΛQ→

nor the intersection type system in [1].

Γ ⊢X∪{a} M : c∧ a ↣ Cpσ Γ ⊢X∪{a} M : d∧ ¬a ↣ Cqσ b |= c∨ d

Γ ⊢X
a . M : b↣ C 1

2 p+ 1
2 qσ

5 Sequencing

Two observations about probabilistic λ-calculi motivate the developments in the remainder
of this paper. The first is the primary role of head reduction. It is well known that head
normalization corresponds closely to evaluation on the Krivine Machine [23], and sometimes
the machine gives a more natural model of what is being studied. The second is that
probabilistic evaluation in λ-calculi needs to account for the difference between call–by–
value (cbv) and call–by–name (cbn), to which end additional constructions are introduced,
sometimes ad-hoc. The PEΛ is an example, as is the separate consideration of a cbv- and a
cbn-probabilistic sum by Faggian and Ronchi Della Rocca [16], while Antonelli, Dal Lago,
and Pistone [1] add to the standard cbn-application a second cbv-application.

These observations prompted us to consider probabilistic termination from the perspective
of the Functional Machine Calculus (FMC) [18], a λ-calculus with computational effects.
Firstly, the Krivine Machine plays a central role in the FMC (indeed it is the “M” in “FMC”),
while the FMC provides the machine with a new notion of successful termination, absent
from the standard λ-calculus. It is then a natural question if and how this may be used to
capture the probability of successful termination. Secondly, the FMC may express both cbn
and cbv behaviour, with the cbn λ-calculus a fragment and the cbv λ-calculus encoded in the
syntax. The need for ad-hoc constructs to control reduction behaviour is thus avoided.

The Krivine Machine, simplified by replacing environments with substitution, evaluates a
λ-term in the presence of a stack of input terms. An abstraction λx. M pops the top off the
stack, say N , and continues as {N/x}M , while an application M N pushes its argument N

and continues as M . A λ-term may thus be viewed as a language of instruction sequences
for this machine: application–push, abstraction–pop, variable–execute.

The FMC then extends the λ-calculus with sequential composition M ; N and its unit,
the imperative skip ⋆, with the expected semantics: concatenation of machine instructions
and the empty instruction. As in models of imperative languages, skip indicates successful
termination of the machine. This gives a fragment called the sequential λ-calculus.

We adopt these modifications in the PEΛ to give the sequential probabilistic event λ-
calculus (SPEΛ), defined below. Following [18] we render abstraction as ⟨x⟩. M = λx. M and
application as [N]. M = M N to emphasise the machine behaviour of pop and push, retaining
the standard syntax as a shorthand. In particular, the new notation clarifies the interaction
between push and sequencing: the following three terms are equivalent, rendered first in
standard notation and second with prefix application.

(⋆ N) ; M ∼ (⋆ ; M) N ∼ M N ([N]. ⋆) ; M ∼ [N]. (⋆ ; M) ∼ [N]. M

The full FMC further generalises to a machine with multiple independent stacks, addressed
by a set of locations, in which pop and push are then parameterised to operate on the
corresponding stack. This allows us to encode the effects of mutable higher-order store,
input/output, and indeed probabilistic computation: the generator a . M of the PEΛ is, in
the FMC, an abstraction rnd⟨ a ⟩. M parameterised to draw from a stream of random values
labelled rnd. The SPEΛ is thus a fragment of the FMC with two locations.

W. Heijltjes and G. Majury 31:11

▶ Definition 13. The sequential probabilistic event λ-calculus SPEΛ is given as follows.

M, N, P ::= x | ⟨x⟩. M | [N]. M | a . M | M a N | ⋆ | N ; M

Prefixing binds tighter than sequencing, [N]. M ; P = ([N]. M) ; P , and sequencing asso-
ciates right, M ; N ; P = M ; (N ; P). Projections and contexts extend to the SPEΛ as below;
head contexts and applicative contexts are as for the PEΛ.

πa
i ⋆ = ⋆ πa

i (N ; M) = πa
i N ; πa

i M C ::= . . . | C ; M | M ; C

The interaction between sequentiality and the λ-calculus is governed by the following
sequencing reduction rules. These make sequential composition right-associative, and let the
prefixing of push, pop, and the generator propagate past it (as in a standard list concatenation
algorithm). The result is to make the first such action on the abstract machine the leading
construct.

⋆ ; P σ P
(N ; M) ; P σ N ; (M ; P) ⟨x⟩. M ; P σ ⟨x⟩. (M ; P) (x /∈ fv(P))
[N]. M ; P σ [N]. (M ; P) a . M ; P σ a . (M ; P) (a /∈ fe(P))

The sequencing relation σ is given by closing these rules under all contexts C, and head
sequencing σh by closing under head contexts H only. The β-reduction rule in SPEΛ
notation is as below left, with β given by closing under all contexts and βh by closing
under head contexts. Projective reduction, below right, is as previously.

[N]. ⟨x⟩. M β {N/x}M H{ a . M} π [1
2 ·H{πa

⊤M} , 1
2 ·H{πa

⊤M}]

Head reduction h is the union of all three head relations:

h = βh ∪ σh ∪ π .

We round off by observing the shape of head-normal forms, assuming no free event variables.

▶ Proposition 14. The head-normal forms of event-closed SPEΛ-terms are of one of the
three forms H{⋆}, H{x}, and H{x ; M}.

5.1 Encoding call–by–value
Sequential composition provides an essential element that the λ-calculus lacks, and which
is at the heart of the cbv/cbn dichotomy: control over execution. The cbv behaviour of an
application M N is encoded almost as N ; M : first evaluate the argument N , then evaluate
the function M (the full encoding, below, includes an extra part to also execute M).

We demonstrate the encoding of the cbv-probabilistic λ-calculus Λcbv
⊕ of Faggian and

Ronchi Della Rocca [16]. The encoding of cbv λ-terms is standard: see [13, 18, 28]. Values
V , W and terms M , N encode by the translations −v and −t respectively, below.

Values V, W : xv = x

(λx.M)v = ⟨x⟩. Mt

Terms M, N : Vt = [Vv]. ⋆

(M N)t = Nt ; Mt ; ⟨x⟩. x

(M ⊕ N)t = a . Mt a Nt

The operational intuition is that a push represents a return value: a term Mt evaluates
until it is of the form Vt = [Vv]. ⋆, at which point Vv is pushed to the stack and the machine
terminates. Then β-reduction is simulated as follows.

CSL 2025

31:12 Simple Types for Probabilistic Termination

((λx.M) V)t = [Vv]. ⋆ ; [⟨x⟩. Mt]. ⋆ ; ⟨y⟩. y

σ [Vv]. [⟨x⟩. Mt]. ⟨y⟩. y

β [Vv]. ⟨x⟩. Mt

β {Vv/x}Mt
= ({V/x}M)t

The probabilistic reduction rule of Λcbv
⊕ is that of projective reduction, under the given

encoding, but it applies in surface contexts:

S ::= {} | M S | S M

Then the translation of S{M ⊕ N} indeed does not place the probabilistic redex inside a
push, the requirement for correct behaviour.

5.2 The abstract machine
The small-step operational semantics of the SPEΛ is given by the following abstract machine.
A state is a triple (S, M, K), where M is a term and S and K are stacks of terms. S is
the operand stack, with the head to the right as S N , and K is the continuation stack, with
the head to the left as N K. In both cases the empty stack is written ε, and concatenation
by juxtaposition, S T . Transitions or steps are probabilistic: a transition rule is written as
below left, expressing that the machine transitions from a state (S, M, K) to (T, N, L) with
probability p. We may omit p when p = 1. A run is a sequence of steps, written as below
centre, where probabilities are multiplied, i.e. p below is the product of the probabilities of
all steps. A run is successful if it terminates with skip and an empty continuation stack, as
below right; the stack T then holds the return values of the computation.

step: p
(S , M , K)
(T , N , L) run: p

(S , M , K)
(T , N , L)

successful run: p
(S , M , K)
(T , ⋆ , ε)

▶ Definition 15. The sequential probabilistic machine (SPM) is given by the following
probabilistic transitions.

(S , [N]. M , K)
(S N , M , K)

(S , N ; M , K)
(S , N , M K)

1
2
(S , a . M , K)
(S , πa

⊤M , K)

(S N , ⟨x⟩. M , K)
(S , {N/x}M , K)

(S , ⋆ , M K)
(S , M , K)

1
2
(S , a . M , K)
(S , πa

⊥M , K)

5.3 Big-step semantics
Running the machine for a given term and input stack gives a distribution of return stacks.
We use the following notation, extending from that for distributions over terms.

T = [p1 ·T1, . . . , pn ·Tn] = [pi ·Ti]i≤n

▶ Definition 16. The evaluation relation S, M ⇓ T is defined inductively by the following
rules.

S, ⋆ ⇓ [1 ·S]
S, {N/x}M ⇓ T
S N, ⟨x⟩. M ⇓ T

R, M ⇓ [pi ·Si]i≤n (Si, N ⇓ Ti)i≤n

R, M ; N ⇓
∑

i≤n piTi

S, M ⇓ ∅
S N, M ⇓ T

S, [N]. M ⇓ T
S, πa

⊤M ⇓ T⊤ S, πa
⊥M ⇓ T⊥

S, a . M ⇓ 1
2 T⊤ + 1

2 T⊥

W. Heijltjes and G. Majury 31:13

We demonstrate that small-step and big-step semantics agree.

▶ Proposition 17. S, M ⇓ T if and only if there is a finite collection of n distinct runs

pi

(S , M , ε)
(Ti , ⋆ , ε)

(i ≤ n) such that T = [pi ·Ti]i≤n .

Proof. (=⇒) By induction on S, M ⇓ T . (⇐=) By induction each run in the collection of n

runs. ◀

6 Sequential probabilistic types

Types for the sequential λ-calculus are of the form below, with the meaning: given an input
stack of terms typed by A1 through An, the machine will terminate successfully and return
a stack with types B1 through Bm.

An . . . A1 ⇒ B1 . . . Bm

For the SPEΛ, we parameterize this with the probability of successful termination.

▶ Definition 18. Sequential probabilistic types are given by the following grammars, where
p is a probability.

A, B, C ::= A
p
⇒ C (types)

A ::= A1 . . . An (type vectors)

A typing judgement E | Γ ⊢ M : A assigns a term M the type A in the context of E and Γ,
and E | Γ ⊢ S : A assigns a stack of terms S a type vector A. The sequential probabilistic
type system SPEΛQ⇒ is given by the typing rules in Figure 4. We may omit p when p = 1.

There are no base types: their rôle is subsumed by types with empty vectors (p
⇒). Observe

that because stacks are last-in-first-out, the identity term on two elements is ⟨x⟩. ⟨y⟩. [y]. [x]. ⋆,
i.e. with the order of x and y reversed between popping and pushing. We match this reversal
in types, and assign this term the type AB ⇒ BA. Since we want identity types to be of the
form A ⇒ A, in a type A

p
⇒ C we consider the antecedent type vector A to be reversed, i.e.

A ⇒ A = An . . . A1 ⇒ A1 . . . An .

Probabilistic PEΛ-types embed into sequential types by A → p = A
p
⇒ ε. With this

identification, for PEΛ-terms and -types the two type systems coincide.

▶ Proposition 19. For M a PEΛ-term, E | Γ ⊢ M : A → p if and only if E | Γ ⊢ M : A
p
⇒ ε.

Every type is inhabited by a closed term. For a type A, define the zero term 0A as follows:
for A = B1 . . . Bm

p
⇒ C1 . . . Cn,

0A = ⟨x1⟩ . . . ⟨xm⟩. [0C1] . . . [0Cn
]. ⋆ .

▶ Proposition 20 (Type inhabitation). Every type A is inhabited by its zero term, ⊢ 0A : A.

Proof. By induction on the type A, using the low rule to lower the termination probability
from 1 to an arbitrary p. ◀

CSL 2025

31:14 Simple Types for Probabilistic Termination

E | Γ, x : A
p
⇒ C ⊢ x : A B

p
⇒ B C

var
E | Γ ⊢ M : A

0⇒ C
zero

E | Γ, x : A ⊢ M : B
p
⇒ C

E | Γ ⊢ ⟨x⟩. M : A B
p
⇒ C

abs
E | Γ ⊢ N : A E | Γ ⊢ M : A B

p
⇒ C

E | Γ ⊢ [N]. M : B
p
⇒ C

app

E, a 7→i | Γ ⊢ Mi : A

E, a 7→i | Γ ⊢ M⊤ a M⊥ : A
chc

E, a 7→⊤ | Γ ⊢ M : A
p
⇒ C E, a 7→⊥ | Γ ⊢ M : A

q
⇒ C

E | Γ ⊢ a . M : A
1
2 p+ 1

2 q
⇒ C

gen

E | Γ ⊢ ⋆ : A
1⇒ A

skip
E | Γ ⊢ M : A

p
⇒ B E | Γ ⊢ N : B

q
⇒ C

E | Γ ⊢ M ; N : A
pq
⇒ C

seq

E | Γ ⊢ M : A
q

⇒ C

E | Γ ⊢ M : A
p
⇒ C

low (p<q) (E | Γ ⊢ Mi : Ai) i≤n

E | Γ ⊢ ε M1 . . . Mn : A1 . . . An
stk

Figure 4 The sequential probabilistic type system SPEΛQ⇒.

Type inhabitation is an important justification for the interpretation of types as a
guarantee for successful machine termination: it means that for a typed term M : A

p
⇒ C,

a suitable input stack S : A always exists. Our main theorem, below, formalizes this
interpretation: for a term M : A

p
⇒ C and stack S : A, the machine successfully returns a

stack T : C with probability at least p.

▶ Theorem 21. For a typed, closed term M : A
p
⇒ C and stack S : A there is a finite set of

distinct successful runs

pi

(S , M , ε)
(Ti , ⋆ , ε)

(i ≤ n)

with sum probability
∑

i≤n pi ≥ p.

Proof. See Appendix A.1. ◀

The lower bound given by the theorem is an exact bound when two conditions are met:
the typing derivation does not use the low rule to lower the termination bound, and every use
of the zero rule to assign a zero probability applies to a term that is in fact non-terminating.
In such a case, such as Example 8, types can be seen to give an exact bound.

Since head reduction as a strategy closely follows machine evaluation, it is no surprise
that the termination bound for the machine is also a lower bound for probabilistic head
reduction. This is formalised in the following theorem.

▶ Theorem 22. For a closed M , if M : A
p
⇒ C then M h N0 + N1 where all terms in N0

are head normal and |N0| ≥ p.

Proof. See Appendix A.2. ◀

Observe that our main theorem on probabilistic termination for the PEΛ, Theorem 10,
follows immediately from the corresponding Theorem 22 above by conservativity of the SPEΛ
over the PEΛ. This is despite the fact that the proof of Theorem 22 makes essential use of
the notion of successful termination made available by sequencing, absent from the PEΛ.

W. Heijltjes and G. Majury 31:15

7 Conclusions

To us, what stands out about our approach is the simplicity and the natural intuition of our
type system. This manifests in the transparent reasoning in our proofs, which despite using
deep techniques such as abstract reducibility, give a direct and clear connection between
types, machine behaviour, and reduction.

Compared with the approach in [1], the simplicity of our approach manifests in several
advantages. First is to avoid the need for counting quantifiers, associating probabilities
instead with base types, and the use of simple event valuations over boolean formulas.
Second, it is clear that the expression of both call–by–name and call–by–value behaviour is
an essential ingredient for a probabilistic calculus. We eschew the introduction of ad-hoc
constructs, relying instead on a principled interpretation of cbv via sequential composition.
Finally, where the main example [1, Example 6.2] requires intersection types to produce the
exact bound, our approach does so directly in Example 8, while morally remaining within
the realm of simple types, and strictly improving on the bounds provided by Cλ→.

References
1 Melissa Antonelli, Ugo Dal Lago, and Paolo Pistone. Curry and howard meet borel. In Pro-

ceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS‘22),
pages 45:1–45:13. ACM, 2022. doi:10.1145/3531130.3533361.

2 Martin Avanzini, Ugo Dal Lago, and Akihisa Yamada. On probabilistic term rewriting. In
John P. Gallagher and Martin Sulzmann, editors, Proc. Functional and Logic Programming
- 14th International Symposium, FLOPS 2018, volume 10818 of Lecture Notes in Computer
Science, pages 132–148. Springer, 2018. doi:10.1007/978-3-319-90686-7_9.

3 Chris Barrett, Willem Heijltjes, and Guy McCusker. The Functional Machine Calculus II:
Semantics. In 31st EACSL Annual Conference on Computer Science Logic (CSL 2023), volume
252 of Leibniz International Proceedings in Informatics (LIPIcs), pages 10:1–10:18, 2023.
doi:10.4230/LIPIcs.CSL.2023.10.

4 Raven Beutner and Luke Ong. On probabilistic termination of functional programs with
continuous distributions. In Stephen N. Freund and Eran Yahav, editors, Proceedings 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementation
(PLDI), pages 1312–1326. ACM, 2021. doi:10.1145/3453483.3454111.

5 Flavien Breuvart and Ugo Dal Lago. On intersection types and probabilistic lambda calculi.
In roceedings of the 20th International Symposium on Principles and Practice of Declarative
Programming, PPDP 2018, pages 8:1–8:13. ACM, 2018. doi:10.1145/3236950.3236968.

6 Fredrik Dahlqvist and Dexter Kozen. Semantics of higher-order probabilistic programs with
conditioning. Proceedings of the ACM on Programming Languages, 4(POPL):57:1–57:29, 2020.
doi:10.1145/3371125.

7 Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca. Intersection types and
(positive) almost-sure termination. Proceedings of the ACM on Programming Languages,
5(POPL):1–32, 2021. doi:10.1145/3434313.

8 Ugo Dal Lago and Charles Grellois. Probabilistic termination by monadic affine sized typing.
ACM Transactions on Programming Languages and Systems, 41(2):10:1–10:65, 2019. doi:
10.1145/3293605.

9 Ugo Dal Lago, Giulio Guerrieri, and Willem Heijltjes. Decomposing probabilistic lambda-calculi.
In Proceedings of Foundations of Software Science and Computation Structures (FoSSaCS),
volume 12077 of LNCS, pages 136–156, 2020. doi:10.1007/978-3-030-45231-5_8.

10 Ugo Dal Lago and Margherita Zorzi. Probabilistic operational semantics for the lambda
calculus. RAIRO - Theoretical Informatics and Applications, 46(3):413–450, 2012. doi:
10.1051/ita/2012012.

CSL 2025

https://doi.org/10.1145/3531130.3533361
https://doi.org/10.1007/978-3-319-90686-7_9
https://doi.org/10.4230/LIPIcs.CSL.2023.10
https://doi.org/10.1145/3453483.3454111
https://doi.org/10.1145/3236950.3236968
https://doi.org/10.1145/3371125
https://doi.org/10.1145/3434313
https://doi.org/10.1145/3293605
https://doi.org/10.1145/3293605
https://doi.org/10.1007/978-3-030-45231-5_8
https://doi.org/10.1051/ita/2012012
https://doi.org/10.1051/ita/2012012

31:16 Simple Types for Probabilistic Termination

11 Karel de Leeuw, Edward F. Moore, Claude E. Shannon, and Norman Shapiro. Computability
by probabilistic machines. Automata studies, 34:183–198, 1956.

12 Ugo De’Liguoro and Adolfo Piperno. Non deterministic extensions of untyped lambda-calculus.
Information and Computation, 122(2):149–177, 1995. doi:10.1006/inco.1995.1145.

13 Rémi Douence and Pascal Fradet. A systematic study of functional language implementations.
ACM Transactions on Programming Languages and Systems, 20(2):344–387, 1998. doi:
10.1145/276393.276397.

14 Thomas Ehrhard and Giulio Guerrieri. The bang calculus: An untyped lambda-calculus
generalizing call-by-name and call-by-value. In Proceedings of the 18th International Symposium
on Principles and Practice of Declarative Programming (PPDP’16), pages 174–187, 2016.
doi:10.1145/2967973.2968608.

15 Thomas Ehrhard and Christine Tasson. Probabilistic call by push value. Logical Methods in
Computer Science, 15(1), 2019. doi:10.23638/LMCS-15(1:3)2019.

16 Claudia Faggian and Simona Ronchi Della Rocca. Lambda calculus and probabilistic compu-
tation. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019,
pages 1–13, 2019. doi:10.1109/LICS.2019.8785699.

17 Jean Goubault-Larrecq. A probabilistic and non-deterministic call-by-push-value language. In
34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, pages 1–13.
IEEE Computer Society, 2019. doi:10.1109/LICS.2019.8785809.

18 Willem Heijltjes. The functional machine calculus. In Proceedings of the 38th Conference
on the Mathematical Foundations of Programming Semantics, MFPS XXXVIII, volume 1 of
ENTICS, 2022. doi:10.46298/ENTICS.10513.

19 C. Jones and G. D. Plotkin. A probabilistic powerdomain of evaluations. In Proceedings of the
Fourth Annual Symposium on Logic in Computer Science (LICS ’89), pages 186–195. IEEE
Computer Society, 1989. doi:10.1109/LICS.1989.39173.

20 Achim Jung and Regina Tix. The troublesome probabilistic powerdomain. Electronic Notes
in Theoretical Computer Science, 13:70–91, 1998. doi:10.1016/S1571-0661(05)80216-6.

21 Benjamin Kaminski. Advanced Weakest Precondition Calculi for Probabilistic Programs.
PhD thesis, Fakultät für Mathematik, Informatik und Naturwissenschaften, RWTH Aachen
University, 2019. doi:10.18154/RWTH-2019-01829.

22 Naoki Kobayashi, Ugo Dal Lago, and Charles Grellois. On the termination problem for
probabilistic higher-order recursive programs. In Proceedings of the 34th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2019, pages 1–14. IEEE, 2019. doi:10.1109/
LICS.2019.8785679.

23 Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order and Symbolic
Computation, 20(3):199–207, 2007. doi:10.1007/s10990-007-9018-9.

24 Thomas Leventis. A deterministic rewrite system for the probabilistic λ-calculus. Mathematical
Structures in Computer Science, 29(10):1479–1512, 2019. doi:10.1017/S0960129519000045.

25 Paul Blain Levy. Call-by-push-value: A functional/imperative synthesis, volume 2 of Semantic
Structures in Computation. Springer Netherlands, 2003. doi:10.1007/978-94-007-0954-6.

26 Udi Manber and Martin Tompa. Probabilistic, nondeterministic, and alternating decision
trees. In 14th Annual ACM Symposium on Theory of Computing, pages 234–244, 1982.
doi:10.1145/800070.802197.

27 Annabelle McIver and Carroll Morgan. Abstraction and refinement in probabilistic systems.
SIGMETRICS Perform. Eval. Rev., 32(4):41–47, March 2005. doi:10.1145/1059816.1059824.

28 A.J. Power and Hayo Thielecke. Closed Freyd- and κ-categories. In International Colloquium on
Automata, Languages, and Programming (ICALP), volume 1644 of Lecture Notes in Computer
Science, pages 625–634. Springer, 1999. doi:10.1007/3-540-48523-6_59.

29 Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of probability
distributions. In Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’02, pages 154–165, 2002. doi:10.1145/
503272.503288.

https://doi.org/10.1006/inco.1995.1145
https://doi.org/10.1145/276393.276397
https://doi.org/10.1145/276393.276397
https://doi.org/10.1145/2967973.2968608
https://doi.org/10.23638/LMCS-15(1:3)2019
https://doi.org/10.1109/LICS.2019.8785699
https://doi.org/10.1109/LICS.2019.8785809
https://doi.org/10.46298/ENTICS.10513
https://doi.org/10.1109/LICS.1989.39173
https://doi.org/10.1016/S1571-0661(05)80216-6
https://doi.org/10.18154/RWTH-2019-01829
https://doi.org/10.1109/LICS.2019.8785679
https://doi.org/10.1109/LICS.2019.8785679
https://doi.org/10.1007/s10990-007-9018-9
https://doi.org/10.1017/S0960129519000045
https://doi.org/10.1007/978-94-007-0954-6
https://doi.org/10.1145/800070.802197
https://doi.org/10.1145/1059816.1059824
https://doi.org/10.1007/3-540-48523-6_59
https://doi.org/10.1145/503272.503288
https://doi.org/10.1145/503272.503288

W. Heijltjes and G. Majury 31:17

30 Nasser Saheb-Djahromi. Probabilistic LCF. In Mathematical Foundations of Computer Science
1978, Proceedings, 7th Symposium, volume 64 of Lecture Notes in Computer Science, pages
442–451. Springer, 1978. doi:10.1007/3-540-08921-7_92.

31 Davide Sangiorgi and Valeria Vignudelli. Environmental bisimulations for probabilistic higher-
order languages. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, pages 595–607, 2016. doi:10.1145/
2837614.2837651.

A Proofs for Section 6

A.1 Probabilistic machine termination
Our main theorem for the typed SPEΛ will be that a type A

p
⇒ B guarantees a probability

of termination of the machine of at least p, given an input stack of type A, and returning a
stack of type B. The proof is a direct application of abstract reducibility. For each type we
define a set run(A) that holds the terms with the above property, and we proceed to prove
that every term of type A belongs to this set.

We write Dp(X) for the set of finite distributions X of weight |X | ≥ p over a set X.

▶ Definition 23. The set run(−) is defined by mutual induction on types A and type vectors
A as a set of closed terms respectively of closed stacks, as follows.

run(A p
⇒ B) = { M | ∀S ∈ run(A). ∃T ∈ Dp(run(B)). S, M ⇓ T }

run(A1 . . . An) = { ε M1 . . . Mn | Mi ∈ run(Ai) }

For the proof of Lemma 25, the main reducibility lemma, we need the following notation,
as well as an additional lemma. We write σ for a substitution map {Mi/xi}i≤n, where σM

is the application of σ to M . The set run(−) then extends to contexts Γ as follows. Note
that the definition implies that σ is closed (i.e. each substituting term is closed).

run(x1 : A1, . . . , xn : An) = { σ | σxi ∈ run(Ai) , 1 ≤ i ≤ n }

For an event valuation E = (ak 7→ik)k≤n we write πEM for the projection on each ai in E.

πEM = πa1
i1

(. . . (πan
in

M) . . .)

We expand the stacks in a distribution T by prepending a stack S as S T , where S [pi ·Ti]i≤n =
[pi ·S Ti]i≤n.

▶ Lemma 24. If S, M ⇓ T then R S, M ⇓ R T for any stack R.

Proof. By induction on the definition of ⇓. ◀

The main reducibility lemma is then the following.

▶ Lemma 25. If E | Γ ⊢ M : A and σ ∈ run(Γ) then πE(σM) ∈ run(A).

Proof. By induction on the typing derivation for M . Note that since σ is closed, πE(σM) =
σ(πE(M)). We cover three key cases (sequencing, abstraction, and generator); the remaning
are similar.
Sequencing case:

E | Γ ⊢ N : A
p
⇒ B E | Γ ⊢ M : B

q
⇒ C

E | Γ ⊢ N ; M : A
pq
⇒ C

seq

CSL 2025

https://doi.org/10.1007/3-540-08921-7_92
https://doi.org/10.1145/2837614.2837651
https://doi.org/10.1145/2837614.2837651

31:18 Simple Types for Probabilistic Termination

Let N ′ = πE(σN) and M ′ = πE(σM). Given R ∈ run(A), by induction we have
R, N ′ ⇓ [pi ·Si]i≤n with each Si ∈ run(B) and

∑
i≤n pi ≥ p. Again by induction, for each

i ≤ n we have Si, M ′ ⇓ Ti with Ti ∈ Dq(run(C)). The definition of ⇓ gives R, (N ′ ; M ′) ⇓ T
for T =

∑
i≤n piTi. Finally, observe that T ∈ Dpq(run(C)) since |T | =

∑
i≤n pi|Ti| ≥ pq

and since each Ti is a distribution over run(C).
Abstraction case:

E | Γ, x : A ⊢ M : B
p
⇒ C

E | Γ ⊢ ⟨x⟩. M : A B
p
⇒ C

abs

Let σ ∈ run(Γ) and S N ∈ run(B A). We need to demonstrate a distribution T ∈
Dp(run(C)) such that S N, πE(σ(⟨x⟩. M)) ⇓ T . Let M ′ = πE(σM) and note that
since σ is not defined on x and σ and N are closed, πE(σ{N/x}M) = {N/x}M ′ and
πE(σ(⟨x⟩. M) = ⟨x⟩. M ′. The inductive hypothesis for the premise E | Γ, x : A ⊢ M : B

p
⇒

C, with σ{N/x} ∈ run(Γ, x : A), gives the desired T ∈ Dp(run(C)) with evalu-
ation S, {N/x}M ′ ⇓ T . Then by the definition of evaluation, S N, M ′ ⇓ T , and hence
⟨x⟩. M ′ ∈ run(A B

p
⇒ C).

Generator case:

E, a 7→⊤ | Γ ⊢ M : A
p
⇒ C E, a 7→⊥ | Γ ⊢ M : A

q
⇒ C

E | Γ ⊢ a . M : A
1
2 p+ 1

2 q
⇒ C

gen

Let σ ∈ run(Γ) and S ∈ run(A). Let Mi = πE,a 7→i(σM) for i ∈ ⊤, ⊥. By the inductive
hypothesis, M⊤ ∈ run(A p

⇒ C) and M⊥ ∈ run(A q
⇒ C), which gives S, M⊤ ⇓ T⊤ and

S, M⊥ ⇓ T⊥ for some T⊤ ∈ Dp(run(C)) and T⊥ ∈ Dq(run(C)). Let r = 1
2 (p + q); then

T = 1
2 (T⊤ +T⊥) ∈ Dr(run(C)) and by definition of evaluation, S, πE(σ(a . M)) ⇓ T . We

conclude that πE(σ(a . M)) ∈ run(A r⇒ C). ◀

Our main theorem, the probability of machine termination, is a direct consequence.

▶ Theorem 21 (restatement). For a typed, closed term M : A
p
⇒ C and stack S : A there is

a finite set of distinct successful runs

pi

(S , M , ε)
(Ti , ⋆ , ε)

(i ≤ n)

with sum probability
∑

i≤n pi ≥ p.

Proof. By Lemma 25 we have M ∈ run(A p
⇒ C) and S ∈ run(A). By the definition of

run(−) we then have S, M ⇓ T with |T | ≥ p. Proposition 17 then gives the desired set of
machine runs. ◀

A.2 Probabilistic head normalization
Finally, we will relate machine termination to head reduction. For a redex in a head context
λx1. . . λxn. {} M1. . . Mm the machine runs as follows: after the abstractions consume the
top n elements off the stack, and the applications push the terms Mi onto it, then the redex
itself is the first part of the term to be evaluated on the machine. Machine evaluation thus
corresponds tightly to head reduction, with the same order of evaluation of redexes.

However, in this correspondence, the machine halts with a variable, while successful
termination in our setting requires a skip with an empty continuation stack. We will thus
use a different approach.

W. Heijltjes and G. Majury 31:19

S, ⋆ ⇓0 [1 ·S]
S, {N/x}M ⇓w T

S N, ⟨x⟩. M ⇓w+1 T
R, M ⇓w [pi ·Si]i≤n (Si, N ⇓vi Ti)i≤n

R, M ; N ⇓(w+
∑

i≤n
vi)

∑
i≤n piTi

S, M ⇓0 ∅
S N, M ⇓w T

S, [N]. M ⇓w+1 T
S, πa

⊤(M) ⇓v T⊤ S, πa
⊥(M) ⇓w T⊥

S, a . M ⇓v+w+1
1
2 T⊤ + 1

2 T⊥

Figure 5 The weighted probabilistic evaluation relation.

The main idea is that reduction shortens the runs of the machine, by removing consecutive
push and pop operations, or in the case of projective reduction, removing a generator. By
annotating the evaluation relation to count abstractions, applications, and generators we
may then observe that this measure reduces under head reduction.

▶ Definition 26. The weighted evaluation relation S, M ⇓w T is given in Figure 5, where the
weight w is a natural number. We extend it to a distribution of terms M by the following
rule, carrying a multiset of weights W.

(S, Mi ⇓wi
Ti)i≤n

S, [pi ·Mi]i≤n ⇓[wi]i≤n

∑
i≤n piTi

The core lemma establishes that the weight in the evaluation relation decreases for
βh and π reduction steps, and is stable under σh. However, this does not apply to

terms introduced by the zero-rule, as S, M ⇓0 ∅, which are the potentially non-terminating
terms. Crucially for our purpose, when the evaluation returns a non-empty distribution,
head-reduction on the term progresses towards a head-normal form.

▶ Lemma 27. Let S, M ⇓w T where T ̸= ∅.
If M σh N then S, N ⇓w T .
If M βh N then S, N ⇓v T with v < w.
If M π N then S, N ⇓W T with v < w for every v in W.

Proof. We first consider the reduction steps themselves, and then their closure under head
contexts. The proof is by induction on ⇓. We consider three cases; the remaining are similar.
Beta [N]. ⟨x⟩. M β {N/x}M Since T is non-empty, the derivation must be as below

left, as none of the inferences may be replaced by a zero-rule. The case is then as follows.

S, {N/x}M ⇓w T
S N, ⟨x⟩. M ⇓w+1 T

S, [N]. ⟨x⟩. M ⇓w+2 T
β S, {N/x}M ⇓w T

Projection a . M π [1
2 ·πa

⊤M , 1
2 ·πa

⊥M] Since T is non-empty, the derivation for the
redex is the first below. The derivation for the reduct, second below, uses the evaluation
rule for distributions.

S, πa
⊤M ⇓v T⊤ S, πa

⊥M ⇓w T⊥

S, a . M ⇓v+w+1
1
2 T⊤ + 1

2 T⊥

S, πa
⊤M ⇓v T⊤ S, πa

⊥M ⇓w T⊥

S, [1
2 ·πa

⊤M, 1
2 ·πa

⊥M] ⇓[v,w]
1
2 T⊤ + 1

2 T⊥

CSL 2025

31:20 Simple Types for Probabilistic Termination

Sequence–generator a . M ; P σ a . (M ; P) (a /∈ fe(P)) The derivations are as
follows, with premises stacked for space. In the second derivation w′ = w +

∑
i≤n ui and

v′ = v +
∑

n<i≤m ui.

R, πa
⊤M ⇓w [pi ·Si]i≤n

R, πa
⊥M ⇓v [pi ·Si]n<i≤m

R, a . M ⇓w+v+1
1
2 [pi ·Si]i≤m (Si, P ⇓ui

Ti)i≤m

R, a . M ; P ⇓(w+v+1+
∑

i≤m
ui)

∑
i≤m

1
2 piTi

R, πa
⊤M ⇓w [pi ·Si]i≤n

(Si, P ⇓ui
Ti)i≤n

R, πa
⊤M ; P ⇓w′

∑
i≤n piTi

R, πa
⊥M ⇓v [pi ·Si]n<i≤m

(Si, P ⇓ui
Ti)n<i≤m

R, πa
⊥M ; P ⇓v′

∑
n<i≤m piTi

R, a . (M ; P) ⇓(w+v+1+
∑

i≤m
ui)

∑
i≤m

1
2 piTi

This concludes the reduction steps. The remaining cases consider the closure under head
contexts. For sequencing reduction, which leaves the weight unchanged, this is immediate,
and the cases for beta-steps are straightforward and omitted. For projective reduction, let
M π [1

2 ·N⊤
1
2 ·N⊥], and consider the remaining cases.

Application [P]. M π [1
2 · [P]. N⊤

1
2 · [P]. N⊥] The derivation for [P]. M is as follows.

S P , M ⇓w T
S, [P]. M ⇓w+1 T

By induction, for the premise of this derivation we get one for the distribution N =
[1

2 ·N⊤, 1
2 ·N⊥], below, where it follows that T = 1

2 T⊤ + 1
2 T⊥ and u, v < w.

S P , N⊤ ⇓u T⊤ S P , N⊥ ⇓v T⊥

S P , N ⇓[u,v] T

Then for P = [1
2 · [P]. N⊤

1
2 · [P]. N⊥] we get the following derivation.

S P , N⊤ ⇓u T⊤

S, [P]. N⊤ ⇓u+1 T⊤

S P , N⊥ ⇓v T⊥

S, [P]. N⊥ ⇓v+1 T⊥

S, P ⇓[u+1,v+1] T

Abstraction ⟨x⟩. M π [1
2 · ⟨x⟩. N⊤

1
2 · ⟨x⟩. N⊥] The derivation for ⟨x⟩. M is as follows.

S, {P/x}M ⇓w T
S P , ⟨x⟩. M ⇓w+1 T

Given the reduction for M , we also have the following, where we abbreviate the reduct
as P.

{P/x}M π [1
2 ·{P/x}N⊤

1
2 ·{P/x}N⊥] = P

By induction this gives us the following derivation for P, where again T = 1
2 T⊤ + 1

2 T⊥
and u, v < w.

S, {P/x}N⊤ ⇓u T⊤ S, {P/x}N⊥ ⇓v T⊥

S, P ⇓[u,v] T

W. Heijltjes and G. Majury 31:21

Then for N = [1
2 · ⟨x⟩. N⊤

1
2 · ⟨x⟩. N⊥] we get the required derivation.

S, {P/x}N⊤ ⇓u T⊤

S P , ⟨x⟩. N⊤ ⇓u+1 T⊤

S, {P/x}N⊥ ⇓v T⊥

S P , ⟨x⟩. N⊥ ⇓v+1 T⊥

S, N ⇓[u+1,v+1] T ◀

We apply the above lemma to relate machine evaluation to head reduction in the following
way: if evaluation returns a distribution of weight p, then head-reduction terminates with
probability at least p.

▶ Lemma 28. If S, M ⇓W T then M h N0 + N1 where all terms in N0 are head normal
and |N0| ≥ |T |.

Proof. Let M = [pi ·Mi]i≤n evaluate by the following derivation.

(S, Mi ⇓wi
Ti)i≤n

S, [pi ·Mi]i≤n ⇓[wi]i≤n

∑
i≤n piTi

First, we head-reduce any Mi where Ti ̸= ∅. This process terminates by induction on W,
using Lemma 27: a β-step or projective step reduces W , while sequencing reduction alone is
terminating and does not increase it.

Then the distribution N0 = [pi ·Mi | i ≤ n, Ti ≠ ∅] is head-normal. The weights of N0
and T are as follows.

|N0| =
∑

[pi | i ≤ n, Ti ̸= ∅] |T | =
∑
i≤n

pi|Ti|

It follows that |N0| ≥ |T |. ◀

Our final theorem then ties everything together: typing gives successful evaluation on the
machine, which in turn gives termination of head reduction.

▶ Theorem 22 (restatement). For a closed M , if M : A
p
⇒ C then M h N0 + N1 where

all terms in N0 are head normal and |N0| ≥ p.

Proof. We provide M with an input stack consisting only of zero terms 0A. Let S be the
stack of zero terms for A. By Proposition 20 zero-terms inhabit their types, so that S : A.

By Lemma 25 we have S ∈ run(A) and M ∈ run(A p
⇒ C). By the definition of run(−)

this gives an evaluation S, M ⇓ T where |T | ≥ p.
For the corresponding weighted derivation S, M ⇓w T , Lemma 28 gives a head reduction

M h N0 + N1 where all terms in N0 are head normal and |N0| ≥ |T | ≥ p. ◀

CSL 2025

A Mixed Linear and Graded Logic:
Proofs, Terms, and Models
Victoria Vollmer #

School of Computing, University of Kent, UK

Danielle Marshall # Ñ

School of Computing, University of Kent, UK

Harley Eades III # Ñ

Computer Science, Augusta University, GA, USA

Dominic Orchard #

School of Computing, University of Kent, UK
Department of Computer Science and Technology, University of Cambridge, UK

Abstract
Graded modal logics generalise standard modal logics via families of modalities indexed by an
algebraic structure whose operations mediate between the different modalities. The graded “of-
course” modality !r captures how many times a proposition is used and has an analogous interpretation
to the of-course modality from linear logic; the of-course modality from linear logic can be modelled
by a linear exponential comonad and graded of-course can be modelled by a graded linear exponential
comonad. Benton showed in his seminal paper on Linear/Non-Linear logic that the of-course modality
can be split into two modalities connecting intuitionistic logic with linear logic, forming a symmetric
monoidal adjunction. Later, Fujii et al. demonstrated that every graded comonad can be decomposed
into an adjunction and a “strict action”. We give a similar result to Benton, leveraging Fujii et al.’s
decomposition, showing that graded modalities can be split into two modalities connecting a graded
logic with a graded linear logic. We propose a sequent calculus, its proof theory and categorical
model, and a natural deduction system which we show is isomorphic to the sequent calculus system.
Interestingly, our system can also be understood as Linear/Non-Linear logic composed with an
action that adds the grading, further illuminating the shared principles between linear logic and a
class of graded modal logics.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases linear logic, graded modal logic, adjoint decomposition

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.32

Related Version Full version with appendices: https://arxiv.org/abs/2401.17199 [40]

Funding This work was supported in part by the EPSRC grant EP/T013516/1 (Verifying Resource-
like Data Use in Programs via Types). The second author received support through Schmidt Sciences,
LLC.

Acknowledgements We thank all the anonymous reviewers of this, and previous versions, of this
paper. We are also grateful for discussions with Peter Hanukaev and helpful comments from Paulo
Torrens on a draft of this manuscript.

1 Introduction

Intuitionistic logic has a central role in the foundations of programming language theory,
providing a logical basis for type theories and type systems, and other program reasoning
principles. A significant amount of the expressivity of proof systems for intuitionistic
logic (both natural deduction and sequent calculus forms) lies within the structure of the

© Victoria Vollmer, Danielle Marshall, Harley Eades III, and Dominic Orchard;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 32; pp. 32:1–32:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:v.vollmer@kent.ac.uk
https://orcid.org/0009-0005-2082-559X
mailto:dm635@kent.ac.uk
https://starsandspira.ls/
https://orcid.org/0000-0002-4284-3757
mailto:harley.eades@gmail.com
http://metatheorem.org/
https://orcid.org/0000-0001-8474-5971
mailto:dominic.orchard@cl.cam.ac.uk
https://orcid.org/0000-0002-7058-7842
https://doi.org/10.4230/LIPIcs.CSL.2025.32
https://arxiv.org/abs/2401.17199
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 A Mixed Linear and Graded Logic: Proofs, Terms, and Models

hypotheses – the context. Probing the foundations of this part of the logic has, perhaps
surprisingly, yielded the very fertile field of substructural logics [39] including influential logics
such as linear logic [14] and its variants, and the Lambek calculus [25].

By restricting the manipulation of hypotheses in the context we typically arrive at logics
which align more closely with physical reality, where propositions are instead “resources”
that cannot necessarily be copied, discarded, or reordered. Such restricted logics have been
used to construct type systems for safely manipulating values that should be treated in a
resourceful way, such as file handlers, pointers to mutable memory, or channels [43, 42].

However, such pervasive restrictions often hamper expressivity and thus some substruc-
tural logics then seek to carefully control the reintroduction of structural rules. For example,
linear logic provides the ! modality (“of course”) for reintroducing weakening and contraction
of propositions, which linear logic otherwise prohibits. However, this modality is coarse-
grained: for those propositions under the modality, it re-enables all the structural rules that
have been removed in linear logic. Subexponentials instead aim to be more fine-grained,
offering families of modalities capturing specific structural rules [8, 22]. The related notion
of grading [12, 31] gives an alternate view, providing an indexed family of modalities whose
indices are subject to an algebra which accounts for any structural rules applied: struc-
tural rules are “counted” by the algebra (whose operations mirror the shape of structural
rules). Bounded Linear Logic [15] is a special case where the family of modalities !nA

uses indices n which are natural numbers (or polynomial terms over naturals) counting the
upper bound on usage of the proposition A. Various systems generalise this approach to
arbitrary semirings to capture data-flow properties [1, 2, 5, 12, 13, 24, 28, 31, 33, 34, 36].
Such graded systems annotate hypotheses/variables in the context with elements of the
semiring (“grades”) denoting their usage, e.g., x :0 A ⊢ t : B types a term t which does not
use x and y :1+1 A ⊢ t′ : B types a term t′ in which y is used in two different subterms once
each, accounted for by the semiring addition. A graded modality internalises the semiring
grade, causing a multiplication to the grades of any captured dependencies when the graded
modality is introduced, e.g., y :0∗(1+1) A ⊢ □t′ : □0B.

We seek here to further understand the underlying structure of graded modal logics
by following an “adjoint resolution” approach à la Benton’s seminal “A Mixed Linear and
Non-Linear Logic: Proofs, Terms and Models” at CSL 1994 [3]. Benton showed that the
exponential modality of linear logic (modelled by a comonad) can be decomposed into an
adjunction, defining a pair of “adjoint” logics (a linear logic and a non-linear intuitionistic, or
“Cartesian”, logic) which embed into each other [3]. This provides a beautiful reduction of the
core features of linear logic and its non-linearity modality. Adjoint logic applies the same idea
but to subexponentials [37, 38]. We follow the same scheme, via the adjoint decomposition
of graded modalities which generalise linear logic’s ! and which are traditionally modelled
by graded exponential comonads [5, 6, 12, 13, 24, 34]. Whilst Benton’s work has a pair of
adjoint modalities mediating between the two sublogics, we have a pair of a modality Lin and
a graded modality Grdr . We give a categorical model, showing that these are captured by an
LNL-like adjunction paired with a “strict action” for incorporating the grading, following the
Fujii-Katsumata-Melliès adjoint decomposition of graded (co)monads [10, 24]. The result
is a pair of logics which serve to explain and clarify the relationship between linearity and
grading. We call our system Mixed Graded/Linear (mGL) Logic.

This pair of logics also shines light on a relationship between two styles of graded system
in the literature: those which take linear types as their basis augmented with a graded
modality [6, 12, 31] versus those with no base notion of linearity where grading is pervasive,
tracking all substructurality [1, 2, 4, 7, 28, 30, 34]. Our linear fragment is analogous to the

V. Vollmer, D. Marshall, H. Eades III, and D. Orchard 32:3

former whilst our graded fragment is analogous to the latter. The mutual embedding shows
that these two styles of graded logics have a similar relationship to the adjoint relationship
of intuitionistic logic and linear logic.

Aside from the internal motivation of better understanding the relationship between
grading and linearity, an external motivation for this work is that it can provide a basis
for flexible, safe programming with resources. By separating out the linear fragment from
an intuitionistic graded fragment, one could avoid the strictures of linearity for working
with standard data types which need not be linear, working only in the linear fragment for
handling resources like file handles. The mutual embedding would allow the programmer to
move smoothly between these two subcalculi, as seen also in other adjunction-based calculi,
e.g., for concurrent programming [35]. The focus here however is on the core theory rather
than developing these applications yet.

Since our focus is on the relationship between grading and linearity, we consider the
semiring-graded modalities that generalise linear logic’s !. Other flavours of graded modality
(e.g., graded monads for capturing side effecting behaviour [23, 32]) are not considered here.

Roadmap

Section 2 defines a pair of sequent calculi, the mixed fragment MS, which has both linear
and graded assumptions, and the graded fragment GS, which has only graded assumptions
and no function arrow. As described above, these calculi have a mutual embedding via
modalities between the two. Section 3 considers the categorical model of mGL leveraging
recent work on the adjoint resolution of graded comonads [10, 24]. Section 4 provides the
natural deduction formulation of the calculus, which is proved equivalent to the sequent
calculus version. Section 5 discusses how this work gives a view on the landscape of graded
systems in the literature and considers other related work and future applications.

A version of this paper with the appendices providing full proof details can be found on
the arXiv [40].

2 Mixed Graded/Linear Logic: Proofs and Terms

We present first a sequent calculus for Mixed Graded/Linear logic, which comes in the form
of a term assignment. Figure 1 collects the term syntax for reference; it will also be used in
Section 4 for the natural deduction formulation. The syntax is explained with reference to
its associated proof rules in the next section.

(GS/GT) t ::= x | j | let j = t1 in t2
graded | (t1, t2) | let (x , y) = t1 in t2

| Lin l

(MS/MT) l ::= x | i | let i = l1 in l2
linear | (l1, l2) | let (x , y) = l1 in l2

| λx .l | l1 l2
| Grd r t | let Grd r x = l1 in l2
| Unlin z
| let j = z in l | let (x , y) = z in l

Variables are ranged over by x, y, z in both fragments.
Terms are mostly grouped above with introduction forms followed by elimination forms,

though note that in the last two lines of syntax for l there are additional eliminators: for the
linear modality (Unlin), for units j, and for tensors coming from the graded context.

Figure 1 Collected term syntax.

CSL 2025

32:4 A Mixed Linear and Graded Logic: Proofs, Terms, and Models

Benton’s approach has two proof systems [3]: one system of linear propositions (the L of
LNL) with two contexts for linear and non-linear propositions respectively, and one system of
non-linear propositions (the NL in LNL). We generalise this approach to the graded setting
by replacing the non-linear parts with graded notions. Thus, our system (mGL) has two
analogous proof systems: one of linear propositions with two contexts for linear and graded
propositions, with judgments subscripted as ⊢MS (for “Mixed (linear/graded) Sequent”), and
one system of graded propositions, with judgments subscripted as ⊢GS (“Graded Sequent”).

The syntax of Benton’s propositions is split into two, “conventional” (i.e., Cartesian /
non-linear) and linear [3]. The syntax of our propositions is analogously split into two, graded
and linear :

(Graded) X , Y , Z ::= J | X ⊠ Y | Lin A
(Linear) A, B, C ::= I | A ⊗ B | A ⊸ B | Grdr X

where J and I are unit types, and ⊠ and ⊗ are tensor (product) operators in their respective
domains. In the case of the linear domain, the product is the standard multiplicative
conjunction. The Lin modality encapsulates a linear proposition as a graded proposition,
and the Grdr modality encapsulates a graded proposition (at grade r, whose structure is
defined below) as a linear proposition. Thus, the two logics are interconnected by Grdr X and
Lin A. Using these two modalities we will later define graded modalities □rA as Grdr (Lin A),
similarly to how the of-course modality !A can be defined in LNL logic as the composition of
two adjoint modalities.

▶ Definition 1. Grades (ranged over by r, s) are drawn from a semiring parameterizing the
system (R, 1, ∗, 0, +, ≤) with preorder (R, ≤) such that both ∗ and + are monotonic wrt ≤.

The semiring governs the structural rules: the additive part of the semiring is involved in
weakening and contraction, and the multiplicative part in usage and composition. Various
concrete examples of interesting semirings are given at the end of Subsection 2.1.

Section 4 develops an equivalent natural deduction formulation of mGL. We then show
that the natural deduction and the sequent calculus are interderivable without modifying
the term witnessing a derivation. Thus, any semantic model of one is a model of the other.
We opt to focus on the sequent calculus form for now without loss of generality.

2.1 Sequent Calculus
We first define contexts used in the judgments:

▶ Definition 2 (Graded contexts). Suppose (R, 1, ∗, 0, +, ≤) is a preordered semiring (Def. 1).
Then grade vectors δ are sequences of R, contexts ∆ are sequences of graded formulas X ,
and contexts Γ are sequences of linear formulas:

δ := ∅ | δ, r ∆ := ∅ | ∆, x : X Γ := ∅ | Γ, x : A

The comma operator is overloaded for sequence concatenation, i.e., we can write δ1, δ2 and
∆1, ∆2, which further requires that ∆1 and ∆2 are disjoint contexts.

A graded context δ ⊙ ∆ is a pairing of a grade vector and a context defined as follows:

∅ ⊙ ∅ = ∅ (δ, r) ⊙ (∆, x : X) = (δ ⊙ ∆), x : (r ⊙ X)

where r ⊙ X pairs a formula with a grade r capturing (by the rules of the system) how the
formula X (named x) is used to form a judgment.

V. Vollmer, D. Marshall, H. Eades III, and D. Orchard 32:5

We lift the operations of semirings to grade vectors, forming a semimodule, with the
pointwise addition and scalar multiplication defined in a standard way:

∅ + ∅ = ∅ r ∗ ∅ = ∅
(δ1, r1) + (δ2, r2) = (δ1 + δ2), (r1 + r2) r ∗ (δ, s) = (r ∗ δ), (r ∗ s)

Addition of grade vectors requires the vectors to be of the same length.

The judgment form for our fully graded logic δ ⊙ ∆ ⊢GS t : X captures a concluding
proposition X under the graded context of assumptions δ ⊙ ∆. Mixed graded/linear logic
judgments δ ⊙ ∆; Γ ⊢MS l : A are similar but also have a context Γ of linear assumptions
which, being linear, do not have a corresponding grade vector.

The two judgments ⊢GS and ⊢MS (also called sub-logics or fragments) are defined by
mutual induction. We present conceptually related rules from both systems side-by-side
where possible, or one-after-the-other, in the order GS then MS.

The identity (axiom) rules are:

idGS

1 ⊙ x : X ⊢GS x : X

idMS

∅ ⊙ ∅; x : A ⊢MS x : A

The multiplicative identity 1 is the “default” grade for formulas in the graded logic GS (left),
in the sense that we can think of the right-hand side of the judgment as also implicitly
having grade 1. The graded identity rule says that a graded formula that is used must
have the default grade. For example, in the natural number semiring (N, 1, ∗, 0, +, =) the
multiplicative identity 1 ∈ N captures linear usage. The mixed identity rule types linear
assumption use, requiring just a singleton linear context (forcing a lack of weakening). It
also requires that there are no graded formulas in context – the graded context is empty ∅.

The “cut” rules are:

cutGS
δ2 ⊙ ∆2 ⊢GS t1 : X

(δ1, r , δ3) ⊙ (∆1, x : X , ∆3) ⊢GS t2 : Y
(δ1, r ∗ δ2, δ3) ⊙ (∆1, ∆2, ∆3) ⊢GS [t1/x]t2 : Y
cutMS

δ2 ⊙ ∆2; Γ2 ⊢MS l1 : A
δ1 ⊙ ∆1; (Γ1, x : A, Γ3) ⊢MS l2 : B

(δ1, δ2) ⊙ (∆1, ∆2); (Γ1, Γ2, Γ3) ⊢MS [l1/x]l2 : B

gcutMS
δ2 ⊙ ∆2 ⊢GS t : X

(δ1, r , δ3) ⊙ (∆1, x : X , ∆3); Γ ⊢MS l : B
(δ1, r ∗ δ2, δ3) ⊙ (∆1, ∆2, ∆3); Γ ⊢MS [t/x]l : B

The cutGS rule provides a cut through a graded proposition X of grade r in the receiving
context (second premise). Thus, the resulting term uses semiring multiplication (lifted to
contexts, Def. 2) to capture sequential usage, scaling the grade vector δ2 of the cut term t1
by r . The cutMS rules provides a cut through a linear proposition A and has no effect on
the graded contexts. However, MS has a further cut rule gcutMS for graded propositions in
its graded context, incurring a scaling similarly to cutGS. This pattern occurs throughout:
operations applied to the graded context in GS have a sister rule in MS applying the same
operation in the MS graded context.

CSL 2025

32:6 A Mixed Linear and Graded Logic: Proofs, Terms, and Models

Both sub-logics have free use of exchange:

exGS

(δ1, r1, r2, δ2) ⊙ (∆1, x : X , y : Y , ∆2) ⊢GS t : Z
(δ1, r2, r1, δ2) ⊙ (∆1, y : Y , x : X , ∆2) ⊢GS t : Z
exMS

δ ⊙ ∆; (Γ1, x : A, y : B, Γ2) ⊢MS l : C
δ ⊙ ∆; (Γ1, y : B, x : A, Γ2) ⊢MS l : C

gexMS

(δ1, r1, r2, δ2) ⊙ (∆1, x : X , y : Y , ∆2); Γ ⊢MS l : B
(δ1, r2, r1, δ2) ⊙ (∆1, x : Y , y : X , ∆2); Γ ⊢MS l : B

Exchanging graded propositions simultaneously exchanges their grades in the grade vector.
We can use weakening and contraction in the graded system and the mixed system within

the graded contexts, with the semiring’s 0 representing weakened hypotheses and the grades
of contracted hypotheses combined via semiring addition +:

weakGS
(δ1, δ2) ⊙ (∆1, ∆2) ⊢GS t : Y

(δ1, 0, δ2) ⊙ (∆1, x : X , ∆2) ⊢GS t : Y

contGS
(δ1, r1, r2, δ2) ⊙ (∆1, x : X , y : X , ∆2) ⊢GS t : Y
(δ1, r1 + r2, δ2) ⊙ (∆1, x : X , ∆2) ⊢GS [x/y]t : Y

weakMS
(δ1, δ2) ⊙ (∆1, ∆2); Γ ⊢MS l : B

(δ1, 0, δ2) ⊙ (∆1, x : X , ∆2); Γ ⊢MS l : B

contMS
(δ1, r1, r2, δ2) ⊙ (∆1, x : X , y : X , ∆2); Γ ⊢MS l : B
(δ1, r1 + r2, δ2) ⊙ (∆1, x : X , ∆2); Γ ⊢MS [x/y]l : B

The left and right rules for units for the graded and mixed logics are akin to linear logic:

unitJ
L

(δ1, δ2) ⊙ (∆1, ∆2) ⊢GS t : X
(δ1, r , δ2) ⊙ (∆1, x : J, ∆2) ⊢GS let j = x in t : X

unitJ
R

∅ ⊙ ∅ ⊢GS j : J

unitI
L

δ ⊙ ∆; (Γ1, Γ2) ⊢MS l : A
δ ⊙ ∆; (Γ1, x : I, Γ2) ⊢MS let i = x in l : A

unitI
R

∅ ⊙ ∅; ∅ ⊢MS i : I

unitJ−MS
L

(δ1, δ2) ⊙ (∆1, ∆2); Γ ⊢MS l : A
(δ1, r , δ2) ⊙ (∆1, z : J, ∆2); Γ ⊢MS let j = z in l : A

Thus, in GS, we can eliminate a graded unit j at an arbitrary grade r, whereas the linear
unit i in MS gets eliminated from the linear context. The additional left rule (unitJ−MS

L) for
MS again similarly eliminates graded units J in the graded context.

Tensor products are then eliminated in each fragment as follows:

⊠L

(δ1, r , r , δ2) ⊙ (∆1, x : X , y : Y , ∆2) ⊢GS t : Z
(δ1, r , δ2) ⊙ (∆1, z : X ⊠ Y , ∆2) ⊢GS let (x , y) = z in t : Z

⊠R

δ1 ⊙ ∆1 ⊢GS t1 : X
δ2 ⊙ ∆2 ⊢GS t2 : Y

(δ1, δ2) ⊙ (∆1, ∆2) ⊢GS (t1, t2) : X ⊠ Y

⊗L

δ ⊙ ∆; (Γ1, x : A, y : B, Γ2) ⊢MS l : C
δ ⊙ ∆; (Γ1, z : A ⊗ B, Γ2) ⊢MS let (x , y) = z in l : C

⊗R

δ1 ⊙ ∆1; Γ1 ⊢MS l1 : A
δ2 ⊙ ∆2; Γ2 ⊢MS l2 : B

(δ1, δ2) ⊙ (∆1, ∆2); (Γ1, Γ2) ⊢MS (l1, l2) : A ⊗ B

⊠L−MS

(δ1, r , r , δ2) ⊙ (∆1, x : X , y : Y , ∆2); Γ ⊢MS l : A
(δ1, r , δ2) ⊙ (∆1, z : X ⊠ Y , ∆2); Γ ⊢MS let (x , y) = z in l : A

V. Vollmer, D. Marshall, H. Eades III, and D. Orchard 32:7

The left rule for ⊠ eliminates from the graded context at any grade r, where the components
of the tensor product both inherit this grade in the premise. Reading instead top-down, the
graded tensor product requires that both components are graded with the same grade; this
is similar to linear products, where both components are linear.

Note that Benton has two left rules for (non-linear) tensor products, in the “projection”
style. We instead must use the pattern matching style for the soundness of grading so that
each component is bound to a variable with the same grade.

Only the mixed linear-graded system has implication, and only on linear propositions,
thus we have ⊸ in MS with left and right rules:

⊸L

δ2 ⊙ ∆2; Γ2 ⊢MS l2 : A
δ1 ⊙ ∆1; (Γ1, x : B, Γ3) ⊢MS l1 : C

(δ1, δ2) ⊙ (∆1, ∆2); (Γ1, z : A ⊸ B, Γ2, Γ3) ⊢MS [z l2/x]l1 : C

⊸R

δ ⊙ ∆; (Γ, x : A) ⊢MS l : B
δ ⊙ ∆; Γ ⊢MS λx .l : A ⊸ B

In Lemma 4, we recover a graded implication through the modal operators of the system in
the same way that Melliès did for (ungraded) LNL logic [29].

We now consider the modal operators Lin and Grdr which connect the two sub-logics.
The right rule for the Lin modality transports a linear formula from the linear system

MS into the graded system GS where it can be reasoned with non-linearly as accounted for
by grading. The corresponding left rule is akin to dereliction from linear logic, enabling a
linear assumption x : A to treated as a (renamed) graded assumption z : Lin A at grade 1:

LinL

δ ⊙ ∆; (x : A, Γ) ⊢MS l : B
(δ, 1) ⊙ (∆, z : Lin A); Γ ⊢MS [Unlin z/x]l : B

LinR

δ ⊙ ∆; ∅ ⊢MS l : B
δ ⊙ ∆ ⊢GS Lin l : Lin B

The other modal operator Grd, or rather the family of modal operators Grdr, transports a
graded formula with its grade into the linear system where it can be reasoned with linearly:

GrdL

(δ, r) ⊙ (∆, x : X); Γ ⊢MS l : C
δ ⊙ ∆; (z : Grdr X , Γ) ⊢MS let Grd r x = z in l : C

GrdR

δ ⊙ ∆ ⊢GS t : X
r ∗ δ ⊙ ∆; ∅ ⊢MS Grd r t : Grdr X

The right rule is akin to promotion for Grdr where we subsequently scale the graded context
by the grade r. The left rule “unboxes” a graded modality Grdr X providing access to the X
formula “inside”, graded at r .

Perhaps the most remarkable property of these modal operators is that they decompose
semiring-graded necessity modalities into □rA = Grdr (Lin A) [24] within the mixed system.
In fact, their introduction and elimination rules are derivable:

▶ Lemma 3 (mGL Graded Necessity Modality). The following are derivable:
□E

δ2 ⊙ ∆2; Γ2 ⊢MS l1 : □r A
(δ1, r , δ3) ⊙ (∆1, x : Lin A, ∆3); Γ1 ⊢MS l2 : B

(δ1, δ2, δ3) ⊙ (∆1, ∆2, ∆3); (Γ1, Γ2) ⊢MS let Grd r x = l1 in l2 : B

□i

δ ⊙ ∆; ∅ ⊢MS l : A
(r ∗ δ) ⊙ ∆; ∅ ⊢MS Grd r (Lin l) : □r A

Proof. The elimination rule follows by applying GrdL to the second premise and then applying
cut with the first premise. The introduction rule follows by LinR then GrdR. ◀

CSL 2025

32:8 A Mixed Linear and Graded Logic: Proofs, Terms, and Models

The previous lemma reveals a lot about the structure of existing graded type systems. First,
graded hypotheses, usually denoted with their grade x :r A in the literature (e.g. [1, 31]), are
graded hypotheses r ⊙ Lin A where the linear formula has been transported into the graded
system. Second, the restriction to only graded variables in the promotion rule is very explicit
in the introduction rule □i above. Third, the elimination rule (here □E) is really the left rule
for Grd followed by a cut. Thus, graded type systems, whilst typically of a natural deduction
form, incorporate a little of the flavour of sequent calculi in the rules for graded modalities
because of the integrated cut.

Using the modal operators we can derive a graded implication of the form Grdr X ⊸ A:

▶ Lemma 4 (mGL Graded Implication). The following rules are derivable:

⊸GL

δ2 ⊙ ∆2 ⊢GS t : X
(δ1, δ3) ⊙ (∆1, ∆3); (Γ1, x : A, Γ2) ⊢MS l : B

(δ1, r ∗ δ2, δ3) ⊙ (∆1, ∆2, ∆3); (Γ1, z : Grdr X ⊸ A, Γ2) ⊢MS [z (Grd r t)/x]l : B
⊸GR

(δ, r) ⊙ (∆, x : X); Γ ⊢MS l : A
δ ⊙ ∆; Γ ⊢MS λy.(let Grd r x = y in l) : Grdr X ⊸ A

Proof. The left rule follows by applying GrdR to the first premise, and then ⊸L using the
second premise. The right rule follows by applying GrdL to the premise and then ⊸R. ◀

The final rules are the approximation rules for grades:
subGS

δ1 ⊙ ∆ ⊢GS t : X δ1 ≤ δ2

δ2 ⊙ ∆ ⊢GS t : X

subMS

δ1 ⊙ ∆; Γ ⊢MS l : B δ1 ≤ δ2

δ2 ⊙ ∆; Γ ⊢MS l : B

Approximation allows for the abstraction of grades along an ordering. For example, in the
semiring (N, 1, ∗, 0, +, ≤) where the order is the usual ordering on natural numbers, then a
grade r stands for “at-most r”, generalising the notion of “affine” usage tracking. Disabling
the ordering by forcing it to be true only in the case of reflexive pairs (i.e., an equality relation)
results in exact usage tracking. This demonstrates that having a notion of approximation
results in a more general usage tracking framework.

▶ Example 5 (Derivation). As an example derivation in the natural numbers semiring
(N, 1, ∗, 0, +, ≤), for “affine” usage tracking, the following copies an assumption to make a
pair in the graded fragment, then uses an approximation, and then transports the pair into
the linear fragment, scaling its grades further:

1 ⊙ x : X ⊢GS x : X
idGS 1 ⊙ y : X ⊢GS y : X

idGS

1, 1 ⊙ x : X , y : X ⊢GS (x , y) : X ⊠ X
2 ⊙ x : X ⊢GS [x/y](x , y) : X ⊠ X 2 ≤ 3

3 ⊙ x : X ⊢GS (x , x) : X ⊠ X
2 ∗ 3 ⊙ x : X ; ∅ ⊢MS Grd 2 (x , x) : Grd2 (X ⊠ X)

GrdR

subGS

contGS

⊠R

▶ Example 6 (None-One-Tons [28]). The semiring over {0, 1, ω} with 0 ≤ ω and 1 ≤ ω,
where + and ∗ are saturating at ω, can be used to distinguish between linear and various
non-linear uses: assigning r = 1 to linear usage, r = 0 to non-usage (when a resource is
discarded), and r = ω to arbitrary usage.

V. Vollmer, D. Marshall, H. Eades III, and D. Orchard 32:9

Note, however, that even with the above semiring we are unable to exactly represent
the exponential modality ! from linear logic via some particular grade r within the graded
logic. This is because no matter which grade we choose, we are able to “push” the grade
into the tensor product using this graded tensor elimination (⊠L), allowing derivation of
Grdr (X ⊠ Y) ⊸ (Grdr X ⊗ Grdr Y), and yet in linear logic it is not possible to derive
!(A ⊗ B) ⊸ !A ⊗ !B. Therefore, our logic cannot reduce to Benton’s LNL logic simply by
taking the Cartesian (trivial) semiring, as one might expect at first glance. This quality is
typical of graded base systems, so reconciling these with linear logic requires some additional
structure on the semiring [18] (though this is not the focus here).

On the other hand, notice that we have another way to represent graded products: as
linear products wrapped in the derived graded modality, or □r(A ⊗ B). Importantly, here it
is not possible to “push” the grade “through” the tensor as we can for the graded product;
we cannot derive (□rA) ⊗ (□rB). This representation of graded products thus has behaviour
more typical of a linear base graded type system, with our combined logic again giving us a
clearer understanding of the relationship between these contrasting styles.

▶ Example 7 (Security levels). Information-Flow Control properties can be tracked by instan-
tiating the semiring with a lattice of security levels [12], e.g., with ({Lo ≤ Hi}, Lo, ∧, Hi, ∨)
where Hi-graded inputs are treated as irrelevant: we cannot depend on any high-security
inputs when building a low-security graded output GrdLoA.

▶ Example 8 (Sensitivity). The real number semiring (R, 1, ∗, 0, +, ≤) can be leveraged to
capture a notion of numerical sensitivity in programs/logic [11, 9], where a program is
k-sensitive (for k ∈ R) in a variable if a change ϵ in its inputs to x produces at most a change
of kϵ in the output of the program. This instantiation of the system tracks sensitivities as
grades where additional dependent-type-based mechanisms are needed to lift program values
into the types, e.g., scale : (k : R) → GrdkR → R.

2.2 Metatheory
mGL enjoys a rich metatheory. First, it satisfies cut elimination, for which we give the full
proof. The proof of cut reduction requires a generalization of the graded cut rules to graded
multicut rules in order to accommodate the structural rule of graded contraction.1

Thus, throughout the cut elimination proof we use the following graded multicut rules:

mcut
δ2 ⊙ ∆2 ⊢GS t1 : X

(δ1, δ, δ3) ⊙ (∆1, xn : Xn, ∆3) ⊢GS t2 : Y
(δ1, (δ � [δ2

n]), δ3) ⊙ (∆1, ∆2, ∆3) ⊢GS [t1, . . . , t1/x1, ... , xn]t2 : Y
gmcut

δ2 ⊙ ∆2 ⊢GS t : X
(δ1, δ, δ3) ⊙ (∆1, Xn, ∆3); Γ ⊢MS l : B

(δ1, (δ � [δ2
n]), δ3) ⊙ (∆1, ∆2, ∆3); Γ ⊢MS [t, . . . , t/x1, ... , xn]l : B

Both rules compute the contraction of the n hypotheses involved in the multicut on the
cut-formula X . To do this we use row-vector matrix multiplication. We denote the matrix
consisting of n-copies of the row vector δ2 by [δn

2]. Then row-vector multiplication is:

1 Whilst cut reduction can be proved for intuitionistic sequent calculus without multicut [41], we use the
standard multicut approach as it relates well to the categorical models developed later.

CSL 2025

32:10 A Mixed Linear and Graded Logic: Proofs, Terms, and Models

δ � [δ2
n] =

n⊕
k=1

(δ(k) ∗ δ2)

where the ∗ on the right is the scalar multiplication derived from the semiring,
⊕

is the
pointwise addition of vectors, and where δ(k) is the k-th element of the vector δ. This
computes the usages of the hypotheses in ∆2 as the multiplication of a matrix of size 1 × n

with a matrix of size n × |∆2| to yield a matrix of size 1 × |∆2|.
We now proceed with the proof of cut elimination. The rank Rank(X) and Rank(A) of a

formula is the height of the input formula’s syntax tree where constants are of rank 0. The
cut rank CutRank (Π) of a derivation Π of some judgment is defined to be one more than the
maximum rank of the cut formula’s in Π, and 0 if Π is cut free. The depth Depth(Π) of a
derivation Π is the length of the longest path in the proof tree of Π, and hence, the depth of
an axiom is 0. We prove cut-elimination without term annotations on the rules, in keeping
with traditional proofs.

▶ Lemma 9 (Cut Reduction for mGL).
1. (Graded) If Π1 is a proof of δ2⊙∆2 ⊢GS X and Π2 is a proof of (δ1, δ, δ3)⊙(∆1, Xn, ∆3) ⊢GS

Y with CutRank (Π1), CutRank (Π2) ≤ Rank(X), then there exists a proof Π of (δ1, δ �
[δ2

n], δ3) ⊙ (∆1, ∆2, ∆3) ⊢GS Y with CutRank (Π) ≤ Rank(X).
2. (Graded/Mixed) If Π1 is a proof of δ2 ⊙ ∆2 ⊢GS X and Π2 is a proof of (δ1, δ, δ3) ⊙

(∆1, Xn, ∆3); Γ ⊢MS B with CutRank (Π1), CutRank (Π2) ≤ Rank(X), then there exists a
proof Π of (δ1, δ � [δ2

n], δ3) ⊙ (∆1, ∆2, ∆3); Γ ⊢MS B with CutRank (Π) ≤ Rank(X).
3. (Mixed) If Π1 is a proof of δ2⊙∆2; Γ2 ⊢MS A and Π2 is a proof of δ1⊙∆1; (Γ1, A, Γ3) ⊢MS B

with CutRank (Π1), CutRank (Π2) ≤ Rank(A), then there exists a proof Π of (δ1, δ2) ⊙
(∆1, ∆2); (Γ1, Γ2, Γ3) ⊢MS B with CutRank (Π) ≤ Rank(A).

Proof. By mutual induction on Depth(Π1)+Depth(Π2) (see Appendix C.1 [40] for proof). ◀

▶ Lemma 10 (Decreasing Order of mGL). If Π is a proof of δ ⊙ ∆ ⊢GS X or δ ⊙ ∆; Γ ⊢MS A
with CutRank (Π) > 0, then there is a proof Π′ of δ′ ⊙ ∆ ⊢GS X or δ′ ⊙ ∆; Γ ⊢MS A with
δ ≤ δ′ and CutRank (Π′) < CutRank (Π).

Proof. By induction on Depth(Π) (see Appendix C.2 [40] for proof). ◀

▶ Theorem 11 (Cut Elimination of mGL). If Π is a proof of δ⊙∆ ⊢GS X or δ⊙∆; Γ ⊢MS A with
CutRank (Π) > 0, then there is an algorithm which yields a cut-free proof Π′ of δ ⊙ ∆ ⊢GS X
or δ ⊙ ∆; Γ ⊢MS A respectively.

Proof. Follows immediately by induction on CutRank (Π) and the previous lemma. ◀

▶ Lemma 12 (Subformula property).
1. (Graded) Every formula occurring in a cut-free proof Π of a judgment, δ ⊙ ∆ ⊢GS X ,

consists of subformulas of the formulas occurring in δ ⊙ ∆ ⊢GS X .
2. (Mixed) Every formula occurring in a cut-free proof Π of a judgment, δ ⊙ ∆; Γ ⊢MS A,

consists of subformulas of the formulas occurring in δ ⊙ ∆; Γ ⊢MS A.

Proof. By induction on Π (See Appendix C.3 [40] for proof). ◀

Lastly, we define an equational theory for mGL:

V. Vollmer, D. Marshall, H. Eades III, and D. Orchard 32:11

▶ Definition 13 (Equational theory ≡, subset). An equational theory on derivations accounts
for equalities between proofs of the same sequent arising from the graded structure (where the
terms are the same but the structure of the proof tree differs), as well as cut elimination, i.e.,
in GS, if cut elimination on derivation Π1 of δ ⊙ ∆ ⊢GS t : X yields the cut-free derivation of
Π2 for δ ⊙ ∆ ⊢GS t′ : X then the equational theory has Π1 ≡ Π2, and similarly for MS.

As a sample of two equations from the GS fragment, the following shows an equation
leveraging the commutativity of contraction, and another on the interaction between weakening
and contraction leveraging the left-unit of semiring addition:

δ1, r , δ2 ⊙ ∆1, X , ∆2 ⊢GS t : Y
δ1, 0, r , δ2 ⊙ ∆1, X , X , ∆2 ⊢GS t : Y

weakGS

δ1, 0 + r , δ2 ⊙ ∆1, X , ∆2 ⊢GS t : Y
contGS

≡ δ1, r , δ2 ⊙ ∆1, X , ∆2 ⊢GS t : Y
(contr-unitL)

δ1, r , s, δ2 ⊙ ∆1, X , X , ∆2 ⊢GS t : Y
δ1, s, r , δ2 ⊙ ∆1, X , X , ∆2 ⊢GS t : Y
δ1, s + r , δ2 ⊙ ∆1, X , ∆2 ⊢GS t : Y

contGS

exGS δ1, r , s, δ2 ⊙ ∆1, X , X , ∆2 ⊢GS t : Y
δ1, r + s, δ2 ⊙ ∆1, X , X , ∆2 ⊢GS t : Y

contGS≡
(contr-sym)

Appendix A.1 [40] gives the full definition of the equational theory.
▶ Remark 14 (“βη-equalities” and “Triangle identities” via cut reduction). One might wonder
where β-equalities are in the above equational theory, e.g., that (λx.l)l′ in MS is equal to the
cut [l′/x]l. Such β-equalities are provided by the cut elimination procedure, which reduces
away interacting pairs of right and left formulas (the principal vs. principal cases).

Similarly, η-equalities are equivalent to the identity expansion part of cut elimination
procedure (where the cut of an identity axiom is transformed into an interacting left and
right pair, with identity axioms expanded towards the leaves).

The internal derivations for the graded equivalent of the “triangle identities’ (that one
usually has associated with an adjunction) are also handled in the cut elimination procedure.
The main feature of the derivations for both identities is that after one step the left and right
rules for the modal operators match up. This leads to consecutive principal vs. principal
cases where rules for the interacting left and right pairs in the two subproofs are removed by
the reduction step.

3 Model

We detail a denotational model for mGL which is based on an adjoint decomposition of
graded comonads. We introduce key definitions as needed.

A graded comonad can be summarised as a colax monoidal functor □ : I // [C, C] where
I is a preordered monoid (I, 1, ∗, ≤) treated as a monoidal category and [C, C] is the category
of endofunctors on C [33, 34]. Colax monoidality of □ means that the laws of a monoidal
functor become 2-cells, providing the graded comonad operations:

1
1

��

Id

��
I

□
//

ε 6>

[C, C]

I × I
∗

��

□×□ // [C, C] × [C, C]
◦

��
I

□
//

δ
2:

[C, C]

which are thus natural transformations εA : □1A → A. and δr,s,A : □(r∗s)A → □r(□sA).
Fujii et al. [10] gave a formal theory for graded monads, which can be easily dualised to

graded comonads, showing that in an analogous way to an ordinary comonad, every graded
comonad can be decomposed into an adjunction Mny ⊣ Lin : M // C and (key to graded
comonads) a monoidal action ⊙ : R × C // C, and thus vice versa:

CSL 2025

32:12 A Mixed Linear and Graded Logic: Proofs, Terms, and Models

▶ Lemma 15. (Resolution of a graded comonad [24, 10]) An adjunction L ⊣ R : M // C
and a strict monoidal action ⊙ : R × C // C together induce a graded comonad over the
family of endofunctors defined by □r = L(r ⊙ (R−)) : M // M.

Along with some additional structure relating to substructurality (see below), this result
provides a model of mGL with C providing a model for GS derivations, M providing a model
for MS derivations, the type constructor Grdr transporting from GS to MS modelled by
L(r ⊙ −) : C → M, and type constructor Lin transporting MS to GS modelled by R : M → C.

However we need additional structure for the (sub)structural behaviour of our logic.
In the literature on graded modal type theories, graded comonads are extended to graded
exponential comonads (sometimes called graded linear exponential comonads [24]) defined as a
colax monoidal functor □ : R // [M, M] where R is a preordered semiring (R, 1, ∗, 0, +, ≤)
(viewed as a category), [M, M] is the category of symmetric lax monoidal endofunctors on a
symmetric monoidal category M, and □ has additional symmetric lax monoidal structure for
the additional monoidality of R and [M, M] [12]. This additional structure provides natural
transformations wA : □0A // 1 and cr,s,A : □(r+s)A // (□rA) ⊗ (□sA) capturing (graded)
weakening and contraction, subject to comonoidal coherence conditions. This additional
structure can be induced by the adjoint decomposition given an exponential action:

▶ Definition 16 (Exponential action). Given a preordered semiring (R, 1, ∗, 0, +, ≤) and a
symmetric monoidal category (C, J,⊠), we say that a bifunctor ⊙ : R × C // C is
1. a strict action (a strict graded comonad), if it satisfies the following equalities:

εX : 1 ⊙ X = X
δX,r,s : (r ∗ s) ⊙ X = r ⊙ (s ⊙ X)

Note that we treat these equalities as strict natural transformations named ε and δ;
2. symmetric lax monoidal in the second argument if it has:

mJ,r : J → r ⊙ J
m⊠,r,X,Y : (r ⊙ X) ⊠ (r ⊙ Y) → r ⊙ (X ⊠ Y)

where mJ is the unit of m⊠ and m⊠ is associative and commutative up to isomorphism;
3. symmetric colax monoidal between (R, 0, +, ≤) and (C, J,⊠) in the first argument if it

has natural transformations:

weakX : 0 ⊙ X → J
contrr,s,X : (r + s) ⊙ X → (r ⊙ X) ⊠ (s ⊙ X)

where weak is the unit of contr, e.g. ρr⊙X ◦ (id ⊠ weakX) ◦ contrr,0,X = id with right
unitor ρ, and contr is associative and commutative, i.e., that contrr,s,X = c ◦ contrs,r,X .
Furthermore, these natural transformations must be preserved by the strict action and
monoidal structure as described by the standard additional equations in Figure 2.

If we have all of the above properties then we refer to ⊙ as an exponential action. This
terminology recalls the exponential action of Brunel et al. [6] which is the same as the above
but where strictness is instead laxness in their definition. Our definition is also similar
to linear exponential graded comonads (see e.g., [24, 12]), but here the graded comonad
is uncurried (in the form of an action) and has equalities for its natural transformations
(strictness).

V. Vollmer, D. Marshall, H. Eades III, and D. Orchard 32:13

0 ⊙ X

weakX

��

(0 ∗ s) ⊙ X

δX,0,s

0 ⊙ (s ⊙ X)

weaks⊙X

��
J

0 ⊙ X

weakX

��

(s ∗ 0) ⊙ X

δX,s,0

J

mJ,s %%

s ⊙ (0 ⊙ X)

s⊙weakX

��
s ⊙ J

(r ∗ (s1 + s2)) ⊙ X

δr,s1+s2,X

��

((r ∗ s1) + (r ∗ s2)) ⊙ X

contrr∗s1,r∗s2,X

��
r ⊙ ((s1 + s2) ⊙ X)

r⊙contrs1,s2,X

��

(r ∗ s1) ⊙ X ⊠ (r ∗ s2) ⊙ X

δr,s1,X ⊠ δr,s2,X

��
r ⊙ ((s1 ⊙ X) ⊠ (s2 ⊙ X)) r ⊙ (s1 ⊙ X) ⊠ r ⊙ (s2 ⊙ X)

m⊠,r,s1⊙X,s2⊙X
oo

((s1 + s2) ∗ r) ⊙ X

δs1+s2,r,X

��

((s1 ∗ r) + (s2 ∗ r)) ⊙ X

contrs1∗r,s2∗r,X

��
(s1 + s2) ⊙ (r ⊙ X)

contrs1,s2,r⊙X

��

(s1 ∗ r) ⊙ X ⊠ (s2 ∗ r) ⊙ X

δs1,r,X ⊠ δs2,r,X

��
(s1 ⊙ (r ⊙ X)) ⊠ (s2 ⊙ (r ⊙ X)) (s1 ⊙ (r ⊙ X)) ⊠ (s2 ⊙ (r ⊙ X))

Figure 2 Further equations of a strict exponential action, interacting the colax symmetric
monoidal structure, strict action, and (strict) monoidality.

We define a strict exponential action to be an exponential action as above but where
the monoidal structure mJ and m⊠ is also strict, where for clarity (in the appendix) we
sometimes orient the equality as a morphism, where in the opposite direction we denote
these morphisms by nJ,r and n⊠,r,X,Y respectively. Strictness of the monoidal structure is
needed for soundness of our model.

We now give the definition of the model of mGL, where we now use the opposite category
Rop to capture the correct polarity of the approximation rules.

▶ Definition 17 (Mixed Graded/Linear model). Suppose (C, J,⊠) and (M, I, ⊗) are symmetric
monoidal categories, where M is symmetric monoidal closed (with exponents ⊸), and
(R, 1, ∗, 0, +, ≤) is a preordered semiring. Then a Mixed Graded/Linear model is a symmetric
monoidal adjunction Mny ⊣ Lin : M // C along with an exponential action ⊙ : Rop × C // C.

Thus an mGL model is essentially an LNL model with a strict action. However, whilst
Benton’s LNL models are initially stated to require that M is Cartesian closed, he goes on to
show that Cartesian properties are induced for the Eilenberg-Moore category of !-coalgebras
for a symmetric monoidal category [3]. In our setting, the Cartesian structure is not needed
since the MS logic is a mix of graded and linear logic, rather than Cartesian and linear logic.
That is, graded propositions do not have arbitrary weakening and contraction, but instead
these structural rules are controlled by grades (and corresponding underlying categorical
structure [12, 24]). Therefore, a symmetric monoidal closed M suffices.

From Definition 17, we define our denotational model of mGL:

CSL 2025

32:14 A Mixed Linear and Graded Logic: Proofs, Terms, and Models

▶ Definition 18 (Interpretation of Mixed Graded/Linear Logic.). Given a Mixed Graded/Linear
model (Def. 17) (with Mny ⊣ Lin : M // C and ⊙ : Rop × C // C), we interpret by two
mutually defined interpretations J−KGS and J−KMS on types and proofs (derivations):

For every GS type X there is an object JXKGS ∈ C and for every MS type A there is an
object JAKMS ∈ M, mutually defined inductively as:

JJKGS = J
JX ⊠ Y KGS = JXKGS ⊠ JY KGS

JLin AKGS = LinJAKMS

JIKMS = I
JA ⊗ BKMS = JAKMS ⊗ JBKMS

JA ⊸ BKMS = JAKMS ⊸ JBKMS

JGrdr XKMS = Mny(r ⊙ JXKGS)

For every proof Π of a GS sequent (r1, ... , rn) ⊙ (x1 : X1, ... , xn : Xn) ⊢GS t : X there is a
morphism in the category C:

JΠKGS : (r1 ⊙ JX1KGS) ⊠ . . . ⊠ (rn ⊙ JXnKGS) // JXK

(where an empty context is interpreted as ∅GS = J).
For every proof Π of an MS sequent (r1, ... , rn) ⊙ (x1 : X1, ... , xn : Xn); y1 : A1, ... , ym :
Am ⊢MS l : B there is a morphism in the category M:

JΠKMS : Mny(r1 ⊙ JX1KGS) ⊗ . . . ⊗ Mny(rn ⊙ JXnKGS) ⊗ JA1KMS ⊗ . . . ⊗ JAmKMS // JBKMS

(where an empty MS context is interpreted as ∅MS = I).
Appendix C.4 [40] gives the full definition of the interpretation, including intermediate
derivations from the mGL model.

Finally, we have our soundness and completeness theorems:

▶ Theorem 19 (Soundness of Mixed Graded/Linear Logic models). Suppose a mixed graded/-
linear model as above. Then for derivation Π1 of δ ⊙ ∆ ⊢GS t1 : X and derivation Π2 of
δ ⊙ ∆ ⊢GS t2 : X then if Π1 ≡ Π2 then JΠ1K = JΠ2K.

Similarly for Π1 of δ ⊙ ∆; Γ ⊢MS l1 : A and derivation Π2 of δ ⊙ ∆; Γ ⊢MS l2 : A then if
Π1 ≡ Π2 then JΠ1K = JΠ2K.

Proof. This proof holds by mutual induction. For the details see Appendix C.5 [40]. ◀

▶ Theorem 20 (Completeness of Mixed Graded/Linear Logic models). For derivations Π1, Π2
(of either GS or MS) if JΠ1K = JΠ2K in all mixed graded/linear models, then Π1 ≡ Π2.

Proof. This is a standard proof, where we build a generic model based on the syntax and
the equational theory. For the details see Appendix C.6 [40]. ◀

4 Natural Deduction

We now develop a natural deduction formulation of mGL. Whilst sequent calculus judgments
were denoted ⊢MS and ⊢GS, natural deduction judgments are correspondingly ⊢MT and ⊢GT.

The syntax for terms is identical to the sequent calculus, collected in Figure 1. Ap-
pendix B [40] gives the introduction and elimination rules and structural rules for mGL’s
natural deduction formulation. The unit constructors are j and i. Tensor products in both
systems are denoted by pairs of terms with corresponding let-expressions for eliminators. The
graded modal introduction form Lin l operates on mixed terms, dual to Grd r t which operates
on graded terms. The mixed syntax includes abstraction λx .l and function application l1 l2.
The most interesting aspect is the rules for the modal operators:

V. Vollmer, D. Marshall, H. Eades III, and D. Orchard 32:15

LinI

δ ⊙ ∆; ∅ ⊢MT l : B
δ ⊙ ∆ ⊢GT Lin l : Lin B

LinE

δ ⊙ ∆ ⊢GT t : Lin A
δ ⊙ ∆; ∅ ⊢MT Unlin t : A

GrdI

δ ⊙ ∆ ⊢GT t : X
r ∗ δ ⊙ ∆; ∅ ⊢MT Grd r t : Grdr X

GrdE

δ2 ⊙ ∆2; Γ2 ⊢MT l1 : Grdr X
(δ1, r , δ3) ⊙ (∆1, x : X , ∆3); Γ1 ⊢MT l2 : B

(δ1, δ2, δ3) ⊙ (∆1, ∆2, ∆3); (Γ1, Γ2) ⊢MT let Grd r x = l1 in l2 : B

In the sequent calculus presented in Section 2, the right rule for Lin is in the graded subsystem,
but the left rule is in the mixed subsystem. A similar idea arises here, the introduction rule
for Lin (rule LinI) is in the graded subsystem and the elimination rule (rule LinE) is in the
mixed subsystem. Introducing Grdr formulas (rule GrdI) has the effect of scaling the input
grades by r . The elimination rule for Grdr (rule GrdE) is a pattern match on the form of l1.
Since Lin and Grd are the decomposition of graded modalities (Section 3), the form of the
elimination rule for Grdr is defined in a way which resembles that of elimination rules for
graded modalities in other natural deduction-based type systems [31].

This formulation also has explicit graded structural rules:
weak

(δ1, δ2) ⊙ (∆1, ∆2) ⊢GT t : Y
(δ1, 0, δ2) ⊙ (∆1, x : X , ∆2) ⊢GT t : Y

cont
(δ1, r1, r2, δ2) ⊙ (∆1, x : X , y : X , ∆2) ⊢GT t : Y
(δ1, r1 + r2, δ2) ⊙ (∆1, x : X , ∆2) ⊢GT [x/y]t : Y

ex
(δ1, r1, r2, δ2) ⊙ (∆1, x : X , y : Y , ∆2) ⊢GT t : Z
(δ1, r2, r1, δ2) ⊙ (∆1, y : Y , x : X , ∆2) ⊢GT t : Z

In the transition from sequent calculus to natural deduction, left rules transform into
elimination rules, and as a result the additional graded left rules in the mixed sequent
calculus are no longer explicitly part of the system, but can be derived. We go on to prove
that the sequent calculus of Section 2.1 is equivalent to the natural deduction system.

We give two main results related to the natural deduction system; the first is substitution
for typing. Note that this reuses the row-vector multiplication operation of Section 2.2.

▶ Lemma 21 (Substitution for ⊢GT and ⊢MT). The following hold by mutual induction:
1. (Graded) If δ2 ⊙ ∆2 ⊢GT t1 : X and (δ1, δ, δ3) ⊙ (∆1, xn : Xn, ∆3) ⊢GT t2 : Y , then

(δ1, δ � [δ2
n], δ3) ⊙ (∆1, ∆2, ∆3) ⊢GT [t1, . . . , t1/x1, ... , xn]t2 : Y .

2. (Graded/Mixed) If δ2 ⊙ ∆2 ⊢GT t : X and (δ1, δ, δ3) ⊙ (∆1, xn : Xn, ∆3); Γ ⊢MT l : B, then
(δ1, δ � [δ2

n], δ3) ⊙ (∆1, ∆2, ∆3); Γ ⊢MT [t, . . . , t/x1, ... , xn]l : B.
3. (Mixed) If δ2 ⊙ ∆2; Γ2 ⊢MT l1 : A and δ1 ⊙ ∆1; (Γ1, x : A, Γ3) ⊢MT l2 : B, then (δ1, δ2) ⊙

(∆1, ∆2); (Γ1, Γ2, Γ3) ⊢MT [l1/x]l2 : B.

Proof. By mutual induction on the second assumed derivation (see Appendix C.7 [40]). ◀

Since we have an explicit structural rule for contraction (above and listed in Appendix B
[40]), the substitution lemma on the graded fragment is formalized as multi-substitution.
Otherwise, its proof is a fairly standard substitution proof for graded systems (e.g., as in [31]).
Lastly, the natural deduction system is interderivable with the sequent calculus, which we
establish such that the term witnessing the derivations does not change between systems:

▶ Theorem 22 (Sequent calculus and natural deduction interderivability). δ ⊙ ∆ ⊢GS t : X ⇔
δ ⊙ ∆ ⊢GT t : X and δ ⊙ ∆; Γ ⊢MS l : A ⇔ δ ⊙ ∆; Γ ⊢MT l : A.

CSL 2025

32:16 A Mixed Linear and Graded Logic: Proofs, Terms, and Models

Proof. By mutual induction on the assumed derivations (Appendix C.8 and C.9 [40]). The
sequent calculus to natural deduction direction requires the substitution lemma above. ◀

The implication of the previous result is that we only need a semantic model of one of the
two systems, and the other can be modelled using the same interpretation of terms. We
chose to model the sequent calculus form directly.

5 Discussion

5.1 Relating linear base vs. graded base calculi
A major thread of graded type systems in the literature starts with a linear logic base and
then generalises the ! modality to a semiring-graded modality atop a linear logic, e.g., the
systems of Brunel et al. [6], Gaboardi et al. [12], Orchard et al. [31], and others [11, 18].
Often these systems are presented with a single context containing both linear and graded
propositions [12, 31]. Overall, these approaches have a common core which is isomorphic to
the natural deduction MT fragment shown here with the (natural deduction analogue of the)
derived □r graded modality of Lemma 3 as part of their definition (i.e., not derived). We
refer to this style of graded type system as the linear base style.

A contrasting approach has no base notion of linearity, but instead has pervasive grading
tracking substructurality, i.e., no linear assumptions, every assumption has a grade, and
function arrows come equipped with a grade describing the usage of their input in the function
(e.g., written A

r−→ B). Such systems include the coeffect calculi of Petricek et al. [33, 34],
the general graded modal system of Bernardy et al. [1], and several others [2, 4, 7, 28, 30].
The GT fragment of our system here corresponds to a common subset of these approaches:
a subset without function arrows and without a graded modality, since there is no graded
modality that lives in the GT side (□i is derived into MT). Hughes et al. also develop a
program synthesis technique for graded base systems, where grades are used to prune the
search space [19]; its synthesis calculus formulation resembles closely GS.

Our work thus shows the relationship between the linear base and graded base style,
namely that there is a mutual embedding between these two approaches which generates the
graded modality in the linear base (Lemma 3). Exploring this in more depth is further work.
For instance, it is unclear what is needed to realise a graded comonadic modality in GT that
arises from the embedding (or a different embedding), and how this could interact with a
graded function arrow in GS or GT. Pursuing this line of work would help to explain the
relationship between the two dominant styles of graded system in the literature, which seem
strongly related, and their relative expressive power. Nonetheless, by following Benton’s
programme and giving it a graded rendering here, we can already see here the close connection
between these two styles of graded system.

5.2 Related work on adjoint logics
Pruiksma et al. formalized a general way to add and remove structural rules from a logic
through adjunctions [37]. Their work is similar to ours as it relates logics through adjoint
decompositions based on modal operators to control structural rules. Their formulation
with “modes of truth” resembles our work with grades; however, modes of truth lack the
algebraic properties graded formulations depend on and instead have a very relational flavor.
Building on this work of Pruiksma et al., Jang et al. develop a natural deduction formulation

V. Vollmer, D. Marshall, H. Eades III, and D. Orchard 32:17

of adjoint logic [21]. They leverage this to give a functional language able to reason about
resource properties like strictness and erasure. Similar reasoning can be developed ontop of
our natural deduction formulation here, though this is left as further work.

A question is whether grading can be unified with the adjoint logic approach. Eades and
Orchard sketched a unification based on generalising semiring operations to relations rather
than functions, with predicates classifying unit values [20]. Hanukaev et al. develop this
idea further, introducing a dependent type system based on a similar structure as the logics
here but using a generalised notion of grading that combines the modes of adjoint logic [16].
They prove that their system is well-formed syntactically, but do not introduce any semantic
model. Our logic mGL can be seen as an instantiation of their system, but the categorical
model given here could potentially be generalised into a model of their system.

5.3 Further work
Practical implementation to leverage linear/grading separation

The separation of the mixed system (MS/MT) from the purely graded fragment (GS/GT)
(which acts more as a standard intuitionistic system) can provide a basis for a programming
language design. In such a language, the restrictions of linearity could be used only for
handling data that needs to be linear, such as file handles or channels. However, for data
types which need not be linear, e.g., primitive types like integers, characters, or structures
over them, the graded fragment could be used without having to confront linearity constraints.
The mutual embedding would allow the programmer to move smoothly between these two
subcalculi. Similar ideas are discussed for the polarized extension of SILL for concurrent
programming [35]. The implementation could borrow ideas from the Granule programming
language, which already provides a mature and feature rich implementation of a linear-base
style graded type system [31]. Instead, an mGL-inspired implementation could be based
on the natural deduction term calculus with the modalities mediating between the two
judgments. Exploring this application, perhaps as an extension to Granule, is future work.

Other generalisations

In LNL, the adjunction can be followed in the opposite direction to derive a monad ?A =
Lin(MnyA). However, in mGL we do not get a graded monad by composing Lin (Grdr X) since
the adjoint resolution of a graded monad has a strict action on the other side (on M in the
model). Exploring a calculus with a pair of actions to allow both graded monads and graded
comonads is further work.

Uniqueness typing

Recent work has demonstrated that uniqueness is a closely related but distinct concept to
linearity [27]; uniqueness logic [17] is substructural in much the same way as linear logic, but
provides a monadic modality for enabling the structural rules in contrast to linear logic’s
comonadic ! modality. Building an adjoint model for uniqueness or a calculus which unifies
uniqueness and linearity [27] would be interesting further work, and this could potentially be
extended to more recent systems which develop graded notions of uniqueness [26].

CSL 2025

32:18 A Mixed Linear and Graded Logic: Proofs, Terms, and Models

References
1 Andreas Abel and Jean-Philippe Bernardy. A unified view of modalities in type systems. Proc.

ACM Program. Lang., 4(ICFP):90:1–90:28, 2020. doi:10.1145/3408972.
2 Robert Atkey. Syntax and Semantics of Quantitative Type Theory. In Anuj Dawar and

Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 56–65. ACM, 2018.
doi:10.1145/3209108.3209189.

3 P. N. Benton. A mixed linear and non-linear logic: Proofs, terms and models (extended
abstract). In Leszek Pacholski and Jerzy Tiuryn, editors, Computer Science Logic, 8th
International Workshop, CSL ’94, Kazimierz, Poland, September 25-30, 1994, Selected Papers,
volume 933 of Lecture Notes in Computer Science, pages 121–135. Springer, 1994. doi:
10.1007/BFB0022251.

4 Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and
Arnaud Spiwack. Linear Haskell: practical linearity in a higher-order polymorphic language.
Proc. ACM Program. Lang., 2(POPL):5:1–5:29, 2018. doi:10.1145/3158093.

5 Flavien Breuvart and Michele Pagani. Modelling coeffects in the relational semantics of linear
logic. In 24th EACSL Annual Conference on Computer Science Logic, CSL 2015, September
7-10, 2015, Berlin, Germany, pages 567–581, 2015. doi:10.4230/LIPIcs.CSL.2015.567.

6 Aloïs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic. A core quantitative
coeffect calculus. In Zhong Shao, editor, Programming Languages and Systems - 23rd European
Symposium on Programming, ESOP 2014, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014,
Proceedings, volume 8410 of Lecture Notes in Computer Science, pages 351–370. Springer,
2014. doi:10.1007/978-3-642-54833-8_19.

7 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie Weirich. A
graded dependent type system with a usage-aware semantics. Proc. ACM Program. Lang.,
5(POPL):1–32, 2021. doi:10.1145/3434331.

8 Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. The Structure of Exponentials:
Uncovering the Dynamics of Linear Logic Proofs. In Georg Gottlob, Alexander Leitsch,
and Daniele Mundici, editors, Computational Logic and Proof Theory, Third Kurt Gödel
Colloquium, KGC’93, Brno, Czech Republic, August 24-27, 1993, Proceedings, volume 713 of
Lecture Notes in Computer Science, pages 159–171. Springer, 1993. doi:10.1007/BFB0022564.

9 Loris D’Antoni, Marco Gaboardi, Emilio Jesús Gallego Arias, Andreas Haeberlen, and Ben-
jamin C. Pierce. Sensitivity analysis using type-based constraints. In Proceedings of the
1st Annual Workshop on Functional Programming Concepts in Domain-Specific Languages,
FPCDSL@ICFP 2013, Boston, Massachusetts, USA, September 22, 2013, pages 43–50, 2013.
doi:10.1145/2505351.2505353.

10 Soichiro Fujii, Shin-ya Katsumata, and Paul-André Melliès. Towards a Formal Theory of
Graded Monads. In Bart Jacobs and Christof Löding, editors, Foundations of Software Science
and Computation Structures - 19th International Conference, FOSSACS 2016, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings, volume 9634 of Lecture Notes in Computer
Science, pages 513–530. Springer, 2016. doi:10.1007/978-3-662-49630-5_30.

11 Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce.
Linear dependent types for differential privacy. In The 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’13, Rome, Italy - January 23 -
25, 2013, pages 357–370, 2013. doi:10.1145/2429069.2429113.

12 Marco Gaboardi, Shin-ya Katsumata, Dominic A. Orchard, Flavien Breuvart, and Tarmo
Uustalu. Combining effects and coeffects via grading. In Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 18-22, 2016, pages 476–489, 2016. doi:10.1145/2951913.2951939.

https://doi.org/10.1145/3408972
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1007/BFB0022251
https://doi.org/10.1007/BFB0022251
https://doi.org/10.1145/3158093
https://doi.org/10.4230/LIPIcs.CSL.2015.567
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/10.1145/3434331
https://doi.org/10.1007/BFB0022564
https://doi.org/10.1145/2505351.2505353
https://doi.org/10.1007/978-3-662-49630-5_30
https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1145/2951913.2951939

V. Vollmer, D. Marshall, H. Eades III, and D. Orchard 32:19

13 Dan R. Ghica and Alex I. Smith. Bounded linear types in a resource semiring. In Zhong Shao,
editor, Programming Languages and Systems - 23rd European Symposium on Programming,
ESOP 2014, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8410 of Lecture Notes
in Computer Science, pages 331–350. Springer, 2014. doi:10.1007/978-3-642-54833-8_18.

14 Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987. doi:10.1016/
0304-3975(87)90045-4.

15 Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Bounded linear logic: A modular
approach to polynomial-time computability. Theor. Comput. Sci., 97(1):1–66, 1992. doi:
10.1016/0304-3975(92)90386-T.

16 Peter Hanukaev and Harley Eades III. Combining dependency, grades, and adjoint logic. In
Proceedings of the 8th ACM SIGPLAN International Workshop on Type-Driven Development,
TyDe 2023, pages 58–70, New York, NY, USA, 2023. Association for Computing Machinery.
doi:10.1145/3609027.3609408.

17 Dana Harrington. Uniqueness logic. Theor. Comput. Sci., 354(1):24–41, 2006. doi:10.1016/
j.tcs.2005.11.006.

18 Jack Hughes, Danielle Marshall, James Wood, and Dominic Orchard. Linear Exponentials
as Graded Modal Types. In 5th International Workshop on Trends in Linear Logic and
Applications (TLLA 2021), Rome (virtual), Italy, June 2021. URL: https://hal-lirmm.ccsd.
cnrs.fr/lirmm-03271465.

19 Jack Hughes and Dominic Orchard. Program synthesis from graded types. In Stephanie Weirich,
editor, Programming Languages and Systems - 33rd European Symposium on Programming,
ESOP 2024, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceedings, Part
I, volume 14576 of Lecture Notes in Computer Science, pages 83–112. Springer, 2024. doi:
10.1007/978-3-031-57262-3_4.

20 Harley Eades III and Dominic Orchard. Grading adjoint logic. CoRR, abs/2006.08854, 2020.
arXiv:2006.08854.

21 Junyoung Jang, Sophia Roshal, Frank Pfenning, and Brigitte Pientka. Adjoint Natural
Deduction. In Jakob Rehof, editor, 9th International Conference on Formal Structures
for Computation and Deduction, FSCD 2024, July 10-13, 2024, Tallinn, Estonia, volume
299 of LIPIcs, pages 15:1–15:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.
doi:10.4230/LIPICS.FSCD.2024.15.

22 Max I. Kanovich, Stepan L. Kuznetsov, Vivek Nigam, and Andre Scedrov. Soft subexponentials
and multiplexing. In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, Automated
Reasoning - 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020,
Proceedings, Part I, volume 12166 of Lecture Notes in Computer Science, pages 500–517.
Springer, 2020. doi:10.1007/978-3-030-51074-9_29.

23 Shin-ya Katsumata. Parametric effect monads and semantics of effect systems. In Suresh
Jagannathan and Peter Sewell, editors, The 41st Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21,
2014, pages 633–646. ACM, 2014. doi:10.1145/2535838.2535846.

24 Shin-ya Katsumata. A double category theoretic analysis of graded linear exponential comonads.
In Christel Baier and Ugo Dal Lago, editors, Foundations of Software Science and Computation
Structures - 21st International Conference, FOSSACS 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings, volume 10803 of Lecture Notes in Computer Science, pages
110–127. Springer, 2018. doi:10.1007/978-3-319-89366-2_6.

25 Joachim Lambek. The mathematics of sentence structure. The American Mathematical
Monthly, 65(3):154–170, 1958.

26 Danielle Marshall and Dominic Orchard. Functional Ownership through Fractional Uniqueness.
Proc. ACM Program. Lang., 8(OOPSLA1):1040–1070, 2024. doi:10.1145/3649848.

CSL 2025

https://doi.org/10.1007/978-3-642-54833-8_18
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1145/3609027.3609408
https://doi.org/10.1016/j.tcs.2005.11.006
https://doi.org/10.1016/j.tcs.2005.11.006
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271465
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271465
https://doi.org/10.1007/978-3-031-57262-3_4
https://doi.org/10.1007/978-3-031-57262-3_4
https://arxiv.org/abs/2006.08854
https://doi.org/10.4230/LIPICS.FSCD.2024.15
https://doi.org/10.1007/978-3-030-51074-9_29
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1007/978-3-319-89366-2_6
https://doi.org/10.1145/3649848

32:20 A Mixed Linear and Graded Logic: Proofs, Terms, and Models

27 Danielle Marshall, Michael Vollmer, and Dominic Orchard. Linearity and Uniqueness: An
Entente Cordiale. In Ilya Sergey, editor, Programming Languages and Systems - 31st European
Symposium on Programming, ESOP 2022, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,
Proceedings, volume 13240 of Lecture Notes in Computer Science, pages 346–375. Springer,
2022. doi:10.1007/978-3-030-99336-8_13.

28 Conor McBride. I Got Plenty o’ Nuttin’. In Sam Lindley, Conor McBride, Philip W. Trinder,
and Donald Sannella, editors, A List of Successes That Can Change the World - Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday, volume 9600 of Lecture Notes
in Computer Science, pages 207–233. Springer, 2016. doi:10.1007/978-3-319-30936-1_12.

29 Paul-André Melliès. Categorical semantics of linear logic. In Pierre-Louis Curien, Hugo Herbelin,
Jean-Louis Krivine, and Paul-André Melliès, editors, Interactive Models of Computation and
Program Behaviour. Panoramas et Synthèses 27, Société Mathématique de France, 2009.

30 Benjamin Moon, Harley Eades III, and Dominic Orchard. Graded modal dependent type
theory. In Programming Languages and Systems - 30th European Symposium on Programming,
ESOP 2021, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings,
pages 462–490, 2021. doi:10.1007/978-3-030-72019-3_17.

31 Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. Quantitative program
reasoning with graded modal types. Proc. ACM Program. Lang., 3(ICFP):110:1–110:30, 2019.
doi:10.1145/3341714.

32 Dominic A. Orchard, Tomas Petricek, and Alan Mycroft. The semantic marriage of monads
and effects. CoRR, abs/1401.5391, 2014. arXiv:1401.5391.

33 Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. Coeffects: Unified static analysis
of context-dependence. In Automata, Languages, and Programming - 40th International
Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II, pages 385–397,
2013. doi:10.1007/978-3-642-39212-2_35.

34 Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. Coeffects: a calculus of context-
dependent computation. In Proceedings of the 19th ACM SIGPLAN international conference
on Functional programming, Gothenburg, Sweden, September 1-3, 2014, pages 123–135, 2014.
doi:10.1145/2628136.2628160.

35 Frank Pfenning and Dennis Griffith. Polarized substructural session types. In Andrew M.
Pitts, editor, Foundations of Software Science and Computation Structures - 18th International
Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume
9034 of Lecture Notes in Computer Science, pages 3–22. Springer, 2015. doi:10.1007/
978-3-662-46678-0_1.

36 Elaine Pimentel, Carlos Olarte, and Vivek Nigam. Process-as-formula interpretation: A
substructural multimodal view (invited talk). In Naoki Kobayashi, editor, 6th International
Conference on Formal Structures for Computation and Deduction, FSCD 2021, July 17-24,
2021, Buenos Aires, Argentina (Virtual Conference), volume 195 of LIPIcs, pages 3:1–3:21.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.FSCD.2021.3.

37 Klaas Pruiksma, William Chargin, Frank Pfenning, and Jason Reed. Adjoint logic. Unpublished
Draft: http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf, 2018.

38 Klaas Pruiksma and Frank Pfenning. A message-passing interpretation of adjoint logic. Journal
of Logical and Algebraic Methods in Programming, page 100637, 2020.

39 Greg Restall. An introduction to substructural logics. Routledge, 2002.
40 Victoria Vollmer, Danielle Marshall, Harley Eades III, and Dominic Orchard. A Mixed

Linear and Graded Logic: Proofs, Terms, and Models. CoRR, abs/2401.17199, 2024. doi:
10.48550/arXiv.2401.17199.

41 Jan von Plato. A proof of Gentzen’s Hauptsatz without multicut. Arch. Math. Log., 40(1):9–18,
2001. doi:10.1007/S001530050170.

https://doi.org/10.1007/978-3-030-99336-8_13
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-030-72019-3_17
https://doi.org/10.1145/3341714
https://arxiv.org/abs/1401.5391
https://doi.org/10.1007/978-3-642-39212-2_35
https://doi.org/10.1145/2628136.2628160
https://doi.org/10.1007/978-3-662-46678-0_1
https://doi.org/10.1007/978-3-662-46678-0_1
https://doi.org/10.4230/LIPIcs.FSCD.2021.3
http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
https://doi.org/10.48550/arXiv.2401.17199
https://doi.org/10.48550/arXiv.2401.17199
https://doi.org/10.1007/S001530050170

V. Vollmer, D. Marshall, H. Eades III, and D. Orchard 32:21

42 Philip Wadler. Linear types can change the world! In Manfred Broy and Cliff B. Jones,
editors, Programming concepts and methods: Proceedings of the IFIP Working Group 2.2, 2.3
Working Conference on Programming Concepts and Methods, Sea of Galilee, Israel, 2-5 April,
1990, page 561. North-Holland, 1990.

43 David Walker. Substructural type systems. Advanced topics in types and programming
languages, pages 3–44, 2005.

CSL 2025

Quantitative Graded Semantics and
Spectra of Behavioural Metrics
Jonas Forster #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Lutz Schröder #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Paul Wild #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Harsh Beohar #

University of Sheffield, UK

Sebastian Gurke #

Universität Duisburg-Essen, Germany

Barbara König #

Universität Duisburg-Essen, Germany

Karla Messing #

Universität Duisburg-Essen, Germany

Abstract
Behavioural metrics provide a quantitative refinement of classical two-valued behavioural equivalences
on systems with quantitative data, such as metric or probabilistic transition systems. In analogy
to the linear-time/ branching-time spectrum of two-valued behavioural equivalences on transition
systems, behavioural metrics vary in granularity, and are often characterized by fragments of suitable
modal logics. In the latter respect, the quantitative case is, however, more involved than the
two-valued one; in fact, we show that probabilistic metric trace distance cannot be characterized
by any compositionally defined modal logic with unary modalities. We go on to provide a unifying
treatment of spectra of behavioural metrics in the emerging framework of graded monads, working
in coalgebraic generality, that is, parametrically in the system type. In the ensuing development
of quantitative graded semantics, we introduce algebraic presentations of graded monads on the
category of metric spaces. Moreover, we provide a general criterion for a given real-valued modal
logic to characterize a given behavioural distance. As a case study, we apply this criterion to obtain
a new characteristic modal logic for trace distance in fuzzy metric transition systems.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

Keywords and phrases transition systems, modal logics, coalgebras, behavioural metrics

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.33

Related Version Full Version: https://arxiv.org/abs/2306.01487 [23]

Funding The fourth author was supported by the EPSRC NIA Grant EP/X019373/1, while the
remaining authors were supported by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – project number 434050016 (SpeQt).

1 Introduction

While qualitative models of concurrent systems are traditionally analysed using various
notions of two-valued process equivalence, it has long been recognized that for systems
involving quantitative data, notions of behavioural distance play a useful role as a more fine-
grained measure of process similarity. Well-known examples include behavioural distances

© Jonas Forster, Lutz Schröder, Paul Wild, Harsh Beohar, Sebastian Gurke, Barbara König, and
Karla Messing;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 33; pp. 33:1–33:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jonas.forster@fau.de
https://orcid.org/0000-0002-5050-2565
mailto:lutz.schroeder@fau.de
https://orcid.org/0000-0002-3146-5906
mailto:paul.wild@fau.de
https://orcid.org/0000-0001-9796-9675
mailto:h.beohar@sheffield.ac.uk
https://orcid.org/0000-0001-5256-1334
mailto:sebastian.gurke@uni-due.de
https://orcid.org/0009-0008-4343-1384
mailto:barbara_koenig@uni-due.de
https://orcid.org/0000-0002-4193-2889
mailto:karla.messing@uni-due.de
https://orcid.org/0009-0003-1019-6449
https://doi.org/10.4230/LIPIcs.CSL.2025.33
https://arxiv.org/abs/2306.01487
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Quantitative Graded Semantics and Spectra of Behavioural Metrics

on probabilistic transition systems [25, 13, 46], on systems combining nondeterminism and
probability [8], and on metric transition systems [11, 16]. Like in the two-valued case, where
process equivalences of varying granularity are arranged on the linear-time/branching-time
spectrum [47], one has a spectrum of behavioural metrics on a given system type that vary
in granularity (with greater distances thought of as having finer granularity) [15].

An important point of interest in this context are characteristic modal logics. In the
two-valued setting, a logic is characteristic for a given behavioural equivalence if the latter
coincides with the respective induced logical indistinguishability relation, so that behavioural
inequivalence can be certified by distinguishing formulae (as in the recent proof of the failure
of unlinkability in the ICAO 9303 e-passport standard [17])). For instance, Hennessy-Milner
logic is characteristic for bisimilarity [28], and most equivalences on the classical spectrum
are characterized by fragments of Hennessy-Milner logic [47] that are compositionally defined,
i.e. given by a choice of modalities and propositional operators equipped with a recursively
defined semantics (e.g. trace equivalence is characterized by the logic built from diamonds,
truth, and – optionally – disjunction). In the quantitative setting, a logic is characteristic
if the induced logical distance coincides with the respective behavioural distance, so that
high behavioural distance may be certified by means of distinguishing modal formulae [40].
A prototypical example is quantitative probabilistic modal logic, which is characteristic for
branching-time behavioural distance on probabilistic transition systems [46]. However, it
turns out that in general, the quantitative setting behaves less smoothly in this respect than
the two-valued setting. Indeed, we show as our first main result that for probabilistic metric
trace distance (on generative probabilistic transition systems in which the set of labels is
equipped with a metric, i.e. on the probabilistic variant of metric transition systems), there
does not exist any characteristic quantitative modal logic at all. Here, the term modal logic
is understood in a fairly broad sense; essentially, we stipulate no more than that, in analogy
to the two-valued case as discussed above, the logic should be a compositionally defined
fragment of a bisimulation-invariant next-step logic with unary modalities.

We subsequently work towards positive results, using the framework of graded se-
mantics [37, 14] to achieve an appropriate level of generality. Graded semantics is parametric
both in the type of systems (e.g. probabilistic, metric, fuzzy) and in the quantitative semantics
of systems, i.e. the choice of behavioural distance. The system type is abstracted as an
endofunctor on a suitable base category following the paradigm of universal coalgebra [43].
Parametricity in the system semantics, on the other hand, is based on the choice of a
graded monad, which handles additional semantic identifications (beyond branching-time
equivalence) by algebraic means, using grades to control the depth of look-ahead. Both
Kleisli-style coalgebraic trace semantics [27] and the smoother, but less widely applicable
Eilenberg-Moore-style coalgebraic trace semantics [29] are subsumed by this framework [37].

Graded semantics has recently been extended to cover behavioural distances in the
Eilenberg-Moore-style setting [5, 24], and, generalizing the two-valued case [37, 14], a
canonical notion of quantitative graded logic has been identified. Quantitative graded logics
are always invariant under the underlying behavioural distance in the sense that formula
evaluation is nonexpansive, so that logical distance is below behavioural distance. In some
cases, the reverse inequality, i.e. expressivity of quantitative graded logics, can be established
by a straightforward generalization of corresponding criteria for the two-valued case. Notably,
one can show that in the Eilenberg-Moore setting, one essentially always has a characteristic
modal logic [24], in sharp contrast to our present negative result. The flip side of the coin is
that Eilenberg-Moore style trace semantics applies to only rather few system types (essentially
automata with effects), and in particular does not support a metric on the labels as found,
for instance, in standard metric transition systems.

J. Forster, L. Schröder, P. Wild, H. Beohar, S. Gurke, B. König, and K. Messing 33:3

Our second, now positive, contribution in the present work is to extend the framework to
unrestricted graded semantics, notably including Kleisli-style coalgebraic trace semantics
and, hence, trace semantics on systems with labels taken from a metric space. For the
syntactic treatment of spectra of behavioural distances in this sense, we introduce a graded
extension of quantitative algebra [36] that allows describing graded monads on the category of
metric spaces by operations and approximate equations. As suggested by our negative result,
establishing expressivity of graded logics in the general case presents additional challenges
compared to the two-valued variant and the Eilenberg-Moore case. In particular, it turns
out that the expressivity criterion needs to be parametric in a strengthening of the inductive
hypothesis in the induction on depth of look-ahead that it encapsulates; indeed, this happens
already in strikingly simple cases such as metric streams. We develop a number of example
applications: We recover results on expressivity of quantitative modal logics for (finite-depth)
branching-time distances [33, 48, 19, 32], as well as a recent result on expressivity of a
quantitative modal logic for trace distance in metric transition systems [4], which in fact we
generalize to systems with metric state space and closed branching. In a concluding case
study, we moreover identify a new characteristic modal logic for trace distance on fuzzy
metric transition systems, which turns out to require next-step modalities incorporating a
constant shift on label distances.

Omitted proofs and additional details can be found in the full version [23].

Related Work. We have mentioned previous work on coalgebraic branching-time behavioural
distances [2, 33, 22, 49, 50, 4, 32] and on graded semantics for two-valued behavioural
equivalences and preorders [37, 14, 19]. Kupke and Rot [34] study logics for coinductive
predicates, which generalize branching-time behavioural distances. Generally, our overall
setup differs from the one used in [34] and elsewhere by working with coalgebras that already
live on metric spaces (e.g. [42, 53, 46, 22, 26]); this allows covering functors on metric spaces
that are not liftings of set functors, such as the full Hausdorff functor (which takes closed
subsets). Recent work on Galois connections for logical distances [4, 5] is highly general (and
in fact not even tied to state-based systems) but leaves more work to the instantiation than
the framework of graded monads. Moreover, it is aimed primarily at fixpoint characterizations
of logical distance, and in fact induces behavioural distance from the logic, while we aim
to provide logical characterizations of given behavioural distances. Alternative coalgebraic
approaches to process equivalences coarser than branching time include coalgebraic trace
semantics in Kleisli [27] and Eilenberg-Moore categories [29], which are both subsumed by the
paradigm of graded monads [37], as well as an approach in which behavioural equivalences
are defined via characteristic logics [31]. The Eilenberg-Moore and Kleisli setups can be
unified using corecursive algebras, which also support, under certain assumptions, a logical
characterization for these cases [41]. The Eilenberg-Moore approach has been applied to
linear-time behavioural distances [2]. Recently, some of the present authors used the graded-
semantics approach to Eilenberg-Moore semantics to extract characteristic logics that factor
through the determinization of a coalgebra [24]. We make use of their notion of graded
logic and complement their work by considering unrestricted graded semantics, in particular
covering the more broadly applicable Kleisli-style semantics.

De Alfaro et al. [11] introduce a linear-time logic for (state-labelled) metric transition
systems. The semantics of this logic is defined by first computing the set of paths of a
system, so that propositional operators and modalities have a different meaning than in
corresponding branching-time logics, while our graded logics are fragments of branching-time
logics. Fahrenberg et al. [16] present a game-based approach to a spectrum of behavioural

CSL 2025

33:4 Quantitative Graded Semantics and Spectra of Behavioural Metrics

distances on metric transition systems. A two-valued logic for probabilistic trace semantics
(for a discrete set of labels) has been considered in the context of differential privacy [7]. A
notion of logical distance is then obtained via a real-valued semantics defined using a syntactic
distance on formulae; this semantics is not compositional (truth values are defined by taking
infima over the whole logical syntax), so subsequent results relating this logical distance
to notions of weak anonymity do not contradict our impossibility result on (compositional)
characteristic logics for probabilistic trace semantics.

2 Preliminaries

Basic familiarity with category theory is assumed (e.g. [1]). We write Set for the category of
sets and maps. Below, we recall some background on (bounded) metric spaces and universal
coalgebra.

Metric spaces. The real unit interval [0, 1] will serve as the domain of distances and
truth values. Under the usual ordering ≤, [0, 1] forms a complete lattice; we write

∨
,
∧

for joins and meets in [0, 1] (e.g.
∨

i xi = supi xi), and ∨,∧ for binary join and meet,
respectively. We denote truncated addition and subtraction by ⊕ and ⊖, respectively; that
is, x ⊕ y = min(x + y, 1) and x ⊖ y = max(x − y, 0). These operations form part of a
structure of [0, 1] as a (co-)quantale; for readability, we refrain from working with more
general quantales [49, 22].

▶ Definition 2.1. A (bounded) pseudometric space is a pair (X, d) consisting of a set X and
a function d : X ×X → [0, 1] satisfying the standard conditions of reflexivity (d(x, x) = 0
for all x ∈ X), symmetry (d(x, y) = d(y, x) for all x, y ∈ X), and the triangle inequality
(d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X); if additionally separation holds (for x, y ∈ X,
if d(x, y) = 0 then x = y), then (X, d) is a metric space. A function f : X → Y between
pseudometric spaces (X, dX) and (Y, dY) is nonexpansive if dY (f(x), f(y)) ≤ dX(x, y) for all
x, y ∈ X. Metric spaces and nonexpansive maps form a category Met.

We often do not distinguish notationally between a (pseudo-)metric space (X, d) and its
underlying set X. Occasionally we use subscripts to make explicit the carrier to which a
(pseudo-)metric is associated, i.e. dX is the (pseudo-)metric of the space with carrier X. The
categorical product (X, dX)× (Y, dY) of (pseudo-)metric spaces equips the Cartesian product
X × Y with the supremum (pseudo-)metric dX×Y ((a, b), (a′, b′)) = dX(a, a′) ∨ dY (b, b′).
Similarly, the Manhattan tensor ⊞ equips X × Y with the Manhattan (pseudo-)metric
dX⊞Y ((a, b), (a′, b′)) = dX(a, a′)⊕ dY (b, b′). We occasionally write elements of the product
Xn+m as vw if v ∈ Xn and w ∈ Xm. Given (pseudo-)metric spaces X, Y , the nonexpansive
functions X → Y form a (pseudo-)metric space under the standard supremum distance.

▶ Example 2.2. We recall some key examples of functors on Set and Met.
1. We write Pω for the finite powerset functor on Set, and Pω for the lifting of Pω to Met

given by the Hausdorff metric. Explicitly, for a metric space (X, d) and A, B ∈ PωX,

dPωX(A, B) = (
∨

a∈A

∧
b∈B d(a, b)) ∨ (

∨
b∈B

∧
a∈A d(a, b)). (2.1)

Both Pω and Pω are monads, with multiplication taking big unions.
2. Related to the above, the closed Hausdorff monad Pc on Met sends a metric space X

to the set of closed subsets of X, again equipped with the Hausdorff metric. For a
nonexpansive function f : X → Y , Pcf sends A ∈ PcX to the closure of f [A]. Monad
multiplication takes the closure of the big union.

J. Forster, L. Schröder, P. Wild, H. Beohar, S. Gurke, B. König, and K. Messing 33:5

3. Similarly, Dω denotes the functor on Set that maps a set X to the set of finitely supported
probability distributions on X, and Dω denotes the lifting of Dω to Met that equips
DωX with the Kantorovich metric. Explicitly, for a metric space (X, d) and µ, ν ∈ DωX,

dDωX(µ, ν) =
∨

f

∑
x∈X f(x)(µ(x)⊖ ν(x))

where f ranges over all nonexpansive functions X → [0, 1]. We often write elements of
DωX as finite formal sums

∑
pi · xi, with xi ∈ X and

∑
pi = 1.

4. The finite fuzzy powerset functor Fω is given on sets X by FωX = {A : X → [0, 1] | A(x) =
0 for almost all x ∈ X}, and on maps f : X → Y by Fωf(A)(y) =

∨
{A(x) | f(x) = y}

for A ∈ FωX. That is, FωX consists of the finite fuzzy subsets of X, given by assigning
membership degrees in [0, 1] to elements of X, and Fωf acts by taking fuzzy direct images.
We lift Fω to a functor Fω on metric spaces that equips FωX with the fuzzy Hausdorff
distance [49, Example 5.3.1]. Explicitly, dFωX(A, B) = d0(A, B) ∨ d0(B, A) for a metric
space (X, d) and A, B ∈ FωX, where

d0(A, B) =
∨

x

∧
y(A(x)⊖B(y)) ∨ (A(x) ∧ d(x, y)).

Thus, d0(A, B) is analogous to the left-hand term in the binary join defining the Hausdorff
metric (2.1): Both terms can be read intuitively as “B is far from A if there is x such
that x ∈ A and for all y, if y ∈ B then y is far from x”, where d0(A, B) takes into account
that the sets A, B are fuzzy (in particular, the “if y ∈ B” is reflected in the contribution
of B(y) being negative).

Coalgebra. Universal coalgebra [43] has established itself as a way to reason about state-
based systems at an appropriate level of abstraction. It is based on encapsulating the
transition type of systems as an endofunctor G : C → C on a base category C. Then, a G-
coalgebra (X, γ) consists of a C-object X, thought of as an object of states, and a morphism
γ : X → GX, thought of as assigning to each state a collection of successors, structured
according to G. A C-morphism h : X → Y is a morphism of G-coalgebras (X, γ)→ (Y, δ) if
Gh · γ = δ · h.

For a functor G : Met→Met, one has a canonical notion of branching-time behavioural
distance dG

γ on a G-coalgebra (X, γ) [22]. In case G is a lifting of a set functor (which means
roughly that the underlying set of GX is independent of the metric on X), the general
definition simplifies as follows: dG

γ is the least fixpoint of the map d 7→ dG(X,d) ◦ (γ×γ) [2, 22].

▶ Example 2.3. Throughout the paper, we fix a metric space A of labels. Finitely branching
metric transition systems with transition labels in A are coalgebras for the functor Pω(A×−).
(More precisely, a metric transition system is usually assumed to have a set as its state space,
while Pω(A×−)-coalgebras more generally have a metric space of states, subsuming mere
sets of states as discrete metric spaces). Similarly, coalgebras for the functor Pc(A × −)
are closed-branching metric transition systems, where sets of successors can be infinite but
are required to be closed. With few exceptions (e.g. [22]), most coalgebraic approaches to
behavioural metrics (e.g. [2, 33, 50, 34]) rely on the functor being a lifting of a Set-functor.
We work with unrestricted functors on Met, thus, e.g., covering the above-mentioned functor
Pc(A×−), which is not a lifting of a set functor. We use trace semantics on metric labelled
transition systems (both finitely branching and closed-branching) as a running example of
concepts as they appear throughout the text.

CSL 2025

33:6 Quantitative Graded Semantics and Spectra of Behavioural Metrics

Quantitative Coalgebraic Modal Logic. We proceed to introduce the requisite notion of
quantitative coalgebraic modal logic [45, 33, 50, 24], in a formulation geared towards easing
the extraction of invariant fragments for various semantics [24], and instantiated to the
category of metric spaces. The notion of quantitative coalgebraic modal logic will also serve
as the yardstick for our negative result on characteristic modal logics for probabilistic metric
trace semantics (Section 3).

Syntactically, a modal logic is a triple L = (Θ,O, Λ) where Θ is a set of truth constants, O
is a set of propositional operators, each with associated finite arity, and Λ is a set of modal
operators, also each with an associated finite arity. For readability, we restrict to unary
modal operators; extending our positive results to modal operators of higher arity is simply
a matter of adding indices. The set of formulae of L is then given by the grammar

ϕ ::= c | p(ϕ1, . . . , ϕn) | Lϕ (c ∈ Θ, p ∈ O n-ary, L ∈ Λ).

Formulae are interpreted in G-coalgebras for a given functor G : Met→Met, and take values
in the truth value object Ω = [0, 1], which we equip with the standard metric dΩ(x, y) = |x−y|.
Moreover, the semantics is parametric in the following components:

For every c ∈ Θ, a nonexpansive map ĉ : 1→ Ω.
For p ∈ O with arity n, a nonexpansive map JpK : Ωn → Ω
For L ∈ Λ, a nonexpansive map JLK : GΩ→ Ω

The evaluation of a formula ϕ on a G-coalgebra (X, γ) is then a nonexpansive map JϕKγ : X →
Ω, inductively defined by

JcKγ = (X !−→ 1 ĉ−→ Ω) Jp(ϕ1, . . . , ϕn)Kγ = (X ⟨Jϕ1Kγ ,...,JϕnKγ ⟩−−−−−−−−−−−→ Ωn JpK−−→ Ω)

JLϕKγ = (X γ−→ GX
GJϕKγ−−−−→ GΩ JLK−−→ Ω)

▶ Example 2.4. We briefly exemplify the semantics of modalities: Take the functor G =
Pω(A×(−)) modelling metric transition systems (Example 2.3), and define the interpretation
J♢aK : Pω(A× Ω)→ Ω of modalities ♢a, for a ∈ A, by J♢aK(U) =

∨
(b,v)∈U (1− d(a, b)) ∧ v.

Then, roughly speaking, the degree to which a state in a metric transition system satisfies a
formula ♢aϕ is the degree to which it has a b-successor that satisfies ϕ, for some b that is
close to a. (The use of 1− d(a, b) is owed to the usual discrepancy between 1 representing
“true” but also “far apart”.)

In the framework defined so far, truth constants are interchangeable with nullary propos-
itional operators, but in the setting of graded logics (Section 6), the two concepts will
play syntactically and semantically distinct roles. In particular, invariance w.r.t. a target
semantics (Theorem 6.6) will in general hold only for formulae of uniform depth, that is,
formulae in which all occurrences of truth constants are nested under the same number of
modal operators. In cases where there are no truth constants, all formulae are uniform. We
write Lunif for the set of uniform-depth L-formulae.

▶ Definition 2.5. Logical distance under the logic L on a G-coalgebra (X, γ) is the pseudo-
metric dL given by dL(x, y) =

∨
{dΩ(JϕKγ(x), JϕKγ(y)) | ϕ ∈ Lunif}.

Logical distance is always a lower bound for branching-time behavioural distance [33, 50, 22];
we discuss details in Remark 7.10.

J. Forster, L. Schröder, P. Wild, H. Beohar, S. Gurke, B. König, and K. Messing 33:7

3 Probabilistic Metric Trace Semantics

Finitely branching probabilistic metric transition systems over a metric space of transition
labels A are coalgebras for the functor Gprob = Dω(A⊞ (−)) (cf. Examples 2.2 and 2.3).
The probabilistic (metric) trace semantics [9] of a probabilistic transition system calculates,
at each depth n, a distribution over length-n traces. One then obtains a notion of depth-
n probabilistic trace distance dptrace

n , which takes Kantorovich distances of depth-n trace
distributions under the Manhattan distance on traces. Formal definitions are as follows.

▶ Definition 3.1. We write A⊞n for the n-fold Manhattan tensor A⊞ · · ·⊞A. Let (X, γ)
be a Gprob-coalgebra. For each x ∈ X, the depth-n trace distribution µn

x ∈ Dω(A⊞n)
is inductively defined as µn+1

x (aw) =
∑

y∈X γ(x)(a, y)µn
y (w) for a ∈ A and w ∈ An, with

µ0
x ∈ Dω(A⊞0) ∼= Dω(1) being the unique distribution on the singleton set 1. The probabilistic

trace distance on X is dptrace =
∨

n<ω dptrace
n , where dptrace

n (x, y) = dDω(A⊞n)(µ
n
x , µn

y).

Consider the following concrete example, where we assume that d(b, c) = 0.5.

x
y

1
a

1
a

b
1

c
1

b 1
2

c 1
2

a
1
4

a
3
4

For n ≥ 2 we then have by the above definition that µn
x = 1

2 aban−2 + 1
2 acan−2 while µn

y =
1
4 aban−2 + 3

4 acan−2. The distance of the two relevant traces is given by d(aban−2, acan−2) =
d(a, a)⊕ d(b, c)⊕ d(a, a)⊕ . . .⊕ d(a, a) = 0.5. Calculating the Kantorovich distance of trace
distributions then gives us that d(µn

x , µn
y) = 1

4 d(aban−2, acan−2) = 0.125, and by extension
dptrace(x, y) = 0.125.

One would now like to have a logic that characterizes the trace distance dptrace. However,
we establish the following impossibility result instead:

▶ Theorem 3.2. Let L = (Θ,O, Λ) be a coalgebraic modal logic with unary modalities for
the functor Gprob, over a non-discrete metric space A of labels. Then dL ̸= dptrace.

In other words, no quantitative coalgebraic modal logic with unary modalities has a com-
positionally defined fragment that characterizes probabilistic metric trace distance. The
restriction to coalgebraic modal logics effectively means only that modal logics should be
invariant under the standard branching-time semantics and have only next-step modalit-
ies [39, 44]. Theorem 3.2 implies in particular that the logic featuring modalities ♢a for a ∈ A,
with ♢aϕ being the expected truth value of ϕ restricted to a-successors, fails to characterize
probabilistic metric trace distance (even though it characterizes two-valued probabilistic
trace equivalence [6, 14]). In fact, it can even be shown that giving up the requirement of
interpretations of modalities being nonexpansive does not help.

Proof sketch (Theorem 3.2). Suppose that L is invariant under probabilistic metric trace
semantics (dL ≤ dptrace); we show that L fails to be expressive (dL ̸≥ dptrace). As an
intermediate step, we show that invariance under probabilistic metric trace semantics implies
that modal operators are affine maps. Then calculation shows that affine modalities are
unable to distinguish the states x and y in the following system, where d(a, b) = v < 1, to a
degree greater than v2, even though the behavioural distance of x and y under probabilistic
trace semantics is v.

CSL 2025

33:8 Quantitative Graded Semantics and Spectra of Behavioural Metrics

x

xa xb

y

yb ya

1
2 a 1

2b

1
a

1
b

1
b

1
a

1
2 a 1

2b

◀

We leave the question of whether a characteristic logic with higher-arity modalities exists as
an open problem.

While expressive quantitative coalgebraic logics for branching-time semantics exist for
a wide variety of systems [33, 50, 22, 26], this is thus apparently not always the case for
linear-time semantics. The no-go result above emphasizes the challenges of the quantitative
setting and the need for a theory of quantitative coalgebraic logics beyond branching time.
In the following, we will address precisely this problem, by adopting techniques from the
theory of graded semantics and highlighting issues unique to the metric setting.

4 Graded Monads and Graded Algebras

The framework of graded semantics [14, 37] is based on the central notion of graded monads,
which algebraically describe the structure of observable behaviours, in particular identifica-
tions beyond branching time, at each finite depth. Here, depth is understood as look-ahead,
measured in terms of the number of transition steps.

▶ Definition 4.1. A graded monad M = ((Mn)n∈N, η, (µn,k)n,k∈N) on a category C consists
of a family of functors Mn : C → C for n ∈ N and natural transformations η : Id →M0 (the
unit) and µn,k : MnMk →Mn+k for all n, k ∈ N (the multiplications), subject to essentially
the same laws as ordinary monads up to the insertion of grades; specifically, one has unit laws
µ0,n · ηMn = idMn

= µn,0 ·Mnη and an associative law µn+k,m ·µn,kMm = µn,k+m ·Mnµk,m.

In particular, (M0, η, µ00) is an ordinary (non-graded) monad.
The understanding of the data constituting a graded monad is similar as for plain monads:

Roughly speaking (this will be made more precise in Section 5), MnX may be thought of as
a space of terms of depth n, modulo given identities, over variables from X; µnk substitutes
depth-k terms into a depth-n term, obtaining a depth-(n + k) term; and η converts variables
into terms of depth 0.

▶ Example 4.2. We discuss graded monads modelling the linear-time end of the spectrum,
noting that graded monads cover also branching-time (Remark 7.10) and intermediate
semantics, involving simulation, readiness, failures etc. [14]. A Kleisli distributive law is
a natural transformation λ : FT → TF where F is a functor and T a monad, subject to
coherence with the monad structure [27]. This yields a graded monad with Mn = TF n [37];
here, T may be understood as defining the branching type of the system, and F as defining a
type of accepted structure. We will use the following instance of this construction as a running
example: Take F = A × (−) and T = Pω or T = Pc (corresponding to nondeterministic
branching). Then λ(a, U) = {(a, x) | x ∈ U} defines a distributive law λ : A × T (−) →
T (A× (−)) (in particular, λ is nonexpansive). We obtain the graded metric trace monads
Mn = T (An × (−)).

J. Forster, L. Schröder, P. Wild, H. Beohar, S. Gurke, B. König, and K. Messing 33:9

Graded monads come with a graded analogue of Eilenberg-Moore algebras, which play a
central role in the semantics of graded logics [37, 14].

▶ Definition 4.3 (Graded Algebra). Let M be a graded monad in C. A graded Mn-algebra
((Ak)k≤n, (amk)m+k≤n) consists of a family of C-objects Ai and morphisms amk : MmAk →
Am+k satisfying essentially the same laws as a monad algebra, up to insertion of the grades.
Specifically, we have a0m · ηAm

= idAm
for m ≤ n, and whenever m + r + k ≤ n, then

am+r,k ·µm,r
Ak

= am,r+k ·Mmar,k. An Mn-homomorphism of Mn-algebras A and B is a family
(fk : Ak → Bk)k≤n of maps such that whenever m + k ≤ n, then fm+k · am,k = bm,k ·Mmfk.
Graded Mn-Algebras and their homomorphisms form a category Algn(M).

That is, elements of a graded algebra are stratified by depth, and applying an operation of
depth m to elements of depth k yields elements of depth m + k, For n = 1, this definition
instantiates as follows: An M1-algebra is a tuple (A0, A1, a00, a01, a10), such that 1) (A0, a00)
and (A1, a01) are M0-algebras. 2) (Homomorphy) a10 : M1A0 → A1 is an M0-homomorphism
(M1A0, µ01) → (A1, a01). 3) (Coequalization) a10 ·M1a00 = a10 · µ10, i.e. the following
diagram commutes (without necessarily being a coequalizer):

M1M0A0 M1A0 A1
µ10

M1a00
a10

(4.1)

It is easy to see that ((MkX)k≤n, (µm,k)m+k≤n) is an Mn-algebra for every C-object X.
Again, M0-algebras are just (non-graded) algebras for the monad (M0, η, µ00).
The semantics of modalities will later need the following property:

▶ Definition 4.4 (Canonical algebras). Let (−)0 : Alg1(M)→ Alg0(M) be the functor taking
an M1-algebra A = ((Ak)k≤1, (amk)m+k≤1) to the M0-algebra (A0, a00). An M1-algebra A

is canonical if it is free over (A)0, i.e. if for every M1-algebra B and M0-homomorphism
f : (A)0 → (B)0, there is a unique M1-homomorphism g : A→ B such that (g)0 = f .

▶ Lemma 4.5 ([14, Lemma 5.3]). An M1-algebra A is canonical iff (4.1) is a coequalizer
diagram in the category of M0-algebras.

5 Graded Quantitative Theories

Monads on Set are induced by equational theories [35]. By equipping each operation with an
assigned depth and requiring each axiom to be of uniform depth, one obtains a notion of graded
equational theory which, modulo size issues, can be brought into bijective correspondence
with graded monads [37]. On the other hand, Mardare et al. [36] introduce a system of
quantitative equational reasoning, with formulae of the form s =ϵ t understood as “s differs
from t by at most ϵ”. These quantitative equational theories induce monads on the category
of metric spaces. We introduce a graded version of this system to present graded monads in
Met, keeping to finitary operations (and hence finite branching) for ease of presentation.

▶ Definition 5.1 (Graded signatures, uniform terms). A graded signature consists of an
algebraic signature Σ and a function δ : Σ→ N assigning a depth to each algebraic operation.
Uniform depth of terms is then defined inductively: Variables have uniform depth 0, and for
m-ary f ∈ Σ, f(t1, . . . , tm) has uniform depth n+k if δ(f) = n and all ti have uniform depth k.
In particular, constants c ∈ Σ, as terms, have uniform depth n for all n ≥ δ(c). We write
TΣ

n X, or just TnX, for the set of terms of uniform depth n over X. A substitution of uniform
depth n is a function σ : X → TnY . Such a substitution extends to a map σ : TkX → Tk+nY

on terms for all k ∈ N, where as usual one defines σ(f(t1, . . . , tm)) = f(σ(t1), . . . , σ(tm)). A
substitution is uniform-depth if it is of uniform depth n for some n.

CSL 2025

33:10 Quantitative Graded Semantics and Spectra of Behavioural Metrics

▶ Definition 5.2 (Graded quantitative theory). For a set Z, we let E(Z) denote the set of
quantitative equalities z1 =ϵ z2 where z1, z2 ∈ Z and ϵ ∈ [0, 1]. Given a set X of variables,
we then write E(T(X)) =

⋃
n∈N E(Tn(X)); that is, E(T(X)) is the set of uniform-depth

quantitative equalities among Σ-terms over X. A quantitative theory T = (Σ, δ, E) consists
of a graded signature (Σ, δ) and a set E ⊆ P(E(X))× E(TX) of axioms. Axioms (Γ, s =ϵ t)
are written in the form Γ ⊢ s =ϵ t; we refer to Γ as the context of the axiom. The depth of
Γ ⊢ s =ϵ t is that of s =ϵ t. We say that T is depth-1 if all its operations and axioms have
depth at most 1.

The context Γ of an axiom Γ ⊢ s =ϵ t forms a constraint on the variables that is required in
order for s =ϵ t to hold. Correspondingly, derivability of quantitative equalities in E(T(X))
over a graded quantitative theory T = (Σ, δ, E) in a context Γ0 ∈ P(E(X)) is defined
inductively by the following rules:

(triang) t =ϵ s s =ϵ′ u

t =ϵ+ϵ′ u
(refl)

s =0 s
(sym) t =ϵ s

s =ϵ t

(wk) t =ϵ s

t =ϵ′ s
(ϵ′ ≥ ϵ) (arch) {t =ϵ′ s | ϵ′ > ϵ}

t =ϵ s
(assn)

ϕ
(ϕ ∈ Γ0)

(ax) {σ(u) | u ∈ Γ}
σ(t) =ϵ σ(s) ((Γ, t =ϵ s) ∈ E) (nexp) t1 =ϵ s1 . . . tn =ϵ sn

f(t1, . . . , tn) =ϵ f(s1, . . . , sn)

where σ is a uniform-depth substitution. Note the difference between rules (ax) and (assn):
Quantitative equalities from the theory can be substituted into, while this is not sound for
quantitative equalities from the context. A graded quantitative equational theory presents a
graded monad M on Met where MnX is the set of terms of uniform depth n over variables
in X, quotiented by the equivalence relation that identifies terms s, t if s =0 t is derivable
in context X, with the distance dMn

([s], [t]) = ϵ of equivalence classes [s], [t] ∈MnX being
the least ϵ such that s =ϵ t is derivable (which exists by (arch)). Multiplication collapses
terms-over-terms, and the unit maps an element of x ∈ X to [x] ∈M0X.

▶ Remark 5.3. The above system for quantitative reasoning follows Ford et al. [20] in slight
modifications to the original (ungraded) system [36]. In particular, we make do without a
cut rule, and allow substitution only into axioms (substitution into derived equalities is then
admissible [20]). We include the rule (nexp) ensuring that all operations are nonexpansive,
i.e. the induced graded monad is enriched (acts nonexpansively on functions).

We recall that a graded monad is depth-1 [37, 14] if µnk and M0µ1k are epi-transformations
and the diagram below is a coequalizer of M0-algebras for all X and n < ω:

M1M0MnX M1MnX M1+nX.
µ10Mn

M1µ0n
µ1n

(5.1)

By Lemma 4.5 the following is then immediate:

▶ Proposition 5.4 ([14, Corollary 5.4]). If M is a depth-1 graded monad, then for every
n ∈ N and every object X, the M1-algebra with carriers MnX, Mn+1X and multiplications
as algebra structure is canonical.

We briefly refer to canonical algebras as per the above proposition as being of the form MnX.

Crucially, we establish a metric variant of a result on depth-1 graded monads on Set [37]:

J. Forster, L. Schröder, P. Wild, H. Beohar, S. Gurke, B. König, and K. Messing 33:11

▶ Theorem 5.5. Graded monads on Met presented by depth-1 graded quantitative theories
are depth-1.

▶ Remark 5.6. A depth-1 graded monad M can be reconstructed from its constituents of
depth at most one, i.e. from M0, M1, η, and the µnk for n + k ≤ 1 [14]. Graded semantics
(Section 6) does however make use of the full structure of M also at higher depths.

Presentations of graded trace monads. We proceed to investigate the quantitative-algebraic
presentation of graded trace monads that are given by a Kleisli distributive law of the functor
A × (−) (with A being the space of action labels) over a monad (Example 4.2). Given a
function k : [0, 1]2 → [0, 1] with suitable properties, we write ⊗ for the tensor that equips
the Cartesian product of two sets with the metric dA⊗B((a, b), (a′, b′)) = k(d(a, a′), d(b, b′))
generated by k. This induces trace distances on An, n ≥ 0, by viewing An as the n-fold tensor
of A. Examples include the Euclidean (k(x, y) =

√
x2 + y2), supremum (k(x, y) = max(x, y)),

and Manhattan (k(x, y) = x⊕ y) distances. The fact that k computes distances of traces
recursively “one symbol at a time” translates into uniform depth-1 equations:

▶ Definition 5.7. Let T = (Σ, E) be a quantitative algebraic presentation of a (plain)
monad T on Met. We define a graded quantitative theory T [A] by including the operations
and equations of T at depth 0, along with unary depth-1 operations a for all labels a ∈ A,
and as depth-1 axioms the distributive laws ⊢ a(f(x1, . . . , xn)) =0 f(a(x1), . . . , a(xn)) for all
a ∈ A and f ∈ Σ, as well as the distance axioms x =ϵ y ⊢ a(x) =k(d(a,b),ϵ) b(y).

The obvious candidate for a Kleisli distributive law inducing the graded monad presented by
the theory T [A] is the family of maps λX : A⊗ TX → T (A⊗X) given by

λX(a, t) = T ⟨a, idX⟩⊗(t) (5.2)

where ⟨a, idX⟩⊗ takes x ∈ X to (a, x) ∈ A ⊗ X. However, these maps λX may fail to be
nonexpansive, depending on T and ⊗; for instance, this happens for T = Dω and ⊗ being
Cartesian product × (which carries the supremum distance):

▶ Example 5.8. Put X = {x, y} where d(x, y) = 1, and s = 0.5 · x + 0.5 · y, t = 1 · x ∈ DωX.
Clearly d(s, t) = 0.5. Given a, b ∈ A with d(a, b) = 0.5, we have d((a, s), (b, t)) = 0.5 in
A×DωX while d(λX(a, s), λX(b, t)) = d(0.5 ·(a, x)+0.5 ·(a, y), 1 ·(b, x)) = 0.75 in Dω(A×X).

Nonexpansiveness is, of course, needed to obtain a graded monad on Met, and as we show
later (Remark 6.3), its failure may cause undesirable effects. In the case of Manhattan
distance, nonexpansiveness always holds:

▶ Lemma 5.9. The maps λX as per (5.2) are nonexpansive as maps A⊞ TX → T (A⊞ X).

In case the λX as per (5.2) are nonexpansive, we do in fact have that the distributive law λ

and the algebraic theory T [A] induce the same graded monad:

▶ Lemma 5.10. Let λX be defined by (5.2). If λX : A⊗T → T (A⊗ (−)) is nonexpansive for
all X, then the λX form a Kleisli distributive law λ : A⊗ T → T (A⊗ (−)), and the graded
monad induced by λ according to Example 4.2 is presented by the quantitative equational
theory T [A] as per Definition 5.7.

▶ Example 5.11. In our running example of finitely branching metric trace semantics, it is
easy to check that the distributive law claimed in Example 4.2 is indeed nonexpansive, so
the induced graded monad is, by Lemma 5.10, presented by the corresponding theory as per

CSL 2025

33:12 Quantitative Graded Semantics and Spectra of Behavioural Metrics

Definition 5.7, and in particular is depth-1. Explicitly, recall [36, Corollary 9.4] that Pω is
a monad, presented in quantitative algebra by the usual axioms of join semilattices for a
binary join operation + and a constant 0 (nonexpansiveness of + is enforced by the deduction
rules). The quantitative graded theory presenting the graded metric trace monad Pω(An×−)
according to Lemma 5.10 has depth-0 operators + and 0 as above and adds unary depth-1
operations a for all a ∈ A, subject to axioms (for a, b ∈ A, ϵ ∈ [0, 1])

⊢ a(0) =0 0 ⊢ a(x + y) =0 a(x) + a(y) x =ϵ y ⊢ a(x) =ϵ∨dA(a,b) b(y).

The distribution of the operations a over the join semilattice structure effectively implements
trace equivalence, and the last axiom determines the metric on traces, which in this case is
taken to be the supremum metric.

6 Graded Quantitative Semantics and Graded Logics

We proceed to introduce the framework of graded quantitative semantics, to study spectra of
behavioural metrics for various system types. By “spectra” we informally refer to collections
of process comparisons of varying granularity that arise by observing a specific system type in
different ways, as exemplified by the classical linear-time/branching-time spectrum on labelled
transition systems [47]. Generally, a graded semantics [37] (M, α) of a functor G : C → C
consists of a graded monad M and a natural transformation α : G→M1. Intuitively, Mn1
(where 1 is a terminal object of C) is a domain of behaviours observable after n transition
steps, with α determining behaviours after one step. For a G-coalgebra (X, γ), we inductively
define behaviour maps γ(n) : X →Mn1 assigning to a state in X its behaviour after n steps:

γ(0) : X
M0!·η−−−−→M01 γ(n+1) : X

α·γ−−→M1X
M1γ(n)

−−−−−→M1Mn1 µ1n

−−→Mn+11

For C = Met, these maps induce a notion of graded behavioural distance (for readability, we
refrain from working with more general C, such as categories of relational structures [20]):

▶ Definition 6.1 (Graded behavioural distance). Given a graded semantics α : G→M1 of a
functor G on Met, (graded) behavioural distance is the pseudometric on states in G-coalgebras
(X, γ) given by dα(x, y) =

∨
n∈N dMn1(γ(n)(x), γ(n)(y)) for x, y ∈ X.

▶ Example 6.2. The metric trace semantics of finitely branching metric transition systems [11,
15] and closed-branching metric transition systems is captured by the graded metric trace
monads Mn = Pω(An×−) and Mn = Pc(An×−) (Example 4.2), respectively (with α being
identity). The behaviour maps calculate, at each depth n, sets of length-n traces, whose
distance is given by the Hausdorff distance induced by the supremum metric on traces.

▶ Remark 6.3. In cases where nonexpansiveness of α or the natural transformations of M
does not hold (e.g. if one attempts to construct M using a family of maps (5.2) that fails to
be nonexpansive, cf. Example 5.8), other expected properties can fail. For instance, it can
happen that trace distance exceeds branching time distance (while for trace semantics induced
by nonexpansive graded semantics, general properties of graded semantics imply that trace
distance is below branching-time distance, in tune with the two-valued setting where trace
equivalence is coarser than bisimilarity). Example 5.8 manifests in the Dω(A×−)-coalgebra
(i.e. generative probabilistic metric transition system) shown below, where A = {a, b, c, d}
with relevant distances d(a, b) = 0.5 and d(c, d) = 1:

J. Forster, L. Schröder, P. Wild, H. Beohar, S. Gurke, B. König, and K. Messing 33:13

x
y

1
a

1
a

1
c

c 1
2

d 1
2

1
b

Here, we have length-n trace distributions µn
x = 1

2 ·(acan−2)+ 1
2 ·(adan−2) and µn

y = 1·(bcan−2)
for n ≥ 2. When the metric on traces is defined via supremum distance, instead of Manhattan
distance as in Section 3, the trace distance of the states x and y is

∨
n∈N d(µn

x , µn
y) = 0.75,

while their branching-time distance (cf. Section 2) is 0.5.
We have the following criterion for invariance of a logic under a graded semantics (α,M),
with M depth-1, for a functor G : Met→Met that we fix from now on; recall from Section 2
that we use Ω to denote the unit interval [0, 1] equipped with Euclidean distance.

▶ Definition 6.4 (Graded logic). Let o : M0Ω → Ω be an M0-algebra structure on Ω. A
logic L is a graded logic (for (α,M)) if the following hold:
1. For n-ary p ∈ O, the semantics JpK is an M0-algebra homomorphism (Ω, o)n → (Ω, o).
2. For each L ∈ Λ, there is an associated nonexpansive map LLM : M1Ω→ Ω such that the

semantics JLK : GΩ → Ω factors as JLK = (GΩ αΩ−−→ M1Ω LLM−−→ Ω), and such that the
tuple (Ω, Ω, o, o, LLM) constitutes an M1-algebra (that is, LLM satisfies homomorphy and
coequalization, cf. Section 2). We abuse notation and write LLM to denote the M1-algebra
(Ω, Ω, o, o, LLM).

Notice the different treatment of nullary propositional operators and truth constants: The
former are required to be interpreted as homomorphisms 1→ (Ω, o) in a graded logic, while
no such condition is imposed on truth constants. In many examples, α = id, in which case
condition 2 just states that (Ω, Ω, o, o, JLK) is an M1-algebra (non-identity α are associated,
for instance, with readiness and failure semantics [14]).

▶ Definition 6.5. We say that L is invariant with respect to a graded semantics (α,M) if
dL ≤ dα holds in all G-coalgebras; expressive if dL ≥ dα; and characteristic if dL = dα.

▶ Theorem 6.6 ([24, Proposition 21]). Let L be a graded logic for (α,M). Then the evaluation
maps JϕKγ of uniform-depth L-formulae ϕ on G-coalgebras (X, γ) are nonexpansive w.r.t.
behavioural distance dα, and hence L is invariant.

The assumption of uniform depth cannot be removed in general [24].

▶ Example 6.7. We have a graded logic Lmtrace for metric trace semantics (Example 6.2)
featuring modalities ♢a for all a ∈ A as in Example 2.4, a single truth constant 1, and no
propositional operators. We equip the set Ω = [0, 1] of truth values with the usual Pω-algebra
(i.e. join semilattice) structure ([0, 1],∨, 0), and let 1̂ : 1→ [0, 1] take the value 1. The logic
Lmtrace remains invariant under metric trace semantics when extended with propositional
operators that are nonexpansive join-semilattice morphisms, such as ∨. Analogously we
define the logic Lcmtrace for trace semantics of closed-branching metric transition systems.
Notice that the interpretation of 1 fails to be homomorphic, so 1 needs to be a truth constant.

7 Expressivity Criteria

We proceed to adapt expressivity criteria appearing in previous work on two-valued behavi-
oural equivalences [14, 19] to the quantitative setting, which poses quite specific challenges. A
key role in the treatment of expressivity of logics will be played by the notion of initiality [1].

CSL 2025

33:14 Quantitative Graded Semantics and Spectra of Behavioural Metrics

▶ Definition 7.1. A family of maps (fi : A → B)i∈I between metric spaces A and B is
initial if A carries the smallest (pseudo-)metric making all maps fi nonexpansive, explicitly:
d(x, y) =

∨
i d(fi(x), fi(y)).

Using this notion, the definition of expressivity can be rephrased as follows: An invariant
logic L is expressive if for every G-coalgebra (X, γ), the family of all evaluation maps JϕKγ

of uniform-depth formulae ϕ is initial on (X, dα).
▶ Remark 7.2. In the branching-time case, a stronger notion of expressivity, roughly phrased
as density of the set of depth-n formulae in the set of nonexpansive properties at depth n,
follows from expressivity under certain additional conditions [22, 48, 49, 51, 33], using lattice-
theoretic variants of the Stone-Weierstraß theorem. The analogue of the Stone-Weierstraß
theorem in general fails for coarser semantics. Also, for semantics coarser than branching
time, expressivity in the sense of Definition 6.5 can often be established using more economic
sets of propositional operators (e.g. no propositional operators at all), for which density will
clearly fail.
Our expressivity result is based on propagating initiality through an induction on depth.
Unlike in the Eilenberg-Moore case [24], this requires, in many examples, to strengthen the
inductive invariant; we treat this systematically as follows:

▶ Definition 7.3. An initiality invariant is a property Φ of sets A ⊆ Met(X, Ω) of non-
expansive functions such that (i) every family of maps satisfying Φ is initial, and (ii) Φ is
upwards closed w.r.t. subset inclusion.

▶ Example 7.4.
1. Initiality itself is an initiality invariant. If Φ is initiality, then we say “initial-type” for

“Φ-type”.
2. We say that A ⊆ Met(X, Ω) is normed isometric if whenever d(x, y) > ϵ for x, y ∈ X

and ϵ > 0, then there is some f ∈ A such that |f(x) − f(y)| > ϵ and f(x) ∨ f(y) = 1.
Normed isometry is an initiality invariant.

Our expressivity criterion then takes the following shape:

▶ Definition 7.5. Let Φ be an initiality invariant. A graded logic L = (Θ,O, Λ) with truth
value object (Ω, o) is Φ-type depth-0 separating if the family of maps {o ·M0ĉ : M01→ Ω | c ∈
Θ} has property Φ. Moreover, L is Φ-type depth-1 separating if whenever A is a canonical
M1-algebra of the form Mn1 (Proposition 5.4) and A is a set of M0-homomorphisms A0 → Ω
that has property Φ and is closed under the propositional operators in O, then the set

Λ(A) := {LLM•(g) : A1 → Ω | L ∈ Λ, g ∈ A}

has property Φ, where LLM•(g) : A1 → Ω is the (by canonicity, unique) morphism extending
the M0-algebra morphism g to an M1-algebra morphism A→ LLM (Definition 6.4).

▶ Theorem 7.6 (Expressivity). Let Φ be an initiality invariant, and suppose that a graded
logic L is both Φ-type depth-0 separating and Φ-type depth-1 separating. Then L is expressive.

▶ Remark 7.7. Our definition of separation differs from notions used for two-valued logics [14,
19] and for quantitative graded semantics induced by Eilenberg-Moore distributive laws [24],
which overall have turned out to be much more well-behaved than the more general setting of
the present work. The most obvious novelty is the use of an initiality invariant Φ strengthening
the induction hypothesis in the inductive proof of Theorem 7.6. We will see that this is
needed even in very simple examples in our more general setting. Moreover, we have phrased

J. Forster, L. Schröder, P. Wild, H. Beohar, S. Gurke, B. König, and K. Messing 33:15

separation in terms of the specific canonical algebras Mn1 on which it is needed, rather than
on unrestricted canonical algebras. This allows exploiting additional properties of Mn1, e.g.
that for graded monads Mn = TF n arising from Kleisli distributive laws (Example 4.2), Mn1
is free as an M0-algebra.

▶ Example 7.8.
1. Metric Streams: A simple example for failure of initial-type separation (Example 7.4) are

metric streams, i.e. streams over a metric space of labels (A, dA); these are coalgebras for
the functor G = A×−. Behavioural distance on streams is captured by the graded monad
Gn = An × {−}. The logic L consisting of the truth constant 1 and modalities ♢a for all
a ∈ A, with interpretation J♢aK : A× [0, 1]→ [0, 1] given by (b, v) 7→ (1− dA(a, b))∧ v, is
Φ-type depth-0 separating and Φ-type depth-1 separating for Φ being normed isometry,
and hence expressive by Theorem 7.6. (The modality ♢a restricts the corresponding
modality for metric transition systems as per Examples 2.4 and 6.7 to metric streams: a
state satisfies ♢aϕ to the degree that its output is close to a and its successor satisfies ϕ).
On the other hand, L fails to be initial-type depth-1 separating, illustrating the necessity
of the general form of Theorem 7.6.

2. Metric transition systems: The graded logics Lmtrace and Lcmtrace for metric trace se-
mantics (Example 6.7), in the version with no propositional operators, are Φ-type depth-0
separating and Φ-type depth-1 separating for Φ being normed isometry, and hence are
expressive by Theorem 7.6. We thus improve on an example from recent work based on
Galois connections [4], where application of the general framework required the inclusion
of propositional shift operators (which were subsequently eliminated in an ad-hoc manner),
and we generalize to systems with closed branching on a metric state space.

3. Probabilistic metric trace semantics is modelled straightforwardly as a graded semantics
using a graded trace monad (Example 4.2). By Theorem 3.2, however, there is no graded
logic for probabilistic metric trace semantics that satisfies the conditions of Theorem 7.6.

▶ Remark 7.9. In a recent approach based on Galois connections [4, 5], logics are related
to fixpoints of behaviour functions induced by the logic itself (similar to approaches that
define trace semantics via intended characteristic logics [31]), while our present interest is in
providing logical characterizations of given behavioural distances. The Galois framework is
highly general, and in fact not even tied to coalgebraic modelling, or in fact to state-based
systems of any kind [4], but correspondingly offers less concrete recipes. Instantiated to
our current setup, the key condition of compatibility appearing in op. cit. roughly speaking
amounts to initial-type depth-1 separation of the logic w.r.t. its own Kantorovich lifting [2, 5].

▶ Remark 7.10 (Branching-time semantics). Any functor G yields a graded monad given by
iterated application of G, that is Mn = Gn, and by unit and multiplication being identity [37].
In general, the finite-depth branching-time semantics of a G-coalgebra (X, γ) is defined via
its canonical cone (pi : X → Gi1)i<ω into the final sequence 1 !←− G1 G!←− G21 ← . . . of G.
The pi are defined inductively by p0 = ! : X → 1 and pi+1 = Gpi · γ. This semantics is
captured by the graded monad Mn = Gn and α = id [37]. More specifically, the finite-depth
branching-time behavioural distance of states x, y ∈ X is

∨
i<ω d(pi(x), pi(y)), and thus agrees

with the graded behavioural distance obtained via the graded semantics in the graded monad
Mn = Gn. This monad has M0 = id, so that the corresponding graded logics are just
branching-time logics without further restriction [37, 14]. Coalgebraic quantitative logics of
this kind have received some recent attention [22, 48, 49, 51, 11, 30, 33]. Suppose Λ is a finite
separating set of modalities, i.e. the maps JLK ·Gf : GX → Ω, with L ranging over modalities
and f over nonexpansive maps X → Ω, form an initial family. Moreover, let O contain

CSL 2025

33:16 Quantitative Graded Semantics and Spectra of Behavioural Metrics

truth 1, meet ∧, fuzzy negation ¬ (i.e. ¬x = 1 − x), and truncated addition of constants
(−)⊕ c. Then one shows using a variant of the Stone-Weierstraß theorem [51] that the graded
logic L given by Λ, O, and Θ = ∅ is initial-type depth-0 separating and initial-type depth-1
separating. By Theorem 7.6, we obtain that L is expressive. Previous work on quantitative
branching-time logics [51, 33, 48, 49, 22] discusses, amongst other things, conditions on G

that allow concluding expressivity even for infinite-depth behavioural distance.

8 Case Study: Fuzzy Metric Trace Semantics

We apply the recipe outlined above to obtain a characteristic logic for trace distance on
fuzzy metric transition systems. That is, we proceed as follows: We cast fuzzy metric trace
distance as a graded semantics using a suitable depth-1 graded monad M, and check that M
is depth-1 using the techniques outlined in Section 5. We then identify a corresponding
graded logic L, verifying the requirements of Definition 6.4. Invariance of L then follows
automatically (Theorem 6.6). Finally, we show expressivity using Theorem 7.6.

A fuzzy A-labelled metric transition system (fuzzy metric LTS) [12, 54, 55, 30]) consists
of a set (or metric space) X of states and a fuzzy transition relation R : X ×A×X → [0, 1],
with A a metric space. A fuzzy LTS (X, R) is finitely branching if {(a, y) | R(x, a, y) > 0} is
finite for every x ∈ X. Equivalently, a finitely branching fuzzy LTS is a coalgebra for the
functor Fω(A× (−)) (cf. Example 2.2.4).

A natural fuzzy trace semantics of fuzzy transition systems assigns to each state x of a
fuzzy LTS (X, R) a fuzzy trace set Tr(x) ∈ Fω(A∗) where

Tr(x)(a1 . . . an) =
∨
{
∧n

i=1 R(xi−1, ai, xi) | x = x0, x1, . . . , xn ∈ X}.

This notion of trace relates, for instance, to a notion of fuzzy path that is implicit in the
semantics of fuzzy computation tree logic [38] and to notions of fuzzy language accepted by
fuzzy automata (e.g. [3]). We obtain a notion of fuzzy trace distance dT of states x, y, given by
the distance of Tr(x), Tr(y) in Fω(A∗), i.e. under fuzzy Hausdorff distance (Example 2.2.4)
w.r.t. the metric on A∗ that is the supremum metric on each An, and assigns distance 1
to traces of different lengths. To capture this distance in a graded semantics, consider
the distributive law λ : A × Fω(−) → Fω(A × −) given by λ(a, U)(a, x) = U(x) and
λ(a, U)(b, x) = 0 for b ̸= a. By Example 4.2 we thus obtain the graded fuzzy metric trace
monad Mn = Fω(An× (−)). The monad Fω can be presented by the following quantitative
equational theory: Take a binary operation +, a constant 0, and unary operations r for
every r ∈ [0, 1]. Impose strict equations (=0) saying that +, 0 form a join semilattice
structure and that the operations r define an action of the monoid ([0, 1],∧) (i.e. 1(x) = x,
r(s(x)) =0 (r∧ s)(x)). Finally, impose axioms x =ϵ y ⊢ r(x) =ϵ s(y) for r, s ∈ [0, 1] such that
|r−s| ≤ ϵ. By Lemma 5.10, the graded fuzzy trace monad Mn = Fω(An×X) is presented by
the above algebraic description of Fω at depth 0, with additional depth-1 unary operations a

for a ∈ A and depth-1 equations a(x + y) =0 a(x) + a(y), a(0) =0 0, a(r(x)) =0 r(a(x)), and
x =ϵ y ⊢ a(x) =ϵ∨d(a,b) b(y).

Fuzzy metric trace logic interprets the additional operations r ∈ [0, 1] on the truth
value object [0, 1] by r(x) = r ∧ x, and otherwise uses the same quantitative join semilattice
structure as for metric trace semantics (Example 6.7). We include the truth constant 1 and
modal operators ♢c

a for a ∈ A and c ∈ [0, 1] ∩Q, with interpretation J♢c
aK : M1[0, 1]→ [0, 1]

given by J♢c
aK(A) =

∨
b∈A,v∈[0,1] A(b, v)∧v∧ (c⊖d(a, b)). (When A is discrete, then ♢1

a is the
usual fuzzy diamond modality, e.g. [18]). Thus, a state x in a fuzzy metric transition system
satisfies ♢c

aϕ to the degree that x has a b-successor y with b close to a and y satisfying ϕ;

J. Forster, L. Schröder, P. Wild, H. Beohar, S. Gurke, B. König, and K. Messing 33:17

crucially, “closeness” of b to a needs to be shifted down as governed by the parameter c.
This logic is initial-type depth-0 separating and initial-type depth-1 separating, and hence
expressive for fuzzy trace distance by Theorem 7.6; both this result and the logic itself appear
to be new (the case with A discrete is partially covered in work on Galois connections [5]).
Indeed for non-discrete A, the logic with only ♢1

a instead of all ♢c
a fails to be expressive. The

logic remains invariant when extended with additional nonexpansive propositional operators
that are Fω-homomorphic, such as ∨.

9 Conclusions

We have shown that there is no unary quantitative coalgebraic modal logic characterizing
a natural notion of quantitative trace distance on probabilistic metric transition systems.
Moving onwards from this observation, we have developed a generic framework for linear-
time/branching-time spectra of behavioural distances on state-based systems in coalgebraic
generality, covering, for instance, metric, probabilistic, and fuzzy transition systems. Unlike
previous work on Eilenberg-Moore-style coalgebraic trace distances [5, 24], the framework
covers also systems with labels from a metric space. The key abstractions in the framework are
based on the notion of a graded monad on the category of metric spaces and an arising notion
of quantitative graded semantics. We have provided a graded quantitative algebraic system
for the description of such graded monads (extending and modifying the existing non-graded
system [36]). Moreover, we have established sufficient conditions for canonical invariant
quantitative graded logics [24] to be expressive for given quantitative graded semantics, and
we have exploited this result to obtain expressive logics for some instances of Kleisli-type
trace semantics [27], notably including a new result for fuzzy metric trace semantics.

One important next step in the development will be to identify a generic game-based
characterization of behavioural distances in the framework of graded semantics, generalizing
work specific to metric transition systems [15] and building on game-based concepts for two-
valued graded semantics [21]. Also, there is interest in computing distinguishing quantitative
formulae (cf. [10, 52] for the two-valued branching-time setting), generalizing recent results
for the branching-time case [40] to spectra of coarser semantics.

References
1 Jiří Adámek, Horst Herrlich, and George E. Strecker. Abstract and Concrete Categories.

John Wiley and Sons, 1990. Reprint: http://www.tac.mta.ca/tac/reprints/articles/17/
tr17abs.html.

2 Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König. Coalgebraic behavioral
metrics. Log. Methods Comput. Sci., 14(3), 2018. doi:10.23638/LMCS-14(3:20)2018.

3 Radim Belohlávek. Determinism and fuzzy automata. Inf. Sci., 143(1-4):205–209, 2002.
doi:10.1016/S0020-0255(02)00192-5.

4 Harsh Beohar, Sebastian Gurke, Barbara König, and Karla Messing. Hennessy-Milner theorems
via Galois connections. In Bartek Klin and Elaine Pimentel, editors, Computer Science Logic,
CSL 2023, volume 252 of LIPIcs, pages 12:1–12:18. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPIcs.CSL.2023.12.

5 Harsh Beohar, Sebastian Gurke, Barbara König, Karla Messing, Jonas Forster, Lutz Schröder,
and Paul Wild. Expressive quantale-valued logics for coalgebras: An adjunction-based
approach. In Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel
Lokshtanov, editors, Theoretical Aspects of Computer Science, STACS 2024, volume 289 of
LIPIcs, pages 10:1–10:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:
10.4230/LIPICS.STACS.2024.10.

CSL 2025

http://www.tac.mta.ca/tac/reprints/articles/17/tr17abs.html
http://www.tac.mta.ca/tac/reprints/articles/17/tr17abs.html
https://doi.org/10.23638/LMCS-14(3:20)2018
https://doi.org/10.1016/S0020-0255(02)00192-5
https://doi.org/10.4230/LIPIcs.CSL.2023.12
https://doi.org/10.4230/LIPICS.STACS.2024.10
https://doi.org/10.4230/LIPICS.STACS.2024.10

33:18 Quantitative Graded Semantics and Spectra of Behavioural Metrics

6 Marco Bernardo and Stefania Botta. A survey of modal logics characterising behavioural
equivalences for non-deterministic and stochastic systems. Math. Struct. Comput. Sci., 18(1):29–
55, 2008. doi:10.1017/S0960129507006408.

7 Valentina Castiglioni, Konstantinos Chatzikokolakis, and Catuscia Palamidessi. A logical
characterization of differential privacy via behavioral metrics. In Kyungmin Bae and Peter
Ölveczky, editors, Formal Aspects of Component Software, FACS 2018, volume 11222 of LNCS,
pages 75–96. Springer, 2018. doi:10.1007/978-3-030-02146-7.

8 Valentina Castiglioni, Daniel Gebler, and Simone Tini. Logical characterization of bisimu-
lation metrics. In Mirco Tribastone and Herbert Wiklicky, editors, Quantitative Aspects of
Programming Languages and Systems, QAPL 2016, volume 227 of EPTCS, pages 44–62, 2016.
doi:10.4204/EPTCS.227.

9 Ivan Christoff. Testing equivalences and fully abstract models for probabilistic processes.
In Jos C. M. Baeten and Jan Willem Klop, editors, Theories of Concurrency: Unification
and Extension, CONCUR 1990, volume 458 of LNCS, pages 126–140. Springer, 1990. doi:
10.1007/BFb0039056.

10 Rance Cleaveland. On automatically explaining bisimulation inequivalence. In Edmund M.
Clarke and Robert P. Kurshan, editors, Computer Aided Verification, CAV 1990, volume 531
of LNCS, pages 364–372. Springer, 1990. doi:10.1007/BFB0023750.

11 Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. Linear and branching system metrics.
IEEE Trans. Software Eng., 35(2):258–273, 2009. doi:10.1109/TSE.2008.106.

12 Liliana D’Errico and Michele Loreti. Modeling fuzzy behaviours in concurrent systems.
In Giuseppe F. Italiano, Eugenio Moggi, and Luigi Laura, editors, Theoretical Computer
Science, 10th Italian Conference, ICTCS 2007, pages 94–105. World Scientific, 2007. doi:
10.1142/9789812770998_0012.

13 Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics for
labelled Markov processes. Theor. Comput. Sci., 318(3):323–354, 2004. doi:10.1016/j.tcs.
2003.09.013.

14 Ulrich Dorsch, Stefan Milius, and Lutz Schröder. Graded monads and graded logics for
the linear time - branching time spectrum. In Wan J. Fokkink and Rob van Glabbeek,
editors, Concurrency Theory, CONCUR 2019, volume 140 of LIPIcs, pages 36:1–36:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.CONCUR.2019.36.

15 Uli Fahrenberg and Axel Legay. The quantitative linear-time-branching-time spectrum. Theor.
Comput. Sci., 538:54–69, 2014. doi:10.1016/j.tcs.2013.07.030.

16 Uli Fahrenberg, Axel Legay, and Claus Thrane. The quantitative linear-time–branching-time
spectrum. In Supratik Chakraborty and Amit Kumar, editors, Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2011, volume 13 of LIPIcs, pages
103–114. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2011. doi:10.4230/LIPIcs.
FSTTCS.2011.103.

17 Ihor Filimonov, Ross Horne, Sjouke Mauw, and Zach Smith. Breaking unlinkability of the
ICAO 9303 standard for e-passports using bisimilarity. In Kazue Sako, Steve A. Schneider,
and Peter Y. A. Ryan, editors, Computer Security, ESORICS 2019, volume 11735 of LNCS,
pages 577–594. Springer, 2019. doi:10.1007/978-3-030-29959-0_28.

18 Melvin Fitting. Many-valued modal logics. Fund. Inform., 15:235–254, 1991. doi:10.3233/
FI-1991-153-404.

19 Chase Ford, Stefan Milius, and Lutz Schröder. Behavioural preorders via graded monads. In
Logic in Computer Science, LICS 2021, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.
2021.9470517.

20 Chase Ford, Stefan Milius, and Lutz Schröder. Monads on categories of relational structures.
In Fabio Gadducci and Alexandra Silva, editors, Algebra and Coalgebra in Computer Science,
CALCO 2021, volume 211 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.CALCO.2021.14.

https://doi.org/10.1017/S0960129507006408
https://doi.org/10.1007/978-3-030-02146-7
https://doi.org/10.4204/EPTCS.227
https://doi.org/10.1007/BFb0039056
https://doi.org/10.1007/BFb0039056
https://doi.org/10.1007/BFB0023750
https://doi.org/10.1109/TSE.2008.106
https://doi.org/10.1142/9789812770998_0012
https://doi.org/10.1142/9789812770998_0012
https://doi.org/10.1016/j.tcs.2003.09.013
https://doi.org/10.1016/j.tcs.2003.09.013
https://doi.org/10.4230/LIPIcs.CONCUR.2019.36
https://doi.org/10.1016/j.tcs.2013.07.030
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.103
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.103
https://doi.org/10.1007/978-3-030-29959-0_28
https://doi.org/10.3233/FI-1991-153-404
https://doi.org/10.3233/FI-1991-153-404
https://doi.org/10.1109/LICS52264.2021.9470517
https://doi.org/10.1109/LICS52264.2021.9470517
https://doi.org/10.4230/LIPIcs.CALCO.2021.14

J. Forster, L. Schröder, P. Wild, H. Beohar, S. Gurke, B. König, and K. Messing 33:19

21 Chase Ford, Stefan Milius, Lutz Schröder, Harsh Beohar, and Barbara König. Graded monads
and behavioural equivalence games. In Christel Baier and Dana Fisman, editors, Logic in
Computer Science, LICS 2022, pages 61:1–61:13. ACM, 2022. doi:10.1145/3531130.3533374.

22 Jonas Forster, Sergey Goncharov, Dirk Hofmann, Pedro Nora, Lutz Schröder, and Paul Wild.
Quantitative Hennessy-Milner theorems via notions of density. In Bartek Klin and Elaine
Pimentel, editors, Computer Science Logic, CSL 2023, volume 252 of LIPIcs, pages 22:1–22:20.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.CSL.2023.22.

23 Jonas Forster, Lutz Schröder, and Paul Wild. Quantitative graded semantics and spectra of
behavioural metrics. CoRR, abs/2306.01487, 2023. doi:10.48550/arXiv.2306.01487.

24 Jonas Forster, Lutz Schröder, Paul Wild, Harsh Beohar, Sebastian Gurke, and Karla Messing.
Graded semantics and graded logics for Eilenberg-Moore coalgebras. In Barbara König and
Henning Urbat, editors, Coalgebraic Methods in Computer Science, CMCS 2024, volume 14617
of LNCS, pages 114–134. Springer, 2024. doi:10.1007/978-3-031-66438-0_6.

25 Alessandro Giacalone, Chi-Chang Jou, and Scott Smolka. Algebraic reasoning for probabilistic
concurrent systems. In Manfred Broy, editor, Programming concepts and methods, PCM 1990,
pages 443–458. North-Holland, 1990.

26 Sergey Goncharov, Dirk Hofmann, Pedro Nora, Lutz Schröder, and Paul Wild. Kantorovich
functors and characteristic logics for behavioural distances. In Orna Kupferman and Pawel
Sobocinski, editors, Foundations of Software Science and Computation Structures, FoSSaCS
2023, volume 13992 of LNCS, pages 46–67. Springer, 2023. doi:10.1007/978-3-031-30829-1_
3.

27 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction. Log.
Methods Comput. Sci., 3(4), 2007. doi:10.2168/LMCS-3(4:11)2007.

28 Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concurrency. J.
ACM, 32(1):137–161, 1985. doi:10.1145/2455.2460.

29 Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization. J.
Comput. Syst. Sci., 81(5):859–879, 2015. doi:10.1016/j.jcss.2014.12.005.

30 Manisha Jain, Alexandre Madeira, and Manuel A. Martins. A fuzzy modal logic for fuzzy
transition systems. In Amy P. Felty and João Marcos, editors, Logical and Semantic Frameworks
with Applications, LSFA 2019, volume 348 of ENTCS, pages 85–103. Elsevier, 2019. doi:
10.1016/j.entcs.2020.02.006.

31 Bartek Klin and Jurriaan Rot. Coalgebraic trace semantics via forgetful logics. Log. Methods
Comput. Sci., 12(4), 2016. doi:10.2168/LMCS-12(4:10)2016.

32 Yuichi Komorida, Shin-ya Katsumata, Clemens Kupke, Jurriaan Rot, and Ichiro Hasuo.
Expressivity of quantitative modal logics : Categorical foundations via codensity and
approximation. In Logic in Computer Science, LICS 2021, pages 1–14. IEEE, 2021.
doi:10.1109/LICS52264.2021.9470656.

33 Barbara König and Christina Mika-Michalski. (metric) bisimulation games and real-valued
modal logics for coalgebras. In Sven Schewe and Lijun Zhang, editors, Concurrency Theory,
CONCUR 2018, volume 118 of LIPIcs, pages 37:1–37:17. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.CONCUR.2018.37.

34 Clemens Kupke and Jurriaan Rot. Expressive logics for coinductive predicates. Log. Methods
Comput. Sci., 17(4), 2021. doi:10.46298/lmcs-17(4:19)2021.

35 F. E. J. Linton. Some aspects of equational categories. In S. Eilenberg, D. K. Harrison,
S. MacLane, and H. Röhrl, editors, Proceedings of the Conference on Categorical Algebra,
pages 84–94. Springer, 1966. doi:10.1007/978-3-642-99902-4_3.

36 Radu Mardare, Prakash Panangaden, and Gordon D. Plotkin. Quantitative algebraic reasoning.
In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Logic in Computer Science,
LICS 2016, pages 700–709. ACM, 2016. doi:10.1145/2933575.2934518.

CSL 2025

https://doi.org/10.1145/3531130.3533374
https://doi.org/10.4230/LIPIcs.CSL.2023.22
https://doi.org/10.48550/arXiv.2306.01487
https://doi.org/10.1007/978-3-031-66438-0_6
https://doi.org/10.1007/978-3-031-30829-1_3
https://doi.org/10.1007/978-3-031-30829-1_3
https://doi.org/10.2168/LMCS-3(4:11)2007
https://doi.org/10.1145/2455.2460
https://doi.org/10.1016/j.jcss.2014.12.005
https://doi.org/10.1016/j.entcs.2020.02.006
https://doi.org/10.1016/j.entcs.2020.02.006
https://doi.org/10.2168/LMCS-12(4:10)2016
https://doi.org/10.1109/LICS52264.2021.9470656
https://doi.org/10.4230/LIPIcs.CONCUR.2018.37
https://doi.org/10.46298/lmcs-17(4:19)2021
https://doi.org/10.1007/978-3-642-99902-4_3
https://doi.org/10.1145/2933575.2934518

33:20 Quantitative Graded Semantics and Spectra of Behavioural Metrics

37 Stefan Milius, Dirk Pattinson, and Lutz Schröder. Generic trace semantics and graded monads.
In Lawrence S. Moss and Pawel Sobocinski, editors, Algebra and Coalgebra in Computer Science,
CALCO 2015, volume 35 of LIPIcs, pages 253–269. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2015. doi:10.4230/LIPIcs.CALCO.2015.253.

38 Haiyu Pan, Yongming Li, Yongzhi Cao, and Zhanyou Ma. Model checking computation tree
logic over finite lattices. Theor. Comput. Sci., 612:45–62, 2016. doi:10.1016/j.tcs.2015.10.
014.

39 Dirk Pattinson. Expressive logics for coalgebras via terminal sequence induction. Notre Dame
J. Formal Log., 45(1):19–33, 2004. doi:10.1305/NDJFL/1094155277.

40 Amgad Rady and Franck van Breugel. Explainability of probabilistic bisimilarity distances for
labelled Markov chains. In Orna Kupferman and Pawel Sobocinski, editors, Foundations of
Software Science and Computation Structures, FoSSaCS 2023, volume 13992 of LNCS, pages
285–307. Springer, 2023. doi:10.1007/978-3-031-30829-1_14.

41 Jurriaan Rot, Bart Jacobs, and Paul Blain Levy. Steps and traces. J. Log. Comput., 31(6):1482–
1525, 2021. doi:10.1093/logcom/exab050.

42 Jan J. M. M. Rutten. Relators and metric bisimulations. In Bart Jacobs, Larry Moss, Horst
Reichel, and Jan J. M. M. Rutten, editors, Coalgebraic Methods in Computer Science, CMCS
1998, volume 11 of ENTCS, pages 252–258. Elsevier, 1998. doi:10.1016/S1571-0661(04)
00063-5.

43 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci.,
249(1):3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.

44 Lutz Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. Theor. Comput.
Sci., 390(2-3):230–247, 2008. doi:10.1016/j.tcs.2007.09.023.

45 Lutz Schröder and Dirk Pattinson. Description logics and fuzzy probability. In Toby Walsh,
editor, International Joint Conference on Artificial Intelligence, IJCAI 2011, pages 1075–1081.
IJCAI/AAAI, 2011. doi:10.5591/978-1-57735-516-8/IJCAI11-184.

46 Franck van Breugel and James Worrell. A behavioural pseudometric for probabilistic transition
systems. Theor. Comput. Sci., 331(1):115–142, 2005. doi:10.1016/j.tcs.2004.09.035.

47 Rob J. van Glabbeek. The linear time - branching time spectrum I. In Jan A. Bergstra,
Alban Ponse, and Scott A. Smolka, editors, Handbook of Process Algebra, pages 3–99. North-
Holland/Elsevier, 2001. doi:10.1016/b978-044482830-9/50019-9.

48 Paul Wild and Lutz Schröder. Characteristic logics for behavioural metrics via fuzzy lax
extensions. In Igor Konnov and Laura Kovács, editors, Concurrency Theory, CONCUR 2020,
volume 171 of LIPIcs, pages 27:1–27:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.CONCUR.2020.27.

49 Paul Wild and Lutz Schröder. A quantified coalgebraic van Benthem theorem. In Stefan
Kiefer and Christine Tasson, editors, Foundations of Software Science and Computation
Structures, FOSSACS 2021, volume 12650 of LNCS, pages 551–571. Springer, 2021. doi:
10.1007/978-3-030-71995-1_28.

50 Paul Wild and Lutz Schröder. Characteristic logics for behavioural hemimetrics via fuzzy lax
extensions. Log. Methods Comput. Sci., 18(2), 2022. doi:10.46298/lmcs-18(2:19)2022.

51 Paul Wild, Lutz Schröder, Dirk Pattinson, and Barbara König. A van Benthem theorem for
fuzzy modal logic. In Anuj Dawar and Erich Grädel, editors, Logic in Computer Science, LICS
2018, pages 909–918. ACM, 2018. doi:10.1145/3209108.3209180.

52 Thorsten Wißmann, Stefan Milius, and Lutz Schröder. Explaining behavioural inequivalence
generically in quasilinear time. In Serge Haddad and Daniele Varacca, editors, Concurrency
Theory, CONCUR 2021, volume 203 of LIPIcs, pages 32:1–32:18. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPICS.CONCUR.2021.32.

https://doi.org/10.4230/LIPIcs.CALCO.2015.253
https://doi.org/10.1016/j.tcs.2015.10.014
https://doi.org/10.1016/j.tcs.2015.10.014
https://doi.org/10.1305/NDJFL/1094155277
https://doi.org/10.1007/978-3-031-30829-1_14
https://doi.org/10.1093/logcom/exab050
https://doi.org/10.1016/S1571-0661(04)00063-5
https://doi.org/10.1016/S1571-0661(04)00063-5
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/j.tcs.2007.09.023
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-184
https://doi.org/10.1016/j.tcs.2004.09.035
https://doi.org/10.1016/b978-044482830-9/50019-9
https://doi.org/10.4230/LIPIcs.CONCUR.2020.27
https://doi.org/10.1007/978-3-030-71995-1_28
https://doi.org/10.1007/978-3-030-71995-1_28
https://doi.org/10.46298/lmcs-18(2:19)2022
https://doi.org/10.1145/3209108.3209180
https://doi.org/10.4230/LIPICS.CONCUR.2021.32

J. Forster, L. Schröder, P. Wild, H. Beohar, S. Gurke, B. König, and K. Messing 33:21

53 James Worrell. Coinduction for recursive data types: partial orders, metric spaces and omega-
categories. In Horst Reichel, editor, Coalgebraic Methods in Computer Science, CMCS 2000,
volume 33 of ENTCS, pages 337–356. Elsevier, 2000. doi:10.1016/S1571-0661(05)80356-1.

54 Hengyang Wu, Taolue Chen, Tingting Han, and Yixiang Chen. Bisimulations for fuzzy
transition systems revisited. Int. J. Approx. Reason., 99:1–11, 2018. doi:10.1016/j.ijar.
2018.04.010.

55 Hengyang Wu, Yixiang Chen, Tian-Ming Bu, and Yuxin Deng. Algorithmic and logical
characterizations of bisimulations for non-deterministic fuzzy transition systems. Fuzzy Sets
Syst., 333:106–123, 2018. doi:10.1016/j.fss.2017.02.008.

CSL 2025

https://doi.org/10.1016/S1571-0661(05)80356-1
https://doi.org/10.1016/j.ijar.2018.04.010
https://doi.org/10.1016/j.ijar.2018.04.010
https://doi.org/10.1016/j.fss.2017.02.008

The Lambda Calculus Is Quantifiable
Valentin Maestracci #

I2M, Université d’Aix-Marseille, France

Paolo Pistone #

LIP, Université Claude Bernard Lyon 1, France

Abstract
In this paper we introduce several quantitative methods for the lambda-calculus based on partial
metrics, a well-studied variant of standard metric spaces that have been used to metrize non-
Hausdorff topologies, like those arising from Scott domains. First, we study quantitative variants,
based on program distances, of sensible equational theories for the λ-calculus, like those arising from
Böhm trees and from the contextual preorder. Then, we introduce applicative distances capturing
higher-order Scott topologies, including reflexive objects like the D∞ model. Finally, we provide a
quantitative insight on the well-known connection between the Böhm tree of a λ-term and its Taylor
expansion, by showing that the latter can be presented as an isometric transformation.

2012 ACM Subject Classification Theory of computation → Lambda calculus; Theory of computation
→ Program semantics

Keywords and phrases Lambda-calculus, Scott semantics, Partial metric spaces, Böhm trees, Taylor
expansion

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.34

Related Version Full Version: https://arxiv.org/abs/2411.11809

Funding Paolo Pistone: Research has been funded by the French project ANR-23-CPJ1-0054-01.

1 Introduction

Two notions of program approximation. One of the fundamental goals of program semantics
is to understand when two different programs compute the same function. This is why, since
its origins, the semantics of the λ-calculus, the mathematical foundation for higher-order
programming languages, has been focused on the problem of program equivalence. Indeed,
λ-theories, the equational theories of the λ-calculus, constitute one of the pillars of the
mathematical theory behind this much studied language, ranging from more operational
theories, like β-equivalence, to more observational ones, like contextual equivalence.

Actually, several well-known denotational models of the λ-calculus are not just the
source for some λ-theory, but they also provide a topological point of view on them: the
interpretations of the λ-calculus via Böhm trees, Scott domains or the Taylor expansion,
involve spaces whose objects can be seen as limits of “finite” approximants, as well as
continuous functions between such spaces, that is, functions commuting with such limits.
In this way, the λ-theory induced by a topological model is associated with a notion of
approximation, in the sense that a program is equivalent to another program whenever the
net of finite approximants of the first converges to the second.

However, in general computer science, the approximation of a program is more commonly
thought as the fact of computing values which are close (possibly up to some probability)
to those produced by the program itself. By the way, the replacement of computationally
expensive algorithms by more efficient, but somehow inaccurate, ones, is pervasive in all
domains involving probabilistic or numerical methods. This has motivated, in the last few
years, a rise of interest towards semantic approaches to functional languages focused, rather
than on program equivalence, on notions of program similarity [37, 17, 11, 14, 16]. In these

© Valentin Maestracci and Paolo Pistone;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 34; pp. 34:1–34:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:valentin.maestracci@univ-amu.fr
https://orcid.org/0000-0003-0037-9041
mailto:paolo.pistone@ens-lyon.fr
https://orcid.org/0000-0003-4250-9051
https://doi.org/10.4230/LIPIcs.CSL.2025.34
https://arxiv.org/abs/2411.11809
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 The Lambda Calculus Is Quantifiable

approaches, each type is endowed with a pseudo-metric, measuring the amount to which two
programs behave in a similar, although non necessarily equivalent, way, and thus providing
ways to estimate the errors produced by approximated optimization methods. At the same
time, since any pseudo-metric induces an equational theory over programs, namely the one
formed by all the pairs of programs which are at no distance the one from the other, this
approach can be seen as a way to enrich, or “topologize”, well-established notions of program
equivalence.

Quantifying λ-theories via partial metrics. In a sense, the overall goal of this paper is
to reconcile these two, apparently different, ways to look at program approximations, by
developing metric counterparts to well-established methods for the λ-calculus, thus providing
ways to enrich λ-theories with notions of program similarity.

One reason why one could wish to approximate λ-theories by metrics is computational:
while equational theories are generally undecidable, equivalences and, as we’ll see, distances of
finite approximants can often be computed effectively. Could one thus express the equivalence
between two terms as the fact that the distance between their respective approximants gets
closer and closer to zero? This amounts to requiring that the limits in the topology T1
generating the λ-theory are also limits in the topology T2 generated by some program
pseudo-metric. In other words, that T1 is finer than T2.

At the same time, since program metrics are generally undecidable as well, could the
distances between two programs be themselves approximated by looking at the (computable)
distances between their approximants? This amounts to requiring, conversely, that the metric
limits, that is, the limits in T2, are also limits in the topology T1 inducing the λ-theory. In
other words, that T2 is finer than T1.

All this sums up to the following question: can we make the topology arising from
the semantics and the topology arising from the metric coincide? At first, one would
tend to answer no: for instance, while the topology of a metric space is always Hausdorff,
the topologies arising from the semantics of the λ-calculus (e.g. Scott domains) are not.
Nevertheless, there is a well-known reply to this answer, namely partial metrics [8, 9, 28, 42,
40, 38], a well-studied variant of standard metrics developed in connection with ideas from
program semantics. A partial metric differs from a standard metric in that the self-distances
p(x, x) need not be zero; correspondingly, one has a stronger triangular law of the form
p(x, y) ≤ p(x, z) + p(z, y) − p(z, z), taking into account the self-distance of the middle point
z. As a consequence, distinct points will not have disjoint neighborhoods, as soon as the
self-distance of one makes it “too thick”, so to say, to separate it from the other.

In fact, any continuous domain with a countable basis is quantifiable (a term we borrow
from [40]) by a partial metric. This means that its Scott topology does coincide with the
topology induced by the metric [9, 35, 42, 40, 41], so that the limits in the Scott topology
agree with the metric limits and viceversa.

While the quantification of domains via partial metrics has been well-known for a while,
the application of such results to the study of higher-order languages has not been much
explored so far. We do it in this paper: we introduce quantitative variants for well-known
methods like Böhm trees, Scott domains and the Taylor expansion, based on partial metrics,
at the same time providing ways to approximate their associated λ-theories.

Contributions. In this paper we show that several well-known approaches to the study of
the λ-calculus can be quantified, that is, enriched with metric reasoning on program similarity.
Our contributions can be summarized as follows:

V. Maestracci and P. Pistone 34:3

We introduce a partial metric variant of the notion of sensible λ-theory [5] and we explore
quantitative versions of well-known theories like those arising from Böhm trees and the
contextual preorder.
We introduce applicative partial metrics, and we illustrate their use to quantify higher-
order Scott domains as well as reflexive objects, like Scott’s model D∞. This opens the
way to apply metric techniques to typed or non-typed higher-order languages.
Finally, we study the Taylor expansion of λ-terms [18, 19, 4], a powerful technique
inspired by ideas from linear logic, and show that it can be presented as an isometric
transformation from Böhm trees to sets of resource λ-terms, thus refining the well-known
commutation theorem [20], that relates the corresponding λ-theories.

Outline. In Section 2 we recall basic notions about partial metric spaces. In Section 3
we introduce quantitative variants of sensible λ-theories. In Section 4 we investigate the
quantification of higher-order Scott domains via applicative distances, and in Section 5 we
apply these ideas to the quantification of reflexive objects. In Section 6 we discuss the Taylor
expansion. Finally, in Section 7 we indicate related work as well as a few future directions.

2 Partial Metric Spaces

In this section we introduce partial metric spaces and we illustrate a few examples.

▶ Definition 1. A function p : X × X → [0, +∞] is called a partial metric (PM) when it
satisfies the following axioms:
(P1) p(x, x) ≤ p(x, y),
(P2) If p(x, x) = p(x, y) = p(y, y) then x = y,
(P3) p(x, y) = p(y, x),
(P4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).
p is called a partial pseudo-metric (PPM) when it satisfies P1, P3 and P4, and a partial
ultra-metric (PUM) when it satisfies P1, P3 and
(P4U) p(x, y) ≤ max{p(x, z), p(z, y)}.

While in a standard (pseudo-)metric space each point is at distance 0 from itself, condition
P1 states that the distance of a point from itself is only required to be smaller than its distance
from any other point. Condition P2 adapts the usual separation condition d(x, y) = 0 ⇒ x = y

to non-zero self-distances, and distinguishes PMs from PPMs. Condition P3 is the usual
symmetry, while P4 is a strengthening of the triangular law of metric spaces, that also takes
into account the possibly non-zero self-distance of the middle point z. P4U is as for standard
ultra-metric spaces. Notice that P4U implies P4, so PUMs are indeed PPMs. Notice that a
PPM (resp. a PUM, a PM) p always induces a pseudo-metric (resp. a ultra-metric, a metric)
by the formula dp(x, y) := 2p(x, y) − p(x, x) − p(y, y).

A PPM p induces a preorder on X defined by x ≤p y iff p(x, y) ≤ p(x, x). Notice that
this implies by P1 that p(x, y) = p(x, x). When p is a PM the preorder ≤p is indeed an
order. With respect to this preorder, p is antimonotonic in the sense that x ≤p x′ implies
p(x′, y) ≤ p(x, y). Intuitively, the higher points are those with smaller self-distance.

The symmetrization of the preorder ≤p yields an equivalence relation ≃p. In the next
section we will indeed explore the use of partial metrics as ways of approximating preorders
or equivalence relations on λ-terms. We will say that a PPM p quantifies an order (resp. an
equivalence) relation over X when this relation coincides with ≤p (resp. ≃p).

Let us now talk about the topology induced by a PPM.

CSL 2025

34:4 The Lambda Calculus Is Quantifiable

▶ Definition 2 (open balls, topology). Let p be a PPM on X. For any x ∈ X and ϵ ∈ (0, +∞),
the open ball of center x and radius ϵ is the set Bp

ϵ (x) = {y ∈ X | p(y, x) < p(x, x) + ϵ}. The
topology of p, noted Op(X), is formed by all subsets U ⊆ X which are unions of open balls.

Recall that, by P1, the distance between two points x, y is always greater or equal than the
self-distances p(x, x), p(y, y). We could equivalently define open balls as for standard metric
spaces, i.e. Bp

ϵ (x) = {y ∈ X | p(y, x) < ϵ}, but this would make Bp
ϵ (x) empty whenever

ϵ ≤ p(x, x). Open balls are upper: if y ∈ Bp
ϵ (x) and y ≤p y′, by antimonotonicity we

deduce p(y′, x) ≤ p(y, x) < p(x, x) + ϵ, whence y′ ∈ Bp
ϵ (x). As a consequence, all open sets

U ∈ Op(X) are upper.
Contrarily to standard metric spaces, the topology Op(X) is not in general Hausdorff:

suppose x, y are distinct points such that x ≤p y; since any open set containing x must also
contain y, there can be no disjoint open sets U, V such that x ∈ U and y ∈ V . In some cases,
as we’ll see, Op(X) may coincide with the Scott topology induced by the order ≤p.

In Sections 4 and 5 we will explore the use of partial metrics as ways of approximating
(Scott) topologies on λ-terms. We will say that a PPM p quantifies a topology O(X) over X

when O(X) = Op(X).
Continuous functions between PPMs can be defined in the usual topological sense: given

PPMs p, p′, respectively on X and X ′, a function f : X → X ′ is p, p′-continuous when f−1

sends open sets in Op′(X ′) onto open sets in Op(X). There is an equivalent ϵ/δ-definition: f is
p, p′-continuous if for all x ∈ X and ϵ > 0, there exists δ > 0 such that f(Bp

δ (x)) ⊆ Bp′

ϵ (f(x)).
We compare different PPMs on a set X by relating the associated topologies:

▶ Definition 3. Given two PPMs p, p′ on X, we say that p is finer than p′ (noted p ⊑ p′)
when Op′(X) ⊆ Op(X).

Equivalently, p ⊑ p′ when the identity map idX : X → X is p, p′-continuous, i.e. every open
p′-ball contains an open p-ball around any of its points.

We conclude this short presentation with a few examples.

▶ Example 4 (Sierpinski space). The simplest example of a non-Hausdorff topology that is
quantified by a partial metric is the Sierpinski space S = {0, 1}, with the Scott topology
Oσ(S) = {∅, {1}, {0, 1}} induced by the order 0 ≤ 1. Define the PM s on S by s(0, 0) =
s(0, 1) = 1 and s(1, 1) = 0. Notice how this implies 0 ≤s 1. Since 0 has self-distance 1, the
unique open balls are indeed ∅, {1} and {0, 1}, that is, Oσ(S) = Os(S).

▶ Example 5 (Intervals). The closed intervals of R, noted I(R), admit the PM pint(I1, I2) :=
inf{|b − a| | I1 ∪ I2 ⊆ [a, b]}, which is the size of the smallest interval containing I1 and I2.
The order defined by the metric here is intuitive, it is reverse inclusion/the Scott information
order: I ≤pint J iff pint(I, J) ≤ pint(I, I) iff J ⊆ I. The more information one has, the higher.
This example explains the choice of the word “partial”: an interval, in term of Scott topology,
represents an information on a partial execution: we have yet to discover the precise real
number that we are computing. By contrast, the total elements will be those with self
distance 0 (the ones where p behaves like a regular metric), i.e. of the form {r}, a complete
information, of a terminated execution.

▶ Example 6 (Labeled trees). Let ΣTree≤∞ be the set of (non necessarily finite) finitely
branching Σ-labeled trees, where Σ is a countable set of labels. For any α ∈ ΣTree≤∞, let
|α| ∈ N ∪ {∞} indicate the height of α. For any n ∈ N, let αn be the finite tree obtained
by truncating all paths of α at length n, if |α| ≥ n, and be undefined otherwise. We write
αn ≜ βn to indicate that αn and βn are both definite and equal, and αn ̸≜ βn for its negation.
For any α, β ∈ ΣTree≤∞, define div(α, β) := inf{n | αn ≜ βn and αn+1 ̸≜ βn+1}.

V. Maestracci and P. Pistone 34:5

The standard tree (ultra-)metric dtree is defined by d(α, β) = 0 if α = β and 2−div(α,β)

otherwise. We obtain instead a PUM by simply letting ptree(α, β) := 2−div(α,β) (where it is
intended that 2−∞ = 0). For a finite tree α, its self-distance is ptree(α, α) = 2−|α|, while
ptree(α, α) = 0 holds iff α has infinite height. Also this case suggests that finite trees are seen
as “partial” objects, while the infinite trees are the “total” ones. Indeed, ptree, unlike dtree,
quantifies the Scott topology on ΣTree≤∞ (see Section 4).

3 Quantifying λ-Theories

In this section we introduce quantitative variants, based on partial metrics, of sensible
λ-theories that arise from well-studied models of the untyped lambda-calculus, that is, the
theory of Böhm trees and the theory of contextual equivalence. Moreover, we lift several
properties of such equational theories to the corresponding notion of program similarity.

λ-PPMs. Let us first recall the standard notion of λ-theory [5].

▶ Definition 7. A λ-theory T is an equivalence relation ≃T on the set Λ of all λ-terms
satisfying the rules below:
(congr1) M ≃T N ⇒ MP ≃T NP ,
(congr2) M ≃T N ⇒ PM ≃T PN ,
(ξ) M ≃T N ⇒ λx.M ≃T λx.N ,
(β) (λx.M)N ≃T M [N/x].
A λ-theory T is said extensional when it satisfies the rule (η):
(η) M ≃T λx.Mx.
and sensible when it equates all unsolvable terms and does not equate a solvable and an
unsolvable term.

Notice that a sensible theory T must be consistent: it cannot equate all terms.
A λ-theory may either arise from an operational theory (e.g. β- and βη-reduction) or be

induced by a model (as the theory formed by all equations between terms that are interpreted
by the same entity in the model). While there exists a continuum of different λ-theories,
beyond the theories of β and βη-equivalence (respectively, the smallest λ-theory and the
smallest extensional λ-theory), very few theories have been studied in depth. Indeed, all
most common denotational models of the untyped λ-calculus induce one of the two sensible
theories B, and H∗, that we consider below.

We now introduce a quantitative variant of λ-theories. Let us first recall that a point
x in a topological space X is said generic when its closure is X or, equivalently, all its
neighborhoods are dense in X. For instance, 0 is generic in the Sierpinski space S. In the
case of PPM we have the following:

▶ Lemma 8. x is generic in the topology Op(X) iff x ≤p y holds for all y ∈ X.

Proof. Call x generic for p if x ≤p y (that is, p(y, x) = p(x, x)) holds for all y ∈ X. x is
generic for p iff the only open ball centered at x is X: from p(y, x) = p(x, x) it follows that
for any ϵ > 0, y ∈ Bϵ(x), that is, Bϵ(x) = X; conversely, if any open ball centered at x is
equal to X, then, for all ϵ > 0, p(y, x) < p(x, x) + ϵ, which implies p(y, x) ≤ p(x, x) and thus
p(y, x) = p(x, x) by P1.

Now, if x is generic for p, then any open set U containing x must contain some open ball
Bϵ(x), which forces U = X since Bϵ(x) = X, so x is generic in Op(X). Conversely, if x is
generic in Op(X), then for any ϵ > 0, the closure of Bϵ(x) is X. This implies that for all
ϵ > 0, p(y, x) ≤ p(x, x) + ϵ, and thus that p(y, x) = p(x, x), so x is generic for p. ◀

CSL 2025

34:6 The Lambda Calculus Is Quantifiable

▶ Remark 9. Generic points are indistinguishable: if x and y are both generic for p, then from
p(y, y) = p(x, y) = p(x, x) it follows that x ≃p y. Conversely, if x is generic and y is not, then,
x ̸≃p y: if x ≃p y, then, since p(y, x) = p(y, y), for all z, p(y, z) ≤ p(y, x) + p(x, z) − p(x, x) =
p(y, x) + p(x, x) − p(x, x) = p(y, x) = p(y, y), so y would be generic as well.

▶ Definition 10 (λ-PPM). A pseudo-partial metric p over Λ is called a λ-PPM (resp. an
extensional λ-PPM) if the following hold:

≃p is a λ-theory (resp. an extensional λ-theory);
all contexts C[−] correspond to p-continuous maps Λ → Λ.

p is called sensible if all unsolvable terms are generic while no solvable term is.

Observe that we do not require contexts to be non-expansive (or 1-Lipschitz), as in other
standard metric approaches [37, 17, 15], but just continuous. Also notice that, by Remark 9,
a sensible PPM p must satisfy M ≃p N for all unsolvable terms M, N , and M ̸≃p N for M

unsolvable and N solvable: the associated λ-theory ≃p is thus sensible.
In the rest of this section we introduce λ-PPMs quantifying the λ-theories B and H∗.

Böhm Trees. The interpretation of λ-terms as Böhm trees is one of the fundamental tools
in the λ-calculus. The Böhm tree B(M) of a λ-term M is a (Λ ∪ {⊥})-labeled tree defined
co-inductively as follows:

if M reduces to λx1.λxm.xM1 . . . Mn, then B(M) has a root with label λx1.λxm.x

and n subtrees B(M1), . . . , B(Mn);
otherwise, B(M) only consists of the root, with label ⊥.

An alternative presentation of B(M) is via partial terms, which are λ-terms in normal
form, enriched with the constant ⊥ and rules λx.⊥ → ⊥, ⊥M → ⊥. We note these partial
terms A, B, The set A of partial terms is ordered by the contextual closure ⪯ of the
relation generated by ⊥ ⪯ A, for all A ∈ A. Partial terms correspond straightforwardly to
finite Böhm trees.

For any λ-term M , let the partial term MA be defined inductively as follows: MA =
λx⃗.y(M1)A . . . (Mn)A if M = λx⃗.yM1 . . . Mn, and MA = ⊥ if M = λx⃗.(λy.P)M1 . . . Mn+1.
Let A ≤ M whenever M β-reduces to M ′ with A ⪯ M ′

A. We then let B(M) = {A | A ≤ M}.
Observe that B(M) can be seen at the same time as a tree under the relation ≤, and the
standard tree ordering B(M) ⪯ B(N) holds precisely when B(M) is included in B(N).

The λ-theory B contains all equations M ≃B N , where B(M) = B(N). B is sensible but
non-extensional (as e.g. B(λx.x) ̸= B(λx.λy.xy)).

We now introduce the corresponding λ-PPM: we measure the distance between λ-terms
by comparing their Böhm trees via the tree partial metric.

▶ Definition 11 (Böhm partial metric). For any two λ-terms M, N , let

pBöhm(M, N) := ptree(B(M), B(N)).

Observe that pBöhm(M, M) = 0 iff B(M) is infinite. It is not difficult to check that pBöhm
captures the theory B:

▶ Proposition 12. M ≤pBöhm N iff B(M) ≤ B(N), and thus M ≃pBöhm N iff M ≃B N .

As discussed in Section 4, pBöhm captures the Scott topology of Böhm trees. This proves that
contexts are continuous, and thus that pBöhm is a λ-PPM. Moreover, since ptree(⊥, α) = 1,
the unsolvable terms are generic, while, for any solvable term M , pBöhm(M, M) < 1 and
thus, for any ϵ < 1 − pBöhm(M, M), the open ball BpBöhm

ϵ (M) does not contain the term
λx.M (since pBöhm(M, λx.M) = 1 > pBöhm(M, M) + ϵ).

V. Maestracci and P. Pistone 34:7

▶ Remark 13. While the theory B is Π0
2-complete, the distances ptree(A, B) are effectively

computable whenever A, B are finite trees (equivalently, partial terms). Moreover, to check
that pBöhm(M, N) < ϵ, it is necessary and sufficient to find approximants A ≤ M and B ≤ N

such that ptree(A, B) < ϵ.

Contextual equivalence. We now consider the theory arising from contextual equivalence.
Let M ⊑ctx N if for all context C[−], if C[M] is solvable, then C[N] is solvable. The theory
H∗ contains all equations M ≃H∗ N where M ⊑ctx N and N ⊑ctx M both hold. It is
extensional and sensible, and is indeed the maximum sensible theory.

To quantify H∗ we define the following distance:

▶ Definition 14 (contextual partial metric). For all terms M, N , we define

pctx(M, N) =
∞∑

n=0

{
1
2n

∣∣∣ Cn[M] is unsolvable or Cn[N] is unsolvable
}

,

where (Cn[−])n∈N is an enumeration of all contexts.

The distance pctx(M, N) intuitively counts all contexts Cn[−] that fail on either M or N .
In particular, the self-distance pctx(M, M) counts the contexts that fail on M .

The following result shows that pctx captures the contextual preorder:

▶ Proposition 15. M ≤pctx N iff M ⊑ctx N , and thus M ≃pctx N iff M ≃H∗ N .

For the result above, the choice of the enumeration is irrelevant, as is the choice of the
weights 1

2n , which could be replaced by arbitrary weights θn summing up to 1.
▶ Remark 16. Contrarily to contextual equivalence, which is Π0

2-complete as well, to check
that N ∈ Bpctx

ϵ (M) one does not need to look at the behavior of M and N under all contexts.
Intuitively, Bpctx

ϵ (M) contains all those programs that behave like M on certain finitely many
contexts. Indeed, pctx(M, N) < pctx(M, M) + ϵ means that the contexts on which M does
converge and N does not sum up to some value strictly smaller than ϵ. This is true iff N

converges on those finitely many contexts Ci[−], where 2−(i+1) ≤ ϵ, on which M converges.

▶ Proposition 17. pctx is a sensible extensional λ-PPM.

Proof. Let us show that contexts yield continuous maps. Take a term M , ϵ > 0 and a
context C. We need to find some δ > 0 such that for all P ∈ Bpctx

δ (M), C[P] ∈ Bpctx
ϵ (C[M]).

By Remark 16 there exists a finite number of contexts C1, . . . , Ck such that Ci[C[M]] is
solvable and N ∈ Bpctx

ϵ (C[M]) iff Ci[N] is solvable for i = 1, . . . , k. Take m such that for
all i = 1, . . . , k, the context Ci[C[−]] has an index smaller than m, and let δ = 2−m. Notice
that Ci[C[M]] is solvable. Moreover, for any term P , if P ∈ Bpctx

δ (M), then Ci[C[P]] must be
solvable for all i = 1, . . . , m. This implies then that C[P] ∈ Bpctx

ϵ (C[M]), as desired.
The sensibility of pctx essentially follows from the well-known genericity lemma [5, 2]: if

C[M] is solvable, where M is unsolvable, then C[N] must be solvable for all N ; this implies
that for any unsolvable M , and for any term N , pctx(M, N) = pctx(M, M), so M is generic in
pctx. Conversely, if M is solvable, then, for any unsolvable term N , one can easily construct
a context C such that C[M] reduces to λx.x and C[N] diverges. This allows us to conclude
that pctx(M, N) > pctx(M, M), and thus that M is not generic in p. ◀

Similarly to the λ-theory H∗, the λ-PPM pctx is maximum among sensible λ-PPMs.

▶ Proposition 18. For any sensible λ-PPM p, p ⊑ pctx.

CSL 2025

34:8 The Lambda Calculus Is Quantifiable

Proof. Let p be a sensible λ-ppm. Consider a term M and ϵ > 0. We must find δ > 0 such
that Bp

δ (M) ⊆ Bpctx
ϵ (M). By Remark 16 there exists a finite number of contexts C1, . . . , Ck

such that Ci[M] is solvable and N ∈ Bpctx
ϵ (M) iff Ci[N] is solvable for i = 1, . . . , k.

Fix an i ≤ k and let Qi = Ci[M]. Since Qi is solvable and p is sensible, we can find an
open set Ui containing Qi and not containing any unsolvable term. Since p is a λ-PPM, Ci

corresponds to a continuous function, and thus C−1
i (Ui) contains some open ball Bp

δi
(M).

Let δ = mini δi: if P ∈ Bp
δ (M), then for all i = 1, . . . , k, Ci[P] ∈ Ui, so it must be solvable.

We conclude then that P ∈ Bpctx
ϵ (M). ◀

▶ Remark 19. That pBöhm ⊏ pctx can be easily seen directly: the elements of Bpctx
ϵ (M) are

those which converge on a finite number of contexts C1, . . . , Ck on which M converges too
(cf. Remark 16). For any such context Ci, the convergence of Ci[M] to a head normal form
only depends on the exploration of a finite portion of B(M), say up to height mi. Letting
m = maxi{mi} and δ = 2−m, we have then that BpBöhm

δ (M) ⊆ Bpctx
ϵ (M). The converse

inclusion pctx ⊑ pBöhm cannot hold: any open ball BpBöhm
ϵ (I) around I = λx.x that does not

contain its η-expansion λx.λy.xy contains no open pctx-ball around I.
Other well-known characterizations of H∗ exist, which suggest different ways to quantify

this theory. One is in terms of the so-called Nakajima trees (cf. [5], Ex. 19.4.4, p. 511): these
are a variant of Böhm trees that are invariant under the η-rule. By adapting the tree partial
metric one could then obtain another partial metric pNakajima that quantifies H∗.

Moreover, the theory H∗ is induced by a large class of denotational models of the λ-
calculus (cf. [31]), including in particular the models based on Scott domains, that we discuss
in Sections 4 and 5, or the relational model from [6], to which the techniques illustrated in
those sections can be easily adapted.

4 Quantifying Scott Domains

As discussed in the introduction, the λ-theories like B or H∗ are induced by topological
models, based on Scott domains, which provide notions of approximant for λ-terms. In
this section, after discussing the connection between partial metrics and Scott domains, we
introduce applicative PPMs as a means to capture domains of Scott-continuous functions,
and we illustrate how this leads to quantify topological models of typed λ-calculi.

Scott Domains via Partial Metrics. Let us recall some basic terminology about dcpos and
Scott domains.

A partially ordered set (X, ≤) is a dcpo (directed complete partial order) if all directed
subsets of X admit a least upper bound. The way below relation ≪ on a dcpo is defined by
x ≪ y iff for all directed subset ∆ ⊆ X, y ≤

∨
∆ implies x ≤ d, for some d ∈ ∆. A point

x ∈ X is said compact if x ≪ x. A basis for a dcpo X is a subset B ⊆ X such that for any
x ∈ X, the set ∆ = {y ∈ B | y ≪ x} is directed and x =

∨
∆. A dcpo is said continuous

if it has a basis and algebraic if it has a basis formed of compact elements. A domain is a
continuous dcpo with a countable basis. A domain X is bounded complete if for any finite set
Y ⊆fin X, if an upper bound of Y exists in X, then

∨
Y exists in X. A bounded complete

and algebraic domain is called a Scott domain.
The Scott topology Oσ(X) on a partially ordered set (X, ≤) has open sets being upper

subsets U ⊆ X which are finitely accessible: x ∈ U implies y ∈ U for some y ≪ x. A function
f : X → Y between dcpos is said continuous iff f is monotone and commutes with the lubs
of directed subsets, that is, for all directed ∆ ⊆ X, f(

∨
∆) =

∨
f(∆). This is equivalent

to asking f to be continuous, in the usual sense, with respect to the Scott topology. The
category of bounded complete domains and continuous functions is cartesian closed (cf. [1]).

V. Maestracci and P. Pistone 34:9

Let us specify what it means for a dcpo to be quantified by a partial metric.

▶ Definition 20. A dcpo (X, ≤) is quantified by a PM p when its associated Scott topology
is quantified by p, that is, when Op(X) = Oσ(X).

Beyond the Sierpinski space S, also the other two dcpos from Section 2 are quantified by
the associated PMs (proofs are in the long version):

▶ Proposition 21. The interval dcpo I(R) is quantified by pint (cf. Example 5). The domain
ΣTree≤∞ of Σ-trees is quantified by ptree (cf. Example 6).

When p quantifies a dcpo (X, ≤), the order ≤p coincides with the order ≤ of the dcpo.

▶ Lemma 22. Suppose the dcpo (X, ≤) is quantified by p. Then ≤ coincides with ≤p.

Proof. ≤ coincides with the specialization order x ≤Oσ(X) y ⇔ ∀U ∈ Oσ(X)(x ∈ U ⇒ y ∈
U); similarly, ≤p coincides with the specialization order x ≤Op(X) y ⇔ ∀U ∈ Op(X)(x ∈
U ⇒ y ∈ U). From Oσ(X) = Op(X) we deduce that the two specialization orders coincide,
and thus ≤ and ≤p as well. ◀

However, checking that a partial metric p captures the order of the dcpo is not in general
enough to deduce that p quantifies the dcpo, as shown by Example 24 below. The following
proposition provides necessary (but not sufficient) conditions.

▶ Proposition 23. Let (X, ≤) be a continuous dcpo and p a partial metric on X such that
≤ coincides with ≤p.Then the following conditions are equivalent:
1. Op(X) ⊆ Oσ(X);
2. open p-balls are finitely accessible;
3. p is Scott-continuous (as a map towards the dcpo ([0, +∞], ≥)).

Proof.
(1 ⇔ 2) Since the open balls are upper sets, these are Scott open iff they are finitely

accessible.
(3 ⇒ 2) p is Scott continuous when for all x ∈ X and directed subset ∆ ⊆ X one has

p(x,
∨

δ) = infd∈δ p(x, d). Suppose p is continuous and let y ∈ Bϵ(x). We need to
show that there exists y′ ≪ y such that y′ ∈ Bϵ(x). This implies that for some ϵ′ < ϵ,
p(y, x) < p(x, x) + ϵ′. Since p is continuous and y =

∨
{z | z ≪ y} we have then

inf{p(z, x) | z ≪ y} = p(y, x) < p(x, x) + ϵ′. This implies in turn that for some y′ ≪ y,
p(y′, x) ≤ p(x, x) + ϵ′ < p(x, x) + ϵ, that is, y′ ∈ Bϵ(x).

(2 ⇒ 3) Suppose that open p-balls are finitely accessible, hence Scott open. Let ∆ ⊆ X be
a directed set and x ∈ X. We need to prove that p(x,

∨
∆) = infd∈∆ p(x, d). Observe

that the “≤” direction directly follows from d ≤
∨

∆. To prove the “≥” direction we
argue as follows: let p(x,

∨
∆) = p(x, x) + δ, with δ ∈ R≥0. Let δ′ > δ, so that we have∨

∆ ∈ Bδ′(x). Since Bδ′(x) is Scott-open, there exists w ≪
∨

∆ such that w ∈ Bδ′(x).
From w ≪

∨
∆ it follows that, for some d ∈ D, w ≤ d holds, whence p(d, x) ≤ p(w, x) <

p(x, x) + δ′. We have thus proved that for all δ′ > δ there exists d ∈ ∆ such that
p(d, x) < p(x, x) + δ′, which implies then infd∈∆ p(d, x) ≤ p(x, x) + δ = p(x,

∨
∆). ◀

To check the converse condition Oσ(X) ⊆ Op(X), one must show that, given x ≪ y,
one can form open balls around y whose elements all lie way above x. This corresponds to
showing that the basic open sets ↠ x = {y | x ≪ y} for the Scott topology are metric open.

CSL 2025

34:10 The Lambda Calculus Is Quantifiable

▶ Example 24. We construct a PM on ΣTree≤∞ that captures the tree order but fails
to quantify its Scott topology. Define a variant q of the tree partial metric as q(α, β) =
1
2 ptree(α, β) + 1

4 if α ̸= β or α = β is finite, and as ptree(α, β) if α = β is infinite. q is still a
partial metric and furthermore the order ≤q coincides with the tree order (and thus with ≤p

as well); now, letting αn be a directed sequence of finite trees converging to an infinite tree
α, we have limn q(αn, α) = 1

4 > 0 = q(
∨

n αn, α). Hence q is not Scott-continuous, and by
Proposition 23 we have that Oq(ΣTree≤∞) ̸⊆ Oσ(ΣTree≤∞).

▶ Remark 25 (computability of p(x, y) < ϵ). An immediate and useful consequence of the fact
that open balls are Scott open is that p(x, y) < ϵ holds precisely when p(x′, y′) < ϵ holds for
some approximants x′ ≪ x and y′ ≪ y. In other words, to verify that y is close enough to x

it is enough to check that the approximants of y get close enough to the approximants of x.
When distances between approximants, as well as the relation b ≪ x between a point and
an approximant, are computable, the property p(x, y) < ϵ may be (semi-)decidable, even
though the exact values p(x, y) are as hard as computing the λ-theory (usually, Π0

2 or worse).
For instance, in the case of Böhm trees, to check that pBöhm(M, N) < 2−n, it is enough to
check that B(M) and B(N) coincide up to height n, a property which can be semi-decided.

▶ Example 26 (ϵ/δ-continuity of contexts). As ptree quantifies the Scott topology of trees
(cf. Proposition 21), it quantifies the Scott topology of Böhm trees. From the continuity
theorem for Böhm trees (cf. [5]) we deduce then the following: for all context C[−] and λ-term
M and for all ϵ > 0, there exists δ > 0 such that, for all terms P , pBöhm(P, M) ≤ δ implies
pBöhm(C[P], C[M]) ≤ ϵ. Another way of stating this is that for all C[−] and M , for all n ∈ N
there exists m ∈ N such that, if B(P) and B(M) are the same up to depth m, then B(C[P])
and B(C[M]) are the same up to depth n.

Let us conclude this paragraph by recalling a very general result on the quantifiability of
domains, already mentioned in the Introduction:

▶ Theorem 27 (cf. [40]). Let (X, ≤) be a domain with a countable basis (bn)n∈N, and let
θn ∈ (0, 1] be a sequence of weights such that

∑∞
n θn ≤ 1. Then X is quantified by the partial

metric pX
bn,θn

(x, y) =
∑

n∈N θn, where N := {n | bn ̸≪ x or bn ̸≪ y}.

While Theorem 27 provides a general positive answer to the quantifiability problem for
domains, the practical usability of metrics like pX

bn,θn
depends on whether the relation bn ≪ x

between a point and an approximant, and its negation, are computable.

Applicative distances and the function space. The categories of Scott domains
(resp. bounded complete domains) and continuous functions are sub-categories of Top that
are, as is well-known, cartesian closed. Using Theorem 27 it is possible to define, on each
object of such categories, a partial metric that quantifies its topology. However, in common
approaches to higher-order languages (e.g. [17, 25, 16]), one requires distances to be defined
in a compositional way.

For example, given metric spaces (X, dX) and (Y, dY), a standard way to define a metric
on their cartesian product is by letting dX×Y (⟨x, y⟩, ⟨x′, y′⟩) = dX(x, x′) + dY (y, y′). Indeed,
a similar construction also works for PMs:

▶ Proposition 28. Let X, Y be two Scott domains, quantified, respectively, by the partial
metrics pX , pY . Their cartesian product X × Y is then quantified by the partial metric
pX×Y := 1

2 (pX + pY).

V. Maestracci and P. Pistone 34:11

We omit the proof of Proposition 28 as it is similar to that of Proposition 30 below (still, the
proof can be found in the extended version).

▶ Remark 29. In the following discussion we restrict attention to partial metrics valued in
[0, 1], rather than on [0, +∞]. This is not a limitation, since for any partial metric p with
values in [0, +∞], the partial metric p≤1 : X × X → [0, 1] defined by p≤1(x, y) := p(x,y)

1+p(x,y)
induces the same topology (cf. [34]).

Let us now consider the function space. Given metric spaces (X, d) and (X ′, d′), a
standard compositional way to define a metric on the space C(X, X ′) of continuous functions
from X to X ′ is via the sup-condition dsup(f, g) = supx∈X d′(f(x), f(x′)). Notably, when
X is compact, dsup metrizes the compact-open topology on C(X, X ′). Other compositional
metrics on the space of non-expansive functions NExp(X, X ′), depending on both d and d′,
can be found in the literature [10, 15]. Similar compositional definitions are also found in
more operational approaches like e.g. [37, 25].

A common intuition in all these definitions is that two functions are close when their
application to close (or even identical) points produces points that are still close. We will
call functional distances respecting this idea applicative distances.

However, to define an applicative PM on the space of continuous functions, we cannot
directly adapt a definition like dsup: unlike for standard (pseudo-)metrics, the sups of a
family of PPMs does not define a PPMs. This is due to condition P4, which relies in a
contravariant way on the medium self-distance p(z, z).

Instead, we will rely on the remark that a continuous function f : X → Y is uniquely
determined by its action on the (countably many) elements of a basis of X. This suggests
indeed the definition from the Proposition below:

▶ Proposition 30. Let X, Y be two bounded complete domains, quantified, respectively, by
the PMs pX , pY , and let (an)n∈N be an enumeration of a basis of X. Then, for all 0 < θ ≤ 1

2 ,
their exponential X ⇒ Y is quantified by the PM

pθ
X⇒Y (f, g) =

∞∑
n=1

θnpY (f(an), g(an)). (1)

Before proving the result above, let us first discuss the PM pθ
X⇒Y . The distances

pθ
X⇒Y (f, g) are defined by infinite series, which are convergent by our assumption that

pX , pY are bounded by 1. However, for any ϵ > 0, the verification that pθ
X⇒Y (f, g) < ϵ can

be reduced to a finitary test:

▶ Lemma 31. For all continuous functions f, g : X → Y , for all n > 0, there exists N ∈ O(n)
such that, if pY (f(ai), g(ai)) < 2−(n+1) holds for all i = 1, . . . , N , then pθ

X⇒Y (f, g) < 2−n.

Proof. Let ϵ = 2−n. We must choose N so that
∑∞

i>N θi < ϵ
2 . Since

∑∞
n=1 θn ≤ 1, this

corresponds to requiring
∑N

n=1 θn > 1 − ϵ
2 , or, equivalently, 1−θN+1

1−θ − 1 > 1 − ϵ
2 . A few

computations yield then the condition N + 1 > log
(
3θ + θ2ϵ + ϵ

)
∈ O(log ϵ).

Let us show that under this condition the claim holds. Suppose pθ(f(ai), g(ai)) ≤ ϵ
2 holds

for i = 1, . . . , N . Then we have

pθ(f, g) =
(

N∑
k=1

θnq(f(ak), g(ak))
)

+
(∞∑

k>N

θnq(f(ak), g(ak))
)

≤

(
N∑

k=1
θn ϵ

2

)
+ ϵ

2 ≤ ϵ

◀

CSL 2025

34:12 The Lambda Calculus Is Quantifiable

The intuition behind the test above is that for N high enough, the infinite sum
∑∞

n≥N θn

gets too small to actually matter in checking that pθ
X⇒Y (f, g) is smaller than ϵ, and one is

thus reduced to the finite sum
∑N

n=1 θnpY (f(an), g(an)). This is indeed a key ingredient
in showing that open balls of functions are finitely accessible, and in particular, that if
g ∈ Bϵ(f), this only depends on finitely many values of g.

Conversely, from pθ
X⇒Y (f, g) < ϵ, one can deduce bounds pY (f(an), g(an)) < θ−nϵ for

all n ∈ N, although such bounds become more and more loose as n increases, due to the
exponential scaling factor θ−n.

Let us now turn to the proof of Proposition 30. First, let us recall that, given bounded
complete domains X, Y , with countable bases B(X), B(Y), the domain C(X, Y) admits a
countable basis formed by all functions of the form (↠ a ↘ b), where a ∈ B(X), b ∈ B(Y),
and (↠ a ↘ b)(x) = b in case a ≪ x, while (↠ a ↘ b)(x) = ⊥ otherwise.

Importantly, while it is always the case that f ≪ g implies f(x) ≪ g(x) for all x ∈ X,
the converse need not hold. Rather, the way below relation can be characterized as follows.

▶ Lemma 32 (cf. [21]). For all f, g ∈ C(X, Y), f ≪ g iff there exists basis elements
a1, . . . , an ∈ B(X) and b1, . . . , bn ∈ B(Y) such that

bi ≪ g(ai),

↠ ai ≪ g−1(↠ bi)1, for all i = 1, . . . , n,
f ≤

∨n
i=1(↠ ai ↘ bi).

We now have all ingredients to prove Proposition 30.

Proof of Proposition 30.
Oσ(X ⇒ Y) ⊇ OpX⇒Y (X ⇒ Y): We have to show that open balls are Scott-open. First

observe that open balls are upper sets. We thus only need to show that they are finitely
accessible: for all g ∈ Bϵ(f) we must find some h ≪ g such that h ∈ Bϵ(f). Let then
g ∈ Bϵ(f), so that pλ

X⇒Y (f, g) < pλ
X⇒Y (f, f) + ϵ. Observe that this implies that we

can find positive reals θ, δ > 0 such that θ + δ ≤ ϵ and pλ
X⇒Y (f, g) < pλ

X⇒Y (f, f) + δ.
Let N be such that

∑∞
n>N λn ≤ θ

2 . For all n ≤ N , fix some bn ∈ B θ
2
(g(an)) such that

bn ≪ g(an), and some basis element cn ≪ an.
Let now h =

∨N
i=1(↠ ci ↘ bi). From bi ≪ g(ai) it follows that ai ∈ g−1(↠ bi), and thus

that ↠ ci ≪ g−1(↠ bi). By Lemma 32 this implies that h ≪ g. Let us show that h ∈ Bϵ(f).
For all n < N , we have pY (h(an), g(an)) ≤ pY (bn, g(an)) < pY (g(an), g(an)) + θ

2 , whence,
for all n ≤ N , pY (h(an), g(an)) − pY (g(an), g(an)) < θ

2 . Let’s check that h ∈ Bϵ(f):

pλ
X⇒Y (h, f) =

∞∑
n=1

λnpY (h(an), f(an))

≤
∞∑

n=1
λn
(

pY (h(an), g(an)) + pY (g(an), f(an)) − pY (g(an), g(an))
)

≤
N∑

n=1
λn
(

pY (h(an), g(an)) − pY (g(an), g(an))
)

+
∞∑

n>N

λnpY (h(an), g(an)) + pλ
X⇒Y (g, f)

1 Recall that O(X) is a continuous domain. For two open sets U, V ∈ O(X), U ≪ V holds when any
open cover of V has a finite subset which covers U .

V. Maestracci and P. Pistone 34:13

<
N∑

n=1
λn θ

2 +
∞∑

n>N

λn + pλ
X⇒Y (f, f) + δ

≤ θ

2 + θ

2 + pλ
X⇒Y (f, f) + δ ≤ pλ

X⇒Y (f, f) + ϵ.

Oσ(X ⇒ Y) ⊆ OpX⇒Y (X ⇒ Y): It suffices to show that the basic Scott open sets ↠ f
contain an open p-ball Bϵ(g) around any of its points g ∈ ↠ f . So, suppose f ≪ g: by
Lemma 32 there exists c1, . . . , cn ∈ X, b1, . . . , bn ∈ Y such that bi ≪ g(ci), ↠ ci ≪ g−1(↠

bi) and f ≤
∨

i(↠ ci ↘ bi). From bi ≪ g(ci) it follows that there exists ϵi > 0 such that
Bϵi

(g(ci)) ⊆ ↠ bi. Let N be such that for all i = 1, . . . , n, ci has an index ≤ N in the
enumeration an of B(X). Let ϵ = λN min{ϵ1, . . . , ϵn}.
We claim that Bϵ(g) ⊆ ↠ f : let h ∈ Bϵ(g), then, from

∑
n λn

(
pY (h(an), g(an)) −

pY (g(an), g(an))
)

< ϵ, we deduce, for i = 1, . . . , n, pY (h(ci), g(ci)) < pY (g(ci), g(ci)) +
λ−iϵ ≤ pY (g(ci), g(ci)) + ϵi, that is, h(ci) ∈ Bϵi(g(ci)). We deduce that bi ≪ h(ci), and
thus that f ≤

∨
i(↠ ci ↘ bi) ≪ h. We can thus conclude that f ≪ h. ◀

We conclude this section with a few examples.

▶ Example 33 (RealPCF). The language RealPCF [22] is an extension of PCF with a
type I for partial real numbers (i.e. finite approximations of real numbers or, equivalently,
computable closed intervals) and primitives for computable analysis, with a canonical Scott
semantics in which I is interpreted via the domain I(R). This is perfectly in line with the
quantification of I(R) we presented in Example 5, which sees smaller and smaller intervals
as providing more and more information. Via the applicative distances just presented, we
obtain then a quantification of the Scott semantics of full RealPCF.

▶ Example 34 (Scott topologies of open and closed sets). Given a topological space X, one
can endow the space O(X) of its open sets with the Scott topology induced by the inclusion
order, as well as the (homeomorphic) space C(X) of its closed sets under the Scott topology
induced by the reversed inclusion order.

Whenever X is exponentiable in Top (which is the case, in particular, whenever X is
a Scott domain), the bijection h : O(X) ≃ Top(X, S), where S is the Sierpinski space and
h(U) is the characteristic function of U , is a homeomorphism [24]. Given a countable basis
(xn)n of X, and weights θn with

∑
n θn ≤ 1, we can then quantify O(X) and C(X) via

pO
xn,θn

(U, V) =
∞∑

n=1
θn · s(h(U)(xn), h(V)(xn)) =

∑
{θn | xn /∈ U ∨ xn /∈ V } ,

pC
xn,θn

(C, D) = pO(C, D) =
∑

{θn | xn ∈ C ∨ xn ∈ D} .

▶ Example 35 (Böhm trees as closed sets). Consider the poset A of partial terms. Let Ide(A)
be the dcpo of ideals of A, that is, of lower directed subsets of A. Observe that any Böhm
tree B(M) ⊆ A is an element of Ide(A), and the set ↓ B(M) = {U | U ⊆ B(M)} ⊆ Ide(A)
is a closed set under the Scott topology of Ide(A). Given an enumeration An of partial
terms and weights θn, we can then define an alternative λ-PPM by letting pB

An,θn
(M, N) =

pC
↓An,θn

(↓ B(M), ↓ B(N)) =
∑

n{θn | An ̸≤ M or An ̸≤ N}. While they produce different
distances, pB

An,θn
and pBöhm quantify the same topology, i.e. pBöhm ⊒⊑ pB.

▶ Example 36 (Scott topology of the power set). A countable set X is (trivially) a domain
for the order given by equality, and its Scott topology coincides with the indiscrete topology,
i.e. O(X) = P(X). Given an enumeration xn of X, the Scott topology on P(X) is thus
quantified by pP

xn,θn
(A, B) =

∑
{θn | xn /∈ A ∨ xn /∈ B} , for A, B ⊆ X.

CSL 2025

34:14 The Lambda Calculus Is Quantifiable

5 Quantifying a Reflexive Object

The denotational models for the untyped λ-calculus correspond to the reflexive objects
within some cartesian closed category, that is, the objects X satisfying the isomorphism
X ≃ X → X. Within cpo-enriched categories, reflexive objects can be obtained by a direct
limit construction, whose paradigmatic example is Scott’s D∞ model. In this section we
show how to quantify this model via applicative distances, at the same time illustrating a
technique that could be adapted to other similar constructions, like e.g. the reflexive object
within the relational model [6].

Quantifying Scott’s D∞. Let us recall the idea of the direct limit construction of a reflexive
object. One starts from some bounded complete domain D, and constructs a sequence of
spaces D0 := D, Dn+1 : Dn → Dn, together with maps in : Dn → Dn+1 and jn : Dn+1 → Dn

forming a pair (in, jn) called an injection/retraction pair, that is, satisfying jn ◦ in = idDn+1

and in ◦ jn ≤ idDn
. One obtains then a reflexive object D∞ ≃ D∞ → D∞ as the direct

limit of the sequence Dn
in→ Dn+1, as well as injection-retraction pairs in∞ : Dn → D∞,

j∞n : D∞ → Dn.
Notice that an element x of D∞ yields, for any n, a function xn := j∞n(x) ∈ Dn =

Dn−1 → Dn−2 → · · · → D0; conversely, any compact element x ∈ Dn yields a compact
element in∞(x) ∈ D∞, and such elements form indeed a basis of D∞.

Suppose now that the starting space D is quantified by some PM p. Using the applicative
metrics from the previous section we can quantify all the Dn by letting p0 := p and
pn+1(x, y) =

∑∞
i=1

1
2i pn(x(an

i), y(an
i)), where (an

i)i is an enumeration of the basis elements
of Dn. We obtain then a PM quantifying D∞ by letting

p∞(x, y) =
∞∑

n=1

1
2n

pn(xn, yn)

=
∞∑

n,kn−1,...,k0=1

(
1

2n+kn−1+···+k0

)
· p
(

xn(an−1
kn−1

) . . . (a0
k0

), yn(an−1
kn−1

) . . . (a0
k0

)
)

.

Intuitively, the distance p∞ compares x and y by considering all possible ways of evaluating
the functions xn, yn ∈ Dn on n basis elements of the corresponding spaces Dn−1, . . . , D0. As
for the applicative metrics from the previous section, while the distances p∞(x, y) are defined
via infinite series, one can check that x ∈ Bp∞

ϵ (y) by a finitary criterion.

▶ Lemma 37. For all x ∈ D∞ and n > 0, there exists N ∈ O(n) such that for all y ∈ D∞, if,
for all i, k0, . . . , ki−1 ≤ N , p(xia

ki−1
i−1 . . . ak0

0 , yia
ki−1
i−1 . . . ak0

0) < 2−(n+1), then p∞(x, y) < 2−n.

Proof. We must find N satisfying
∑∞

n,kn−1,...,k0>N
1

2n+kn−1+···+k0 < ϵ
2 . Notice that if N

satisfies
∑∞

n>N
1

2n < ϵ
2 , then it also satisfies the other condition, so we can argue as for

Lemma 31. ◀

The following result is proved in detail in the long version.

▶ Theorem 38. The partial metric p∞ quantifies the Scott topology of D∞.

Proof. We will exploit a few properties of the maps inm, proved in the extended version:
i. For all n ∈ N, x ∈ Xn and y ∈ X∞, x ≪ yn ⇒ in∞(x) ≪ y.
ii. For all x, y ∈ X∞, x ≪ y iff there exists N ∈ N and w1, . . . , wk ∈ XN such that

w1, . . . , wk ≪ yN and x ≤ iN∞(w1 ∨ · · · ∨ wk).
iii. For all n ∈ N, x ∈ Xn and y ∈ X∞, in∞(x) ≪ y ⇒ ∃N∀k ≥ N, in(n+k)(x) ≪ yn+k.

V. Maestracci and P. Pistone 34:15

Oσ(D∞) ⊇ Op∞(D∞): Let y ∈ Bϵ(x). We need to find y′ ∈ D∞ such that y′ ∈ Bϵ(x)
and y′ ≪ y. From p∞(y, x) < p∞(x, x) + ϵ it follows that we can find θ, δ > 0 such that
p∞(y, x) < p∞(x, x) + δ and δ + θ ≤ ϵ. Let N be such that

∑∞
n>N

1
2n < θ

2 . Since the
pn-balls are Scott open, for all n ≤ N , we can find some zn ∈ B θ

2
(yn) such that zn ≪ yn.

Observe that by (i.) we have in∞(zn) ≪ y. This implies in particular that the join∨N
n=1 in∞(zn) exists in D∞. Define y′ :=

∨N
n=1 in∞(zn). Notice that y′ ≪ y holds so we

just have to check that y′ ∈ Bϵ(x).
First recall that, by antimonotonicity of pn, pn(a ∨ a′, b) ≤ min{pn(a, b), pn(a′, b)}. Now,
for all n ≤ N , we have that y′

n = j∞n(y′) =
(∨

k<N ik,n(zk)
)

∨ zn ∨
(∨

n<k≤N jk,n(zk)
)

.
Then we deduce pn(y′

n, yn) ≤ pn(zn, yn) < pn(yn, yn) + θ
2 . We can now compute

p∞(y′, x) =
∞∑

n=1

1
2n

pn(y′
n, xn)

≤
∞∑

n=1

1
2n

(
pn(y′

n, yn) + pn(yn, xn) − p(yn, yn)
)

≤

(∞∑
n=1

1
2n

pn(y′
n, yn) − pn(yn, yn)

)
+ p∞(y, x)

=
(

N∑
n=1

1
2n

(pn(y′
n, yn) − pn(yn, yn))

)

+
(∞∑

n>N

1
2n

(pn(y′
n, yn) − pn(yn, yn))

)
+ p∞(y, x)

<

(
N∑

n=1

1
2n

θ

2

)
+ θ

2 + p∞(x, x) + δ ≤ p∞(x, x) + θ + δ ≤ p∞(x, x) + ϵ.

Oσ(X∞) ⊆ Op∞(X∞): Suppose x ≪ y. We need to find ϵ > 0 such that Bϵ(y) ⊆ ↠ x. By
(ii.) there exists N and w1, . . . , wk ∈ XN such that x ≤ iN∞(w1 ∨ · · · ∨ wk) ≪ y. By (iii.)
there exists N ′ ≥ N such that iNN ′(wj) ≪ yN ′ . Observe that iN ′∞(iNN ′(u)) = iN∞(u),
which implies that x ≤

∨
j iN ′∞(iNN ′(wj)).

For each j = 1, . . . , k we can find then ϵj > 0 such that Bϵj
(yN ′) ⊆ ↠ iNN ′(wj). Let

ϵ := 2−(N ′+1) min{ϵj | j = 1, . . . , k}. Suppose z ∈ Bϵ(y): for all j = 1, . . . , k, from
p∞(z, y) ≤ ϵ we deduce pN ′(zN ′ , yN ′) ≤ 2N ′

ϵ < ϵj , whence zN ′ ∈ Bϵj
(yN ′), which forces

iNN ′(wj) ≪ zN ′ . By (i.) the last inequality implies iN ′∞(wj) = iN ′∞(iNN ′(wj)) ≪ z,
and we thus obtain x ≤

∨
j iN ′∞(iNN ′)(wj)) ≪ z, that is, x ≪ z. ◀

The Scott λ-PPM. The interpretation of closed λ-terms in the Scott model D∞, for
D an arbitrary algebraic domain quantified by a PM p, yields a PPM pScott(M, N) :=
p∞(JMK, JNK), where JMK ∈ D∞ indicates the interpretation of M inside D∞. When D

is non-trivial (i.e. D ̸= {⊥}), using well-known properties of the Scott model, pScott(M, N)
yields an extensional and sensible λ-PPM.

The result below relates pScott to the other λ-PPMs discussed in Section 3.

▶ Proposition 39. pBöhm ⊏ pScott ⊏ pctx.

CSL 2025

34:16 The Lambda Calculus Is Quantifiable

Proof sketch.
(pBöhm ⊏ pScott) We exploit the approximation theorem for D∞ [5] which says that, for

any closed λ-term M , letting Λo
⊥ be the set of closed partial terms and J−K : Λo

⊥ → D∞
the interpretation function, JMK =

∨
{JAK | A ≤ M}. Since D is algebraic, any open

ball Bp0
ϵ (JMK(⃗a)) contains some compact element c ≪ JMK(⃗a). By the approximation

theorem, then, we deduce that there exists a partial term A ≤ M such that c ≪ JAK(⃗a).
Consider the open ball BpScott

ϵ (M). Thanks to Lemma 37 one can find a finite number of
sequences of basis elements a⃗1, . . . , a⃗n and positive reals δ1, . . . , δn > 0 such that for all
term P , if JP K(⃗ai) ∈ Bp0

δi
(JMK(⃗ai) holds for all i = 1, . . . , n, then P ∈ BpScott

ϵ (M).
By reasoning as above via the approximation theorem, we obtain partial terms
A1, . . . , An ≤ M such that Ai ∈ Bp0

δi
(JMK(⃗ai), and we deduce then A =

∨
i Ai ∈

BpScott
ϵ (M). Letting now k be the height A and θ = 2−k, we thus conclude that

BBöhm
θ (M) ⊆ BpScott

ϵ (M).
The strictness follows from the fact that the associated λ-theories B and H∗ are strictly
included, as argued at the end of Remark 19 for the case of pctx.

(pScott ⊏ pctx) By Proposition 18, we only need to prove strictness. Let I := λx.x and
consider the terms Pk := λy1.λyk.I. It can be easily checked that, for any context C,
if C[I] is solvable, then C[Pk] must be solvable as well. This implies then that, for any
ϵ > 0, the open ball Bctx

ϵ (I) contains all the terms Pk.
Now, one can construct a compact basis element c ∈ D∞ such that, for all k > 2,
JPkK ̸≪ c ≪ JIK (see the extended version for the details). Since Op∞(D∞) coincides
with the Scott topology, which is generated by the sets ↠ b, for b a basis element, from
c ≪ JIK we deduce that there exists ϵ > 0 such that Bp∞

ϵ (JIK) ⊆ ↠ c. From JP2K ̸≪ c we
deduce then JP2K /∈ Bp∞

ϵ (JIK), we conclude that the open p∞-ball Bp∞
ϵ (JIK) contains no

open pctx-ball. ◀

Recalling that D∞ induces the theory H∗, the relation pBöhm ⊏ pScott is in accordance
with what happens with the corresponding λ-theories. By contrast, while D∞ and the
contextual preorder both induce the λ-theory H∗, the first induces a λ-PPM which is finer
than the contextual partial metric. As can be seen in the proof in the Appendix, the
reason behind this is that, given terms M ⊑ctx P , there exists open pScott-balls Bϵ(P) whose
elements all lie above M , while pctx cannot define any such ball, since whether M ≤ Q

cannot be tested by applying only finitely many contexts to Q (cf. Remark 16).

6 Quantifying the Taylor Expansion

In this section we discuss the Taylor expansion of λ-terms [18, 19, 20], a well-studied method
that refines methods based on Böhm trees and Scott domains, by decomposing the non-linear
behavior of a term into the linear behavior of a set of simpler terms, called resource λ-terms.
Notably, several well-known properties of λ-terms (like e.g. continuity and stability), which
were originally established by topological and semantic methods, can be proved in a simpler,
combinatorial way, via the Taylor expansion [4].

The famous commutation theorem [20] says that the Taylor expansion commutes with
the construction of the Böhm tree, and shows that the associated λ-theories coincide. By
presenting the Taylor expansion as an isometric transformation, we add a quantitative flavor
to this result, showing that also the corresponding notions of program similarity coincide.

All proofs of the results contained in this section can be found in the extended version.

V. Maestracci and P. Pistone 34:17

Resource terms and the Taylor expansion. As we said, the Taylor expansion associates a
λ-term with a set of terms, called resource terms, with a linear operational semantics. The
set Λr of resource terms is defined by the grammar t := x | λx.t | t⟨t, . . . , t⟩, where ⟨t, . . . , t⟩
indicates a finite multiset of terms. We define an order ≺ over resource λ-terms as the context
closure of the relation ∅ ≺ ⟨t1, . . . , tn⟩. The operational semantics of resource terms replaces
the standard β-rule with a linear monadic rule →r that relates a redex (λx.t)⟨u1, . . . , un⟩
with the set of terms t[uσ(1)/x1, . . . , uσ(n)/n], obtained by replacing each occurrence xi of
x in t by the term uσ(i), whenever t contains exactly n occurrences of x and where σ is
any permutation in Sn. For example, the resource term (λx.x⟨x⟩)⟨y, z⟩ reduces to the set
of terms {y⟨z⟩, z⟨y⟩} corresponding to the two possible ways of distributing y, z across the
two occurrences of x in x⟨x⟩. Instead, the resource term (λx.x⟨x⟩)⟨y⟩ reduces to the empty
set: as the single occurrence of y cannot be duplicated, it does not suffice to replace all
occurrences of x in x⟨x⟩. More generally, if t contains a number of occurrences of x different
from n, then (λx.t)⟨u1, . . . , un⟩ →r ∅. Thanks to the impossibility of duplicating terms,
linear reduction →∗

r is not only confluent, but also strongly normalizing (in linear time).
The Taylor expansion of a λ-term M is a set T (M) ⊆ Λr defined inductively as T (x) =

{x}, T (λx.M) = {λx.t | t ∈ T (M)} and T (MN) = {t⟨t1, . . . , tn⟩ | t ∈ T (M), xn ∈
N, t1, . . . , tn ∈ T (N)}. For example, the Taylor expansion of λx.λy.yx is composed of all
resource terms of the form λx.λy.y⟨x, . . . , x⟩. Since reduction is confluent and strongly
normalizing, we can define the set nf(T (M)) containing the normal forms of the resource
terms in T (M).

The Taylor expansion extends to partial λ-terms by letting T (⊥) = ∅. In this way, we
can define the Taylor expansion of a Böhm tree α ∈ Ide(A) by T (α) =

⋃
{T (A) | A ∈ α},.

The aforementioned commutation theorem says then that T (B(M)) = nf(T (M)); together
with the injectivity of T over Böhm trees (which is easily proved), this shows the equivalence
of the λ-theory B and the λ-theory generated by equating all closed terms whose Taylor
expansions have the same normal form.

We provide an alternative, topological, presentation of the Taylor expansion of Böhm
trees. A natural choice would be to take the Scott topology induced by the resource term
order ⪯. However, under this order, Λr is not a dcpo: limits of directed sequences need
not exist (as they would correspond, just like Böhm trees, to infinite terms). This leads
then to consider, just like for partial terms, the completion Ide(Λr) of Λr, which forms an
algebraic dcpo. The elements of Ide(Λr) can be seen as possibly infinite resource terms, and
the compact elements correspond to the finite ones, that is, to ordinary resource terms.

Recall that Ide(A) can be identified with the set of Böhm trees; the Taylor expansion can be
presented in this setting as a map T ∗ : Ide(A) → P(Ide(Λr)) defined by T ∗(α) = Ide(T (α)).
To see that it is well-defined, let us observe that T (α) ⊆ Λr, so Ide(T (α)) ⊆ Ide(Λr) is a set
of ideals. Notice that the set T ∗(α) is closed with respect to the Scott topology of Ide(Λr).

Defining a metric on Λr. We introduce a PUM on Λr quantifying the order ⪯, which is
essentially an adaptation of the tree partial metric. A normal resource term is of the form
t = λx1.λxn.xb1 . . . bm, where each bi is a finite multiset bi = ⟨t1

i , . . . , tmi
i ⟩. The height

of a resource term h(t) is defined recursively as h(t) = maxij h(tj
i) + 1, where t is as above.

For any variable occurrence z in t, we define its height in t ht(z) as ht(z) = 1 if z is as x

above, and as ht(z) = htj
i
(z) + 1 if the occurrence is in tj

i .
For any normal resource term t and n ≤ h(t), we define the resource term t|n, correspond-

ing to the “truncation” of t at height n: if h(t) ≤ n, then t|n = t, and if h(t) > n, then we
replace any subterm of t of the form xb1 . . . bm, where x is at height n, by x∅ . . . ∅. Observe
that h(t|n) ≤ n and h(t|n) = n holds whenever h(t) ≥ n.

CSL 2025

34:18 The Lambda Calculus Is Quantifiable

▶ Definition 40 (resource partial metric). For any two resource terms t, u ∈ Λr, we define

r(t, u) := inf{2−n | h(t), h(u) ≥ n and t|n = u|n}.

By arguing similarly to the case of trees, it can be shown that r is a PUM, and that the
order ≤r coincides with ⪯. Notice that r(t, t) = 2−h(t).

Lifting the metric to P(Λr). We now discuss how to lift the metric r to subsets of Λr.
A standard way to lift a metric d from a set X to its powerset P(X) is via the Hausdorff
lifting Hd(A, B) = max{sup

a∈A
inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}. Intuitively, Hd(A, B) looks, for each

element of one set, for its closest element in the other set, and then measures the distance
that is obtained by this operation in the worst case. The same construction, when applied
to a partial metric p, yields the partial Hausdorff metric Hp (see [3, 28]) which, in spite of
its name, is in fact not a partial metric, as it satisfies a weaker triangular law Hp(A, B) ≤
Hp(A, C) + Hp(C, B) − infc∈C p(c, c).

In any case, the Hausdorff lifting Hr of the resource partial metric is not the right choice
for us: suppose α is an infinite Böhm tree, so that its self-distance is 0; then T (α) is a set of
finite terms of arbitrary depth, so that Hr(T (α), T (α)) = supt∈T (α) r(t, t) = sup{2−|t| | t ∈
T (α)} = 1

2 > 0 = ptree(α, α). Beyond making the Taylor expansion non-isometric, from this
we deduce that Hr is constantly 1

2 over all non-empty Taylor expansions!
Instead, we introduce the following variant of the Hausdorff lifting:

▶ Definition 41. For any PM p : X × X → [0, 1], let H∗
p : P(X) × P(X) → [0, 1] be:

H∗
p (A, B) = max

{
sup
a∈A

inf
a′≥pa∈A,b∈B

p(a′, b), sup
b∈B

inf
b′≥pb∈B,a∈A

p(a, b′)
}

.

Intuitively, on two sets A, B, H∗
p (A, B) measures how close the elements of A get to the

elements of B as soon as one is allowed to freely move higher within A and B following the
order ≤p. Notice that, for α an infinite Böhm tree, we now have H∗

r (T (α), T (α)) = 0, as
desired. Similarly to the partial Hausdorff metric Hp, for a partial metric p, H∗

p is not in
general a partial metric. Indeed, it only satisfies the following properties:

▶ Proposition 42. For any partial metric space (X, p), the distance H∗
p satisfies:

1. H∗
p (A, A) ≤ H∗

p (A, B);
2. H∗

p (A, B) = H∗
p (B, A);

3. H∗
p (A, B) ≤ H∗

p (A, C) + H∗
p (C, B) − infc∈C p(c, c).

However, H∗
p is in fact a PM when restricted to Idep(X), the dcpo of ideals with respect

to the order ≤p.

▶ Proposition 43. For any PM p on X, H∗
p is a PM on Idep(X) quantifying the order ⊆.

When p = r, the resource partial metric, H∗
r indeed quantifies the Scott topology:

▶ Proposition 44. The PM H∗
r quantifies the Scott topology on Ider(Λr).

Taylor is an isometry. The Taylor expansion can be presented either as a map T : Λ → P(Λr)
turning a λ-term into a set of resource terms, or as a map T ∗ : Ide(A) → P(Ide(Λr)) turning
a Böhm tree (i.e. an infinitary normal λ-term) into a set of infinitary resource terms.

We will show that both maps are isometries, when considering Λ with the Böhm PM and
Ide(A) with the tree PM, and measuring sets of (finite/infinite) resource terms via the lifting
H∗

r of the resource partial metric.

V. Maestracci and P. Pistone 34:19

Let the λ-PPM pTaylor be defined by pTaylor(M, N) = H∗
r (nf(T (M)), nf(T (N))). As we

observed, the λ-theory generated by equating all terms M, N such that nf(T (M)) = nf(T (N))
coincides the theory B. Our result will extend this to the corresponding quantitative theories.

Let us first consider the Taylor expansion of λ-terms.

▶ Theorem 45. T : (Λ, pBöhm) −→ (P(Λr), H∗
r) is an isometry. Thus, pTaylor = pBöhm.

The results above states that, whenever the Böhm trees of two terms M, N differ at height n,
then, by moving higher and higher in their normalized Taylor expansions T (M) and T (N),
one can find resource terms that differ precisely at height n, and can do no better.

Let us now consider the map T ∗. Since Ide(Λr) is quantified by H∗
r , we can consider its

lifting H∗
H∗

r
to P(Idep(Λr)). In fact, the computation of H∗

H∗
r

leads us back to H∗
r :

▶ Lemma 46. For all λ-terms M, N , H∗
r (T (M), T (N)) = H∗

H∗
r
(T ∗(M), T ∗(N)).

Thanks to Proposition 45, this immediately produces:

▶ Theorem 47. T ∗ : (Ide(A), ptree) −→ (P(Ide(Λr)), H∗
H∗

r
) is an isometry.

▶ Remark 48. As shown in detail in the long version, we can obtain an isometry also if we
choose to measure Böhm trees and Taylor expansions using the PMs from Examples 35 and
36. Indeed, for any enumeration (An)n of partial terms, one can define an enumeration (rn)n

of resource terms and weights θn such that T : (B, pB
(An)n, 1

2n
) −→ (P(Λr), pP

(rn)n,θn
) is an

isometry.

7 Conclusions

Related Work. Since their introduction in [8], the literature on partial metrics has grown
vast, and comprises both theoretical investigations [39, 34, 3, 29] and connections with
theoretical computer science [38], notably domain theory [9, 35, 40, 41]. Recently, an elegant
categorical description of partial metric spaces as quantaloid-enriched categories has been
proposed [28], as well as a characterization of the partial metric spaces that are exponentiable
(in a category whose morphisms are the non-expansive - or 1-Lipschitz - functions and not,
as in this paper, all continuous functions). While, as we have said, the metrizability of Scott
domains via partial metrics has been well known since [9, 35], not much is found in this vast
literature about the specific use of partial metrics for studying the topological semantics of
the λ-calculus or, more generally, of higher-order programming languages.

Beyond partial metrics, the literature on higher-order program metrics has been growing
vast as well. As the category Met of metric spaces and non-expansive functions is not
cartesian closed, the literature has focused on two complementary directions: on the one
hand, restrict to cartesian closed sub-categories of Met, like ultra-metric spaces [23], or
injective metric spaces [10]; [15] adapts Mardare’s et al.’s quantitative equational theories [32]
to higher-order languages, introducing a notion of quantitative λ-theory (which, contrarily
to λ-PPMs, require contexts to be non-expansive). On the other hand, restrict attention
to linear [12, 16] or graded [37, 17] λ-calculi, which can be modeled in Met. Notably, [17]
introduces metric CPOs, that is CPOs endowed with sub-continuous metrics (i.e. satisfying
d(limn xn, limn yn) ≤ ϵ whenever d(xn, yn) ≤ ϵ holds for all n). This is a weaker condition
than quantifiability, since the limits in the metric need not coincide with the CPO limits.

Differential logical relations [14, 13] have been recently introduced as a generalized
approach to program metrics, relaxing usual Lipschitz, and even continuity, conditions.
Notably, related models based on generalized partial metric spaces are studied in [27, 36]. In
such models distances need not be positive reals but are computed on an arbitrary quantale.

CSL 2025

34:20 The Lambda Calculus Is Quantifiable

Finally, several works have investigated infinitary λ-calculi defined via a metric completion
of ordinary terms [30, 33]. These approaches are based on ultrametrics akin to the tree metric
considered in this paper for Böhm trees. Recall that ordinary metric spaces are topologically
Hausdorff, contrarily to the spaces considered in this paper. The metric completion of partial
metric spaces is discussed in [26, 28].

Future Work. While this paper focuses on metric counterparts for well-known techniques,
our results suggest several potential developments.

The metrizability of Scott domains suggests to study models based on Lipschitz-continuous,
rather than just continuous, functions, as is standard in the literature on linear λ-calculi. For
instance, considering the Böhm metric, a non-expansive context should respect depth: if two
terms M, N coincide up to depth n, then C[M] and C[N] must also coincide up to depth n.
This suggests connections with recent work on stratified notions of program equivalence [2].

Sections 4 and 6 introduced several methods to lift a partial metric to the powerset; using
such liftings, as we suggest at several places, our results based on Scott domains could be
adapted to the relational model, in which λ-terms are interpreted via relations R ∈ P(A×B).

While we here just considered the untyped λ-calculus and basic cartesian closed structure
(i.e. finite products and exponentials), the applicative distances introduced in this paper
should adapt well also to languages with coproducts and dependent types; moreover, our
results on the Hausdorff lifting suggests that other monadic liftings (e.g. the probability
monad) could be considered. At the same time, the metric account of RealPCF suggested at
in Example 33 could be explored in more depth, for instance considering the behavior of
operators like the parallel if or even program derivatives.

Finally, the fact that several partial metrics considered in this paper produce computable
distances between finite approximants suggests to explore potential connections with quant-
itative type systems related to the relational and topological semantics, like those based on
non-idempotent intersection types [7].

References
1 Roberto M. Amadio and Pierre-Louis Curien. Domains and Lambda-Calculi. Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, 1998.
2 Victor Arrial, Giulio Guerrieri, and Delia Kesner. Genericity through stratification. In

Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’24, New York, NY, USA, 2024. Association for Computing Machinery. doi:10.1145/3661814.
3662113.

3 Hassen Aydi, Mujahid Abbas, and Calogero Vetro. Partial Hausdorff metric and Nadler’s fixed
point theorem on partial metric spaces. Topology and its Applications, 159(14):3234–3242,
2012. doi:10.1016/j.topol.2012.06.012.

4 Davide Barbarossa and Giulio Manzonetto. Taylor subsumes Scott, Berry, Kahn and Plotkin.
Proc. ACM Program. Lang., 4(POPL), December 2019. doi:10.1145/3371069.

5 Hendrik Pieter Barendregt. The lambda calculus - its syntax and semantics, volume 103 of
Studies in logic and the foundations of mathematics. North-Holland, 1985.

6 Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto. Not enough points is enough.
In Jacques Duparc and Thomas A. Henzinger, editors, Computer Science Logic, pages 298–312,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. doi:10.1007/978-3-540-74915-8_24.

7 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for
the lambda-calculus. Logic Journal of the IGPL, 25(4):431–464, 2017. doi:10.1093/jigpal/
jzx018.

https://doi.org/10.1145/3661814.3662113
https://doi.org/10.1145/3661814.3662113
https://doi.org/10.1016/j.topol.2012.06.012
https://doi.org/10.1145/3371069
https://doi.org/10.1007/978-3-540-74915-8_24
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1093/jigpal/jzx018

V. Maestracci and P. Pistone 34:21

8 Michael Bukatin, Ralph Kopperman, Steve Matthews, and Homeira Pajoohesh. Partial
metric spaces. American Mathematical Monthly, 116:708–718, October 2009. URL: http:
//www.jstor.org/stable/40391197, doi:10.4169/193009709X460831.

9 Michael A. Bukatin and Joshua S. Scott. Towards computing distances between programs via
Scott domains. In Sergei Adian and Anil Nerode, editors, Logical Foundations of Computer
Science, pages 33–43, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg. doi:10.1007/
3-540-63045-7_4.

10 Maria Manuel Clementino and Dirk Hofmann. Exponentiation in V-categories. Topology and
its Applications, 153(16):3113–3128, 2006. Special Issue: Aspects of Contemporary Topology.
doi:10.1016/j.topol.2005.01.038.

11 Raphaëlle Crubillé and Ugo Dal Lago. Metric Reasoning About Lambda-Terms: The General
Case. In Hongseok Yang, editor, Programming Languages and Systems - 26th European
Symposium on Programming, ESOP 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, volume 10201 of Lecture Notes in Computer Science, pages 341–367, Berlin,
Heidelberg, 2017. Springer. doi:10.1007/978-3-662-54434-1_13.

12 Fredrik Dahlqvist and Renato Neves. An Internal Language for Categories Enriched over
Generalised Metric Spaces. In Florin Manea and Alex Simpson, editors, 30th EACSL Annual
Conference on Computer Science Logic (CSL 2022), volume 216 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 16:1–16:18, Dagstuhl, Germany, 2022. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CSL.2022.16.

13 Ugo Dal Lago and Francesco Gavazzo. Differential logical relations part II: increments and
derivatives. In Gennaro Cordasco, Luisa Gargano, and Adele A. Rescigno, editors, Proceedings
of the 21st Italian Conference on Theoretical Computer Science, Ischia, Italy, September 14-16,
2020, volume 2756 of CEUR Workshop Proceedings, pages 101–114. CEUR-WS.org, 2020.
URL: http://ceur-ws.org/Vol-2756/paper_10.pdf.

14 Ugo Dal Lago, Francesco Gavazzo, and Akira Yoshimizu. Differential logical relations, part
I: the simply-typed case. In 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, pages 111:1–111:14, 2019.
doi:10.4230/LIPIcs.ICALP.2019.111.

15 Ugo Dal Lago, Furio Honsell, Marina Lenisa, and Paolo Pistone. On Quantitative Algebraic
Higher-Order Theories. In Amy P. Felty, editor, 7th International Conference on Formal
Structures for Computation and Deduction (FSCD 2022), volume 228 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 4:1–4:18, Dagstuhl, Germany, 2022. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.FSCD.2022.4.

16 Ugo Dal Lago, Naohiko Hoshino, and Paolo Pistone. On the Lattice of Program Metrics. In
Marco Gaboardi and Femke van Raamsdonk, editors, 8th International Conference on Formal
Structures for Computation and Deduction (FSCD 2023), volume 260 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 20:1–20:19, Dagstuhl, Germany, 2023. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.FSCD.2023.20.

17 Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, Shin-ya Katsumata, and Ikram
Cherigui. A semantic account of metric preservation. In Giuseppe Castagna and Andrew D.
Gordon, editors, Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL 2017, Paris, France, January 18-20, 2017, POPL 2017, pages
545–556, New York, NY, USA, 2017. ACM. doi:10.1145/3009837.3009890.

18 Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical Computer
Science, 309:1–41, 2003. doi:10.1016/S0304-3975(03)00392-X.

19 Thomas Ehrhard and Laurent Regnier. Böhm Trees, Krivine’s Machine and the Taylor
Expansion of Lambda-Terms. In Arnold Beckmann, Ulrich Berger, Benedikt Löwe, and
John V. Tucker, editors, Logical Approaches to Computational Barriers, pages 186–197, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg. doi:10.1007/11780342_20.

CSL 2025

http://www.jstor.org/stable/40391197
http://www.jstor.org/stable/40391197
https://doi.org/10.4169/193009709X460831
https://doi.org/10.1007/3-540-63045-7_4
https://doi.org/10.1007/3-540-63045-7_4
https://doi.org/10.1016/j.topol.2005.01.038
https://doi.org/10.1007/978-3-662-54434-1_13
https://doi.org/10.4230/LIPIcs.CSL.2022.16
http://ceur-ws.org/Vol-2756/paper_10.pdf
https://doi.org/10.4230/LIPIcs.ICALP.2019.111
https://doi.org/10.4230/LIPIcs.FSCD.2022.4
https://doi.org/10.4230/LIPIcs.FSCD.2023.20
https://doi.org/10.1145/3009837.3009890
https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1007/11780342_20

34:22 The Lambda Calculus Is Quantifiable

20 Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor expansion of ordinary
lambda-terms. Theor. Comput. Sci., 403(2-3):347–372, 2008. doi:10.1016/j.tcs.2008.06.
001.

21 Thomas Erker, Martín Hötzel Escardó, and Klaus Keimel. The way-below relation of function
spaces over semantic domains. Topology and its Applications, 89(1):61–74, 1998. Domain
Theory. doi:10.1016/S0166-8641(97)00226-5.

22 Martín Hötzel Escardó. PCF extended with real numbers. Theor. Comput. Sci., 162(1):79–115,
1996. doi:10.1016/0304-3975(95)00250-2.

23 Martín Hötzen Escardó. A metric model of PCF. Unpublished note presented at the Workshop
on Realizability Semantics and Applications, June 1999. Available at the author’s webpage.,
1999.

24 M.H. Escardo and R. Heckmann. Topologies on spaces of continuous functions. Topology
Proceedings, 26(2):545–564, 2001-2002.

25 Francesco Gavazzo. Quantitative behavioural reasoning for higher-order effectful programs:
Applicative distances. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’18, pages 452–461, New York, NY, USA, 2018. doi:10.1145/
3209108.3209149.

26 Xun Ge and Shou Lin. Completions of partial metric spaces. Topology and its Applications,
182:16–23, 2015. doi:10.1016/j.topol.2014.12.013.

27 Guillaume Geoffroy and Paolo Pistone. A partial metric semantics of higher-order types
and approximate program transformations. In Computer Science Logic 2021 (CSL 2021),
volume 183 of LIPIcs–Leibniz International Proceedings in Informatics, pages 35:1–35:18, 2021.
doi:10.4230/LIPIcs.CSL.2021.23.

28 Dirk Hofmann and Isar Stubbe. Topology from enrichment: the curious case of partial metrics.
Cahiers de Topologie et Géométrie DIfférentielle Catégorique, LIX, 4:307–353, 2018.

29 Gunther Jäger and T. M. G. Ahsanullah. Characterization of quantale-valued metric spaces and
quantale-valued partial metric spaces by convergence. Applied General Topology, 19(1):129–144,
2018.

30 Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan de Vries. Infinitary lambda
calculus. Theor. Comput. Sci., 175(1):93–125, 1997. doi:10.1016/S0304-3975(96)00171-5.

31 Giulio Manzonetto. Models and theories of lambda calculus. PhD thesis, Paris Diderot
University, France, 2008. URL: https://tel.archives-ouvertes.fr/tel-00715207.

32 Radu Mardare, Prakash Panangaden, and Gordon Plotkin. Quantitative algebraic reasoning.
In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS 2016). IEEE Computer Society, 2016.

33 Damiano Mazza. Non-linearity as the metric completion of linearity. In Masahito Hasegawa,
editor, Typed Lambda Calculi and Applications, pages 3–14, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg. doi:10.1007/978-3-642-38946-7_3.

34 Volodymyr Mykhaylyuk and Vadym Myronyk. Metrizability of partial metric spaces. Topology
and its Applications, 308:107949, 2022. doi:10.1016/j.topol.2021.107949.

35 S.J. O’Neill. Partial metrics, valuations and domain theory. Annals of the New York Academy
of Sciences, 806:304–315, 1996.

36 Paolo Pistone. On generalized metric spaces for the simply typed lambda-calculus. In 36th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June
29 - July 2, 2021, pages 1–14. IEEE, 2021. doi:10.1109/LICS52264.2021.9470696.

37 Jason Reed and Benjamin C. Pierce. Distance makes the types grow stronger: a calculus for
differential privacy. In Paul Hudak and Stephanie Weirich, editors, Proceeding of the 15th
ACM SIGPLAN international conference on Functional programming, ICFP 2010, Baltimore,
Maryland, USA, September 27-29, 2010, pages 157–168. ACM, 2010. doi:10.1145/1863543.
1863568.

https://doi.org/10.1016/j.tcs.2008.06.001
https://doi.org/10.1016/j.tcs.2008.06.001
https://doi.org/10.1016/S0166-8641(97)00226-5
https://doi.org/10.1016/0304-3975(95)00250-2
https://doi.org/10.1145/3209108.3209149
https://doi.org/10.1145/3209108.3209149
https://doi.org/10.1016/j.topol.2014.12.013
https://doi.org/10.4230/LIPIcs.CSL.2021.23
https://doi.org/10.1016/S0304-3975(96)00171-5
https://tel.archives-ouvertes.fr/tel-00715207
https://doi.org/10.1007/978-3-642-38946-7_3
https://doi.org/10.1016/j.topol.2021.107949
https://doi.org/10.1109/LICS52264.2021.9470696
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1145/1863543.1863568

V. Maestracci and P. Pistone 34:23

38 Salvador Romaguera, Pedro Tirado, and Óscar Valero. Complete partial metric spaces have
partially metrizable computational models. Int. J. Comput. Math., 89(3):284–290, 2012.
doi:10.1080/00207160.2011.559229.

39 M. P. Schellekens. The correspondence between partial metrics and semivaluations. Theoretical
Computer Science, 315(1):135–149, May 2004. doi:10.1016/j.tcs.2003.11.016.

40 Michel P. Schellekens. A characterization of partial metrizability: domains are quantifiable.
Theor. Comput. Sci., 305(1-3):409–432, 2003. Topology in Computer Science. doi:10.1016/
S0304-3975(02)00705-3.

41 Michael B. Smyth. The constructive maximal point space and partial metrizability. Ann. Pure
Appl. Log., 137(1-3):360–379, 2006. doi:10.1016/j.apal.2005.05.032.

42 Pawel Waszkiewicz. Distance and measurement in domain theory. Electronic Notes in
Theoretical Computer Science, 45, 2001. doi:10.1016/S1571-0661(04)80975-7.

CSL 2025

https://doi.org/10.1080/00207160.2011.559229
https://doi.org/10.1016/j.tcs.2003.11.016
https://doi.org/10.1016/S0304-3975(02)00705-3
https://doi.org/10.1016/S0304-3975(02)00705-3
https://doi.org/10.1016/j.apal.2005.05.032
https://doi.org/10.1016/S1571-0661(04)80975-7

A Kleene Algebra with Tests for Union Bound
Reasoning About Probabilistic Programs
Leandro Gomes #

Université de Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000, France

Patrick Baillot # Ñ

Université de Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000, France

Marco Gaboardi # Ñ

Boston University, MA, USA

Abstract
Kleene Algebra with Tests (KAT) provides a framework for algebraic equational reasoning about
imperative programs. The recent variant Guarded KAT (GKAT) allows to reason on non-probabilistic
properties of probabilistic programs. Here we introduce an extension of this framework called
approximate GKAT (aGKAT), which equips GKAT with a partially ordered monoid (real numbers)
enabling to express satisfaction of (deterministic) properties except with a probability up to a certain
bound. This allows to represent in equational reasoning “à la KAT” proofs of probabilistic programs
based on the union bound, a technique from basic probability theory. We show how a propositional
variant of approximate Hoare Logic (aHL), a program logic for union bound, can be soundly encoded
in our system aGKAT. We then illustrate the use of aGKAT with an example of accuracy analysis
from the field of differential privacy.

2012 ACM Subject Classification Theory of computation → Algebraic semantics; Theory of com-
putation → Pre- and post-conditions; Theory of computation → Logic and verification; Theory of
computation → Hoare logic

Keywords and phrases Kleene algebras with tests, Hoare logic, equational reasoning, probabilistic
programs, union bound, formal verification

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.35

Related Version Extended Version: https://hal.science/hal-04196675v3 [13]

Funding Leandro Gomes: This work is financed by National Funds through FCT - Fundação para a
Ciência e a Tecnologia, I.P. (Portuguese Foundation for Science and Technology) within the project
IBEX, with reference 10.54499/PTDC/CCI-COM/4280/2021.
Patrick Baillot: Work partially supported by ANR Project HOPR (ANR-24-CE48-5521-01).

1 Introduction

Kleene algebra with tests (KAT) has been introduced in [21] as an algebraic framework for
program verification. A KAT is a two-sorted structure, consisting of a Kleene algebra and a
Boolean algebra of tests: the Kleene algebra part accounts for programs, with sequential
composition, branching and iteration; the Boolean algebra part accounts for the predicates
used to build if-then-else instructions, while loops and assertions, as well as, being KAT able
to subsume propositional Hoare logic [22], for the pre and post-conditions. This framework
allowed to give algebraic proofs corresponding to several approaches in program verification,
see e.g. [22, 1, 24], and has been implemented as a library for the Coq proof assistant [28].
It has also been followed by several variants, like NetKAT [2], which allows to reason about
software defined networks, Concurrent NetKAT [31] for concurrent networks, CKAO [18] for
concurrent programs and more recently TopKAT for reasoning about incorrectness [32].

© Leandro Gomes, Patrick Baillot, and Marco Gaboardi;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 35; pp. 35:1–35:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:leandrogomes.moreiragomes@univ-lille.fr
https://orcid.org/0000-0003-1180-0620
mailto:patrick.baillot@univ-lille.fr
https://pro.univ-lille.fr/patrick-baillot/
https://orcid.org/0009-0002-9364-1140
mailto:gaboardi@bu.edu
https://cs-people.bu.edu/gaboardi/
https://orcid.org/0000-0002-5235-7066
https://doi.org/10.4230/LIPIcs.CSL.2025.35
https://hal.science/hal-04196675v3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 A KAT for Union Bound Reasoning About Probabilistic Programs

Recently the variant Guarded KAT (GKAT) [30] has been proposed as a restriction of
KAT where all sums and iterations are guarded by tests. It offers several advantages over
KAT, including the fact that the complexity of its equational theory is lower (almost linear
time, provided that the number of tests is fixed) and the existence of a probabilistic model.
The latter paves the way for using GKAT for reasoning about probabilistic programs. However
an important feature of this system is that the tests of GKAT remain the same as those of
KAT, namely they express Boolean properties on states. Therefore the framework of GKAT
allows to encode probabilistic programs, but the assertions about them are non-probabilistic.

In this paper our goal is to extend the GKAT approach to reason about probabilistic
programs satisfying properties with a given probability bound β. The objective is not to
design an expressive framework for advanced probabilistic proofs, but instead to allow for
simple probabilistic reasoning with a low technical overhead.

Concretely we target proofs based on the union bound principle, a property from basic
probability theory, which is a simple consequence of the definition of probability measure,
and can be stated as follows: given some properties A1, . . . , An, one has Pr[∪n

i=1Ai] ≤∑n
i=1 Pr[Ai]. This principle is ubiquitous when reasoning about properties of randomized

algorithms [27] and in their application in security, privacy [9], learning theory [19], etc.
A previous approach for reasoning about probabilistic imperative programs using the

union bound principle had been provided by the union bound program logic aHL [5]. This is
a Hoare logic for reasoning about probabilistic programs with non-probabilistic assertions
but with judgements carrying a numeric index for tracking the failure probability. That is,
judgments have the form ⊢β c : ϕ⇒ ψ where β is an upper bound on the probability that
¬ψ is true after executing c starting from a memory satisfying ϕ. The authors illustrated
how this logic could be used for the verification of accuracy of some algorithms, in particular
in the setting of differential privacy. A relational variant of this logic is handled by the
Easycrypt tool [8, 4] , which can be used for proving properties of cryptographic protocols as
well as differential privacy properties of programs.

A natural idea is thus to adapt the union bound logic aHL to the GKAT framework.
To do this and capture the union bound reasoning in an algebraic framework we extend
GKAT with an additional relation, denoted ◁, relating GKAT expressions with elements
of a partially ordered monoid, typically real numbers on [0, 1]. We call this new system
approximate GKAT (aGKAT). An important feature of this structure is that we want the
new setting to subsume standard GKAT, requiring aGKAT to satisfy the theory of GKAT. A
second feature is that we want the probabilistic model of sub-Markov kernels to be a model
of our new structure, when we consider the monoid of real numbers. For this particular
instantiation, the meaning of ◁ will be that c◁β holds if the probability of successful execution
of program c is bounded by β. The theory of aGKAT extends the one of GKAT, by a small set
of axioms characterizing the properties of the new relation ◁. We illustrate how this theory
allows for a concise form of equational reasoning for establishing probability bounds on some
GKAT programs. Moreover, in order to demonstrate the expressivity of aGKAT, we encode
aHL in it. This is inspired by the classical result of Kozen [22] showing that propositional
Hoare logic can be encoded in KAT.

Outline. In Sect. 2 we will recall GKAT and its probabilistic model, and in Sect. 3 we will
recall the Hoare logic aHL. Then in Sect. 4 we will define our system, aGKAT, its theory
and its semantics. After that in Sect. 5 we will provide an encoding of the logic aHL in
aGKAT and prove its soundness. Sect. 6 will be devoted to an example, the analysis in
aGKAT of the accuracy of the probabilistic algorithm Report-noisy-max. Finally, Sec. 7
overviews related work and Sec. 8 enumerates possible directions for future work.

L. Gomes, P. Baillot, and M. Gaboardi 35:3

2 Guarded Kleene algebra with tests

This section recalls the language and the semantics of Guarded Kleene Algebra with Tests
(GKAT) [30], an abstraction of imperative programs where conditionals and loops are encoded
as guarded sums (c1 +b c2) and guarded iterations (c(b)), respectively, guarded by Boolean
predicates b. The structure is a restriction of KAT in which we are not allowed to freely use
operators + and ∗ to build terms. In other words, GKAT does not allow nondeterminism.

2.1 Syntax
The syntax of GKAT is defined with a set of actions Σ and a finite set of primitive tests T,
which are disjoint. We denote actions by a and primitive tests by p. The sets of Boolean
expressions BExp (also called tests) and GKAT expressions Exp (also called programs) are
then defined by the following grammars:

b, b1, b2 ∈ BExp ::=
| 0 false
| 1 true
| p ∈ T p

| b1 · b2 b1 and b2

| b1 + b2 b1 or b2

| b̄ not b

c, c1, c2 ∈ Exp ::=
| a ∈ Σ do a

| b ∈ BExp assert b
| c1 · c2 c1; c2

| c1 +b c2 if b then c1 else c2

| c(b) while b do c

where, for any b, b1, b2 ∈ BExp, operators ·, + and ¯ denote conjunction, disjunction
and negation, respectively, and, for any c, c1, c2 ∈ Exp, the operator · denotes sequential
composition. The notations on the r.h.s. are given to help intuition and will sometimes be
used when writing programs. We introduce command skip as a shorthand for assert 1,
which is encoded by the Boolean expression 1.
The precedence of the operators is the usual one, i.e. the operator · has higher precedence
than operator +b, and ()(b) has higher precedence that ·1 To simplify the writing, we often
omit the operator · by writing c1c2 for the expression c1 · c2, for any c1, c2 ∈ Exp.

We are interested in using GKAT for representing probabilistic programs. For that, let
us first fix a few definitions. Given a set S, D(S) is the set of probability sub-distributions2

over S with countable support, i.e. the set of functions f : S → [0, 1] such that Supp(f) =
{x ∈ S | f(x) > 0} is countable and f sums up to at most 1, i.e.

∑
s∈S

f(s) ≤ 1 . In particular,

the Dirac distribution δs ∈ D(S) is the map w → [w = s] =
{

1, if w = s

0, otherwise

▶ Example 1 (Imperative programming language). Take a set Var of variables and a set Distr
of sub-distributions over R with discrete support. Consider a simple imperative programming
language defined by the following grammar:

terms t ∈ Terms ::= x ∈ Var | r ∈ R | t1 + t2 | t1 − t2 | t1 × t2
distributions d ∈ Distr

tests b ∈ Tests ::= false | true | t1 < t2 | t1 = t2 | not b | b1 and b2 | b1 or b2

1 For example the GKAT expression c
(b1)
1 · c2 +b2 c3 reads as ((c(b1)

1) · c2) +b2 c3.
2 Some examples of distributions are the tossing of a fair coin, with probability 0.5 for 0 and 1, and

the (discrete version of the) Laplacian distribution Lp(a) centered in a with parameter p. The density
function of Lp(a) is given by 1

2p exp(|x−a|
p).

CSL 2025

35:4 A KAT for Union Bound Reasoning About Probabilistic Programs

commands c ∈ Comm ::= skip | x← t | x $← d | c1; c2 | if b then c1 else c2 | while b do c

This language can be modeled in GKAT by taking as sets of actions and primitive tests
respectively Σ = {x ← t, x

$← d | x ∈ Var, t ∈ Terms, d ∈ Distr} and T = {t1 < t2, t1 =
t2 | t1, t2 ∈ Terms} 3 . The first action evaluates term t and assigns the result to x and
the second one samples from d and assigns the result to x. Observe that while programs c
may be probabilistic, due to the use of samplings, the tests b as for them are deterministic,
i.e. they do not use any probabilistic primitives. In particular the conditional branching in
programs is only done on deterministic tests.

2.2 Semantics
We now present the semantic interpretation of GKAT that we will be using, the Probabilistic
model [30] 4. We first review some basic concepts needed for the semantics. The Iverson
bracket [b], for b ∈ BExp, is the function taking value 1 if b is true and 0 otherwise. Typical
models of probabilistic imperative programming languages interpret programs as Markov
kernels on a set S, i.e. maps from S to probability distributions. The semantic model defined
below interprets programs as sub-Markov kernels, i.e. Markov kernels on sub-distributions.

▶ Definition 2 (Probabilistic interpretation). Let i = (State, eval, sat) be a triple where:
State is a set of states,
for each action a ∈ Σ, eval(a) : State→ D(State) is a sub-Markov kernel,
for each primitive test p ∈ T, sat(p) ⊆ State is a set of states.

The probabilistic interpretation of an expression c with respect to i is the sub-Markov kernel
PiJcK : State→ D(State) defined as follows:
1. PiJaK := eval(a)
2. PiJbK(σ) := [σ ∈ sat†(b)]× δσ

3. PiJc1 · c2K(σ)(σ′) :=
∑
σ′′
PiJc1K(σ)(σ′′)× PiJc2K(σ′′)(σ′)

4. PiJc1 +b c2K(σ) := [σ ∈ sat†(b)]× PiJc1K(σ) + [σ ∈ sat†(b̄)]× PiJc2K(σ)
5. PiJc(b)K(σ)(σ′) := lim

n→∞
PiJ(c+b 1)n · b̄K(σ)(σ′)

where sat† : BExp→ 2State is the lifting of sat : T→ 2State to arbitrary Boolean expressions
over BExp, and× denotes both multiplication on real numbers and the pointwise multiplication
on sub-distributions. For instance the definition of PiJbK(σ) means that it is either δσ if
σ belongs to sat†(b), or the constant sub-distribution equal to 0 otherwise. Intuitively
PiJcK(σ)(σ′) is the probability that the execution of c on initial state σ terminates on state
σ′, and

∑
σ′
PiJcK(σ)(σ′) is the probability that the execution of c on initial state σ terminates

on a state (we then also say that it is a successful execution). Observe thus that we really
need to consider sub-distributions and not only distributions. Let us recall that the existence
of the limit in point 5. has been shown in [30].
▶ Remark 3 (Finite state case). In the case where State is a finite set of size n, say {s1, . . . , sn}
then a sub-Markov kernel f can be represented as an n× n matrix M = (ai,j)i,j∈[1,n]. Each
coefficient ai,j is defined as ai,j = f(si)(sj). So in particular the sum over each line is inferior
or equal to 1. We denote f =M. For tests b, the matrix PiJbK has only diagonal coefficients,

3 Note that technically speaking according to the definition of GKAT the set T should be chosen finite,
which is not the case here, but as observed in [30] Sect. 2.3 Example 2.5 we can use a finite subset T′ of
T for reasoning on pairwise equivalence of programs which terminate.

4 Note that more interpretations of GKAT are presented in [30], namely a relational model and a language
model.

L. Gomes, P. Baillot, and M. Gaboardi 35:5

with value ai,i = 1 if si ∈ sat†(b), ai,i = 0 if si not in sat†(b). In the case of c1 · c2, the matrix
PiJc1 · c2K is obtained by the matrix product of PiJc1K and PiJc2K. See [13] for an example.

In the following we will consider programs over a finite set of variables Var and the set
of states will be the set of memories, that is to say functions in Var → D where D is the
domain of variables (we can take for instance D = Q, the rational numbers). If x ∈ Var and
σ is a memory, then σ[x ← t] is the memory identical to σ except that it maps x to the
evaluation of t in memory σ.
The interpretation of actions a ∈ Σ as sub-Markov Kernels is then given by eval(x← t)(σ) :=
δσ[x←t] and eval(x $← d)(σ) :=

∑
t∈Supp(d)

d(t) · δσ[x←t].

In the sequel memories will often be denoted as m.

2.3 Axioms

The theory of GKAT introduced in [30] is given by the axioms from Fig. 1. Note in
particular the fixpoint axiom (13). Intuitively, it says that if expression c3 chooses (using
guard b) between executing c1 and looping again, and executing c2, then c3 is a b-guarded loop
followed by c2. However, the rule is not sound in general. In order to overcome this limitation,

c +b c = c (1)
c1 +b c2 = c2 +b̄ c1 (2)

(c1 +b1 c2) +b2 c3 = c1 +b1·b2 (c2 +b2 c3) (3)
c1 +b c2 = b · c1 +b c2 (4)

c1 · c3 +b c2 · c3 = (c1 +b c2) · c3 (5)
(c1 · c2) · c3 = c1 · (c2 · c3) (6)

0 · c = 0 (7)

c · 0 = 0 (8)
1 · c = c (9)
c · 1 = c (10)

c
(b) = c · c(b) +b 1 (11)

(c +b2 1)(b1) = (b2 · c)(b1) (12)
c3 = c1 · c3 +b c2

c3 = c
(b)
1 · c2

if E(c1) = 0 (13)

Figure 1 Axiomatisation of Guarded Kleene algebra with tests.

following [30] (Section 3.1, Definition 3.2), the side condition E(c1) = 0 is introduced, ensuring
that command c1 is productive, i.e. that it performs some action. To this end, the function
E is inductively defined as follows: E(b) := b, E(a) := 0, E(c1 +b c2) := b · E(c1) + b̄ · E(c2),
E(c1 · c2) := E(c1) · E(c2), E(c(b)) := b̄.
We can see E(c) as the weakest test that guarantees that command c terminates successfully
but does not perform any action.

Moreover, note particularly the following observation: in KAT the encoding c1(bc2+b̄c3) =
c1bc2 + c1b̄c3 is not an if-then-else statement; it is rather a nondeterministic choice between
executing c1, then testing b and executing c2, and executing c1, then testing b̄ and executing
c3. The corresponding encoding in GKAT would be c1(c2 +b c3) = c1c2 +b c1c3, an equality
which is actually not valid in GKAT. Since GKAT is restricted to deterministic programs,
there is no valid correspondence between the KAT encoding, which is not an if-then-else
statement, and the hypothetical correspondent GKAT encoding, which is not valid. That is
why left distributivity does not hold in GKAT for any c ∈ Exp; it only holds for the particular
case of c1 ∈ BExp, i.e. if c1 is a test.

We define the relation ≤ on tests as: b1 ≤ b2 iff b1 + b2 = b2. Contrarily to KAT [21], the
relation ≤ is not defined on an arbitrary GKAT expression, only on tests. In [13] we recall
additional derivable equations in GKAT from [30].

CSL 2025

35:6 A KAT for Union Bound Reasoning About Probabilistic Programs

Since any test is a program (BExp ⊆ Exp), the grammar also allows to write expressions
as b1 +b b2, for any b ∈ BExp. We thus establish the following proposition5 (proof in [13])
which expresses the guarded sum +b, for any b ∈ BExp, in terms of the disjunction + on
tests.

▶ Proposition 4. For any tests b, b1, b2 one has: b1 +b b2 = bb1 + b̄b2.

By Boolean reasoning, we can observe that bb+ b̄b̄ = 1. This observation will be useful later
to prove the soundness of some aHL rules in aGKAT.

We also state the following proposition (see [13] for the proof):

▶ Proposition 5. For any tests b1, b2 one has: b1 + b2 = b1 +b1 b2.

3 Union bound logic - Approximate Hoare logic

In this section we recall Approximate Hoare logic (aHL) [5], a logic based on the union bound,
a tool from probability theory for analyzing randomised algorithms. A judgment in aHL is
of the form ⊢β c : ϕ⇒ ψ where: ϕ, ψ are first-order formulas representing non probabilistic
pre- and post-conditions6, respectively; β is a value in [0, 1] and it is an upper bound on the
probability that the post-condition ψ does not hold on the output distribution, assuming
that ϕ holds on an initial memory m. We assume a probabilistic interpretation i and we will
denote m |= ϕ if ϕ is valid in memory m. The validity of the judgement is thus stated by:

▶ Definition 6 (Validity of aHL judgment). A judgment ⊢β c : ϕ ⇒ ψ is valid if for every
memory m such that m |= ϕ, we have PiJcK(m)[ψ̄] ≤ β.

Figure 2 presents the deduction rules of aHL. Let us comment on some of these rules.
The rule (Rand) handles sampling from a distribution d; we can assume a postcondition ψ

after the sampling, provided that under the assumption of precondition ϕ, the statement ψ
fails with probability at most β.

The other rules are similar to standard Hoare logic rules annotated with suitable probab-
ility indexes β. The rule (Seq) says that when composing two programs c and c′, the failure
probabilities of the two programs with respect to their postconditions add together. The
(Cond) rule states that if the two branches of the conditional have the same index β, then we
can keep the index β for the conditional. In rule (Weak) the premise |= ϕ′ ⇒ ϕ means that,
in any model, ϕ′ implies ϕ. This (Weak) rule allows to strengthen the precondition, weaken
the postcondition, and increase the index β (which means overapproximating the failure
probability). The (And) rule can be seen as an application of the union bound principle.
It enables to combine two postconditions by a conjunction, provided we add up the failure
probabilities. As to the (Or) rule, it allows to take the disjunction of two preconditions, if
they have the same failure probability, and keep this index for the disjunction. Note that
thanks to the (Weak) rule we could also in (Or) consider two indexes β and β′ in the premises,
and their maximum in the conclusion (the same is also true for (Cond)). The rule (False)
might first seem a bit strange as it allows to conclude false, but note that its index is 1,
which means that false holds in the final memory with probability 0. Finally, considering the

5 We thank the anonymous reviewer of another paper for pointing out to us the fact that this property is
derivable in GKAT.

6 Note that ϕ and ψ are properties of memories rather that properties of distributions over memories.

L. Gomes, P. Baillot, and M. Gaboardi 35:7

(While) rule, observe that it is slightly more restrictive than the corresponding classical one
of Hoare logic. Its side conditions ensure that the loop terminates in at most k iterations
except with probability kβ. Its first side condition states that the variable bv only takes
non-negative integer values.

Skip:

⊢0 skip : ϕ⇒ ϕ

Assn:

⊢0 do x← t : ϕ[t/x]⇒ ϕ

Rand:

∀m : m |= ϕ⇒ PiJx
$← dK(m)[ψ̄] ≤ β

⊢β do x
$← d : ϕ⇒ ψ

Seq:

⊢β c : ϕ⇒ ϕ′ ⊢β′ c′ : ϕ′ ⇒ ϕ′′

⊢β+β′ c; c′ : ϕ⇒ ϕ′′

Weak:

|= ϕ′ ⇒ ϕ ⊢β c : ϕ⇒ ψ |= ψ ⇒ ψ′ β ≤ β′

⊢β′ c : ϕ′ ⇒ ψ′

Or :

⊢β c : ϕ⇒ ψ ⊢β c : ϕ′ ⇒ ψ

⊢β c : ϕ ∨ ϕ′ ⇒ ψ

Cond:

⊢β c : ϕ ∧ b⇒ ψ ⊢β c
′ : ϕ ∧ b̄⇒ ψ

⊢β if b then c else c′ : ϕ⇒ ψ

And:

⊢β c : ϕ⇒ ψ ⊢β′ c : ϕ⇒ ψ′

⊢β+β′ c : ϕ⇒ ψ ∧ ψ′

False:

⊢1 c : ϕ⇒ ⊥

While:

bv : N, |= (ϕ ∧ bv = 0→ b̄), ⊢β c : ϕ⇒ ϕ, ∀η>0 : ⊢0 c : ϕ ∧ b ∧ (bv = η)⇒ (bv < η)
⊢k·β while b do c : ϕ ∧ (bv ≤ k)⇒ ϕ ∧ b̄

Figure 2 Approximate Hoare Logic rules (aHL).

4 Approximate Guarded Kleene algebra with tests (aGKAT)

4.1 Definition and theory of aGKAT
Recalling that GKAT encodes only Boolean assertions on probabilistic programs, we want
to extend this kind of reasoning in order to capture aHL properties. We want to define a
structure which would allow to express the fact that a probabilistic program c satisfies a
deterministic postcondition, except with a probability up to a certain bound. For that we
will extend GKAT with a relation between a GKAT expression and a value β from a partially
ordered set. Such a set is defined as follows:

▶ Definition 7. A preordered double monoid (pod-monoid) is a M = (M,≤, ·, 1,+, 0) where:
≤ is a preorder on M ,

CSL 2025

35:8 A KAT for Union Bound Reasoning About Probabilistic Programs

(M, ·, 1) and (M,+, 0) are two monoid structures, whose operations · and + are monotone
w.r.t. ≤.

Note that we do not include any axiom relating · and +. This structure is thus sufficient
to model the probability bounds from aHL. In the sequel we will consider the pod-monoid
consisting of the real unit interval [0, 1] equipped with multiplication and addition truncated
to 1, that is to say min ((β1 + β2), 1), where + is the ordinary addition.

We then give the main definition of this section.

▶ Definition 8. Approximate GKAT, denoted as aGKAT, is an extension of GKAT with a
pod-monoid M and a predicate symbol ◁ on Exp×M. The theory of aGKAT is the union of
axioms of pod-monoid, and those of Fig. 1 and Fig. 3.

(c1 = c2 ∧ c1 ◁ β) ⇒ c2 ◁ β (14)
(c ◁ β1 ∧ β1 ≤ β2) ⇒ c ◁ β2 (15)

(c · c1 ◁ β1 ∧ c · c2 ◁ β2) ⇒ c · (c1 +b c2) ◁ β1 + β2(16)

(c1 ◁ β1 ∧ c2 ◁ β2) ⇒ c1 · c2 ◁ β1 · β2(17)
(c1 ◁ β ∧ c2 ◁ β) ⇒ c1 +b c2 ◁ β (18)

c ◁ 1 (19)
0 ◁ 0 (20)

Figure 3 Axioms on the relation ◁.

Recall that the intended meaning of ◁ in the case where M = ([0, 1],≤, ·, 1,+, 0) is that
c ◁ β holds if the probability of successful execution of program c is bounded by β. Observe
that the ◁-axioms of Fig. 3 are arguably simple, as they are Horn clauses and none deal with
guarded iteration c(b).

Let us explain some intuitions underlying these axioms. Axiom (19) simply says that
any program has a probability of successful execution bounded by 1, while (20) states that
program 0 (which is assert false) has probability 0 of successful execution. Axiom (15)
says that the statement still holds if we increase the probability β1. Axiom (14) states that
programs which are equal (up to the GKAT axioms of Fig. 1) admit the same probability
of successful execution. Axiom (18) says that if the two branches of a conditional admit a
bound β for their successful execution, so does the conditional itself. As to Axiom (17), its
meaning is that the probability of successful execution of the composition of two programs c1
and c2 is bounded by the product of the probabilities of successful execution of respectively
c1 and c2.

Maybe the less intuitive axiom is Axiom (16). Note that the difference with Axiom (18)
is that for Axiom (18) any initial state s either satisfies b or b, and so only one branch
of c1 +b c2 is explored. By contrast in Axiom (16) any initial state s might lead by the
probabilistic execution of c both to states satisfying b and to states satisfying b, so triggering
both branches of the conditional. We will come back to this axiom in Remark 12 below.

After these intuitive considerations, we now formally define a semantic interpretation of
aGKAT as follows:

▶ Definition 9. A probabilistic interpretation of aGKAT is obtained by extending a probabil-
istic interpretation Pi of GKAT given in Sect. 2.2 in the following way:

we consider the triple i = (State, eval, sat) of Def. 2 interpreting GKAT,
the pod-monoid M is interpreted as indicated above by ([0, 1],≤, ·, 1,+, 0) where · is the
product and + the truncated sum,
the predicate ◁ is interpreted by the relation between sub-Markov kernels f and [0, 1]-reals
β consisting in the pairs (f, β) satisfying ∀s ∈ State, Σs′∈Statef(s)(s′) ≤ β, i.e. for any
s, the total mass of the sub-distribution f(s) is bounded by β.

L. Gomes, P. Baillot, and M. Gaboardi 35:9

We still denote the interpretation of an expression c as PiJcK.

If i is an interpretation and F a 1st-order formula on the signature consisting of terms in
Exp and in real numbers and predicates = and ◁, we write i |= F if F is valid in the model
defined by i. By abuse we will simply write |= F if i is clear from the context. So by the
definition above we have in particular that i |= c ◁ β if ∀s ∈ State,

∑
s′∈State

PiJcK(s)(s′) ≤ β.

We now establish the following proposition.

▶ Proposition 10 (Soundness of aGKAT). Any probabilistic interpretation of aGKAT is a
model of its theory, i.e.:
1. the interpretation of aGKAT expressions satisfies the axioms of GKAT (Fig. 1) and that

of ([0, 1],≤, ·, 1,+, 0) satisfies the axioms of pod-monoid,
2. the axioms of Fig. 3 (axioms (14) to (20)) are satisfied.

Proof. (Prop. 10) See [13]. The most delicate case is that of Axiom (16). ◀

▶ Remark 11. Proposition 10 implies that if i is a probabilistic interpretation and if a
statement c ◁ β is derivable from the aGKAT axioms and possibly some semantic hypothesis
of the shape i |= A, then i |= c ◁ β holds. Note that Prop. 10 implies in particular that if i is
a probabilistic interpretation and A⇒ B is an instance of an axiom in Fig. 3, then if i |= A

we can deduce that i |= B. This is because as i is a model, classical logic rules are sound
in it.
▶ Remark 12. Note that by analogy with Axiom (18), one could have expected an axiom
stronger than Axiom (16), namely that if (c · c1 ◁ β ∧ c · c2 ◁ β) then one would have
c · (c1 +b c2) ◁ β (this would then generalize Axiom (18) when taking c = 1). However it
turns out that this candidate additional axiom is not valid in the probabilistic model. A
counter-example is given in [13].

▶ Proposition 13. The following property is derivable in aGKAT:

(c · b1 ◁ β1 ∧ c · b2 ◁ β2)⇒ c · (b1 + b2) ◁ β1 + β2

Proof. Observe that b1 + b2 = b1 +b1 b2 by Prop. 5 and use Axiom (16). ◀

The proposition below refines in some sense Axiom (16).

▶ Proposition 14. The following property is derivable in aGKAT:

(c · b · c1 ◁ β1 ∧ c · b̄ · c2 ◁ β2)⇒ c · (c1 +b c2) ◁ β1 + β2

Proof. Observe that c1 +b c2 = b · c1 +b b̄ · c2 by Axiom (4), Axiom (2), applied two times.
Then apply Axiom (16) to c, c′1 = bc1 and c′2 = b̄c2. ◀

▶ Remark 15 (Axiom (16), left distributivity and union bound). Recall that KAT [21] has an
axiom of left distributivity c · (c1 + c2) = c · c1 + c · c2. It does not hold in GKAT with the
guarded sum +b though. In some sense axiom (16) (or its refinement Prop. 14) can be seen
as a kind of compensation for this lack of left distributivity because it allows, when one is
reasoning about an expression c · (c1 +b c2) (in order to establish a bound β), to continue
the proof with two branches, respectively on c · c1 and on c · c2. If one obtains two bounds
c · ci ◁ βi, for i = 1, 2 then one can deduce that c · (c1 +b c2) ◁ β1 + β2.

Moreover if c1 and c2 are tests b1 and b2, then by Prop. 5 b1 + b2 = b1 +b1 b2. So
c · (b1 + b2) = c · (b1 +b1 b2) ◁ β1 + β2. So the probability that after execution of c the test
(b1 + b2) is satisfied is inferior to the sum of the probability that b1 is satisfied and of the
probability that b2 is satisfied. This is the application of the binary union bound principle
on post-conditions, and it can easily be applied to an arbitrary union bound.

CSL 2025

35:10 A KAT for Union Bound Reasoning About Probabilistic Programs

4.2 Semantic reasoning
When reasoning about concrete programs, we want to establish properties on their semantic
interpretations. That might sometimes require, besides the axioms of aGKAT, the use of
some semantic properties. One such example is that some actions can be commuted without
changing the semantics of the program. We establish thus some notations:

▶ Definition 16. Given two GKAT program c and c′ and a probabilistic interpretation i, we
write c ≡ c′ if i |= c = c′, i.e. PiJcK = PiJc′K.

This definition is required to establish the following proposition.

▶ Proposition 17. Consider GKAT programs c and c′, and a probabilistic interpretation i.
1. If b is a test which only depends on the values of some variables x1, . . . , xn and if c leaves

the values of those variables unchanged, then we have c · b ≡ b · c,
2. If c ≡ c′ and i |= c ◁ β, then i |= c′ ◁ β.

Observe that (1) holds because the syntax of programs does not allow any form of aliasing
and (2) because the property i |= c ◁ β only depends on the semantic interpretation PiJcK.

Let us now illustrate the use of aGKAT on a small example.

▶ Example 18 (Double tossing). Consider the program c below:

c = (x $← Coin) · (c1 +(x=1) y ← 0), where c1 = (x $← Coin) · (y ← 1 +(x=1) y ← 0)

Consider the interpretation i where Coin is the distribution of a fair coin, that takes value
0 (resp. 1) with probability 1/2 (resp. 1/2). This can be represented either by adding to
the theory two axioms describing the behaviour of Coin, namely axioms (x $← Coin) · (x =
1) ◁ 1/2 and (x $← Coin) · (x ̸= 1) ◁ 1/2, or by using the following semantic properties of i:
|= (x $← Coin) · (x = 1) ◁ 1/2 and |= (x $← Coin) · (x ̸= 1) ◁ 1/2. We want to prove that
after the execution of c, the probability that y equals 0 is below 3/4, and the probability
that y equals 1 is below 1/4, i.e. |= c · (y = 0) ◁ 3/4 and |= c · (y = 1) ◁ 1/4.

Recall first that as i is a model, by Prop. 10, it satisfies all axioms of Fig. 1 and Fig. 3,
and all classical logic rules are sound in it (see Remark 11). Now, by using Axiom (5),
c · (y = 0) can be rewritten as follows:

c · (y = 0) = (x $← Coin) · (c′1 +(x=1) y ← 0(y = 0))

c′1 = (x $← Coin) · (y ← 1(y = 0) +(x=1) y ← 0(y = 0))

Let us name the following expressions, corresponding to the various possible branches of
executions of c · (y = 0) :

c2 = (x $← Coin) · (x = 1) · (x $← Coin) · (x = 1) · (y ← 1) · (y = 0)
c3 = (x $← Coin) · (x = 1) · (x $← Coin) · (x ̸= 1) · (y ← 0) · (y = 0)
c4 = (x $← Coin) · (x ̸= 1) · (y ← 0) · (y = 0)

First, from the model we know that (y ← 1) · (y = 0) ≡ 0, so c2 ≡ 0, so |= c2 ◁ 0.
Then, as |= (x $← Coin) · (x ̸= 1) ◁ 1/2, by Axioms (19) and (17) we have |= c4 ◁ 1/2.
Then, as |= (x $← Coin) · (x = 1) ◁ 1/2, by Axioms (17) and (19) we have |= c3 ◁ 1/4.

By applying Prop. 14 to c2 and c3 we get: |= (x $← Coin) · (x = 1) · c′1 ◁ 1/4 (21)

By applying again Prop. 14, this time to (21) and by |= c4 ◁ 1/2 we finally obtain |= c · (y =
0) ◁ 3/4 (= 1/4 + 1/2). We give in [13] a step-by-step fully explicit version of the proof above.
The proof that |= c · (y = 1) ◁ 1/4 holds is similar.

L. Gomes, P. Baillot, and M. Gaboardi 35:11

5 Encoding aHL in aGKAT

We want to relate deduction in aHL and reasoning in aGKAT, by following the approach
of [22] on the encoding of propositional Hoare logic in KAT. We consider the programming
language of Example 1 but the results remain valid if we consider extended grammars of
terms, distributions, tests and commands, where the class of tests is closed by substitution
of terms t (as in Example 1). We will encode aHL derivations consisting of judgements
⊢β c : ϕ⇒ ϕ′ where ϕ and ϕ′ belong to the class of tests.

Concretely the idea will be to encode the aHL judgement ⊢β c : ϕ⇒ ϕ′ by the aGKAT
statement ϕ · c · ϕ′ ◁ β. Similarly to [22], showing that an aHL rule is sound in aGKAT will
consist in proving that the conjunction of the aGKAT equations encoding the premises of
the aHL rule implies the equation encoding the conclusion of the rule.

Observe that similarly as for Hoare logic, some rules of aHL, namely axiom rules (Assn)
and (Rand), do not depend on aHL judgements as premises but rather on an interpretation
of actions and predicates, and possibly a semantic condition (for (Rand)). Thus we do not
expect to derive their encoding as an equation valid in the theory of aGKAT. Instead, one
could add new axioms corresponding to (Assn) and (Rand) for specific distributions (as
mentioned in Example 18), or alternatively when dealing with examples consider a particular
interpretation i and thus reason on equalities of expressions in the model.

Fig. 4 lists the interpretations of the rules of aHL (Figure 2) in aGKAT, by encoding aHL
judgments as aGKAT equations. Note that the rule (Assn) uses the test ϕ[t/x] obtained by
substituting the term t in ϕ, which does belong to the class of tests by definition.

Skip:

ϕ1ϕ̄ ◁ 0 (22)

Assn:

ϕ[t/x](x← t)ϕ̄ ◁ 0 (23)
Rand:

(∀m,m |= ϕ⇒ PiJx
$← dK(m)[ψ̄] ≤ β)⇒ ϕ(x $← d)ψ̄ ◁ β (24)

Seq:

(ϕcϕ̄′◁β)∧(ϕ′c′ϕ̄′′◁β′)⇒ ϕcc′ϕ̄′′◁ β+β′ (25)

Weak:

(ϕ ≤ ϕ′)∧(ϕcψ̄◁β)∧(ψ′ ≤ ψ)∧(β ≤ β′)⇒ ϕ′cψ̄′◁β′

(26)

Or:

(ϕcψ̄ ◁ β) ∧ (ϕ′cψ̄ ◁ β)⇒ (ϕ+ ϕ′)cψ̄ ◁ β (27)

Cond:

(ϕbcψ̄ ◁β)∧ (ϕb̄c′ψ̄ ◁β)⇒ ϕ(c+b c
′)ψ̄ ◁β (28)

And:

(ϕcψ̄ ◁ β)∧ (ϕcψ̄′ ◁ β′)⇒ ϕc ¯ψψ′ ◁ β+ β′ (29)

False:

ϕc⊥̄ ◁ 1 (30)

While:

(|= bv ∈ N)∧(|= (ϕ∧(bv ≤ 0))→ b̄)⇒ (ϕcϕ̄◁β)∧(∀η>0 ·ϕb[bv = η]c[bv < η]◁0)⇒ ϕ[bv ≤ k]c(b)ϕb̄◁kβ

(31)

Figure 4 Interpretation of aHL rules in aGKAT.

The next theorem establishes the main result of the paper.

▶ Theorem 19. All the rules of the system aHL, union bound logic, except (Assn) and
(Rand), have an aGKAT interpretation (in Fig. 4) that is derivable from the axioms of
aGKAT.

CSL 2025

35:12 A KAT for Union Bound Reasoning About Probabilistic Programs

Note that the interpretation of the (While) rule, (31) in Fig. 4, is not a plain aGKAT
formula, but has some semantic premises. This is because the aHL (While) rule itself is
expressed with semantic premises. The proof of Theorem 19 can be found in [13]. The most
interesting cases are (Seq) and (And) rules, and the most difficult one is that of (While).

Observe that an interesting feature of aGKAT is that none of its ◁-axioms (Fig. 3) refers
to guarded iteration c(b), and nevertheless aGKAT is as expressive as aHL and allows to
derive its (While) rule. Another interesting specificity of aGKAT w.r.t. to aHL is that
in aGKAT the axioms for reasoning on program equivalence (those of GKAT, Fig. 1) are
disjoint from those for reasoning on probabilities (Fig. 3).

6 Example

We now consider the example of the Report-noisy-max algorithm, which has been analysed
in [5] with the logic aHL. Our analysis here using aGKAT will be similar, but the equational
approach of aGKAT will simplify some steps. The full proof can be found in [13].

We consider a finite set R and a quality score function qscore, which takes as input a
pair of an element r of R and a database d, and returns a real number. The goal of the
algorithm is to find an element r∗ of R which approximately minimizes the function qscore

on d. The algorithm is randomized and only computes an approximate minimization because
it is designed to satisfy a differential privacy property (see [9]). The algorithm proceeds by
computing for each element r of R the quality score qscore(r, d) and adding to it a Laplacian
noise (according to the Laplace mechanism for differential privacy [9]) and returning the
element r∗ with the highest noisy value.

Here we do not deal with the privacy property of this program, but instead our objective is
to study its accuracy, that is to say to bound the difference between the value of qscore(r∗, d)
and the real minimum of qscore(·, d) on R. The algorithm is encoded in GKAT as the
program c = (flag ← 1); (best← 0); (R0 ← R); (R′ ← ∅); c′[R̸=∅]; return(r∗) where

c′ = (r ← pick(R)); (noisy[r] $← Lϵ/2(qscore(r, d))); (c1 +b 1); (R← R\{r}); (R′ ←R′ ∪ {r})
where c1 = (flag ← 0); (r∗ ← r); (best← noisy[r]) b = (noisy[r] > best) + (flag == 1)

The variable flag has Boolean values ({0, 1}), R, R0 and R′ are sets, r, r∗ range over
elements of R, noisy[r] and best range over reals. The variable flag is used for initialization
purpose. The notation noisy[r] is an array-like notation for representing n variables, where
n is the size of the set R. Note that variable R′ does not play any role in the algorithm, it is
just used to express properties of the execution.

This program uses the following kinds of actions and tests:
actions for operations on sets: picking an (arbitrary) element r from a set (r ← pick(R)),
removing (R ← R\{r})) and adding an element (R′ ← R′ ∪ {r}),
sampling from a Laplacian distribution centered in a with parameter p : (x $← Lp(a)),
tests: inequalities for reals, equality for Boolean value, comparison to empty set for sets
[R ̸= ∅]; we will also need a finite number of additional tests for expressing properties on
the execution, that we will see later.

We recall the following accuracy property of the Laplace distribution [5]:

▶ Lemma 20. Let β ∈ [0, 1], ν a sample from Lp(a). Then PrLp(a)[|ν − a| > 1
p log(1

β)] < β.

L. Gomes, P. Baillot, and M. Gaboardi 35:13

Therefore we have |= (x $← Lp(a))[|x− a| > 1
p log(1

β)] ◁ β. Hence for the sampling in c:

|= (noisy[r] $← Lϵ/2(qscore(r, d))) · b1 ◁
β

|R0|
(32)

where b1 = [|noisy[r]− qscore(r, d)| > 2
ϵ log(|R0|

β)].
Now we want to establish a property for the whole program c′. Observe that b1 only

depends on the values of noisy[r] and qscore(r, d). Moreover noisy[r] and qscore(r, d) are
not changed by the last 3 actions of c′. Therefore by applying Prop.17.1 we get c′; b1 ≡ c′′ ,
where c′′ is obtained by inserting in c′ the test b1 just after (noisy[r] $← Lϵ/2(qscore(r, d))).
As we know by (19) that for any c0 we have |= c0 ◁ 1, by combining this with axiom (17) and
(32) we get |= c′′ ◁ β

|R0| . This is a step where aGKAT has provided us a concise and simple
reasoning. Therefore, as c′; b1 ≡ c′′, we get by Prop. 17.2: |= c′ · b1 ◁

β
|R0| .

We want to prove an invariant for the body c′ of the while loop in c. For that consider the
test b2 corresponding to the predicate ϕ2 = ∀r ∈ R′, |noisy[r]− qscore(r, d)| ≤ 2

ϵ log(|R0|
β).

We have: b2 · b1 · (R′ ← R′ ∪ {r}) · b2 ≡ 0 (33)

Let c2 be c′ deprived of the last action, i.e. c′ = c2 · (R′ ← R′ ∪ {r}). The reasoning we
did on c′ before can be repeated for c2, and so as for c′ we get: |= c2 · b1 ◁

β
|R0| . Therefore by

axioms (17) and (19) we get |= b2 · c2 · b1 ◁
β
|R0| (here again aGKAT helps us with conciseness).

Moreover as c2 does not modify R′, by using Prop.17.1 we get |= b2 · c2 · b2 ◁ 0. Thus by using
the aGKAT encoding (Theorem 19) of the aHL rule (And) we obtain from the two previous
statements: |= b2 · c2 · b1 · b2 ◁

β
|R0| . Equation (33) gives us |= (b1 · b2) · (R′ ← R′∪{r}) · b2 ◁ 0.

By using the aGKAT encoding of the aHL rule (Seq) we get from the two last statements:
|= b2 · c′ · b2 ◁

β
|R0| . By using the aGKAT encoding of the aHL rule (While) we get from this

last statement, since the loop runs for |R0| iterations, |= b2 · c′[R̸=∅] · b2 ◁ β.
Finally as (R′ ← ∅) · b2 ≡ 0 we deduce from this statement using (Seq) that |= c · b2 ◁ β.

So we have proven using aGKAT that the property corresponding to the following judgement
holds: ⊢β c : ⊤ ⇒ ∀r ∈ R′, |noisy[r]− qscore(r, d)| ≤ 2

ϵ log(|R0|
β).

In [13] we continue the proof to finally obtain an accuracy bound for the algorithm.

7 Related work

Several works have explored the use of program logics for the verification of probabilistic
programs. Some of these works have explored approaches based on Hoare-like logics [16] while
some other ones have developed the approach of weakest-pre-expectations, e.g. [25, 17]. The
paper [7] has extended standard Hoare logic to deal with a language containing a probabilistic
choice operator, and in which predicates express claims about the state of a probabilistic
program. In this work, a semantics for the language is given and a Hoare-style deduction
system presented, and proven to be correct w.r.t. the semantics. Another example is the
union bound logic aHL [5] that we already presented. More recently, Graded Hoare logic
(GHL) was introduced in [10] as a parameterisable framework for extending Hoare logic with
a preordered monoidal analysis, with a few examples of applications: the union bound logic
aHL [5]; logics for analysis of computation time; or the logic for reasoning about program
counter security [26]. Other works even explore extensions of propositional dynamic logic to
probabilistic programs, as [23]. This article proposes a probabilistic analog of PDL, which
generalises the non-deterministic logical constructs and proof rules in PDL to arithmetic
analogs in the probabilistic version.

CSL 2025

35:14 A KAT for Union Bound Reasoning About Probabilistic Programs

Other approaches to probabilistic program verification were also introduced in the
literature, relying on algebraic structures to wrap the apparatus of logical systems into more
elegant frameworks. Some of these approaches are extension of Kleene algebra with tests,
of which we give a few examples. A probabilistic extension of GKAT (ProbGKAT) was
introduced in [29] for reasoning about imperative programs with probabilistic branching.
One difference to our approach is the syntactic introduction of the probability, by the
operator ⊕r, where r is a probability; we rather do it semantically, by taking samplings
as basic instructions, more in the style of the probabilistic assignment operator of the
language pIMP [15] for instance. Additionally, [29] provides an axiomatisation of bisimilarity
of ProbGKAT expressions and proves its completeness.

Another KAT extension was given in [11] which aimed at capturing fuzzy programs by
replacing the Boolean algebra of KAT by a lattice, with the goal of being able to reason on
fuzzy (non Boolean) properties [14].

A variant of GKAT was introduced in [12] as a relational structure to reason about
properties of pairs of probabilistic programs (e.g. non-interference between variables), in the
style of the system BiKAT [3] in the non-probabilistic setting. Still in the domain of relational
reasoning, we can mention relational differential dynamic logic [20], which is specifically
designed for the verification of cyber-physical systems, in a process that the authors called
synchronizing the dynamics for comparing two systems.

8 Discussion and future work

We believe that a promising aspect of aGKAT and of the axiomatic presentation we introduced
in this paper, is that they can contribute to extend the range of applicability of (co)-algebraic
techniques of verification illustrated e.g. in [1, 24, 30, 2] to the realm of approximate reasoning
on program effects [5, 6, 10]. This suggests several exciting research directions, which we
discuss below.

Towards decision procedures. Recall that the paper [30] has given a decision procedure
for the equivalence of GKAT programs whose complexity is almost linear time, assuming
that the number of tests is fixed. This procedure is based on a new automata construction.
One could investigate in an analogous way decision problems in aGKAT for statements of
the form c ◁ β. The problem could be expressed with some semantic hypothesis, typically
some probabilistic assumptions on the randomized primitives used by the program. Our
axioms on the relation ◁ (Fig. (3)) are quite promising in this respect since they are Horn
clauses. Combining automata methods [30] and Horn clauses deduction techniques might
lead to some efficient procedures. In [29], the authors present a decision procedure for
demonstrating the existence of bisimilarity between two ProbGKAT expressions. Note that
the probabilistic constructs of ProbGKAT can be encoded in aGKAT. Consider for r ∈ [0, 1]
the distribution flip(r) which returns 0 (resp. 1) with probability r (resp. (1− r)). Then
by using a fresh variable x, c0⊕r c1 can be encoded as (x $← flip(r)) · (c0 +[x=0] c1), and c[r]

as (x $← flip(r)) · ((x $← flip(r)) · c)[x=0]. Using this encoding and axiom (16) one obtains
that from ci ◁ βi for i = 0, 1 one can derive c0 ⊕r c1 ◁ rβ0 + (1− r)β1.

Lower bounds. The system aGKAT has been defined to derive probabilistic upper bounds
on successful termination, which allows to obtain upper bounds on the satisfaction or failure
of a postcondition. It would be interesting to investigate if this approach can be adapted to
derive probabilistic lower bounds, to prove that a postcondition holds with probability at
least β.

L. Gomes, P. Baillot, and M. Gaboardi 35:15

Extension to other effects. In the present paper we restricted ourselves to a specific pod-
monoid with specific interval of values and set of operators, which were enough to capture
aHL and handle the initial intended goals of reasoning on probabilistic properties. However
we would like to push this approach further. By using a generic and external structure to the
main algebraic model of programs, we could follow a parametric approach, and obtain more
freedom on the structure chosen to capture a wider range of quantitative analysis of effects,
like for instance: the analysis of computation time model, by taking the natural numbers
and the arithmetic sum as the monoidal composition; the program counter security model,
by taking a set of binary values and the string concatenation as the composition; and the
union bound logic itself. Those are a few concrete models considered for a generic version of
Hoare Logic, analysed in [10].

We want to stress however that it is not trivial to capture in the same generic setting both
the union bound logic and the logic for analysis of computation time. The system aGKAT
as it stands does not allow to do that. In particular axiom (19) implies that the neutral
element of the first monoid is also maximal for the order; this is not the case in the monoid
(N,+) (or even (N∞,+)) used for the Hoare logic for analysis of computation time [10].

The framework of pRHL could also benefit from an algebraic approach, calling for a
structure taking into account the parametric reasoning about judgments themselves. One
would need to embed the parameters into the structure itself, resorting, for example, to a
relation between algebraic terms and the elements from the structure which model these
parameters.

Towards a stronger completeness. Another possible direction for future work would be to
study completeness of aGKAT with respect to some class of Horn clauses which embed aHL
rules. That would mean to prove that the theory of aGKAT could always derive equations
that represent valid aHL rules. We could draw inspiration from Kozen’s classical work [22],
in which an analogous result was proven for KAT with respect to a class of Horn clauses
which embed propositional Hoare logic.

Towards relational properties. In this paper we have considered properties on single
executions of a program, but some important questions can be expressed as relational
properties on pairs of execution, for instance non-interference, continuity or sensitivity
properties. An extension of Kleene algebra with tests called BiKAT for relational properties
was introduced in [3] and another framework for probabilistic relational properties was
proposed in [12]. It would interesting to explore if the approximation construction we defined
in the present paper could be applied to the probabilistic relational setting of [12]. This
would be analogous to the move in the relational Hoare logic setting, from pRHL to apRHL.

Non-determinism and probabilities. One of the advantages of the syntactical restriction of
GKAT is to facilitate the inclusion of probabilistic models, by neglecting nondeterminism.
While usually avoided, and always difficult, one possible direction for future work could be to
consider a language with both nondeterminism and probabilities, capturing more application
scenarios.

References
1 D. Kozen A. Angus. Kleene algebra with tests and program schematology. Technical report,

Computer Science Department, Cornell University, Ithaca, NY 14853-7501, USA, July 2001.
Technical Report TR2001-1844.

CSL 2025

35:16 A KAT for Union Bound Reasoning About Probabilistic Programs

2 Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen,
Cole Schlesinger, and David Walker. NetKAT: semantic foundations for networks. In Suresh
Jagannathan and Peter Sewell, editors, The 41st Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21,
2014, pages 113–126. ACM, 2014. doi:10.1145/2535838.2535862.

3 Timos Antonopoulos, Eric Koskinen, Ton Chanh Le, Ramana Nagasamudram, David A.
Naumann, and Minh Ngo. An algebra of alignment for relational verification. Proc. ACM
Program. Lang., 7(POPL):573–603, 2023. doi:10.1145/3571213.

4 Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt, and
Pierre-Yves Strub. Easycrypt: A tutorial. In Alessandro Aldini, Javier López, and Fabio
Martinelli, editors, Foundations of Security Analysis and Design VII - FOSAD 2012/2013
Tutorial Lectures, volume 8604 of Lecture Notes in Computer Science, pages 146–166. Springer,
2013. doi:10.1007/978-3-319-10082-1_6.

5 Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub.
A program logic for union bounds. In Ioannis Chatzigiannakis, Michael Mitzenmacher,
Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata,
Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of
LIPIcs, pages 107:1–107:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.ICALP.2016.107.

6 Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. Probabilistic
relational reasoning for differential privacy. ACM Trans. Program. Lang. Syst., 35(3):9:1–9:49,
2013. doi:10.1145/2492061.

7 Jerry den Hartog and Erik P. de Vink. Verifying probabilistic programs using a Hoare like
logic. Int. J. Found. Comput. Sci., 13(3):315–340, 2002. doi:10.1142/S012905410200114X.

8 Easycrypt development team. Easycrypt, 2024. URL: https://formosa-crypto.org/
projects/.

9 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3-4):211–407, 2014. doi:10.1561/0400000042.

10 Marco Gaboardi, Shin-ya Katsumata, Dominic Orchard, and Tetsuya Sato. Graded hoare logic
and its categorical semantics. In Nobuko Yoshida, editor, Programming Languages and Systems
- 30th European Symposium on Programming, ESOP 2021, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg,
March 27 - April 1, 2021, Proceedings, volume 12648 of Lecture Notes in Computer Science,
pages 234–263. Springer, 2021. doi:10.1007/978-3-030-72019-3_9.

11 L. Gomes, A. Madeira, and L. S. Barbosa. Generalising KAT to verify weighted computations.
Scient. Annals of Comp. Sc., 29(2):141–184, 2019. doi:10.7561/SACS.2019.2.141.

12 Leandro Gomes, Patrick Baillot, and Marco Gaboardi. BiGKAT: an algebraic framework for
relational verification of probabilistic programs. working paper or preprint, March 2023. URL:
https://hal.science/hal-04017128.

13 Leandro Gomes, Patrick Baillot, and Marco Gaboardi. A Kleene algebra with tests for union
bound reasoning about probabilistic programs. working paper or preprint, July 2024. URL:
https://hal.science/hal-04196675v3.

14 Leandro Gomes, Alexandre Madeira, and Luís Soares Barbosa. A semantics and a logic for
fuzzy arden syntax. Soft Comput., 25(9):6789–6805, 2021. doi:10.1007/s00500-021-05593-9.

15 Ichiro Hasuo, Yuichiro Oyabu, Clovis Eberhart, Kohei Suenaga, Kenta Cho, and Shin-ya
Katsumata. Control-data separation and logical condition propagation for efficient inference
on probabilistic programs. J. Log. Algebraic Methods Program., 136:100922, 2024. doi:
10.1016/J.JLAMP.2023.100922.

16 Claire Jones. Probabilistic non-determinism. PhD thesis, University of Edinburgh, UK, 1990.
URL: https://hdl.handle.net/1842/413.

https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/3571213
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.4230/LIPIcs.ICALP.2016.107
https://doi.org/10.4230/LIPIcs.ICALP.2016.107
https://doi.org/10.1145/2492061
https://doi.org/10.1142/S012905410200114X
https://formosa-crypto.org/projects/
https://formosa-crypto.org/projects/
https://doi.org/10.1561/0400000042
https://doi.org/10.1007/978-3-030-72019-3_9
https://doi.org/10.7561/SACS.2019.2.141
https://hal.science/hal-04017128
https://hal.science/hal-04196675v3
https://doi.org/10.1007/s00500-021-05593-9
https://doi.org/10.1016/J.JLAMP.2023.100922
https://doi.org/10.1016/J.JLAMP.2023.100922
https://hdl.handle.net/1842/413

L. Gomes, P. Baillot, and M. Gaboardi 35:17

17 Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo.
Weakest precondition reasoning for expected runtimes of randomized algorithms. J. ACM,
65(5):30:1–30:68, 2018. doi:10.1145/3208102.

18 Tobias Kappé, Paul Brunet, Alexandra Silva, Jana Wagemaker, and Fabio Zanasi. Concurrent
kleene algebra with observations: From hypotheses to completeness. In Proceedings of
FOSSACS 2020, volume 12077 of LNCS, pages 381–400. Springer, 2020. doi:10.1007/
978-3-030-45231-5_20.

19 Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational
Learning Theory. MIT Press, 1994. URL: https://mitpress.mit.edu/books/
introduction-computational-learning-theory.

20 Juraj Kolcák, Jérémy Dubut, Ichiro Hasuo, Shin-ya Katsumata, David Sprunger, and Akihisa
Yamada. Relational differential dynamic logic. In Armin Biere and David Parker, editors,
Tools and Algorithms for the Construction and Analysis of Systems - 26th International
Conference, TACAS 2020, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part I,
volume 12078 of Lecture Notes in Computer Science, pages 191–208. Springer, 2020. doi:
10.1007/978-3-030-45190-5_11.

21 D. Kozen. Kleene algebra with tests. ACM Trans. on Prog. Lang. and Systems, 19(3):427–443,
1997. doi:10.1145/256167.256195.

22 D. Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans. on Comp. Logic,
1(212):1–14, 2000. doi:10.1109/LICS.1999.782610.

23 Dexter Kozen. A probabilistic PDL. J. Comput. Syst. Sci., 30(2):162–178, 1985. doi:
10.1016/0022-0000(85)90012-1.

24 Dexter Kozen and Maria-Christina Patron. Certification of compiler optimizations using
Kleene algebra with tests. In John W. Lloyd, Verónica Dahl, Ulrich Furbach, Manfred Kerber,
Kung-Kiu Lau, Catuscia Palamidessi, Luís Moniz Pereira, Yehoshua Sagiv, and Peter J.
Stuckey, editors, Computational Logic - CL 2000, First International Conference, London,
UK, 24-28 July, 2000, Proceedings, volume 1861 of Lecture Notes in Computer Science, pages
568–582. Springer, 2000. doi:10.1007/3-540-44957-4_38.

25 Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof for Probabilistic
Systems. Monographs in Computer Science. Springer, 2005. doi:10.1007/B138392.

26 David Molnar, Matt Piotrowski, David Schultz, and David A. Wagner. The program counter
security model: Automatic detection and removal of control-flow side channel attacks. In
Dongho Won and Seungjoo Kim, editors, Information Security and Cryptology - ICISC
2005, 8th International Conference, Seoul, Korea, December 1-2, 2005, Revised Selected
Papers, volume 3935 of Lecture Notes in Computer Science, pages 156–168. Springer, 2005.
doi:10.1007/11734727_14.

27 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995. doi:10.1017/cbo9780511814075.

28 Damien Pous. Kleene algebra with tests and coq tools for while programs. In Sandrine
Blazy, Christine Paulin-Mohring, and David Pichardie, editors, Interactive Theorem Proving
- 4th International Conference, ITP 2013, Rennes, France, July 22-26, 2013. Proceedings,
volume 7998 of Lecture Notes in Computer Science, pages 180–196. Springer, 2013. doi:
10.1007/978-3-642-39634-2_15.

29 Wojciech Rozowski, Tobias Kappé, Dexter Kozen, Todd Schmid, and Alexandra Silva. Probab-
ilistic guarded KAT modulo bisimilarity: Completeness and complexity. In Kousha Etessami,
Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume
261 of LIPIcs, pages 136:1–136:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPIcs.ICALP.2023.136.

CSL 2025

https://doi.org/10.1145/3208102
https://doi.org/10.1007/978-3-030-45231-5_20
https://doi.org/10.1007/978-3-030-45231-5_20
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://doi.org/10.1007/978-3-030-45190-5_11
https://doi.org/10.1007/978-3-030-45190-5_11
https://doi.org/10.1145/256167.256195
https://doi.org/10.1109/LICS.1999.782610
https://doi.org/10.1016/0022-0000(85)90012-1
https://doi.org/10.1016/0022-0000(85)90012-1
https://doi.org/10.1007/3-540-44957-4_38
https://doi.org/10.1007/B138392
https://doi.org/10.1007/11734727_14
https://doi.org/10.1017/cbo9780511814075
https://doi.org/10.1007/978-3-642-39634-2_15
https://doi.org/10.1007/978-3-642-39634-2_15
https://doi.org/10.4230/LIPIcs.ICALP.2023.136

35:18 A KAT for Union Bound Reasoning About Probabilistic Programs

30 Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and Alexandra Silva.
Guarded Kleene algebra with tests: verification of uninterpreted programs in nearly linear
time. Proc. ACM Program. Lang., 4(POPL):61:1–61:28, 2020. doi:10.1145/3371129.

31 Jana Wagemaker, Nate Foster, Tobias Kappé, Dexter Kozen, Jurriaan Rot, and Alexandra Silva.
Concurrent NetKAT - modeling and analyzing stateful, concurrent networks. In Ilya Sergey,
editor, Programming Languages and Systems - 31st European Symposium on Programming,
ESOP 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, volume 13240 of Lecture Notes
in Computer Science, pages 575–602. Springer, 2022. doi:10.1007/978-3-030-99336-8_21.

32 Cheng Zhang, Arthur Azevedo de Amorim, and Marco Gaboardi. On incorrectness logic
and Kleene algebra with top and tests. Proc. ACM Program. Lang., 6(POPL):1–30, 2022.
doi:10.1145/3498690.

APPENDIX

A An example showing that aGKAT is more expressive than aHL

We have shown that aGKAT allows to encode aHL, but in this section we will show that
aGKAT is more expressive than aHL, in the sense that in can prove some bounds that aHL
cannot.

▶ Example 21 (While program). Let d be the distribution corresponding to a fair dice with
three outcomes, that is to say that d has support {0, 1, 2} and d(0) = d(1) = d(2) = 1/3.

We consider the program c below:

c = (x $← d) · (x $← d)([x=0]) · [x = 1]

So c can be described as follows:
it samples d a first time and assigns the result to x; then until it obtains (x ̸= 0) it repeats

sampling d and assigning the result to x; if at some point it obtains (x ̸= 0), then if (x = 1)
it terminates successfully, otherwise (that is to say if (x = 2)) it aborts.

The analysis of the probability of successful termination of c goes as follows:
with the first sample one obtains (x = 1) with probability 1/3 and then the program

terminates successfully; or one obtains (x = 2) with probability 1/3 and then the program
aborts; or one obtains (x = 0) with probability 1/3 and we execute c again.

So the probability of successful termination is:

Σ+∞
i=1 (1

3)i = 1
3 ·

1
1− 1

3
= 1

3 ·
3
2 = 1

2

Let us now proceed with an analysis in aGKAT. We represent the properties of d with the
following 4 axioms:

(x $← d)[x = i] ◁ 1/3 for i = 0, 1, 2 , (x $← d)[x ̸= 0, 1, 2] ◁ 0.

We can then derive the following proof by using GKAT axioms:
c

= (x $← d) · (x $← d)([x=0]) · [x = 1]
= (x $← d) · ((x $← d) · (x $← d)([x=0]) +[x=0] 1) · [x = 1] by ax. (11)
= (x $← d) · (1 +[x ̸=0] (x $← d) · (x $← d)([x=0])) · [x = 1] by ax. (2)
= (x $← d) · ([x ̸= 0] +[x ̸=0] [x = 0] · (x $← d) · (x $← d)([x=0])) · [x = 1] by ax. (4) and (2)
= (x $← d) · ([x ̸= 0] · [x = 1] +[x ̸=0] [x = 0] · (x $← d) · (x $← d)([x=0]) · [x = 1]) by ax. (5)
= (x $← d) · ([x = 1] +[x ̸=0] [x = 0] · (x $← d) · (x $← d)([x=0]) · [x = 1]) by properties of tests
= (x $← d) · ([x = 1] +[x ̸=0] [x = 0] · c)

https://doi.org/10.1145/3371129
https://doi.org/10.1007/978-3-030-99336-8_21
https://doi.org/10.1145/3498690

L. Gomes, P. Baillot, and M. Gaboardi 35:19

We know that (x $← d) · [x = 1] ◁ 1/3 and (x $← d) · [x = 0] ◁ 1/3. By using axioms (19)
and (17) we deduce that (x $← d) · [x = 0] · c ◁ 1/3.

By applying axiom (16) to the last line of the derivation we obtain c ◁ 1/3 + 1/3 = 2/3.
We can then refine this bound by proceeding by recursion. Denote β0 = 1 and βi+1 =

1
3 · (1 + βi) for i ≥ 0. That is to say that βi = Σi

j=1(1
3)j + (1

3)i. Let us prove by recursion on
i that one can derive c ◁ βi for any i ≥ 0.

The property holds for i = 0. Let us assume it holds for i. By applying as before axiom
(16) to the last line of the derivation and by using the recursion hypothesis we can derive
c ◁ 1/3 + 1/3βi = βi+1. So by recursion we conclude that for any i ≥ 0 we can derive c ◁ βi.

As moreover the sequence (βi) converges to Σ+∞
i=1 (1

3)i = 1
2 we can deduce meta-theoretically

that c ◁ 1
2 (although we cannot derive this limit bound within our system).

However we can verify that one cannot derive in aHL the property c◁β2, that is to say c◁ 5
9 .

Indeed the aHL judgement corresponding to c◁ 5
9 is ⊢5/9 (x $← d)·(x $← d)([x=0]) : T ⇒ [x ̸= 1].

However in order to be able to apply a (While) rule in aHL one needs to have an integer
variable bv that strictly decreases at each execution of the body of the loop, which is not the
case here. So one cannot apply any (While) rule, and thus one cannot prove this bound.

This example thus shows that aGKAT is more expressive than aHL, in the sense that it
can prove probability bounds that aHL cannot.

CSL 2025

Kleene Algebra with Commutativity Conditions Is
Undecidable
Arthur Azevedo de Amorim # Ñ

Rochester Institute of Technology, NY, USA

Cheng Zhang1 #

University College London, UK

Marco Gaboardi #

Boston University, MA, USA

Abstract
We prove that the equational theory of Kleene algebra with commutativity conditions on primitives
(or atomic terms) is undecidable, thereby settling a longstanding open question in the theory of
Kleene algebra. While this question has also been recently solved independently by Kuznetsov, our
results hold even for weaker theories that do not support the induction axioms of Kleene algebra.

2012 ACM Subject Classification Theory of computation → Automated reasoning; Theory of
computation → Regular languages

Keywords and phrases Kleene Algebra, Hypotheses, Complexity

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.36

Funding Arthur Azevedo de Amorim: National Science Foundation Grant No. 2314323.
Cheng Zhang: National Science Foundation Award No. 1845803 and No. 2040249.
Marco Gaboardi: National Science Foundation Award No. 1845803 and No. 2040249.

Acknowledgements We want to thank Todd Schmid and Alexandra Silva for the valuable discussion
during this work; and also acknowledge the useful feedback provided by the anonymous reviewers of
CSL2025. Finally, we want to thank Stepan Kuznetsov for his detailed and valuable feedback on
this work.

1 Introduction

Kleene algebra generalizes the algebra of regular languages while retaining many of its pleasant
properties, such as having a decidable equational theory. This enables numerous applications
in program verification, by translating programs and specifications into Kleene-algebra terms
and then checking these terms for equality. This idea has proved fruitful in many domains,
including networked systems [1, 7], concurrency [9, 11, 12], probabilistic programming [18, 19],
relational verification [4], program schematology [2], and program incorrectness [21].

Many applications require extending Kleene algebra with other axioms. A popular
extension is adding commutativity conditions e1e2 = e2e1, which state that e1 and e2 can be
composed in any order. In terms of program analysis, e1 and e2 correspond to commands of
a larger program, and commutativity ensures that their order does not affect the final output.
Such properties have been proven useful for relational reasoning [4] and concurrency [6].

Unfortunately, such extensions can pose issues for decidability. In particular, even the
addition of equations of the form xy = yx, where x and y are primitives, can make the
equivalence of two regular languages given by Kleene algebra terms [14, 8, 5] undecidable –
in fact, Π0

1-complete [15], or equivalent to the complement of the halting problem.

1 Work performed at Boston Unviersity

© Arthur Azevedo de Amorim, Cheng Zhang, and Marco Gaboardi;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 36; pp. 36:1–36:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arthur.aa@gmail.com
https://arthuraa.net
https://orcid.org/0000-0001-9916-6614
mailto:czhang03@bu.edu
https://orcid.org/0000-0002-8197-6181
mailto:gaboardi@bu.edu
https://orcid.org/0000-0002-5235-7066
https://doi.org/10.4230/LIPIcs.CSL.2025.36
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Kleene Algebra with Commutativity Conditions Is Undecidable

Despite this negative result, it was still unknown whether we could decide such equations
in arbitrary Kleene algebras – or, equivalently, decide whether an equation can be derived
solely from the Kleene-algebra axioms. Indeed, since the set of Kleene-algebra equations is
generated by finitely many clauses, it is recursively enumerable, or Σ0

1. Since a set cannot be
simultaneously Σ0

1 and Π0
1-complete, the problem of deciding equations under commutativity

conditions for all regular languages is not the same as the problem of deciding such equations
for all Kleene algebras. There must be equations that are valid for all regular languages, but
not for arbitrary Kleene algebras. Nevertheless, the question of decidability of Kleene-algebra
equations with commutativity conditions remained open for almost 30 years [15].

This paper settles this question negatively, proving that this problem is undecidable. In
fact, undecidability holds even for weaker notions of Kleene algebra that do not validate its
induction axioms, which are needed to prove many identities involving the iteration operation.
At a high level, our proof works as follows. Given a machine M and an input x, we define an
inequality between Kleene algebra terms with the following two properties: (1) if M halts
on x and accepts, the inequality holds, but (2) if M halts on x and rejects, the inequality
does not hold. If such inequalities were decidable, we would be able to computationally
distinguish these two scenarios, which is impossible by diagonalization.

On Kuznetsov’s Undecidability Proof

As we were finishing this paper, we learned that the question of undecidability had also been
settled independently by Kuznetsov in recent work [17]. Though our techniques overlap,
there are two noteworthy differences between the two proofs. On the one hand, Kuznetsov’s
proof uses the induction axioms of Kleene algebra, so it applies to fewer settings. On the
other hand, Kuznetsov was able to prove that the equational theory of Kleene algebra with
commutativity conditions is, in fact Σ0

1-complete, by leveraging effective inseparability, a
standard notion of computability theory. After learning about Kuznetsov’s work, we could
adapt his argument to derive completeness in our more general setting as well, so this paper
can be seen as a synthesis of Kuznetsov’s work and our own.

Structure of the paper

In Section 2, we recall basic facts about Kleene algebra, and introduce a framework for
stating the problem of equations modulo commutativity conditions using category theory.

In Section 3, we present the core of our undecidability proof. We use algebra terms to
model the transition relation of an abstract machine, and construct a set of inequalities that
allows us to tell whether a machine accepts a given input or not. If we could decide such
inequalities, we would be able to distinguish two effectively inseparable sets, which would
lead to a contradiction. This argument hinges on a completeness result (Theorem 16), which
guarantees that, if a certain machine accepts an input, then a corresponding inequality holds.

In Section 4, we prove that an analog of the completeness result holds for a large class of
relations that can be represented with terms, provided that they satisfy a technical condition
that allows us to reason about the image of a set by a relation.

In Section 5, we develop techniques to prove that the machine transition relation satisfies
the required technical conditions for completeness. In Section 5.1, we show how we can
view Kleene algebra terms as automata, proving an expansion lemma (Lemma 27) that
guarantees that most terms can be expanded so that all of its matched strings bounded by
some maximum length can be identified. This framework generalizes the usual definitions
of derivative on Kleene algebra terms, but does not rely on the induction axioms of Kleene
algebra. In Section 5.2, we show how we can refine the expansion lemma when terms have

A. Azevedo de Amorim, C. Zhang, and M. Gaboardi 36:3

bounded-output, which, roughly speaking, means such terms represent relations that map a
string to only finitely many next strings. We prove that the transition relation satisfies these
technical conditions (Section 5.3), which concludes the undecidability proof.

We conclude in Section 6, providing a detailed comparison between our work and the
independent work of Kuznetsov [17].

2 Kleene Algebra and Commutable Sets

To set the stage for our result, we recall some basic facts about Kleene algebra and establish
some common notation that we will use throughout the paper. We also introduce a notion
of commutable set, which we will use to define algebras with commutativity conditions.

A (left-biased) pre-Kleene algebra is an idempotent semiring X equipped with a star
operation. Spelled out explicitly, this means that X has operations

0 : X 1 : X

(−) + (−) : X × X → X (−) · (−) : X × X → X (−)∗ : X → X,

which are required to satisfy the following equations:

1 · x = x · 1 = x 0 · x = x · 0 = 0 x · (y · z) = (x · y) · z

0 + x = x x + y = y + x x + (y + z) = (x + y) + z

x · (y + z) = x · y + x · z (x + y) · z = x · z + y · z x∗ = 1 + x · x∗,

where the last rule x∗ = 1 + x · x∗ is named “left unfolding”. A pre-Kleene algebra carries
the usual ordering relation on idempotent monoids: x ≤ y means that y + x = x. A Kleene
algebra is a pre-Kleene algebra that satisfies the following properties:

xy ≤ y ⇒ x∗y ≤ y xy ≤ x ⇒ xy∗ ≤ x,

dubbed left and right induction. A ∗-continuous Kleene algebra is a pre-Kleene algebra
where, for all p, q and r, supn≥0 pqnr exists and is equal to pq∗r. Every ∗-continuous algebra
satisfies the induction axioms, so it is, in fact, a Kleene algebra.

▶ Example 1. Though many pre-Kleene algebras that we’ll consider are actually proper
Kleene algebras, the two theories do not coincide. The following algebra, adapted from
Kozen [13], validates all the pre-Kleene algebra axioms, but not the induction ones. The
carrier set of the algebra is N + {⊥, ⊤}, ordered by posing ⊥ ≤ n ≤ ⊤ for all n ∈ N. The
addition operation computes the maximum of two elements. Multiplication is defined as:

x · ⊥ ≜ ⊥ · x ≜ ⊥ x · ⊤ ≜ ⊤ · x ≜ ⊤ when x ̸= ⊥ x · y ≜ x +N y

where +N is the usual addition operation on natural numbers. The neutral elements of
addition and multiplication are respectively ⊥ and 0. The star operation is defined as follows:

x∗ ≜

{
0 if x = ⊥
⊤ otherwise

We can verify the unfolding rule by case analysis:

when x = ⊥: ⊥∗ = 0 = max(0, ⊥) = max(0, ⊥ · 0) = max(0, ⊥ · ⊥∗);
when x ̸= ⊥: x∗ = ⊤ = max(0, ⊤) = max(0, x · ⊤) = max(0, x · x∗).

However, this algebra is not a proper Kleene algebra, because it doesn’t satisfy (x∗)∗ = x∗

(which must hold in any Kleene algebra). Indeed, (⊥∗)∗ = 0∗ = ⊤ ̸= 0 = ⊥∗.

CSL 2025

36:4 Kleene Algebra with Commutativity Conditions Is Undecidable

▶ Remark 2. Weak Kleene algebras [16] are algebraic structures that sit between proper
Kleene algebras and pre-Kleene algebras. They need not validate the induction axioms of
Kleene algebra, but satisfy more rules than just left unfolding – in particular, (x∗)∗ = x∗.
Thus, Example 1 also shows that the theory of pre-Kleene algebras is strictly weaker than
that of weak Kleene algebras.

Let X and Y be pre-Kleene algebras. A morphism of type X → Y is a function
f : X → Y that commutes with all the operations. This gives rise to a series of categories
KA∗ ⊂ KA ⊂ preKA of ∗-continuous algebras, Kleene algebras, and pre-Kleene algebras.
Each category is a strict full subcategory of the next one – strict because some pre-Kleene
algebras are not Kleene algebras (Example 1) and because some Kleene algebras are not
∗-continuous [13].

The prototypical example of Kleene algebra is given by the set LX of regular languages
over some alphabet X. In program analysis applications, a regular language describes the
possible traces of events performed by some system. We use the multiplication operation to
represent the sequential composition of two systems: if two components produce traces t1 and
t2, then their sequential composition produces the concatenated trace t1t2, indicating that
the actions of the first component happen first. Thus, by checking if two regular languages
are equal, we can assert that the behaviors of two programs coincide. When X is empty,
LX is isomorphic to the booleans 2 ≜ {0 ≤ 1}. The addition operation is disjunction, the
multiplication operation is conjunction, and the star operation always outputs 1. This Kleene
algebra is the initial object in all three categories preKA, KA and KA∗.

The induction property of Kleene algebra allows us to derive several useful properties
for terms involving the star operation. For example, they imply that the star operation is
monotonic, a right-unfolding rule x∗ = 1 + x∗x, and also that x∗x∗ = x∗. This means that
many of intuitions about regular languages carry over to Kleene algebra. Unfortunately, when
working with pre-Kleene algebras, most of these results cannot be directly applied, making
reasoning trickier. In practice, we can only reason about properties of the star operation
that involve a finite number of uses of the left-unfolding rule. Dealing with this limitation is
at the heart of the challenges we will face when proving our undecidability result.

2.1 Commuting conditions
Sometimes, we would like to reason about a system where two actions can be reordered
without affecting its behavior. For example, we might want to say that a program can
perform assignments to separate variables in any order, or that actions of separate threads
can be executed concurrently. To model this, we can work with algebra terms where some
elements can be composed in any order. As we will see, unfortunately, adding such hypotheses
indiscriminately can lead to algebras with an undecidable equational theory. The notion of
commutable set, which we introduce next, allows us to discuss such hypotheses in generality.

▶ Definition 3. A commuting relation on a set X is a reflexive symmetric relation. A
commutable set is a carrier set endowed with a commuting relation ∼. We say that two
elements x and y commute if x ∼ y. A commutable set is commutative if all elements
commute; it is discrete if the commuting relation is equality. A morphism of commutable
sets is a function that preserves the commuting relation, which leads to a category Comm. A
commutable subset of a commutable set X is a commutable set Y whose carrier is a subset
of X, and whose commuting relation is the restriction of ∼ to Y . We’ll often abuse notation
and treat a subobject Y ↪→ X as a commutable subset if its image in X is a commutable
subset.

A. Azevedo de Amorim, C. Zhang, and M. Gaboardi 36:5

preKA

Comm Mon KA

Set KA∗

⊣
S

⊣
T

⊣
L

⊣
K

⊣⊢

⊣
T ′

⊣
K′

⊣
L′

Figure 1 Algebraic constructions on commutable sets.

Given a commutable set, we have various ways of building algebraic structures, which
can be summarized in the diagram of Figure 1 (which is commutative, except for the dashed
arrows). The right-pointing arrows, marked with a ⊣, denote free constructions, in the sense
that they have right adjoints that forget structure. The first construction, S, is a functor from
Comm to the category Mon of monoids and monoid morphisms. It maps a commutable set
X to the monoid SX of strings over X, where we equate two strings if they can be obtained
from each other by swapping adjacent elements that commute in X. The monoid operation
is string concatenation, and the neutral element is the empty string. The corresponding right
adjoint views a monoid Y as a commutable set where x ∼ y if and only if xy = yx.

Another group of constructions extends a monoid X with the other Kleene algebra
operations, and quotient the resulting terms by the equations we desire. For example, the
elements of T ′X are terms formed with Kleene algebra operations, where we identify the
monoid operation with the multiplication operation of the pre-Kleene algebra, and where
we identify two terms if they can be obtained from each other by applying the pre-Kleene
algebra equations. The construction K′ is obtained by imposing further equations on terms,
while L′ is given by the algebra of regular languages over a monoid [15], which we’ll define
soon. The right adjoints of these constructions view an algebra as a multiplicative monoid.
By composing these constructions with S, we obtain free constructions T , K and L that
turn any commutable set into some Kleene-algebra-like structure.

Being a free construction means, in particular, that we can embed the elements of a
commutable set X into SX, T X, KX and LX, as depicted in this commutative diagram:

T X

X SX KX

LX.

l

By abuse of notation, we’ll usually treat X as a proper subset of the free algebras. The
vertical arrows take the elements of some algebra and impose the additional identities required
by a stronger algebra. The composite l computes the language interpretation of a term, and
will play an important role in our development, as we will see.

CSL 2025

36:6 Kleene Algebra with Commutativity Conditions Is Undecidable

Free constructions, like T , also allow us to define a morphism out of an algebra T X

simply by specifying how the morphism acts on X. In other words, if f : X → Y is a
morphism mapping a commutable set X to a pre-Kleene algebra Y , there exists a unique
algebra morphism f̂ : T X → Y such that the following diagram commutes:

T X Y

X

f̂

f

Since f and f̂ correspond uniquely to each other, we will not bother distinguishing between
the two. We’ll employ similar conventions for other left adjoints such as S or L.

The last construction on Figure 1 allows us to turn any commutable set into a plain set
by forgetting its commuting relation. This construction has both a left and a right adjoint:
the right adjoint views a set as a commutative commutable set, by endowing it with the total
relation; the left adjoint views a set as a discrete commutative set, by endowing it with the
equality relation. By turning a set into a commutable set, discrete or commutative, and then
building an algebra on top of that commutable set, we are able to express the usual notions
of free algebra over a set, or of a free algebra where all symbols are allowed to commute.
▶ Remark 4 (Embedding algebras). We introduce some notation for embedding algebras
into larger ones. Suppose that X is a commutable set and Y ⊆ X is a commutable subset.
By functoriality, this inclusion gives rise to morphisms of algebras of types SY → SX,
T Y → T X, etc. These morphisms are all injective, because they can be inverted: we can
define a projection πY that maps x ∈ X to itself, if x ∈ Y , or to 1, if x /∈ Y . This definition
is valid because, since Y inherits the commuting relation from X, and since 1 commutes with
everything in SY , T Y , etc., we can check that the commuting relation in X is preserved.

2.2 Regular Languages
If X is a monoid, we can view its power set PX as a ∗-continuous algebra equipped with the
following operations:

0 ≜ ∅ 1 ≜ {1}

A + B ≜ A ∪ B A · B ≜ {xy | x ∈ A, y ∈ B} A∗ ≜
⋃

n∈N
An.

The ∗-continuous algebra L′X of regular languages over X is the smallest subalgebra of PX

that contains the singletons. The language interpretation l : T X → LX is the morphism
that maps a symbol x ∈ X to the singleton set {x}. This allows us to view a term as a set
of strings over X, and we will often do this to simplify the notation; for example, if e is a
term, we’ll write X ⊆ e to mean X ⊆ l(e). Indeed, as the next few results show, it is often
safe for us to view a term as a set of strings.

▶ Theorem 5. If s ∈ SX is a string and e ∈ T X a term, then s ≤ e is equivalent to s ∈ l(e).

▶ Theorem 6. We say that e ∈ T X is finite if its language l(e) is. In this case, then
e =

∑
l(e).

▶ Corollary 7. The language interpretation l is injective on finite terms: if l(e1) = l(e2) and
both e1 and e2 are finite, then e1 = e2.

A. Azevedo de Amorim, C. Zhang, and M. Gaboardi 36:7

These results allow us to unambiguously view a finite set of strings over X as a finite
term over X. We’ll extend this convention to other sets: Y is a (pre-)Kleene algebra, we are
going to view a finite set of elements A ⊆ Y as the element

∑
a∈A a ∈ Y .

▶ Corollary 8. For every term e ̸= 0, there exists some string s such that s ≤ e.

One useful property of Kleene algebra is that, if X is finite, then X∗ ∈ KX is the top
element of the algebra. This result is generally not valid for T X, but the following property
will be good enough for our purposes.

▶ Theorem 9. If X is finite and e ∈ T X is finite, then eX∗ ≤ X∗.

To conclude our analogy between languages and terms, as far as ∗-continuous algebras
are concerned, elements of T X are just as good as their corresponding languages – if Y is
∗-continuous, then every morphism of algebras f : T X → Y can be factored through the
language interpretation l:

X LX

T X Y.
f

l

This has some pleasant consequences. For example, let [−]0 : T X → 2 be the morphism
that maps every x ∈ X to 0. Then [e]0 = 1 if and only if 1 ≤ e. Indeed, this morphism must
factor through LX. The corresponding factoring LX must map any nonempty string to 0
and the empty string to 1. Thus, [e]0 = 1 if and only if 1 ∈ l(e), which is equivalent to 1 ≤ e.

3 Undecidability via Effective Inseparability

Our undecidability result works by using pre-Kleene algebra equations to encode the execution
of two-counter machines. Roughly speaking, a two-counter machine M is an automaton that
has a control state and two counters. The machine can increment each counter, test if their
values are zero, and halt. Two-counter and Turing machines are equivalent in expressive
power: any two-counter machine can simulate the execution of a Turing machine, and vice
versa; see Hopcroft et al. [10, §8.5.3,§8.5.4] for an idea of how this simulation works. In
particular, given a Turing machine M , there exists a two-counter machine that halts on every
input where M halts, and yields the same output for that input. For this reason, we’ll tacitly
use two-counter machines to implement computable functions in what follows.

▶ Definition 10. A two-counter machine is a tuple M = (QM , q̇, ι), where QM is a finite
set of control states, q̇ ∈ QM is an initial state, and ι : QM → IM is a transition function.
The set IM is the set of instructions of the machine, defined by the grammar

IM ∋ i := Inc(r, q) | If(r, q, q) | Halt(x) (r ∈ {1, 2}, q ∈ QM , x ∈ {0, 1}).

Two-counter machines act on configurations, which are strings of the form anbmq, where
q is a control state and a and b are counter symbols: the number of symbol occurrences
determines which number is stored in a counter. When the machine halts, it outputs either 1
or 0 to indicate whether its input was accepted or rejected.

CSL 2025

36:8 Kleene Algebra with Commutativity Conditions Is Undecidable

▶ Definition 11. Let M be a two-counter machine. We define the following discrete com-
mutable sets and terms:

ΣM ≜ QM + {a, b, c0, c1} symbols
T ΣM ∋ CM ≜ a∗b∗QM running configurations
T ΣM ∋ TM ≜ CM + {c0, c1} all configurations.

Normally, we would define the semantics of a two-counter machine directly, as a relation
on configurations. However, it’ll be more convenient to instead define the semantics through
algebra terms that describe the graph of this relation, since we’ll use these terms to analyze
the execution of a machine with equations in pre-Kleene algebra. Our definition relies on the
following construction.

▶ Definition 12. Let X and Y be commutable sets. We define a commutable set

X ⊕ Y ≜ {xl | x ∈ X} ⊎ {yr | y ∈ Y },

where the commuting relation on X ⊕ Y is generated by the following rules:

xl ∼ yr

x ∼ x′

xl ∼ x′
l

y ∼ y′

yr ∼ y′
r

The canonical injections (−)l : X → X ⊕ Y and (−)r : Y → X ⊕ Y are morphisms in Comm
(and present commutable subsets). We abbreviate X ⊕ X as Ẍ.

If X and Y are commutable sets, we abuse notation and view the functions (−)l : X →
X ⊕ Y and (−)r : Y → X ⊕ Y as having types T X → T (X ⊕ Y) and T Y → T (X ⊕ Y). We
have the corresponding projection functions πl : T (X ⊕Y) → T X and πr : T (X ⊕Y) → T Y ,
where πl(yr) = 1 for y ∈ Y , and similarly for πr (cf. Remark 4). If X is a commutable set,
view a term e ∈ T X as an element T Ẍ by mapping each symbol x ∈ X in e to xlxr. We’ll
use a similar convention for strings S.

The idea behind this construction is that any string over X ⊕ Y can be seen as a pair of
strings over X and Y . More precisely, the monoids S(X ⊕ Y) and SX × SY are isomorphic
via the mappings

S(X ⊕ Y) ∋ s 7→ (πl(s), πr(s)) SX × SY ∋ (s1, s2) 7→ (s1)l(s2)r.

Since a term e over X ⊕ Y can be seen as a set of strings over X ⊕ Y , we can also view it as
a set of pairs of strings over X and Y – in other words, as a relation from SX to SY . We
write s →e s′ if two strings are related in this way; that is, if sls

′
r ≤ e.

▶ Definition 13 (Running a two-counter machine). We interpret each instruction i ∈ IM as
an element JiK ∈ T Σ̈M :

JInc(1, q)K ≜ ara∗b∗qr JIf(1, q1, q2)K ≜ b∗(q1)r + ala
∗b∗(q2)r

JInc(2, q)K ≜ a∗brb∗qr JIf(2, q1, q2)K ≜ a∗(q1)r + a∗blb
∗(q2)r

JHalt(x)K ≜ (cx)r.

The transition relation of M , RM ∈ T Σ̈M , is defined as

RM ≜
∑

{Jι(q)Kql | q ∈ QM }.

We say that M halts on n if anb0q̇ →∗
RM

cx for some x ∈ {0, 1}. We refer to x as the output
of M on n.

A. Azevedo de Amorim, C. Zhang, and M. Gaboardi 36:9

▶ Lemma 14. The relation RM satisfies the following property: for every s →RM
s′, s is of

the form anbmq ≤ CM . Moreover, for any s of this form, we have s′ = Jι(q)Kf (n, m), where
the function JiKf : N × N → TM is defined as follows:

JInc(1, q)Kf (n, m) ≜ an+1bmq JIf(1, q1, q2)Kf (n, m) ≜
{

anbmq1 if n = 0
apbmq2 if n = p + 1

JInc(2, q)Kf (n, m) ≜ anbm+1q JIf(2, q1, q2)Kf (n, m) ≜
{

anbmq1 if m = 0
anbpq2 if m = p + 1

JHalt(x)Kf (n, m) ≜ cx.

In particular, RM defines a (partial) functional relation on TM .

This means that Definition 13 accurately describes the standard semantics of two-counter
machines [10], which allows us to analyze their properties algebraically. Combining this
encoding with Theorem 17, we can show that KA inequalities over Σ̈M cannot be decided.
More precisely, in the remainder of the paper, our aim is to prove the following results:

▶ Theorem 15 (Soundness). Given a two-counter machine M and a configuration s ≤ TM ,
suppose that the following inequality holds in LΣ̈M :

srR∗
M ≤ Σ∗(CM + c1)r + Σ∗

M Σ ̸=
M Σ̈∗

M ,

where Σ ̸=
M ≜

∑
x,y∈Σ
x ̸=y

xlyr. If s →∗
RM

cx, then x = 1.

▶ Theorem 16 (Completeness). Given a two-counter machine M and some configuration
s ≤ TM , we can compute a term ρ with the following property. If s →∗

RM
c1, then the

following inequality is valid in pre-Kleene algebra: sR∗
M ≤ Σ∗

M (CM + c1)r + Σ∗
M Σ ̸=

M ρ.

The soundness theorem can be shown by establishing a correspondence between traces of
two-counter machines and the languages, then arguing that the language inequality implies
that M halts and outputs 1. However, an inequality between terms is always stronger than
the same inequality on languages. Thus, for completeness, we need to establish a stronger
inequality between terms.

To obtain undecidability from soundness and completeness, we leverage effective insepar-
ability, a notion from computability theory. In what follows, we use the notation ⟨x⟩ to refer
to some effective encoding of the object x as a natural number.2

▶ Theorem 17. The following two languages are effectively inseparable:

A ≜ {⟨M, x⟩ | The two-counter machine M halts on x and outputs 1}
B ≜ {⟨M, x⟩ | The two-counter machine M halts on x and outputs 0}.

In other words, there is a partial computable function f with the following property. Given a
machine M , let WM be the set of inputs accepted by M . Suppose that M1 and M0 are such
that WM1 ∩ WM0 = ∅, A ⊆ WM1 and B ⊆ WM0 . Then f⟨M1, M0⟩ is defined and does not
belong to WM1 ∪ WM0 .

2 Note that we do not assume that this encoding is a functional relation. For example, we will need
to encode pre-Kleene algebra terms as numbers. Such a term is an equivalence class of syntax trees
quotiented by provable equality. Thus, each term can be encoded as multiple natural numbers, one
for each syntax tree in its equivalence class. Nevertheless, by abuse of notation, we’ll use the encoding
notation as if it denoted a unique number.

CSL 2025

36:10 Kleene Algebra with Commutativity Conditions Is Undecidable

Effective inseparability is a strengthening of the notion of inseparability, which says that
two sets cannot be distinguished by a total computable function. If we are just interested
in the undecidability of the equational theory, then basic inseparability is enough, as the
following argument shows:

▶ Theorem 18 (Undecidability). Let Σ ≜ {0, 1} be a discrete commutable set. Suppose that
we have a diagram of sets

T Σ̈ LΣ̈

X,

l

l′

where l′ is computable. Then equality on X is undecidable. In particular, equality is
undecidable on T Σ̈, KΣ̈ and LΣ̈.

Proof. Let A and B be the sets of Theorem 17. Let’s define a computable function η : Σ∗ →
Σ∗ with the following properties:

if s ∈ A, then η(s) ∈ X=, where X= ≜ {⟨x, y⟩ | x and y encode the same element of X}.
if s ∈ B, then η(s) /∈ X=.

Find a suitable encoding of the characters of ΣM as binary strings, which leads to the
following injective embeddings:

T Σ̈M LΣ̈M

T Σ̈ LΣ̈

X.

l

l

l′

In what follows, we’ll treat T Σ̈M and LΣ̈M as subsets of T Σ̈ and LΣ̈, to simplify the notation.
Suppose that we are given some string s ∈ Σ∗. We define η(s) as follows. We can assume

that s is of the form ⟨M, n⟩, where M is a machine and n ∈ N (if s is not of this form, we
define the output as η(s) = ⟨l′(0), l′(1)⟩). First, we compute the term ρ of Theorem 16, using
anb0q̇ as the initial configuration. Next, let eL and eR be the left- and right-hand sides of
the inequality of Theorem 16. We pose η⟨M, n⟩ ≜ ⟨l′(eL + eR), l′(eR)⟩.

If ⟨M, n⟩ ∈ A, the inequality of Theorem 16 is valid. Thus, eL ≤ eR holds, or, equivalently,
eL + eR = eR. Thus, l′(eL + eR) = l′(eR) is valid, which implies that η(s) ∈ X=.

If, on the other hand, M outputs 0 on n (that is, ⟨M, n⟩ ∈ B), we claim that η(s) /∈
X=. It suffices to prove l′(eL + eR) ̸= l′(eR). Aiming for a contradiction, suppose that
l′(eL + eR) = l′(eR). This implies l(eL + eR) = l(eL) + l(eR) = l(eR), which is equivalent
to the inequality l(eL) ≤ l(eR). Let e′

R ∈ T Σ̈M be the right-hand side of the inequality of
Theorem 15. We have l(eR) ≤ l(e′

R) because l(ρ) ≤ l(Σ∗
M). Thus, l(eL) ≤ l(e′

R). However,
by Theorem 15, this can only hold if M outputs 1, which contradicts our assumption.

To conclude, suppose that d : Σ∗ → {0, 1} is a decider for X= (that is, suppose that
equality on X is decidable). Then d ◦ η can separate the sets A and B, which contradicts
Theorem 17 because two effectively inseparable sets are also computationally inseparable.
Therefore, such a d cannot exist. ◀

However, if we also want a more precise characterization of the complexity of this theory,
the notion of effective inseparability is crucial. The following argument, which refines the
previous proof, is based on Kuznetsov’s work [17].

A. Azevedo de Amorim, C. Zhang, and M. Gaboardi 36:11

▶ Theorem 19 (Complexity). If equalities in X (from Theorem 18) are recursive enumerable,
then equalities in X are Σ0

1-complete. In particular, equalities in T Σ̈ and KΣ̈ are Σ0
1-complete.

Proof. Let A′ ≜ {⟨M, n⟩ | l′(eL +eR) = l′(eR)}, where (M, n) is a machine-input pair and eL

and eR are defined as in the proof of Theorem 18. By arguments in the proof of Theorem 18,
if ⟨M, n⟩ ∈ A, then l′(eL + eR) = l′(eR), which means A′ ⊇ A. By similar arguments,
A′ ∩ B = ∅.

By folklore [17, Proposition 9], A′ and B are effectively inseparable because A and
B are. Moreover, note that both A′ and B are in Σ0

1 – membership in A′ is recursively
enumerable because we can compute eL and eR from (M, n) and enumerate the possible
proofs of l′(eL + eR) = l′(eR). This implies that A′ is Σ0

1-complete [17, Proposition 7], and
therefore Σ0

1-hard.
The function η in the proof of Theorem 18 has the property that η(s) ∈ X= if and only if

s ∈ A′. (This relies on the fact that we defined η(s) = ⟨l′(0), l′(1)⟩ when s is not the encoding
of a machine-input pair, and that l′(0) ̸= l′(1) because l(0) ̸= l(1)). In other words, η is a
reduction from A′ to X=, which proves X= is Σ0

1-hard. We conclude because we assumed
that equality on X is in Σ0

1. ◀

Thus, to establish undecidability, we need to prove soundness and completeness. The
easiest part is proving soundness: we just need to adapt the proof of undecidability of equations
of ∗-continuous Kleene algebras with commutativity conditions [14]. For completeness,
however, we need to do some more work. Roughly speaking, we first prove that RM satisfies
an analogue of the completeness theorem for a single transition, and then show that this
version implies a more general one for an arbitrary number of transitions (Section 4).

The main challenge for proving the single-step version of completeness is that we can
no longer leverage properties of regular languages, and must reason solely using the laws of
pre-Kleene algebra. Our strategy is to show that RM is just as good as its corresponding
regular language if we want to reason about prefixes of matched strings. Given any string
s′ ≤ RM and a current state s, we can tell whether s′ encodes a valid sequence of transitions
or not simply by looking at some finite prefix determined by s. This finite prefix can be
extracted by unfolding RM finitely many times, which can be done in the setting of preKA.

4 Representing Relations

In this section, we show that we can reduce the statement of completeness to a similar
statement about single transitions. If e ∈ T Σ̈ and Λ ⊆ SΣ is a set of strings, we write
Nexte(Λ) to denote the image of Λ by →e; that is, the set

⋃
s∈Λ{s′ | s →e s′}.

▶ Definition 20. Let L ∈ T Σ be term. We say that a term e ∈ T Σ̈ is a representable relation
on L if the following conditions hold:

πl(e) ≤ L;
πr(e) ≤ L;
Nexte(Λ) is finite if Λ is (note that we must have Nexte(Λ) ≤ πr(e) ≤ L);
there exists some residue term ρ such that Λre ≤ Λ Nexte(Λ)r + Σ∗Σ ̸=ρ for every finite Λ.

We write e : Rel(L) to denote the type of e.

Given a representable relation e, we can iterate the above inequality several times when
reasoning about its reflexive transitive closure e∗:

CSL 2025

36:12 Kleene Algebra with Commutativity Conditions Is Undecidable

▶ Lemma 21. Suppose that e : Rel(L). There exists some ρ such that, for every n ∈ N and
every finite Λ ≤ L, we have the inequality Λre∗ ≤ Σ∗ Next<n

e (Λ)r + Σ∗ Nextn
e (Λ)re∗ + Σ∗Σ ̸=ρ,

where Next<n
e =

⋃
i<n Nexti

e(Λ).

If we know that the number of transitions from a given set of initial states is bounded,
we obtain the following result.

▶ Theorem 22. If e : Rel(L), there exists ρ such that, given n ∈ N and a finite Λ ≤ L, if
Nextn

e (Λ) = ∅, then Λre∗ ≤ Σ∗ Next<n
e (Λ)r + Σ∗Σ ̸=ρ.

5 Proving Representability

In this section, we prove that the transition relation RM of a two-counter machine is a
representable relation, which will allow us to derive completeness from Theorem 22. To do
this, we need to show how we can use finite unfoldings of a relation to pinpoint certain terms
that definitely match the “error” term Σ∗

M Σ ̸=
M ρ.

5.1 Automata theory

One of the pleasant consequences of working with Kleene algebra is that many intuitions
about regular languages carry over. In particular, we can analyze terms by characterizing
them as automata. This can be done algebraically by posing certain derivative operations
δx on terms, which satisfy a fundamental theorem [20]: given a term e ∈ KX, we have
e = e0 +

∑
x∈X x ·δx(e), where e0 ∈ {0, 1}. Intuitively, each term in this equation corresponds

to a state of some automaton. The term e corresponds to the starting state of the automaton,
the null term e0 states whether the starting state is accepting, and each δx(e) the state we
transition too after observing the character x ∈ X. Derivatives can be iterated, describing
the behavior of the automaton as it reads larger and larger strings, and which of those strings
are accepted by it. This would be useful for our purposes, because such iterated derivatives
would allow us to compute all prefixes up to a given length that can match an expression.
Unfortunately, this theory of derivatives hinges on the induction properties of Kleene algebra,
and it is unlikely that it can be adapted in all generality to the preKA setting. For example,
the closest we can get to an expansion for 1∗ is 1∗ = 1 + 1 · 1∗ = 1 + 1∗, which does not
have the required form. Indeed, as demonstrated by Example 1, the star operation no longer
preserves the multiplicative identity in preKA.

To remedy this issue, we are going to carve out a set of so-called finite-state terms of a
pre-Kleene algebra, for which this type of reasoning is sound. Luckily, most regular operations
preserve finite-state terms; we just need to be a little bit careful with the star operation. We
start by defining derivable terms, which can be derived at least once. Finite-state terms will
then allow us to iterate derivatives.

▶ Definition 23. Let e ∈ T X be a term, where X is finite. We say that e is derivable if
there exists a family of terms {δx(e)}x∈X such that e = [e]0 +

∑
x xδx(e). Recall [−]0 is the

homomorphism [−]0 : T X → 2 such that [e]0 = 1 ⇐⇒ e ≥ 1. We refer to the term δx(e) as
the derivative with respect to x.

The family δx(e) is not necessarily unique. Nevertheless, we’ll use the notation δx(e) to
refer to specific derivatives of x when it is clear from the context which one we mean.

A. Azevedo de Amorim, C. Zhang, and M. Gaboardi 36:13

▶ Lemma 24. Derivable terms are closed under all the pre-Kleene algebra operations, with
the following caveats: for e∗, we also require that [e]0 = 0; for e1e2, the term is also derivable
if e2 isn’t, provided that [e1]0 = 0. We have the following choices of derivatives:

δx(0) = 0 δx(1) = 0
δx(x) = 1 δx(y) = 0 if y ̸= x

δx(e1 + e2) = δx(e1) + δx(e2) δx(e1e2) = [e1]0δx(e2) + δx(e1)e2

δx(e∗) = δx(e)e∗,

where, by abuse of notation, we treat [e1]0δx(e2) as 0 when e2 is not necessarily derivable
(since, by assumption, [e1]0 = 0 in that case).

▶ Definition 25. Suppose that X is finite. A finite-state automaton is a finite set S of
elements of T X (the states) that contains 1, is closed under finite sums and under derivatives
(that is, every e ∈ S is derivable, and each δx(e) is a state). We say that a term e is finite
state if it is a state of some finite-state automaton S.

Requiring that the states of an automaton be closed under sums means, roughly speaking,
that we are working with non-deterministic rather than deterministic automata, generalizing
the notion of Antimirov’s derivative [3]. This treatment is convenient for the commutative
setting, since a given string could be matched by choosing different orderings of its characters.

Finite-state terms can, in fact, be inductively constructed from the operations of pre-
Kleene algebra, thus making the identification of a finite-state term trivial.

▶ Lemma 26. Let X be a finite commutable set. Finite-state terms are preserved by all the
pre-Kleene algebra operations (for e∗, we additionally require that [e]0 = 0). Moreover, the
set of states of the corresponding automata can be effectively computed.

Furthermore, since terms in a finite-state automaton are closed under derivatives, we can
unfold them via derivatives k times. This unfolding will turn a term into a sum of some
strings that are shorter than k; and some strings s with length exact k, followed the residual
expressions es indexed by s. Formally, we can express this property as follows.

▶ Lemma 27. Let e ∈ T X be a state of a finite-state automaton S, and k ∈ N. We can
write

e =
∑

{s | s ∈ SX, s ≤ e, |s| < k} +
∑

{ses | s ∈ SX, |s| = k},

where each es ∈ S for all s, and the size |s| ∈ N of a string s is defined by mapping every
symbol of s to 1 ∈ N.

5.2 Bounded-Output Terms
Lemma 27 gives us almost what we need to prove that the transition term RM is a repres-
entable relation. It allows us to partition RM into strings s of length bounded by k and
terms of the form ses, which match strings prefixed by s of length greater than k. The first
component, the strings s, can be easily shown to satisfy the upper bound required for being
representable. However, the prefixes s that appear in the terms ses are arbitrary, and, since
we are working with pre-Kleene algebra, there isn’t much we can leverage to show that such
prefixes will yield a similar bound. The issue is that, in principle, in order to tell whether
s′

rses ≤ Σ∗
M Σ ̸=

M ρ, we might need to unfold es arbitrarily deep, which we cannot do in the
preKA setting. To rule out these issues, we introduce a notion of bounded-output terms,
which guarantee that only a finite amount of unfolding is necessary.

CSL 2025

36:14 Kleene Algebra with Commutativity Conditions Is Undecidable

▶ Definition 28. Let e ∈ T Σ̈ be a term. We say that e has bounded output if there exists
some k ∈ N (the fanout) such that, for every string s ≤ e, |πr(s)| ≤ (|πl(s)| + 1)k.

▶ Lemma 29. Let e have bounded output with fanout k and let Λ be finite. If s ∈ Nexte(Λ),
then |s| ≤ (m + 1)k, where m = max{|s′| | s′ ∈ Λ}. Thus, since Σ is finite, Nexte(Λ) is finite.

▶ Lemma 30. Bounded-output terms are closed under all the pre-Kleene algebra operations.
For e∗, we additionally require that |πl(s)| ≥ 1 for all strings s ≤ e.

For bounded-output terms, we can improve the expansion of Lemma 27.

▶ Lemma 31. Let e ∈ T Σ̈ be a bounded-output term that is the state of some automaton S.
There exists some k ∈ N such that e has fanout k and such that, for every n ∈ N, we can
write

e =
∑

{s | s ≤ e, |s| < n} +
∑

{ses | s ∈ SΣ̈, |s| = n, |πr(s)| ≤ (|πl(s)| + 1)k},

where es ∈ S for every s.

▶ Definition 32. A term L over Σ is prefix free if for all strings s1 ≤ L and s2 ≤ L, if s1 is
a prefix of s2, then s1 = s2.

▶ Lemma 33 (normal). Let s and s′ be two strings over Σ such that one is not a prefix of
the other, or vice versa. Then we can write s = s0xs1 and s′ = s0x′s′

1 with x ̸= x′. Thus,
srs′

lΣ̈∗ ≤ Σ∗Σ ̸=Σ̈∗.

▶ Lemma 34. Suppose that e ∈ T Σ̈ is such that πl(e) ≤ L and πr(e) ≤ L, where L is prefix
free. Suppose, moreover, that e is finite-state and has bounded output. Then e : Rel(L).

5.3 Putting Everything Together
To derive completeness for two-counter machines (Theorem 16), it suffices to show that the
hypotheses of Lemma 34 are satisfied.

▶ Lemma 35. We have the following properties:
TM is prefix free.
πl(RM) ≤ CM ≤ TM .
πr(RM) ≤ TM .
RM is finite state (Definition 25).
RM has bounded output (Definition 28).

Thus, by Lemma 34, the term RM is a representable relation of type Rel(TM).

Proof. To show that RM is finite state and had bounded output, we just appeal to the
closure properties of such terms Lemmas 26 and 30. The rest is routine. ◀

We can finally conclude with the proof of completeness, thus establishing undecidability
(Theorem 18).

Proof of Theorem 16. If s = s0 →RM
· · · →RM

sn = c1, we can show that Nexti
e(s) is {si}

for i ≤ n and ∅ when i > n, because the transition relation is deterministic and because
c1 does not transition. Moreover, by Lemma 35, we have si ≤ CM for every i < n (since
(si)l(si+1)r ≤ RM).

A. Azevedo de Amorim, C. Zhang, and M. Gaboardi 36:15

Choose ρ as in Theorem 22. We have

sR∗
M ≤ Σ∗ Next<n+1

e (s)r + Σ∗Σ ̸=ρ

= Σ∗(Next<n
e (s) + Nextn

e (s))r + Σ∗Σ ̸=ρ

≤ Σ∗(CM + c1)r + Σ∗Σ ̸=ρ. ◀

6 Conclusion and Related Work

In his seminal work, Kozen [15] established several hardness and completeness results for
variants of Kleene algebra. He noted that deciding equality in ∗-continuous Kleene algebras
with commutativity conditions on primitives was not possible – more precisely, the problem is
Π0

1-complete, by reduction from the complement of the Post correspondence problem (PCP).
However, at the time, it was unknown whether a similar result applied to the pure theory
of Kleene algebra with commutativity conditions (KX). The question had been left open
since then. Our work provides a solution, proving that the problem is undecidable, even for
a much weaker theory T X, which omits the induction axioms of Kleene algebra.

As we were about to post publicly this work, we became aware of the work of Kuznet-
sov [17], who independently proved a similar result. There are two main differences between
our results and his. Originally, our proof only established the undecidability of the theory
of Kleene algebra with commutativity conditions, whereas Kuznetsov’s work proved its
Σ0

1-completeness as well by leveraging the notion of effective inseparability. Since learning
about his work, we managed to adapt his ideas to our setting, thus obtaining completeness as
well. On the other hand, Kuznetsov’s proof requires the induction axiom of Kleene algebra to
simplify some of the inequalities involving starred terms – specifically, he needs the identity
A∗(A∗)+ ≤ A∗ and the monotonicity of (−)∗, whereas our proof also applies to the weaker
theory of pre-Kleene algebra. In this sense, we can view the results reported here as a
synthesis of Kuznetsov’s work and ours.

In terms of techniques, both of our works draw inspiration from the proof of Π0
1-

completeness of the equational theory of ∗-continuous KA. Leveraging the reduction of
the halting problem to the PCP, Kuznetsov used Kleene-algebra inequalities to describe
self-looping Turing machines – that is, Turing machines that run forever by reaching a
designated configuration that steps to itself. He then showed that the set of machine-input
pairs ⟨M, x⟩ where machines M that reach a self-looping state on input x is recursively
inseparable from the set of such pairs where M halts on the input, which implies that such
inequalities cannot decidable.

The inequalities used by Kuznetsov are similar to ours, and can be proved by unfolding
finitely many times the starred term that defines the execution of Turing machines, and by
applying standard Kleene algebra inequalities that follow from induction. One important
difference is that, in Kuznetsov’s work, this starred term contains only ∗-free terms, which
arise from the reduction of the halting problem to the PCP. This requires some more work
to establish that the inequality indeed encodes the execution of the Turing machine, but this
work just replicates the ideas behind the standard reduction from the halting problem to the
PCP, so it does not need to be belabored. On the other hand, we leverage the language of
Kleene algebra to define an execution model for two-counter machines, which can be encoded
more easily. The downside of our approach is that our relation RM involves starred terms,
which require our notion of bounded output to be analyzed effectively.

CSL 2025

36:16 Kleene Algebra with Commutativity Conditions Is Undecidable

References
1 Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole

Schlesinger, and David Walker. Netkat: semantic foundations for networks. ACM SIGPLAN
Notices, 49(1):113–126, January 2014. doi:10.1145/2578855.2535862.

2 Allegra Angus and Dexter Kozen. Kleene Algebra with Tests and Program Schematology.
Technical Report, Cornell University, USA, June 2001.

3 Valentin Antimirov. Partial derivatives of regular expressions and finite automaton con-
structions. Theoretical Computer Science, 155(2):291–319, March 1996. doi:10.1016/
0304-3975(95)00182-4.

4 Timos Antonopoulos, Eric Koskinen, Ton Chanh Le, Ramana Nagasamudram, David A.
Naumann, and Minh Ngo. An Algebra of Alignment for Relational Verification. Proceedings of
the ACM on Programming Languages, 7(POPL):20:573–20:603, January 2023. doi:10.1145/
3571213.

5 Jean Berstel. Transductions and Context-Free Languages. Vieweg+Teubner Verlag, Wiesbaden,
1979. doi:10.1007/978-3-663-09367-1.

6 Volker Diekert and Yves Métivier. Partial Commutation and Traces. In Grzegorz Rozenberg
and Arto Salomaa, editors, Handbook of Formal Languages: Volume 3 Beyond Words, pages
457–533. Springer, Berlin, Heidelberg, 1997. doi:10.1007/978-3-642-59126-6_8.

7 Nate Foster, Dexter Kozen, Mae Milano, Alexandra Silva, and Laure Thompson. A coalgebraic
decision procedure for netkat. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’15, pages 343–355, New York, NY,
USA, January 2015. Association for Computing Machinery. doi:10.1145/2676726.2677011.

8 Alan Gibbons and Wojciech Rytter. On the decidability of some problems about rational
subsets of free partially commutative monoids. Theoretical Computer Science, 48:329–337,
January 1986. doi:10.1016/0304-3975(86)90101-5.

9 C. A. R. Tony Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. Concurrent Kleene
Algebra. In Mario Bravetti and Gianluigi Zavattaro, editors, CONCUR 2009 - Concurrency
Theory, pages 399–414, Berlin, Heidelberg, 2009. Springer. doi:10.1007/978-3-642-04081-8_
27.

10 J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley series in computer science. Addison-Wesley, 2001. URL:
https://books.google.com/books?id=omIPAQAAMAAJ.

11 Tobias Kappé, Paul Brunet, Alexandra Silva, Jana Wagemaker, and Fabio Zanasi. Concurrent
Kleene Algebra with Observations: From Hypotheses to Completeness, volume 12077 of Lecture
Notes in Computer Science, pages 381–400. Springer International Publishing, Cham, 2020.
doi:10.1007/978-3-030-45231-5_20.

12 Tobias Kappé, Paul Brunet, Alexandra Silva, and Fabio Zanasi. Concurrent kleene algebra:
Free model and completeness. In Amal Ahmed, editor, Programming Languages and Systems,
Lecture Notes in Computer Science, pages 856–882, Cham, 2018. Springer International
Publishing. doi:10.1007/978-3-319-89884-1_30.

13 Dexter Kozen. On kleene algebras and closed semirings. In Branislav Rovan, editor, Math-
ematical Foundations of Computer Science 1990, volume 452, pages 26–47. Springer-Verlag,
Berlin/Heidelberg, 1990. doi:10.1007/BFb0029594.

14 Dexter Kozen. Kleene algebra with tests and commutativity conditions, volume 1055 of Lecture
Notes in Computer Science, pages 14–33. Springer Berlin Heidelberg, Berlin, Heidelberg, 1996.
doi:10.1007/3-540-61042-1_35.

15 Dexter Kozen. On the complexity of reasoning in kleene algebra. In Proceedings, 12th Annual
IEEE Symposium on Logic in Computer Science, Warsaw, Poland, June 29 - July 2, 1997,
pages 195–202. IEEE Computer Society, 1997. doi:10.1109/LICS.1997.614947.

16 Dexter Kozen and Alexandra Silva. Left-handed completeness. Theoretical Computer Science,
807:220–233, February 2020. doi:10.1016/j.tcs.2019.10.040.

https://doi.org/10.1145/2578855.2535862
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1145/3571213
https://doi.org/10.1145/3571213
https://doi.org/10.1007/978-3-663-09367-1
https://doi.org/10.1007/978-3-642-59126-6_8
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1016/0304-3975(86)90101-5
https://doi.org/10.1007/978-3-642-04081-8_27
https://doi.org/10.1007/978-3-642-04081-8_27
https://books.google.com/books?id=omIPAQAAMAAJ
https://doi.org/10.1007/978-3-030-45231-5_20
https://doi.org/10.1007/978-3-319-89884-1_30
https://doi.org/10.1007/BFb0029594
https://doi.org/10.1007/3-540-61042-1_35
https://doi.org/10.1109/LICS.1997.614947
https://doi.org/10.1016/j.tcs.2019.10.040

A. Azevedo de Amorim, C. Zhang, and M. Gaboardi 36:17

17 Stepan L. Kuznetsov. On the complexity of reasoning in kleene algebra with commutativity
conditions. In Erika Ábrahám, Clemens Dubslaff, and Silvia Lizeth Tapia Tarifa, editors,
Theoretical Aspects of Computing - ICTAC 2023 - 20th International Colloquium, Lima, Peru,
December 4-8, 2023, Proceedings, volume 14446 of Lecture Notes in Computer Science, pages
83–99. Springer, 2023. doi:10.1007/978-3-031-47963-2_7.

18 A. K. McIver, E. Cohen, and C. C. Morgan. Using Probabilistic Kleene Algebra for Protocol
Verification, volume 4136 of Lecture Notes in Computer Science, pages 296–310. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006. doi:10.1007/11828563_20.

19 Annabelle McIver, Tahiry M. Rabehaja, and Georg Struth. On probabilistic kleene algebras,
automata and simulations. In Proceedings of the 12th International Conference on Relational
and Algebraic Methods in Computer Science, RAMICS’11, pages 264–279, Berlin, Heidelberg,
May 2011. Springer-Verlag. doi:10.1007/978-3-642-21070-9_20.

20 A.M Silva. Kleene coalgebra. s.n.; UB Nijmegen host, S.l.; Nijmegen, 2010. URL: http:
//hdl.handle.net/2066/83205.

21 Cheng Zhang, Arthur Azevedo de Amorim, and Marco Gaboardi. On incorrectness logic
and kleene algebra with top and tests. arxiv preprint, August 2022. arXiv:2108.07707,
doi:10.48550/arXiv.2108.07707.

A Detailed Proofs

▶ Theorem 5. If s ∈ SX is a string and e ∈ T X a term, then s ≤ e is equivalent to s ∈ l(e).

Proof of Theorem 5. Suppose that s ≤ e. Then s ∈ {s} = lX(s) ⊆ lX(e) by monotonicity.
Conversely, suppose that s ∈ lX(e). We proceed by induction on e.
If e = x ∈ X, then s ∈ lX(x) means that s = x. Thus, we get s ≤ e.
If e = 0, we get a contradiction.
If e = 1, we must have s = 1, thus s ≤ e.
If e = e1e2, we must have s = s1s2, with si ∈ lX(ei). By the induction hypotheses,
si ≤ ei, and thus s ≤ e.
If e = e1 + e2, then there is some i such that s ∈ lX(ei). By the induction hypothesis,
s ≤ ei, and thus s ≤ e1 + e2.
Finally, suppose that e = e∗

1. Thus, there exists some n such that s ∈ lx(e1)n. This means
that we can find a family (si)i∈{1,...,n} such that s =

∏
i si and si ∈ lx(e1) for every i. By

the induction hypothesis, si ≤ e1 for every i. Therefore, s =
∏

i si ≤ en
1 ≤ e∗

1 = e. ◀

▶ Theorem 6. We say that e ∈ T X is finite if its language l(e) is. In this case, then
e =

∑
l(e).

Proof of Theorem 6. By induction on e. We note that, if l(e) is finite, then l(e′) is also finite
for every immediate subterm e′, which allows us to apply the relevant induction hypotheses.
If e is of the form e1e2 and l(e) = ∅, this need not be the case, but at least one of the factors
ei satisfies l(ei) = ∅, which is good enough. ◀

▶ Corollary 7. The language interpretation l is injective on finite terms: if l(e1) = l(e2) and
both e1 and e2 are finite, then e1 = e2.

Proof of Corollary 7. We have e1 =
∑

l(e1) =
∑

l(e2) = e2. ◀

▶ Corollary 8. For every term e ̸= 0, there exists some string s such that s ≤ e.

Proof of Corollary 8. Note that l(e) ̸= ∅. Indeed, if l(e) = ∅ = l(0), then e = 0 by
Corollary 7, which contradicts our hypothesis. Therefore, we can find some s such that
s ∈ l(e). But this is equivalent to s ≤ e by Theorem 5. ◀

CSL 2025

https://doi.org/10.1007/978-3-031-47963-2_7
https://doi.org/10.1007/11828563_20
https://doi.org/10.1007/978-3-642-21070-9_20
http://hdl.handle.net/2066/83205
http://hdl.handle.net/2066/83205
https://arxiv.org/abs/2108.07707
https://doi.org/10.48550/arXiv.2108.07707

36:18 Kleene Algebra with Commutativity Conditions Is Undecidable

▶ Lemma 14. The relation RM satisfies the following property: for every s →RM
s′, s is of

the form anbmq ≤ CM . Moreover, for any s of this form, we have s′ = Jι(q)Kf (n, m), where
the function JiKf : N × N → TM is defined as follows:

JInc(1, q)Kf (n, m) ≜ an+1bmq JIf(1, q1, q2)Kf (n, m) ≜
{

anbmq1 if n = 0
apbmq2 if n = p + 1

JInc(2, q)Kf (n, m) ≜ anbm+1q JIf(2, q1, q2)Kf (n, m) ≜
{

anbmq1 if m = 0
anbpq2 if m = p + 1

JHalt(x)Kf (n, m) ≜ cx.

In particular, RM defines a (partial) functional relation on TM .

▶ Theorem 15 (Soundness). Given a two-counter machine M and a configuration s ≤ TM ,
suppose that the following inequality holds in LΣ̈M :

srR∗
M ≤ Σ∗(CM + c1)r + Σ∗

M Σ ̸=
M Σ̈∗

M ,

where Σ ̸=
M ≜

∑
x,y∈Σ
x ̸=y

xlyr. If s →∗
RM

cx, then x = 1.

Proof of Theorem 15. Suppose that we have some finite sequence of transitions s = s0 →
· · · → sn = cx. By definition, (si)l(si+1)r ≤ RM for every i ∈ {0, . . . , n − 1}. Thus, we have
the following inequality on languages:

p ≜ (s0)r · (s0)l(s1)r · · · (sn−1)l(sn)r

≤ (s0)r · RM · · · · · RM

≤ (s0)rR∗
M

≤ Σ∗
M (CM + c1)r + Σ∗

M Σ ̸=
M Σ̈∗

M .

On the other hand, by shuffling left and right characters,

p = (s0)r · (s0)l(s1)r · · · (sn−1)l(sn)r

= (s0)r(s0)l · (s1)r(s1)l · · · (sn−1)r(sn−1)l · (sn)r

= s0 · · · sn−1(sn)r

≤ Σ∗
M (ΣM)+

r .

We can check that the languages Σ∗
M (ΣM)+

r and Σ∗
M Σ ̸=

M Σ̈∗
M are disjoint. Therefore, it must

be the case that p ≤ Σ∗
M (CM + c1)r. By projecting out the right components, we find that

πr(p) = s0 · · · sn ≤ Σ∗
M (CM + c1)r. We cannot have πr(p) ≤ Σ∗

M CM , since the last character
cx cannot appear in a string in CM . Therefore, πr(p) ≤ Σ∗

M c1, from which we conclude. ◀

▶ Theorem 17. The following two languages are effectively inseparable:

A ≜ {⟨M, x⟩ | The two-counter machine M halts on x and outputs 1}
B ≜ {⟨M, x⟩ | The two-counter machine M halts on x and outputs 0}.

In other words, there is a partial computable function f with the following property. Given a
machine M , let WM be the set of inputs accepted by M . Suppose that M1 and M0 are such
that WM1 ∩ WM0 = ∅, A ⊆ WM1 and B ⊆ WM0 . Then f⟨M1, M0⟩ is defined and does not
belong to WM1 ∪ WM0 .

A. Azevedo de Amorim, C. Zhang, and M. Gaboardi 36:19

Proof of Theorem 17. We implement f as follows. Given an input x, if x does not encode
a pair of machines, then the output is undefined. Otherwise, suppose that x = ⟨M1, M0⟩.
Construct a machine Mη as follows. On an input x, run M1 and M0 on ⟨x, x⟩ in parallel. If
Mi accepts first, then halt and output 1 − i. If neither accept, then just run forever. We
pose f(x) = ⟨Mη, Mη⟩.

We need to show that f(x) /∈ WM1 ∪ WM0 when x = ⟨M1, M0⟩ and the two machines
satisfy the above hypotheses. Suppose that f(x) = ⟨Mη, Mη⟩ ∈ WM1 . By the definition of
Mη, this means that Mη outputs 0 on ⟨Mη⟩. Thus ⟨Mη, Mη⟩ ∈ B ⊆ WM0 . This contradicts
the hypothesis that WM1 ∩ WM0 = ∅. Thus, f(x) /∈ WM1 . An analogous reasoning shows
that f(x) /∈ WM0 , which allows us to conclude. ◀

▶ Lemma 21. Suppose that e : Rel(L). There exists some ρ such that, for every n ∈ N and
every finite Λ ≤ L, we have the inequality Λre∗ ≤ Σ∗ Next<n

e (Λ)r + Σ∗ Nextn
e (Λ)re∗ + Σ∗Σ ̸=ρ,

where Next<n
e =

⋃
i<n Nexti

e(Λ).

Proof of Lemma 21. Let ρ ≜ ρ′e∗, where ρ′ is the residue of e. Abbreviate Σ∗Σ ̸=ρ as ε.
We proceed by induction on n. If n = 0, then the goal becomes Λre∗ ≤ Σ∗ Next0

e(Λ)re∗ + ε,
which holds because Next0

e(Λ) = Λ.
Otherwise, for the inductive step, suppose that the goal is valid for n. We need to prove

that it is valid for n + 1. Recall that Λ′ ≜ Nexte(Λ) ≤ L. We have

Λre∗

= Λr + Λree∗

≤ Λr + Λ Nexte(Λ)re∗ + ε (e is representable)
= Λr + ΛΛ′

re∗ + ε

≤ Λr + Λ
(
Σ∗ Next<n

e (Λ′)r + Σ∗ Nextn
e (Λ′)re∗ + ε

)
+ ε I.H.

= Λr + ΛΣ∗ Next<n
e (Λ′)r + ΛΣ∗ Nextn

e (Λ′)re∗ + Λε + ε

≤ Σ∗Λr + Σ∗ Next<n
e (Λ′)r + Σ∗ Nextn

e (Λ′)re∗ + ε + ε (Λ is finite)
= Σ∗ Next0

e(Λ)r + Σ∗ Next<n
e (Λ′)r + Σ∗ Nextn

e (Λ′)re∗ + ε

= Σ∗ Next<n+1
e (Λ)r + Σ∗ Nextn+1

e (Λ)re∗ + ε. ◀

▶ Theorem 22. If e : Rel(L), there exists ρ such that, given n ∈ N and a finite Λ ≤ L, if
Nextn

e (Λ) = ∅, then Λre∗ ≤ Σ∗ Next<n
e (Λ)r + Σ∗Σ ̸=ρ.

Proof of Theorem 22. Choose the same ρ as in Lemma 21. Then

Λre∗

≤ Σ∗ Next<n
e (Λ)r + Σ∗ Nextn

e (Λ)re∗ + Σ∗Σ ̸=ρ by Lemma 21
= Σ∗ Next<n

e (Λ)r + Σ∗Σ ̸=ρ. ◀

▶ Lemma 24. Derivable terms are closed under all the pre-Kleene algebra operations, with
the following caveats: for e∗, we also require that [e]0 = 0; for e1e2, the term is also derivable
if e2 isn’t, provided that [e1]0 = 0. We have the following choices of derivatives:

δx(0) = 0 δx(1) = 0
δx(x) = 1 δx(y) = 0 if y ̸= x

δx(e1 + e2) = δx(e1) + δx(e2) δx(e1e2) = [e1]0δx(e2) + δx(e1)e2

δx(e∗) = δx(e)e∗,

where, by abuse of notation, we treat [e1]0δx(e2) as 0 when e2 is not necessarily derivable
(since, by assumption, [e1]0 = 0 in that case).

CSL 2025

36:20 Kleene Algebra with Commutativity Conditions Is Undecidable

Proof of Lemma 24. We prove the closure property for products and star. For products,
we start by expanding e1:

e1e2 =
(

[e1]0 +
∑

x

xδx(e1)
)

e2

= [e1]0e2 +
∑

x

xδx(e1)e2.

If [e1]0 = 0, the first term gets canceled out, and we obtain
∑

x xδx(e1)e2 = [e1]0[e2]0 +∑
x xδx(e1)e2. Otherwise, we know that e2 is derivable, and we proceed as follows:

e1e2 = [e1]0

(
[e2]0 +

∑
x

xδx(e2)
)

+
∑

x

xδx(e1)e2

= [e1]0[e2]0 +
∑

x

[e1]0xδx(e2) +
∑

x

xδx(e1)e2

= [e1]0[e2]0 +
∑

x

x([e1]0δx(e2) + δx(e1)e2) (because [e1]0x = x[e1]0),

which allows us to conclude.
For star, assuming that [e]0 = 0, we note that e∗ = 1 + ee∗, and we apply the closure

properties for the other operations. ◀

▶ Lemma 26. Let X be a finite commutable set. Finite-state terms are preserved by all the
pre-Kleene algebra operations (for e∗, we additionally require that [e]0 = 0). Moreover, the
set of states of the corresponding automata can be effectively computed.

Proof of Lemma 26. Let’s consider all the cases.
The set {0, 1} is an automaton by Lemma 24. Therefore, 0 and 1 are finite state.
By Lemma 24, if x is a symbol, the set S = {x} is a pre-automaton. Therefore, x is finite
state because it belongs to the automaton S̄.
Suppose that S1 and S2 are finite automata. By Lemma 24, the set S = {e1 + e2 | e1 ∈
S1, e2 ∈ S2} is a pre-automaton. Therefore, if we have finite-state terms e1 and e2 of S1
and S2, their sum e1 + e2 is finite state because it belongs to the automaton S̄.
Suppose that S1 and S2 are finite automata. By Lemma 24, the set S = {e1e2 | e1 ∈
S1, e2 ∈ S2} is a pre-automaton. Indeed, δx(e1e2) = [e1]0δx(e2) + δx(e1)e2 is a sum of
elements of S, since

[e1]0 ∈ S1

δx(e2) ∈ S2

δx(e1) ∈ S1

e2 ∈ S2.

Therefore, if we have finite-state terms e1 and e2 of S1 and S2, their product e1e2 is finite
state because it belongs to the automaton S̄.
Suppose that e is a state of some automaton S such that [e]0 = 0. Define S′ = {e′e∗ |
e′ ∈ S}. By Lemma 24, this set is a pre-automaton. Indeed,

δx(e′e∗) = [e′]0δx(e∗) + δx(e′)e∗

= [e′]0δx(e)e∗ + δx(e′)e∗

= ([e′]0δx(e) + δx(e′))e∗.

The terms δx(e) and δx(e′) are in S. Thus, [e′]0δx(e) ∈ S and δx(e′e∗) is a sum of terms
of S′. Since e∗ = 1e∗ is an element of S′, then it is a state of S̄′, and e∗ is finite state. ◀

A. Azevedo de Amorim, C. Zhang, and M. Gaboardi 36:21

▶ Lemma 27. Let e ∈ T X be a state of a finite-state automaton S, and k ∈ N. We can
write

e =
∑

{s | s ∈ SX, s ≤ e, |s| < k} +
∑

{ses | s ∈ SX, |s| = k},

where each es ∈ S for all s, and the size |s| ∈ N of a string s is defined by mapping every
symbol of s to 1 ∈ N.

Proof of Lemma 27. By induction on k. When k = 0, the equation is equivalent to e = e,
and we are done. Otherwise, suppose that the result is valid for k. We need to prove that it
is also valid for k + 1. Write

e =
∑

s∈SX
s≤e

|s|<k

s +
∑

s∈SX
|s|=k

ses.

By deriving each es, we can rewrite this as

e =
∑

s∈SX
s≤e

|s|<k

s +
∑

s∈SX
|s|=k

s

(
[es]0 +

∑
x∈X

xδx(es)
)

=
∑

s∈SX
s≤e

|s|<k

s +
∑

s∈SX
|s|=k

s[es]0 +
∑

s∈SX
|s|=k

∑
x∈X

sxδx(es). (1)

We can see that [es]0 = 1 if and only if s ≤ e: by taking the language interpretation of (1),
we can see that a string of size k can only belong to the middle term, since the left and right
terms can only account for strings of strictly smaller or larger size, respectively. Thus, we
can rewrite (1) as

e =
∑

s∈SX
s≤e

|s|<k

s +
∑

s∈SX
|s|=k
s≤e

s[es]0 +
∑

s,|s|=k

∑
x∈X

sxδx(es)

=
∑

s∈SX
s≤e

|s|<k+1

s +
∑

s∈SX
|s|=k

∑
x∈X

sxδx(es). (2)

Given some string s with |s| = k + 1, define

e′
s ≜

∑
(s′,x)∈SX×X

s=s′x

δx(es′).

This sum is well defined because there are only finitely many s′ and x ∈ X such that s = s′x:
s′ must be of size k, and there are only finitely many such strings. Moreover, e′

s is an element
of S, since S is closed under taking derivatives and finite sums. We have

se′
s =

∑
(s′,x)
|s′|=k
s=s′x

sδx(es′)

=
∑

(s′,x)
|s′|=k
s=s′x

s′xδx(es′).

CSL 2025

36:22 Kleene Algebra with Commutativity Conditions Is Undecidable

Therefore,∑
s

|s|=k+1

se′
s =

∑
s

|s|=k+1

∑
(s′,x)
|s′|=k
s=s′x

s′xδx(es′)

=
∑

(s′,x)
|s′|=k

s′xδx(es′)

=
∑

s′

|s′|=k

∑
x∈X

s′xδx(es′).

Putting everything together, (2) becomes

e =
∑

s≤e,|s|<k+1

s +
∑

s
|s|=k+1

se′
s, (3)

which completes the inductive case. ◀

▶ Lemma 29. Let e have bounded output with fanout k and let Λ be finite. If s ∈ Nexte(Λ),
then |s| ≤ (m + 1)k, where m = max{|s′| | s′ ∈ Λ}. Thus, since Σ is finite, Nexte(Λ) is finite.

Proof of Lemma 29. If s ∈ Nexte(Λ), by definition, there exists s′ ∈ Λ such that s′
lsr ≤ e.

Since e has fanout k, we have

|s| = |πr(s′
lsr)| ≤ (|πl(s′

lsr)| + 1)k = (|s| + 1)k ≤ (n + 1)k. ◀

▶ Lemma 30. Bounded-output terms are closed under all the pre-Kleene algebra operations.
For e∗, we additionally require that |πl(s)| ≥ 1 for all strings s ≤ e.

Proof of Lemma 30. Let’s focus on the last point. Suppose that e has fanout k and that
|πl(s)| ≥ 1 for every s ≤ e. We are going to show that e∗ has bounded output with fanout 2k.

Suppose that s ≤ e∗. We can write s = s1 · · · sn such that si ≤ e for every i ∈ {1, . . . , n}.
We have, for every i ∈ {1, . . . , n}, |πr(si)| ≤ (|πl(si)| + 1)k. Thus,

|πr(s)| =
n∑

i=1
|πr(si)|

≤
n∑

i=1
(|πl(si)| + 1)k

≤
n∑

i=1
2|πl(si)|k (because |πl(si)| ≥ 1)

=
(

n∑
i=1

|πl(si)|
)

2k

= |πl(s0) · · · πl(sn)|2k

= |πl(s0 · · · sn)|2k

= |πl(s)|2k

≤ (|πl(s)| + 1)2k. ◀

A. Azevedo de Amorim, C. Zhang, and M. Gaboardi 36:23

▶ Lemma 31. Let e ∈ T Σ̈ be a bounded-output term that is the state of some automaton S.
There exists some k ∈ N such that e has fanout k and such that, for every n ∈ N, we can
write

e =
∑

{s | s ≤ e, |s| < n} +
∑

{ses | s ∈ SΣ̈, |s| = n, |πr(s)| ≤ (|πl(s)| + 1)k},

where es ∈ S for every s.

Proof of Lemma 31. Let k0 be the fanout of e. For each e′ ∈ S such that e′ ≠ 0, choose
some string we′ ≤ e′. Define m ≜ max{|πl(we′)| | e′ ∈ S, e′ ≠ 0} and k ≜ (m + 1)k0. Since
k ≥ k0, we know that e has fanout k. Moreover, by Lemma 27, we have

e =
∑
s≤e

|s|<n

s +
∑

s∈SX
|s|=n

ses

=
∑
s≤e

|s|<n

s +
∑

s∈SX
|s|=n
es ̸=0

ses,

where each es is a state of S. If s is such that |s| = n and es ≠ 0, we have swes
≤ e.

Therefore,

|πr(s)| ≤ |πr(swes
)|

≤ (|πl(swes
)| + 1)k0

= (|πl(s)| + |πl(wes)| + 1)k0

≤ (|πl(s)| + m + 1)k0

≤ (|πl(s)| + 1)(m + 1)k0

= (|πl(s)| + 1)k.

Thus,

e =
∑
s≤e

|s|<n

s +
∑

s
|s|=n
es ̸=0

|πr(s)|≤(|πl(s)|+1)k

ses

=
∑
s≤e

|s|<n

s +
∑

s
|s|=n

|πr(s)|≤(|πl(s)|+1)k

ses. ◀

▶ Lemma 33 (normal). Let s and s′ be two strings over Σ such that one is not a prefix of
the other, or vice versa. Then we can write s = s0xs1 and s′ = s0x′s′

1 with x ̸= x′. Thus,
srs′

lΣ̈∗ ≤ Σ∗Σ ̸=Σ̈∗.

Proof of Lemma 33. By induction on the length of s. ◀

▶ Lemma 34. Suppose that e ∈ T Σ̈ is such that πl(e) ≤ L and πr(e) ≤ L, where L is prefix
free. Suppose, moreover, that e is finite-state and has bounded output. Then e : Rel(L).

Proof of Lemma 34. We have already seen that Nexte(Λ) is finite when Λ is (Lemma 29).
Thus, we need to find some ρ such that, for every finite Λ,

Λre ≤ Λ Nexte(Λ)r + Σ∗Σ ̸=ρ.

CSL 2025

36:24 Kleene Algebra with Commutativity Conditions Is Undecidable

Define ρ ≜ Σ̈∗ρe, where ρe is the greatest element of the automaton of e. It suffices to prove
the result for the case Λ = {s}. Indeed, if the result holds for singletons, we have

Λre =
∑
s∈Λ

sre

≤
∑
s∈Λ

s Nexte(s)r + Σ∗Σ ̸=ρ by assumption

≤
∑
s∈Λ

Λ Nexte(s)r + Σ∗Σ ̸=ρ

= Λ
∑
s∈Λ

Nexte(s) + Σ∗Σ ̸=ρ

= Λ Nexte(Λ) + Σ∗Σ ̸=ρ. ◀

Let k be the constant of Lemma 31 for e, n = |s|, and let p = (k + 1)(n + 1). Let

Λ̈ ≜ {s′ ∈ SΣ̈ | |s′| = p + 1, |πr(s′)| ≤ (|πl(s′)| + 1)k}.

By applying Lemma 31 to e, we can write

e =
∑
s′≤e

|s′|<p+1

s′ +
∑
s′∈Λ̈

s′es′

=
∑

s′≤e,|s′|≤p

s′ +
∑
s′∈Λ̈

s′es′

=
∑
s′≤e

|s′|≤p
πl(s′)=s

s′ +
∑
s′≤e

|s′|≤p
πl(s′)̸=s

s′ +
∑
s′∈Λ̈

s′es′ ,

Thus, to prove the inequality, it suffices to prove

sr

∑
s′≤e

|s′|≤p
πl(s′)=s

s′ = s Nexte(s)r (4)

sr

∑
s′≤e

|s′|≤p
πl(s′)̸=s

s′ ≤ Σ∗Σ ̸=ρ (5)

sr

∑
s′∈Λ̈

s′e′
s ≤ Σ∗Σ ̸=ρ. (6)

Let us start with (4). Notice that, for any string s′ over Σ̈, we have s′ = πl(s′)lπr(s′)r.
Therefore, there is a bijection between the set of indices s′ of the sum and the set of strings
Nexte(s). The bijection is given by

s′ 7→ πr(s′) ∈ Nexte(s)
Nexte(s) ∋ s′ 7→ sls

′
r.

To prove that this is a bijection, we must show that the inverse produces indeed a valid
index. Notice that, if s′ ∈ Nexte(s), by Lemma 29, we have |s′| ≤ (n + 1)k, and thus
|sls

′
r| = |s| + |s′| ≤ (n + 1)(k + 1) = p.

A. Azevedo de Amorim, C. Zhang, and M. Gaboardi 36:25

By reindexing the sum in (4) with this bijection, we have

sr

∑
s′≤e

|s′|≤p
πl(s′)=s

s′ = sr

∑
s′∈Nexte(s)

sls
′
r

= srsl

∑
s′∈Nexte(s)

s′
r

= srsl

 ∑
s′∈Nexte(s)

s′

r

= s Nexte(s)r.

Next, let us look at (5). Suppose that s′ is such that s′ ≤ e and πl(s′) ̸= s. Since L is
prefix free, and πl(s′) ≤ L, Lemma 33 applied to s and s′ yields

sls
′ ≤ Σ∗Σ ̸=Σ̈∗ ≤ Σ∗Σ ̸=Σ̈∗ρe = Σ∗Σ ̸=ρ,

where we use the fact that ρe ≥ 1 because 1 is a state of the automaton of e. Summing over
all such s′, we get the desired inequality.

To conclude, we must show (6). By distributivity, this is equivalent to showing that, for
every s′ ∈ Λ,

srs′es′ ≤ Σ∗Σ ̸=ρ.

If es′ = 0, we are done. Otherwise, by Corollary 8, we can find some string s′′ ≤ es′ . We
have s′s′′ ≤ s′es′ ≤ e.

Note that we must have |πl(s′)| > n. Indeed, suppose that |πl(s′)| ≤ n. Since s′ ∈ Λ, we
have

|s′| = |πl(s′)| + |πr(s′)|
≤ |πl(s′)| + (|πl(s′)| + 1)k
≤ (|πl(s′)| + 1)(k + 1)
≤ (n + 1)(k + 1)
< p + 1
= |s′|,

which is a contradiction.
Since πl(s′s′′) ≤ πl(e) ≤ L and L is prefix free, by Lemma 33, we can write s = s0xs1

and πl(s′s′′) = πl(s′)πl(s′′) = s0x′s′
1, with x ̸= x′. But |πl(s′)| > n = |s| and |s0| < |s|, thus

πl(s′) must be of the form s0x′s′
2. We find that srs′ = srπl(s′)πr(s′) ≤ Σ∗Σ ̸=Σ̈∗, and thus

srs′es′ ≤ Σ∗Σ ̸=Σ̈∗es′ ≤ Σ∗Σ ̸=Σ̈∗ρe = Σ∗Σ ̸=ρ.

CSL 2025

Finite Relational Semantics for Language Kleene
Algebra with Complement
Yoshiki Nakamura #

Institute of Science Tokyo, Japan

Abstract
We study the equational theory of Kleene algebra (KA) w.r.t. languages (here, meaning the equational
theory of regular expressions where each letter maps to any language) by extending the algebraic
signature with the language complement. This extension significantly enhances the expressive power
of KA. In this paper, we present a finite relational semantics completely characterizing the equational
theory w.r.t. languages, which extends the relational characterizations known for KA and for KA
with top. Based on this relational semantics, we show that the equational theory w.r.t. languages is
Π0

1-complete for KA with complement (with or without Kleene-star) and is PSPACE-complete if the
complement only applies to variables or constants.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting; Theory
of computation → Logic and verification; Theory of computation → Formal languages and automata
theory

Keywords and phrases Kleene algebra, Language model, Relational model, Complexity

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.37

Related Version Full Version: https://hal.science/hal-04455882 [35]

Funding This work was supported by JSPS KAKENHI Grant Number JP21K13828.

Acknowledgements We thank anonymous reviewers for useful comments.

1 Introduction

Kleene algebra (KA) [24, 11, 25] is an algebraic system for regular expressions consisting
of identity (1), empty (0), composition (;), union (+), and iteration (_∗). As iteration
frequently appears in computer science, KA has many applications, e.g., the semantics of
programs [46], relation algebra [40], graph query language [12, 21], program verification
[29, 23, 48], and program logics [26, 41, 53]. In practice, we often consider extensions of
KA. One direction of extensions is to extend equations to formulas, e.g., Horn formulas
(t1 = s1 → · · · → tn = sn → t = s) for considering hypotheses [9, 28, 14, 44]. Another
direction is to extend terms by adding some operators. For example, Kleene algebra with
tests (KAT) applies to model Hoare logic [26] and KAT with top (⊤) applies to model
incorrectness logic [41, 53, 45]. It is also natural to extend KA with language operators, e.g.,
reverse [3], residual [8], intersection (∩) [2], top (universality) [53, 45], variable complements
(x) [38, 39], and combinations of some of them [4, 5]. Note that, whereas the class of regular
languages is closed under these operators, such extensions strictly enhance the expressive
power of KA w.r.t. languages (here, meaning regular expressions where each letter maps to
any language); see [38, 39] and Section 2.2 for complement.

In this paper, we study KA w.r.t. languages by extending the algebraic signature with
the language complement (_−). Extending with complement and considering its fragments
is a natural, comprehensive approach, e.g., in logic, formal language [10, 42], and relation

© Yoshiki Nakamura;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 37; pp. 37:1–37:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nakamura.yoshiki.ny@gmail.com
https://orcid.org/0000-0003-4106-0408
https://doi.org/10.4230/LIPIcs.CSL.2025.37
https://hal.science/hal-04455882
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Finite Relational Semantics for Language Kleene Algebra with Complement

algebra [50, 40] (see also [1, 6, 32, 43, 34]). The language complement1 in KA w.r.t. languages
significantly enhances the expressive power. For instance, we can define ⊤ and ∩ using
complement: ⊤ = 0− and t∩ s = (t−+ s−)−. Additionally, we can encode positive quantifier-
free formulas by equations of KA terms with complement (Remark 3.3 and Section A).

Our main contribution is to present a finite relational semantics for KA with complement
w.r.t. languages: relational subword models RSUB (Section 3). As KA with complement
has a high expressive power, our relational semantics can apply to a more broad class of
extensions of KA (including KA with ⊤ and ∩) than known relational semantics, e.g., REL
(for KA) [46, third page] and GREL (for KA with ⊤) [53, 45] (see Remark 3.5). A good point
of RSUB is its form; each model is finite and totally ordered (with minimal and maximal
vertices). For instance, the Π0

1 upper bound result of the equational theory of KA with
complement w.r.t. languages is immediate from the finiteness of RSUB. Another good point
is that we can naturally consider lifting techniques known in REL to LANG. For instance,
by using the techniques in [34] w.r.t. REL, we can show the following complexity results:
the equational theory w.r.t. languages is Π0

1-complete for KA with intersection and variable
complements (Theorem 4.12) and for KA with complement and without Kleene-star (i.e.,
star-free regular expressions w.r.t. LANG) (Theorem 4.15); and PSPACE-complete for KA
with variable and constant complements (Theorem 6.10). The PSPACE decidability result
above positively settles the open problem posed in [38, Sect. 7].

This paper is structured as follows. In Section 2, we give basic definitions, including
language models (LANG) and generalized relational models (GREL). In Section 3, we introduce
RSUB (a subclass of GREL) and show that the equational theory w.r.t. LANG coincides with
that w.r.t. RSUB. In Section 4, by using RSUB, we give a reduction from the quantifier-free
theory w.r.t. LANG into the equational theory w.r.t. LANG. Using this reduction, we show
that the equational theory w.r.t. LANG is Π0

1-complete for KA with complement (moreover,
for KA with intersection and variable complements and for KA with complement and without
Kleene-star). In Section 5, by using RSUB, we give a graph characterization for KA terms
with variable and constant complements. In Section 6, by using this characterization, we
show that the equational theory for KA terms with variable and constant complements is
PSPACE-complete. In Section 7, we conclude this paper.

2 Preliminaries

We write N for the set of non-negative integers. For l, r ∈ N, we write [l, r] for the set
{i ∈ N | l ≤ i ≤ r}. For a set X, we write ℘(X) for the power set of X.

For a set X (of letters), we write X∗ for the set of words over X. A language over X is a
subset of X∗. We use w, v to denote words and use L,K to denote languages, respectively.
We write ∥w∥ for the length of a word w. We write ε for the empty word. We write wv for
the concatenation of words w and v. For languages L,K ⊆ X∗, the concatenation L ;K and
the Kleene-star L∗ is defined by:

L ;K =∆ {wv | w ∈ L ∧ v ∈ K}, L∗ =∆
⋃
n≥0
{ε} ; L ; · · · ; L︸ ︷︷ ︸

n times

.

A (2-pointed) graph G over a set A is a tuple ⟨|G|, {aG}a∈A, 1G, 2G⟩, where |G| is a
non-empty set (of vertices), each aG ⊆ |G|2 is a binary relation, and 1G, 2G ∈ |G| are
vertices. Let G,H be graphs over a set A. For a map f : |G| → |H|, we say that f is a graph

1 KAT [29] is also an extension of KA with complement, but this complement is not the language
complement.

Y. Nakamura 37:3

homomorphism from G to H, written f : G −→ H, if for all x, y, and a, ⟨x, y⟩ ∈ aG implies
⟨f(x), f(y)⟩ ∈ aH , f(1G) = 1H , and f(2G) = 2H . We say that f is a graph isomorphism
from G to H if f is a bijective graph homomorphism and for all x, y, and a, ⟨x, y⟩ ∈ aG
iff ⟨f(x), f(y)⟩ ∈ aH . We say that H is a (canonical) edge-extension of G if |H| = |G| and
the identity map is a graph homomorphism from G to H. For a set {1G, 2G} ⊆ X ⊆ |G|,
the induced subgraph of G on X is the graph ⟨X, {aG ∩X2}a∈A, 1G, 2G⟩. For an equivalence
relation E on |G|, the quotient graph of G w.r.t. E is the graph G/E =∆ ⟨|G|/E, {⟨X,Y ⟩ |
∃x ∈ X, y ∈ Y, ⟨x, y⟩ ∈ aG}a∈A, [1G]E , [2G]E⟩ where X/E denotes the set of equivalence
classes of X by E and [x]E denotes the equivalence class of x. Additionally, we use the
following operation:

▶ Definition 2.1. For a graph homomorphism h : G −→ H where G, H are graphs over a set
A, the edge-saturation of G w.r.t. h is the graph S(h) =∆ ⟨|G|, {{⟨x, y⟩ ∈ |G|2 | ⟨h(x), h(y)⟩ ∈
aH}}a∈A, 1G, 2G⟩.

▶ Example 2.2. Let h : G −→ H be the graph homomorphism indicated by green colored
arrows (graphs are depicted as unlabeled graphs for simplicity). Then S(h) is the following
graph in the left-hand side, which is an edge-extension of G where the extended edges are
derived from edges of H:

S(h) = , G = H = .

2.1 Syntax: terms of KA with complement
We consider terms over the signature S =∆ {1(0), 0(0), ;(2),+(2),_∗(1),_

−
(1)}. Let V be a

countably infinite set of variables. For a term t over S, let t be s if t = s− for some s and be
t− otherwise. We use the abbreviations: ⊤ =∆ 0− and t ∩ s =∆ (t− + s−)−.

For X ⊆ {x, 1,⊤,∩,−}, let KAX be the minimal set A of terms over S satisfying:

y ∈ V
y ∈ A 1 ∈ A 0 ∈ A

t ∈ A s ∈ A
t ; s ∈ A

t ∈ A s ∈ A
t+ s ∈ A

t ∈ A
t∗ ∈ A

x ∈ X y ∈ V
y ∈ A

1 ∈ X
1 ∈ A

⊤ ∈ X
⊤ ∈ A

∩ ∈ X t ∈ A s ∈ A
t ∩ s ∈ A

− ∈ X t ∈ A
t− ∈ A

.

We often abbreviate t ; s to ts. We use parentheses in ambiguous situations (where + and ;
are left-associative). We write

∑n
i=1 ti for the term 0 + t1 + · · ·+ tn.

An equation t = s is a pair of terms. An inequation t ≤ s abbreviates the equation
t+ s = s. The set of quantifier-free formulas of KAX is defined by the following grammar:

φ,ψ ::= t = s | φ ∧ ψ | ¬φ. (t, s ∈ KAX)

We use the following abbreviations, as usual: φ ∨ ψ =∆ ¬(¬φ ∧ ¬ψ), φ → ψ =∆ ¬φ ∨ ψ,
φ ↔ ψ =∆ (φ → ψ) ∧ (ψ → φ), f =∆ ¬φ ∧ φ, and t =∆ ¬f. We use parentheses in ambiguous
situations (where ∨ and ∧ are left-associative). We write

∧n
i=1 φi for t ∧ φ1 ∧ · · · ∧ φn and∨n

i=1 φi for f ∨ φ1 ∨ · · · ∨ φn.
We say that a quantifier-free formula is positive if the formula in the following set A:

φ,ψ ∈ A ::= t = s | φ ∧ ψ | φ ∨ ψ (t, s ∈ KAX)

where φ ∨ ψ expresses ¬(¬φ ∧ ¬ψ) in the above. We say that a quantifier-free formula is a
Horn formula if the formula is of the form (

∧n
i=1 φi)→ ψ where n ≥ 0.

CSL 2025

37:4 Finite Relational Semantics for Language Kleene Algebra with Complement

2.2 Semantics: language models
An S-algebra A is a tuple ⟨|A|, {fA}f(k)∈S⟩, where |A| is a non-empty set and fA : |A|k → |A|
is a k-ary map for each f(k) ∈ S. A valuation v of an S-algebra A is a map v : V→ |A|. For a
valuation v, we write v̂ : KA{−} → |A| for the unique homomorphism extending v. Moreover,
for a quantifier-free formula φ, we define v̂(φ) ∈ {true, false} by:

v̂(t = s)⇔∆ (v̂(t) = v̂(s)), v̂(φ ∧ ψ)⇔∆ (v̂(φ) and v̂(ψ)), v̂(¬φ)⇔∆ (not v̂(φ)).

For a quantifier-free formula φ and a class of valuations (of S-algebra) C,2 we write

C |= φ ⇔∆ v̂(φ) holds for all valuations v ∈ C.

We abbreviate {v} |= φ to v |= φ. The equational theory w.r.t. C is the set of all equations
t = s such that C |= t = s. The quantifier-free theory w.r.t. C is the set of all quantifier-free
formulas φ such that C |= φ.

The language modelA over a set X, written langX , is the S-algebra defined by |A| = ℘(X∗),
1A = {ε}, 0A = ∅, and for all L,K ⊆ X∗,

L ;A K = L ;K, L+A K = L ∪K, L∗
A

= L∗, L−
A

= X∗ \ L.

We write LANGX for the class of all valuations of langX and write LANG for
⋃
X LANGX .

The equational theory (resp. quantifier-free theory) w.r.t. languages expresses that w.r.t.
LANG.

The language [t] ⊆ V∗ of a term t is v̂st(t) where vst is the standard language valuation
on the language model over the set V, which is defined by vst(x) = {x} for x ∈ V. Since
vst ∈ LANG, we have

LANG |= t = s ⇒ [t] = [s] (†)

The converse direction fails; e.g., when x ̸= y, we have [y] ⊆ [x] and LANG ̸|= y ≤ x, because
[y] = {y} ⊆ V∗ \ {x} = [x] and v̂(y) = {ε} ̸⊆ V∗ \ {ε} = v̂(x) where v is a valuation of langX
s.t. v(x) = v(y) = {ε}. See [38] for more counter-examples.

▶ Remark 2.3. For (non-extended) KA, the equational theory w.r.t. languages coincides with
the language equivalence [25, 2] (i.e., the converse direction of Equation (†) also holds). This
is an easy consequence of the completeness theorem of KA [25] (see also [38, Appendix A]
for a direct proof). From this, KA with complement (even with variable complements) has a
strictly more expressive power than KA.

In the sequel, we consider the equational theory w.r.t. languages.

2.3 (Generalized) relational models
We write △A for the identity relation on a set A: △A =∆ {⟨x, x⟩ | x ∈ A}. For binary relations
R,S on a set B, the composition R ; S, and the reflexive transitive closure R∗ are defined by:

R ; S =∆ {⟨x, z⟩ | ∃y, ⟨x, y⟩ ∈ R ∧ ⟨y, z⟩ ∈ S}, R∗ =∆
⋃
n≥0
△B ;R ; · · · ;R︸ ︷︷ ︸

n times

.

2 This paper considers classes of valuations rather than classes of S-algebras (cf. Theorem 3.6).

Y. Nakamura 37:5

Let U be a binary relation on a non-empty set B. A generalized relational model3 A on
U is an S-algebra such that |A| ⊆ ℘(U), 1A = △B , 0A = ∅, and for all R,S ⊆ U ,

R ;A S = R ; S, R+A S = R ∪ S, R∗
A

= R∗, R−
A

= U \R.

We say that A is a relational model if U = B2 and |A| = ℘(B2). We write GREL (resp. REL)
for the class of all valuations of generalized relational models (resp. relational models).4

Let A be a generalized relational model on a binary relation U on a set A. For a non-empty
subset B ⊆ A, the (induced) submodel A ↾ B of A w.r.t. B is the generalized relational
model on the binary relation U ∩B2 on the set B with the universe {R ∩B2 | R ∈ |A|}. We
say that a non-empty subset B ⊆ A is ⊤-closed if for all x, y, z ∈ A, if ⟨x, z⟩, ⟨z, y⟩ ∈ U and
x, y ∈ B, then z ∈ B. When B is ⊤-closed, it is easy to see that the map

κB : R 7→ R ∩B2

forms an S-homomorphism from A to A ↾ B (the condition is used for preserving ; and ∗).
Similarly, for a valuation v of A, let v ↾ B be the valuation of A ↾ B given by the map κB .

3 RSUB: finite relational models for language models

In this section, we define the class RSUB of relational subword models, for the equational
theory w.r.t. languages of KA{−}. RSUB is a subclass of finite generalized relational models
where the universe relation U is a total order.

▶ Definition 3.1. Let n ∈ N. The relational subword language model A of length n, written
rsubn, is the generalized relational model on the set U = {⟨i, j⟩ ∈ [0, n]2 | i ≤ j} s.t.

|A| = {R ∈ ℘(U) | R ⊇ △[0,n] ∨ U \R ⊇ △[0,n]}.

We write RSUBn for the class of all valuations of rsubn and write RSUB for
⋃
n≥0 RSUBn. ⌟

Each rsubn is based on the image of Pratt’s embedding (or called Cayley map) [46]5:

ιX : L 7→ {⟨w,wv⟩ | w ∈ X∗ ∧ v ∈ L}

where we restrict the universe X∗ of words into the subwords of a word of length n with
pairwise distinct letters (i.e., a subword of length i corresponds to the vertex i in rsubn).

Let rlangX be the generalized relational model on ιX(X∗) with the universe {ιX(L) | L ⊆
X∗}. It is easy to see that the map ιX forms an S-isomorphism from langX to rlangX . For a
word w, let Subw(w) be the set of subwords of w. By Definition 3.1, it is easily shown that

for a word w ∈ X∗ of length n, the generalized relational model rlangX ↾ Subw(w) is
isomorphic to a subalgebra of rsubn,
for a word w = a1 . . . an ∈ X where a1, . . . , an are pairwise distinct letters, the generalized
relational model rlangX ↾ Subw(w) is isomorphic to rsubn,

3 By definition, for each generalized relational model, U is a preorder: (Reflexivity): By △B = 1A ∈
|A| ⊆ ℘(U), we have △B ⊆ U ; (Transitivity): By ∅ = 0A ∈ |A|, U = ∅−A

∈ |A|, and U ; U = U ;A U ∈
|A| ⊆ ℘(U), we have U ; U ⊆ U .

4 Generalized relational models and relational models are variants of proper relation algebras and full
proper relation algebras (see, e.g., [22]), respectively, where B is non-empty set and the converse operator
is not introduced (due to this, U is possibly not symmetric, cf. [22, Lem. 3.4]) here.

5 This trick itself is already used to prove equivalences between relational and language models, e.g., for
KAT [29] and for KA{⊤} [53, 45].

CSL 2025

37:6 Finite Relational Semantics for Language Kleene Algebra with Complement

by the map

θ : R 7→ {⟨∥w∥, ∥v∥⟩ | ⟨w, v⟩ ∈ R}.

We then have that the equational theory w.r.t. languages coincides with that w.r.t. RSUB.

▶ Theorem 3.2. For all KA{−} terms t and s, we have: LANG |= t ≤ s⇔ RSUB |= t ≤ s.

Proof. (⇒): For each n ∈ N, by the surjective S-homomorphism given by:

langX
ιX−−→ rlangX

κSubw(a1...an)−−−−−−−−−→ rlangX ↾ Subw(a1 . . . an) θ−→ rsubn

where a1, . . . , an are any pairwise distinct letters and X = {a1, . . . , an}. (As Subw(a1 . . . an)
is ⊤-closed, κSubw(a1...an) is indeed an S-homomorphism.) (⇐): We prove the contraposition.
By LANG ̸|= t ≤ s, there are X, v ∈ LANGX , and w0 ∈ X∗ such that w0 ∈ v̂(t) \ v̂(s). We
then consider the S-homomorphism given by:

langX
ιX−−→ rlangX

κSubw(w0)−−−−−−→ rlangX ↾ Subw(w0) θ−→ rsub∥w0∥

Let v′, v′′, and v′′′ be the valuations of rlangX , rlangX ↾ Subw(w0), and rsubn, given by ιX ◦v,
κSubw(w0) ◦ v′, and θ ◦ v′′, respectively. We then have:

w0 ∈ v̂(t) \ v̂(s) ⇒ ⟨ε, w0⟩ ∈ v̂′(t) \ v̂′(s) (By w0 ∈ L iff ⟨ε, w0⟩ ∈ ιX(L))
⇒ ⟨ε, w0⟩ ∈ v̂′′(t) \ v̂′′(s) (By ε, w0 ∈ Subw(w0))
⇒ ⟨0, ∥w0∥⟩ ∈ v̂′′′(t) \ v̂′′′(s). (By ⟨ε, w0⟩ ∈ R iff ⟨0, ∥w0∥⟩ ∈ θ(R))

Hence, RSUB ̸|= t ≤ s. ◀

▶ Remark 3.3. By almost the same argument as Theorem 3.2, we can extend the coincidence
between LANG and RSUB from the equational theory to the positive quantifier-free theory
(see Section A for more details). However, this coincidence is broken (only LANG |= φ ⇐
RSUB |= φ holds) for the quantifier-free theory and even for Horn theory. For instance,
φ =∆ xx ≤ 0 → x ≤ 0 is a counter-example (LANG |= φ holds because, if w ∈ v̂(x), then
ww ∈ v̂(xx); however, RSUB1 ̸|= φ under the valuation x 7→ {⟨0, 1⟩}). ⌟

▶ Corollary 3.4. The equational theory w.r.t. languages is in Π0
1 for KA{−} terms.

Proof. By the finite model property of RSUB (the universe |rsubn| is finite for each n). ◀

Comparison to other semantics
▶ Remark 3.5 (RSUB and GREL). For KA{⊤}, the equational theory of LANG coincides with
that of GREL [45, REL′ in Sect. 5][53]. However for KA{−}, this coincidence is broken. For
instance, the following equations are valid w.r.t. LANG but not valid w.r.t. GREL (the first
equation is not valid also w.r.t. REL):

a ≤ bab+ bab a

a, b a, b

a | ab ∩ cd ≤ a⊤d+ c⊤b a,⊤ b,⊤
c,⊤ d,⊤

(Each figure expresses a valuation for (G)REL ̸|= _ where some edges are omitted.) Here,
LANG |= a ≤ bab+ bab is shown by distinguishing the cases based on LANG |= 1 ≤ b ∨ 1 ≤ b.
The inequation ab ∩ cd ≤ a⊤d+ c⊤b is Levi’s inequation [30][5, Example 26]. ⌟

Y. Nakamura 37:7

EqT(REL)

EqT(GREL)

EqT(RSUBst)

EqT(RSUB)

EqT({vst})

EqT(LANG)
⊇ ⊆

=

=

⊉⊆

⊉
⊈

a ≤ a⊤a [53, 45]

a ∩ b = 0 where a ̸= b
a = a a [38]

(ab) ∩ 1 = (a ∩ 1)(b ∩ 1) [2]
a ≤ bab + bab (Remark 3.5)

Figure 1 Equational theories for KA{−} under GREL.

Additionally, the standard language valuation can also be given as a subclass of RSUB
(cf. Theorem 3.2), based on the following correspondence between words and relations:

a1a2 . . . an | . . .a1 a2 an .

▶ Theorem 3.6. For all terms t and s, [t] = [s] iff RSUBst |= t = s where

RSUBst =∆
⋃
n≥0

{
v ∈ RSUBn

∣∣∣ ⋃
a∈V v(a) = {⟨i− 1, i⟩ | i ∈ [1, n]}

v(a) (where a ranges over V) are disjoint sets

}
.

Proof. By the same construction in the proof of Theorem 3.2, as RSUBst is the subclass of
RSUB obtained by restricting valuations to the standard language valuation {vst}. ◀

Figure 1 summarizes the equational theories above where the inclusions are shown by
REL ⊆ GREL ⊇ RSUB ⊇ RSUBst (and Theorem 3.2) and the non-inclusions are shown
by counter-examples. Additionally, note that EqT({vst}) = EqT(GREL) for KA [25] and
EqT(LANG) = EqT(GREL) for KA{⊤} [53, 45].

4 From quantifier-free formulas to equations

In this section, we show that there is a (polynomial-time) reduction from the quantifier-
free theory into the equational theory, w.r.t. RSUB. Slightly more generally, we show this
characterization for submodel-closed classes. We say that a class C ⊆ GREL is submodel-closed
if for all v ∈ C (on a binary relation U on a set A) and all non-empty subsets B ⊆ A, we
have (v ↾ B) ∈ C. By definition, RSUB is a submodel-closed class up to isomorphism. Also,
REL and GREL are submodel-closed. Additionally, for v ∈ GREL (on a binary relation U on
a set A), we say that a vertex x ∈ A is minimal on v if ⟨x, y⟩ ∈ v̂(⊤) for all y ∈ A and that
a vertex x ∈ A is maximal on v if ⟨y, x⟩ ∈ v̂(⊤) for all y ∈ A. In the following lemma, we
have that, to check whether a given equation is valid, it suffices to check for minimal and
maximal pairs of vertices.

▶ Lemma 4.1. Let C ⊆ GREL be submodel-closed. For all terms t, s, we have: C |= t ≤ s ⇔
∀v ∈ C, ∀l, r s.t. l is minimal and r is maximal on v, ⟨l, r⟩ ̸∈ v̂(t) \ v̂(s).

Proof. (⇒): Trivial. (⇐): We prove the contraposition. Let v ∈ C (on a binary relation
U on a set A), l, and r be s.t. ⟨l, r⟩ ∈ v̂(t) \ v̂(s). Let B =∆ {z ∈ A | ⟨l, z⟩, ⟨z, r⟩ ∈ U}. By
letting v′ =∆ v ↾ B, we have ⟨l, r⟩ ∈ v̂′(t) \ v̂′(s) (= (v̂(t) ∩ B2) \ (v̂(s) ∩ B2)). Hence, this
completes the proof. ◀

Next, using minimal vertex l and maximal vertex r, we consider replacing each inequation
u ≤ 0 with ⊤u⊤ ≤ 0, based on that v |= u ≤ 0 iff ⟨l, r⟩ ̸∈ v̂(⊤u⊤). More generally, for a
quantifier-free formula φ, let Tr(φ) be the KA{−} term defined by:6

6 Tr(t = s) can be simplified for specific cases, e.g., Tr(t ≤ s) = ⊤(t ∩ s−)⊤ and Tr(t ≤ 0) = ⊤t⊤.

CSL 2025

37:8 Finite Relational Semantics for Language Kleene Algebra with Complement

Tr(t = s) =∆ ⊤((t ∩ s−) + (t− ∩ s))⊤, Tr(φ ∧ ψ) =∆ Tr(φ) + Tr(ψ), Tr(¬φ) =∆ Tr(φ)−.

(For the case of t = s, we use the fact GREL |= t = s ↔ (t ∩ s−) + (t− ∩ s) ≤ 0.) We then
have the following.

▶ Lemma 4.2. Let v ∈ GREL, l be a minimal vertex on v, and r be a maximal vertex on v.
For all quantifier-free formulas φ (of KA{−} terms), we have:

v |= φ ⇔ ⟨l, r⟩ ̸∈ v̂(Tr(φ)).

Proof. By easy induction on φ. Case (t = s): Let u = (t ∩ s−) + (t− ∩ s). Then v |= t = s

iff v̂(u) = ∅ iff ⟨l, r⟩ ̸∈ v̂(⊤u⊤) iff ⟨l, r⟩ ̸∈ v̂(Tr(t = s)). Case ψ ∧ ρ: By (⟨l, r⟩ ̸∈ v̂(Tr(ψ))
and ⟨l, r⟩ ̸∈ v̂(Tr(ρ))) iff ⟨l, r⟩ ̸∈ v̂(Tr(ψ) + Tr(ρ)). Case ¬ψ: By (not ⟨l, r⟩ ̸∈ v̂(Tr(ψ))) iff
⟨l, r⟩ ̸∈ v̂(Tr(ψ)−). ◀

▶ Theorem 4.3. Let C ⊆ GREL be submodel-closed. For all quantifier-free formulas φ,

C |= φ ⇔ C |= Tr(φ) ≤ 0.

Proof. By Lemmas 4.1 and 4.2. ◀

By the reduction of Theorem 4.3, we have the following complexity results.

▶ Corollary 4.4. The quantifier-free theory w.r.t. RSUB for KA{−} terms is in Π0
1.

Proof. By Theorem 4.3 with Corollary 3.4. (The Π0
1-hardness will be derived from Theo-

rem 4.12.) ◀

▶ Corollary 4.5. The equational theory w.r.t. REL/GREL for KA{−} terms is Π1
1-complete.

Proof. (Π1
1-hard): By Theorem 4.3 with that the Horn theory of KA w.r.t. REL/GREL is

Π1
1-complete [20]. (In Π1

1): By the same argument as [20]. ◀

▶ Remark 4.6. In cotrast to Corollary 4.4, the authors do not know the complexity of the
quantifier-free theory (resp. Horn theory) w.r.t. LANG for KA/KA{−} terms, cf. the Horn
theory is Π1

1-complete for ∗-continuous KA [27] and for KA w.r.t. REL/GREL [20]. (E.g., in
the proof of [27], quotient models of the standard language valuation are used, but they are
not in LANG in general.) ⌟

Also, as a special case of Theorem 4.3, we have the following Hoare hypothesis elimination.

▶ Corollary 4.7 (Hoare hypothesis elimination). Let C ⊆ GREL be submodel-closed. For all
terms t, s, u, we have:

C |= u ≤ 0→ t ≤ s ⇔ C |= t ≤ s+⊤u⊤.

Proof. By Theorem 4.3 with easy inequations, we have:

C |= u ≤ 0→ t ≤ s ⇔ C |= ⊤(t ∩ s−)⊤ ≤ ⊤u⊤ (By Theorem 4.3)
⇔ C |= t ∩ s− ≤ ⊤u⊤ (⇒: By 1 ≤ ⊤ ⇐: By ⊤⊤ ≤ ⊤)
⇔ C |= t ≤ s+⊤u⊤. ◀

Y. Nakamura 37:9

▶ Remark 4.8. Theorem 4.3 and Corollary 4.7 fail w.r.t. LANG; for Corollary 4.7, for instance,
we have:

LANG |= xx ≤ 0→ x ≤ 0, LANG ̸|= x ≤ ⊤xx⊤.

Hence, to use Hoare hypothesis elimination, it is essential to use RSUB instead of LANG. ⌟

▶ Remark 4.9. When C = REL, we have C |= φ ↔ Tr(φ) ≤ 0 (cf. Theorem 4.3) and
C |= (u ≤ 0 → t ≤ s) ↔ (t ≤ s + ⊤u⊤) (cf. Corollary 4.7) by the Schröder-Tarski
translation [50, XXXII.][19, p. 390, 391]. However, they fail in general when C is RSUB
or GREL. For instance, when C = RSUB, t = ⊤, s = 0, and u = x, the second above is
equivalent to “RSUB ̸|= (¬x ≤ 0) ↔ ⊤ ≤ ⊤x⊤”, but this fails; when v ∈ RSUB1 satisfies
v(x) = {⟨0, 1⟩}, we have v̂(⊤) = {⟨0, 0⟩, ⟨0, 1⟩, ⟨1, 1⟩} but v̂(⊤x⊤) = {⟨0, 1⟩}. This is why we
go via “⟨l, r⟩ ̸∈ v̂(_)”. ⌟

▶ Remark 4.10. We say that a class C ⊆ GREL is ⊤-submodel-closed if, for all v ∈ C (on a
binary relation U on a set A) and all ⊤-closed non-empty subsets B ⊆ A, we have (v ↾ B) ∈ C.
By definition, if C is submodel-closed, thne C is ⊤-submodel-closed. Lemma 4.1, Theorem 4.3,
and Corollary 4.7 can be straight-forwardly generalized for ⊤-submodel-closed classes. ⌟

4.1 Undecidability via Hoare hypothesis elimination
Using Hoare hypothesis elimination w.r.t. RSUB (Corollary 4.7) (see also Remark 4.8), we
show the undecidability of the equational theory w.r.t. LANG. The proof can be obtained by
the same argument as [34, Lem. 47] by replacing REL with RSUB.

A context-free grammar (CFG) C over a finite set A is a tuple ⟨X,R, s⟩, where
X is a finite set of non-terminal labels s.t. A ∩X = ∅,
R is a finite set of rewriting rules x← w of x ∈ X and w ∈ (A ∪X)∗,
s ∈ X is the start label.

The relation x ⊢C w, where x ∈ X and w ∈ A∗, is defined as the minimal relation closed
under the following rule: for all n ∈ N, x, x1, . . . , xn ∈ X and w0, . . . , wn, v1, . . . , vn ∈ A∗, if
x← w0x1w1 . . . xnwn ∈ R, then

x1 ⊢C v1 . . . xn ⊢C vn
x ⊢C w0v1w1 . . . vnwn

. The language [C] is defined by

[C] =∆ {w ∈ A∗ | s ⊢C w}. It is well-known that the universality problem for CFGs – given a
CFG C, does [C] = A∗ hold? – is Π0

1-complete. We can naturally encode this problem by the
quantifier-free theory w.r.t. RSUB as follows.

▶ Lemma 4.11. Let C = ⟨X,R, s⟩ be a CFG over a finite set A = {a1, . . . , an}. Then,

[C] = A∗ ⇔ RSUB |= (
∧

(x←w)∈R

w ≤ x)→ ((
n∑
i=1

ai)∗ ≤ s).

Proof. By [34, Lem. 47] with replacing REL with RSUB, because the valuations used in the
proof are of the form of RSUB and the operators ⊤ and _− do not occur in the formula.
(See a full version [35] for an explicit proof.) ◀

▶ Theorem 4.12. The equational theory w.r.t. languages is Π0
1-complete for KA{x,∩}.

Proof. (in Π0
1): By Corollary 3.4. (Π0

1-hard): Let C = ⟨X, {xi ← wi | i ∈ [1,m]}, s⟩ be a
CFG over a finite set A = {a1, . . . , an}. Based on (

∧m
i=1 wi ≤ xi)↔ (

∑m
i=1 wi ∩ xi ≤ 0), by

applying the Hoare hypothesis elimination (Corollary 4.7) to Lemma 4.11, we have: [C] = A∗

iff RSUB |= (
∑n
i=1 ai)∗ ≤ s + ⊤(

∑m
i=1 wi ∩ xi)⊤. Thus, we can give a reduction from the

universality problem of CFGs. ◀

CSL 2025

37:10 Finite Relational Semantics for Language Kleene Algebra with Complement

Moreover, by the following fact, we can eliminate Kleene-star from Lemma 4.11.

▶ Proposition 4.13. RSUB |= 1 = x⊤ → x∗ = ⊤.

Proof. Let n ∈ N and v ∈ RSUBn. Let i ∈ [1, n] be arbitrary. By ⟨i−1, i−1⟩ ̸∈ v̂(1) = v̂(x⊤),
we have ⟨i − 1, i − 1⟩ ̸∈ v̂(x). By ⟨i − 1, i⟩ ∈ v̂(1) = v̂(x⊤), we have ⟨i − 1, i⟩ ∈ v̂(x) (by
⟨i− 1, i− 1⟩ ̸∈ v̂(x)). Thus, we have v̂(x∗) = {⟨i, j⟩ | 0 ≤ i ≤ j ≤ n} = v̂(⊤). ◀

▶ Lemma 4.14. Let C = ⟨X,R, s⟩ be a CFG over a finite set A = {a1, . . . , an}. Then,

[C] = A∗ ⇔ RSUB |= (1 = (
n∑
i=1

ai)⊤ ∧
∧

(x←w)∈R

w ≤ x)→ (⊤ ≤ s).

Proof Sketch. By the same argument as Lemma 4.11 with replacing (
∑n
i=1 ai)∗ with ⊤

using Proposition 4.13 (see [35], for a detail). ◀

Hence, the undecidability above still holds even without Kleene-star.

▶ Theorem 4.15. The equational theory w.r.t. languages is Π0
1-complete for KA{−} without

Kleene-star.

Proof. By the same way as Theorem 4.12 using Lemma 4.14 instead of with Lemma 4.11. ◀

▶ Remark 4.16. Theorem 4.15 is close to Trakhtenbrot’s theorem [52] in first-order logic. By
a similar Kleene-star elimination via an encoding of connectivity in finite models [15, p. 30],
we can also give a reduction from the universality problem of CFGs into the theory of the
finite validity problem of first-order logic (resp. the calculus of relations). (See [35], for a
detail.) ⌟

5 Graph characterization for KA{x,1,⊤,∩} terms

In Sections 5 and 6, we show that the equational theory w.r.t. languages for KA{x̄,1̄,⊤} is
decidable and PSPACE-complete. We recall Section 2 for graphs. In this section, we give a
graph characterization of the equational theory of RSUB for KA{x,1,⊤,∩}, by generalizing the
graph characterization of REL [34, Thm. 18] (and also [1, 6, 7]). Slightly more generally, we
show this characterization for submodel-closed classes (Section 4).

5.1 Graph languages for KA{x,1,⊤,∩}

Let Ṽ =∆ {x, x | x ∈ V} ∪ {1,⊤} and Ṽ1 =∆ Ṽ ∪ {1}. For a KA{x,1,⊤,∩} term t, the graph
language G(t) [1, 7, 34] is a set of graphs over Ṽ1 defined by:7

G(x) =∆ { x } where x ∈ Ṽ, G(0) =∆ ∅, G(1) =∆ { },
G(t ∩ s) =∆ { G

H
| G ∈ G(t) ∧H ∈ G(s)}, G(t+ s) =∆ G(t) ∪ G(s),

G(t ; s) =∆ { G H | G ∈ G(t) ∧H ∈ G(s)}, G(t∗) =∆
⋃
n≥0
G(tn).

For a valuation v ∈ GREL on a binary relation on a set B and ⟨x, y⟩ ∈ v̂(⊤), let G(v, x, y)
be the graph defined by: G(v, x, y) =∆ ⟨B, {v̂(a)}a∈Ṽ1

, x, y⟩. For a class C ⊆ GREL, let GRC

7 We introduce ⊤-labeled edges, cf. [34, Def. 6], because ⊤ is not fixed to the full relation.

Y. Nakamura 37:11

be the graph language {G(v, x, y) | v ∈ C and ⟨x, y⟩ ∈ v̂(⊤)}. Note that if C ⊆ GREL is
submodel-closed, then GRC is induced subgraph-closed (i.e., every induced subgraph of every
G ∈ G is isomorphic to a member of G).

We recall edge-saturations S(h) of Definition 2.1. For a graph G and graph language G,
let

SC(G) =∆ {S(h) | ∃H ∈ GRC , h : G −→ H}, SC(G) =∆
⋃
H∈G
SC(H).

▶ Example 5.1. The following is an instance of SRSUB(G) where V = {a}:

SRSUB(a a) =

a, 1 a, 1

a a a

1

, a, 1 a, 1
a a a

1

,

a, 1
a, 1

a, 1
a a a

1

, a, 1 a, 1
a, 1

a a a

1

.

(Here, gray-colored edges are the edges extended by edge-saturations SRSUB. We omit
unimportant edges.)

For instance, the below right graph above can be obtained from the following map:

a a a, 1,⊤
a, 1,⊤ a, 1,⊤

.

Note that, for instance, SRSUB(a a) does not contain graphs of the forms

a, 1
1

a, 1
1

1
nor a, 1 a, 1

1
because we cannot make a graph homo-

morphism into graphs of RSUB. ⌟

By the form of GRRSUB, each graph H ∈ SRSUB(_) satisfies the following:
⊤H is a total preorder (possibly not a total order);
aH ⊇ 1H or aH ⊇ 1H holds for each a ∈ V.

Let HQ =∆ H/(1H)= and GQ =∆ {HQ | H ∈ G} where R= denotes the equivalence closure
of R. We then have the following graph language characterization, which is an analog of [34,
Thm. 18], but is slightly generalized for including RSUB (see [35], for an explicit proof).

▶ Theorem 5.2. Let C ⊆ GREL be submodel-closed. For all KA{x,1,⊤,∩} terms t, s,

C |= t ≤ s ⇔ ∀H ∈ SC(G(t))Q, ∃G ∈ G(s), G −→ H.

▶ Example 5.3. (We recall the inequations in Remark 3.5.) Here are examples to show
KA{x,1,⊤,∩} equations on RSUB using Theorem 5.2. (Gray-colored edges are the edges
extended by edge-saturations SRSUB. We omit unimportant edges.)

LANG |= a ≤ bab+ bab: This equation is shown by the following graph homomorphisms:
G(bab + bab) = { b a b , b a b }

SRSUB(G(a))Q ∋ H : a

b b

a

b b

(Case bH ⊇ 1H) (Case bH ⊇ 1H)

CSL 2025

37:12 Finite Relational Semantics for Language Kleene Algebra with Complement

LANG |= ab ∩ cd ≤ a⊤d+ c⊤b: For each graph H ∈ SRSUB(G(ab ∩ cd))Q, we can give a
graph homomorphism from some graph in G(a⊤d+ c⊤b) as follows:

G(a⊤d + c⊤b) = { a ⊤ d , c ⊤ b }

SRSUB(G(ab ∩ cd))Q ∋ H :
x

y

a b

c d
⊤

x

y

a b

c d
⊤

(Case ⟨ x , y ⟩ ∈ ⊤H) (Case ⟨ x , y ⟩ ∈ ⊤H)

Additionally, note that _Q is necessary in general, e.g., for ⊤ ≤ 1 + 1 [34, Remark 19]. ⌟

▶ Remark 5.4. Theorem 5.2 fails when C is not submodel-closed. E.g., if C consists of the one
valuation given by a

b b , t = a, and s = bb, then C |= t ≤ s holds but the right-hand
side does not hold. ⌟

5.2 Word languages for KA{x,1,⊤}

Particularly for KA{x,1,⊤}, Theorem 5.2 can be rephrased by word languages.
For a word w = a1 . . . an over Ṽ, let G(w) be the following graph where |G(w)| = [0, n]:

0 1 2 . . . na1 a2 an .

G(w) is the unique graph in G(w) up to graph isomorphisms.
For a KA{x,1,⊤} term t, we write [t]Ṽ for the word language [t] over Ṽ (namely, x, 1,

and ⊤ are also viewed as letters); e.g., [a]Ṽ = {a} and [a] = V∗ \ {a} for a ∈ V. Note that
G(t) = {G(w) | w ∈ [t]Ṽ}; thus, for KA{x,1,⊤} terms, graph languages are expressible by
using word languages.

Additionally, we introduce nondeterministic finite word automata with epsilon transitions
(NFAs). NFAs are (2-pointed) graphs over Ṽ1 where the source and target vertices denote
the initial and (single) accepting states, respectively, and 1-labeled edges denote epsilon
transitions. For a graph H and a word w = a1 . . . an, we write δHw for the binary relation
(1H)∗ ;aH1 ; (1H)∗ ; . . . ;aHn ; (1H)∗. For q ∈ |H|, we let δHw (q) =∆ {q′ | ⟨q, q′⟩ ∈ δHw }. For Q ⊆ |H|,
we let δHw (Q) =∆

⋃
q∈Q δ

H
w (q). The word language [H]Ṽ is defined as {w ∈ Ṽ∗ | ⟨1H , 2H⟩ ∈ δHw }.

Note that [H]Ṽ = {w ∈ Ṽ∗ | G(w) −→ HQ} if 1H is an equivalence relation. We then have
the following, which a rephrasing of Theorem 5.2 (see Section B for an explicit proof). This
shows that RSUB |= t ≤ s is equivalent to that every NFA obtained from a word w of t by
an edge-saturation w.r.t. RSUB has an intersection with [s]Ṽ.

▶ Corollary 5.5. Let C ⊆ GREL be submodel-closed. For all KA{x,1,⊤} terms t and s,

C |= t ≤ s ⇔ [t]Ṽ ⊆ {w ∈ Ṽ∗ | ∀H ∈ SC(G(w)), [s]Ṽ ∩ [H]Ṽ ̸= ∅}.

▶ Example 5.6. Here are examples to show KA{x,1,⊤} equations on RSUB using Corollary 5.5.
LANG |= a ≤ bab+bab (the first example in Example 5.3): For all NFAs H ∈ SRSUB(G(a)),

we have [bab+ bab]Ṽ ∩ [H]Ṽ ∋
{
bab (bH ⊇ 1H)
bab (bH ⊇ 1H)

by the following paths:

a

b b

| a

b b

(Case bH ⊇ 1H) (Case bH ⊇ 1H)

LANG |= a ≤ 1 + aa [34, (3)]: For all NFAs H ∈ SRSUB(G(a)), we have [1 + aa]Ṽ ∩ [H]Ṽ ∋{
1 (1H = ∆|H|)
aa (1H = ⊤H)

by the following paths:

Y. Nakamura 37:13

a

1
| a

1

(Case 1H = ∆|H|) (Case 1H = ⊤H)

LANG |= 1aa1 ≤ 1aa1 [39]: For all NFAs H ∈ SRSUB(G(1aa1)), we have [1aa1]Ṽ ∩ [H]Ṽ ∋
1aa1 in either aH ⊇ 1H or aH ⊇ 1H by the following paths:

1 a a 1
1

a

| 1 a a 1
1 a

(Case aH ⊇ 1H) (Case aH ⊇ 1H)

Next, we use the NFA characterization of Corollary 5.5 for an automata construction.

6 PSPACE decidability for KA{x,1,⊤} terms

In this section, based on the graph characterization (Section 5), we present an NFA construc-
tion for deciding the equational theory for KA{x,1,⊤} terms. Here, we will use NFAs (graphs
over Ṽ1) instead of KA{x̄,1̄,⊤} terms (regular expressions over the alphabet Ṽ). To be more
precise, relying on the graph characterization (Corollary 5.5), we consider the following:
given an NFA J (having the same language as the term s in Corollary 5.5), we construct an
NFA recognizing the following word language:

LJ =∆ {w ∈ Ṽ∗ | ∃H ∈ SRSUB(G(w)), [J]Ṽ ∩ [H]Ṽ = ∅}.

Note that RSUB |= t ≤ s⇔ [t]Ṽ ∩ LJ = ∅ when [s]Ṽ = [J]Ṽ. We first present an equivalent
notion of “w ∈ LJ” in Section 6.1, and then we give an NFA construction in Section 6.2. Our
approach in this section is based on [34] where we consider RSUB instead of REL.

6.1 Saturable paths for RSUB
We first give an equivalent notion of [J]Ṽ ∩ [H]Ṽ = ∅ in the definition of LJ .

▶ Definition 6.1. Let J and H be NFAs. A map U : |H| → ℘(|J |) is an emptiness-witness
for [J]Ṽ ∩ [H]Ṽ = ∅ if the following hold where Ux =∆ U(x):

1J ∈ U1H and ∀a ∈ Ṽ1, ∀⟨x, y⟩ ∈ aH , δJa (Ux) ⊆ Uy,
2J ̸∈ U2H . ⌟

Intuitively, the first condition denotes that U is a cover of the reachable states from the pair
“1J ∈ U1H ”. If the second condition holds, we can see that the pair “2J ∈ U2H ” is unreachable.
As expected, we have the following (see Section C, for a proof).

▶ Proposition 6.2. Let J and H be NFAs where 1H is reflexive. Then, we have:

[J]Ṽ∩[H]Ṽ = ∅ ⇔ ∃U : |H| → ℘(|J |), U is an emptiness-witness for [J]Ṽ ∩ [H]Ṽ = ∅.

▶ Example 6.3. We consider the following NFAs J and H . The NFA J satisfies [J]Ṽ = {w ∈
{a, a}∗ | ∃n ∈ N, a occurs 3n+ 2 times in w} and the NFA H is a graph in SRSUB(G(aaa)),
where ⊤- or 1-labeled edges are omitted, and gray-colored edges are the edges edge-saturated
from the graph G(aaa). From the form of H, one can see that [J]Ṽ ∩ [H]Ṽ = ∅.

J = x

y

z

a

a
a

a

a

a

H = 0 1 2 3

a, 1 a, 1 a, 1 a, 1

a a a, 1
a, 1

a
a

a

U0 U1 U2 U3

.

CSL 2025

37:14 Finite Relational Semantics for Language Kleene Algebra with Complement

If U0 = U1 = { x } and U2 = U3 = { y }, then this U is an emptiness-witness; e.g., for
⟨1, 2⟩ ∈ aH , δJa (U1) = { y } ⊆ U2. By the witnesses, we have [J]Ṽ ∩ [H]Ṽ = ∅. Besides this,
if U0 = U1 = { x } and U2 = U3 = { x , y }, then this U is also an emptiness-witness; so, U
may not coincide with the reachable states from the pair “1J ∈ U1H ”. ⌟

Next, we give an equivalent notion of “w ∈ LJ”, by forgetting saturated edges (gray-colored
edges in Example 6.3) using “U” of Proposition 6.2.

▶ Definition 6.4. Let J be a NFA and w be a word. A pair P = ⟨H,U⟩ is a saturable path
for w ∈ LJ if the following hold:
(P-Ext) H is an edge-extension8 of G(w) such that

⊤H is a total preorder and ⊤H ⊇ {⟨i− 1, i⟩ | i ∈ [1, n]} where w = a1 . . . an,
1H = ⊤H ∩ {⟨j, i⟩ | ⟨i, j⟩ ∈ ⊤H} and 1H = ⊤H \ 1H ,
∀a ∈ V, ⟨aH , aH⟩ is either ⟨aG(w) ∪ 1H , aG(w)⟩ or ⟨aG(w), aG(w) ∪ 1H⟩.

(P-Con) H is consistent: ∀a ∈ V, aHQ ∩ aH
Q = ∅.

(P-Wit) U : |H| → ℘(|J |) is an emptiness-witness for [J]Ṽ ∩ [H]Ṽ = ∅.
(P-Sat) H is saturable: ∀a ∈ V, ∀⟨i, j⟩ ∈ 1H , δJa (Ui) ⊆ Uj or δJa (Ui) ⊆ Uj. ⌟

Then, as expected, the existence of saturable path can characterize “w ∈ LJ”.

▶ Lemma 6.5 (Section D). Let J be a NFA and w be a word. Then,

w ∈ LJ ⇔ there is a saturable path for w ∈ LJ .

▶ Example 6.6. We recall the NFAs J and H ∈ SRSUB(G(aaa)) in Example 6.3. The
following P is a saturable path for aaa ∈ LJ where ⊤- or 1-labeled edges are omitted:

P =

 0 1 2 3

a, 1 a, 1 a, 1 a, 1

a a a, 1
a, 1{

x
} {

x
} {

x , y
} {

x , y
}

.

(P is of the form of a path graph by taking the quotient graph w.r.t. 1-labeled edges.) P is an
abstraction of edge-saturated graphs. From P , we can construct a graph H ∈ SRSUB(G(aaa))
s.t. [J]Ṽ ∩ [H]Ṽ = ∅. Because both δJa ({ x }) ⊆ { x , y } and δJa ({ x }) ⊆ { x , y } hold,
in addition to the graph H in Example 6.3, for instance, the following are also possible
edge-saturated graphs:

0 1 2 3

a, 1 a, 1 a, 1 a, 1

a a a, 1
a, 1

a
a

a
0 1 2 3

a, 1 a, 1 a, 1 a, 1

a a a, 1
a, 1

a
a

a

. ⌟

By using saturable paths, we can replace the existence of such gray-colored edges connecting
distant vertices with a “locally” defined witness U . This rephrasing will be useful for our
automata construction.

To give an NFA construction, let

φJ(U , U) =∆ ∀a ∈ V, ∀⟨u, u′⟩ ∈ U , δJa (u) ⊆ U ∨ δJa (u′) ⊆ U

and we also replace (P-Sat) with a “local” condition.

8 In this definition, ⊤H -, 1H -, and 1H -edges are edge-saturated and a- and a-edges in 1H (for a ∈ V) are
also edge-saturated. This is for preserving (P-Con) easily.

Y. Nakamura 37:15

▶ Proposition 6.7. Let J and H be graphs. Let i ∈ |H|. Then we have:

(∀a ∈ V, ∀j s.t. ⟨j, i⟩ ∈ 1H , δJa (Uj) ⊆ Ui ∨ δJa (Uj) ⊆ Ui) ⇔ φJ(
⋃

j;⟨j,i⟩∈1H

U2
j , Ui).

Proof. For each i, j, we have: (∀a ∈ V, δJa (Uj) ⊆ Ui ∨ δJa (Uj) ⊆ Ui) iff (∀a ∈ V, (∀u ∈
Uj , δ

J
a (u) ⊆ Ui)∨ (∀u′ ∈ Uj , δJa (u′) ⊆ Ui)) iff φJ (U2

j , Ui) (by taking the prenex normal form).
By (∀j s.t. ⟨j, i⟩ ∈ 1H , φJ(U2

j , Ui)) iff φJ(
⋃
j;⟨j,i⟩∈1H U2

j , Ui), this completes the proof. ◀

6.2 Automata from saturable paths
Let X =∆ {X ∈ ℘(Ṽ1) | 1,⊤ ∈ X, 1 ̸∈ X, and ∀x ∈ V, x ∈ X ↔ x ̸∈ X}. (This set is
equivalent to the set {{x ∈ Ṽ1 | 1H ⊆ xH} | H ∈ GRRSUB}.)

▶ Definition 6.8 (NFA construction). Let ▶ and ◀ be two fresh symbols. For a graph J and
a set X ∈ X , let JSX be the graph G defined as follows:
|G| =∆ {▶,◀}∪Q where Q =∆ {⟨U , U⟩ ∈ ℘(|J |2)×℘(|J |) | φJ (U , U)∧∀x ∈ X, δJx (U) ⊆ U},
1G =∆ ({▶} × {⟨U , U⟩ ∈ Q | 1J ∈ U ∧ U = ∅}) ∪ ({⟨U , U⟩ ∈ Q | 2J ̸∈ U} × {◀}),
xG =∆ {⟨⟨U , U⟩, ⟨U ′, U ′⟩⟩ ∈ Q2 | ψX

x,1(U , U,U ′, U ′) ∨ ψXx,1(U , U,U ′, U ′)} for x ∈ Ṽ,
1G =∆ ▶,
2G =∆ ◀.

Here, ψX
x,1(U , U,U ′, U ′) and ψXx,1(U , U,U ′, U ′) are defined as follows:

ψX
x,1(U , U,U ′, U ′) ⇔∆

U ′ = U ∪ U2 ∧
∧

δJx (U) ⊆ U ′,
δJ⊤({u | ⟨u, u⟩ ∈ U ′}) ⊆ U ′,
δJ1 ({u | ⟨u, u⟩ ∈ U ′}) ⊆ U ′

,

ψXx,1(U , U,U ′, U ′) ⇔∆ (U ′ = U ∧ U ′ = U ∧ x ∈ X). ⌟

By the form of JSX , if a1 . . . an ∈ [JSX]Ṽ, then its run is of the following form:

▶ ⟨U0, U0⟩ ⟨U1, U1⟩ ⟨U2, U2⟩ ⟨Un, Un⟩ ◀1 a1 a2 . . . an 1 .

Intuitively, this run corresponds to the following saturable path where some ⊤-, 1-, or
1-labeled edges are omitted and

X
denotes x-labeled edges for x ∈ X:{

1 (if ¬ψX

ai,1
(Ui−1, Ui−1,Ui, Ui))

1 (otherwise)X X X X X X

a1 a2 . . . ai . . . an

U0 U1 U2 Ui−1 Ui Un

.

Here, Ui is used to denote the set
⋃
j;⟨j,i⟩∈1H U2

j (cf. Proposition 6.7) where H is the graph

of the saturable path above. Additionally, we have ψX
ai,1

(Ui−1, Ui−1,Ui, Ui) if ⟨i− 1, i⟩ ∈ 1H

and we have ψXai,1(Ui−1, Ui−1,Ui, Ui) if ⟨i − 1, i⟩ ∈ 1H by construction. Based on this
correspondence, from a word w ∈

⋃
X∈X [JSX]Ṽ, we can construct a saturable path for

w ∈ LJ , and conversely, from a saturable path for w ∈ LJ , we can show w ∈
⋃
X∈X [JSX]Ṽ

(see Section E, for details). Thus we have the following.

▶ Lemma 6.9 (Section E). Let J be a graph. Then we have LJ =
⋃
X∈X [JSX]Ṽ.

▶ Theorem 6.10. The equational theory w.r.t. languages for KA{x,1,⊤} is PSPACE-complete.

CSL 2025

37:16 Finite Relational Semantics for Language Kleene Algebra with Complement

Table 1 Summary of our complexity results for equational theories w.r.t. languages, with
comparison to other semantics.

KA KA{x} KA{1} KA{x,1} KA{∩}

LANG PSPACE-c [25] PSPACE-c (Theorem 6.10) EXPSPACE-c [4]
RSUB
{vst} PSPACE-c [31] EXPSPACE-c [18]
REL PSPACE-c [25] PSPACE-c [34] in coNEXP [34] EXPSPACE-c [6, 7, 32, 37]

KA{1,∩} KA{x,∩} KA{x,1,∩} KA{−}

LANG Π0
1-c (Theorem 4.12 and Corollary 3.4)

RSUB
(open)

{vst} EXPSPACE-c [18] TOWER-c [49, 47]
REL Π0

1-c [36] Π0
1-c [34] Π1

1-c [20] (Corollary 4.5)

Proof. (in PSPACE): Let t and s be KA{x,1,⊤} terms. Let G and J be NFAs s.t. [G]Ṽ = [t]Ṽ
and [J]Ṽ = [s]Ṽ. By Corollary 5.5 and Lemma 6.9, we have: RSUB |= t ≤ s⇔ [G]Ṽ ∩ LJ =
∅ ⇔ [G]Ṽ∩(

⋃
X∈X [JSX]Ṽ) = ∅. Thus we can reduce the equational theory into the emptiness

problem of NFAs of size exponential to the size of the input inequation, where we use the
union construction for ∪ and the product construction for ∩ in NFAs. In this reduction,
using a standard on-the-fly algorithm for the non-emptiness problem of NFAs (essentially the
graph reachability problem), we can give a non-deterministic polynomial space algorithm.
(Note that the membership of “a ∈ |JSX |” and “⟨a, b⟩ ∈ xJSX ” for each x ∈ Ṽ1 can be easily
determined in polynomial space; so, we can construct such an on-the-fly algorithm indeed.)
(Hardness): The equational theory of KA w.r.t. languages coincides with the language
equivalence problem of regular expressions (Remark 2.3), which is PSPACE-complete [31].
Hence, the equational theory of KA{x,1,⊤} is PSPACE-hard. ◀

▶ Remark 6.11. W.r.t. REL, it is open the complexity of the equational theory for KA{x,1,⊤}
[34, Remark 45]. W.r.t. RSUB, each equivalence class induced from 1-labeled edges is always
an interval; so, the problematic case of [34, Remark 45] (w.r.t. REL) does not appear in
Theorem 6.10 (w.r.t. RSUB). ⌟

7 Conclusion and Future directions

We have introduced RSUB for the equational theory w.r.t. languages for KA{−} terms. Using
RSUB, we have shown some complexity results for the equational theory w.r.t. languages
for fragments of KA{−} terms (Table 1). We leave open the decidability and complexity
of the equational theory w.r.t. languages for KA{1,∩} (cf. Remark 6.11). A natural interest
is to consider variants or fragments of KA{−}, e.g., with reverse [3], with tests [29] (by
considering guarded strings) or with (anti-)domain [13]. It would also be interesting to
consider the combination of variables and letters (cf. Theorems 3.2 and 3.6) in the context of
language/string constraints.

Additionally, to separate the expressive power w.r.t. languages, it would also be interesting
to consider games like Ehrenfeucht-Fraïssé games [16, 17] on RSUB, cf., e.g., on REL for the
calculus of relations [33] and on languages for star-free expressions [51].

Y. Nakamura 37:17

References
1 Hajnal Andréka and D. A. Bredikhin. The equational theory of union-free algebras of relations.

Algebra Universalis, 33(4):516–532, 1995. doi:10.1007/BF01225472.
2 Hajnal Andréka, Szabolcs Mikulás, and István Németi. The equational theory of Kleene lattices.

Theoretical Computer Science, 412(52):7099–7108, 2011. doi:10.1016/J.TCS.2011.09.024.
3 S. L. Bloom, Z. Ésik, and Gh. Stefanescu. Notes on equational theories of relations. algebra

universalis, 33(1):98–126, 1995. doi:10.1007/BF01190768.
4 Paul Brunet. Reversible Kleene lattices. In MFCS, volume 83 of LIPIcs, pages 66:1–66:14.

Schloss Dagstuhl, 2017. doi:10.4230/LIPICS.MFCS.2017.66.
5 Paul Brunet. A complete axiomatisation of a fragment of language algebra. In CSL, volume

152 of LIPIcs, pages 11:1–11:15. Schloss Dagstuhl, 2020. doi:10.4230/LIPIcs.CSL.2020.11.
6 Paul Brunet and Damien Pous. Petri automata for Kleene allegories. In LICS, pages 68–79.

IEEE, 2015. doi:10.1109/LICS.2015.17.
7 Paul Brunet and Damien Pous. Petri automata. Logical Methods in Computer Science, 13(3),

2017. doi:10.23638/LMCS-13(3:33)2017.
8 Wojciech Buszkowski. On the complexity of the equational theory of relational action algebras.

In RAMICS, volume 4136 of LNTCS, pages 106–119. Springer, 2006. doi:10.1007/11828563_7.
9 Ernie Cohen. Hypotheses in Kleene algebra. Unpublished manuscript, 1994.

10 Rina S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. Journal of Computer and
System Sciences, 5(1):1–16, 1971. doi:10.1016/S0022-0000(71)80003-X.

11 John H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.
12 Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. A graphical query language

supporting recursion. ACM SIGMOD Record, 16(3):323–330, 1987. doi:10.1145/38714.38749.
13 Jules Desharnais, Bernhard Möller, and Georg Struth. Kleene algebra with domain. ACM

Transactions on Computational Logic, 7(4):798–833, 2006. doi:10.1145/1183278.1183285.
14 Amina Doumane, Denis Kuperberg, Damien Pous, and Pierre Pradic. Kleene algebra with

hypotheses. In FoSSaCS, volume 11425 of LNTCS, pages 207–223. Springer, 2019. doi:
10.1007/978-3-030-17127-8_12.

15 Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Springer, 1995. doi:10.1007/
3-540-28788-4.

16 Andrzej Ehrenfeucht. An application of games to the completeness problem for formalized
theories. Fundamenta Mathematicae, 49(2):129–141, 1961. doi:10.4064/fm-49-2-129-141.

17 Roland Fraïssé. Sur les classifications des systems de relations. Publ. Sci. Univ. Alger I., 1954.
18 Martin Fürer. The complexity of the inequivalence problem for regular expressions with

intersection. In ICALP, volume 85 of LNCS, pages 234–245. Springer, 1980. doi:10.1007/
3-540-10003-2_74.

19 Steven Givant. The calculus of relations. In Introduction to Relation Algebras, volume 1, pages
1–34. Springer International Publishing, 2017. doi:10.1007/978-3-319-65235-1_1.

20 Chris Hardin and Dexter Kozen. On the complexity of the Horn theory of REL. Technical
report, Cornell University, 2003. URL: https://hdl.handle.net/1813/5612.

21 Jelle Hellings, Catherine L. Pilachowski, Dirk Van Gucht, Marc Gyssens, and Yuqing Wu.
From relation algebra to semi-join algebra: An approach to graph query optimization. The
Computer Journal, 64(5):789–811, 2021. doi:10.1093/comjnl/bxaa031.

22 Robin Hirsch and Ian Hodkinson. Relation Algebras by Games, volume 147 of Studies in logic
and the foundations of mathematics. Elsevier, 1 edition, 2002.

23 Tony Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. Concurrent Kleene algebra
and its foundations. The Journal of Logic and Algebraic Programming, 80(6):266–296, 2011.
doi:10.1016/j.jlap.2011.04.005.

24 Stephen C. Kleene. Representation of events in nerve nets and finite automata. In Au-
tomata Studies. (AM-34), pages 3–42. Princeton University Press, 1956. doi:10.1515/
9781400882618-002.

CSL 2025

https://doi.org/10.1007/BF01225472
https://doi.org/10.1016/J.TCS.2011.09.024
https://doi.org/10.1007/BF01190768
https://doi.org/10.4230/LIPICS.MFCS.2017.66
https://doi.org/10.4230/LIPIcs.CSL.2020.11
https://doi.org/10.1109/LICS.2015.17
https://doi.org/10.23638/LMCS-13(3:33)2017
https://doi.org/10.1007/11828563_7
https://doi.org/10.1016/S0022-0000(71)80003-X
https://doi.org/10.1145/38714.38749
https://doi.org/10.1145/1183278.1183285
https://doi.org/10.1007/978-3-030-17127-8_12
https://doi.org/10.1007/978-3-030-17127-8_12
https://doi.org/10.1007/3-540-28788-4
https://doi.org/10.1007/3-540-28788-4
https://doi.org/10.4064/fm-49-2-129-141
https://doi.org/10.1007/3-540-10003-2_74
https://doi.org/10.1007/3-540-10003-2_74
https://doi.org/10.1007/978-3-319-65235-1_1
https://hdl.handle.net/1813/5612
https://doi.org/10.1093/comjnl/bxaa031
https://doi.org/10.1016/j.jlap.2011.04.005
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1515/9781400882618-002

37:18 Finite Relational Semantics for Language Kleene Algebra with Complement

25 Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of regular events.
In LICS, pages 214–225. IEEE, 1991. doi:10.1109/LICS.1991.151646.

26 Dexter Kozen. On Hoare logic and Kleene algebra with tests. ACM Transactions on Compu-
tational Logic, 1(1):60–76, 2000. doi:10.1145/343369.343378.

27 Dexter Kozen. On the complexity of reasoning in Kleene algebra. Information and Computation,
179(2):152–162, 2002. doi:10.1006/INCO.2001.2960.

28 Dexter Kozen and Konstantinos Mamouras. Kleene algebra with equations. In ICALP, volume
8573 of LNCS, pages 280–292. Springer, 2014. doi:10.1007/978-3-662-43951-7_24.

29 Dexter Kozen and Frederick Smith. Kleene algebra with tests: Completeness and decidability. In
CSL, volume 1258 of LNCS, pages 244–259. Springer, 1996. doi:10.1007/3-540-63172-0_43.

30 F. W. Levi. On semigroups. Bulletin of the Calcutta Mathematical Society, 36(36):141–146,
1944.

31 A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with
squaring requires exponential space. In SWAT, pages 125–129. IEEE, 1972. doi:10.1109/
SWAT.1972.29.

32 Yoshiki Nakamura. Partial derivatives on graphs for Kleene allegories. In LICS, pages 1–12.
IEEE, 2017. doi:10.1109/LICS.2017.8005132.

33 Yoshiki Nakamura. Expressive power and succinctness of the positive calculus of binary
relations. Journal of Logical and Algebraic Methods in Programming, 127:100760, 2022.
doi:10.1016/j.jlamp.2022.100760.

34 Yoshiki Nakamura. Existential calculi of relations with transitive closure: Complexity and
edge saturations. In LICS, pages 1–13. IEEE, 2023. doi:10.1109/LICS56636.2023.10175811.

35 Yoshiki Nakamura. Finite relational semantics for language Kleene algebra with complement,
2024. URL: https://hal.science/hal-04455882.

36 Yoshiki Nakamura. Undecidability of the positive calculus of relations with transitive closure
and difference: Hypothesis elimination using graph loops. In RAMICS, volume 14787 of
LNTCS, pages 207–224. Springer, 2024. doi:10.1007/978-3-031-68279-7_13.

37 Yoshiki Nakamura. Derivatives on graphs for the positive calculus of relations with transitive
closure, 2024 (submitted, journal version of [32]). doi:10.48550/arXiv.2408.08236.

38 Yoshiki Nakamura and Ryoma Sin’ya. Words-to-letters valuations for language Kleene algebras
with variable complements. In AFL, volume 386 of EPTCS, pages 185–199. EPTCS, 2023.
doi:10.4204/EPTCS.386.15.

39 Yoshiki Nakamura and Ryoma Sin’ya. Words-to-letters valuations for language Kleene algebras
with variable and constant complements, 2024 (accepted, journal version of [38]). URL:
https://arxiv.org/abs/2309.02760.

40 Kan Ching Ng. Relation algebras with transitive closure. PhD thesis, University of California,
1984.

41 Peter W. O’Hearn. Incorrectness logic. Proceedings of the ACM on Programming Languages,
4(POPL):10:1–10:32, 2019. doi:10.1145/3371078.

42 Jean-Éric Pin. The dot-depth hierarchy, 45 years later. In The Role of Theory in Computer
Science, pages 177–201. WORLD SCIENTIFIC, 2016. doi:10.1142/9789813148208_0008.

43 Damien Pous. On the positive calculus of relations with transitive closure. In STACS, volume 96
of LIPIcs, pages 3:1–3:16. Schloss Dagstuhl, 2018. doi:10.4230/LIPICS.STACS.2018.3.

44 Damien Pous, Jurriaan Rot, and Jana Wagemaker. On tools for completeness of kleene
algebra with hypotheses. Logical Methods in Computer Science, Volume 20, Issue 2, 2024.
doi:10.46298/lmcs-20(2:8)2024.

45 Damien Pous and Jana Wagemaker. Completeness theorems for Kleene algebra with top. In
CONCUR, volume 243 of LIPIcs, pages 26:1–26:18. Schloss Dagstuhl, 2022. doi:10.4230/
LIPICS.CONCUR.2022.26.

46 V. R. Pratt. Dynamic algebras and the nature of induction. In STOC, pages 22–28. ACM,
1980. doi:10.1145/800141.804649.

https://doi.org/10.1109/LICS.1991.151646
https://doi.org/10.1145/343369.343378
https://doi.org/10.1006/INCO.2001.2960
https://doi.org/10.1007/978-3-662-43951-7_24
https://doi.org/10.1007/3-540-63172-0_43
https://doi.org/10.1109/SWAT.1972.29
https://doi.org/10.1109/SWAT.1972.29
https://doi.org/10.1109/LICS.2017.8005132
https://doi.org/10.1016/j.jlamp.2022.100760
https://doi.org/10.1109/LICS56636.2023.10175811
https://hal.science/hal-04455882
https://doi.org/10.1007/978-3-031-68279-7_13
https://doi.org/10.48550/arXiv.2408.08236
https://doi.org/10.4204/EPTCS.386.15
https://arxiv.org/abs/2309.02760
https://doi.org/10.1145/3371078
https://doi.org/10.1142/9789813148208_0008
https://doi.org/10.4230/LIPICS.STACS.2018.3
https://doi.org/10.46298/lmcs-20(2:8)2024
https://doi.org/10.4230/LIPICS.CONCUR.2022.26
https://doi.org/10.4230/LIPICS.CONCUR.2022.26
https://doi.org/10.1145/800141.804649

Y. Nakamura 37:19

47 Sylvain Schmitz. Complexity hierarchies beyond elementary. ACM Transactions on Computa-
tion Theory, 8(1):1–36, 2016. doi:10.1145/2858784.

48 Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and Alexandra
Silva. Guarded Kleene algebra with tests: verification of uninterpreted programs in nearly
linear time. Proceedings of the ACM on Programming Languages, 4(POPL):61:1–61:28, 2019.
doi:10.1145/3371129.

49 Larry J. Stockmeyer. The Complexity of Decision Problems in Automata Theory and Logic.
PhD thesis, Massachusetts Institute of Technology, 1974. doi:1721.1/15540.

50 Alfred Tarski. On the calculus of relations. The Journal of Symbolic Logic, 6(3):73–89, 1941.
doi:10.2307/2268577.

51 Wolfgang Thomas. A concatenation game and the dot-depth hierarchy. In Computation Theory
and Logic, number 270 in LNCS, pages 415–426. Springer, 1987. doi:10.1007/3-540-18170-9_
183.

52 B. A. Trakhtenbrot. The impossibility of an algorithm for the decision problem in finite classes.
Doklady Akademii Nauk SSSR, 70(4):569–572, 1950.

53 Cheng Zhang, Arthur Azevedo de Amorim, and Marco Gaboardi. On incorrectness logic
and Kleene algebra with top and tests. Proceedings of the ACM on Programming Languages,
6(POPL):29:1–29:30, 2022. doi:10.1145/3498690.

A Slight Extensions of Theorem 3.2

In this section, we note that we can extend Theorem 3.2 in the following two:

▶ Theorem A.1. For all positive quantifier-free formulas φ of KA{−} terms, we have:
LANG |= φ⇒ RSUB |= φ.

Proof Sketch. By the same surjective S-homomorphism in the proof of Theorem 3.2(⇒). ◀

▶ Theorem A.2. For all quantifier-free formulas φ of KA{−} terms, we have: RSUB |= φ⇒
LANG |= φ.

Proof. Because the formulas t = s ↔ (t ≤ s ∧ s ≤ t) and t ≤ s ↔ t ∩ s− ≤ 0 are valid
on LANG ∪ SUB, without loss of generality, we can assume that each equation in φ is of
the form u ≤ 0. By taking the conjunctive normal form, it suffices to prove when φ is of
the form (

∨n
i=1 ti ≤ 0) ∨ (

∨m
j=1 ¬sj ≤ 0). We prove the contraposition. By LANG ̸|= φ,

there are X, v ∈ LANGX , w1, . . . , wn ∈ X∗ such that wi ∈ v̂(ti) for i ∈ [1, n] and v̂(sj) = ∅
for j ∈ [1,m]. By letting w0 =∆ w1 . . . wn and considering the same S-homomorphism as
Theorem 3.2(⇐), we have RSUB ̸|= φ. ◀

For Theorem A.2, note that the converse direction fails (Remark 3.3), cf. Theorem A.1.

B Proof of Corollary 5.5

Proof. We have:

C |= t ≤ s ⇔ ∀w ∈ [t]Ṽ, ∀H ∈ SC(G(w)), ∃v ∈ [s]Ṽ,G(v) −→ HQ

(Theorem 5.2 and G(s) = {G(v) | v ∈ [s]Ṽ})
⇔ ∀w ∈ [t]Ṽ, ∀H ∈ SC(G(w)), [s]Ṽ ∩ [H]Ṽ ̸= ∅ ([H]Ṽ = {v ∈ Ṽ∗ | G(v) −→ HQ})
⇔ [t]Ṽ ⊆ {w ∈ Ṽ∗ | ∀H ∈ SC(G(w)), [s]Ṽ ∩ [H]Ṽ ̸= ∅}. ◀

CSL 2025

https://doi.org/10.1145/2858784
https://doi.org/10.1145/3371129
https://doi.org/1721.1/15540
https://doi.org/10.2307/2268577
https://doi.org/10.1007/3-540-18170-9_183
https://doi.org/10.1007/3-540-18170-9_183
https://doi.org/10.1145/3498690

37:20 Finite Relational Semantics for Language Kleene Algebra with Complement

C Proof of Proposition 6.2

Let R′ ⊆ |H| × |J | be the minimal set such that
⟨1H , 1J⟩ ∈ R′,
∀a ∈ Ṽ1, ∀x, x′ ∈ |H|, ∀y, y′ ∈ |J |, (⟨x, y⟩ ∈ R′ ∧ ⟨x, x′⟩ ∈ δHa ∧ ⟨y, y′⟩ ∈ δJa) ⇒ ⟨x′, y′⟩ ∈
R′.

▷ Claim C.1. [J]Ṽ ∩ [H]Ṽ ̸= ∅ ⇔ ⟨2H , 2J⟩ ∈ R′.

Proof. By definition, R′ coincides with the set of all reachable states of the product NFA of
H and J . ◁

Let R ⊆ |H| × |J | be the minimal set such that
⟨1H , 1J⟩ ∈ R,
∀a ∈ Ṽ1, ∀x, x′ ∈ |H|, ∀y, y′ ∈ |J |, (⟨x, y⟩ ∈ R∧⟨x, x′⟩ ∈ aH ∧⟨y, y′⟩ ∈ δJa)⇒ ⟨x′, y′⟩ ∈ R.

▷ Claim C.2. R = R′.

Proof. (⊆): Clear, by aH ⊆ δHa . (⊇): By induction on derivations of R′.
Case ⟨1H , 1J⟩ ∈ R′: Trivial, by ⟨1H , 1J⟩ ∈ R.
Case (⟨x, y⟩ ∈ R′ ∧ ⟨x, x′⟩ ∈ δHa ∧ ⟨y, y′⟩ ∈ δJa)⇒ ⟨x′, y′⟩ ∈ R′: By IH, ⟨x, y⟩ ∈ R.

Sub-Case a ̸= 1: Let x0, . . . , xn−1, xn, . . . , xm be s.t. ⟨x, x′⟩ = ⟨x0, xm⟩ and
∗ for all i ∈ [1, n− 1], ⟨xi−1, xi⟩ ∈ 1H ,
∗ ⟨xn−1, xn⟩ ∈ aH ,
∗ for all i ∈ [n+ 1,m], ⟨xi−1, xi⟩ ∈ 1H .
Let y0 = · · · = yn−1 = y and yn = · · · = ym = y′. Then by applying the second rule
multiply, we have ⟨x′, y′⟩ ∈ R.
Sub-Case a = 1: By reflexivity of 1H , ⟨x, x′⟩ ∈ (1H)+. Let x0, . . . , xm (m > 0) be s.t.
⟨x, x′⟩ = ⟨x0, xm⟩ and
∗ for all i ∈ [1,m], ⟨xi−1, xi⟩ ∈ 1H .
Let y0 = y and y1 = · · · = ym = y′. Then by applying the second rule multiply, we
have ⟨x′, y′⟩ ∈ R. ◁

Proof of Proposition 6.2. (⇒): By letting U as the map defined by U(x) =∆ {y | ⟨x, y⟩ ∈ R}.
Here, 2J ̸∈ U2H is shown by [J]Ṽ∩ [H]Ṽ = ∅ with ?? C.1?? C.2. (⇐): Let R′′ =∆ {⟨x, y⟩ | y ∈
U(x)}. By the minimality of R, we have R ⊆ R′′. By ⟨2H , 2J⟩ ̸∈ R′′, we have ⟨2H , 2J⟩ ̸∈ R.
Hence by Claim C.1, Claim C.2, we have [J]Ṽ ∩ [H]Ṽ = ∅. ◀

D Proof of Lemma 6.5

Proof. (⇒): By Proposition 6.2, let H ′ ∈ SRSUB(G(w)) and let U be an emptiness-witness
for [J]Ṽ ∩ [H ′]Ṽ = ∅. We define the graph H as follows:
|H| = |H ′|,
aH = aH

′ for a ∈ {⊤, 1, 1},
aH = aG(w) ∪ (aH′ ∩ 1H′) for a ∈ Ṽ1 \ {⊤, 1, 1}.

We then have that the pair P =∆ ⟨H,U⟩ is a saturable path for w ∈ LJ , as follows:
(P-Ext): By that H ′ is an edge-saturation w.r.t. RSUB.
(P-Con): Because H ′ is consistent by H ′ ∈ SRSUB(G(w)).
(P-Wit): Because U is an emptiness-witness for [J]Ṽ ∩ [H ′]Ṽ = ∅.
(P-Sat): Because aH′ ∪ aH

′ = ⊤H′ and U is an emptiness-witness for [J]Ṽ ∩ [H ′]Ṽ = ∅.

(⇐): Let P = ⟨H,U⟩ be a saturable path for w ∈ LJ . By (P-Ext), 1H is an equivalence
relation. We define the graph H ′ as follows:

Y. Nakamura 37:21

|H ′| = |H|,
aH

′ = aH for a ∈ {⊤, 1, 1},
for a ∈ V and ⟨x, y⟩ ∈ ⊤H ,

if ⟨[x]1H , [y]1H ⟩ ∈ aHQ , then ⟨x, y⟩ ∈ aH′ \ aH
′ ,

else if ⟨[x]1H , [y]1H ⟩ ∈ aH
Q , then ⟨x, y⟩ ∈ aH′

\ aH′ ,
else if Uy ⊆ δJa (Ux), then ⟨x, y⟩ ∈ aH′ \ aH

′ ,
else ⟨x, y⟩ ∈ aH′

\ aH′ .
By the construction of H ′, we have the following:

H ′ is an edge-extension of H: By (P-Con), if ⟨[x]1H , [y]1H ⟩ ∈ aH
Q , then ⟨[x]1H , [y]1H ⟩ ̸∈

aH
Q .

H ′ is consistent: If [x]1H = [y]1H then Ux = Uy, because Ux ⊆ δJ1 (Ux) ⊆ Uy ⊆ δJ1 (Uy) ⊆
Ux by (P-Wit); thus, if [x]1H = [x′]1H and [y]1H = [y′]1H , then ⟨x, y⟩ ∈ aH′ iff ⟨x′, y′⟩ ∈
aH

′ .
for a ∈ V, aH′ = ⊤H′ \ aH′ : Because aH′ ∪ aH

′ = ⊤H′ and H ′ is consistent.
From them and (P-Ext), we have H ′ ∈ SRSUB(G(w)). Also, U is an emptiness-witness for
[J]Ṽ ∩ [H ′]Ṽ = ∅ as follows. For edges already in H, it is shown by (P-Wit). For extended
edges from H , it is shown by the construction of H ′ (for the last case of the four cases above,
by Uy ̸⊆ δJa (Ux) and (P-Sat), we have Uy ⊆ δJa (Ux)). Hence, this completes the proof. ◀

E Proof of Lemma 6.9

Proof. (⊆): Let w = a1 . . . an ∈ LJ . Let P = ⟨H,U⟩ be a saturable path for w ∈ LJ . Let
X =∆ {a ∈ Ṽ1 | aH ⊇ 1H} (note that X ∈ X). For each i, let Ui =∆

⋃
j;⟨j,i⟩∈1H U2

j . Then we
have:

φJ(Ui, Ui): By (P-Sat) and Proposition 6.7.
∀a ∈ X, δJa (Ui) ⊆ Ui: By aH ⊇ 1H ⊇ ∆|H| and (P-Wit).

Thus ⟨Ui, Ui⟩ ∈ |JSX |. We consider the following run of the NFA JSX on w:

▶ ⟨U0, U0⟩ ⟨U1, U1⟩ ⟨U2, U2⟩ ⟨Un, Un⟩ ◀1 a1 a2 . . . an 1 .

This is indeed a run of the NFA JSX as follows:
⟨▶, ⟨U0, U0⟩⟩ ∈ 1JSX : By 1J ∈ U0 (P-Wit) and U0 = ∅.
⟨⟨Un, Un⟩,◀⟩ ∈ 1JSX : By 2J ̸∈ Un (P-Wit).
∀i ∈ [1, n], ⟨⟨Ui−1, Ui−1⟩, ⟨Ui, Ui⟩⟩ ∈ aJ

SX

i : We distinguish the following cases:
Case ⟨i− 1, i⟩ ∈ 1H :
∗ Ui = Ui−1: By ⟨j, i⟩ ∈ 1H iff ⟨j, i− 1⟩ ∈ 1H , for all j.
∗ Ui = Ui−1: By (P-Wit), we have Ui−1 ⊆ δJ1 (Ui−1) ⊆ Ui ⊆ δJ1 (Ui) ⊆ Ui−1.
∗ ai ∈ X (aHi ⊇ 1H): By aHi ∩ 1H ̸= ∅ and (P-Ext), we have aHi = a

G(w)
i ∪ 1H (if not,

this contradicts to (P-Con)).
Thus by ψXai,1(Ui−1, Ui−1,Ui, Ui), we have ⟨⟨Ui−1, Ui−1⟩, ⟨Ui, Ui⟩⟩ ∈ aJ

SX

i .
Case ⟨i− 1, i⟩ ∈ 1H :
∗ Ui = Ui−1 ∪ U2

i−1: By ⟨j, i⟩ ∈ 1H iff j < i iff ⟨j, i− 1⟩ ∈ 1H ∨ ⟨j, i− 1⟩ ∈ 1H , for all
j. (Intuitively, Ui−1 corresponds to the case ⟨j, i− 1⟩ ∈ 1H and U2

i−1 corresponds
to the case ⟨j, i− 1⟩ ∈ 1H .)

∗ δJai
(Ui−1) ⊆ Ui: By (P-Wit).

∗ δJ⊤({u | ⟨u, u⟩ ∈ Ui}) ⊆ Ui: We have δJ⊤({u | ⟨u, u⟩ ∈ Ui}) = δJ⊤(
⋃
j;⟨j,i⟩∈1H Uj) =⋃

j<i δ
J
⊤(Uj) ⊆ Ui by (P-Wit).

CSL 2025

37:22 Finite Relational Semantics for Language Kleene Algebra with Complement

∗ δJ1 ({u | ⟨u, u⟩ ∈ Ui}) ⊆ Ui: We have δJ1 ({u | ⟨u, u⟩ ∈ Ui}) = δJ1 (
⋃
j;⟨j,i⟩∈1H Uj) =⋃

j<i δ
J
1 (Uj) ⊆ Ui by (P-Wit).

Thus by ψX
ai,1

(Ui−1, Ui−1,Ui, Ui), we have ⟨⟨Ui−1, Ui−1⟩, ⟨Ui, Ui⟩⟩ ∈ aJ
SX

i .
Hence, w ∈ [JSX].

(⊇): Let X ⊆ X and w = a1 . . . an ∈ [JSX]Ṽ. Let the run of JSX on w be as follows:

▶ ⟨U0, U0⟩ ⟨U1, U1⟩ ⟨U2, U2⟩ ⟨Un, Un⟩ ◀1 a1 a2 . . . an 1 .

Let H be the edge-extension of G(w) defined as follows:
⊤H = {⟨x, y⟩ ∈ [0, n]2 | ∀i ∈ [y + 1, x], ¬ψX

ai,1
(Ui−1, Ui−1,Ui, Ui)},

1H = ⊤H ∩ {⟨x, y⟩ | ⟨y, x⟩ ∈ ⊤H} and 1H = ⊤H \ 1H ,
∀a ∈ V ∩X, ⟨aH , aH⟩ = ⟨aG(w) ∪ 1H , aG(w)⟩.

Note that by definition of ⊤H , we have
⊤H ⊇ {⟨x, y⟩ | x ≤ y},
⊤H is transitive (by case analysis).

Hence, ⊤H is a total preorder and each equivalence class w.r.t. 1H is an interval [l, r].
Let P =∆ ⟨H,U⟩ where U is defined as i 7→ Ui for i ∈ [0, n]. The following depicts P .

X X X X X X

a1 a2 . . . ai . . . an

{
1 (if ¬ψX

ai,1
(Ui−1, Ui−1,Ui, Ui))

1 (otherwise)

U0 U1 U2 Ui−1 Ui Un

.

Then P is a saturable path for w ∈ LJ as follows:
(P-Ext): By the definition of H.
(P-Con): Assume that aHQ∩aH

Q ≠ ∅. Let x, x′, y, y′ be s.t. [x]1H = [x′]1H , [y]1H = [y′]1H ,
⟨x, y⟩ ∈ aH , and ⟨x′, y′⟩ ∈ aH . WLOG, we can assume that a ∈ X and a ̸∈ X. Then, we
have the following:
⟨x′, y′⟩ ∈ aG(w) (so, x′ = y′ − 1 and ay′ = a): By aH = aG(w) (since a ̸∈ X).
⟨x, y⟩ ∈ aG(w) (so, x = y − 1 and ay = a): If not, then by aH = aG(w) ∪ 1H ,
we have [x]1H = [y]1H . Thus, ⟨y′, y′ − 1⟩ ∈ 1H(⊆ ⊤H). By the definition of
⊤H , we have ¬ψX

ay′ ,1
(Uy′−1, Uy′−1,Uy′ , Uy′). By the definition of aJSX , we have

ψXay′ ,1(Uy′−1, Uy′−1,Uy′ , Uy′), so a ∈ X. This contradicts a ̸∈ X.
([x, x′] ∪ [x′, x]) ∩ ([y, y′] ∪ [y′, y]) = ∅ (so, x = x′ and y = y′): If not, then because the
interval between x and x′ and that between y and y′ have an intersection, we have
[x]1H = [y]1H . Then, in the same manner as above, we have a ∈ X. This contradicts
a ̸∈ X.

Thus, we reach a contradiction, because a = ay = ay′ = a (by y = y′). Hence,
aH

Q ∩ aH
Q = ∅.

(P-Sat): By the form of JSX , we have Ux =
{
Ux−1 (⟨x− 1, x⟩ ∈ 1H)
Ux−1 ∪ U2

x−1 (⟨x− 1, x⟩ ∈ 1H)
. Thus,

Uy =
⋃
x;⟨x,y⟩∈1H U2

x (⋆). By Proposition 6.7, this completes the proof.
(P-Wit): For 1J ∈ U0 and 2J ̸∈ Un, they are shown by the form of JSX . For ∀a ∈
Ṽ1, ∀⟨x, y⟩ ∈ aH , δJa (Ux) ⊆ Uy, we distinguish the following cases:

Case a = 1: Then we have
∗ Ux = Uy: By ⟨x, y⟩ ∈ 1H and the form of JSX , we have the following: ∀z ∈

[y + 1, x], ψXaz,1(Uz−1, Uz−1,Uz, Uz). Thus, Uy = Uy+1 = · · · = Ux.

Y. Nakamura 37:23

∗ δJ1 (Ux) ⊆ Ux: By ⟨Ux, Ux⟩ ∈ |JSX |.
Hence, δJ1 (Ux) ⊆ Uy.
Case a = 1: Let z ∈ [x + 1, y] be such that ψX

az,1
(Uz−1, Uz−1,Uz, Uz) and ∀z′ ∈

[z + 1, y],¬ψX
az′ ,1

(Uz′−1, Uz′−1,Uz′ , Uz′). Then we have

δJ1 (Ux) ⊆ δJ1 ({u | ⟨u, u⟩ ∈ Uz}) (by (⋆) and ⟨x, z⟩ ∈ 1H (by ⟨z − 1, z⟩ ∈ 1H))
⊆ Uz (by ψX

az,1
(Uz−1, Uz−1,Uz, Uz))

⊆ Uz+1 = · · · = Uy. (by the form of JSX , ψXaz′ ,1(Uz′−1, Uz′−1,Uz′ , Uz′))

Case a = ⊤: We distinguish the following two sub-cases:
∗ Case ⟨x, y⟩ ∈ 1H : By the similar argument as Case a = 1.
∗ Case ⟨x, y⟩ ∈ 1H : By the similar argument as Case a = 1, we have Ux = Uy and
δJ⊤(Ux) ⊆ Ux, and thus δJ⊤(Ux) ⊆ Uy.

Case a ∈ {a, a | a ∈ V}: We distinguish the following sub-cases:
∗ Case ⟨x, y⟩ ∈ 1H : By ⟨x, y⟩ ∈ aH ∩ 1H = aG(w), we have x = y − 1 and ay = a.

Thus by ψX
ay,1

(Uy−1, Uy−1,Uy, Uy), we have δJa (Ux) ⊆ Uy.
∗ Case a ̸∈ X: By aH = aG(w), we have x = y − 1 and ay = a. By the form of JSX

with ¬ψXay,1(Uy−1, Uy−1,Uy, Uy) (since ay ̸∈ X), we have ψX
ay,1

(Uy−1, Uy−1,Uy, Uy).
Hence, δJa (Ux) ⊆ Uy.

∗ Case ⟨x, y⟩ ∈ 1H and a ∈ X: By the similar argument as Case a = 1, we have
Ux = Uy (by ⟨x, y⟩ ∈ 1H) and δJa (Ux) ⊆ Ux (by a ∈ X). Thus, δJa (Ux) ⊆ Uy. ◀

CSL 2025

A Complete Graphical Language for Linear Optical
Circuits with Finite-Photon-Number Sources
and Detectors
Nicolas Heurtel #

Quandela, 7 Rue Léonard de Vinci, 91300 Massy, France
Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria, Laboratoire Méthodes Formelles, 91190,
Gif-sur-Yvette, France

Abstract
Graphical languages are powerful and useful to represent, rewrite and simplify different kinds of
processes. In particular, they have been widely used for quantum processes, improving the state of
the art for compilation, simulation and verification. In this work, we focus on one of the main carrier
of quantum information and computation: linear optical circuits. We introduce the LOfi-calculus,
the first graphical language to reason on the infinite-dimensional photonic space with circuits only
composed of the four core elements of linear optics: the phase shifter, the beam splitter, and auxiliary
sources and detectors with bounded photon number. First, we study the subfragment of circuits
composed of phase shifters and beam splitters, for which we provide the first minimal equational
theory. Next, we introduce a rewriting procedure on those LOfi-circuits that converge to normal
forms. We prove those forms to be unique, establishing both a novel and unique representation of
linear optical processes. Finally, we complement the language with an equational theory that we
prove to be complete: two LOfi-circuits represent the same quantum process if and only if one can
be transformed into the other with the rules of the LOfi-calculus.

2012 ACM Subject Classification Theory of computation → Quantum computation theory; Theory
of computation → Axiomatic semantics; Hardware → Quantum computation

Keywords and phrases Quantum Computing, Graphical Language, Linear Optical Circuits, Linear
Optical Quantum Computing, Completeness, Fock Space

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.38

Related Version Full Version: https://arxiv.org/abs/2402.17693 [27]

Funding This work has been partially funded by the European Commission as part of the EIC
accelerator program, under the grant agreement 190188855, by the French National Research Agency
(ANR) with the project TaQC ANR-22-CE47-0012 and within the framework of “Plan France
2030”, under the research projects EPIQ ANR-22-PETQ-0007, OQULUS ANR-23-PETQ-0013,
HQI-Acquisition ANR-22-PNCQ-0001 and HQI-R&D ANR-22-PNCQ-0002, and by the CIFRE
2022/0081.

Acknowledgements We would like to thank Marc de Visme and Vladimir Zamdzhiev for helpful
discussions, Alexandre Clément for the insight into the angles of (E3) and the derivation of (oE3), and
particularly Shane Mansfield, Benoît Valiron and Renaud Vilmart for helpful discussions, support
and reviews of some parts of the paper. We would also like to thank all the anonymous reviewers
for their insightful comments and suggestions, which greatly helped to improve the quality of this
manuscript.

1 Introduction

Quantum computing is a paradigm for processing information [41, 45] that performs computa-
tion with quantum states, instead of the classical states of bits. This computational paradigm
allows specific computational problems to be solved with quadratic [24] or even exponential

© Nicolas Heurtel;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 38; pp. 38:1–38:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nicolas.heurtel@quandela.com
https://orcid.org/0000-0002-9380-8396
https://doi.org/10.4230/LIPIcs.CSL.2025.38
https://arxiv.org/abs/2402.17693
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 The LOfi-Calculus

speedup [50, 26] compared to their classical counterparts. To encode that quantum data,
many technologies have been pursued, such as superconducting circuits [32], trapped ions [8]
and cold atoms [23].

One of the prominent candidates for quantum computation is linear optics [36, 42, 47],
where the logical information is encoded into the quantum states of photons, the particles
of light. For quantum computation, the logical states are encoded onto the modes of the
photons, i.e. their degrees of freedom like their positions in the circuit, and the desired logical
operations are performed with optical components. All scalable quantum computations with
linear optics [34, 53, 40, 7, 6, 17] encoding with the positions of the photons use predominantly
these following elements.

Sources: they generate the quantum state, i.e. a vector in a Hilbert space,
Phase shifters: they change the quantum state by adding a phase to the light passing
through them1,
Beam splitters: they alter the quantum state by causing photons on two different paths
to interfere with each other2,
Detectors: they project the quantum state on a subspace.

As ubiquitous as the circuits made of those components are in linear optical quantum
computation schemes, as illustrated in Figure 1 and 2, many unanswered questions persist
regarding optimality, minimality and an efficient use of those components. We wish to have
a framework finding the most appropriate implementation for the desired computation or
protocol. The purpose of this work is therefore to propose a formal framework to model and
manipulate generic circuits composed of the four previous elements.

State of the art. Some main formal frameworks to study, develop or optimize quantum
processes are graphical languages [2, 49, 3, 43], representing processes with diagrams and
equations between those diagrams. These formalisms have been shown to be very useful
for addressing quantum processes in general, such as ZX-diagrams [13] with applications in
compilation [29, 5, 51], simulation [31, 30, 35] and verification [19, 21]. To completely capture
the processes those diagrams model, [28, 25] have introduced a complete set of equations:
two equivalent ZX-diagrams can always be transformed from one to the other with those
equations.

Recently, some works have modeled optical processes with diagrams [4, 12, 39], including
notably LOv [10], a complete graphical language for linear optical circuits with vacuum
sources and detectors, and QPath [15], a graphical language to compute amplitudes. Re-
markably, both have also led to results beyond the optical realm, as a subfragment of the first
led to derive the first complete equational theory for quantum circuits [11], while the second
introduced a functor from the ZX-calculus [15] and led to a more generic language [16].

However, those two frameworks don’t completely capture linear optical circuits with
sources and detection schemes. In particular, LOv lacks a many-photon semantics and can
only cover the single-photon case, while QPath uses sums of diagrams in the rewriting
process along with generators that are not linear optical components. For instance, we would
like to be able to model the photonic implementation of the CZ gate [34, 33], a prominent
logical quantum gate, and rewrite it to equivalent forms, as illustrated in Figure 1.

1 They are typically implemented using thermo-optic components, where the refractive index of the
waveguide is changed by heating the material.

2 In integrated circuits, beam splitters are implemented using waveguides that split and combine light
paths.

N. Heurtel 38:3

π

θ1

1

θ1

θ2

−θ1

1

1

1

- π
2

π
2

π

- π
2

π

- π
2

=

π

α4
f

α1

- π
2 - π

2α3α2

g

Figure 1 Optical circuits implementing the CZ two-qubit logic gate with auxiliary sources and
detectors. On the left is the original circuit3 of [33]. There are two auxiliary photon generated on
the bottom left: if exactly one photon is detected for each of the two last wires on the bottom right,
then we know we have performed the operation |11⟩ 7→ − |11⟩ on the two first wires. This event has
a probability 2

27 to occur. On the right is an equivalent representation in the LOfi-calculus, where
f and g are two-photon states and linear forms.

θ3

1

θ1

0

2

θ2

θ2θ2
1

1

1

- π
2 - π

2

- π
2

- π
2

- π
2

π

π

= 1
3 |Φ+⟩

Figure 2 Linear optical circuit generating with a 1
9 probability the Bell state

∣∣Φ+〉
= |1010⟩ +

|0101⟩, with the use of auxiliary sources and detectors. On the left is the original3 circuit of [20], on
the right is an equivalent and modular description. Both are equivalent circuits in the LOfi-calculus.

Challenges. In seeking to develop a graphical language for modeling linear optical circuits
with a many-photon semantics, there are two main challenges. First, the bosonic Fock space,
representing all the states that photons can be in, is an infinite-dimensional Hilbert space: the
bosonic Fock space. In particular, some properties and generators of graphical languages with
finite-dimensional theories [44, 52, 18] cannot be used. Second, the interaction of photons,
even without bringing auxiliary modes and detections into the picture, is described by the
permanents of matrices [48, 1], making cumbersome explicit expression and manipulation of
all the involved terms.

Contributions. In this paper, we propose such a framework, and introduce the LOfi-
calculus, the first graphical language defined on the bosonic Fock space, with circuits
composed of four core elements of linear optics: the phase shifter, the beam splitter, and
auxiliary finite-photon-number sources and detectors. Our main contributions are the
following.

A complete equational theory for circuits with phase shifters and beam splitters which is
simpler than the one in [10], and that we prove to be minimal (Section 2).

3 Some phases have been added to take into account the different conventions for the semantics of the
beam splitters.

CSL 2025

38:4 The LOfi-Calculus

A new sound and complete equational theory for linear optical circuits that allows all
auxiliary finite-photon-number states and detections (Section 3).
A unique and compact universal form for optical circuits of this kind, obtained through a
deterministic rewriting procedure and proven to be unique with new techniques (Section 4).

All the notation introduced in the paper is summarized in Table 1.

2 LOPP: Linear optical quantum circuits with single-photon semantics

A linear optical quantum circuit consists of spatial modes through which photons pass –
which may be physically instantiated by optical fibers, waveguides in integrated circuits, or
simply by paths in free space (bulk optics) – and operations that act on those spatial modes,
including in particular beam splitters (θ), and phase shifters (φ).

2.1 Syntax and single-photon semantics

Similarly to [10], in order to formalize linear optical circuits with diagrams, we use the
formalism of PROPs [38]. A PRO is a strict monoidal category whose monoid of objects is
freely generated by a single X: the objects are all of the form X ⊗X ⊗ · · · ⊗X, and simply
denoted by n, the number of occurrences of X. PROs are typically represented graphically
as circuits: each copy of X is represented by a wire and morphisms by boxes on wires, so
that ⊗ is represented vertically and morphism composition ◦ is represented horizontally.
For instance, D1 and D2 represented as D1 and D2 can be horizontally composed
as D2 ◦D1, represented by D1 D2 , and vertically composed as D1 ⊗D2, represented

by
D1

D2

. A PROP is the symmetric monoidal analogue of PRO, so it is equipped with

a swap. It means the circuits are equivalent through wire deformations and that only the
connectivity matters.

▶ Definition 1. LOPP4 is the PROP of LOPP-circuits generated by:

φ : 1 → 1 θ : 2 → 2

with φ ∈ R and θ ∈ R.

The convention is to go through from left to right, meaning the inputs (resp. outputs) are
on the left (resp. right), and from top to bottom, meaning the first (resp. last) input is the
top (resp. last) wire. The identity, the swap and the empty diagrams are noted as follows:

, , .

▶ Example 2. Here are two examples of LOPP-circuits, that are equivalent up to deformation
with the rules of PROPs:

φ2
θ2

θ1

φ1

= φ2
θ2θ1

φ1

4 The PROP version of LOPP has first been defined in [9], as [10] defined LOPP as a PRO.

N. Heurtel 38:5

The semantics of linear optical components are usually described by their behavior
when there is one single photon passing through those components. Given a circuit of m
wires, the single photon can be in a superposition of the m different positions, so its state
is a vector in Cm. We consider the standard orthonormal basis {|ei⟩ , i ∈ [1,m]} where
ei = |0, . . . , 0, 1, 0, . . . , 0⟩ with a 1 at the ith component. The object of our PROP is therefore
X = C, and the vertical composition is interpreted as the direct sum [10, 11]. The semantics
is defined as follows.

▶ Definition 3 (Semantics of LOPP). The single photon semantics of LOPP is inductively
defined as follows: JC1 ⊗ C2K1 = JC1K1 ⊕ JC2K1, JC2 ◦ C1K1 = JC2K1 ◦ JC1K1 and:

J K1 : C → C := |1⟩ 7→ |1⟩r
φ

z

1
: C → C := |1⟩ 7→ eiφ |1⟩

r z

1
: C2 → C2 := |1, 0⟩ 7→ |0, 1⟩

|0, 1⟩ 7→ |1, 0⟩
r

θ
z

1
: C2 → C2 := |1, 0⟩ 7→ cθ |1, 0⟩ + isθ |0, 1⟩

|0, 1⟩ 7→ isθ |1, 0⟩ + cθ |0, 1⟩
where cθ = cos(θ) and sθ = sin(θ).

▶ Remark 4. It is also usual to represent those linear operators as matrices, with

JC1K1⊕ JC2K1 =
(

JC1K1 0
0 JC2K1

)
and for instance

r
θ

z

1
=

(
cθ isθ

isθ cθ

)
.

2.2 Simpler equational theory of LOPP
Two distinct LOPP-circuits may represent the same quantum evolution. For instance,
shifting the phase of a photon by two phase shifters of phase φ1 and φ2 is the same as shifting
it with one phase φ1 + φ2. In order to characterize those equivalences, an equational theory
of LOPP has been introduced in [10]. In this section, we provide a simpler set of equations
in Figure 3. Some of the old equations, given in Figure 4, have been removed, while two
Equations (oE2) and (oE3) of Figure 4 have been replaced by the two Equations (E2) and
(E3), respectively representing Euler rotations with two and three axes. Previously, those old
Euler equations were not directly reversible; while the angles of the right-hand side (RHS)
could be uniquely determined by those of the left-hand side (LHS), the inverse was true
only with non-trivial constraints, making the equations hardly reversible and not explicitly
constructive. More specifically, we made the following simplifications:

The Equations (b0), (p0) and (pp-b) have been derived and removed from the equational
theory.
A phase has been added in Equation (oE2), so now the LHS can also represent any
element of the unitary group U(2). Now the angles of the LHS can be straightforwardly
derived without any constraints from the RHS.
All the phases of Equation (oE3) have been removed. The formulae of the equations are
now far simpler, and the equation is now both symmetrical and reversible.

▶ Definition 5 (LOPP-calculus). Two LOPP-circuits D, D′ are equivalent according to
the rules of the LOPP-calculus, denoted LOPP ⊢ D = D′, if one can transform D into
D′ using the equations given in Figure 3. More precisely, LOPP ⊢ · = · is defined as the
smallest congruence which satisfies the equations of Figure 3 and the axioms of PROP.

▶ Proposition 6 (Soundness of LOPP). For any LOPP-circuits D and D′, if LOPP ⊢ D =
D′ then JDK1 = JD′K1.

CSL 2025

38:6 The LOfi-Calculus

2π = (p2π)

=
π
2

− π
2

− π
2

(swap)

φ2φ1 = φ1+φ2 (p-p)

α2

α1 α3
α0

=
β0β2

β3β1

(E2)

γ1

γ2

γ3

=

δ2

δ3δ1
(E3)

Figure 3 New and minimal equational theory of the LOPP-calculus. For any angle of the
LHS (resp. RHS) of the Equation (E2) and (E3), there exist angles for the RHS (resp. LHS) such
that the equations are sound. The angles of are unique if we restrict α0, α2, β0, β1, β3 ∈ [0, 2π),
α1 ∈ [0, π

2), α3 ∈ [0, π), β2 ∈ [0, π
2], and by taking α1 = 0 if α0 − α2 = 0 mod π and β1 = 0 if

β2 ∈
{

0, π
2

}
. The rotations associated with Equations (E2) and (E2) are detailed in the proof of

Proposition 6.

Proof. Since semantic equality is a congruence, it suffices to check that for every equation of
Figure 3. The soundness of Equations (swap), (p2π) and (p-p) are direct consequences of

Definition 3. We can notice that RX(−2θ) =
r

θ
z

1
and ei φ

2 RZ(φ) =
s

φ

{

1
, where

RX (resp. RZ) is the rotation operator about the x̂ axis (resp. ẑ axis) of the Bloch sphere [41].
Any unitary of U(2) can be decomposed into ei·RX(·)RZ(·)RX(·) (resp. ei·RZ(·)RX(·)RZ(·)),
giving the LHS (resp. RHS) angles of (E2). By transforming the iY -axis into the Y -axis,
the three rotations of the LHS (resp. RHS) of (E3) can be seen as three real rotations along
the z − x − z real axes (resp. x − z − x). The angles are therefore given by the Euler
angles [22]. ◀

▶ Theorem 7 (Completeness of LOPP). For any two LOPP-circuits D and D′, if JDK1 =
JD′K1 then LOPP ⊢ D = D′.

Proof. The equational theory of Figure 4 has been proven to be complete in [10]. All
equations of Figure 4 can be derived by those of Figure 3. ◀

▶ Theorem 8 (Minimality). The equational theory of Figure 3 is minimal for LOPP-circuits,
i.e. none of its equations can be derived from the others.

Proof. We define an alternative interpretation which satisfies all the equations aside from
the one we prove to be necessary. In particular:

(p2π) is the only rule on one wire that changes the sum of the phases.
(p-p) is the only rule on one wire that can reduce the number of phases different from 2π.
(swap) is the only rule changing the parity of the number of SWAPs.
(E2) is the only rule changing the parity of (number of beam splitter + number of SWAPs).

For (E3), here is the sketch of the proof:
We define an equivalence relation ∼φ on three-wire LOPP-circuits.
We introduce a confluent rewriting procedure that is conserving the relation ∼φ, and
that is converging to normal forms.

N. Heurtel 38:7

0 = (p0)

0 = (b0)

θ
φ

φ
= θ

φ

φ
(pp-b)

α1
α2 α3

=
β1 β2

β3

β4

(oE2)

γ1

γ3

γ4
γ2

=
δ3

δ4

δ6

δ2

δ1 δ5

δ7

δ8

δ9

(oE3)

Figure 4 Old axioms of the LOPP-calculus that are not in Figure 3. In Equations (oE2) and
(oE3), the LHS circuit has arbitrary parameters which uniquely determine the parameters of the
RHS circuit. For any αi ∈ R, there exist βj ∈ [0, 2π) such that Equation (oE2) is sound, and for any
γi ∈ R, there exist δj ∈ [0, 2π) such that Equation (oE3) is sound. We can ensure that the angles βj

are unique by assuming that β1, β2 ∈ [0, π) and if β2 ∈ {0, π
2 } then β1 = 0, and we can ensure that

the angles δj are unique by assuming that δ1, δ2, δ3, δ4, δ5, δ6 ∈ [0, π). If δ3 ∈ {0, π
2 } then δ1 = 0, if

δ4 ∈ {0, π
2 } then δ2 = 0, if δ4 = 0 then δ3 = 0, and if δ6 ∈ {0, π

2 } then δ5 = 0. The existence and
uniqueness of such βj and δj are given by Lemmas 10 and 11 of [10].

All the rules of the PROP, (p0), (swap), (p-p) and (E2) also conserve the relation ∼φ.
We conclude that (E3) is necessary, because the LHS and RHS are different normal forms,
and therefore can’t be transformed from one to the other without (E3). ◀

2.3 Useful triangular forms
In this subsection, we introduce three classes of LOPP-circuits, with the following inclusions:
ñ♢n ⊂ ñ△m̃ ⊂ △. Their shape and properties are illustrated and summarized in Table 2.
They are of particular interest as △-circuits are the normal forms of the LOPP-calculus [10],
ñ△m̃-circuits will be used in the normal forms of the LOfi-calculus (Definition 36), and
their uniqueness will be proved thanks to use of ñ♢n-circuits (Section 4).

▶ Definition 9 (△-circuits). A △-circuit is a LOPP-circuit with the following shape:

θ1,2

θ1,1

θ2,1

φ1,1

θ2,2

θ1,n−1

θ1,n−2

θ2,n−2 θn−2,2

θn−2,1

θn−1,1

φ1,2

φ1,n−1

φ1,n φ2,n−1

φ2,2

φn−2,3 φn−1,2

φn−2,2

φ2,1

φn−2,1

φn−1,1

φn,1

with φi,j ∈ [0, 2π), θi,j ∈ [0, π
2] and the following conditions: θi,j = 0 ⇒ (∀j′ > j, φi,j′ =

θi,j′ = 0) and θi,j = π
2 ⇒ φi,j = 0. θi,j is on the ith right (resp. jth left) diagonal, and on

the (i+ j − 1)th row of beam splitters.

▶ Remark 10 (Coefficients of J△K1). The coefficient ti,j of J△K1 is determined by the sum
of all the paths from the jth input wire to the ith output wire, where for each path we
multiply by a cos (resp. sin) term when the photon is reflected on (resp. transmitted through)

CSL 2025

38:8 The LOfi-Calculus

a beam splitter, and by a phase when the path crosses a phase shifter. For instance,
t1,2 = cos(θ1,2)eiφ1,2i sin(θ1,1)eiφ1,1 . More generally, we have ti,j = eiφi,j cos(θi,j) × qi,j + ri,j

where qi,j , ri,j are terms depending uniquely on the angles with lower indexes.

▶ Proposition 11 (Universality and Uniqueness of T). For any LOPP-circuit D, there exists
a unique circuit T in triangular form of Definition 9 such that JDK1 = JT K1.

Proof. The existence is a direct consequence of [46] or the Proposition 26 of [10]. The
uniqueness is a consequence of Remark 10 by sequentially showing the uniqueness of (φi,j , θi,j)
in ti,j , and by noticing that for any z with 0 < |z| ≤ 1, there are unique φ, θ ∈ [0, 2π) × [0, π

2)
such that eiφcθ = z, with φ, θ = (0, 0) for the special case of z = 0. More details are provided
in Appendix B. ◀

▶ Remark 12. A generic △-circuit T : n → n has n(n−1)
2 beam splitters and n(n+1)

2 phase
shifters, having a total of n2 different angles, the dimension of the unitary group U(n).

▶ Definition 13 (ñ△m̃-circuits). A LOPP-circuit △̃ : n+ ñ → m+ m̃ is a ñ△m̃-circuit if:
1. △̃ is a △-circuit as defined in Definition 9,
2. there is no beam splitter or phase shifter fully and directly connected to the ñ last input

wires, ie. φi,j = θi,j = 0 if rowi,j = i+ j − 1 > n and there doesn’t exist (k, ℓ) such that
k + ℓ− 1 = rowi,j − 1, k < i and θk,ℓ ̸= 0,

3. there is no beam splitter or phase shifter fully and directly connected to the m̃ last output
wires, ie. φi,j = θi,j = 0 if rowi,j = i+ j − 1 > m and there doesn’t exist (k, ℓ) such that
k + ℓ− 1 = rowi,j − 1, k ≥ i and θk,ℓ ̸= 0, and

4. there exists one nonzero θi,j for each of the last max(ñ, m̃) rows.

The Property 4 is an additional constraint that appears in the normal forms defined
in Definition 36. Property 2 and 3 imply the only nonzero angles have indexes (i ≤ m, j ≤
n), leading to the following proposition, direct consequence of Remark 10 and the proof
of Proposition 11.

▶ Proposition 14 (Uniqueness of ñ△m̃-circuits on their m × n submatrix). For any ñ△m̃-
circuits △,△′ : n + ñ → m + m̃, if J△K1 (1 : m, 1 : n) = J△′K1 (1 : m, 1 : n) then △ = △′,
where M(1 : k, 1 : ℓ) is the k × ℓ matrix composed of the first k rows and ℓ columns of M .

▶ Definition 15 (ñ♢n-circuits). A ñ△m̃-circuit △̃ : n+ ñ → m+ m̃ is a ñ♢n-circuit if m̃ = n.

▶ Remark 16. As m̃ = n, ñ♢n-circuits have exactly ñ × n beam splitters shaped like in
Table 2. Furthermore, their angles are necessarily nonzero, as one zero would imply the
rest of the right-diagonal to be zero with Definition 9, contradicting the Property 4. That
particular shape and those nonzero properties will be useful in the proofs of Section 4.

3 LOfi-calculus

3.1 Fock space
As described in Section 2.1, the state space of one photon with m spatial modes is Cm, as it
can be on a superposition of all the different positions. Photons are particles that can bunch
and share the same state, so each mode can be occupied by many photons. Furthermore,
to observe quantum effects like interferences, we need the photons to be indistinguishable,
meaning we can’t know which photon is in which state.

N. Heurtel 38:9

For those two reasons, the usual way to represent a state with indistinguishable photons
is by using the occupation number representation, where we indicate “how many photons are
there in each state”. We consider the basis states Φm := {|n1, n2, . . . , nm⟩ , (n1, n2, . . . , nm) ∈
Nm} [1], denoted as Fock states. The state |n1, n2, . . . , nm⟩ represents a configuration where
ni photons occupy the ith mode. The space of possible many-photon states over m modes,
the bosonic (symmetrical) Fock space and denoted as Bm, is defined as follows.

▶ Definition 17 (Fock space). We define the Hilbert space Bm as the Hilbert completion
ℓ2(Φm) equipped with the bra-ket inner product ⟨·|·⟩, with the convention B0 = C.

▶ Remark 18. B1 contains states that are an infinite superposition of basis states, like the
coherent states |α⟩ = e− |α|2

2
∑∞

k=0
αk

k! |k⟩. We can note that Bm is isomorphic to ℓ2(Nm).
To describe the space of the auxiliary sources, we consider a sub vector space of Bm.

▶ Definition 19 (Subspace of the Fock space: Bpre
m). We define the pre-Hilbert space Bpre

m

as the linear span of Φm equipped with the bra-ket inner product ⟨·|·⟩, with the convention
Bpre

0 = C.

▶ Remark 20. Bpre
m only contain states that are finite linear combination of the Fock basis

states. In particular, the coherent states are not included. We can note that Bpre
1 is isomorphic

to c00, i.e. the space of eventually zero sequences.

▶ Definition 21 (B∗pre
m̃). We define the pre-Hilbert space B∗pre

m̃ as the linear span of
{⟨n1, . . . , nm̃| , (n1, . . . , nm̃) ∈ Nm̃}.

3.2 Syntax and many-photon semantics
▶ Definition 22 (LOfi-calculus). LOfi is the PROP of LOfi-circuits generated by

φ : 1 → 1 θ : 2 → 2 f ñ : 0 → ñ gm̃ : m̃ → 0

where φ, θ ∈ R, and f (resp. g) is a state in Bpre
ñ (resp. in B∗pre

m̃) with ñ, m̃ ∈ N+.

▶ Remark 23. In string diagrams, a process 0 → ñ (resp. m̃ → 0) is called a state (resp. an
effect). We will keep the source (resp. detector) terms to be consistent with their physical
representation. A process 0 → 0 is called a scalar.
▶ Remark 24. The choice of those generators is discussed in Appendix C.

▶ Definition 25 (Conventions for the notations). Bold terms will always be vectors. In
particular f ,fk (resp. g, gℓ) will always represent a ket (resp. a bra). Bold integers k (resp.
ℓ) will represent |k⟩ (resp. ⟨ℓ|) in the sources (resp. detectors). The summation term

∑
will often be omitted, the index being implicitly the sum index. Note that for clarity, the
summation term won’t be omitted in Figure 6, and for conciseness, they will be omitted
in Figure 5. For instance f =

∑
k∈K |fk⟩ |k⟩ will simply be noted as fk ⊗ k. |.⟩ (resp. ⟨.|)

represents an arbitrary ket (resp. bra) on one mode. |...⟩ (resp. ⟨...|) represents an arbitrary
ket (resp. bra) for an arbitrary number of modes, representing an arbitrary scalar when the
number of modes is zero. Those are used to omit terms when the specific value of those terms
are not of interest, as in some equations of Figure 5. For the zero vector f = 0 (resp. g = 0),
as there is no term in the sum, we chose to represent it with ∅ (resp. an empty detector

∅). Note it is different from 0 (resp. 0) representing the nonzero vector |0⟩
(resp. ⟨0|).

CSL 2025

38:10 The LOfi-Calculus

▶ Definition 26. Let C: n → m a LOfi-circuit, let JCK : Bn → Bm be the linear map
inductively defined as JC2 ◦ C1K = JC2K ◦ JC1K, JC1 ⊗ C2K = JC1K ⊗ JC2K and:

s
f ñ

{
0 → Bñ f ∈ Bpre

ñ

s
gm̃

{
Bm̃ → 0 g ∈ B∗pre

m̃

J K B1 → B1 |k⟩ 7→ |k⟩
r

φ
z

B1 → B1 |k⟩ 7→ Pφ(|k⟩)
r z

B2 → B2 |k1, k2⟩ 7→ |k2, k1⟩
r

θ
z

: B2 → B2 |k1, k2⟩ 7→ Bθ(|k1, k2⟩)

where Bθ(|k1, k2⟩) :=
∑

ℓ1+ℓ2=k1+k2

√
ℓ1!ℓ2!
k1!k2!

∑
p+q=ℓ1
δ=p−q

(
k1
p

)(
k2
q

)
ck2+δ

θ (isθ)k1−δ |ℓ1, ℓ2⟩ and

Pφ(|k⟩) := eikφ |k⟩, with the convention
(

k
k′

)
= 0 for k < k′.

We can check that Pφ and Bθ are unitary operators [1] and are therefore well-defined on
the Hilbert space by continuity and linearity. One can also look at [36] for a more physical
interpretation of where the formulas come from.
▶ Remark 27 (Hermitian conjugate). We have P †

φ = P−φ and B†
θ = B−θ, where † is the

Hermitian conjugate. Therefore, ⟨ℓ|Pφ = (P−φ |ℓ⟩)† and ⟨ℓ1, ℓ2|Bθ = (B−θ |ℓ1, ℓ2⟩)†.

3.3 Equational theory of LOfi

Similarly to Section 2.2, we introduce an equational theory for LOfi in Figure 5.

▶ Definition 28 (LOfi-calculus). Two LOfi-circuits C,C ′ are equivalent according to the
rules of the LOfi-calculus, denoted LOfi ⊢ C = C ′, if one can transform C into C ′ using
the equations given in Figure 5.

▶ Remark 29. The Equation (p-p) is not present for it can be derived with the Equations (p2π),
(E2) and (s0-0d), alongside with Equation (b0), that can be derived with the rules of the
PROP, and the Equations (swap) and (E2). Note that the Equaiton (h2) can be considered
an equation of diagrams with holes.

▶ Proposition 30 (Soundness). For any two LOfi-circuits C and C ′, if LOfi ⊢ C = C ′

then JCK = JC ′K.

Proof. Since semantic equality is a congruence, it suffices to check the soundness for every
equation of Figure 5, which follows from Proposition 6 and Definition 26. Informally,
Axiom (zero) means that if there is the scalar5 0, then the semantics of all the circuit
(X ⊗ 0 = 0) is the null function. We can therefore nullify the other wires with the zeros

∅ and ∅ . This rule is specifically used for Remark 38. Axiom (s-0d) means we
can either (from LHS to RHS) project on |0⟩ on the last mode or (from right to left) add
any states fk ⊗ |k⟩ with k ̸= 0 as they are trivially orthogonal and cancelling. Axiom (h2)
means we can shift any function h : Bpre

2 → Bpre
2 from left to right where there are identity

wires, direct consequence of the associativity: ⟨ℓ1, ℓ2| (h |k1, k2⟩) = (⟨ℓ1, ℓ2|h) |k1, k2⟩. The
rules (dd), (b-d), (p-d) and (s0-d) are respectively the duals of (ss), (s-b), (s-p) and (s-0d). ◀

5 0 1 is an impossible event and is one way to represent the scalar 0 = ⟨1|0⟩ =
r

0 1
z

.

N. Heurtel 38:11

2π = (p2π) =
π
2

− π
2

− π
2

(swap)

α2

α1 α3
α0

=
β0β2

β3β1

(E2)

γ1

γ2

γ3

=

δ2

δ3δ1
(E3)

0 0 = (s0-0d)
0 1

=
0

∅ ∅

1
(zero)

f

f ′

= f⊗f ′ (ss) |.⟩ñ⊗ k1k2⊗|...⟩
θ

ñ

= |.⟩ñBθ(k1k2)|...⟩

ñ

(s-b)

fk⊗ k
0

= f0 (s-0d) |.⟩ñ⊗ k ⊗|...⟩ φ

ñ

= |.⟩ñ Pφ(k) |...⟩

ñ

(s-p)

g

g′

= g⊗g′ (dd) ⟨.|ñ⊗ ℓ1ℓ2⊗⟨...|
θ

ñ

= ⟨.|ñ(ℓ1ℓ2)Bθ⟨...|

ñ

(b-d)

gℓ⊗ ℓ
0

= g0 (s0-d) ⟨.|ñ⊗ ℓ ⊗⟨...|φ

ñ

= ⟨.|ñ (ℓ)Pφ ⟨...|

ñ

(p-d)

|...⟩⊗h(k1k2) ⟨...|⊗ ℓ1ℓ2 = |...⟩⊗ k1k2 ⟨...|⊗(ℓ1ℓ2)h (h2)

Figure 5 Axioms of the LOfi-calculus. The angles of (E2) and (E3) are the same as in the
axioms of the LOPP-calculus (Figure 3). h is any linear function Bpre

2 → Bpre
2 . The conventions for

{∅, |.⟩ , |...⟩ , ⟨.| , ⟨...|}, and the omitted sums are detailed in Definition 25. The interpretations of the
axioms are given in Proposition 30.

CSL 2025

38:12 The LOfi-Calculus

▶ Theorem 31 (Completeness). For any two LOfi-circuits C and C ′, if JCK = JC ′K then
LOfi ⊢ C = C ′.

Proof. The proof is in Section 4.4, direct consequence of the uniqueness of the normal forms
of Section 4. ◀

4 Unique normal forms leading to the completeness of the
LOfi-calculus

We introduce a set of oriented rewriting rules in Section 4.1, that converge to a set of
LOfi-circuits with specific shape and properties, defined in Section 4.2. The proof of their
uniqueness is summarised in Section 4.3. As a direct collorary of the uniqueness of the
normal forms, we prove the completeness of the LOfi-calculus in Section 4.4.

4.1 Deterministic rewriting procedure
A strongly normalising rewriting system, i.e. terminating to normal forms, has been introduced
in [10] for LOPP-circuits. We mainly reuse all the rules, alongside additional rules to now
take into account the sources and the detectors.

▶ Definition 32 (Rewriting system). Our rewriting system is defined on the PRO6 of LOfi-
circuits with the rules of Figure 6.

We can check that all the rules are sound, and have the following meaning:
The rules 1-11 are either the same or just slightly different from the rules described in [10].
With those rules, the LOPPP RO-circuits will converge to the triangular △-circuits defined
in Section 2.3.
The rule 12 removes any vector |fk′⟩ ⊗ |k′⟩ in the sources that is trivially cancelling with
the detector on the connected last wire, meaning that ⟨gk′ | = 0, i.e. that k′ /∈ L.
The rule 13 removes any ⟨gℓ′ | ⊗ ⟨ℓ′| in the detectors that is trivially cancelling with the
source on the connected last wire, meaning that |fℓ′⟩ = 0, i.e. that ℓ′ /∈ K.
The rule 14 allows, without changing the semantics, to transfer the generic coefficients
from the detectors to the sources. Specifically, any term of the form

∑
ℓ ξℓ ⟨Nm̃(L)| ⟨ℓ|

will be rewritten to ⟨Nm̃(L)| ⟨L|. The coefficients ξ will be in the source, as |fL⟩ |L⟩ will
be rewriten to

(∑
i∈K ξi |fi⟩

)
|L⟩. At the end and by repeating this rule, there won’t

be any degree of freedom in the detectors, and g =
∑

ℓ∈L ⟨Nm̃(ℓ)| ⟨ℓ|. The condition
(ξL ̸= 1) ∨ (∃ℓ ̸= L, ξℓ ≠ 0) is there to ensure that the rule is only used once for each L,
and only when it’s necessary.
The rule 15 uses the bijection N2 : N → N2 to remove one identity wire, by just relabelling
the indexes in the sources and detectors. Note that one identity wire will always remain
at the end.
The oriented rule (from left to right) coming from the axioms (ss) and (dd) merge all the
sources and detectors together.
The oriented rule (from left to right) coming from the axioms (s-b), (s-p), (b-d) and (p-d)
reduce the number of phase shifters and beam splitters as much as possible, by making
them be absorbed into the sources and detectors.

6 This is similar to [10], to prevent any deformation of the form = .

N. Heurtel 38:13

ψ → ψ mod 2π (1)

ψ
→

ψ mod 2π
(2)

φ2φ1 → φ1+φ2 (3)

0 → (4)

0
→ (5)

θ
φ

→
θ

−φ

φ

φ

(6)

π
2

φ

→
π
2

φ

(7)

θ4
→

π − θ4

π

π

(8)

θ5
→

θ5 − π

π

π

(9)

θ1

θ2

θ3

φ1
∗ →

δ3

δ4

δ6

δ2

δ1 δ5

δ7

δ8

δ9

(10)

θ1

φ1

θ2

∗
→

β0β2

β3β1

(11)

fk⊗k + fk′ ⊗k′ gℓ⊗ℓ

k′ /∈ L ℓ ∈ L

→ fk⊗k gℓ⊗ℓ

ℓ ∈ L

(12)

fk⊗k gℓ⊗ℓ + gℓ′ ⊗ℓ′

k ∈ L ℓ′ /∈ K

→ fk⊗k gℓ⊗ℓ

k ∈ L

(13)

fL⊗L
∑
ℓ∈L

ξℓNm̃(L)⊗ℓ
m̃

(ξL ̸= 1) ∨ (∃ℓ ̸= L, ξℓ ̸= 0)

g′
ℓ ⊥ Nm̃(L)

∑
k ̸=L

fk⊗k
∑
ℓ̸=L

g′
ℓ⊗ℓ++

→ ∑
k ̸=L

fk⊗k
∑
ℓ ̸=L

g′
ℓ⊗ℓ

m̃

(∑
i∈K

ξifi

)
⊗L Nm̃(L)⊗L

++ (14)

fk1,k2⊗ k1k2 gℓ1,ℓ2⊗ ℓ1ℓ2 → fk⊗k gℓ⊗ℓ

ℓ = N −1
2 (ℓ1, ℓ2)k = N −1

2 (k1, k2)

(15)

Figure 6 Rewriting system of the LOfi-calculus, alongside with the oriented version, from
the LHS to the RHS, of the axioms (ss), (s-b), (s-p), (dd), (b-d), and (p-d). ψ ∈ R \ [0, 2π),
φ,φ1, φ2 ∈ (0, 2π), θ4 ∈ (π

2 , π), θ5 ∈ [π, 2π), θ, θ1, θ2, θ3 ∈ (0, π). φ
∗

denotes either φ or
. The angles of the RHS of (11) and (10) are given by [10]. Nm : N → Nm is a bijection

arbitrary chosen to be N −1
m := N −1

2 ◦ N −1
m−1 for m > 2, where N −1

2 (ℓ, ℓ′) := 1
2 (ℓ+ ℓ)(ℓ+ ℓ′ + 1) + ℓ′

is the Cantor pairing function and N1 is the identity. By convention, the summation index is k ∈ K
for the sources and ℓ ∈ L for detectors, aside from the rule (14) where the sum is explicit for clarity.

CSL 2025

38:14 The LOfi-Calculus

▶ Definition 33 (Inputs of the rewriting system). For convenience, the inputs of the rewriting
procedures are LOfi-circuits with at least one identity wire connecting sources and generators,
and where all the sources (resp. detectors) are on the bottom left (resp. right).

▶ Remark 34. Note that choice is not restrictive, as the identity wire can always be added
with Axiom (s0-0d), and the sources and detectors can be placed at the desired position,
without changing the semantics, with the rules of PROP and by adding SWAPs.

▶ Lemma 35. If C1 rewrites to C2 using the rules of Figure 6, then LOfi ⊢ C1 = C2.

Proof. As an illustration, we show how we can derive the rule (14) in Appendix D. ◀

4.2 Normal forms of the LOfi-calculus
Formally with the rules of Figure 6 and informally with their meaning described in Section 4.1,
we can show that an irreducible form is a LOfi-circuit defined as follows:

▶ Definition 36 (Normal form). The normal forms of any nonzero LOfi-circuits are denoted
N(T,f) : n → m and are of the form:

f g

T
n m }

m̃+ 1ñ+ 1

{

where:
f is a nonzero generic state of Bpre

ñ+1.
g =

∑
ℓ∈K ⟨Nm(ℓ)| ⊗ ⟨ℓ|, where Nm : N → Nm is a bijection defined in Figure 6 and K

is the nonempty finite set {k ∈ N | fk ̸= 0} of f =
∑

k∈K fk ⊗ |k⟩, with the convention
K = {0} if ñ = 0 or m̃ = 0.
T : n+ ñ → m+ m̃ is a ñ△m̃-circuit as defined in Definition 13.

▶ Remark 37. If ñ = m̃ = 0, then the normal form is a normal form of LOPP (can be
for n = m = 0) tensored with the scalar α|0⟩ ⟨0| which has the semantics of a global
scalar α ∈ C.

▶ Remark 38. We could also consider the particular case of f = 0, i.e. K = ∅, where
JNK : Bn → Bm is the null function. In that case, N : n → m can be written to (∅)⊗m ◦
(∅)⊗n, which is a more fitted form for representing the null function.

▶ Lemma 39 (Strongly normalising). The rewriting system of Figure 6 is strongly normalising.

Proof. We introduce a ranking function (x1, . . . , x6) ∈ N6, where each component of the
tuple is determined by properties of the circuit, like the number of beam splitter with angles
out of [0, 2π), the number of sources and detectors, or the number of identity wires connecting
them. One nontrivial component is x6, that we explicit here.

Let note the generic terms in the sources as f =
∑
αk1,...,kñ+1 |k1, . . . , kñ+1⟩ and in the

detectors as g =
∑
βℓ1,...,ℓm̃+1 |ℓ1, . . . , ℓm̃+1⟩. We define:

x6 :=
∑

f∈sources
C1(f) +

∑
g∈detectors

(2C2(g) − C3(g))

N. Heurtel 38:15

with C1(f) := #{αk1,...,kñ+1 ̸= 0}, C2(g) := #{βℓ1,...,ℓm̃+1 ̸= 0}, and C3(g) := #{βNm̃(L),L =
1, L ∈ N}. The proof to show that the rule (14) strictly decreases x6 is the following. Let us
consider the two cases: (ξL ̸= 1) ∧ (∀ℓ ≠ L, ξℓ = 0) and (ξL = 1) ∧ (∃ℓ ̸= L, ξℓ = 0). The first
case doesn’t change C1 and C2, but the term −C3 strictly decreases by 1. The second case
doesn’t change C3, and the increase of C1, i.e. the amount of new terms in f , is bounded
by #{ξi ̸= 0, i ̸= L}, the number of terms removed in g, which is the exact decrease of C2.
Therefore, C1 + 2C2 decreases by at least #{ξi ̸= 0, i ≠ L} > 0. We can conclude that the
rule (14) strictly decreases x6. ◀

Now that the normal forms are well-defined, it remains to prove their uniqueness, which
is the purpose of the Section 4.3.

▶ Lemma 40 (Uniqueness of the Normal Forms). If two LOfi-circuits N and N ′ in normal
forms are such that JNK = JN ′K, then N = N ′.

4.3 The normal forms are unique: sketch of the proof
Let N(T,f) be a normal form. In order to prove the uniqueness of T and f , we proceed
with the following steps.
1. We first show that T is unique.
2. We introduce a set of operators Ωi,j(T), such that JNK =

∑
i,j ωi,jΩi,j(T). We show the

ωi,j to be canonically and uniquely associated with the coefficients of f .
3. We introduce a set of operators ∆u,v(T), that have very convenient properties and that

we show to be linearly independent.
4. We give an isomorphism between the Ω and ∆ operators, therefore proving the linear

independence of the Ωi,j(D), and proving the uniqueness of the coefficients of f .

▶ Lemma 41 (Uniqueness of T). For any two normal forms N(T,f) and N ′(T ′,f ′), if
JNK = JN ′K then T = T ′.

Proof. For any nonzero W =

u

w
v

φ
θ

f g

}

�
~ and W ′ =

t
φ′

θ′

f ′ g′

|

, we first

show that:

(θ, φ) ̸= (θ′, φ′) ⇒ ∃k ∈ N, lim
n→∞

⟨n+ k|W |n⟩
⟨n+ k|W ′ |n⟩

̸= 1.

As W = W ′, the limit of the ratio is necessarily equal to 1; the parameters
can’t be different and are therefore equal. The proof relies purely on the semantics
defined in Definition 26. We then prove the uniqueness of D by induction on the
min (number of inputs, number of outputs). ◀

▶ Definition 42 (Ω and ∆ morphisms). For any LOPP-circuit D, (i, j,u,v) ∈
(Nñ,Nm̃,Nm̃,Nm) we define Ωi,j(D) : n → m and ∆u,v(D) as:

Ωi,j(D) :=

u

wwww
v D

n m

i1

iñ jm̃

j1

}

����
~

pre

∆u,v(D) :=

u

wwww
v

D

n m

0

0 vn

v1

a†

a†

u1

um

}

����
~

pre

where â† : |k⟩ 7→
√
k + 1 |k + 1⟩ is the creation operator and J·Kpre := J·K |pre is the restriction

of J·K to Bpre.

CSL 2025

38:16 The LOfi-Calculus

▶ Remark 43. All the proofs regarding the Ω and ∆ morphisms only consider the semantics
on J.Kpre. That ensures the soundness of the proofs involving the unbounded operator â†, as
now all sums will be finite.

We give here two propositions that are the core of the proofs.

▶ Proposition 44 (Unique Ω-decomposition of the normal forms). For any ñ△m̃-circuit
T : n+ ñ → m+ m̃ and finite set

{
ωi,j , (i, j) ∈ (Nñ,Nm̃)

}
, there exists an unique normal

form N(T,f) : n → m, such that JNKpre =
∑

i,j∈(I,J) ωi,jΩi,j(T).

Proof. It follows from the linearity of J.Kpre and that ωi,j = f
iñ

i1

N −1
m̃ (j1, . . . , jm̃)

. ◀

▶ Proposition 45 (Threshold properties of the ∆-morphisms). For any ñ♢n-circuit ♢̃ : n+m →
n+m and (u,v) ∈ (Nn,Nm), ⟨y| ∆u,v(♢̃) |x⟩ is nonzero for (x,y) = (v,u) and is zero if
(x ≺r v) ∨ (y ≺r u), where ≺r is the reverse lexicographical order, i.e. y ≺r v if there exists
k such that yn = vn, . . . , yk+1 = vk+1 and yk < vk.

Proof. It is a consequence of the shape of the ñ♢n-circuits (Definition 15), and the properties
of ∆u,v. As there is no photon in the auxiliary sources, the input needs a certain number of
photons for them to be detected in the auxiliary detectors. Similarly, as we create photons at
the output with the creation operators â†, the output needs a certain number of photons. ◀

The linear independence of ∆ will be a consequence of Proposition 45 and a decomposition
of the Ω with ∆ morphisms will give the independence of the Ω, thus the uniqueness of the
ωi,j , and therefore the uniquess of the normal forms with Proposition 44.

4.4 Completeness of the LOfi-calculus: Proof of Theorem 31
Let C,C ′ two LOfi-circuits such that JCK = JC ′K. They can be rewritten to normal forms
by Lemma 35: LOfi ⊢ C = N and LOfi ⊢ C ′ = N ′. By soundness of LOfi, we have
JNK = JCK = JC ′K = JN ′K thus JNK = JN ′K. By Lemma 35, the normal forms are unique.
Therefore, N = N ′ and we have LOfi ⊢ C = N = N ′ = C ′, thus LOfi ⊢ C = C ′, proving
the completeness of the LOfi-calculus. ◀

5 Outlook

The formalism of the LOfi-calculus helped to find normal forms for linear optical circuits,
and the new operators introduced in Section 4 were particularly relevant for proving their
uniqueness. It is an open problem to know if those normal forms and new operators can have
further applications in simulation, compilation or the synthesis of linear optical circuits, or
even broader reach as the LOPP-calculus had for quantum circuits [11]. As those normal
forms make only sense with finite states, it is also an open problem to determine whether
normal forms exist in the infinite case, let alone their uniqueness.

References
1 Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. In

Proceedings of the 43th Annual ACM Symposium on Theory of Computing (STOC), STOC
’11, pages 333–342, New York, NY, USA, 2011. Association for Computing Machinery. doi:
10.1145/1993636.1993682.

https://doi.org/10.1145/1993636.1993682
https://doi.org/10.1145/1993636.1993682

N. Heurtel 38:17

2 Samson Abramsky and Bob Coecke. A categorical semantics of quantum protocols. In
19th Annual IEEE Symposium on Logic in Computer Science (LICS), pages 415–425, 2004.
doi:10.1109/LICS.2004.1319636.

3 Samson Abramsky and Bob Coecke. Categorical quantum mechanics, 2008. arXiv:0808.1023.
4 Stefan Ataman. A graphical method in quantum optics. Journal of Physics Communications,

2(3):035032, March 2018. doi:10.1088/2399-6528/aab50f.
5 Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, Leo Lobski, and John van de

Wetering. There and back again: A circuit extraction tale. Quantum, 5:421, March 2021.
doi:10.22331/q-2021-03-25-421.

6 Sara Bartolucci, Patrick Birchall, Hector Bombin, Hugo Cable, Chris Dawson, Mercedes
Gimeno-Segovia, Eric Johnston, Konrad Kieling, Naomi Nickerson, Mihir Pant, Fernando
Pastawski, Terry Rudolph, and Chris Sparrow. Fusion-based quantum computation. Nature
Communications, 14(1):912, 2023. doi:10.1038/s41467-023-36493-1.

7 Daniel E. Browne and Terry Rudolph. Resource-efficient linear optical quantum computation.
Phys. Rev. Lett., 95:010501, June 2005. doi:10.1103/PhysRevLett.95.010501.

8 Colin D. Bruzewicz, John Chiaverini, Robert McConnell, and Jeremy M. Sage. Trapped-ion
quantum computing: Progress and challenges. Applied Physics Reviews, 6(2), May 2019.
doi:10.1063/1.5088164.

9 Alexandre Clément, Noé Delorme, and Simon Perdrix. Minimal equational theories for
quantum circuits, 2023. arXiv:2311.07476, doi:10.48550/arXiv.2311.07476.

10 Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix, and Benoît Valiron.
Lov-calculus: A graphical language for linear optical quantum circuits. In Proceedings
of the 47th International Symposium on Mathematical Foundations of Computer Science
(MFCS), volume 241 of Leibniz International Proceedings in Informatics (LIPIcs), pages
35:1–35:16, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.MFCS.2022.35.

11 Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix, and Benoît Valiron.
A complete equational theory for quantum circuits. In Proceedings of the 38th Annual
ACM IEEE Symposium on Logic in Computer Science (LICS), Boston, MA, USA, 2023.
arXiv:2206.10577.

12 Alexandre Clément and Simon Perdrix. PBS-calculus: A graphical language for coherent
control of quantum computations. In Javier Esparza and Daniel Kráľ, editors, Proceedings
of the 45th International Symposium on Mathematical Foundations of Computer Science
(MFCS), volume 170 of Leibniz International Proceedings in Informatics (LIPIcs), pages 24:1–
24:14, Dagstuhl, Germany, August 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.MFCS.2020.24.

13 Bob Coecke and Ross Duncan. Interacting quantum observables: Categorical algebra and
diagrammatics. New Journal of Physics, 13(4):043016, April 2011. doi:10.1088/1367-2630/
13/4/043016.

14 N. Coste, D. A. Fioretto, N. Belabas, S. C. Wein, P. Hilaire, R. Frantzeskakis, M. Gundin,
B. Goes, N. Somaschi, M. Morassi, A. Lemaître, I. Sagnes, A. Harouri, S. E. Economou,
A. Auffeves, O. Krebs, L. Lanco, and P. Senellart. High-rate entanglement between a
semiconductor spin and indistinguishable photons. Nature Photonics, 17(7):582–587, 2023.
doi:10.1038/s41566-023-01186-0.

15 Giovanni de Felice and Bob Coecke. Quantum linear optics via string diagrams. Electronic
Proceedings in Theoretical Computer Science (EPTCS), 394:83–100, November 2023. doi:
10.4204/eptcs.394.6.

16 Giovanni de Felice, Razin A. Shaikh, Boldizsár Poór, Lia Yeh, Quanlong Wang, and Bob
Coecke. Light-matter interaction in the zxw calculus. Electronic Proceedings in Theoretical
Computer Science (EPTCS), 384:20–46, August 2023. doi:10.4204/eptcs.384.2.

CSL 2025

https://doi.org/10.1109/LICS.2004.1319636
https://arxiv.org/abs/0808.1023
https://doi.org/10.1088/2399-6528/aab50f
https://doi.org/10.22331/q-2021-03-25-421
https://doi.org/10.1038/s41467-023-36493-1
https://doi.org/10.1103/PhysRevLett.95.010501
https://doi.org/10.1063/1.5088164
https://arxiv.org/abs/2311.07476
https://doi.org/10.48550/arXiv.2311.07476
https://doi.org/10.4230/LIPIcs.MFCS.2022.35
https://arxiv.org/abs/2206.10577
https://doi.org/10.4230/LIPIcs.MFCS.2020.24
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1038/s41566-023-01186-0
https://doi.org/10.4204/eptcs.394.6
https://doi.org/10.4204/eptcs.394.6
https://doi.org/10.4204/eptcs.384.2

38:18 The LOfi-Calculus

17 Grégoire de Gliniasty, Paul Hilaire, Pierre-Emmanuel Emeriau, Stephen C. Wein, Alexia
Salavrakos, and Shane Mansfield. A spin-optical quantum computing architecture, 2024.
arXiv:2311.05605.

18 Marc de Visme and Renaud Vilmart. Minimality in finite-dimensional zw-calculi, 2024.
arXiv:2401.16225.

19 Ross Duncan and Maxime Lucas. Verifying the steane code with quantomatic. Electronic
Proceedings in Theoretical Computer Science (EPTCS), 171:33–49, December 2014. doi:
10.4204/eptcs.171.4.

20 Suren A. Fldzhyan, Mikhail Yu. Saygin, and Sergei P. Kulik. Compact linear optical
scheme for bell state generation. Physical Review Research, 3(4):043031, 2021. doi:
10.1103/PhysRevResearch.3.043031.

21 Liam Garvie and Ross Duncan. Verifying the smallest interesting colour code with quantomatic.
Electronic Proceedings in Theoretical Computer Science (EPTCS), 266:147–163, February 2018.
doi:10.4204/eptcs.266.10.

22 Herbert Goldstein, Charles Poole, and John Safko. Classical Mechanics. Addison Wesley, 3
edition, 2002.

23 Christian Gross and Immanuel Bloch. Quantum simulations with ultracold atoms in optical
lattices. Science, 357(6355):995–1001, 2017. doi:10.1126/science.aal3837.

24 Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the 28th Annual ACM Symposium on Theory of Computing (STOC), STOC ’96, pages
212–219, New York, NY, USA, July 1996. Association for Computing Machinery. doi:
10.1145/237814.237866.

25 Amar Hadzihasanovic, Kang Feng Ng, and Quanlong Wang. Two complete axiomatisations
of pure-state qubit quantum computing. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), LICS ’18, pages 502–511, New York, NY,
USA, 2018. Association for Computing Machinery. doi:10.1145/3209108.3209128.

26 Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems
of equations. Physical Review Letters, 103(15):150502, 2009. doi:10.1103/PhysRevLett.103.
150502.

27 Nicolas Heurtel. A complete graphical language for linear optical circuits with finite-photon-
number sources and detectors, 2024. arXiv:2402.17693, doi:10.48550/arXiv.2402.17693.

28 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A complete axiomatisation of the
ZX-calculus for Clifford+T quantum mechanics. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), LICS ’18, pages 559–568, New York, NY,
USA, 2018. Association for Computing Machinery. doi:10.1145/3209108.3209131.

29 Aleks Kissinger and John van de Wetering. Reducing T-count with the ZX-calculus. Physical
Review A, 102:022406, August 2020. doi:10.1103/PhysRevA.102.022406.

30 Aleks Kissinger and John van de Wetering. Simulating quantum circuits with zx-calculus
reduced stabiliser decompositions. Quantum Science and Technology, 7(4):044001, July 2022.
doi:10.1088/2058-9565/ac5d20.

31 Aleks Kissinger, John van de Wetering, and Renaud Vilmart. Classical simulation of quantum
circuits with partial and graphical stabiliser decompositions. In François Le Gall and Tomoyuki
Morimae, editors, Proceedings of the 17th Conference on the Theory of Quantum Computation,
Communication and Cryptography (TQC), volume 232 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 5:1–5:13, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.TQC.2022.5.

32 Morten Kjaergaard, Mollie E. Schwartz, Jochen Braumüller, Philip Krantz, Joel I.-J. Wang,
Simon Gustavsson, and William D. Oliver. Superconducting qubits: Current state of play.
Annual Review of Condensed Matter Physics, 11(1):369–395, March 2020. doi:10.1146/
annurev-conmatphys-031119-050605.

33 E. Knill. Quantum gates using linear optics and postselection. Physical Review A, 66(5):052306,
2002. doi:10.1103/PhysRevA.66.052306.

https://arxiv.org/abs/2311.05605
https://arxiv.org/abs/2401.16225
https://doi.org/10.4204/eptcs.171.4
https://doi.org/10.4204/eptcs.171.4
https://doi.org/10.1103/PhysRevResearch.3.043031
https://doi.org/10.1103/PhysRevResearch.3.043031
https://doi.org/10.4204/eptcs.266.10
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/3209108.3209128
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://arxiv.org/abs/2402.17693
https://doi.org/10.48550/arXiv.2402.17693
https://doi.org/10.1145/3209108.3209131
https://doi.org/10.1103/PhysRevA.102.022406
https://doi.org/10.1088/2058-9565/ac5d20
https://doi.org/10.4230/LIPIcs.TQC.2022.5
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1103/PhysRevA.66.052306

N. Heurtel 38:19

34 E. Knill, R. Laflamme, and G. J. Milburn. A scheme for efficient quantum computation with
linear optics. Nature, 409(6816):46–52, 2001. doi:10.1038/35051009.

35 Mark Koch, Richie Yeung, and Quanlong Wang. Speedy contraction of zx diagrams with
triangles via stabiliser decompositions, 2023. arXiv:2307.01803.

36 Pieter Kok, W. J. Munro, Kae Nemoto, T. C. Ralph, Jonathan P. Dowling, and G. J. Milburn.
Review article: Linear optical quantum computing. Reviews of Modern Physics, 79(1):135–174,
2007. doi:10.1103/RevModPhys.79.135.

37 J. C. Loredo, C. Antón, B. Reznychenko, P. Hilaire, A. Harouri, C. Millet, H. Ollivier,
N. Somaschi, L. De Santis, A. Lemaître, I. Sagnes, L. Lanco, A. Auffèves, O. Krebs, and
P. Senellart. Generation of non-classical light in a photon-number superposition. Nature
Photonics, 13(11):803–808, 2019. doi:10.1038/s41566-019-0506-3.

38 Saunders Mac Lane. Categorical algebra. Bulletin of the American Mathematical Society,
71:40–106, 1965. doi:10.1090/S0002-9904-1965-11234-4.

39 Paul McCloud. The category of linear optical quantum computing, 2022. arXiv:2203.05958.
40 Michael A. Nielsen. Optical quantum computation using cluster states. Phys. Rev. Lett.,

93:040503, July 2004. doi:10.1103/PhysRevLett.93.040503.
41 Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information.

Cambridge University Press, Cambridge, New York, 10th anniversary edition edition, 2010.
42 Jeremy L. O’Brien, Akira Furusawa, and Jelena Vučković. Photonic quantum technologies.

Nature Photonics, 3(12):687–695, December 2009. doi:10.1038/nphoton.2009.229.
43 Roger Penrose. Angular momentum: an approach to combinatorial space-time. In T. Bastin,

editor, Quantum Theory and Beyond, pages 151–180. Cambridge University Press, Cambridge,
1971.

44 Boldizsár Poór, Quanlong Wang, Razin A. Shaikh, Lia Yeh, Richie Yeung, and Bob Coecke.
Completeness for arbitrary finite dimensions of zxw-calculus, a unifying calculus. In 38th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, June 2023.
doi:10.1109/lics56636.2023.10175672.

45 John Preskill. Quantum computing 40 years later, 2023. arXiv:2106.10522.
46 Michael Reck, Anton Zeilinger, Herbert J. Bernstein, and Philip Bertani. Experimental

realization of any discrete unitary operator. Physical Review Letters, 73:58–61, 1994. doi:
10.1103/PhysRevLett.73.58.

47 Terry Rudolph. Why I am optimistic about the silicon-photonic route to quantum computing.
APL Photonics, 2, 2017. doi:10.1063/1.4976737.

48 Stefan Scheel. Permanents in linear optical networks, 2004.
49 Peter Selinger. Dagger compact closed categories and completely positive maps: (extended

abstract). Electronic Notes in Theoretical Computer Science, 170:139–163, 2007. doi:10.
1016/j.entcs.2006.12.018.

50 Peter W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In
Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS),
pages 124–134, November 1994. doi:10.1109/SFCS.1994.365700.

51 John van de Wetering, Richie Yeung, Tuomas Laakkonen, and Aleks Kissinger. Optimal
compilation of parametrised quantum circuits, January 2024. arXiv:2401.12877.

52 Quanlong Wang, Boldizsár Poór, and Razin A. Shaikh. Completeness of qufinite zxw calculus,
a graphical language for finite-dimensional quantum theory, 2024. arXiv:2309.13014.

53 N. Yoran and B. Reznik. Deterministic linear optics quantum computation with single photon
qubits. Phys. Rev. Lett., 91:037903, July 2003. doi:10.1103/PhysRevLett.91.037903.

CSL 2025

https://doi.org/10.1038/35051009
https://arxiv.org/abs/2307.01803
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1038/s41566-019-0506-3
https://doi.org/10.1090/S0002-9904-1965-11234-4
https://arxiv.org/abs/2203.05958
https://doi.org/10.1103/PhysRevLett.93.040503
https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1109/lics56636.2023.10175672
https://arxiv.org/abs/2106.10522
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1063/1.4976737
https://doi.org/10.1016/j.entcs.2006.12.018
https://doi.org/10.1016/j.entcs.2006.12.018
https://doi.org/10.1109/SFCS.1994.365700
https://arxiv.org/abs/2401.12877
https://arxiv.org/abs/2309.13014
https://doi.org/10.1103/PhysRevLett.91.037903

38:20 The LOfi-Calculus

A Notations

Table 1 Notations used in the paper.

Symbol Meaning
C,C ′ LOfi-circuits.

D,D′, T, △̃, ♢̃ LOPP-circuits, cf Table 2 for the specific classes of circuits.
φ, θ Parameters (angles) of phase shifters and beam splitters

n,m, ñ, m̃ Integers used for the number of inputs (n or n+ ñ) and outputs (m or m+ m̃)
i, j, k, ℓ, p, q Integers used for indexing.

s, t,u, v,x,y Fock basis vectors.
S, T ,U ,V Finite set of indexes associated with their lowercase vector. Often omitted in the sums.

Bm Hilbert space of the bosonic Fock space over m modes, cf Definition 17.
Bpre

m Pre-Hilbert space of the bosonic Fock space over m modes, cf Definition 19.
f , f ′ Vectors of Bpre.
g, g′ Vectors of (Bpre)∗, the dual of Bpre.
â†

j Creation operator over the mode j, introduced in Definition 42
Ω·,·,∆·,· Operators defined in Definition 42.
≺r,⪯r Reverse lexicographic order on vectors, cf Proposition 45.∑
,
∏

Finite sums and products when the upper bound or the set of indexes is omitted.

B Properties of the triangular forms of Section 2.3

Proof of Proposition 11
The coefficient ti,j of J△K1 is determined by the sum of all the paths from the jth input wire
to the ith output wire, where for each path, we multiply by a cos (resp. sin) term when the
photon is reflected on (resp. transmitted through) a beam splitter, and by a phase when the
path crosses a phase shifter. For instance:

t1,2 = cos(θ1,2)eiφ1,2i sin(θ1,1)eiφ1,1 and
t2,2 = i sin(θ1,2) cos(θ2,2)eφ2,2i sin(θ2,1)eiφ2,1 + cos(θ1,2)eφ1,2i sin(θ1,1) cos(θ2,1)eφ1,2 .

More generally, we have ti,j = eiφi,j cos(θi,j) × qi,j + ri,j where qi,j , ri,j are terms depending
uniquely on the the angles with lower indexes. We can notice there is at most one path from
the jth input wire to the ith output wire involving θi,j and φi,j and that qi,j ̸= 0 if and only
if all θk<i,j and θi,ℓ<j are nonzero. If one θi,ℓ<j is zero, then we have φi,j = θi,j = 0 by the
properties of the △-circuits. If there are K values of θk<i,j which are zero, then all the K
diagonals θk,ℓ′≥j are zero. By now considersing the path from the (j+K)th input wire to the
ith output wire, we recover the same type of equation with qi,j ̸= 0. Now, we can substract
ri,j and dividing by qi,j , so that we have eiφi,j cos(θi,j) = zi,j with zi,j = (ti,j − ri,j)/qi,j . If
zi,j ≠ 0 then θi,j ∈ [0, π

2) and φ ∈ [0, 2π) are uniquely determined. If zi,j = 0, then θi,j = π
2

and by the properties of △-circuits, we have φi,j = 0.

▶ Remark 46. The existence and the uniqueness have been shown in [10] for very similar
circuits that have two minor differences; the phases were on the top left of the beam splitters,
and the range of the thetas and phases, expect the last layer, were all in [0, π). We can
therefore have an alternative proof by changing the strongly normalising and confluent
rewriting system so the thetas are always in [0, π

2] and the phases stay on the bottom left
instead of the top left, without restricting their range.

N. Heurtel 38:21

Table 2 Shapes and properties of classes of triangle LOPP-circuits: n+ ñ → m+ m̃. (∗,◦) are
angles in [0, 2π) × [0, π

2] that satisfy the properties of Defitions 9 and 13. We emphasis the nonzero
angles of ♢̃ by noting • an arbitrary angle in (0, π

2]. The angles which are necessarily zero for the
property 3 and 4 of Definition 13 are in red. We have n = ñ = 3,m = 4 and m̃ = 2 for the first two
figures, and m̃ = n = 2 and ñ = m = 3 for the third.

Shape Properties
△-circuits (Definition 9)

◦
◦

◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦◦ ◦

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗ ∗ ∗

∗

∗

∗

∗

∗

Uniquely determined by J·K1 (Pro-
position 11).

ñ△m̃-circuits (Definition 13)
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗
00

0

0

0

0

0

0

0
0

0

0

0

Uniquely determined by the sub-
matrix J·K1 (1 : m, 1 : n) (Proposi-
tion 14). Used for the normal forms
of LOfi.

ñ♢n-circuits (Definition 15)

•

•

•

•

•

•

∗

∗

∗

They have exactly ñ × m̃ nonzero
beam splitters, with no identity wire.
They are used in the proofs of Sec-
tion 4.

C Choice of the generators

The sources and detectors of the LOfi-calculus allow any and arbitrary finite support state
on many modes, which may seem to be too powerful or far from the physical implementation.
In that regard, we would like to highlight that:

Some sources can directly generate more generic states such as a coherent superposition
with the vacuum of the 2-photon state [37], or even directly create entangled states [14].

Linear optical circuits are very modular, and each building block is usually used many
times. It would therefore be more convenient to sometimes represent those building blocks
directly by specifying what they do, instead of how they are implemented, as illustrated
in Figure 2.

Optical interactions are very combinatorics, thus being unlikely to have a complete
equational theory with only single mode sources7.

This formalism still allows finding new results for linear optics, like the unique normal
forms Section 4.

7 We can note that [15] bypasses that problem by allowing sums of diagrams

CSL 2025

38:22 The LOfi-Calculus

D Derivation in LOPP of the rule (14)

First, we show that we can derive a similar rule of (h2) but only on one wire:

|...⟩⊗ h̃(k) ⟨...|⊗ ℓ = |...⟩⊗ k ⟨...|⊗(ℓ)h̃ (h1)

To prove it, we consider a linear function h : Bpre
2 → Bpre

2 such that for every k ∈ N,
h(|k, 0⟩) = h̃(|k⟩) and (⟨k, 0|)h = (⟨k|)h̃.

|...⟩⊗ h̃(k) ⟨...|⊗ ℓ
(s0−0d)=

0 0

⟨...|⊗ ℓ|...⟩⊗ h̃(k)

(ss)= ⟨...|⊗ ℓ 0|...⟩⊗ h̃(k)0

= ⟨...|⊗ ℓ 0|...⟩⊗h(k0)

(h2)= ⟨...|⊗(ℓ 0)h|...⟩⊗ k0

= ⟨...|⊗(ℓ)h̃⊗ 0|...⟩⊗ k0

(ss)=
|...⟩⊗ k ⟨...|⊗(ℓ)h̃

0 0

(s0−0d)= |...⟩⊗ k ⟨...|⊗(ℓ)h̃

▶ Lemma 47. We can derive the equation (14) in the LOfi-calculus:

fL⊗L
∑
ℓ∈L

ξℓNm̃(L)⊗ℓ
m̃

(ξL ̸= 1) ∨ (∃ℓ ̸= L, ξℓ ̸= 0)

g′
ℓ ⊥ Nm̃(L)

∑
k ̸=L

fk⊗k
∑

ℓ̸=L

g′
ℓ
⊗ℓ++

= ∑
k ̸=L

fk⊗k
∑

ℓ̸=L

g′
ℓ
⊗ℓ

m̃

(∑
i∈K

ξifi

)
⊗L Nm̃(L)⊗L

++

N. Heurtel 38:23

Proof. Let ⟨ψL| =
∑

ℓ∈L ξℓ ⟨ℓ|. We have g = ⟨Nm̃(L)| ⟨ψL| +
∑

ℓ∈L\{L} ⟨gℓ| ⟨ℓ|. Let h̃ :
Bpre

1 → Bpre
1 be a linear function which is the identity on |i⟩ for every i ∈ (K ∪ L) \ {L}, such

that ⟨L| h̃ = ⟨ψL|, and zero elsewhere. We can check that h̃ |k⟩ = |k⟩ + ξk |L⟩ for k ̸= L, and
h̃ |L⟩ = ξL |L⟩. We have:

g = ⟨Nm̃(ℓ)| ⟨ψL| +
∑

ℓ∈L\{L} ⟨gℓ| ⟨ℓ|
= ⟨Nm̃(L)| ⟨L| h̃+

∑
ℓ∈L\{L} ⟨gℓ| ⟨ℓ| h̃

The linear function h̃ can therefore be removed with the equation (h1), leading to:

f = |fL⟩ h̃(|L⟩) +
∑

k ̸=L |fk⟩ h̃(|k⟩)
= ξL |fL⟩ |L⟩ +

∑
k ̸=L |fk⟩ (|k⟩ + ξk |L⟩)

=
(∑

i∈K ξi |fi⟩
)

|L⟩ +
∑

k ̸=L |fk⟩ |k⟩

◀

CSL 2025

A Strictly Linear Subatomic Proof System
Victoria Barrett1 #

Department of Computer Science, University of Bath, UK
Inria Saclay, Palaiseau, France

Alessio Guglielmi # Ñ

Department of Computer Science, University of Bath, UK

Benjamin Ralph # Ñ

Department of Computer Science, University of Bath, UK

Abstract
We present a subatomic deep-inference proof system for a conservative extension of propositional
classical logic with decision trees that is strictly linear. In a strictly linear subatomic system, a single
linear rule shape subsumes not only the structural rules, such as contraction and weakening, but also
the unit equality rules. An interpretation map from subatomic logic to propositional classical logic
recovers the usual semantics and proof theoretic properties. By using explicit substitutions that
indicate the substitution of one derivation into another, we are able to show that the unit-equality
inference steps can be eliminated from a subatomic system for propositional classical logic with only
a polynomial complexity cost in the size of the derivation, from which it follows that the system
p-simulates Frege systems, and we show cut elimination for the resulting strictly linear system.

2012 ACM Subject Classification Theory of computation → Proof theory

Keywords and phrases Deep inference, Open deduction, Subatomic logic, Decision trees, Explicit
substitutions, Cut elimination, Proof theory

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.39

Funding Victoria Barrett: This work was supported by the Engineering and Physical Sciences
Research Council [EP/R513155/1] and Inria Exploratory Action IMPROOF.

1 Introduction

A change of formalism can provide us with a new lens on the proof theory of familiar logics,
allowing for certain proof-theoretic properties that might be unachievable in more established
systems [7, 20]. One of the main motivations behind the deep-inference [13] methodology is
the pursuit of locality, allowing us to check the correctness of inference steps in constant
time. Therefore, many deep-inference proof systems consist of inference rules that are either
atomic or linear [5, 6, 8, 9]. Examples of atomic and linear rules for propositional classical
logic are, respectively, the atomic contraction and the medial rule, shown here:

a ∨ a
c

a

(A ∧B) ∨ (C ∧D)
m

(A ∨ C) ∧ (B ∨D)

One way that locality has been used to benefit the proof theory of classical logic is via the
normalisation mechanisms employing atomic flows [3, 14, 15], which use the fact that all
rules are either atomic or linear to trace the flow of atoms in a derivation. A proof system
with atomic structural rules also allows for finer control of compression mechanisms such
as contraction, giving fully lazy sharing when translated into the lambda calculus through
a Curry-Howard interpretation [16]. However, the notion of linearity used in such proof
systems only applies to atoms. In this work, we define and pursue a more extreme form of

1 Corresponding Author
© Victoria Barrett, Alessio Guglielmi, and Benjamin Ralph;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 39; pp. 39:1–39:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vlb27@bath.ac.uk
https://orcid.org/0009-0005-8470-8093
mailto:ag248@bath.ac.uk
http://alessio.guglielmi.name/
https://orcid.org/0000-0002-7234-2347
mailto:bdr25@bath.ac.uk
https://people.bath.ac.uk/bdr25/
https://orcid.org/0000-0002-5075-9360
https://doi.org/10.4230/LIPIcs.CSL.2025.39
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 A Strictly Linear Subatomic Proof System

linearity, strict linearity, in which we require not only linearity with respect to the units
instead of the atoms in a derivation. By introducing another proof compression mechanism
that has been studied in deep-inference settings [12, 19], explicit substitutions, into our
proof system, we can define a sound and complete proof system with strictly linear rules,
while keeping a handle on proof complexity.

To achieve strict linearity, we further develop the subatomic logic approach [1, 2], where
atoms are treated as non-commutative self-dual connectives whose arguments are their truth
values. Subatomic logics necessitate a deep-inference proof system, since cut elimination for
logics with non-commutative self-dual connectives are not possible in Gentzen systems [20].
While the syntax of subatomic logic may seem obscure, semantically they can be understood
as the integration of binary decision trees into the the standard language of propositional
classical logic [4].

When translated into subatomic logic, both linear and non-linear inference rules can be
encoded by a common linear shape, called the subatomic shape:

(A α B) β (C α D)
(A β C) α (B β D)

,

Deep-inference proof systems using the subatomic shape are able to capture a range of logics,
including those that cannot be expressed in a Gentzen formalism such as BV, and characterise
their normalisation in a common way across these different logics [1].

Indeed, although translating a deep-inference proof system into subatomic logic results in
a larger space of proofs, normalisation is simplified because there is only a single rule shape,
and so the number of possible interactions is limited. Therefore, to ensure the preservation
of standard proof-theoretic results such as cut elimination we can take a standard, non-
subatomic derivation, translate it to subatomic logic to perform the standardised proof
theoretic procedure in a system with only a single rule shape, before projecting back to the
standard level.

This paper takes the principles underlying subatomic proof theory even further. In
previous work in subatomic logic, the structural rules are subsumed by the subatomic rule
shape but inference rules obtained from unit equalities are left intact. However, because
the interpretation map from subatomic logic to a non-subatomic logic can collapse these
unit equalities itself, there is a redundancy here and a natural question arises: can the rules
obtained from unit equalities be eliminated from subatomic proof systems? In this paper we
show that the answer is positive.

We call a proof system strictly linear if it contains only rules of the subatomic shape.

Inference rules based on unit equalities such as
A ∧ t
A

are not strictly linear, because they are

not linear in the units. We have two main motivations for studying such systems.
The first concerns normalisation. With only a single rule shape, normalisation procedures

can be simplified yet further, and interference caused by unit-equality inference steps can be
eliminated.

The second concerns semantics and complexity. Factorising proofs using explicit substi-
tutions allows for the compression of proofs and the elimination of an unnecessary form of
“bureaucracy” [19]. More speculatively, this work provides a theoretical foundation for the
development of a proof system with explicit substitutions that retains locality, and without
having to exclude derivations containing cycles between cuts and identities [3, 18]. Having
defined explicit substitutions for strictly linear proofs and begun to explore how they impact
complexity and normalisation, we can in the future lift this to the standard, non-subatomic
level using the interpretation from subatomic to standard logic.

V. Barrett, A. Guglielmi, and B. Ralph 39:3

In summary, the central contribution of this work is to show that a strictly linear system
for the subatomic version of propositional classical logic can be obtained. We do so by
showing that a subatomic proof with unit-equality rules can be transformed into one with
no unit-equality rules but with explicit substitutions, with only a polynomially-bounded
increase in the size of the proof. In doing so, this work furthers the tradition of using the
compositional freedom offered by deep-inference formalisms to regularise and homogenise
proof systems and normalisation procedures, entirely eliminating all structural variety and
non-locality from inference rules.

Outline
In Section 2 we define the preliminaries necessary for the paper: we introduce explicit
substitutions and describe the ways in which derivations containing them can be composed,
we introduce the proof systems that we will use in this work, in particular we introduce
subatomic and strictly linear systems for classical logic.

In Section 3 we introduce the technical machinery that we will use to prove the results in
the later chapter, in particular, the Eversion Lemma.

In Section 4 we show that the unit-equality inference steps can be eliminated from a
subatomic system for propositional logic. From this result, we can obtain a strictly linear
system that is complete for classical logic. In particular, we show that, by using eversion and
explicit substitutions, we can achieve this with only a polynomial complexity cost in the size
of the derivation.

In Section 5 we show that the cut rule can be eliminated from the strictly linear system
in a way that is preserved by interpretation to the standard, non-subatomic level.

2 Preliminaries

▶ Definition 1. We have the following mutually disjoint countable sets of atoms, connectives,
units and variables:

A = {a, b, c, . . . }, C = {∧,∨}, U = {0, 1}, V = {x, y, z, w, . . . }

The set of formulae, F is defined in the following way:

F ::= V | U | F A F | F C F | ⟨F|V⟩ F

Note that, since we are working with subatomic logic, atoms are binary connectives rather
than atomic formulae. We also can compose formulae by explicit substitution, where
⟨A|x⟩B denotes the explicit substitution of A for a variable x in B.

Formulae containing no explicit substitutions are called flat formulae. Given a formula
A, we write flA, the flat expansion of A, for the formula where all the explicit substitution
terms ⟨C|x⟩D appearing in A are applied, i.e. each instance of the variable x in D is replaced
by C, and flA is the (unique) formula so obtained. We denote by A ≡ B the syntactic identity
of A and B modulo renaming of variables bound by explicit substitution.

▶ Definition 2. Let the two operations down-saturation and up-saturation on atoms
and connectives be defined as q∧ = q∨ = ∨, p∧ = p∨ = ∧ and pa = qa = a for each a ∈ A.

This definition can be extended to formulae by replacing each atom and connective by its
up- or down-saturation respectively.

CSL 2025

39:4 A Strictly Linear Subatomic Proof System

▶ Definition 3. The set of derivations D, denoted by ϕ, ψ, χ, ω, . . . , is defined by the
grammar:

D ::= V | U

| D C D | D A D composition by connective or atom,∣∣∣∣∣∣ D
✿✿

D
composition by expansion,

∣∣∣∣∣∣ D
r

D
composition by inference or inference step,

∣∣ ⟨D|V⟩ D composition by explicit substitution,

We say that ⟨ϕ|x⟩ψ is the explicit substitution of ϕ into a variable x of ψ. We define free
and bound variables in the usual way: in particular every occurrence of x in ψ is bound
in ⟨ϕ|x⟩ψ and if a variable occurrence is not bound it is free. We do not consider the
substitution variable x in ⟨ϕ|x⟩ to be an occurrence of the variable x so it is neither free nor
bound. We denote by ϕ the set of free variables appearing in the derivation ϕ.

We say that a derivation is open if it contains no units (so that its every leaf is a free
variable that can be substituted into) and that it is flat if it contains no explicit substitutions.
Explicit substitution terms such as ⟨ϕ|x⟩ can be denoted by π, ρ, σ, τ , and so on. We may
drop parentheses and boxes when there is no ambiguity. We denote by ϕ ≡ ψ the syntactic
identity of ϕ and ψ modulo renaming of bound variables and associativity of compositions by
expansion and inference.

▶ Definition 4. The size |ϕ| of a derivation ϕ is the number of occurrences of variables and
units appearing in it, not counting the substitution variables in explicit substitution terms,
i.e. |⟨ϕ|x⟩ψ| = |ϕ| + |ψ|.

▶ Definition 5. The two maps premise and conclusion, pr, cn : D → F and the two maps
width and height, w, h : D → N are so defined:

If ϕ ∈ F , then pr ϕ ≡ cnϕ ≡ ϕ and w ϕ = |ϕ| and hψ = 0
If ϕ ≡ ψ α χ, then

pr ϕ ≡ prψ α prχ w ϕ = wψ + wχ
cnϕ ≡ cnψ α cnχ hϕ = max(hψ, hχ)

If ϕ ≡ ⟨ψ|x⟩χ, then

pr ϕ ≡ ⟨prψ|x⟩ prχ w ϕ = wψ + wχ
cnϕ ≡ ⟨cnψ|x⟩ cnχ hϕ = max(hψ, hχ)

if ϕ ≡
ψ

χ
or ϕ ≡

ψ
✿✿

χ
, then

pr ϕ ≡ prψ w ϕ = max(wψ,wχ)
cnϕ ≡ cnχ hϕ = hψ + hχ+ 1

V. Barrett, A. Guglielmi, and B. Ralph 39:5

In Definition 3, we give the definition of a derivation abstracted from any particular
proof system, with no correctness criteria given for composition by expansion or inference.
However, to be able to identify correct derivations for a specific deep-inference proof system,
we need to define what it means to be a correct instance of an inference rule. Furthermore,
in order to define proof systems equipped with explicit substitutions, we need to show that

the correctness of an instance of composition by expansion
A
✿✿

B
can be decided in polynomial

time on the size of A and B. Proposition 7 adapts Paterson and Wegman’s algorithm for
linear unification [17] to this problem, in the style of [10].

▶ Definition 6. An inference rule is a relation on formulae decidable in polynomial time on
the size of its arguments. A proof system is a finite set of unit equality and subatomic-linear
rules. Given a proof system S, an inference step such that (cnψ, prχ) ∈ r ∈ S, for some

rule r, is called an instance of r and is denoted as
ψ

r

χ
.

In this paper, we only discuss proof systems with two types of inference rules, unit-
equality rules and subatomic rules. We can therefore specify the unit-equality and
subatomic rules of a proof system S by S= and Ssa respectively.

▶ Proposition 7. Given formulae A and B, the identity flA ≡ flB can be decided in linear
time with respect to the size of the formulae, by comparing the flat expansions of A and B
without actually performing the substitutions.

Proof. Let us call a normal representation of A a formula

C ≡ ⟨Cn|xn⟩ · · · ⟨C1|x1⟩C0

such that, for n ≥ 0, x1, . . . , xn are fresh, distinct variables, C0, . . . , Cn are flat, C0 /∈
{x1, . . . , xn}, each of C1, . . . , Cn contains one and only one connective and flC ≡ flA; C
can be obtained from A in linear time on |A|. Let

D ≡ ⟨Dm|ym⟩ · · · ⟨D1|y1⟩D0

be a normal representation of B; we can check flA ≡ flB by the following recursive procedure
invoked as p(C0, D0):

Procedure p(Ci, Dj).
1. if Ci ≡ Dj , return success;
2. otherwise, if Ci ≡ xih ∈ {x1, . . . , xn} and Dj ≡ yjh

∈ {y1, . . . , ym} and p(Cih , Djh
)

succeeds, then return success;
3. otherwise, if Ci ≡ Ci1 α Ci2 and Dj ≡ Dj1 α Dj2 and, for h = 1, 2, p(Cih , Djh

) succeeds,
then return success;

4. otherwise, return failure.
To convert the formula A into its normal representation is linear: we transform every
subformula A1 αA2 to ⟨A1|z⟩ ⟨A2|z′⟩(z α z′); the number of such transformations is bounded
by the number of connectives in A. To satisfy the constraint that each Ci, i > 1 contains
exactly one connective, explicit substitutions of the form ⟨A|x⟩ for A ∈ U ∪ V are applied
without increasing the size of the formula.

Where we are comparing formulae ⟨Ci|xi⟩K{xi} and ⟨Dj |yj⟩K{yj}, the procedure
p(Ci, Dj) need only be performed once, so the comparison is linear on the size of the original
formulae. ◀

CSL 2025

39:6 A Strictly Linear Subatomic Proof System

▶ Definition 8. Given a proof system S, we say that a derivation ϕ in D is a derivation
in S if every inference step in ϕ is an instance of some rule of S and for each composition

by expansion
ψ
✿✿

χ
we have fl cnψ ≡ fl prχ. One way to denote such a derivation is

A
ϕ S

B
, where

A and B are the premise and conclusion of ϕ. We note that by Proposition 7 establishing
the correctness of composition by expansion is decidable in linear time.

▶ Definition 9. We define a set of subatomic rules generated by the following scheme

(x pα y) β (z α w)
pαβ

(x β z) α (y β w)
(x α y) β (z pα w)

βpα

(x β z) α (y β w)

(x α y) β (z α w)
qβα

(x qβ z) α (y β w)
(x α y) β (z α w)

αqβ

(x β z) α (y qβ w)

where α, β ∈ C ∪ A. We define the set of subatomic rules KDT to be every rule generated by

this scheme together with the mix rule
A ∧B

q∧
A ∨B

.

We define a set of unit-equality rules Keq as follows:

x
=1
x ∨ 0

x ∨ 0
=2

x

x
=3

0 ∨ x

0 ∨ x
=4

x

0
=5

0 α 0
0 α 0

=6
0

where α ∈ {∧,a, b, c, . . . }

x
=7
x ∧ 1

x ∧ 1
=8

x

x
=9

1 ∧ x

1 ∧ x
=10

x

1
=11

1 β 1
1 β 1

=12
1

where β ∈ {∨,a, b, c, . . . }

We now define two proof systems by specifying their unit-equality and subatomic rules:
KDTS, where KDTS= = ∅ and KDTSsa = KDT.
KDTeq, where KDTeq= = Keq and KDTeqsa = KDT.

We say that a derivation in KDTS or KDTeq is a proof if its premise is equal to 1 with
respect to the unit equalities given in Keq.

▶ Remark 10. Is shown in [4] that the system KDTeq employed in a formalism without explicit
substitutions is sound and complete for standard non-subatomic propositional classical logic
conservatively extended by decision trees.

Therefore, in this paper, we will only work with KDTeq derivations that are flat, i.e.
without any explicit substitutions and we will refer to the logic this system corresponds to as
subatomic propositional classical logic.

▶ Definition 11. Let ψ and χ be two derivations such that cnψ ≡ prχ. We define a derivation
called the synchronal composition of ψ and χ, denoted as

ψ
...
χ

;

we do so by structural induction, as follows:

V. Barrett, A. Guglielmi, and B. Ralph 39:7

1. if ψ is a formula, then
ψ
...
χ

≡ χ; similarly, if χ is a formula, then
ψ
...
χ

≡ ψ;

2. if ψ ≡ α(ψ1, . . . , ψn) and χ ≡ α(χ1, . . . , χn), then
ψ
...
χ

≡ α

 ψ1....
χ1

, . . . ,
ψn....
χn

;

3. if ψ ≡ ⟨ψ1|x⟩ψ2 and χ ≡ ⟨χ1|x⟩χ2, then
ψ
...
χ

≡ ⟨ ψ1....
χ1

∣∣∣∣∣∣x⟩ ψ2....
χ2

;

4. if ψ ≡
ψ1
✿✿

ψ2
, then

ψ
...
χ

≡

ψ1
✿✿✿

ψ2....
χ

; similarly, if χ ≡
χ1
✿✿

χ2
, then

ψ
...
χ

≡
ψ
....
χ1
✿✿✿

χ2

;

5. if ψ ≡
ψ1

ψ2
, then

ψ
...
χ

≡

ψ1

ψ2....
χ

; similarly, if χ ≡
χ1

χ2
, then

ψ
...
χ

≡
ψ
....
χ1

χ2

.

▶ Definition 12. A section of a derivation ϕ is any formula A such that

ϕ ≡
ψ
...
A
...
χ

,

for some derivations ψ and χ; in the above derivation, each section of ψ is said to be above
each section of χ and each section of χ is said to be below each section of ψ.

▶ Definition 13. Formula contexts are used to indicate formulae with one or more holes,
and are denoted A{ } · · · { }, or with other letters as necessary, often H and K. The holes
can be filled by derivations as well as formulae. When unambiguous, we write A{B} to
indicate the formula A where the location of its subformula B has been singled out.

▶ Definition 14. We denote an actual substitution that maps x to A and leaves all other
variables unchanged by [A|x]. Actual substitutions can be applied to derivations and [A|x]ϕ
stands for the derivation obtained by replacing every free occurrence of x in ϕ by the formula
A and we say that this substitutes A for x in ϕ. In the specific case where we are substituting
into a formula, we can extend this notion to allow for the actual substitution of a derivation
into a formula, where [ψ|x]B is obtained by replacing every free occurrence of x in the
formula B by the derivation ψ. Note that [A|x]B{x} ≡ B{A} if x does not appear free in
B{ }.

We abbreviate the simultaneous actual substitution [B1|x1, . . . , Bn|xn]A as [Bi|xi]1...nA.
Given a set of variables S = {x1, . . . , xn}, we write [Bi|xi]S A for [B1|x1, . . . , Bn|xn]A; we
might also write [Bv|v]S A to stand for [Bx1 |x1, . . . , Bxn

|xn]A. We denote both individual
and simultaneous actual substitutions by π, ρ, σ and τ , and so on.

We extend the conventions on simultaneous actual substitutions to explicit substi-
tutions and derivations. Therefore, we might indicate with ⟨Bv|v⟩A ϕ the substitution
⟨Bx1 |x1, . . . , Bxn |xn⟩ϕ, where A = {x1, . . . , xn} is the set of free variables of A (see Defini-
tion 1).

CSL 2025

39:8 A Strictly Linear Subatomic Proof System

The notation [Bv|v]AA is at risk of being ambiguous because the enumeration of the
variables is arbitrary. For example, if A = {v1, v2} and B1 = v2 then [B1|v1] [B2|v2]A ̸≡
[B2|v2] [B1|v1]. We take care to use this notation only when it is unambiguous and there is
no dependency between substitutions.

3 The Merge and Eversion Lemmas

We are now ready to first prove the Merge Lemma, and then its generalisation the Eversion
Lemma, which enables the proof of the main results of this paper. As we explained in the
introduction, we want to be able to eliminate all the non-linear equality rules from KDTeq to
produce a strictly linear proof in KDTS. Using the Eversion Lemma, we are able to transform
the derivation on the left into the derivation on the right:

πϕ
.......................

πK

{
A

A ∨B

}
.......................

πψ

−→

π[x ∨B|x]Aϕ..

πK

[x ∨B|x]AA

A ∨
[B|x]A qA[
qAy

∣∣∣y]
B
B

..

π
[

qAy
∣∣∣y]

B
ψ

,

where we assume that A and B are open formulae and that qAy is obtained from A by
replacing every variable by y and every connective with its down-saturation. By doing this
transformation, the inference step becomes strictly linear. This propagates substitutions up
and down the derivation but does not affect its structure.

Before stating and proving the full Eversion Lemma, we state and prove the Merge
Lemma, a version of it restricted to a substitution with a single connective or atom.

▶ Proposition 15 (Merge Lemma). Let A be an open formula with variables {x1, . . . , xn}
and let β ∈ C ∪ A. Then there exist KDTS derivations:

[yi β zi|xi]AA

[yi|xi]AA β [zi|xi]A qA

[yi|xi]AA β [zi|xi]A pA

[yi β zi|xi]AA
.

The width and height of each derivation are bounded by 2|A|.

Proof. We consider the derivation on the left and proceed by induction on the structure
of A.

If A ≡ xi then we take the derivation yi β zi.
If A ≡ C α D then we build:

[yi β zi|xi]CC

[yi|xi]CC β [zi|xi]C qC
α

[yi β zi|xi]DD

[yi|xi]DD β [zi|xi]D qD
βqα (

[yi|xi]CC α [yi|xi]DD
)
β

(
[zi|xi]C qC qα [zi|xi]D qD

) .

V. Barrett, A. Guglielmi, and B. Ralph 39:9

If A ≡ ⟨C|w⟩D then we build:

⟨ [yi β zi|xi]CC

[yi|xi]CC β [zi|xi]C qC

∣∣∣∣∣∣∣w⟩ [yi β zi|xi]DD

✿✿✿

⟨[yi|xi]CC
∣∣∣w′⟩ ⟨[zi|xi]C qC

∣∣∣w′′⟩
[yi β zi|xi]D [w′ β w′′|w]D

[yi|xi]D [w′|w]D β [zi|xi]D [w′′|w] qD
✿✿✿

⟨[yi|xi]CC
∣∣∣w⟩ [yi|xi]DD β ⟨[zi|xi]C qC

∣∣∣w⟩ [zi|xi]D qD

.

That is, we perform a merge on C and then, with the first composition by expansion, we
replace all occurrences w in D by w′ β w′′, the minimal amount of structure needed to
perform the merge on D. The second composition by expansion then rearranges this to
the desired structure.

The width of the derivation is at most 2|A|; note that
∣∣∣[yi β zi|xi]AA∣∣∣ < 2|A| if there are

explicit substitutions in A.
For each connective in A there is a corresponding instance of composition by rule in the

constructed derivation; and for each explicit substitution in A, there are two corresponding
instances of composition by expansion. Therefore the height of the derivation is at most 2|A|,
the worst scenario being a formula only composed of explicit substitutions, each of which is
of size 1. ◀

We call the derivations on the left in Proposition 15 down-merges, and the derivations on
the right up-merges.

We can use the Merge Lemma to simulate unit-equality inference steps, without affecting
the value or the structure of the rest of the derivation. For example, the unit-equality

inference step
A

=
A ∧ 1

becomes
[w ∧ 1|w]AA

A ∧ [1|x]A qA
. This propagates w ∧ 1 upwards through the

derivation in place of w, for each variable w occurring in A, and propagates [1|w]A qA, which
is equal to 1 for any formula A, downwards through the derivation in place of this occurrence
of 1.

A naïve approach to eliminating the unit-equality inference steps in this way will blow
up the size of the derivation exponentially. To see this, we can consider the following
transformation, in which π substitutes a unit onto the variable x and we assume that in each
section of ψ, x occurs exactly once, so that the two inference steps shown form a pair:

π

ϕ
.......................

K

{
A

=
A α x

}
.......................

ψ
.......................

H

{
B β x

=
B

}
.......................

χ

−→ π

[v β x|v]H{ }[w α x|w]Aϕ
...

[v β x|v]H{ }K

[w α x|w]AA

A α qAx

...

[v β x|v]H{ }

[
qAx

∣∣∣x]
ψ

..

[v β x|v]H{ }H
{
B β qAx

}
H{B}
..........
χ

β [x|v]
|H{ }

qH{ qAx}

CSL 2025

39:10 A Strictly Linear Subatomic Proof System

Eliminating the two unit-equality inference steps in the way described above would result
in a substitution

[
pBx

∣∣∣x]
being propagated up, and a substitution

[
qAx

∣∣∣x]
being propagated

down (where Ax and Bx stand for the result of substituting the variable x onto every leaf of
A and B respectively). Therefore, in order to eliminate both unit-equality inference steps,
the entire context around one of them must be duplicated, resulting in something like the
derivation above. This doubles the width of the derivation, leading to an exponential blow-up
in the size when eliminating all unit-equality inference steps in succession.

By iterating the Merge Lemma in a certain way, we derive the Eversion Lemma and can
use this to avoid this exponential blow-up.

▶ Lemma 16 (Eversion Lemma). Let A and B be open formulae with their free variables
denoted A = {w1, . . . , wn} and B = {y1, . . . , ym} respectively. Then there exist KDTS
derivations:[

pB
∣∣∣wi]

A

qA

[
qAyj

∣∣∣yj]
B

pB

[
pBwi

∣∣∣wi]
A

qA

[
qA
∣∣∣yj]

B

pB

,

where Bwi ≡ [wi|yj]BB and Ayj ≡ [yj |wi]AA. Both the width and the height of these
derivations are O(|A||B|).

Proof. We consider the derivation on the left and proceed by induction on the structure
of B.

If B ≡ yj then we take the derivation qAyj .
If B ≡ E β F then we build:[

pE pβ pF
∣∣∣wi]

A

qA

χ[
pE

∣∣∣wi]
A

qA

ϕ[
qAyj

∣∣∣yj]
E

pE

pβ

[
pF

∣∣∣wi]
A

qA

ψ[
qAyj

∣∣∣yj]
F

pF

,

where the derivations ϕ and ψ are obtained by induction and the derivation χ is obtained
via the Merge Lemma 15.
If B ≡ ⟨E|z⟩F then we build:[

⟨ pE
∣∣∣z⟩ pF

∣∣∣wi]
A

qA
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

⟨ pE
∣∣∣z⟩

[
pF

∣∣∣wi]
A

qA

ϕ[
qAyj

∣∣∣yj]
F\{z}

[
qAz

∣∣∣z] pF

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

⟨
[

pE
∣∣∣z] qAz

ψ[
qAz

∣∣∣yj]
E

pE

∣∣∣∣∣∣∣∣z⟩ [
qAyj

∣∣∣yj]
F\{z}

pF

,

where the derivations ϕ and ψ are obtained by induction.

V. Barrett, A. Guglielmi, and B. Ralph 39:11

The width of the derivations generated in each case are all O(|A||B|). The worst-case
scenario for the height is when B is composed by connective, in which case the height
increases by at most 2|A| in the merge χ. The number of iterations is O(|B|), so the height
is O(|A||B|). ◀

We call the derivations in Lemma 16 eversions.

▶ Example 17. Returning to the example of exponential blow-up above, the pair of unit-
equality inference steps in the above example can then be eliminated by the following
transformation:

π

ϕ
.......................

K

{
A

=
A α x

}
.......................

ψ
.......................

H

{
B β x

=
B

}
.......................

χ

−→ π

⟨ pBx
∣∣∣x⟩ [w α x|w]Aϕ

..

⟨ pBx
∣∣∣x⟩K

[w α x|w]AA

A β qAx

..

⟨
[

pBx
∣∣∣x]

qA[
qAx

∣∣∣x]
pB

∣∣∣∣∣∣∣∣x⟩ψ

..

⟨ qAx
∣∣∣x⟩H

 B β pBx

[y β x|y]BB

..

⟨ qAx
∣∣∣x⟩ [y β x|y]Bχ

.

This increases the width of the derivation by O(|A||B|) at the widest point, which is the
eversion in the explicit substitution, and increases the height by at least O(|A|) +O(|B|) due
to the merges, and in the worst case by O(|A||B|), again due to the eversion.

The premise of the transformed derivation is π ⟨ pBx
∣∣∣x⟩ [w α x|w]A pr ϕ. This is equal to the

premise π pr ϕ of the original derivation because x = pBx for any formula B and π(wαx) = πw

for every variable w appearing in A, since π
A

=
A α x

is a unit-equality inference step and

therefore either α ∈ C and πx is the unit of α or α ∈ A and πA ≡ πx.
Similarly, the conclusion becomes π ⟨ qAx

∣∣∣x⟩ [y β x|y]B cnχ, and this is equal to the original
conclusion π cnχ.

4 Strict Linearity

Using the Eversion Lemma, we can design a procedure that avoids most causes of exponential
blow-up when eliminating the unit-equality rules. However, when performing this elimination
we must pay attention to the size of the substitutions that are propagated up or down the
derivation. These accumulated substitutions can also lead to an exponential blow-up in the
size of the derivation when the elimination is iterated. To observe this, consider the following
example:

CSL 2025

39:12 A Strictly Linear Subatomic Proof System

▶ Example 18.

π

ψ1........................

K1

{
A

=
A α x

}
........................

ψ2..............................

K2

{
B{x}

=
B{x} β y

}
..............................

ψ3....................................

K3

{
C{x}{y}

=
C{x}{y} γ z

}
....................................

ψ4

−→ π

σ3σ2σ1ψ1................................

σ3σ2K1

σ1A

A α qAx

................................

σ3σ2

[
qAx

∣∣∣x]
ψ2

..

σ3K2

 σ2B{ qAx}

B{ qAx} β qBy{ qAy}

..

σ3

[
qAx

∣∣∣x] [
qBy{ qAy}

∣∣∣y]
ψ3

..

K3

 σ3C{ qAx}{ qBy{ qAy}}

C{ qAx}{ qBy{ qAy}} γ qCz{ qAz}{ qBz{ qAz}}

..[

qAx
∣∣∣x] [

qBy{ qAy}
∣∣∣y] [

qCz{ qAz}{ qBz{ qAz}}
∣∣∣z]ψ4

This shows a case where we have three unit-equality inference steps, and the substitutions
accumulate as we eliminate them, because the units introduced get into other unit-equality
inference steps. Crucially, we see that in the conclusion, z is replaced by qC{ qAz}{ qBz{ qAz}},
which contains two copies of qAz: one inherited from x occurring in B{x} and one from x

occurring in C{x}{y}. This pattern will lead to exponential blow-up for the size of the
derivation, but it can be controlled with explicit substitutions. In the elimination procedure
we describe below, we will factor out the repeated instances of qAz and instead replace z by
⟨ qAz

∣∣∣x⟩ ⟨ qBz{x}
∣∣∣y⟩ qCz{x}{y}, which has size |A| + |B| + |C|.

We are now ready to state the main theorem of the paper, that we can convert a flat
derivation in KDTeq to a derivation in KDTS, i.e. we convert a derivation with unit-equality
rules but no explicit substitutions to one that is strictly linear with explicit substitutions,
without exponential blow-up in the size of the proof.

▶ Definition 19. Let
A′

ϕ

B′
be a derivation in KDTeq. We call π

A

B
a unit factorisation of ϕ,

if A′ = πA and B′ = πB, A and B are open formulae in which no variable occurs more than
once, and π is a simultaneous actual substitution of all the units that occur in A′ and B′.

Note that a derivation can have multiple unit factorisations, but for the purposes of this
paper it does not matter which we select.

▶ Theorem 20. Let
A′

ϕ

B′
be a flat derivation in KDTeq and π

A

B
a unit factorisation of ϕ.

We can build a derivation ϕ′ ≡ π
σA

τB
in KDTS such that the size of ϕ′ is polynomial in the

size of ϕ and πA = πσA and πB = πτB.

V. Barrett, A. Guglielmi, and B. Ralph 39:13

Proof (Sketch, full proof is in Appendix A). We eliminate the unit-equality inference steps
in two phases. In the first phase, we eliminate all those unit-equality inference steps that
propagate a unit downwards through a derivation, those that are labelled by =1, =3, =5, =7,
=9 or =11; in the second we eliminate the others, which propagate a unit upwards through a
derivation.

In the first phase, we replace the inference steps by down-merges, taking care to factor out
the accumulating substitutions as described in Example 18, and propagating the resulting
substitutions through the derivation.

In the second phase, we replace the remaining inference steps by up-merges, again
factoring out the accumulating substitutions, and we reconcile the propagated structures via
eversions, as described in Example 17, to obtain the strictly linear derivation ϕ′.

Let w be the width of ϕ and let h be its height. The number of unit-equality inference
steps eliminated in each phase is bounded by wh. After the first phase, the maximum width
occurs before factoring out the accumulated substitutions and is O(w3h2); the height is
similarly O(w3h2) as this is the most that it increases by for any step. After the second
phase, the maximum width again occurs before factoring out the accumulated substitutions
and is O(w7h5); again this represents the greatest increase of height in any step. Therefore
the height and width of ϕ′ are each O(w7h5). ◀

This result shows that the strictly linear system KDTS is complete for propositional
classical logic. In addition, it follows from results shown in [2] and [5] that KDTS p-simulates
Frege systems [11].

5 Cut Elimination

We now consider the normalisation of strictly linear proofs by showing a cut elimination
procedure. As we mention in the introduction, we are motivated to develop a theory of strict
linearity because this combines a theoretical foundation for explicit substitutions with simple
normalisation procedures. We would like to be able to take a proof in any standard system
(not necessarily subatomic), translate it to a strictly linear system, normalise inside that
system, and then project back to the original system without too much difficulty.

We do this by applying the method from [4] of eliminating cuts in subatomic logic via
projections, adapting it to be strictly linear.

▶ Definition 21. A cut on a in KDTeq is any instance of the rule

(A aB) ∧ (C aD)
∧pa

(A ∧ C) a (B ∧D)

such that A = 0 = D and B = 1 = C, or A = 1 = D and B = 0 = C. In the system
KDTS, we take explicit substitutions in the context into account, and so a cut on a is any

subderivation K

{
A

∧pa

B

}
inside a derivation such that flK{A} and flK{B} when vertically

composed form a cut on a.

We restrict the procedure that we define here to those proofs that do not exhibit too
much nesting of atoms inside themselves; this is sufficient to capture a translation of any
proof in the standard deep inference system for propositional classical logic, SKS.

▶ Definition 22. Given a derivation ϕ and an atom a, we say that a is unnested in ϕ if there
is no section whose flat expansion is of the form K{H{A aB} aC} or K{A a {H{B aC}}.

CSL 2025

39:14 A Strictly Linear Subatomic Proof System

▶ Definition 23. For a derivation ϕ in KDTS and an atom a that is unnested in ϕ, we
define the left-projection on a of ϕ, written la ϕ, as follows:

If ϕ ∈ V ∪ U then la ϕ ≡ ϕ.
If ϕ ≡ ψ a χ then la ϕ ≡ ψ.
If ϕ ≡ ψ β χ for β ̸≡ a then la ϕ ≡ la ψ β la χ.
If ϕ ≡ ⟨ψ|x⟩χ then la ϕ ≡ ⟨la ψ

∣∣x⟩ la χ.

If ϕ ≡
ψ
✿✿

χ
then la ϕ ≡

la ψ
✿✿✿

la χ
.

If ϕ ≡

ψ
...............................
(A aB) ∧ (C aD)

q∧a

(A ∨ C) a (B ∧D)
...............................

χ

or ϕ ≡

ψ
...............................
(A ∧ C) a (B ∨D)

p∨a

(A aB) ∨ (C aD)
...............................

χ

then la ϕ ≡

la ψ.................
la A ∧ la C

q∧
la A ∨ la C.................

la χ

.

If ϕ ≡

ψ
..............................
(A β B) a (C β D)

qaβ

(A a C) β (B aD)
..............................

χ

or ϕ ≡

ψ
..............................
(A a C) β (B aD)

paβ

(A β B) a (C β D)
..............................

χ

then la ϕ ≡
la ψ......
la χ

, and

similarly for aq∧ and ap∨. Note that here β cannot be a due to the assumption that a is
unnested in ϕ.

If ϕ ≡
ψ

r

χ
in any other case, then la ϕ ≡

la ψ
r

la χ
; note here again that r cannot be aqa

due to the assumption that a is unnested in ϕ.
The right-projection on a is denoted by ra ϕ and defined in exactly the same way, except
for the following case:

If ϕ ≡ ψ a χ then ra ϕ ≡ χ.

▶ Remark 24. For any atom a that is unnested in a derivation ϕ ∈ KDTS, la ϕ and ra ϕ are
uniquely determined. Note that it is not the case that la and ra commute: for example
la ra(0 a 1) ≡ la 1 ≡ 1 and ra la(0 a 1) ≡ ra 0 ≡ 0.

▶ Remark 25. For any derivation ϕ in KDTS and any atom a that is unnested in ϕ, the
projected derivations la ϕ and ra ϕ contain no occurrences of a, and so neither contains any
cuts on a.

It can be the case that eliminating the unit-equality inference steps from a derivation ψ in
KDTeq in which a is unnested can create nesting of this atom. This occurs when a derivation

contains a pair of unit-equality inference steps
A{w a x}

=
A{w a x} α u

and
B{y a z} β u

=
B{y a z}

, so that

A{w a x} and B{y a z} both contain the atom a.
The merge constructions by which we simulate the unit-equality inference steps propagate

upwards a substitution ⟨ qAu{u a u}
∣∣∣u⟩ and downwards a substitution ⟨ qBu{u a u}

∣∣∣u⟩. These

are resolved by an eversion, which produces an inference step
(u a u) a (u a u)

aqa

(u a u) a (u a u)
. That is

to say, we create the logical material of (u a u) twice and substitute one copy into the other.
Therefore we define a slightly looser notion of nestedness that captures derivations produced
in this way.

V. Barrett, A. Guglielmi, and B. Ralph 39:15

▶ Definition 26. Given a derivation ϕ and an atom a, we say that a is shallowly nested
in ϕ if there is no section whose flat expansion is of the form K{H{L{A aB} a C} aD} or

similar, and every instance of the inference rule aqa is of the form
(A aA) a (A aA)

aqa

(A aA) a (A aA)
, for

every atom a ∈ A.
We can extend the definition of left- and right-projection on a to derivations in which a

is shallowly nested as follows:

If ϕ ≡

ψ
..............................
(A aA) a (A aA)

qaβ

(A aA) a (A aA)
..............................

χ

then la ϕ ≡
la ψ.........
A aA
.........
la χ

and ra ϕ ≡
ra ψ.........
A aA
.........
ra χ

.

If an atom is unnested in a derivation ϕ, then that atom will be either unnested or shallowly
nested in a derivation produced by eliminating the unit-equality steps from ϕ via the
construction given in Section 4.
▶ Remark 27. For any derivation ϕ and any atom a that is shallowly nested in ϕ, the
projected derivations la la ϕ, ra la ϕ, la ra ϕ, and ra ra ϕ contain no occurrences of a, and so
none contains any cuts on a. If A = 1 then la A a ra A = 1 for any formula A and any
atom a.

▶ Proposition 28. For every open formula A in which every variable occurs exactly once,
and every atom a, there exists a cut-free derivation in KDTS

χ ≡
la A a ra A

[v a v|v]V A
,

for the set of variables V = A \ (la A ∪ ra A).

Proof. The construction follows the same structure as the Merge Lemma. Cut-freeness
follows from the fact that all inference rules will be of the form αqa, for each connective α
in A. ◀

▶ Theorem 29 (Cut Elimination). For every KDTS proof ϕ in which each atom is either

unnested or shallowly nested and whose unit factorisation is π
A

B
, we can build a cut-free

proof of πσB such that πσB = πB.

Proof. We enumerate the atoms in ϕ on which there is a cut a1, . . . ,an, let A0 ≡ A, B0 ≡ B,

and ϕ0 ≡
A

B
. We then build

Ai
ϕi

Bi

from
Ai−1

ϕi−1

Bi−1

by eliminating any cuts on ai via the following

constructions:
If ai is unnested in ϕi−1 then we build:

ϕi ≡
lai ϕi−1 ai rai

ϕi−1
χi

[v ai v|v]Vi
Bi−1

where χi is the cut-free derivation given by Proposition 28.

CSL 2025

39:16 A Strictly Linear Subatomic Proof System

If ai is shallowly nested in ϕi−1 then we build:

ϕi ≡

lai lai ϕi−1 ai rai
lai ϕi−1

χ′
i

[v ai v|v]V ′
i

laiBi−1

ai

lai rai
ϕi−1 ai rai

rai
ϕi−1

χ′′
i

[v ai v|v]V ′′
i

rai
Bi−1

χi

[v ai v|v]Vi
[v ai v|v]V ′

i
[v ai v|v]V ′′

i
Bi−1

where χi, χ′
i, and χ′′

i are the cut-free derivations given by Proposition 28.
Then πϕn contains no cuts on any atom and π cnϕn ≡ πσB where σ is a substitution

that does not change the value of the formula.
If a free variable appears anywhere in a proof it must also appear in its premise. However,

a formula with a free variable cannot be equal to 1, therefore a proof in KDTS cannot contain
any free variable and we have that π pr ϕn = 1. ◀

6 Conclusion

We have shown that a strictly linear subatomic system for propositional classical logic can be
obtained by eliminating all unit-equality rules and controlling the complexity using explicit
substitutions. Furthermore, we have shown that this strictly linear systems allows for a
straightforward cut elimination procedure.

Although we do not define a non-subatomic proof system for propositional classical logic,
using the interpretation map given in [2], we can construct a corresponding proof in KDTS
from a non-subatomic proof and then by Theorem 29, we can eliminate the cuts from that
proof to obtain a cut-free proof that can then be translated, preserving cut-freeness, back
into the non-subatomic system.

One of the strengths of subatomic logic is that it can describe normalisation procedures
that apply to a wide range of logics. However, in this paper we focus almost entirely on
propositional classical logic. This is because our primary investigation is into the complexity
of strictly linear proof systems with explicit substitutions, and by working in classical logic we
are able to compare against the benchmark systems of Frege and substitution Frege [11]. It
is nevertheless our intention that these ideas be extended to a wider range of logics, including
first- and higher-order logics.

References
1 Andrea Aler Tubella. A Study of Normalisation Through Subatomic Logic. PhD thesis,

University of Bath, 2017. URL: https://people.bath.ac.uk/ag248/aat/phd.pdf.
2 Andrea Aler Tubella and Alessio Guglielmi. Subatomic proof systems: Splittable systems.

ACM Transactions on Computational Logic, 19(1):5:1–33, 2018. doi:10.1145/3173544.
3 Andrea Aler Tubella, Alessio Guglielmi, and Benjamin Ralph. Removing cycles from proofs.

In Valentin Goranko and Mads Dam, editors, 26th EACSL Annual Conference on Computer
Science Logic (CSL), volume 82 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 9:1–17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.
CSL.2017.9.

4 Chris Barrett and Alessio Guglielmi. A subatomic proof system for decision trees. ACM
Transactions on Computational Logic, 23(4):26:1–25, 2022. doi:10.1145/3545116.

5 Paola Bruscoli and Alessio Guglielmi. On the proof complexity of deep inference. ACM
Transactions on Computational Logic, 10(2):14:1–34, 2009. doi:10.1145/1462179.1462186.

https://people.bath.ac.uk/ag248/aat/phd.pdf
https://doi.org/10.1145/3173544
https://doi.org/10.4230/LIPIcs.CSL.2017.9
https://doi.org/10.4230/LIPIcs.CSL.2017.9
https://doi.org/10.1145/3545116
https://doi.org/10.1145/1462179.1462186

V. Barrett, A. Guglielmi, and B. Ralph 39:17

6 Paola Bruscoli, Alessio Guglielmi, Tom Gundersen, and Michel Parigot. Quasipolynomial
normalisation in deep inference via atomic flows and threshold formulae. Logical Methods in
Computer Science, 12(1):5:1–30, 2016. doi:10.2168/LMCS-12(2:5)2016.

7 Kai Brünnler. Two restrictions on contraction. Logic Journal of the IGPL, 11(5):525–529,
2003. doi:10.1093/jigpal/11.5.525.

8 Kai Brünnler. Locality for classical logic. Notre Dame Journal of Formal Logic, 47(4):557–580,
2006. doi:10.1305/ndjfl/1168352668.

9 Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In R. Nieuwenhuis
and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR), volume 2250 of Lecture Notes in Computer Science, pages 347–361. Springer, 2001.
doi:10.1007/3-540-45653-8_24.

10 Andrea Condoluci, Beniamino Accattoli, and Claudio Sacerdoti Coen. Sharing equality is
linear. In Proceedings of the 21st International Symposium on Principles and Practice of
Declarative Programming, PPDP ’19, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3354166.3354174.

11 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. Journal of Symbolic Logic, 44(1):36–50, 1979. doi:10.2307/2273702.

12 Alessio Guglielmi. Formalism B, 2004. URL: https://people.bath.ac.uk/ag248/p/AG13.
pdf.

13 Alessio Guglielmi. A system of interaction and structure. ACM Transactions on Computational
Logic, 8(1):1:1–64, 2007. doi:10.1145/1182613.1182614.

14 Alessio Guglielmi and Tom Gundersen. Normalisation control in deep inference via atomic flows.
Logical Methods in Computer Science, 4(1):9:1–36, 2008. doi:10.2168/LMCS-4(1:9)2008.

15 Alessio Guglielmi, Tom Gundersen, and Lutz Straßburger. Breaking paths in atomic flows for
classical logic. In Jean-Pierre Jouannaud, editor, 25th Annual IEEE Symposium on Logic in
Computer Science (LICS), pages 284–293. IEEE, 2010. doi:10.1109/LICS.2010.12.

16 Tom Gundersen, Willem Heijltjes, and Michel Parigot. Atomic lambda calculus: A typed
lambda-calculus with explicit sharing. In Orna Kupferman, editor, 28th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 311–320. IEEE, 2013. doi:10.1109/
LICS.2013.37.

17 M.S. Paterson and M.N. Wegman. Linear unification. Journal of Computer and System
Sciences, 16(2):158–167, 1978. doi:10.1016/0022-0000(78)90043-0.

18 Alessio Santamaria. Towards a Godement calculus for dinatural transformations. PhD thesis,
University of Bath, Somerset, UK, 2019. URL: https://ethos.bl.uk/OrderDetails.do?
uin=uk.bl.ethos.787523.

19 Lutz Straßburger. From deep inference to proof nets via cut elimination. Journal of Logic and
Computation, 21(4):589–624, 2011. doi:10.1093/logcom/exp047.

20 Alwen Tiu. A system of interaction and structure II: The need for deep inference. Logical
Methods in Computer Science, 2(2):4:1–24, 2006. doi:10.2168/LMCS-2(2:4)2006.

A Omitted proofs

Proof of Theorem 20. We refer to Figures 1 and 2. Given a derivation ϕ that contains
inference steps in System Keq, we extract all the units into a substitution π, i.e. we obtain a
derivation ψ such that ϕ ≡ πψ, where π is an actual substitution and ψ is open, i.e. it does
not contain units. We assume that different occurrences of a unit or variable in each section
of ϕ are assigned by π to different variables, and all variables so created are fresh. Moreover,
π is such that all the inference steps in ψ except for those in System Keq remain valid, i.e.
corresponding units and variables in the premise and the conclusion of a step are assigned
the same variable. To be valid, each equality step of ϕ in Keq needs at least one unit that
does not appear either in the premise or the conclusion, therefore ψ is not necessarily a
derivation in KDTeq.

CSL 2025

https://doi.org/10.2168/LMCS-12(2:5)2016
https://doi.org/10.1093/jigpal/11.5.525
https://doi.org/10.1305/ndjfl/1168352668
https://doi.org/10.1007/3-540-45653-8_24
https://doi.org/10.1145/3354166.3354174
https://doi.org/10.2307/2273702
https://people.bath.ac.uk/ag248/p/AG13.pdf
https://people.bath.ac.uk/ag248/p/AG13.pdf
https://doi.org/10.1145/1182613.1182614
https://doi.org/10.2168/LMCS-4(1:9)2008
https://doi.org/10.1109/LICS.2010.12
https://doi.org/10.1109/LICS.2013.37
https://doi.org/10.1109/LICS.2013.37
https://doi.org/10.1016/0022-0000(78)90043-0
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.787523
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.787523
https://doi.org/10.1093/logcom/exp047
https://doi.org/10.2168/LMCS-2(2:4)2006

39:18 A Strictly Linear Subatomic Proof System

ψ ≡

ψ0..........................

K1

{
A1

A1 α1 x1

}
..........................

ψ1
...

ψi−1........................

Ki

{
Ai

Ai αi xi

}
........................

ψi
...

ψm−1..........................

Kn

{
An

An αn xn

}
..........................

ψn

Phase
1

−−→

σn

· · ·σi+1

σi

· · ·σ2

σ1ψ0...........................

K1

 σ1A1
χ1

A1 α1 X1

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

⟨X1|x1⟩ψ1
...

⟨Xl|xl⟩1...i−1 ψi−1
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

⟨Xl|xl⟩Ui
Ki

 σi ⟨Xl|xl⟩Ti
Ai

χi

⟨Xl|xl⟩Ti
Ai αi Xi

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

⟨Xl|xl⟩1...i ψi
...

⟨Xl|xl⟩1...n−1 ψn−1
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

⟨Xl|xl⟩Un
Kn

 σn ⟨Xl|xl⟩Tn
An

χn

⟨Xl|xl⟩Tn
An αn Xn

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

⟨Xl|xl⟩1...n ψn

≡ ψ′

Where:

σi = [v αi xi|v]Ai

qACi ≡ [C|v]Ai\{x1,...,xi−1}
qAi

Xi ≡ ⟨ qAxi
1

∣∣∣x1⟩ · · · ⟨ qAxi
i−1

∣∣∣xi−1⟩ qAxi
i

Ti = {x1, . . . , xi−1} ∩Ai

Ui = {x1, . . . , xi−1} \Ai

χi is given in Figure 3.

Figure 1 Phase 1 of the construction in Theorem 20.

V. Barrett, A. Guglielmi, and B. Ralph 39:19

ψ′ ≡

ψ′
m.............................

Hm

{
Bm βm Ym

Bm

}
.............................

ψ′
m−1
...
ψ′
j.........................

Hj

{
Bj βj Yj

Bj

}
.........................

ψ′
j−1
...
ψ′

1.........................

H1

{
B1 β1 Y1

B1

}
.........................

ψ′
0

Phase
2

−−→

⟨Zl|yl⟩1...m ψ
′
m

✿✿

⟨Zl|yl⟩Wm
Hm

⟨Zl|yl⟩Vm
Bm βm [Zm|ym]Ym
ωm

τm ⟨Zl|yl⟩Vm
Bm

✿✿

τm

⟨Zl|yl⟩1...m−1 ψ
′
m−1

...

· · · τj+1

⟨Zl|yl⟩1...j ψ
′
j

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

⟨Zl|yl⟩Wj
Hj

⟨Zl|yl⟩Vj

Bj βj [Zj |yj]Yj
ωj

τj ⟨Zl|yl⟩Vj
Bj

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

τj

⟨Zl|yl⟩1...j−1 ψ
′
j−1

...

· · · τ2

⟨Z1|y1⟩ψ′
1

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

H1

B1 β1 [Z1|y1]Y1
ω1

τ1B1

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

τ1ψ
′
0

≡ ψ′′

Where:

Yj = {yj}

τj = ⟨Yj |yj⟩ [v βj yj |v]Bj

pBCj ≡ [C|v]Bj\{y1,...,yj−1}
pBj

Zj ≡ ⟨ pB
yj

1

∣∣∣y1⟩ · · · ⟨ pB
yj

j−1

∣∣∣yj−1⟩ pB
yj

j

Vj = {y1, . . . , yj−1} ∩Bj

Wj = {y1, . . . , yj−1} \Bj

ωj is given in Figure 3.

Figure 2 Phase 2 of the construction in Theorem 20.

CSL 2025

39:20 A Strictly Linear Subatomic Proof System

We first consider the equality steps that are instances of =1, =3, =5, =7, =9 or =11, as
given in the definition of Keq; that is, those unit-equality inference steps which create a unit
travelling downwards in the derivation. Let x1, . . . , xn be the variables in ψ that correspond
to one of the units in those steps, via π. For rules =5 and =11, there are two choices and we
pick one at random. Figure 1 shows x1, . . . , xn to the right of the αis but we assume that
they might be to the left, without prejudice to this proof. Without loss of generality, we
assume that the sections of ψ containing the invalid inference steps are arranged as in the
figure. Under the assumptions on π mentioned above, no variable xi appears in formulae A1,
. . . , Ai, for 1 ≤ i ≤ n; on the other hand, xi might appear in Ai+1, . . . , An.

We build ϕ′ ≡ πψ′′, where ψ′′ is obtained from ψ in two phases. Phase 1 and Phase 2
perform similar operations on all the invalid inference steps of ψ: in Phase 1 we fix some
of them via down-merges and in Phase 2 we fix the remaining ones via up-merges. Both
phases produce substitutions that are propagated through the derivation. Some of these
substitutions might conflict; indeed, consider the following situation:

ψ ≡ π

ψ1...........................

K

{
Ai

=
Ai αi xi

}
...........................

ψ2...........................

H

{
Bj βj xi

=
Bj

}
...........................

ψ3

.

Here, xi would be assigned an instance of qAi for a down-merge at the top and an instance
of pBj for an up-merge at the bottom. By Lemma 16, these conflicting substitutions can be
reconciled via the eversion construction[

pBj

∣∣∣v]
Ai

qAi

[
qAi

∣∣∣v]
Bj

pBj

.

This eversion is implemented in Phase 2 (although it could have been implemented in
Phase 1).

Phase 1. Each invalid inference step is replaced by an KDTS derivation χi, for 1 ≤ i ≤ n,
shown in Figure 3. Each variable xi is replaced by a formula Xi, whose purpose is to make a
down-merge of Ai via Ai and αi possible. Xi is constituted by the formula qAi whose variables
are to be replaced by formulae only containing the variable xi. The idea is that the original
variable xi is expanded into a formula, Xi, whose structure matches the surroundings (to be
amenable to a merge) but whose value remains that of xi. Those variables of qAi that are
not in {x1, . . . , xi−1} are set to xi, in qAxi

i . The other variables of qAi must be replaced by
substitutions that could match the formulae generated by the χ1, . . . , χi−1 above χ1 in the
derivation; those formulae are qAx1

1 , . . . , qA
xi−1
i−1 and are matched by qAxi

1 , . . . , qAxi
i−1. At its top,

χi generates the substitution σi, which does not change the value of the variables it applies
to, and is propagated upwards in the derivation. At its bottom, χi generates the substitution
⟨Xi|xi⟩, which is propagated downwards in the derivation and also does not change values
because πXi = πxi. The rest of the construction in Figures 1 and 2 is bookkeeping, mainly
relying on having maximally renamed apart all variables so that we can move substitutions
without capturing any.

V. Barrett, A. Guglielmi, and B. Ralph 39:21

χi ≡

[v αi xi|v]Ai
⟨Xl|xl⟩Ti

Ai

χ′
i

⟨Xl|xl⟩Ti
Ai α

⟨⟨ qAxi
1

∣∣∣x1⟩ · · · ⟨ qAxi

l−1

∣∣∣xl−1⟩ qAxi

l

∣∣∣xl⟩
Ti

qAxi
i

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

⟨ qAxi
1

∣∣∣x1⟩ · · · ⟨ qAxi
i−1

∣∣∣xi−1⟩ qAxi
i

ωj ≡

⟨Zl|yl⟩Vj
Bj βj

[
⟨ pB

yj

1

∣∣∣y1⟩ · · · ⟨ pB
yj

j−1

∣∣∣yj−1⟩ pB
yj

j

∣∣∣yj]Yj
ω′′

j

[Yj |yj]
⟨ pB

yj

1

∣∣∣y1⟩ · · · ⟨ pB
yj

j−1

∣∣∣yj−1⟩ pB
yj

j
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

⟨⟨ pB
yj

1

∣∣∣y1⟩ · · · ⟨ pB
yj

l−1

∣∣∣yl−1⟩ pB
yj

l

∣∣∣yl⟩
Vj

pB
yj

j

ω′
j

[v βj Yj |v]Bj
⟨Zl|yl⟩Vj

Bj
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

⟨Yj |yj⟩ [v βj yj |v]Bj
⟨Zl|yl⟩Vj

Bj

Figure 3 Auxiliary derivations for Phases 1 and 2 in Theorem 20.

Phase 2. Let us call ψ′ the derivation produced in Phase 1. We operate on it in a similar
way to Phase 1 but in the other direction. The equality steps to fix are those labelled =2,
=4, =6, =8, =10 and =12 in the definition of Keq; that is, those unit-equality inference steps
that create a unit travelling upwards in the derivation. For 1 ≤ j ≤ m, Bj takes the place of
Ai and Yj that of xi. One difference is that now Yj might be one of the formulae Xis, and
not just a variable. That said, each Yj still only contains one variable (potentially in multiple
copies), say yj , and we note that yj does not appear in B1, . . . , Bj and might appear in
Bj+1, . . . , Bm. In Phase 2, each formula Zj plays the same role as Xi in Phase 1, and the
derivation ωj , shown in Figure 3, plays the same role as χi. There, ω′

j is an up-merge and ω′′
j

the eversion that we outlined above in this proof. The substitution τj is propagated below
ωj ; unlike σi, τj contains an additional substitution ⟨Yj |yj⟩ but for the rest its role is similar.
The result of Phase 2 is a derivation ψ′′ in KDTS.

Complexity. We establish upper bounds for the width and height of ψ′. The width of ϕ,
say w, dominates the size of A1, . . . , An, and its height, say h, is such that wh dominates n
and m. The maximum section width w′ of ψ′ occurs in the conclusion of some down-merge
χ′
i, let us say χ′

n (see also Lemma 15). Therefore,

w′ = wψ′ ≤
∣∣⟨Xl|xl⟩Un

Kn{ }
∣∣ + 2

∣∣⟨Xl|xl⟩Tn
An

∣∣
≤ |Kn{ }| + 2

∣∣∣∣⟨⟨ qAxl
1

∣∣∣x1⟩ · · · ⟨ qAxl

l−1

∣∣∣xl−1⟩ qAxl

l

∣∣∣xl⟩
1...n−1

An

∣∣∣∣
≤ w + 2(w + 2w + · · · + (n− 1)w + w)
= O(w3h2) .

CSL 2025

39:22 A Strictly Linear Subatomic Proof System

Because of Lemma 15, the height of χ′
n also is O(w3h2), therefore the height h′ of ψ′ is

O(w3h2). Similarly, the maximum section width w′′ of ψ′′ occurs in the premise of some
up-merge ω′

j , let us say ω′
m. Therefore,

w′′ = wψ′′ ≤
∣∣⟨Zl|yl⟩Wm

Hm{ }
∣∣ +

∣∣⟨Zl|yl⟩Vm
Bm

∣∣ +
∣∣∣[Ym|v]Bm

⟨Zl|yl⟩Vm

pBm

∣∣∣
≤ |Hm{ }| + (1 + |Ym|)

∣∣∣∣⟨⟨ qByl

1

∣∣∣y1⟩ · · · ⟨ qByl

l−1

∣∣∣yl−1⟩ qByl

l

∣∣∣xl⟩
1...m−1

Bm

∣∣∣∣
≤ w′ + (1 + w′)(w′ + 2w′ + · · · + (m− 1)w′ + w′)
= O((w′)2(wh)2)
= O(w7h5) ,

and this is the width of ϕ′. Because of Lemmas 15 and 16, the height of ωj is also O(w7h5),
which dominates h′, therefore the height of ϕ′ is O(w7h5). ◀

Completeness of First-Order Bi-Intuitionistic Logic
Dominik Kirst #

Université Paris Cité, IRIF, Inria, Paris, France
Ben-Gurion University, Beer-Sheva, Israel

Ian Shillito #

The Australian National University, Canberra, Ngunnawal & Ngambri Country, Australia

Abstract
We provide a succinct and verified completeness proof for first-order bi-intuitionistic logic, relative to
constant domain Kripke semantics. By doing so, we make up for the almost-50-year-old substantial
mistakes in Rauszer’s foundational work, detected but unresolved by Shillito two years ago. Moreover,
an even earlier but historically neglected proof by Klemke has been found to contain at least local
errors by Olkhovikov and Badia, that remained unfixed due to the technical complexity of Klemke’s
argument. To resolve this unclear situation once and for all, we give a succinct completeness proof,
based on and dualising a standard proof for constant domain intuitionistic logic, and verify our
constructions using the Coq proof assistant to guarantee correctness.

2012 ACM Subject Classification Theory of computation → Proof theory; Theory of computation
→ Logic and verification; Theory of computation → Modal and temporal logics

Keywords and phrases bi-intuitionistic logic, first-order logic, completeness, Coq proof assistant

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.40

Supplementary Material Software (Coq Code): https://github.com/ianshil/FOBiInt

Funding Dominik Kirst: Received funding from the European Union’s Horizon research and innova-
tion programme under the Marie Skłodowska-Curie grant agreement No. 101152583 and a Minerva
Fellowship of the Minerva Stiftung Gesellschaft für die Forschung mbH.

1 Introduction

In the 1970s, Cecylia Rauszer provided foundations for bi-intuitionistic logic (first studied by
Moisil [34]), an extension of intuitionistic logic with a binary operator called exclusion, dual
to the intuitionistic implication →. Her work spanned over most approaches to non-classical
logics, ranging from algebras [43, 45], Kripke semantics [44, 46, 47], sequent calculus [42], to
Hilbert systems [43, 42]. The impressiveness and exhaustiveness of Rauszer’s study of bi-
intuitionistic logic is not only measured by the variety of fields she introduced bi-intuitionistic
in, but by the analysis in each case of both the propositional and first-order logic.

Unfortunately, through time several mistakes were detected in Rauszer’s work. First, her
sequent calculus for propositional bi-intuitionistic logic was shown by Pinto and Uustalu [38]
not to admit cut, contradicting her claim [42, Result 2.3]. To correct this, they provided a
calculus based on sequents with richer structure, which they proved to admit cut. Secondly,
a confusion around the status of the deduction theorem led Goré and Shillito [18] to notice
the conflation in Rauszer’s work of two different propositional bi-intuitionistic logics. This
conflation resulted in an incorrect completeness proof for the propositional case, ultimately
resolved by Goré and Shillito. Finally, the errors contained in the propositional case continue
being present in Rauszer’s work on the first-order case as noted by Shillito [50], who failed to
fix the proof in this setting. So, to date, no completeness proof for first-order bi-intuitionistic
logic (FOBIL) along the lines of Rauszer’s argument is known.

© Dominik Kirst and Ian Shillito;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 40; pp. 40:1–40:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dominik.kirst@inria.fr
https://orcid.org/0000-0003-4126-6975
mailto:ian.shillito@anu.edu.au
https://orcid.org/0009-0009-1529-2679
https://doi.org/10.4230/LIPIcs.CSL.2025.40
https://github.com/ianshil/FOBiInt
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Completeness of First-Order Bi-Intuitionistic Logic

To our knowledge, the only other candidate proof was given by Klemke in 1971 [30],
thereby in fact predating Rauszer’s work. He attributes the semantics of the logic to
Grzegorczyk [19] and uses a Henkin-style argument to construct a universal model. However,
its correctness is questioned by Olkhovikov and Badia [35], who write:

“Incidentally, there is an alternative completeness argument by Klemke, where
bi-intuitionistic predicate logic is studied possibly for the first time in print (and, as
far as we know, independently from Rauszer’s work) and that contains other errors.”

As his proof strategy is technically involved and, being written in fairly old style (and German
language), the presentation is rather inaccessible to a broader audience, it is hard to assess
whether these errors are locally fixable or as substantially unfixable as Rauszer’s.

We therefore opt for an alternative route to settle the completeness of FOBIL once and
for all: we present a succinct proof based on standard techniques, coming in a modern (and
English) presentation for easy assessment, and use the Coq proof assistant to verify our
argument, therefore leaving no room for ambiguity and error.

In that vein, our formal investigation finally establishes solid foundations for FOBIL,
and simultaneously tightly connects the provability of the constant domain axiom in this
logic with constant domain models. That is, contrarily to the propositional case, first-order
bi-intuitionistic logic is known not to be a conservative extension of first-order intuitionistic
logic [48, p.56][32, 50]: it derives the constant domain axiom (CD), displayed below, which
is not provable in the purely intuitionistic counterpart [16].

∀x(φ(x) ∨ ψ) → (∀xφ(x) ∨ ψ) (CD)

Here, the variable x is required not to occur freely in ψ. As the name suggests, this
axiom characterises the constant domain property on models in the Kripke semantics for
the intuitionistic language [19, 16, 36]. Rauszer suggested that this connection between the
axiom and the property on models should also hold in the bi-intuitionistic setting [44, 48].
The first-order Kripke semantics she developed uses frames for intuitionistic logic satisfying
the constant domain property, thus capturing the semantics for FOCDIL, i.e. first-order
intuitionistic logic extended with the (CD) axiom. Our results provide a confirmation of
Rauszer’s suggestion by showing FOBIL complete relative to the constant domain semantics,
notably settling the logic as a conservative extension of FOCDIL [48, p.57][5].

In fact, our presented completeness proof for bi-intuitionistic logic mostly follows the
textbook proof of Gabbay, Shehtman, and Skvortsov [17] for FOCDIL. As our only actually
novel idea, we observe that their use of a custom Lindenbaum lemma exploiting the (CD)
axiom to obtain successor worlds in a universal model can be dualised, namely, to obtain
also predecessor worlds, exploiting a dualisation of the (CD) axiom presented below.

(∃xφ(x) ∧ ψ) ∃x(φ(x) ∧ ψ) (DCD)

While (CD) is used as a theorem, i.e. ⊤ ⊢ (CD), we exploit the contradictory nature of
(DCD) in our custom lemma, as it satisfies (DCD) ⊢ ⊥. The remaining argument is also
streamlined to dispose of the usual Henkin-style syntax extensions to obtain a particularly
succinct presentation that is feasible to verify in Coq with little technical overhead.

In summary, the contributions of the present paper are as follows:
We give a succinct completeness proof for FOBIL based on standard techniques, closing a
gap in the literature not featuring a single unquestionably correct proof.
We illustrate the tight connection of FOBIL and FOCDIL, in that our completeness proof
of the former extends and dualises the one of the latter.

D. Kirst and I. Shillito 40:3

We provide a Coq mechanisation verifying all definitions and results in the paper for
absolute clarity and correctness, hyperlinked within this paper via clickable icons.
As a by-product, we contribute, to the best of our knowledge, the first mechanisation of
the completeness of FOCDIL and the conservativity of FOBIL over FOCDIL.

After some preliminary remarks on our meta-theory based on constructive type theory
in Section 2, we recall the syntax, deduction system, and semantics of FOBIL in Section 3,
including a dedicated discussion of the different constant domain axioms. In Section 4, we
then prove the three versions of Lindenbaum lemmas needed to establish completeness and
conservativity in Section 5. We end with remarks on the Coq development as well as related
and future work in Section 6.

2 Preliminaries

The forthcoming mathematical development can be performed in any standard meta-
theoretical foundation. To be formally precise and close to the mechanisation, we work in the
calculus of inductive constructions (CIC) [4, 37] underlying the Coq proof assistant [53] and
briefly sketch the key features we need. The core of the system is a predicative hierarchy of
computational types closed under the usual type formers like (dependent) function types and
(dependent) pair types. CIC further comes with an impredicative universe P of propositions in
which the above type formers take common logical notation. Inductive types and predicates
can be formed via a general scheme, for instance to accommodate the types N of natural
numbers, B of boolean values, and of finite lists X∗ over a given type X.

The logic represented in P is constructive but also agnostic, so in particular the excluded
middle (∀P : P.P ∨ ¬P) is not provable but it can be assumed consistently. As in this paper
we are aiming at a minimalistic proof directed to an audience not necessarily interested in
questions of constructivism, we in fact assume the excluded middle globally and highlight its
uses in the most crucial cases. Moreover, we assume the axiom of unique choice to freely
identify total functional relations X → Y → P with functions X → Y where convenient.
That is, we effectively simulate a traditional foundation based on classical set-theory to make
the text as accessible as possible to readers unfamiliar with constructive type theory.

3 Basics of Bi-intuitionistic Logic

We present the basics of first-order bi-intuitionistic logic: its syntax, axiomatic proof system,
constant domain Kripke semantics, and known facts of relevance, mostly following the
presentations in [50] and [51].

3.1 Syntax
As mentioned above, first-order bi-intuitionistic logic is expressed in the language of first-order
intuitionistic logic extended with the exclusion operator ˙ . More formally:

▶ Definition 1 (). Fix a countable signature S of function symbols f and predicate symbols
P , denoting their arities by |f| and |P |, respectively. Let V be the countable type of variables
x, y, z : V .

The term and formula language for bi-intuitionistic logic is defined as follows:

T ::= x | f(t1, . . . , t|f |)

F ::= P (t1, . . . , t|P |) | ⊥̇ | φ ∧̇φ | φ ∨̇φ | φ →̇φ | φ ˙ φ | ∀̇xφ | ∃̇xφ

CSL 2025

https://ianshil.github.io/FOBiInt/
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Syntax.html#form

40:4 Completeness of First-Order Bi-Intuitionistic Logic

We call a formula of the shape P (t1, . . . , t|P |) an atomic formula. Here we use dots
to distinguish the object-level connectives and quantifiers of bi-intuitionistic logic from the
meta-level connectives and quantifiers of the ambient meta-logic. We define ⊤̇ := (⊥̇ →̇ ⊥̇),
as well as the abbreviations ¬̇φ := (φ →̇ ⊥̇) and ∼̇φ := (⊤̇ ˙ φ), respectively called negation
and weak negation.

The added binary operator φ ˙ ψ is intended to be the dual of φ →̇ψ and is usually read
as “φ excludes ψ”. Consequently, ∼̇ is also defined dually to ¬̇.

In the following, we use t, t0, t1, . . . for terms the greek letters φ,ψ, χ, δ, . . . for formulas
and Γ,∆,Φ,Ψ . . . for sets or lists of formulas, depending on the context. When Γ refers to a
set of formulas, we write Γ, φ or φ,Γ to mean Γ ∪ {φ}. For a set of formulas Γ, we define Γ
as {φ : φ ̸∈ Γ}, where φ ̸∈ Γ means ¬(φ ∈ Γ).

For a formula φ we denote its set of free variables, i.e. under the scope of a corresponding
quantifier by FV (φ), and say that it is closed if FV (φ) = ∅. A set of formulas is closed if all
formulas in Γ are closed. We denote by φ[t/x] the substitution of the free occurrences of the
variable x in φ by the term t. We sometimes stress that x is free in φ by using the notation
φ(x) and in such a context just writing ψ is meant to suggest that x is not free in ψ. In that
regard, our convention for quantifier scopes is that ∀̇xφ →̇ψ refers to (∀̇xφ) →̇ψ and not to
∀̇x(φ →̇ψ).

Finally, note that our language is built on countable sets of variables, function symbols
and predicate symbols. In consequence, the set of formulas is recursively enumerable.

3.2 Axiomatic Calculus

The generalised Hilbert calculus FOBIH [50] () for FOBIL extends the one for intuitionistic
logic, containing the axioms A1 to A9 (for the propositional basis, implicit here) and A14
to A16 (for the first-order basis), with the axioms A10 to A13 and the rule (wDN), shown
in Figure 1. There, A in the rule (Ax) refers to the set of all instances of axioms. In the
following we write Γ ⊢ φ to mean that the syntactic expression Γ ⊢ φ, called a consecution,
is provable in FOBIH, i.e. there is a tree of consecutions built using the rules in Figure 1 with
instances of (Ax) and (El) as leaves. We also abbreviate ¬(Γ ⊢ φ) by Γ ̸⊢ φ. We formally
define the logic FOBIL as the set {(Γ, φ) : Γ ⊢ φ}.

Note that our calculus FOBIH is the calculus FOwBIH of [50].1 In his work, he also
considers a stronger system called FOsBIH, obtained by modifying the premise of the rule
(wDN) to Γ ⊢ φ. As the letters w and s are only used to distinguish the two calculi, we drop
w in this paper for simplicity.

The name of the rule (Gen) stands for Generalisation, while the name of the rule (EC)
stands for for Existential Conditionalisation.

3.3 Basic Proof-Theoretic Results

Next, we present basic proof-theoretic results from the mechanisation of Shillito [50]. They
express properties of the proof system FOBIH, some of which we use to prove completeness.

1 More precisely, FOBIH is the calculus FOwBIH minus the axiom φ →̇ ⊤. This deletion is caused by the
fact that ⊤ is not a primitive connective of our language.

https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_GHC.html#FOBIH_prv

D. Kirst and I. Shillito 40:5

A10 φ →̇ (ψ ∨̇ (φ ˙ ψ)) ∅ ⊢ φ

Γ ⊢ ¬̇∼̇φ
(wDN)

A11 (φ ˙ ψ) →̇ ∼̇(φ →̇ψ)
A12 ((φ ˙ ψ) ˙ χ) →̇ (φ ˙ (ψ ∨̇χ)) Γ ⊢ φ

Γ ⊢ ∀̇xφ
(Gen)A13 ¬̇(φ ˙ ψ) →̇ (φ →̇ψ)

A14 ∀̇x(ψ →̇φ) →̇ (ψ →̇ ∀̇xφ)
A15 ∀̇xφ →̇φ[t/x] Γ ⊢ φ →̇ψ

Γ ⊢ ∃̇xφ →̇ψ
(EC)

A16 φ[t/x] →̇ ∃̇xφ

φ ∈ A
Γ ⊢ φ

(Ax)
φ ∈ Γ
Γ ⊢ φ

(El)
Γ ⊢ φ Γ ⊢ φ →̇ψ

Γ ⊢ ψ
(MP)

Figure 1 Generalised Hilbert calculus FOBIH, where x is free in ψ and Γ in A14, (Gen) and (EC).

Unsurprisingly, we can prove that FOBIL is a finitary logic: it satisfies identity (),
monotonicity (), compositionality (), structurality (), and finiteness () [12, 31]. These
properties are expressed below, where σ is a function substituting atomic formulas by
composite formulas satisfying some properties2 and ⊆f is the finite subset relation.

Identity φ ∈ Γ → Γ ⊢ φ

Monotonicity Γ ⊆ Γ′ → Γ ⊢ φ → Γ′ ⊢ φ

Compositionality Γ ⊢ φ → (∀γ ∈ Γ.(∆ ⊢ γ)) → ∆ ⊢ φ

Structurality Γ ⊢ φ → Γσ ⊢ φσ

Finiteness Γ ⊢ φ → ∃Γ′ ⊆f Γ.(Γ′ ⊢ φ)

To present the next results in an elegant way, we introduce helpful derived notions.

▶ Definition 2. Let ∆ be a list of formulas. We define
∨̇

: F∗ → F recursively on the structure
of ∆ by

∨̇
[] := ⊥̇ and

∨̇
(φ :: ∆′) := φ ∨̇ (

∨̇
∆′) (). Analogously, we define

∧̇
: F∗ → F by∧̇

[] := ⊤̇ and
∧̇

(φ :: ∆′) := φ ∧̇ (
∧̇

∆′) ().

The function
∨̇

essentially creates the disjunction of all members of a list of formulas,
with an additional disjunct ⊥̇, the neutral element of ∨̇ . Using

∨̇
, we can bring consecutions

Γ ⊢ φ to a fully symmetric setting via pairs of the shape [Γ | ∆], constituted of a left and
right context.

▶ Definition 3. We define the following:
1. ⊢ [Γ | ∆] if Γ ⊢

∨̇
∆′ for some ∆′ ⊆f ∆ ();

2. ̸⊢ [Γ | ∆] if ¬(⊢ [Γ | ∆]), in which case we say that [Γ | ∆] is relative consistent.

Note that the symmetry in our pairs is only simulated, as it ultimately relies on the
asymmetry of consecutions Γ ⊢ φ which we hide via a derived notion. A similar illusion
could be obtained by defining an axiomatic system on symmetric consecutions φ ⊢ ∆ as
first-class citizens, and define ⊢ [Γ | ∆] as the existence of Γ′ ⊆f Γ with

∧̇
Γ ⊢ ∆. It would be

interesting to see what a truly symmetric axiomatic calculus based on pairs would look like.
While our pairs are crucially used in the completeness proof, as we shall see, they are

already convenient to express interesting properties of FOBIH.

2 This function needs to commute with substitution of variables (), but we omit these details as they
are not in the scope of this paper.

CSL 2025

https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_GHC.html#Id
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_logic.html#FOBIH_monot
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_logic.html#FOBIH_comp
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_logic.html#FOBIH_struct
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_logic.html#FOBIH_finite
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_GHC.html#list_disj
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_GHC.html#list_conj
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_GHC.html#pair_der
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Syntax.html#atom_subst_respects_strong

40:6 Completeness of First-Order Bi-Intuitionistic Logic

▶ Theorem 4. We have the following:
1. ⊢ [∅ | φ ∨̇ ∼̇φ]
2. ⊢ [∅ | (φ ˙ ψ) →̇χ] ↔ ⊢ [∅ | φ →̇ (ψ ∨̇χ)]
3. ⊢ [Γ, φ | ψ] ↔ ⊢ [Γ | φ →̇ψ]
4. ⊢ [φ | ψ,∆] ↔ ⊢ [φ ˙ ψ | ∆]

5.
⊢ [φ | ∆] ⊢ [ψ ˙ φ | ∆]

⊢ [ψ | ∆]
(DMP)

(1) above shows that a bi-intuitionistic version of the law of excluded-middle holds in
FOBIL (). (2) is a syntactic analogue of the algebraic dual residuation property below ().

a ≤ b ∨ c

a ˙ b ≤ c

(3) is the deduction-detachment theorem for FOBIL (,), while (4) is its dual deduction-
detachment theorem (,). (5) is the Dual Modus Ponens rule (), which acts as (MP) but
on the left-hand side of pairs and using ˙ instead of →̇ .

3.4 Constant Domain Axioms
Early on, Rauszer noticed the provability in FOBIL of the constant domain axiom (CD), as
shows the proof below on the left (), where we rely on the commutativity of ∨̇ ().

⊢ (∀̇x(φ(x) ∨̇ψ)) →̇ (φ(x) ∨ ψ)
(Ax)

(∀̇x(φ(x) ∨̇ψ)) ⊢ ψ ∨ φ(x)
Det. T hm

∀̇x(φ(x) ∨̇ψ) ˙ ψ ⊢ φ(x)
Dual Ded. T hm.

(∀̇x(φ(x) ∨̇ψ)) ˙ ψ ⊢ ∀̇xφ(x)
(Gen)

∀̇x(φ(x) ∨̇ψ) ⊢ ∀̇xφ(x) ∨̇ψ
Dual Det. T hm.

⊢ ∀̇x(φ(x) ∨̇ψ) →̇ (∀̇xφ(x) ∨̇ψ)
Ded. T hm.

⊢ (φ(x) ∧̇ψ) →̇ ∃̇x(φ(x) ∧̇ψ)
(Ax)

⊢ φ(x) →̇ψ →̇ ∃̇x(φ(x) ∧̇ψ)
Currying

⊢ ∃̇xφ(x) →̇ψ →̇ ∃̇x(φ(x) ∧̇ψ)
(EC)

∃̇xφ(x) ⊢ ψ →̇ ∃̇x(φ(x) ∧̇ψ)
Det. T hm.

∃̇xφ(x) ∧̇ψ ⊢ ∃̇x(φ(x) ∧̇ψ)
Det. T hm.

(∃̇xφ(x) ∧̇ψ) ˙ ∃̇x(φ(x) ∧̇ψ) ⊢ ⊥̇
Dual Ded. T hm.

Moreoever, the bi-intuitionistic language enhances expressivity as it contains both connectives
or quantifiers and their duals. This allows us to dualise formulas: recursively replace any
connective or quantifier by its dual, and swap the formula on the left of an implication or
exclusion by the one on the right. Therefore, we can dualise the axiom (CD) to obtain the
dual constant domain dual-axiom (DCD). While the former is a theorem as it is provable
from an empty left-context, equivalent to ⊤̇, the latter is a contradiction as it proves the
empty right-context, i.e. ⊥̇, as shown above on the right (). We suspect that (DCD) plays
a role to enforce constant domains in first-order dual intuitionistic logic, which is expressed
in the language of FOBIL without →̇ .

Both (CD) and (DCD) will be of crucial use in our completeness proof.

3.5 Constant Domain Kripke Semantics
We proceed to define a Kripke semantics for FOBIL which extends the one for FOCDIL with
an interpretation of ˙ . Note that the interpretation we use here is not the traditional
one [48] formalised in [50], but an alternative put forward in [51].

Both the traditional semantics and ours are defined using (Kripke) models which are
identical to the ones of FOCDIL, as shown below.

https://ianshil.github.io/FOBiInt/FObiint.FOBIH_properties.html#BiLEM
https://ianshil.github.io/FOBiInt/FObiint.FOBIH_properties.html#dual_residuation
https://ianshil.github.io/FOBiInt/FObiint.FOBIH_properties.html#gen_FOBIH_Deduction_Theorem
https://ianshil.github.io/FOBiInt/FObiint.FOBIH_properties.html#gen_FOBIH_Detachment_Theorem
https://ianshil.github.io/FOBiInt/FObiint.FOBIH_properties.html#gen_FOBIH_Dual_Deduction_Theorem
https://ianshil.github.io/FOBiInt/FObiint.FOBIH_properties.html#gen_FOBIH_Dual_Detachment_Theorem
https://ianshil.github.io/FOBiInt/FObiint.FOBIH_properties.html#dual_MP
https://ianshil.github.io/FOBiInt/FObiint.FOBIH_properties.html#Constant_Domain_Ax
https://ianshil.github.io/FOBiInt/FObiint.FOBIH_properties.html#comm_Or
https://ianshil.github.io/FOBiInt/FObiint.FOBIH_properties.html#Dual_Constant_Domain

D. Kirst and I. Shillito 40:7

▶ Definition 5 (). A model M is a tuple (W,≤, D,F ,P), where (W,≤) is a peordered set,
D is a non-empty set called the domain, F is a function interpreting each function symbol f
of arity n by a function F(f) : Dn → D, and P is a function interpreting, in each w ∈ W ,
each predicate symbol P of arity n by a set P(w,P) ⊆ Dn such that:

∀w ≤ v. ∀P. ∀d0, . . . , dn ∈ D. ((d0, . . . , dn) ∈ P(w,P) → (d0, . . . , dn) ∈ P(v, P))

An assignment α on D is a function α : V → D, and α[d/x] is the assignment α modified
in x to output d. An assignment α is extended to the interpretation α(t) of a term ()
recursively: α(t) = α(x) if t = x, and α(t) = F(f)(α(t0), . . . , α(tn)) if t = f(t0, . . . , tn).

Our Kripke semantics extends the usual forcing relation of first-order intuitionistic logic
to incorporate ˙ as follows.

▶ Definition 6 (). Given a model M = (W,≤, D,F ,P) and an assignment α for M, we
define the forcing relation M, w, α ⊩ φ between a world w ∈ W and a formula recursively by:

M, w, α ⊩ P (t0, . . . , tn) := (α(t0), . . . , α(tn)) ∈ P(w,P)
M, w, α ⊩ ⊥̇ := ⊥
M, w, α ⊩ φ ∧̇ψ := M, w, α ⊩ φ ∧ M, w, α ⊩ ψ

M, w, α ⊩ φ ∨̇ψ := M, w α ⊩ φ ∨ M, w, α ⊩ ψ

M, w, α ⊩ φ →̇ψ := ∀v ≥ w.(M, v, α ⊩ φ → M, v, α ⊩ ψ)
M, w, α ⊩ φ ˙ ψ := ¬(∀v ≤ w.(M, v, α ⊩ φ → M, v, α ⊩ ψ))
M, w, α ⊩ ∀̇xφ := ∀d ∈ D.M, w, α[d/x] ⊩ φ

M, w, α ⊩ ∃̇xφ := ∃d ∈ D.M, w, α[d/x] ⊩ φ

We abbreviate ¬(M, w, α ⊩ φ) by M, w, α ̸⊩ φ.

Crucially, while the semantic clause for →̇ looks forward on the relation ≤, the clause
for ˙ looks backwards. This circumstance shows that FOBIL shares similarities with tense
logic [39, 40, 41]. Additionally, observe that the use of constant domain models allows us
to localise the interpretation of ∀̇ in a single point, in contrast with the case of first-order
intuitionistic logic where it is interpreted on all successors.

Note that our semantic clause for ˙ is intuitionistically weaker but classically equivalent
to the traditional clause for instance used by Rauszer [48]:

∃v ≤ w.(M, v, α ⊩ φ ∧ M, v, α ̸⊩ ψ)

Two points motivate this clause. First, to our eyes the duality between →̇ and ˙ is more
visibly expressed in our clause. Indeed, it is obtained in two steps by negating the clause
for →̇ , and by reversing the order between v and w, witnessing the tense logic flavour
of ˙ . Secondly, our analysis led us to believe that the strength of the traditional clause
more readily forces one to use non-constructive principles, notably in the proof of the Truth
lemma (Lemma 17).

The main feature of the Kripke semantics for intuitionistic logic, i.e. persistence, is
preserved in our semantics for FOBIL.

▶ Lemma 7 (Persistence). Let M = (W,≤, D,F ,P) be a model. The following holds.

∀α. ∀v, w ∈ W. ∀φ. (w ≤ v → M, w, α ⊩ φ → M, v, α ⊩ φ)

Finally, we define the (local) consequence relation Γ ⊨ φ on our semantics ():

Γ ⊨ φ if ∀M.∀α.∀w. (M, w, α ⊩ Γ → M, w, α ⊩ φ)

CSL 2025

https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Kripke_sem.html#kmodel
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Kripke_sem.html#eval
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Kripke_sem.html#ksat
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Kripke_sem.html#ksat_mon
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Kripke_sem.html#loc_conseq

40:8 Completeness of First-Order Bi-Intuitionistic Logic

Here M, w, α ⊩ Γ means ∀γ ∈ Γ.M, w, α ⊩ γ. We then also abbreviate ¬(Γ ⊨ φ) by Γ ̸⊨ φ.
Crucially using classical reasoning, soundness of FOBIH is straightforwardly obtained.

▶ Lemma 8 (Soundness). If Γ ⊢ φ then Γ ⊨ φ.

Proof. We show Γ ⊨ φ by induction on a given derivation of Γ ⊢ φ. The validity of the
inference rules holds constructively using routine arguments and so does the validity of all
axioms but A10, A12, and A13, which rely on the excluded middle. We here only present the
case of A10 for illustrative purposes.

In this case, we need to show that assuming M, w, α ⊩ φ we have either M, w, α ⊩ ψ or
M, w, α ⊩ φ ˙ ψ. To proceed, we classical reasoning to distinguish whether M, w, α ⊩ ψ or
M, w, α ̸⊩ ψ. In the former case we are done, in the latter case we show M, w, α ⊩ φ ˙ ψ,
so for a contradiction we assume that M, v, α ⊩ φ implies M, v, α ⊩ ψ for all predecessors
v ≤ w. For the choice v := w we thus obtain M, w, α ⊩ ψ, in contradiction to the assumption
M, w, α ̸⊩ ψ. ◀

4 A Forest of Lindenbaum Lemmas

In this section we are interested in the generation of Henkin prime theories, defined below.

▶ Definition 9. We say that a set of formulas Γ is:
consistent if Γ ̸⊢ ⊥ ();
deductively closed if Γ ⊢ φ implies φ ∈ Γ ();
a theory if it is consistent and deductively closed;
prime if φ ∨̇ψ ∈ Γ implies φ ∈ Γ ∨ ψ ∈ Γ ();
∃̇-Henkin if ∃̇xφ ∈ Γ then one can compute some k ∈ V such that φ[k/x] ∈ Γ ();
∀̇-Henkin if ∀̇xφ ̸∈ Γ then one can compute some k ∈ V such that φ[k/x] ̸∈ Γ ();
Henkin if it is ∃̇-Henkin and ∀̇-Henkin.

Note that we deviate from the standard presentation of the Henkin properties by observing
that they actually carry computational content. Later on we use Henkin prime theories as
worlds of the canonical model we define to prove completeness.

Traditionally, this proof technique via canonical model construction requires us to connect
any set Γ such that Γ ̸⊢ φ to a point in the canonical model, i.e. a Henkin prime theory,
extending Γ and not containing φ. We call this result the standard Lindenbaum lemma.

Additionally, on the way to completeness we are required to show that if a point in
the canonical model does not contain φ →̇ψ then we can find an extension of this point
containing φ but not ψ. We call this result the constant domain Lindenbaum lemma.

Similarly, we also need to prove that the presence of φ ˙ ψ in such a point entails the
existence of a restriction of this point containing φ but not ψ. We call this result the dual
constant domain Lindenbaum lemma.

In the remainder of this section, we prove these three flavours of Lindenbaum lemma,
employing classical logic to describe the underlying extension processes via case distinctions.

4.1 Standard Lindenbaum Lemma
The standard lemma acts on pairs ̸⊢ [Γ | ∆] of closed sets of formulas, which allows us to
treat Γ ̸⊢ φ as special case. The sets Γ and ∆ are required to be closed as we need enough
“safe” variables to witness quantifiers throughout the enumeration.

https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_soundness.html#Soundness
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Stand_Lindenbaum_lem.html#consist
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Stand_Lindenbaum_lem.html#ded_clos
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Stand_Lindenbaum_lem.html#prime
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Stand_Lindenbaum_lem.html#ex_henk
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Stand_Lindenbaum_lem.html#all_henk

D. Kirst and I. Shillito 40:9

▶ Lemma 10 (Standard Lindenbaum Lemma). For closed Γ and ∆ such that ̸⊢ [Γ | ∆],
there is a Henkin prime theory Γ′ ⊇ Γ such that ̸⊢ [Γ′ | ∆].

Proof. We construct Γ′ by iteratively extending the pair [Γ | ∆], starting from Γ0 := Γ and
∆0 := ∆ () and using an enumeration φn of formulas with the additional property that the
n-th variable is not free in φk for all k ≤ n.

[Γn+1 | ∆n+1] :=

[Γn | ∃̇xψ,∆n] if φn = ∃̇xψ and ⊢ [∃̇xψ,Γn | ∆n]
[ψ[n/x], ∃̇xψ,Γn | ∆n] if φn = ∃̇xψ and ̸⊢ [∃̇xψ,Γn | ∆n]
[Γn | ψ[n/x], ∀̇xψ,∆n] if φn = ∀̇xψ and ⊢ [∀̇xψ,Γn | ∆n]
[∀̇xψ,Γn | ∆n] if φn = ∀̇xψ and ̸⊢ [∀̇xψ,Γn | ∆n]
[φn,Γn | ∆n] if ̸⊢ [φn,Γn | ∆n]
[Γn | φn,∆n] if ⊢ [φn,Γn | ∆n]

We then set Γ′ :=
⋃

n:N Γn and name ∆′ :=
⋃

n:N ∆n (). We observe Γ′ ⊇ Γ and ∆′ ⊇ ∆ by
construction (). Before turning to the remaining properties one-by-one, note that ̸⊢ [Γn | ∆n]
is preserved inductively (), ensuring that ̸⊢ [Γ′ | ∆] () and hence the consistency of Γ′ ().

For deductive closure (), assume that Γ′ ⊢ φ. This entails that when φ is considered at n
in the enumeration of formulae, then it must be added to Γn+1: indeed, we can prove that
̸⊢ [φ,Γn | ∆n], as ⊢ [φ,Γn | ∆n] implies ⊢ [Γ′ | ∆′], a contradiction, via compositionality
as we have that Γ′ ⊢ ψ for all ψ ∈ Γn, φ (via the rule (El) or via assumption).
For primeness (), we assume that φ ∨̇ψ ∈ Γ′. We make case distinctions on whether
χ ∈ Γ′ or χ ̸∈ Γ′ for χ ∈ {φ,ψ}. Clearly, in the case where we have φ ∈ Γ′ or ψ ∈ Γ′

we are done. So, we are left to consider the case where φ ̸∈ Γ′ and ψ ̸∈ Γ′. From these
assumptions, we obtain that φ ∈ ∆′ and ψ ∈ ∆′. Obviously, combined with φ∨̇ψ ∈ Γ′

the two last statements entail the contradiction ⊢ [Γ′ | ∆′]: We have that the list [φ;ψ]
is such that all its elements are in ∆′, and Γ′ ⊢

∨̇
([φ;ψ]) as

∨̇
([φ;ψ]) = φ ∨̇ψ ∨̇ ⊥̇ is

equivalent to φ ∨̇ψ ∈ Γ′.
To show that Γ′ is ∃̇-Henkin (), we assume that ∃̇xφ ∈ Γ′. When ∃̇xφ is considered at n
in the enumeration of formulae, then it must be added to Γn+1 as well as φ[n/x]: indeed,
we can prove that ̸⊢ [∃̇xφ,Γn | ∆n], as ⊢ [∃̇xφ,Γn | ∆n] implies ∃̇xφ ∈ ∆n+1 ⊆ ∆′, hence
⊢ [Γ′ | ∆′], a contradiction.
To show that Γ′ is ∀̇-Henkin (), we assume that ∀̇xφ ̸∈ Γ′. When ∀̇xφ is considered at n
in the enumeration of formulae, then it must be added to ∆n+1 as well as φ[n/x]: indeed,
we can prove that ⊢ [∃̇xφ,Γn | ∆n], as ̸⊢ [∀̇xφ,Γn | ∆n] implies ∀̇xφ ∈ Γn+1 ⊆ Γ′, hence
⊢ [Γ′ | ∆′], a contradiction. ◀

We now have sufficient machinery to generate a Henkin prime theory from a consistent
closed theory. Next, we turn to the generation of prime Henkin theories from prime Henkin
theories, via extension and restriction.

4.2 Constant Domain Lindenbaum Lemma
For this subsection and for the next, we generate new Henkin prime theories from previous
Henkin prime theories. Here, we take a Henkin prime theory Γ and two formulas ψ1 and ψ2
and assume that Γ, ψ1 ̸⊢ ψ2. We aim at generating a Henkin prime theory Γ′ which extends
Γ ∪ {ψ1} and does not contain ψ2. We use this result in the Truth lemma, when assuming
that ψ1 →̇ψ2 ̸∈ Γ or equivalently Γ ̸⊢ ψ1 →̇ψ2 or yet Γ, ψ1 ̸⊢ ψ2.

CSL 2025

https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Stand_Lindenbaum_lem.html#Stand_Lindenbaum_lemma_pair
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Stand_Lindenbaum_lem.html#nextension_theory
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Stand_Lindenbaum_lem.html#extension_theory
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Stand_Lindenbaum_lem.html#extension_theory_extens
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Stand_Lindenbaum_lem.html#Under_nextension_theory
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Stand_Lindenbaum_lem.html#Under_extension_theory
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Stand_Lindenbaum_lem.html#Consist_extension_theory_pair
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Stand_Lindenbaum_lem.html#closeder_fst_Lind_pair
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Stand_Lindenbaum_lem.html#primeness_fst_Lind_pair
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Stand_Lindenbaum_lem.html#Lind_pair_ex_henk
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Stand_Lindenbaum_lem.html#Lind_pair_all_henk

40:10 Completeness of First-Order Bi-Intuitionistic Logic

We cannot use the standard Lindenbaum lemma 10 to extend Γ ∪ {ψ1}, as it requires
closed formulas. Given that Γ is Henkin, we are prima facie not ensured to have enough safe
variables to extend it. However, we can extend Γ ∪ {ψ1} using a trick relying on the (CD)
axiom and the very fact that Γ is Henkin. This trick can be found in the book of Gabbay,
Shehtman and Skvortsov [17, Section 7.2], where they use it for superintuitionistic logics
based on the constant domain axiom.

We first establish a proof-theoretic lemma which isolates the use of the (CD) axiom.

▶ Lemma 11. Let Γ be a ∀̇-Henkin set of formulas and φ(x), ψ1, ψ2 be formulas.
1. If Γ ̸⊢ (∃̇xφ(x) ∧̇ψ1) →̇ψ2, then one can compute k such that (φ[k/x] ∧̇ψ1) →̇ψ2 ̸∈ Γ ().
2. If Γ ̸⊢ ψ1 →̇ (∀̇xφ(x) ∨̇ψ2), then one can compute k such that ψ1 →̇ (φ[k/x] ∨̇ψ2 ̸∈ Γ) ().

Proof. We give both proofs in detail, noting that only (2) relies on the (CD) axiom.
1. It is sufficient to show that ∀̇x((φ(x) ∧̇ψ1) →̇ψ2) ̸∈ Γ. Indeed, as Γ is ∀̇-Henkin, one can

then compute k with ((φ(x) ∧̇ψ1) →̇ψ2)[k/x] ̸∈ Γ and therefore (φ[k/x] ∧̇ψ1) →̇ψ2 ̸∈ Γ.
So suppose ∀̇x((φ(x) ∧̇ψ1) →̇ψ2) ∈ Γ, so in particular Γ ⊢ ∀̇x((φ(x) ∧̇ψ1) →̇ψ2). From
there we can derive Γ ⊢ (∃̇xφ(x) ∧̇ψ1) →̇ψ2 in contradiction to the assumption using
standard proof rules as follows: assuming φ(x0) for some particular x0 together with ψ1,
we simply instantiate ∀̇x((φ(x) ∧̇ψ1) →̇ψ2) to x0 and obtain ψ2.

2. It is sufficient to show that ∀̇x(ψ1 →̇ (φ(x) ∨̇ψ2)) ̸∈ Γ, which again leverages the fact that
Γ is ∀̇-Henkin. So suppose ∀̇x(ψ1 →̇ (φ(x) ∨̇ψ2)) ∈ Γ and hence Γ ⊢ ∀̇x(ψ1 →̇ (φ(x) ∨̇ψ2)),
we this time derive Γ ⊢ ψ1 →̇ (∀̇xφ(x) ∨̇ψ2) for a contradiction. So assuming ψ1 and
then applying the (CD) axiom, it remains to show ∀̇x(φ(x) ∨̇ψ2), so φ(x0) ∨̇ψ2 for some
arbitrary x0. This follows directly from instantiating ∀̇(ψ1 →̇ (φ(x) ∨̇ψ2)) to x0. ◀

We can then show how to perform the extension of Γ as Henkin theory.

▶ Lemma 12 (CD Lindenbaum Lemma). For any Henkin theory Γ and formulas ψ1, ψ2
such that Γ, ψ1 ̸⊢ ψ2, there is a Henkin prime theory Γ′ ⊇ Γ with ψ1 ∈ Γ′ and ψ2 ̸∈ Γ′.

Proof. We construct Γ′ by iteratively constructing pairs [Γn | ∆n], using any enumeration
φn of formulas and letting Γ0 := {ψ1} and ∆0 := {ψ2} ():

[Γn+1 | ∆n+1] :=

[Γn | ∃̇xψ,∆n] if φn = ∃̇xψ and ⊢ [∃̇xψ,Γ,Γn | ∆n]
[ψ[k/x], ∃̇xψ,Γn | ∆n] if φn = ∃̇xψ and ̸⊢ [∃̇xψ,Γ,Γn | ∆n]

and k as obtained from (1) of Lemma 11
[∀̇xψ,Γn | ∆n] if φn = ∀̇xψ and ⊢ [Γ,Γn | ∀̇xψ,∆n]
[Γn | ψ[k/x], ∀̇xψ,∆n] if φn = ∀̇xψ and ̸⊢ [Γ,Γn | ∀̇xψ,∆n]

and k as obtained from (2) of Lemma 11
[φn,Γn | ∆n] if ̸⊢ [φn,Γ,Γn | ∆n]
[Γn | φn,∆n] if ⊢ [φn,Γ,Γn | ∆n]

We then set Γ′ :=
⋃

n:N Γn () and name ∆′ :=
⋃

n:N ∆n. For this choice, Γ′ ⊇ Γ ∪ {ψ1} is by
construction (,) and ψ2 ̸∈ Γ′ (), or equivalently Γ′ ̸⊢ ψ2, follows since ̸⊢ [Γ,Γn | ∆n] ()
and thus ̸⊢ [Γ′ | ∆n] is preserved inductively (). The remaining properties of Γ′ being a
Henkin prime theory are established mostly as in Lemma 10.

For deductive closure () and primeness (), one can follow analogous arguments as in
the respective claims of Lemma 10.
To show that Γ′ is ∃̇-Henkin (), we assume that ∃̇xφ ∈ Γ′. When ∃̇xφ is considered at
n in the enumeration of formulae, then it must be added to Γn+1 as ̸⊢ [Γ, ∃̇xφ,Γn | ∆n]
follows from ̸⊢ [Γ′ | ∆n]. But then Γn+1 by construction also contains φ[k/x] for k
obtained from (1) of Lemma 11 for the choice of ψ1 :=

∧̇
Γn and ψ2 :=

∨̇
∆n.

https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Up_Lindenbaum_lem.html#Lext_ex
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Up_Lindenbaum_lem.html#Lext_all
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Up_Lindenbaum_lem.html#Up_Lindenbaum_lemma
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Up_Lindenbaum_lem.html#Lext
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Up_Lindenbaum_lem.html#ext
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Up_Lindenbaum_lem.html#ext_el
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Up_Lindenbaum_lem.html#Lext_A0
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Up_Lindenbaum_lem.html#Lext_B0
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Up_Lindenbaum_lem.html#Lext_nder
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Up_Lindenbaum_lem.html#ext_nder
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Up_Lindenbaum_lem.html#ext_ded_clos
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Up_Lindenbaum_lem.html#ext_prime
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Up_Lindenbaum_lem.html#ext_ex_henk

D. Kirst and I. Shillito 40:11

To show that Γ′ is ∀̇-Henkin () one can use an analogous argument, this time relying on
(2) of Lemma 11. ◀

Note that we do not need primeness of the input theory Γ as it is obtained as a side-product
of the iterative construction.

4.3 Dual Constant Domain Lindenbaum Lemma
Now, we aim at restricting a Henkin prime theory Γ containing ψ1 ˙ ψ2 into another such
theory Γ′ with ψ1 but not ψ2. This result is now motivated by the case of ˙ in the Truth
lemma. Note that once more we cannot use the standard Lindenbaum lemma 10.

While we easily imagine how to extend theories, as in Lemma 12, the restriction of a
Henkin prime theory into a smaller one appears as a tricky and rather mysterious operation
to perform. However, its familiarity is regained once seen as an extension, not of a theory
but of the complement of a theory. Indeed, as Γ′ ⊆ Γ ↔ Γ ⊆ Γ′ we restrict Γ by extending Γ.

The next lemma, again isolating the use of constant domain axioms, relies on this insight,
by involving the complement of a theory and exploiting the symmetry of our pairs [Φ | Ψ] by
operating on their left.

▶ Lemma 13. Let Γ be a ∃̇-Henkin set of formulas and φ(x), ψ1, ψ2 be formulas.
1. If ̸⊢ [(∃̇xφ(x) ∧̇ψ1) ˙ ψ2 | Γ], then one can compute k with (φ[k/x] ∧̇ψ1) ˙ ψ2 ∈ Γ ().
2. If ̸⊢ [(ψ1 ˙ ∀̇xφ(x)) ˙ ψ2 | Γ], then one can compute k with (ψ1 ˙ φ[k/x]) ˙ ψ2 ∈ Γ ().

Proof. We give both proofs in detail, noting that (1) relies on the (DCD) dual-axiom and
(2) relies on the (CD) axiom.
1. It is sufficient to show that ∃̇x((φ(x) ∧̇ψ1) ˙ ψ2) ∈ Γ. Indeed, as Γ is ∃̇-Henkin, we can

thus compute k such that ((φ(x) ∧̇ψ1) ˙ ψ2)[k/x] ∈ Γ i.e. ((φ[k/x] ∧̇ψ1) ˙ ψ2) ∈ Γ. So,
we assume for reductio ad absurdum that ∃̇x((φ(x) ∧̇ψ1) ˙ ψ2) ̸∈ Γ. We show that the
latter implies ⊢ [(∃̇xφ(x) ∧̇ψ1) ˙ ψ2 | Γ], contradicting our initial assumption. By the
dual deduction Theorem 4 it suffices to show ⊢ [∃̇x(x)φ ∧̇ψ1 | ψ2,Γ], proved as follows.

⊢ [∃̇x(φ(x) ∧̇ψ1) | ψ2,Γ] ⊢ [(∃̇xφ(x) ∧̇ψ1) ∃̇x(φ(x) ∧̇ψ1) | ψ2,Γ]
⊢ [∃̇xφ(x) ∧̇ψ1 | ψ2,Γ]

(DMP)

The right premise is nothing but an instance of the (DCD) dual-axiom, so we are left to
prove the left premise. All we need to do is to apply the dual detachment Theorem 4
to reduce our goal to ⊢ [∃̇x(φ(x) ∧̇ψ1) ˙ ψ2 | Γ], which obviously holds as we have
∃̇x((φ(x) ∧̇ψ1) ˙ ψ2) ∈ Γ by our assumption ∃̇x((φ(x) ∧̇ψ1) ˙ ψ2) ̸∈ Γ.

2. It is sufficient to show that ∃̇x((ψ1 ˙ φ(x)) ˙ ψ2) ∈ Γ, which again leverages the
fact that Γ is ∃̇-Henkin, i.e. ((ψ1 ˙ φ[k/x]) ˙ ψ2) ∈ Γ. So, we assume for reductio
that ∃̇x((ψ1 ˙ φ(x)) ˙ ψ2) ̸∈ Γ and show ⊢ [(ψ1 ˙ ∀̇xφ(x)) ˙ ψ2 | Γ], a contradic-
tion. More precisely, we show (ψ1 ˙ ∀̇xφ(x)) ˙ ψ2 ⊢ ∃̇x((ψ1 ˙ φ(x)) ˙ ψ2), noting
that ∃̇x((ψ1 ˙ φ(x)) ˙ ψ2) ∈ Γ. By the dual deduction theorem it is sufficient to show
ψ1 ⊢ ∀̇xφ(x) ∨̇ (ψ2 ∨ ∃̇x((ψ1 ˙ φ(x)) ˙ ψ2)).
We use the (CD) axiom to reduce our goal to ψ1 ⊢
∀̇x(φ(x) ∨̇ (ψ2 ∨̇ ∃̇x((ψ1 ˙ φ(x)) ˙ ψ2))), as x is not free in ψ2 and ∃̇x((ψ1 ˙ φ(x)) ˙ ψ2).
We obtain a proof of the latter applying the rule (Gen), leaving us to prove
ψ1 ⊢ φ(x) ∨̇ (ψ2 ∨̇ ∃̇x((ψ1 ˙ φ(x)) ˙ ψ2)). This can easily be proved using the dual
detachment theorem as (ψ1 ˙ φ(x)) ˙ ψ2 ⊢ ∃̇x((ψ1 ˙ φ(x)) ˙ ψ2) holds. ◀

CSL 2025

https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Up_Lindenbaum_lem.html#ext_all_henk
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#Ldext_ex
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#Ldext_all

40:12 Completeness of First-Order Bi-Intuitionistic Logic

Turning back to the restriction of Γ, we note that ψ1 ˙ ψ2 ∈ Γ is equivalent to ̸⊢ [ψ1 ˙ ψ2 |
Γ] by consistency of Γ, and in turn to ̸⊢ [ψ1 | ψ2,Γ]. So, to restrict Γ in a way that preserves
ψ1 but excludes ψ2, we extend Γ using ̸⊢ [ψ1 | ψ2,Γ] as a stepping stone.

▶ Lemma 14 (DCD Lindenbaum Lemma). For any Henkin prime theory Γ and formulas
ψ1, ψ2 with ̸⊢ [ψ1 | ψ2,Γ], there is a Henkin prime theory Γ′ ⊆ Γ with ψ1 ∈ Γ′ and ψ2 ̸∈ Γ′.

Proof. We construct Γ′ by iteratively constructing pairs [Γn | ∆n], using any enumeration
φn of formulas and letting Γ0 := {ψ1} and ∆0 := {ψ2} ():

[Γn+1 | ∆n+1] :=

[Γn | ∃̇xψ,∆n] if φn = ∃̇xψ and ⊢ [∃̇xψ,Γn | Γ,∆n]
[ψ[k/x], ∃̇xψ,Γn | ∆n] if φn = ∃̇xψ and ̸⊢ [∃̇xψ,Γn | Γ,∆n]

and k as obtained from (1) of Lemma 13
[∀̇xψ,Γn | ∆n] if φn = ∀̇xψ and ⊢ [Γn | ∀̇xψ,Γ,∆n]
[Γn | ψ[k/x], ∀̇xψ,∆n] if φn = ∀̇xψ and ̸⊢ [Γn | ∀̇xψ,Γ,∆n]

and k as obtained from (2) of Lemma 13
[φn,Γn | ∆n] if ̸⊢ [φn,Γn | Γ,∆n]
[Γn | φn,∆n] if ⊢ [φn,Γn | Γ,∆n]

We then set Γ′ :=
⋃

n:N Γn (). For this choice, ψ1 ∈ Γ′ () holds by construction and
ψ2 ̸∈ Γ′ () follows since ̸⊢ [Γn | ∆n,Γ] () is preserved inductively and ψ2 ∈ ∆n. We also
have that Γ′ ⊆ Γ (), as if there is a χ ∈ Γ′ but χ ̸∈ Γ we get that at the point n in the
enumeration where χ is added to form Γn+1 we have ⊢ [Γn+1 | ∆n+1,Γ], a contradiction. As
Γ′ can be shown to be a prime theory (,) as in Lemma 12, we focus on its being Henkin.

To show that Γ′ is ∃̇-Henkin (), we assume that ∃̇xφ ∈ Γ′. When ∃̇xφ is considered at
n in the enumeration of formulae, then it must be added to Γn+1 as ̸⊢ [∃̇xφ,Γn | Γ,∆n]
follows from ̸⊢ [Γ′ | Γ,∆n]. But then Γn+1 by construction also contains φ[k/x] for k
obtained from (1) of Lemma 13 for the choice of ψ1 :=

∧̇
Γn and ψ2 :=

∨̇
∆n.

To show that Γ′ is ∀̇-Henkin () one can use an analogous argument, this time relying on
(2) of Lemma 13. ◀

5 Completeness and Conservativity

Using the Lindenbaum lemmas of the previous section, we now first turn to the completeness
of FOBIL relative to our constant domain semantics.

▶ Theorem 15 (Completeness). If Γ ∪ {φ} is closed and Γ ⊨ φ then Γ ⊢ φ.

We rely on a canonical model construction based on Henkin prime theories, defined below.

▶ Definition 16 (). The canonical model Mc = (W c,≤c, Dc,Fc,Pc) is defined as follows:
1. W c = {Γ : Γ is a Henkin prime theory};
2. Γ1 ≤c Γ2 if Γ1 ⊆ Γ2;
3. Dc = T ;
4. Fc(f)(t0, . . . , t|f |) = f(t0, . . . , t|f |) ;
5. Pc(w,P)(t0, . . . , t|P |) = {(t0, . . . , t|P |) | P (t0, . . . , t|P |) ∈ w}.

The canonical assignment αc is defined as αc(x) = x.

Note that the interpretation of terms in Mc through the canonical assignment αc is the
identity function: αc(t) = t follows from a simple induction on t ().

As foreshadowed, the two custom Lindenbaum lemmas come in action to show that the
canonical model satisfies the crucial Truth lemma, relating elementhood and forcing.

https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#Down_Lindenbaum_lemma
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#Ldext
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#dext
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#Ldext_A0
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#Ldext_B0
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#Ldext_nder
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#dext_el
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#dext_ded_clos
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#dext_prime
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#dext_ex_henk
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Down_Lindenbaum_lem.html#dext_all_henk
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_completeness.html#Completeness
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_completeness.html#Canon_model
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_completeness.html#universal_interp_eval0

D. Kirst and I. Shillito 40:13

▶ Lemma 17 (Truth lemma). For every Γ ∈ W c we have ψ ∈ Γ iff Mc,Γ, αc ⊩ ψ.

Proof. By induction on ψ. We consider the most interesting cases, and refer to the appendix
for the remaining cases.

ψ = φ →̇χ: (⇒) Assume φ →̇χ ∈ Γ. To show Mc,Γ, αc ⊩ φ →̇χ, let Γ′ ∈ W c such that
Γ ≤c Γ′, and assume Mc,Γ′, αc ⊩ φ. Then, we obtain φ ∈ Γ′ by induction hypothesis.
Using Γ ≤c Γ′, we get φ →̇χ ∈ Γ ⊆ Γ′. Via deductive closure of Γ′ we thus obtain χ ∈ Γ′,
hence Mc,Γ′, αc ⊩ χ using the induction hypothesis. So, we are done.
(⇐) Assume Mc,Γ, αc ⊩ φ →̇χ. Assume for reductio that φ →̇χ ̸∈ Γ. Then the constant
domain Lindenbaum lemma 12 entails the existence of Γ′ ∈ W c such that Γ ≤c Γ′ and
φ ∈ Γ′ and χ ̸∈ Γ′ (). By induction hypothesis we get Mc,Γ′, αc ⊩ φ and Mc,Γ′, αc ̸⊩ χ.
This contradicts Γ ≤c Γ′ and Mc,Γ, αc ⊩ φ →̇χ. So φ →̇χ ∈ Γ.
ψ = φ ˙ χ: (⇒) Assume φ ˙ χ ∈ Γ. The dual constant domain Lindenbaum lemma 14
entails the existence of Γ′ ∈ W c with Γ′ ≤c Γ and φ ∈ Γ′ and χ ̸∈ Γ′ (). By
induction hypothesis we get Mc,Γ′, αc ⊩ φ and Mc,Γ′, αc ̸⊩ χ. As Γ′ ≤c Γ we get
Mc,Γ, αc ⊩ φ ˙ χ.
(⇐) Assume Mc,Γ, αc ⊩ φ ˙ χ. Then, there is Γ′ ∈ W c such that Γ′ ≤c Γ and
Mc,Γ′, αc ⊩ φ and Mc,Γ′, αc ̸⊩ χ. By induction hypothesis we obtain that φ ∈ Γ′ and
χ ̸∈ Γ′. Note that Γ′ ⊢ φ →̇ (χ ∨̇ (φ ˙ χ)) using axiom A10. Thus by applying (MP) we
obtain Γ′ ⊢ χ ∨̇ (φ ˙ χ), as we have Γ′ ⊢ φ knowing φ ∈ Γ′. Via deductive closure and
primeness we get χ ∈ Γ′ or φ χ ∈ Γ′. But we know χ ̸∈ Γ′, so we have φ ˙ χ ∈ Γ′. We
finally obtain φ ˙ χ ∈ Γ, as Γ′ ⊆ Γ given Γ′ ≤c Γ.
ψ := ∀̇xφ: (⇒) Assume ∀xφ ∈ Γ. To show Mc,Γ, αc ⊩ ∀̇xφ let d ∈ Dc. We need to show
Mc,Γ, αc[d/x] ⊩ φ. Note that d ∈ T = Dc. Using ∀xφ ∈ Γ and deductive closure we
obtain φ[d/x] ∈ Γ. Thus, we apply the induction hypothesis to obtain Mc,Γ, αc ⊩ φ[d/x].
We finally push the syntactic substitution to a modification of the assignment () to
obtain Mc,Γ, αc[d/x] ⊩ φ.
(⇐) Assume Mc,Γ, αc ⊩ ∀̇xφ. Assume for reductio that ∀xφ ̸∈ Γ. The theory Γ being
∀̇-Henkin, there is a n ∈ N such that φ[n/x] ̸∈ Γ. By induction hypothesis we obtain
Mc,Γ, αc ̸⊩ φ[n/x]. But this is a contradiction as it implies that Mc,Γ, αc[n/x] ̸⊩ φ as
explained above, while we have Mc,Γ, αc[n/x] ⊩ φ from Mc,Γ, αc ⊩ ∀̇xφ.
ψ := ∃̇xφ: (⇒) Assume ∃̇xφ ∈ Γ. The theory Γ being ∃̇-Henkin, there is n ∈ N such
that φ[n/x] ∈ Γ. By induction hypothesis we get Mc,Γ, αc ⊩ φ[n/x]. This implies
Mc,Γ, αc[n/x] ⊩ φ as argued above. Hence Mc,Γ, αc ⊩ ∃̇xφ.
(⇐) Assume Mc,Γ, αc ⊩ ∃̇xφ. Thus there is a d ∈ Dc such that Mc,Γ, αc[d/x] ⊩ φ.
Note that d ∈ T = Dc. We reason as above to get that Mc,Γ, αc ⊩ φ[d/x]. By induction
hypothesis we obtain φ[d/x] ∈ Γ. We thus get ∃̇xφ ∈ Γ by deductive closure. ◀

Employing the Truth lemma we can now deduce completeness, also relying on the standard
Lindenbaum lemma to extend the initial context into a point of the canonical model.

Proof of Theorem 15. Assume that Γ ⊨ φ, and that Γ ̸⊢ φ for reductio. As Γ ∪ {φ} is
closed, the standard Lindenbaum lemma 10 conjointly with our last assumption ensure us
of the existence of Γ′ ∈ W c such that Γ′ ⊇ Γ and φ ̸∈ Γ′ (). By the Truth lemma 17 we
obtain both Mc,Γ′, αc ⊢ Γ and Mc,Γ′, αc ̸⊢ φ, hence Γ ̸⊨ φ, a contradiction. ◀

We conclude with two results concerning FOCDIL that illustrate the close connection
to our completeness proof for FOBIL. To this end, we write FCD for the usual syntax of
first-order intuitionistic logic (i.e. F without ˙) (), ⊢CD for the deduction system of
FOCDIL (i.e. ⊢ without the axioms for ˙ but extended with the (CD) axiom) (, and ⊨CD
for the semantic consequence relation of FOCDIL (i.e. ⊨ without the clause for ˙) (). To
avoid redundancy, we just give proof sketches and refer to the Coq code for full detail.

CSL 2025

https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_completeness.html#truth_lemma
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_completeness.html#cwUpLind
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_completeness.html#cwDownLind
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_Kripke_sem.html#ksat_comp
https://ianshil.github.io/FOBiInt/FObiint.FO_BiInt_completeness.html#cwTradLind
https://ianshil.github.io/FOBiInt/FOcdint.FO_CDInt_Syntax.html#form
https://ianshil.github.io/FOBiInt/FOcdint.FO_CDInt_GHC.html#FOCDIH_prv
https://ianshil.github.io/FOBiInt/FOcdint.FO_CDInt_Kripke_sem.html#loc_conseq

40:14 Completeness of First-Order Bi-Intuitionistic Logic

First, we prove the completeness of FOCDIL simply by a fragment of the proof of FOBIL.

▶ Theorem 18 (CD Completeness). If Γ ∪ {φ} is closed and Γ ⊨CD φ then Γ ⊢CD φ,
provided that Γ ∪ {φ} ranges over FCD.

Sketch. Following exactly the same strategy as Theorem 15, now only relying on the standard
Lindenbaum lemma 10 and the constant domain Lindenbaum lemma 12. ◀

Secondly, we deduce the conservativity of FOBIL over FOCDIL.

▶ Corollary 19 (Conservativity). If Γ ∪ {φ} is closed and Γ ⊢ φ then Γ ⊢CD φ, provided
that Γ ∪ {φ} ranges over FCD.

Sketch. By composing soundness of FOBIL (Lemma 8) with completeness of FOCDIL (The-
orem 18), using that obviously Γ ⊨CD φ iff Γ ⊨ φ for Γ ∪ {φ} ranging over FCD. ◀

6 Discussion

In this paper, we provide a succinct and verified completeness proof of FOBIL relative to its
constant domain Kripke semantics. Consequentially, we formally establish the conservativity
of FOBIL over FOCDIL, notably via the analogous completeness of the latter over the same
semantics restricted to the intuitionistic language. We conclude with a brief discussion.

6.1 Coq Development
Our Coq development is based on the design of and is in the process of being integrated3 into
the Coq library for first-order logic [27], which has been developed to unify several projects
concerned with different aspects of first-order logics [13, 14, 28, 26, 24, 23, 29]. It spans roughly
8000 lines of code, with about one half each for the separate FOBIL and FOCDIL developments.
We globally assume a strong form of the excluded middle, namely ∀P : P.P + ¬P , to enable
the definition of functions by logical case distinction (justified by the consistency of the usual
excluded middle and unique choice [56]) and left the particular formula enumeration as a
parameter that will be obtained routinely from the library framework once merged.

Most notably, in comparison to the paper presentation, where we use named variables
for legibility, the mechanisation is based on a de Bruijn encoding of binding [7] following
the design of the Autosubst 2 tool [52], i.e. variables are replaced by indices referring to the
amount of quantifiers shadowing their relevant binder. For instance, the formula ∀̇x∃̇yP (x, y)
is represented as ∀̇∃̇P (1, 0), as x is bound by the ∀̇ shadowed by the ∃̇, whereas y is bound
by the unshadowed ∃̇. To illustrate just one of the advantages of this approach, in the
representation of the deduction calculus, one can use lifting of de Bruijn indices to simulate
the usual freshness conditions for variables. For example, the rule (Gen) is encoded as:

Γ[↑] ⊢ φ

Γ ⊢ ∀̇φ
(Gen)

By shifting from Γ in the conclusion to Γ[↑] in the premise, we lift any free index n in
Γ to its successor n+ 1. As a consequence, the index 0 made free by the change from ∀̇φ
to φ is not present in Γ[↑], thus creating a canonical “fresh” variable. Using this rule for
instance allows a particularly easy monotonicity proof, as no on-the-fly renaming of variables
is necessary.

3 https://github.com/uds-psl/coq-library-fol/pull/7

https://ianshil.github.io/FOBiInt/FOcdint.FO_CDInt_completeness.html#Completeness
https://ianshil.github.io/FOBiInt/FOcdint.FO_CDInt_Conservativity.html#Conservativity
https://github.com/uds-psl/coq-library-fol/pull/7

D. Kirst and I. Shillito 40:15

Overall, the use of any proof assistant for our project not only provided the additional
guarantee of correctness of our completeness proof but actually was worthwhile already in
the mathematical development: for instance the dualised Lindenbaum lemma subject to
Section 4.2 was developed incrementally starting from the non-dualised case, with the proof
assistant pointing towards the remaining gaps while some proof scripts could be reused. The
particular choice of Coq allowed to base our code on the design decisions of the existing
library for first-order logic and, implementing a constructive foundation, in principle enables
a constructive analysis extending [51], as described in the future work section.

6.2 Related Work
Bi-intuitionistic logic. As understood in this paper, bi-intuitionistic logic received some
attention in computer science, notably through a formulae-as-types interpretation involving
the notion of first-class coroutines [6] and in the context of image processing via its connection
to mathematical morphology [49]. We mention another line of work [3, 1, 2, 10, 11] initiated
by Wansing [54, 55] on a different bi-intuitionistic logic called 2Int, which is both proof-
theoretically and philosophically motivated. The alternative interpretation of ˙ in this
logic allows for the study of the notions of falsification and verification.

Completeness proofs for FOBIL. Rauszer’s proof of completeness for FOBIL [46] is erroneous
for three main reasons. First, as in the propositional case two logics are conflated. This is
noticed by the joint use of the deduction theorem, an exclusive property of the weak logic
we study here, and of double negation ¬∼ of formulas, an exclusive property of the strong.
Secondly, her canonical model [46, p.66] is rooted, i.e. there is a point-root w for which any
v is such that w ≤ v. However, as noticed by Crolard [5] and confirmed by Shillito [50,
Lemma 8.11.3], bi-intuitionistic logic is not complete relative to the class of rooted models.
Thirdly, in her proof Rauszer relies on a result from Gabbay [15, Lemma 8.11.1] dealing with
the language F without ˙ , ∨̇ and ∃̇. She dually proves it for F without →̇ , ∧̇ and ∀̇, and
proceeds to illegitimately combine them on F, outside of their application range.

In Klemke’s proof strategy [30], the main construction is in Satz 6.1, where the extension
of consistent pairs (M,N) of sets of formulas over an alphabet {x1, x2, . . . } is described. The
extension yields a family of maximal pairs (Ms, Ns) in the extended alphabet {x1, x2, . . . } ∪
{y1, y2, . . . } where s ranges over the partial order (U,Q) of strings over two copies of natural
numbers (N and N∗) such that s ≤ s′ if s and s′ agree on a prefix and from there continue in
the separate copies. This order is called the “universal bush” and a universal model is then
defined over the structure (U,Q, {x1, x2, . . . } ∪ {y1, y2, . . . }), i.e. on the universal bush with
the full alphabet as individuals, interprets variables with the identity and interprets atoms
P (x, y, z . . .) at s with P (x, y, z . . .) in Ms. From Satz 6.1 the conclusion to completeness is
standard. To date, we were neither able to identify an explicit use of the constant domain
axioms, nor to confirm or refute the claim by Olkhovikov and Badia [35] concerning errors.

Finally, Shillito [50] tried, but failed, to correct Rauszer’s work in Coq. More precisely,
he gave an incomplete proof of completeness relying on two assumptions corresponding to
our custom Lindenbaum lemmas 12 and 14. We consequently closed the gap in his proof.

Mechanisation of completeness proofs. There is a rather long list of works mechanising
completeness proofs which for the most prominent case of first-order logic is summarised
in [14] and [25]. The only mechanised completeness proofs for (propositional) bi-intuitionistic
logic we are aware of are those by Shillito [50] as well as Shillito and Kirst [51].

CSL 2025

40:16 Completeness of First-Order Bi-Intuitionistic Logic

Regarding other formalisms like bi-intuitionistic logic with a modal aspect, we are aware
of the works in Coq of Doczkal and Smolka on CTL [9], Doczkal and Bard on converse
PDL [8], and Hagemeier and Kirst on IEL [21], the work in HOL Light of Maggesi and Perini
Brogi on the provability logic GL [33]. We finally mention the recent formalisation in Lean
of Guo, Chen and Bentzen on propositional intuitionistic logic [20].

6.3 Future Work
While the purpose of this paper is to present the clearest and most minimalistic completeness
proof for FOBIL, which for very natural reasons encompasses classical assumptions, we plan
to continue in the spirit of Shillito and Kirst [51] to analyse which logical strength is exactly
required. In their case of propositional bi-intuitionistic logic, they observe that the principle
WLEMS, identified by Kirst [25] for the case of IEL and applied to first-order logic by
Herbelin and Kirst [22], is equivalent to a weak but natural formulation of completeness.
However, this observation relies on the property that theories obtained from the standard
Lindenbaum lemma are negatively described (i.e. membership of formulas is characterised
by non-derivability), while the custom Lindenbaum lemmas yield also positively described
theories (membership of universally quantified formulas is characterised by derivability).
Therefore it seems unlikely that an exactly analogous analysis is realistic and in fact it might
be that the completeness of FOBIL requires a stronger fragment of classical meta-logic.

References
1 Sara Ayhan. Uniqueness of logical connectives in a bilateralist setting. In Martin Blicha

and Igor Sedlár, editors, The Logica Yearbook 2020, pages 1–16. College Publications, 2021.
doi:10.48550/arXiv.2210.00989.

2 Sara Ayhan. Meaning and identity of proofs in a bilateralist setting: A two-sorted typed
lambda-calculus for proofs and refutations. Journal of Logic and Computation, 2024. doi:
10.48550/arXiv.2307.01079.

3 Sara Ayhan and Heinrich Wansing. On synonymy in proof-theoretic semantics. the case of
2int. Bulletin of the Section of Logic, 52(2), 2023.

4 Thierry Coquand and Gérard Huet. The calculus of constructions. PhD thesis, INRIA, 1986.
doi:10.1016/0890-5401(88)90005-3.

5 Tristan Crolard. Subtractive logic. TCS, 254:1-2:151–185, 2001. doi:10.1016/S0304-3975(99)
00124-3.

6 Tristan Crolard. A formulae-as-types interpretation of subtractive logic. Journal of Logic and
Computation, 14:4:529–570, 2004. doi:10.1093/logcom/14.4.529.

7 Nicolaas Govert De Bruijn. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the church-rosser theorem. In Indagationes
mathematicae (proceedings), volume 75(5), pages 381–392. Elsevier, 1972.

8 Christian Doczkal and Joachim Bard. Completeness and Decidability of Converse PDL in the
Constructive Type Theory of Coq. In Certified Programs and Proofs, Los Angeles, United
States, January 2018. doi:10.1145/3167088.

9 Christian Doczkal and Gert Smolka. Completeness and decidability results for ctl in coq.
In Gerwin Klein and Ruben Gamboa, editors, Interactive Theorem Proving, pages 226–241,
Cham, 2014. Springer International Publishing. doi:10.1007/978-3-319-08970-6_15.

10 Sergey Drobyshevich. A bilateral hilbert-style investigation of 2-intuitionistic logic. J. Log.
Comput., 29(5):665–692, 2019. doi:10.1093/logcom/exz010.

11 Sergey Drobyshevich. Tarskian consequence relations bilaterally: some familiar notions.
Synthese, 198(Suppl 22):5213–5240, 2021. doi:10.1007/s11229-019-02267-w.

https://doi.org/10.48550/arXiv.2210.00989
https://doi.org/10.48550/arXiv.2307.01079
https://doi.org/10.48550/arXiv.2307.01079
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/S0304-3975(99)00124-3
https://doi.org/10.1016/S0304-3975(99)00124-3
https://doi.org/10.1093/logcom/14.4.529
https://doi.org/10.1145/3167088
https://doi.org/10.1007/978-3-319-08970-6_15
https://doi.org/10.1093/logcom/exz010
https://doi.org/10.1007/s11229-019-02267-w

D. Kirst and I. Shillito 40:17

12 Josep M. Font. Abstract Algebraic Logic: An Introductory Textbook. Studies in Logic and the
Foundations of Mathematics. College Publications, 2016.

13 Yannick Forster, Dominik Kirst, and Gert Smolka. On synthetic undecidability in coq, with
an application to the entscheidungsproblem. In Proceedings of the 8th ACM SIGPLAN
International Conference on Certified Programs and Proofs, pages 38–51, 2019. doi:10.1145/
3293880.3294091.

14 Yannick Forster, Dominik Kirst, and Dominik Wehr. Completeness theorems for first-order logic
analysed in constructive type theory: Extended version. Journal of Logic and Computation,
31(1):112–151, 2021. arXiv:2006.04399, doi:10.48550/arXiv.2006.04399.

15 Dov M. Gabbay. Applications of trees to intermediate logics. Journal of Symbolic Logic,
37(1):135–138, 1972. doi:10.2307/2272556.

16 Dov M. Gabbay. Semantical investigations in Heyting’s intuitionistic logic, volume 148. D.
Reidel Pub. Co, Dordrecht, Holland, 1981.

17 Dov M. Gabbay, Valentin B. Shehtman, and Dmitrij P. Skvortsov. Quantification in Nonclas-
sical Logic, volume 153. Elsevier, London, Amsterdam, 1st edition, 2009.

18 Rajeev Goré and Ian Shillito. Bi-Intuitionistic Logics: A New Instance of an Old Problem.
In Advances in Modal Logic 13, papers from the thirteenth conference on "Advances in Modal
Logic," held online, 24-28 August 2020, pages 269–288, 2020. URL: http://www.aiml.net/
volumes/volume13/Gore-Shillito.pdf.

19 Andrzej Grzegorczyk. A philosophically plausible formal interpretation of intuitionistic logic.
Indagationes Mathematicae, 26:596–601, 1964.

20 Huayu Guo, Dongheng Chen, and Bruno Bentzen. Verified completeness in Henkin-style
for intuitionistic propositional logic. In Bruno Bentzen, Beishui Liao, Davide Liga, Reka
Markovich, Bin Wei, Minghui Xiong, and Tianwen Xu, editors, Joint Proceedings of the
Third International Workshop on Logics for New-Generation Artificial Intelligence and the
International Workshop on Logic, AI and Law, September 8-9 and 11-12, 2023, Hangzhou,
pages 36–48. College Publications, 2023.

21 Christian Hagemeier and Dominik Kirst. Constructive and mechanised meta-theory of iel
and similar modal logics. Journal of Logic and Computation, 32(8):1585–1610, 2022. doi:
10.1093/logcom/exac068.

22 Hugo Herbelin and Dominik Kirst. New observations on the constructive content of first-order
completeness theorems. In 29th International Conference on Types for Proofs and Programs,
2023.

23 Marc Hermes and Dominik Kirst. An analysis of Tennenbaum’s theorem in constructive type
theory. In International Conference on Formal Structures for Computation and Deduction.
LIPIcs, 2022. doi:10.4230/LIPIcs.FSCD.2022.9.

24 Johannes Hostert, Andrej Dudenhefner, and Dominik Kirst. Undecidability of dyadic first-
order logic in Coq. In International Conference on Interactive Theorem Proving. LIPIcs, 2022.
doi:10.4230/LIPIcs.ITP.2022.19.

25 Dominik Kirst. Mechanised Metamathematics: An Investigation of First-Order Logic and Set
Theory in Constructive Type Theory. PhD thesis, Saarland University, 2022.

26 Dominik Kirst and Marc Hermes. Synthetic undecidability and incompleteness of first-order
axiom systems in Coq. In International Conference on Interactive Theorem Proving. LIPIcs,
2021. doi:10.4230/LIPIcs.ITP.2021.23.

27 Dominik Kirst, Johannes Hostert, Andrej Dudenhefner, Yannick Forster, Marc Hermes, Mark
Koch, Dominique Larchey-Wendling, Niklas Mück, Benjamin Peters, Gert Smolka, and
Dominik Wehr. A Coq library for mechanised first-order logic. In Coq Workshop, 2022.

28 Dominik Kirst and Dominique Larchey-Wendling. Trakhtenbrot’s theorem in Coq: Finite
model theory through the constructive lens. Logical Methods in Computer Science, 18, 2022.
doi:10.46298/lmcs-18(2:17)2022.

CSL 2025

https://doi.org/10.1145/3293880.3294091
https://doi.org/10.1145/3293880.3294091
https://arxiv.org/abs/2006.04399
https://doi.org/10.48550/arXiv.2006.04399
https://doi.org/10.2307/2272556
http://www.aiml.net/volumes/volume13/Gore-Shillito.pdf
http://www.aiml.net/volumes/volume13/Gore-Shillito.pdf
https://doi.org/10.1093/logcom/exac068
https://doi.org/10.1093/logcom/exac068
https://doi.org/10.4230/LIPIcs.FSCD.2022.9
https://doi.org/10.4230/LIPIcs.ITP.2022.19
https://doi.org/10.4230/LIPIcs.ITP.2021.23
https://doi.org/10.46298/lmcs-18(2:17)2022

40:18 Completeness of First-Order Bi-Intuitionistic Logic

29 Dominik Kirst and Benjamin Peters. Gödel’s theorem without tears: Essential incompleteness
in synthetic computability. In Annual conference of the European Association for Computer
Science Logic. LIPIcs, 2023. doi:10.4230/LIPIcs.CSL.2023.30.

30 Dieter Klemke. Ein Henkin-Beweis für die Vollständigkeit eines Kalküls relativ zur Grzegorczyk-
Semantik. Archiv für mathematische Logik und Grundlagenforschung, 14:148–161, 1971.

31 Marcus Kracht. Tools and Techniques in Modal Logic. Elsevier, 1999.
32 E.G.K. López-Escobar. On intuitionistic sentential connectives I. Revista Colombiana de

Matemáticas, 19(1-2):117–130, January 1985.
33 Marco Maggesi and Cosimo Perini Brogi. A Formal Proof of Modal Completeness for Provability

Logic. In Liron Cohen and Cezary Kaliszyk, editors, 12th International Conference on
Interactive Theorem Proving (ITP 2021), volume 193 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 26:1–26:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITP.2021.26.

34 C. Moisil. Logique modale. Disquisitiones malhematicae et physicae, 2:3–98, 1942.
35 Grigory K Olkhovikov and Guillermo Badia. Craig interpolation theorem fails in bi-

intuitionistic predicate logic. The Review of Symbolic Logic, 17(2):611–633, 2024. doi:
10.1017/s1755020322000296.

36 Hiroakira Ono. Craig’s Interpolation Theorem for the Intuitionistic Logic and Its Extensions: A
Semantical Approach. Studia Logica: An International Journal for Symbolic Logic, 45(1):19–33,
1986. doi:10.1007/BF01881546.

37 Christine Paulin-Mohring. Inductive definitions in the system coq rules and properties. In
International Conference on Typed Lambda Calculi and Applications, pages 328–345. Springer,
1993. doi:10.1007/BFb0037116.

38 Luís Pinto and Tarmo Uustalu. Proof search and counter-model construction for bi-
intuitionistic propositional logic with labelled sequents. In M. Giese and A. Waaler, editors,
Proc. TABLEAUX, pages 295–309, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.
doi:10.1007/978-3-642-02716-1_22.

39 Arthur N. Prior. Time and Modality. Greenwood Press, Westport, Conn., 1955.
40 Arthur N. Prior. Past, Present and Future. Clarendon P., Oxford„ 1967.
41 Arthur N. Prior. Papers on Time and Tense. Oxford University Press UK, Oxford, England,

1968.
42 Cecylia Rauszer. A Formalization of the Propositional Calculus of H-B Logic. Studia Logica:

An International Journal for Symbolic Logic, 33(1):23–34, 1974.
43 Cecylia Rauszer. Semi-Boolean algebras and their application to intuitionistic logic with dual

operations. Fundamenta Mathematicae LXXXIII, pages 219–249, 1974.
44 Cecylia Rauszer. On the Strong Semantical Completeness of Any Extension of the Intuitionistic

Predicate Calculus. Bulletin de l’Académie Polonaise des Sciences, XXIV(2):81–87, 1976.
45 Cecylia Rauszer. An algebraic approach to the Heyting-Brouwer predicate calculus. Funda-

menta Mathematicae, 96(2):127–135, 1977.
46 Cecylia Rauszer. Applications of Kripke Models to Heyting-Brouwer Logic. Studia Logica: An

International Journal for Symbolic Logic, 36(1/2):61–71, 1977.
47 Cecylia Rauszer. Model Theory for an Extension of Intuitionistic Logic. Studia Logica,

36(1-2):73–87, 1977.
48 Cecylia Rauszer. An Algebraic and Kripke-Style Approach to a Certain Extension of Intuition-

istic Logic. PhD thesis, Instytut Matematyczny Polskiej Akademi Nauk, 1980.
49 Katsuhiko Sano and John G. Stell. Strong completeness and the finite model property for

bi-intuitionistic stable tense logics. In Proc. Methods for Modalities 2017, volume 243 of
Electronic Proceedings in Theoretical Computer Science, pages 105–121. Open Publishing
Association, 2017. doi:10.4204/EPTCS.243.8.

50 Ian Shillito. New Foundations for the Proof Theory of Bi-Intuitionistic and Provability Logics
Mechanized in Coq. PhD thesis, Australian National University, Canberra, 2023.

https://doi.org/10.4230/LIPIcs.CSL.2023.30
https://doi.org/10.4230/LIPIcs.ITP.2021.26
https://doi.org/10.1017/s1755020322000296
https://doi.org/10.1017/s1755020322000296
https://doi.org/10.1007/BF01881546
https://doi.org/10.1007/BFb0037116
https://doi.org/10.1007/978-3-642-02716-1_22
https://doi.org/10.4204/EPTCS.243.8

D. Kirst and I. Shillito 40:19

51 Ian Shillito and Dominik Kirst. A mechanised and constructive reverse analysis of soundness
and completeness of bi-intuitionistic logic. In Amin Timany, Dmitriy Traytel, Brigitte Pientka,
and Sandrine Blazy, editors, Proceedings of the 13th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2024, London, UK, January 15-16, 2024, pages
218–229. ACM, 2024. doi:10.1145/3636501.3636957.

52 Kathrin Stark, Steven Schäfer, and Jonas Kaiser. Autosubst 2: reasoning with multi-sorted de
bruijn terms and vector substitutions. In Proceedings of the 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs, pages 166–180, 2019. doi:10.1145/3293880.
3294101.

53 The Coq Development Team. The coq proof assistant, June 2023. doi:10.5281/zenodo.
8161141.

54 Heinrich Wansing. Falsification, natural deduction and bi-intuitionistic logic. J. Log. Comput.,
26(1):425–450, 2016. doi:10.1093/logcom/ext035.

55 Heinrich Wansing. Connexive Logic. In Edward N. Zalta and Uri Nodelman, editors, The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Summer
2023 edition, 2023.

56 Benjamin Werner. Sets in types, types in sets. In International Symposium on Theoretical
Aspects of Computer Software, pages 530–546. Springer, 1997. doi:10.1007/BFb0014566.

A Appendix

Proof of Truth lemma 17. By induction on ψ, only listing the missing cases:
ψ := P (t0, . . . , t|P |): we have P (t0, . . . , t|P |) ∈ Γ iff (t0, . . . , t|P |) ∈ Pc(Γ, P) by definition
of the canonical model. The latter is equivalent to Mc,Γ, αc ⊩ P (t0, . . . , t|P |) by definition
and the fact that terms are interpreted as themselves via αc.
ψ = ⊥̇: we have that ⊥̇ ̸∈ Γ by consistency. We also have Mc,Γ, αc ̸⊩ ⊥̇ by definition.
So, we trivially have ⊥̇ ∈ Γ iff Mc,Γ, αc ⊩ ⊥̇.
ψ = φ ∧̇χ: we have that φ ∧̇χ ∈ Γ iff φ ∈ Γ and χ ∈ Γ via deductive closure. By
induction hypothesis this holds if and only if Mc,Γ, αc ⊩ φ and Mc,Γ, αc ⊩ χ. Then
φ ∧̇χ ∈ Γ iff Mc,Γ, αc ⊩ φ ∧̇χ.
ψ = φ ∨̇χ: we have that φ ∨̇χ ∈ Γ iff [φ ∈ Γ or χ ∈ Γ] by primeness and deductive
closure. By induction hypothesis this holds if and only if Mc,Γ, αc ⊩ φ or Mc,Γ, αc ⊩ χ.
Then φ ∨̇χ ∈ Γ iff Mc,Γ, αc ⊩ φ ∨̇χ. ◀

CSL 2025

https://doi.org/10.1145/3636501.3636957
https://doi.org/10.1145/3293880.3294101
https://doi.org/10.1145/3293880.3294101
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.1093/logcom/ext035
https://doi.org/10.1007/BFb0014566

Taking Bi-Intuitionistic Logic First-Order:
A Proof-Theoretic Investigation via Polytree
Sequents
Tim S. Lyon # Ñ

Technische Universität Dresden, Germany

Ian Shillito #

The Australian National University, Canberra, Ngunnawal & Ngambri Country, Australia

Alwen Tiu #

The Australian National University, Canberra, Ngunnawal & Ngambri Country, Australia

Abstract
It is well-known that extending the Hilbert axiomatic system for first-order intuitionistic logic with
an exclusion operator, that is dual to implication, collapses the domains of models into a constant
domain. This makes it an interesting problem to find a sound and complete proof system for
first-order bi-intuitionistic logic with non-constant domains that is also conservative over first-order
intuitionistic logic. We solve this problem by presenting the first sound and complete proof system
for first-order bi-intuitionistic logic with increasing domains. We formalize our proof system as
a polytree sequent calculus (a notational variant of nested sequents), and prove that it enjoys
cut-elimination and is conservative over first-order intuitionistic logic. A key feature of our calculus
is an explicit eigenvariable context, which allows us to control precisely the scope of free variables in
a polytree structure. Semantically this context can be seen as encoding a notion of Scott’s existence
predicate for intuitionistic logic. This turns out to be crucial to avoid the collapse of domains and
to prove the completeness of our proof system. The explicit consideration of the variable context
in a formula sheds light on a previously overlooked dependency between the residuation principle
and the existence predicate in the first-order setting, which may help to explain the difficulty in
designing a sound and complete proof system for first-order bi-intuitionistic logic.

2012 ACM Subject Classification Theory of computation → Proof theory; Theory of computation
→ Modal and temporal logics; Theory of computation → Constructive mathematics; Theory of
computation → Automated reasoning

Keywords and phrases Bi-intuitionistic, Cut-elimination, Conservativity, Domain, First-order,
Polytree, Proof theory, Reachability, Sequent

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.41

Related Version Extended Version: https://arxiv.org/abs/2404.15855 [26]

Funding Tim S. Lyon: European Research Council, Consolidator Grant DeciGUT (771779)

1 Introduction

Propositional bi-intuitionistic logic (BIP), also referred to as Heyting-Brouwer logic [33], is a
conservative extension of propositional intuitionistic logic (IP), obtained by adding the binary
connective (referred to as exclusion)1 among the traditional intuitionistic connectives.
This logic has proven relevant in computer science, having a formulae-as-types interpretation
in terms of first-class coroutines [7] and where modal extensions have found import in image
processing [38]. While in intuitionistic logic the connectives ∧ and → form a residuated pair,

1 Also referred to as pseudo-difference [33], subtraction, and co-implication [13].

© Tim S. Lyon, Ian Shillito, and Alwen Tiu;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 41; pp. 41:1–41:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:timothy_stephen.lyon@tu-dresden.de
https://sites.google.com/view/timlyon
https://orcid.org/0000-0003-3214-0828
mailto:ian.shillito@anu.edu.au
https://orcid.org/0009-0009-1529-2679
mailto:alwen.tiu@anu.edu.au
https://orcid.org/0000-0002-2695-5636
https://doi.org/10.4230/LIPIcs.CSL.2025.41
https://arxiv.org/abs/2404.15855
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Taking Bi-Intuitionistic Logic First-Order

i.e. (φ∧ψ) → χ is valid iff φ → (ψ → χ) is valid iff ψ → (φ → χ) is valid, in bi-intuitionistic
logic the connectives ∨ and also form a residuated pair, i.e. φ → (ψ ∨ χ) is valid iff
(φ ψ) → χ is valid iff (φ χ) → ψ is valid.2 To put it succinctly, BIP is a bi-intuitionistic
extension of IP that is (1) conservative and (2) has the residuation property, i.e. (∧,→) and
(,∨) form residuated pairs.

When extending first-order intuitionistic logic (IQ) to its bi-intuitionistic counterpart, a
“natural” axiomatization seems to be one obtained by adding the universal axioms (Ax1)
∀xφ → φ(t/x), (Ax2) ∀x(ψ → φ) → (ψ → ∀xφ) (where x is not free in ψ), and the rule
(Gen) φ/∀xφ to the axioms of BIP. This extension, which we refer to as the logic BIQ(CD),
turns out not to be conservative over first-order intuitionistic logic IQ, as it allows one to
prove the quantifier shift axiom ∀x(φ ∨ ψ) → ∀xφ ∨ ψ (where x is not free in ψ), which
is not valid intuitionistically. A proof of the quantifier shift axiom is given below, where
MP stands for modus ponens, Res stands for the residuation property described above, and
δ := ∀x((∀x(φ ∨ ψ) ψ) → φ) → ((∀x(φ ∨ ψ) ψ) → ∀xφ).

Ax1∀x(φ ∨ ψ) → (φ ∨ ψ)
Res(∀x(φ ∨ ψ) ψ) → φ

Gen∀x((∀x(φ ∨ ψ) ψ) → φ) Ax2
δ

MP(∀x(φ ∨ ψ) ψ) → ∀xφ
Res∀x(φ ∨ ψ) → ∀xφ ∨ ψ

It is well-known that the quantifier shift axiom characterizes the class of first-order intuition-
istic Kripke models with constant domains [10, 16], thus forcing the models for BIQ(CD) to
satisfy this constraint. Indeed, various works in the literature (e.g., [32, 34]) have shown
that completeness for BIQ(CD) requires the domain to be constant. These works and the
above example strongly suggest that it might not be possible to have a proof system for a
bi-intuitionistic logic with non-constant domains, at least not as a traditional Hilbert system.
As far as we know, there is no prior successful attempt at solving this problem.

In this paper, we provide the first sound and complete proof system for first-order
bi-intuitionistic logic with increasing domains, which we refer to here as BIQ(ID). With
some minor modifications, the proof system for BIQ(ID) can be converted into a proof
system for BIQ(CD). A key insight in avoiding the collapse of domains in BIQ(ID) is to
consider the universal quantifier as implicitly carrying an assumption about the existence
of the quantified variable. Proof theoretically, this could be done by introducing a notion
of an existence predicate, first studied by Scott [35]. An existence predicate such as E(x)
postulates that x exists in the domain under consideration. By insisting that all universally
quantified variables be guarded by an existence predicate, i.e. universally quantified formulae
would have the form ∀x(E(x) → φ(x)), the quantifier shift axiom can be rewritten as:
∀x(E(x) → (φ ∨ ψ)) → (∀x(E(x) → φ) ∨ ψ). Attempting a bottom-up construction of a
derivation similar to our earlier example for this rewritten axiom, we get stuck at the the
top-most residuation rule, which is in fact not a valid instance of Res:

E(x) → [∀x(E(x) → (φ ∨ ψ)] → (φ ∨ ψ)
Res

E(x) → [(∀x(E(x) → (φ ∨ ψ)) ψ] → φ
Gen∀x(E(x) → [∀x(E(x) → (φ ∨ ψ)) ψ] → φ) · · ·

MP[∀x(E(x) → (φ ∨ ψ)) ψ] → ∀x(E(x) → φ)
Res∀x(E(x) → (φ ∨ ψ)) → (∀x(E(x) → φ) ∨ ψ)

2 However, they are not logically equivalent, e.g., [φ → (ψ ∨ χ)] → [(φ ψ) → χ] is not valid.

T. S. Lyon, I. Shillito, and A. Tiu 41:3

For the proof construction to proceed, we would have to somehow discharge the assumption
E(x) in the premise of Gen before applying the residuation rule. In the logic of constant
domains BIQ(CD), E(x) is equivalent to ⊤ (i.e. the interpretation of any term in the logic is
an object that exists in all worlds in the underlying Kripke model). So the version of the
quantifier shift axiom with the existence predicate is provably equivalent to the original one
in BIQ(CD). This is not the case, however, in the logic of increasing domains BIQ(ID), since
the assumption E(x) cannot always be discharged. What this example highlights is that a
typical proof-theoretical argument used to show the provability of the quantifier shift axiom
(and hence the collapse of domains) implicitly depends on an existence assumption on objects
in the domains in the underlying Kripke model. What we show here is that by making this
dependency explicit and by carefully managing the use of the existence assumptions in proofs,
we are able to obtain a sound and complete proof system for BIQ(ID).

One issue with the existence predicate is that it is not clear how it should interact with the
exclusion operator. Semantically, a formula like ∀x[E(x) → ((p(x) ∃y(E(y) ∧p(y))) → ⊥)]
asserts that, if an object x exists in the current domain, then postulating that p(x) holds in a
predecessor world should imply that x exists as well in that predecessor world. This is valid
in our semantics, but it was not at all obvious how a proof system that admits this tautology,
and does not also degenerate into a logic with constant domains, should be designed. We
shall come back to this example later in Section 3. Additionally, the existence predicate
poses a problem when proving conservativity over first-order intuitionistic logic that does
not feature this predicate. We overcome this remaining hurdle by enriching sequents with an
explicit variable context, which can be seen as essentially encoding the existence predicate,
while avoiding introducing it explicitly in the language of formulae.

The proof systems for BIQ(ID) and BIQ(CD) are both formalized using polytree se-
quents [5], which are connected binary graphs whose vertices are traditional Gentzen sequents
and which are free of (un)directed cycles. Polytree sequents are a restriction of traditional
labeled sequents [37, 41] and are notational variants of nested sequents [3, 18, 2]. (NB. For
details on the relationship between polytree and nested sequents, see [5].) Nested sequents
were introduced independently by Bull [3] and Kashima [18] and employ trees of Gentzen
sequents in proofs. Both polytree sequents and nested sequents allow for simple formulations
of proof systems for various non-classical logics that enjoy important proof theoretical prop-
erties such as cut-elimination and subformula properties. Such systems have also found a
range of applications, being used in knowledge integration algorithms [24], serving as a basis
for constructive interpolation and decidability techniques [21, 25, 40], and even being used
to solve open questions about axiomatizability [17]. We make use of polytree sequents in our
work as they admit a formula interpretation (at least in the intuitionistic case), which can
be leveraged for direct translations of proofs into sequent calculus or Hilbert calculus proofs.

The calculi for BIQ(ID) and BIQ(CD) are based on these richly structured sequents, which
internalize the existence predicate into syntactic components, called domain atoms, present
in each node of the sequent. The rich structure of these sequents is exploited by special
rules within our calculi called reachability rules, which traverse paths in a polytree sequent,
propagating and/or consuming data. We demonstrate that our calculi enjoy the height-
preserving invertibility of every rule, and show that a wide range of novel and useful structural
rules are height-preserving admissible, culminating in a non-trivial proof of cut-elimination.

Outline of Paper. In Section 2, we define a semantics for first-order bi-intuitionistic logic
with increasing domains BIQ(ID) and constant domains BIQ(CD). In Section 3, we define
our polytree sequent calculi showing them sound and complete relative to the provided

CSL 2025

41:4 Taking Bi-Intuitionistic Logic First-Order

semantics. In Section 4, we establish admissibility and invertibility results as well as prove a
non-trivial cut-elimination theorem. We conclude and discuss future work in Section 5. Due
to space constraints, most proofs have been deferred to the online appended version [26].

2 Logical Preliminaries

In this section, we introduce the language, models, and semantics for first-order bi-
intuitionistic logic with increasing domains, dubbed BIQ(ID), and with constant domains,
dubbed BIQ(CD). Let Var := {x, y, z, . . .} be a countably infinite set of variables and
Fun = {f, g, h, . . .} be a countably infinite set of function symbols containing countably many
function symbols of each arity n ∈ N. We let ar(f) = n denote that the arity of the function
symbol f is n and let a, b, c, . . . denote constants, which are function symbols of arity 0.
For a set X ⊆ Var, we define the set Ter(X) of X-terms to be the smallest set satisfying
the following two constraints: (1) X ⊆ Ter(X), and (2) if f ∈ Fun, f is of arity n, and
t1, . . . , tn ∈ Ter(X), then f(t1, . . . , tn) ∈ Ter(X). The complete set of terms Ter is defined
to be Ter(Var). We use t, s, . . . (potentially annotated) to denote (X-)terms and let V T (t)
denote the set of variables occurring in the term t. We will often write a list t1, . . . , tn of
terms as t⃗, and define V T (⃗t) = V T (t1) ∪ · · · ∪ V T (tn).

We let Pred := {p, q, . . .} be a countably infinite set of predicates containing countably
many predicates of each arity n ∈ N. We denote the arity of a predicate p as ar(p) and refer
to predicates of arity 0 as propositional atoms. An atomic formula is a formula of the form
p(t1, . . . , tn), obtained by prefixing a predicate p of arity ar(p) = n to a tuple of terms of
length n. We will often write atomic formulae p(t1, . . . , tn) as p(⃗t).

▶ Definition 1 (The Language L). The language L is defined to be the set of formulae
generated via the following grammar in Backus-Naur form:

φ ::= p(⃗t) | ⊥ | ⊤ | φ ∧ φ | φ ∨ φ | φ φ | φ → φ | ∃xφ | ∀xφ

where p ranges over Pred, the terms t⃗ = t1, . . . , tn range over Ter, and x ranges over the set
Var. We use φ, ψ, χ, . . . to denote formulae.

The occurrence of a variable x in φ is defined to be free given that x does not occur
within the scope of a quantifier binding x. We let FV (φ) denote the set of all free variables
occurring in the formula φ and use φ(x1, . . . , xn) to denote that FV (φ) = {x1, . . . , xn}. We
let φ(t/x) denote the formula obtained by replacing each free occurrence of the variable x
in φ by t, potentially renaming bound variables to avoid unwanted variable capture; e.g.
(∀yp(x, y))(y/x) = ∀zp(y, z). The complexity of a formula φ, written |φ|, is recursively
defined as follows: (1) |p(t1, . . . , tn)| = |⊥| = |⊤| := 0, (2) |Qxφ| := |φ| + 1 for Q ∈ {∀, ∃},
and (3) |φ ◦ ψ| := |φ| + |ψ| + 1 for ◦ ∈ {∨,∧,→, }.

Following [32], we give a Kripke-style semantics for BIQ(ID), defining the models used
first, and explaining how formulae are evaluated over them second.

▶ Definition 2 (ID-Frame). An ID-frame (or, frame) is a tuple F = (W,≤, U,D) such that:
W is a non-empty set {w, u, v, . . .} of worlds;
≤ ⊆ W ×W is a reflexive and transitive binary relation;
U is a non-empty set referred to as the universe;
D : W → P(U) is a domain function mapping each w ∈ W to a non-empty set D(w) ⊆ U

with U =
⋃

w∈W D(w), which satisfies the increasing domain condition: (ID) If w ≤ u,
then D(w) ⊆ D(u).

T. S. Lyon, I. Shillito, and A. Tiu 41:5

▶ Definition 3 (ID-Model). We define an ID-Model (or, model) M to be an ordered triple
(F, I1, I2) such that:

F = (W,≤, U,D) is a frame;
I1 is a function interpreting each function symbol f ∈ Fun such that ar(f) = n by a
function I1(f) : Un → U , satisfying two conditions: (C1) For each w ∈ W and constant
a, I1(a) ∈ D(w), and (C2) For each w ∈ W , a⃗ ∈ D(w)n iff I1(f)(⃗a) ∈ D(w).
I2 is a function interpreting, in each w ∈ W , each predicate p ∈ Pred such that ar(p) = n

by a set I2(w, p) ⊆ D(w)n, satisfying the following monotonicity condition: (M) If w ≤ u,
then I2(w, p) ⊆ I2(u, p).

▶ Definition 4 (M -assignment). Let M = (F, I1, I2) be a model. We define an M -assignment
to be a function α : Var → U . We note α[a/x] is the function α modified in x such that
α[a/x](x) = a and α[a/x](y) = α(y) if y ̸= x. Given an M-assignment α, we define the
interpretation of t in M given α, denoted α(t), inductively as follows: α(x) := α(x) and
α(f(t1, ..., tn)) := I1(f)(α(t1), ..., α(tn)).

▶ Definition 5 (Semantics). Let M = (W,≤, U,D, I1, I2) be a model with w ∈ W and α an
M -assignment. The satisfaction relation ⊩ is defined as follows:

M,w, α ⊩ p(t1, . . . , tn) iff (α(t1), . . . , α(tn)) ∈ I2(w, p);
M,w, α ̸⊩ ⊥;
M,w, α ⊩ ⊤;
M,w, α ⊩ φ ∨ ψ iff M,w, α ⊩ φ or M,w, α ⊩ ψ;
M,w, α ⊩ φ ∧ ψ iff M,w, α ⊩ φ and M,w, α ⊩ ψ;
M,w, α ⊩ φ ψ iff there exists a u ∈ W such that u ≤ w, M,u, α ⊩ φ, and M,u, α ̸⊩ ψ;
M,w, α ⊩ φ → ψ iff for all u ∈ W , if w ≤ u and M,u, α ⊩ φ, then M,u, α ⊩ ψ;
M,w, α ⊩ ∃xφ iff there exists an a ∈ D(w) such that M,w, α[a/x] ⊩ φ;
M,w, α ⊩ ∀xφ iff for all u ∈ W and all a ∈ D(u), if w ≤ u, then M,u, α[a/x] ⊩ φ.

For a set Γ ⊆ L of formulae, we write Γ ⊩ φ iff for all models M , M-assignments α, and
worlds w in M , if M,w, α ⊩ ψ for each ψ ∈ Γ, then M,w, α ⊩ φ. A formula φ is valid iff
∅ ⊩ φ. Finally, we define the logic BIQ(ID) to be the set {φ | ∅ ⊩ φ} of all valid formulae.

Note that here we define logics as sets of formulae, and not consequence relations. While
this is fit for our purpose, the reader should be warned that historical confusions emerged
around this distinction in the case of propositional bi-intuitionistic logic [15, 36], notably
pertaining to the deduction theorem.

▶ Proposition 6. Let M = (W,≤, U,D, I1, I2) be a model with α an M -assignment. For any
φ ∈ L, if M,w, α ⊩ φ and w ≤ u, then M,u, α ⊩ φ.

▶ Remark 7. We define a CD-model to be a model satisfying the constant domain condition:
(CD) If w, u ∈ W , then D(w) = D(u). If we impose the (CD) condition on models, then
first-order bi-intuitionistic logic with constant domains, dubbed BIQ(CD), can be defined as
the set of all valid formulae over the class of CD-models. In what follows, we let ID denote
the class of ID-models and CD denote the class of CD-models.

▶ Example 8. Consider the formula ∀x((p(x) ∃yp(y)) → ⊥), discussed in the introduction,
but with the existence predicate removed. In the semantics with increasing domains, this
formula is valid. To see this, suppose otherwise, i.e. that there exists a world w where the
formula is false. Thus, there is a successor w ≤ u such that ᾱ(x) ∈ D(u) and p(x) ∃yp(y)
is true, for some assignment α. The latter implies that for some u′ such that u′ ≤ u, p(x) is
true (i.e. α(x) ∈ IP (u′, p)), but ∃yp(y) is false. The former implies that α(x) ∈ D(u′), so by
the semantic clause for the ∃ quantifier, ∃yp(y) must be true – contradiction.

CSL 2025

41:6 Taking Bi-Intuitionistic Logic First-Order

3 Polytree Sequent Systems

Let Lab = {w, u, v, . . .} be a countably infinite set of labels. For a formula φ ∈ L and label
w ∈ Lab, we define w : φ to be a labeled formula. We use Γ, ∆, Σ, . . . to denote finite
multisets of labeled formulae, and let w :Γ denote a multiset of labeled formulae all labeled
with w. A relational atom is an expression of the form wRu and a domain atom is an
expression of the form w : x, where w, u ∈ Lab and x ∈ Var. Intuitively, the domain atom
formalizes an existence predicate: w : x can be interpreted as saying that the interpretation
of x exists at world w. We use R and T (and annotated versions thereof) to denote finite
multisets of, respectively, relational atoms and domain atoms. Also, we define w :V T (t) =
w : x1, . . . , w : xn with V T (t) = {x1, . . . , xn}, define w :V T (⃗t) = w : V T (t1), . . . , w : V T (tn)
with t⃗ = t1, . . . , tn, and let w : x⃗ = w : x1, . . . , w : xn for x⃗ = x1, . . . , xn. For multisets X
and Y of labeled formulae, relational atoms, and/or domain atoms, we let X,Y denote the
multiset union of X and Y , and Lab(X) denote the set of labels occurring in X.

▶ Definition 9 (Polytree Sequent). We define a polytree sequent to be an expression of
the form R, T ,Γ ⊢ ∆ such that (1) if R ̸= ∅, then Lab(T ,Γ,∆) ⊆ Lab(R) and if R = ∅,
then |Lab(T ,Γ,∆)| = 1, and (2) R forms a polytree, i.e. the graph G = (V,E) such that
V = Lab(R) and E = {(w, u) | wRu ∈ R} is connected and free of both directed and
undirected cycles. We refer to R, T ,Γ as the antecedent and ∆ as the consequent of a
polytree sequent. We will often refer to polytree sequents more simply as sequents.

We sometimes use S, S0, S1, . . . to denote sequents, and for S = R, T ,Γ ⊢ ∆, we define
Lab(S) = Lab(R, T ,Γ,∆). A flat sequent is an expression of the form T ,Γ ⊢ ∆ such that
|Lab(T ,Γ,∆)| = 1, i.e. all labeled formulae and domain atoms share the same label. Polytree
sequents encode certain binary graphs whose nodes are flat sequents and such that if you
ignore the orientation of the edges, the graph is a tree (cf. [5]). For example, the sequent

S = u′Rw, uRw,wRv︸ ︷︷ ︸
R

, u′ : x, u : x, u : y, w : z, v : y,︸ ︷︷ ︸
T

w : φ,w : ψ, v : θ︸ ︷︷ ︸
Γ

⊢ u′ : τ, u : χ, v : ξ︸ ︷︷ ︸
∆

can be graphically depicted as the polytree pt(S), shown below:

w

w : z, w : φ,w : ψ ⊢
77 OO

''
u

u : x, u : y ⊢ u : χ
u′

u′ : x ⊢ u′ : τ
v

v : y, v : θ ⊢ v : ξ

▶ Remark 10. To simplify the proofs of our results in Section 4, we assume w.l.o.g. that
sequents with isomorphic polytree representations are mutually derivable from one another.

3.1 Semantics and Proof Systems
The following definition specifies how to interpret sequents. In essence, we lift the semantics
of L to sequents by means of “M -interpretations”, mapping sequents into models.

▶ Definition 11 (Sequent Semantics). Let M = (W,≤, U,D, I1, I2) be a model and α an M -
assignment. We define an M -interpretation to be a function ι mapping every label w ∈ Lab
to a world ι(w) ∈ W . The satisfaction of multisets R, T , and Γ are defined accordingly:

M, ι, α |= R iff for all wRu ∈ R, ι(w) ≤ ι(u);
M, ι, α |= T iff for all w : x ∈ T , α(x) ∈ D(ι(w));
M, ι, α |= Γ iff for all w : φ ∈ Γ, M, ι(w), α ⊩ φ.

T. S. Lyon, I. Shillito, and A. Tiu 41:7

(ax)†1

R, T ,Γ, w :p(⃗t) ⊢ ∆, u :p(⃗t)
(⊥L)

R, T ,Γ, w :⊥ ⊢ ∆
R, T ,Γ ⊢ ∆, w :φ,w :ψ (∨R)
R, T ,Γ ⊢ ∆, w :φ ∨ ψ

(⊤R)
R, T ,Γ ⊢ ∆, w :⊤

R, T ,Γ, w :φ,w :ψ ⊢ ∆ (∧L)
R, T ,Γ, w :φ ∧ ψ ⊢ ∆

R, T , w :y,Γ, w :φ(y/x) ⊢ ∆
(∃L)†2

R, T ,Γ, w :∃xφ ⊢ ∆

R, T ,Γ, w :φ ⊢ ∆ R, T ,Γ, w :ψ ⊢ ∆ (∨L)
R, T ,Γ, w :φ ∨ ψ ⊢ ∆

R, T ,Γ ⊢ ∆, w :φ R, T ,Γ ⊢ ∆, w :ψ (∧R)
R, T ,Γ ⊢ ∆, w :φ ∧ ψ

R, uRw, T ,Γ, u :φ ⊢ ∆, u :ψ
(L)†3

R, T ,Γ, w :φ ψ ⊢ ∆
R, wRu, T ,Γ, u :φ ⊢ ∆, u :ψ

(→R)†3
R, T ,Γ ⊢ ∆, w :φ → ψ

R, T , w :V T (⃗t),Γ, w :p(⃗t) ⊢ ∆
(ds)

R, T ,Γ, w :p(⃗t) ⊢ ∆
R, T ,Γ ⊢ ∆, w :∃xφ,w :φ(t/x)

(∃R)†4
R, T ,Γ ⊢ ∆, w :∃xφ

R, T ,Γ, w :φ → ψ ⊢ ∆, u :φ R, T ,Γ, w :φ → ψ, u :ψ ⊢ ∆
(→L)†1

R, T ,Γ, w :φ → ψ ⊢ ∆

R, T ,Γ ⊢ ∆, u :φ ψ,w :φ R, T ,Γ, w :ψ ⊢ ∆, u :φ ψ
(R)†1

R, T ,Γ ⊢ ∆, u :φ ψ

R, T ,Γ, w :∀xφ, u :φ(t/x) ⊢ ∆
(∀L)†5

R, T ,Γ, w :∀xφ ⊢ ∆
R, wRu, T , u :y,Γ ⊢ ∆, u :φ(y/x)

(∀R)†6
R, T ,Γ ⊢ ∆, w :∀xφ

Side Conditions:

†1 := w ↠∗
R u

†2 := y is fresh
†3 := u is fresh
†4 := A(t,Xw,R, T)

†5 := w ↠∗
R u and A(t,Xu,R, T)

†6 := u and y are fresh

Figure 1 The System LBIQ(ID).

We define a sequent S = R, T ,Γ ⊢ ∆ to be satisfied on M with ι and α, written M, ι, α |= S,
iff if M, ι, α |= R, and M, ι, α |= T , as well as M, ι, α |= Γ, then there exists a w : ψ ∈ ∆
such that M, ι, α |= w : ψ. We write M, ι, α ̸|= S when a sequent S is not satisfied on M with
ι and α. A sequent S is defined to be valid iff for every model M , every M -interpretation ι,
and every M-assignment α, we have M, ι, α |= S; otherwise, we say that S is invalid and
write M, ι, α ̸|= S.

Given a sequent S = R, T ,Γ ⊢ ∆, we define the term substitution S(t/x) to be the
sequent obtained by replacing (1) every labeled formula w : φ in Γ,∆ by w : φ(t/x) and (2)
T by T (t/x) := (T \ {w :x | w :x ∈ T }) ∪ {w :y | w :x ∈ T and y ∈ V T (t)}. For example, if
S = wRu,w :x, u :x, u :y, w :p(x) ⊢ u :∀yq(x, y), then

S(f(y, z)/x) = wRu,w :y, w :z, u :y, u :z, u :y, w :p(f(y, z)) ⊢ u :∀x′q(f(y, z), x′)

where the bound variable y in ∀yq(x, y) was renamed to x′ to avoid capture. We now define
two reachability relations ↠+

R and ↠∗
R as well as the notion of availability [9, 22] – all of

which are required to properly formulate certain inference rules in our calculi.

▶ Definition 12 (↠+
R, ↠∗

R). Let R be a finite multiset of relational atoms such that
w, u ∈ Lab(R). We say that u is strictly reachable from w, written w ↠+

R u, iff there exist
v1, . . . , vn ∈ Lab(R) such that wRv1, . . . , vnRu ∈ R with n ∈ N. We say that u is reachable
from w, written w ↠∗

R u, iff w ↠+
R u or w = u. We write w ̸↠∗

R u if w ↠∗
R u does not hold.

CSL 2025

41:8 Taking Bi-Intuitionistic Logic First-Order

π = (ax)
R, w′ : x, u : ∀x(p ∨ r(x)), u : p, v : q ⊢ u : p, w′ : r(x)

π
(ax)

R, w′ : x, u : ∀x(p ∨ r(x)), u : r(x), v : q ⊢ u : p, w′ : r(x)
(∨L)

wRu, uRv, vRw′, w′ : x, u : ∀x(p ∨ r(x)), u : p ∨ r(x), v : q ⊢ u : p, w′ : r(x)
(∀L)

wRu, uRv, vRw′, w′ : x, u : ∀x(p ∨ r(x)), v : q ⊢ u : p, w′ : r(x)
(∀R)

wRu, uRv, u : ∀x(p ∨ r(x)), v : q ⊢ u : p, v : ∀xr(x)
(→R)

wRu, u : ∀x(p ∨ r(x)) ⊢ u : p, u : q → ∀xr(x)
(∨R)

wRu, u : ∀x(p ∨ r(x)) ⊢ u : p ∨ (q → ∀xr(x))
(→R)

⊢ w : ∀x(p ∨ r(x)) → (p ∨ (q → ∀xr(x)))

Figure 2 An example proof in LBIQ(CD) for bi-intuitionistic logic with constant domains.

▶ Definition 13 (Available). Let S = R, T ,Γ ⊢ ∆ be a sequent with w ∈ Lab(S). We define
a term t to be available for w in R, T , written A(t,Xw,R, T), iff t ∈ Ter(Xw) such that

Xw = {x | u :x ∈ T and u↠∗
R w for some u ∈ Lab(S)}.

Our polytree calculus LBIQ(ID) for BIQ(ID) is shown in Figure 1. The (ax), (⊥L),
and (⊤R) rules serve as initial rules, the domain shift rule (ds) encodes the fact that
I2(p, w) ⊆ D(w)n in any model. We define the principal formula in an inference rule to be
the one explicitly mentioned in the conclusion, the auxiliary formulae to be the non-principal
formulae explicitly mentioned in the premises, and an active formula to be either a principal
or auxiliary formula. For example, w : ∃xφ is principal, w : φ(t/x) is auxiliary, and both
are active in (∃R). Note that all rules of our calculus preserve the property of being a
polytree-structured sequent. We define a proof and its height as usual [39]. Two unique
features of our calculi are the inclusion of reachability rules and the domain shift rule (ds),
which we elaborate on next.

3.2 Reachability Rules
A unique feature of our calculi is the inclusion of reachability rules (introduced in [20]), a
generalization of propagation rules (cf. [4, 8, 14]), which are not only permitted to propagate
formulae throughout a polytree sequent when applied bottom-up, but may also check to see
if data exists along certain paths. The rules (ax), (→L), (R), (∃R), and (∀L) serve as our
reachability rules. The side conditions of our reachability rules are listed at the bottom of
Figure 1. Moreover, we define a label u or a variable y to be fresh in a rule application (as
in the (∃L) and (∀R) rules) iff it does not occur in the conclusion of the rule.
▶ Remark 14. If we set †4 := “t ∈ Ter”, †5 := “w ↠∗

R u and t ∈ Ter”, and remove the (ds)
rule, then we obtain a polytree calculus, dubbed LBIQ(CD), for the constant domain version
of the logic BIQ(CD). We also note that in the constant domain setting, domain atoms are
unnecessary and can be omitted from sequents.

To provide intuition, we give an example showing the operation of a reachability rule.

▶ Example 15. Let S = R, T ,Γ ⊢ ∆ such that R = uRw,wRv, T = w : x, u : y, v : z,
Γ = w : ∀xp(x), w : p(f(y)), w : p(z), and ∆ = u : q(x) q(x), v : r(y). A representation of
S as a polytree is shown below. We explain (in)valid applications of the (∀L) reachability rule.

u

u : y ⊢ u : q(x) q(x) //
w

w : x,w : ∀xp(x), w : p(f(y)), w : p(z) ⊢ //
v

v : z ⊢ v : r(y)

T. S. Lyon, I. Shillito, and A. Tiu 41:9

The term f(y) is available for w in S since u↠∗
R w, namely there is an edge from u to w,

and f(y) ∈ Ter(Xw) since Xw = {x, y}. Therefore, we may (top-down) apply the (∀L) rule
to delete w : p(f(y)) and derive the sequent S′ = R, T ,Γ′ ⊢ ∆ with Γ′ = w : ∀xp(x), w : p(z).
By contrast, w : p(z) cannot be deleted via an application of (∀L) because the term z is not
available for w in S (observe that w is not reachable from v) meaning z ̸∈ Ter(Xw).

▶ Remark 16. We note that for any set X ⊆ Var, Ter(X) ̸= ∅ since all constants are contained
in Ter(X) by definition. This means that bottom-up applications of (∃R) and (∀L) may
instantiate existential and universal formulae with any constant.

The reachability rules (ax), (→L) and (R) are important to ensure completeness for
both LBIQ(CD) and LBIQ(ID). The reachability rules for (∃R) and (∀L) are relevant only for
LBIQ(ID) to ensure that the domains in the model do not collapse into a constant domain.
We illustrate the importance of these reachability rules with a couple of examples.

▶ Example 17 (An Intuitionistic Formula Valid in Constant Domain Models). Consider the
intuitionistic formula ∀x(p ∨ r(x)) → (p ∨ (q → ∀xr(x))). This formula was adapted from an
example in [27], which was used to illustrate the difficulty of obtaining a sound and complete
sequent system for intuitionistic logic with constant domains. A proof of this formula in
LBIQ(CD) is shown in Figure 2 and crucially relies on reachability rules. In the figure, the
relational atoms R = wRu, uRv, vRw′ in the instances of (ax) allow us to conclude that
u↠∗

R u and u↠∗
R w′, justifying the left and right instances of (ax), respectively.

▶ Example 18 (Non-Provability of the Quantifier Shift Axiom in the Increasing Domain Setting).
Let us consider again the quantifier shift axiom ∀x(φ ∨ ψ) → (∀xφ ∨ ψ) and an attempt to
construct a proof (bottom-up) of one of its instances in LBIQ(ID).

wRu, uRv, v : x, u : ∀x(p(x) ∨ q) ⊢ v : p(x), u : q
(∀R)

wRu, u : ∀x(p(x) ∨ q) ⊢ u : ∀xp(x), u : q
(∨R)

wRu, u : ∀x(p(x) ∨ q) ⊢ u : ∀xp(x) ∨ q
(→R)

⊢ w : ∀x(p(x) ∨ q) → (∀xp(x) ∨ q)

It is obvious that to finish this proof, we would need to instantiate the ∀x quantifier in the
labeled formula u : ∀x(p(x) ∨ q) with x by applying the (∀L) rule. However, to do so, we
would need to demonstrate that the world u is reachable from v where the domain atom
v : x resides. Yet, u is not reachable from v, so x is not available at u to be used by (∀L).

3.3 The Domain Shift Rule (ds)
Although the reachability rules for the quantifiers prevent the quantifier shift axiom from being
proved, it turns out that they are not sufficient to ensure the completeness of LBIQ(ID) with
respect to the sequent semantics for the logic BIQ(ID). Interestingly, this incompleteness only
arises when the exclusion connective is involved – if one considers the intuitionistic fragment
of LBIQ(ID), these reachability rules are sufficient to prove completeness (see Lemma 26 in
Section 3.5). To see this incompleteness issue, consider the formula in Example 8, which is
semantically valid, and the following attempt at a (bottom-up) construction of a proof:

wRu, uRv, u′Rv, u : x, u′ : p(x) ⊢ u′ : ∃yp(y), v : ⊥
(L)

wRu, uRv, u : x, v : p(x) ∃yp(y) ⊢ v : ⊥
(→R)

wRu, u : x ⊢ u : (p(x) ∃yp(y)) → ⊥
(∀R)

⊢ w : ∀x((p(x) ∃yp(y)) → ⊥)

CSL 2025

41:10 Taking Bi-Intuitionistic Logic First-Order

We have so far applied only invertible rules, so the original sequent is provable iff the top
sequent in the above derivation also is. To proceed with the proof construction, one needs to
instantiate the existential quantifier ∃y with x. However, the only domain atom containing x
is located at the world u, which is not available to u′ where the existential formula is located.

It is not so obvious how the reachability rules for quantifiers could be amended to allow
this example to be proved. Looking at the above derivation, it might be tempting to augment
the calculus with a rule that allows a backward reachability condition for domain atoms,
e.g., making u : x available to u′ for when u′ ↠∗

R u under certain admissibility conditions,
but this could easily lead to a collapse of the domains if one is not careful. Instead, our
approach here is motivated by the semantic clause for predicates: when p(x) holds in a world,
its interpretation requires that x is also defined in that world. Proof theoretically, we could
think of this as postulating an axiom such as ∀x(p(x) → E(x)) where E(x) is an existence
predicate (which, as we recall, was behind the semantics of the domain atoms). Translated
into our calculus, this gives us the (ds) rule as shown in Figure 1. Using the (ds) rule, the
above derivation can now be completed to a proof:

(ax)
R, u : x, u′ : x, u′ : p(x) ⊢ u′ : p(x), u′ : ∃yp(y), v : ⊥

(∃R)
R, u : x, u′ : x, u′ : p(x) ⊢ u′ : ∃yp(y), v : ⊥

(ds)
wRu, uRv, u′Rv, u : x, u′ : p(x) ⊢ u′ : ∃yp(y), v : ⊥

Note that the (ds) rule can only be applied to atomic predicates, but not arbitrary formulae,
which rules out unsound instances. It may be possible to relax the restriction to atomic
predicates by imposing some positivity conditions on the occurrences of x, but we did not
find this necessary – neither for completeness, nor for cut-elimination.
▶ Remark 19. The (ds) rule can be removed without affecting the cut-elimination result for
LBIQ(ID). This raises the possibility of defining a first-order bi-intuitionistic logic strictly
weaker than BIQ(ID). It is unclear what the semantics for such a logic would look like.

3.4 Soundness and Completeness
▶ Theorem 20 (Soundness). Let S be a sequent. If S is provable in LBIQ(ID) (LBIQ(CD)),
then S is (CD-)valid.

Proof. By induction on the height of the given proof; see Appendix A for details. ◀

The completeness of our polytree calculi (see Theorem 22 below) is shown by taking
a sequent of the form w : x⃗ ⊢ w : φ(x⃗) as input and showing that if the sequent is not
provable, then the calculus can be used to construct an infinite derivation from which a
counter-model of the end sequent can be extracted. We note that completeness only holds
relative to sequents of the form w : x⃗ ⊢ w : φ(x⃗), which includes a domain atom for each free
variable in φ(x⃗). This restriction is needed because quantifier rules can only (bottom-up)
instantiate quantified formulae with the free variables x⃗ of φ(x⃗) if such free variables occur
as domain atoms, and such free variables must be accessible to quantifier rules to properly
extract a counter-model of the end sequent (see [23] for a relevant discussion).

Below, we outline the cut-free completeness proof for LBIQ(ID) as the proof for LBIQ(CD)
is similar; the complete proof can be found in the online, appended version [26]. Our proof
outline makes use of various new notions, which we now define. A pseudo-derivation is defined
to be a (potentially infinite) tree whose nodes are sequents and where every parent node
corresponds to the conclusion of a rule in LBIQ(ID) with the children nodes corresponding
to the premises. We remark that a proof in LBIQ(ID) is a finite pseudo-derivation where all

T. S. Lyon, I. Shillito, and A. Tiu 41:11

top sequents are instances of (ax), (⊥L), or (⊤R). A branch B is defined to be a maximal
path of sequents through a pseudo-derivation, starting from the conclusion. The following
lemma is useful in proving completeness.

▶ Lemma 21. Let C ∈ {ID, CD}. For each i ∈ {0, 1, 2}, let Si = Ri, Ti,Γi ⊢ ∆i be a sequent.
1. If w ↠∗

R u holds for the conclusion of a rule (r) in LBIQ(C), then w ↠∗
R u holds for the

premises of (r);
2. If w : p(⃗t) ∈ Γ0,∆0 and S0 is the conclusion of a rule (r) in LBIQ(C) with S1 (and S2)

the premise(s) of (r), then w : p(⃗t) ∈ Γ1,∆1 (and w : p(⃗t) ∈ Γ2,∆2, resp.);
3. If w : x ∈ T0 and S0 is the conclusion of a rule (r) in LBIQ(C) with S1 (and S2) the

premise(s) of (r), then w : x ∈ T1 (and w : x ∈ T2, resp.).

The lemma tells us that propagation paths, the position of atomic formulae, and the
position of terms are bottom-up preserved in rule applications.

▶ Theorem 22 (Completeness). If w : x⃗ ⊢ w : φ(x⃗) is (CD-)valid, then w : x⃗ ⊢ w : φ(x⃗) is
provable in LBIQ(ID) (LBIQ(CD)).

Proof (Outline). We assume that S = w : x⃗ ⊢ w : φ(x⃗) is not provable in LBIQ(ID) and
show that a model M can be defined which witnesses that S is invalid. To prove this, we
first define a proof-search procedure Prove that bottom-up applies rules from LBIQ(ID) to
w : x⃗ ⊢ w : φ(x⃗). Second, we show how a model M can be extracted from failed proof-search.
We now describe the proof-search procedure Prove and let ≺ be a well-founded, strict linear
order over the set Ter of terms.

Prove. Let us take w : x⃗ ⊢ w : φ(x⃗) as input and continue to the next step. We show some
key steps; the complete Prove procedure can be found in the online appended version [26].

(ax), (⊥L), and (⊤R). Suppose B1, . . . ,Bn are all branches occurring in the current
pseudo-derivation and let S1, . . . , Sn be the top sequents of each respective branch. For each
1 ≤ i ≤ n, we halt the computation of Prove on each branch Bi where Si is of the form (ax),
(⊥L), or (⊤R). If Prove is halted on each branch Bi, then Prove returns True because a
proof of the input has been constructed. However, if Prove did not halt on each branch Bi

with 1 ≤ i ≤ n, then let Bj1 , . . . ,Bjk
be the remaining branches for which Prove did not halt.

For each such branch, copy the top sequent above itself, and continue to the next step.

(ds). Suppose B1, . . . ,Bn are all branches occurring in the current pseudo-derivation and
let S1, . . . , Sn be the top sequents of each respective branch. For each 1 ≤ i ≤ n, we consider
Bi and extend the branch with bottom-up applications of (ds) rules. Let Bk+1 be the current
branch under consideration, and assume that B1, . . . ,Bk have already been considered. We
assume that the top sequent in Bk+1 is of the form

Sk+1 = R, T ,Γ, w : p1(⃗t1), . . . , wℓ : pℓ(⃗tℓ) ⊢ ∆

where all atomic input formulae are displayed in Sk+1 above. We successively consider each
atomic input formula and bottom-up apply (ds), yielding a branch extending Bk+1 with a
top sequent saturated under (ds) applications. After these operations have been performed
for each branch Bi with 1 ≤ i ≤ n, we continue to the next step.

CSL 2025

41:12 Taking Bi-Intuitionistic Logic First-Order

(∃L). Suppose B1, . . . ,Bn are all branches occurring in the current pseudo-derivation and
let S1, . . . , Sn be the top sequents of each respective branch. For each 1 ≤ i ≤ n, we consider
Bi and extend the branch with bottom-up applications of (∃L) rules. Let Bk+1 be the current
branch under consideration, and assume that B1, . . . ,Bk have already been considered. We
assume that the top sequent in Bk+1 is of the form

Sk+1 = R, T ,Γ, w1 : ∃x1φ1, . . . , wm : ∃xmφm ⊢ ∆

where all existential input formulae wi : ∃xiφi are displayed in Sk+1 above. We consider
each formula wi : ∃xiφi in turn, and bottom-up apply the (∃L) rule. These rule applications
extend Bk+1 such that

R, T ′,Γ, w1 : φ1(y1/x1), . . . , wn : φm(ym/xm) ⊢ ∆

is now the top sequent of the branch with y1, . . . , ym fresh variables and T ′ = T , w1 :
y1, . . . , wm : ym. After these operations have been performed for each branch Bi with
1 ≤ i ≤ n, we continue to the next step.

(∃R). Suppose B1, . . . ,Bn are all branches occurring in the current pseudo-derivation and
let S1, . . . , Sn be the top sequents of each respective branch. For each 1 ≤ i ≤ n, we consider
Bi and extend the branch with bottom-up applications of (∃R) rules. Let Bk+1 be the current
branch under consideration, and assume that B1, . . . ,Bk have already been considered. We
assume that the top sequent in Bk+1 is of the form

Sk+1 = R, T ,Γ ⊢ w1 : ∃x1φ1, . . . , wm : ∃xmφm,∆

where all existential formulae wi : ∃xiφi are displayed in Sk+1 above. We consider each labeled
formula wm : ∃xmφi in turn, and bottom-up apply the (∃R) rule. Let wℓ+1 : ∃xℓ+1φℓ+1 be
the current formula under consideration, and assume that w1 : ∃x1φ1, . . . , wℓ : ∃xℓφℓ have
already been considered. Recall that ≺ is a well-founded, strict linear order over the set Ter
of terms. Choose the ≺-minimal term t ∈ Ter(Xwℓ+1) that has yet to be picked to instantiate
wℓ+1 : ∃xℓ+1φℓ+1 and bottom-up apply the (∃R) rule, thus adding wℓ+1 : φℓ+1(t/xℓ+1). We
perform these operations for each branch Bi with 1 ≤ i ≤ n.

The remaining rules of LBIQ(ID) are processed in a similar fashion. The Prove procedure
will saturate open branches of the pseudo-derivation that is under construction by repeatedly
(bottom-up) applying rules from LBIQ(ID) in a roundabout fashion.

Next, we aim to show that if Prove does not return True, then a model M , M -
interpretation ι, and M -assignment α can be defined such that M, ι, α ̸|= S. If Prove
halts, i.e. Prove returns True, then a proof of S may be obtained by “contracting” all
redundant inferences from the “(ax), (⊥L), and (⊤R)” step of Prove. Therefore, in this case,
since a proof exists, we have obtained a contradiction to our assumption. As a consequence,
we have that Prove does not halt, that is, Prove generates an infinite tree with finite branch-
ing. By König’s lemma, an infinite branch must exist in this infinite tree, which we denote
by B. We define a model M = (W,≤, U,D, I1, I2) by means of this branch as follows: Let
us define the following sets, all of which are obtained by taking the union of each multiset
of relational atoms, domain atoms, antecedent labeled formulae, and consequent labeled
formulae (resp.) occurring within a sequent in B:

RB =
⋃

(R,T ,Γ⊢∆)∈B

R T B =
⋃

(R,T ,Γ⊢∆)∈B

T ΓB =
⋃

(R,T ,Γ⊢∆)∈B

Γ ∆B =
⋃

(R,T ,Γ⊢∆)∈B

∆

T. S. Lyon, I. Shillito, and A. Tiu 41:13

We now define: (1) u ∈ W iff u ∈ Lab(RB, T B,ΓB,∆B), (2) ≤ = {(u, v) | uRv ∈ R}∗

where ∗ denotes the reflexive-transitive closure, (3) t ∈ U iff there exists a label
u ∈ Lab(RB, T B,ΓB,∆B) such that t ∈ Ter(Xu), (4) t ∈ D(u) iff t ∈ Ter(Xu), and
(5) (t1, . . . , tn) ∈ I2(u, p) iff v, u ∈ Lab(RB, T B,ΓB,∆B), v ↠∗

RB u, and v : p(t1, . . . , tn) ∈
ΓB.

It can be shown that M is indeed a model. Let us define α to be the M -assignment
mapping every variable in U to itself and every variable in Var \ U arbitrarily. To finish the
proof of completeness, we now argue the following by mutual induction on the complexity of
the formula ψ: (1) if u : ψ ∈ ΓB, then M,u, α ⊩ ψ, and (2) if u : ψ ∈ ∆B, then M,u, α ̸⊩ ψ.
Let ι to be the M -interpretation such that ι(u) = u for u ∈ W and ι(v) ∈ W for v ̸∈ W .
By the proof above, M, ι, α ̸|= w : x⃗ ⊢ w : φ(x⃗), showing that if a sequent of the form
w : x⃗ ⊢ w : φ(x⃗) is not provable in LBIQ(ID), then it is invalid, that is, every valid sequent
of the form w : x⃗ ⊢ w : φ(x⃗) is provable in LBIQ(ID). ◀

▶ Remark 23. We remark that cut admissibility follows from the soundness of the (cut) rule
(see Figure 3) and the completeness theorem above. However, this method of proof has
two downsides: first, the restriction in the completeness theorem above implies that cut
admissibility only holds for proofs with an end sequent of the form w : x⃗ ⊢ w : φ(x⃗). Second,
this (semantic) method of proof does not define an algorithm showing how instances of (cut)
can be permuted upward and eliminated from a given proof. In Section 4, we will prove that
cut admissibility holds for all proofs and will provide such an algorithm (see Theorem 30).

3.5 Intuitionistic Subsystems
We end this section by discussing two subsystems of LBIQ(ID) and LBIQ(CD) arising from
restricting the connectives to the intuitionistic fragment. In the former case, we obtain a
proof system for the usual first-order intuitionistic logic (with non-constant domains) IQ, and
in the latter, we obtain a proof system for intuitionistic logic with constant domains IQC.

▶ Corollary 24 (Conservativity). Let φ be an intuitionistic formula (i.e. a formula with
no occurrences of). Then, φ is valid in IQ (IQC) iff ⊢ w : φ is provable in LBIQ(ID)
(respectively, LBIQ(CD)).

The proof of Corollary 24 is straightforward from Definition 11. We show here a stronger
proof-theoretic conservativity result: we can in fact extract a purely intuitionistic fragment
out of LBIQ(ID), where every sequent in the fragment is interpretable in the semantics
without the existence predicate. We prove this via syntactic means, by showing how we can
translate intuitionistic proofs in LBIQ(ID) to proofs in Gentzen’s LJ [11, 12]. A key idea
is to first define a formula interpretation of a polytree sequent, and then show that every
inference rule corresponds to a valid implication in LJ. We start by defining a notion of
intuitionistic (polytree) sequent.

▶ Definition 25. A sequent S = R, T ,Γ ⊢ ∆ is an intuitionistic sequent iff R is a tree rooted
at node u such that

every formula in S is an intuitionistic formula (i.e. it contains no occurrences of),
for every labeled formula w : φ in S and variable x ∈ V T (φ), x is available for w, and
if w : x and z : x are in T , then w = z.

By NIQ(ID) we denote the restriction to intuitionistic sequents of the proof system
LBIQ(ID) without the (ds) rule. The next lemma states an important property of LBIQ(ID),
called the separation property, which was first discussed in the context of tense logics [14].

CSL 2025

41:14 Taking Bi-Intuitionistic Logic First-Order

▶ Lemma 26 (Separation). An intuitionistic sequent S is provable in NIQ(ID) iff it is
provable in LBIQ(ID).

Proof (Outline). One direction, from NIQ(ID) to LBIQ(ID) is trivial. For the other direc-
tion, suppose π is a proof of S in LBIQ(ID). By induction on the structure of π, it can be
shown that there is a proof π′ in LBIQ(ID) in which every sequent in π′ is almost intuition-
istic – it satisfies all the requirements in Definition 25 except possibly the last condition (due
to the possible use of the (ds) rule). Then, from π′ we can construct another proof π′′ of S
that does not use (ds), by showing that one can always permute the rule (ds) up until it
disappears. Since all the rules of LBIQ(ID), other than (ds), preserve the property of being
an intuitionistic sequent, it then follows that π′′ is a proof in NIQ(ID). ◀

To translate a proof in NIQ(ID) to LJ, we need to interpret a polytree sequent as a
formula. This turns out to be somewhat problematic, due to the difficulty in interpreting
the scopes of domain atoms, when interpreting them as universally quantified variables.
Fortunately, in the case of intuitionistic sequents, the scopes of such variables follow a
straightforward lexical scoping (i.e. their scopes are over formulae in the subtrees). To define
the translation, we first relax the requirement on the domain atoms in intuitionistic sequents:
a quasi-intuitionistic sequent is defined as in Definition 25, except that in the second clause, x
is either available for w, or it does not occur in T . Obviously an intutionistic sequent is also
a quasi-intuitionistic sequent. Given a quasi-intuitionistic sequent S and a label w, we write
Sw to denote the quasi-intuitionistic sub-sequent of S that is rooted in w, i.e. the sequent
obtained from S by removing any relational atoms, domain atoms, and labeled formulae that
mention a world v not reachable from w. Given a multiset of labeled formulae Γ, we denote
with Γu the labeled formulae in Γ that are labeled with u.

▶ Definition 27. Let S = R, T ,Γ ⊢ ∆ be a quasi-intuitionistic sequent. We define its formula
interpretation F (S) recursively on the height of the sequent tree and suppose S is rooted at u.

If S is a flat sequent, then F (X) = ∀x⃗(
∧

Γ →
∨

∆) where x⃗ are all the variables in T ;
otherwise, if u has n successors w1, . . . , wn, then

F (S) = ∀x⃗(
∧

Γu → (
∨

∆u ∨ F (Sw1) ∨ · · · ∨ F (Swn
))).

The following proof-theoretic conservativity result can then be proved using a standard
translation technique for relating nested sequents and traditional Gentzen sequent calculi [6].

▶ Proposition 28. Let S be an intuitionistic sequent. S is provable in NIQ(ID) iff F (S) is
provable in LJ.

Proof (Outline). The proof is tedious, but not difficult and follows a general strategy to
translate nested sequent proofs (which, recall, are notational variants of polytree sequent
proofs) to traditional sequent proofs (with cuts) from the literature, see e.g., the translation
from nested sequent to traditional sequent proofs for full intuitionistic linear logic [6]. For
every inference rule in NIQ(ID) of the form:

S1 · · · Sn

S

we show that the formula F (S1) ∧ · · · ∧ F (Sn) → F (S) is provable in LJ. Then, given
any proof in NIQ(ID), we simulate every inference step with its corresponding implication,
followed by a cut. ◀

T. S. Lyon, I. Shillito, and A. Tiu 41:15

R, T ,Γ ⊢ ∆ (wv)
R, T , w :x,Γ ⊢ ∆

R, T , w :x, u :x,Γ ⊢ ∆
(id)†1

R, T , w :x,Γ ⊢ ∆
R, T ,Γ ⊢ ∆ (iw)

R, T ,Γ,Σ ⊢ ∆,Π

(gax)†1
R, T ,Γ, w :φ ⊢ ∆, u :φ

R, wRv, T ,Γ ⊢ ∆
(brf)†2

R, uRv, T ,Γ ⊢ ∆
R, vRu, T ,Γ ⊢ ∆

(brb)†3
R, vRw, T ,Γ ⊢ ∆

R, T , w :x,Γ ⊢ ∆ (cd)
R, T ,Γ ⊢ ∆

R, T ,Γ, w :φ,w :φ ⊢ ∆ (ctrl)R, T ,Γ, w :φ ⊢ ∆
R, T ,Γ ⊢ ∆, w :φ,w :φ (ctrr)

R, T ,Γ ⊢ ∆, w :φ

R, wRu, T ,Γ ⊢ ∆
(mrg)

R(w/u), T (w/u),Γ(w/u) ⊢ ∆(w/u)
R, T ,Γ ⊢ ∆, w :φ R, T ,Γ, u :φ ⊢ ∆

(cut)†1
R, T ,Γ ⊢ ∆

R, T ,Γ ⊢ ∆ (t/x)
R, T (t/x),Γ(t/x) ⊢ ∆(t/x)

R, T ,Γ ⊢ ∆, w :⊥ (⊥R)
R, T ,Γ ⊢ ∆

R, T ,Γ, w :⊤ ⊢ ∆ (⊤L)
R, T ,Γ ⊢ ∆

R, T ,Γ ⊢ ∆, w :Π
(lwr)†1

R, T ,Γ ⊢ ∆, u :Π
R, T ,Γ, u :Σ ⊢ ∆

(lft)†1
R, T ,Γ, w :Σ ⊢ ∆

Side Conditions:

†1 := w ↠∗
R u

†2 := w ↠∗
R u and u ̸↠∗

R v

†3 := w ↠∗
R u and w ̸↠∗

R v

Figure 3 Admissible rules.

As far as we know, for intuitionistic logic with constant domains IQC, there is no
formalization in the traditional Gentzen sequent calculus that admits cut-elimination. There
is, however, a formalization in prefixed tableaux by Fitting [9], which happens to be a
syntactic variant of the intuitionistic fragment of LBIQ(CD) (shown in [19]).

4 Cut-Elimination

In this section, we show that LBIQ(ID) and LBIQ(CD) satisfy a sizable number of favorable
properties culminating in syntactic cut-elimination. We explain here some key steps; the full
details are available in the online appended version [26].

LBIQ(ID) and LBIQ(CD) can be seen as first-order extensions of Postniece’s deep-nested
sequent calculus for bi-intuitionistic logic DBiInt [31, 13]. Cut-elimination for DBiInt [13] was
proven in two stages. First, cut-elimination was proven for a “shallow” version of the nested
sequent calculus LBiInt, which can be seen as a variant of a display calculus [1]. The cut-
elimination proof for this shallow calculus follows from Belnap’s generic cut-elimination for
display calculi [1]. Second, cut-free proofs in the shallow calculus are shown to be translatable
to proofs in the deep-nested calculus. We do not have the corresponding shallow versions
of LBIQ(ID) and LBIQ(CD), so we cannot rely on Belnap’s generic cut-elimination. It may
be possible to define shallow versions of our calculi, and then follow the same methodology
outlined in [13] to prove cut-elimination, but we find that a direct cut-elimination proof is
simpler, e.g., it avoids the need for proving the admissibility of certain structural rules called
the display postulates [1], which lets one transition from shallow to deep inference systems.

Since our polytree sequents are a restriction of ordinary labeled sequents, another possible
approach to cut-elimination is to apply the methodology for labeled sequent calculi [28]. A
main issue in adapting this methodology is ensuring that the proof transformations needed

CSL 2025

41:16 Taking Bi-Intuitionistic Logic First-Order

in cut-elimination preserve the polytree structure of sequents. A key proof transformation in
a typical cut-elimination proof for labeled calculi is label substitution: given a proof π1 and
labels u and w, one constructs another proof π2 by replacing u with w everywhere in π1 and
adjusts the inference rules accordingly. This is typically needed in the reduction of a cut
where the last rules in both branches of the cut apply to the cut formula, and where one of
the rules introduces (reading the rule bottom up) a new label and a new relational atom (e.g.,
(→R)). Such a substitution operation may not preserve polytree structures. Another notable
difference between our calculi and traditional labeled calculi is the absence of structural rules
manipulating relational atoms. These differences mean that cut-elimination techniques for
labeled sequent calculi cannot be immediately applied in our setting.

Instead, our cut-elimination proof builds on an approach by Pinto and Uustalu [29, 30],
which deals with a polytree sequent calculus for propositional bi-intuitionistic logic. We thus
provide a series of proof transformations, culminating in the elimination of cuts, which shares
similarities with their work in the propositional case and expands in the first-order direction.
These transformations are captured in proofs of the admissibility of rules shown in Figure 3.
We illustrate some key transformations and why they are needed, through an example of a
cut where (→L) and (→R) are applied to the cut formula. The formal details are available
in the proof of Theorem 30.

Suppose we have the instance of cut shown below left, where π1 is shown below right and
π2 is shown below bottom with w ↠∗

R u.

π1

R, T ,Γ ⊢ w : φ → ψ,∆
π2

R, T ,Γ, w : φ → ψ ⊢ ∆
cutR, T ,Γ ⊢ ∆

π′
1

R, T , wRw′,Γ, w′ : φ ⊢ w′ : ψ,∆
(→R)

R, T ,Γ ⊢ w : φ → ψ,∆

π3
R, T , w : φ → ψ,Γ ⊢ ∆, u : φ

π4
R, T ,Γ, w : φ → ψ, u : ψ ⊢ ∆ (→L)

R, T ,Γ, w : φ → ψ ⊢ ∆

A typical cut reduction strategy would be to cut π1 with π3 and π4 (both with cut formula
φ → ψ), producing the proofs π5 and π6 of R,Γ ⊢ ∆, u : φ and R,Γ, u : ψ ⊢ ∆, respectively.
Next, one would cut π5 with π′

1 (with cut formula φ), producing a proof π7, and then cut
π7 with π6 (with cut formula ψ). There are a couple of issues with this strategy: (1) the
cut formulae in the last two instances of cut have mismatched labels, i.e., w′ on one side
and u on the other ; (2) the label w′ and the relational atom wRw′ are not present in the
conclusions of π5 and π6, so the contexts of the premises of the cuts do not match.

To fix these issues, we first need to transform the proof π′
1 into two proofs π5 and π6, shown

below left and right, respectively. As shown in the cut-elimination proof, a transformation
that we use in this case is one that is represented by the rule (iw). This ensures that the
contexts match the contexts of the concluding sequents in π3 and π4.

π′
1

R, wRw′, T ,Γ, w′ : φ ⊢ w′ : ψ,∆ (→R)
R, T ,Γ ⊢ w : φ → ψ,∆ (iw)

R, T ,Γ ⊢ w : φ → ψ, u : φ,∆

π′
1

R, wRw′, T ,Γ, w′ : φ ⊢ w′ : ψ,∆ (→R)
R, T ,Γ ⊢ w : φ → ψ,∆ (iw)

R, T ,Γ, w : φ → ψ, u : ψ ⊢ ∆

We then cut π3 and π4 with π5 and π6, respectively, which yields proofs π7 and π8 of
R,Γ ⊢ u : φ,∆ and R,Γ, u : ψ ⊢ ∆, respectively. At this stage, we want to cut π7 with π′

1,
and then cut the resulting proof with π8. However, this cut cannot be performed until the
label w′ and its associated relational atom are removed from the conclusion of π′

1. Simply
substituting u for w′ may break the polytree shape of the sequent, e.g., if there is a v such
that wRv and vRu are in R, then replacing u for w′ in wRw′ would break the polytree

T. S. Lyon, I. Shillito, and A. Tiu 41:17

shape of the sequent. So the relational atoms in the sequent also need to be modified. A
transformation that we use in this case is represented by the rule (brf), which shifts the
relational atom wRw′ “forward” from w to u given that w ↠∗

R u. We also need another
transformation to “merge” the label u with the label w′, deleting the relational atom in the
process, represented as the (mrg) rule.

π7 (iw)
R, T ,Γ ⊢ u : φ, u : ψ,∆

π′
1

R, wRw′, T ,Γ, w′ : φ ⊢ w′ : ψ,∆ (brf)
R, uRw′, T ,Γ, w′ : φ ⊢ w′ : ψ,∆ (mrg)

R, T ,Γ, u : φ ⊢ u : ψ,∆
cutR, T ,Γ ⊢ u : ψ,∆

If we cut the above proof with π8, we obtain a proof of R, T ,Γ ⊢ ∆. Here we gloss over the
termination arguments, but the details are available in the proof of Theorem 30.

The above example illustrates one among several proof transformations needed in cut-
elimination. These transformations make use of the auxiliary rules in Figure 3. The bulk of
the cut-elimination proof consists of showing these rules (height-preserving/hp-) admissible
and the rules of LBIQ(ID) and LBIQ(CD) height-preserving invertible (i.e., hp-invertible).
(NB. We take the notions of (hp-)admissibility and (hp-)invertibility to be defined as usual.)
All (hp-)admissible rules preserve the polytree structure of sequents, and with the exception
of (gax), (cut), and (cd), all rules in Figure 3 are hp-admissible in both calculi. The (gax)
and (cut) rules are strictly admissible in both calculi, while (cd) is hp-admissible in only
LBIQ(CD) as the availability conditions are not imposed on rules, rendering domain atoms
unnecessary (see Remark 14). We now discuss some of the most interesting rules of Figure 3.

Let us first explain the rules (brf) and (brb). For some labels w, u, and v, assume w ↠∗
R u

and u ̸↠∗
R v for R := R′, wRv. Then, we know that (1) u and v are on two different paths

passing through w of the polytree generated from R, and (2) there is no vertex between v

and w since otherwise a cycle would be present in R. In this scenario, the rule (brf) (for
branch f orward) allows one to move the polytree “rooted” at v forward by connecting it to
u instead of w as shown left in the below figure. The rule (brb) has a similar functionality;
for some labels w, u, and v, assume w ↠∗

R u and w ̸↠∗
R v for R := R′, vRu. Then, the rule

(brb) (for branch backward) lets one move the polytree “rooted” at v backward by connecting
it to w instead of u as shown right in the below figure.

w u

v ⇒
w u

v
w u

v

⇒
w u

v

Figure 4 The left and right diagrams demonstrate the functionality of (brf) and (brb), respectively.

The (mrg) rule merges a label and its direct successor and corresponds to the rules
nodemergeD and nodemergeU of Pinto and Uustalu [29]. The rule (id) reflects the re-
dundancy of a variable labeled by two labels such that one is reachable by the other.
Model-theoretically, this redundancy follows from the fact that if x is interpreted at w, and
u is reachable from w (in a model), then x is interpreted at u as well, showing the domain
atom u : x superfluous in the premise. Note that when the labels w and u are identical, then
the rule represents a contraction on domain atoms; as w ↠∗

R w always holds, we have that
identical domain atoms can always be contracted in sequents. The rules (lwr) and (lft) allow
us to modify the labels of formulae in a sequent by looking at its underlying polytree. More
precisely, reading (lwr) and (lft) bottom-up, if w ↠∗

R u we can both lower the label of u :Π
on the right of the sequent to w, and lift the label of w :Σ on the left of the sequent to u.

CSL 2025

41:18 Taking Bi-Intuitionistic Logic First-Order

▶ Lemma 29. All non-initial rules in LBIQ(C) are hp-invertible.

Finally, we can prove the admissibility of the (cut) rule. As our proof proceeds via local
transformations of proofs, the proof is constructive and yields a cut-elimination algorithm.

▶ Theorem 30 (Cut-elimination). The (cut) rule is admissible in LBIQ(C).

Proof. We proceed by a primary induction (PIH) on the complexity of the cut formula, and
a secondary induction (SIH) on the sum of the heights of the proofs of the premises of (cut).
Assume that we have proofs of the following form, with w ↠∗

R u.

π1 (r1)
R, T ,Γ ⊢ ∆, w :φ

π2 (r2)
R, T ,Γ, u :φ ⊢ ∆

We argue that there is a proof of R, T ,Γ ⊢ ∆ by a case distinction on (r1) and (r2), the last
rules applied in the above proofs. We focus on some interesting cases; the remaining cases
can be found in the online appended version [26].

(r1) = (ax). Then R, T ,Γ ⊢ ∆, w : φ is of the form R, T ,Γ0, v0 : p(⃗t) ⊢ ∆0, v1 : p(⃗t)
where v0 ↠∗

R v1. If v1 : p(⃗t) is w : φ, then we have that R, T ,Γ, u : φ ⊢ ∆ is of the
form R, T ,Γ0, v0 : p(⃗t), u : p(⃗t) ⊢ ∆ where Γ = Γ0, v0 : p(⃗t). Given that v0 ↠∗

R v1 and
v1 ↠∗

R u, we can apply the hp-admissibility of (lft) on the latter to obtain a proof of
R, T ,Γ0, v0 : p(⃗t), v0 : p(⃗t) ⊢ ∆. Consequently, we obtain a proof of R, T ,Γ0, v0 : p(⃗t) ⊢ ∆,
i.e. of R, T ,Γ ⊢ ∆, using the hp-admissibility of (ctrl). If v1 :p(⃗t) is not w :φ, then we have
that R, T ,Γ ⊢ ∆ is of the form R, T ,Γ0, v0 :p(⃗t) ⊢ ∆0, v1 :p(⃗t) where v0 ↠∗

R v1. The latter
is provable by the admissibility of (gax).

(r1) = (ds). Then R, T ,Γ ⊢ ∆, w :φ is of the form R, T ,Γ0, v :p(⃗t) ⊢ ∆, w :φ and we have
a proof of R, T , v : V T (⃗t),Γ0, v : p(⃗t) ⊢ ∆, w :φ. Consequently, we know that R, T ,Γ ⊢ ∆
is of the form R, T ,Γ0, v : p(⃗t) ⊢ ∆. We also have that R, T ,Γ, u : φ ⊢ ∆ is of the form
R, T ,Γ0, v :p(⃗t), u :φ ⊢ ∆. We can repeatedly apply the hp-admissibility of (wv) on the proof
of the latter to obtain a proof of S := R, T , v :V T (⃗t),Γ0, v :p(⃗t), u :φ ⊢ ∆. Then, we proceed
as follows:

R, T , v :V T (⃗t),Γ0, v :p(⃗t) ⊢ ∆, w :φ S
SIH

R, T , v :V T (⃗t),Γ0, v :p(⃗t) ⊢ ∆
(ds)

R, T ,Γ0, v :p(⃗t) ⊢ ∆

Note that the instance of SIH is justified because the sum of the heights of the proofs of the
premises has decreased.

(r1) = (L). Then R, T ,Γ ⊢ ∆, w :φ is of the form R, T ,Γ0, v :ψ χ ⊢ ∆, w :φ and we a
have proof of R, v0Rv, T ,Γ0, v0 :ψ ⊢ ∆, w :φ, v0 :χ. Consequently, we know that R, T ,Γ ⊢ ∆
is of the form R, T ,Γ0, v :ψ χ ⊢ ∆. We also have that R, T ,Γ, u :φ ⊢ ∆ is of the form
R, T ,Γ0, v :ψ χ, u :φ ⊢ ∆. We apply Lemma 29 on the proof of the latter sequent to
obtain a proof of R, v0Rv, T ,Γ0, v0 :ψ, u :φ ⊢ ∆, v0 :χ, which we call S. Thus, we proceed
as shown below. Note that the instance of SIH is justified as the sum of the heights of the
proofs of the premises is smaller than that of the original cut.

R, v0Rv, T ,Γ0, v0 :ψ ⊢ ∆, w :φ, v0 :χ S
SIHR, v0Rv, T ,Γ0, v0 :ψ ⊢ ∆, v0 :χ (L)

R, T ,Γ0, v :ψ χ ⊢ ∆

T. S. Lyon, I. Shillito, and A. Tiu 41:19

(r1) = (∃R). Then there are two cases to consider: in the left premise R, T ,Γ ⊢ ∆, w :φ
of (cut), either (1) w :φ is not the principal formula v : ∃xψ, or (2) w :φ is the principal
formula. In case (1), we have a proof of R, T ,Γ ⊢ ∆1, v :∃xψ, v :ψ(t/x), w :φ, which we call
S, and R, T ,Γ, u :φ ⊢ ∆ is of the form R, T ,Γ, u :φ ⊢ ∆1, v :∃xψ. We proceed as follows.

S

R, T ,Γ, u :φ ⊢ ∆1, v :∃xψ
Lem.29R, T ,Γ, u :φ ⊢ ∆1, v :∃xψ, v :ψ(t/x)
SIHR, T ,Γ ⊢ ∆1, v :∃xψ, v :ψ(t/x)

(∃R)
R, T ,Γ ⊢ ∆1, v :∃xψ

In case (2), we have proof a of R, T ,Γ ⊢ ∆, v :∃xψ, v :ψ(t/x), and R, T ,Γ, u :φ ⊢ ∆ is of the
form R, T ,Γ, u :∃xψ ⊢ ∆. In this case, we need to consider the shape of (r2). If u :∃xψ is not
principal in (r2), then we apply the hp-invertibility of (r2) (Lemma 29) to the left premise
of (cut) and use SIH to cut the result with the premise of (r2), applying (r2) afterward
to reach our goal. If u : ∃xψ is principal in (r2), then the premise of (r2) is of the shape
R, T , v :y,Γ, v :ψ(y/x) ⊢ ∆ where y is fresh. Then, we proceed as follows where π is the first
proof given and x0, . . . , xn are all the variables appearing in t.

R, T ,Γ ⊢ ∆, v :∃xψ, v :ψ(t/x)
R, T ,Γ, u :∃xψ ⊢ ∆ (iw)

R, T ,Γ, u :∃xψ ⊢ ∆, v :ψ(t/x)
SIHR, T ,Γ ⊢ ∆, v :ψ(t/x)

π

R, T , v :y,Γ, v :ψ(y/x) ⊢ ∆
(t/y)

R, T , v :x0, . . . , v :xn,Γ, v :ψ(t/x) ⊢ ∆
(id)

R, T ,Γ, v :ψ(t/x) ⊢ ∆
PIHR, T ,Γ ⊢ ∆

Note that the step involving (id) is justified as t is available for v, meaning for each xi ∈ V T (t),
there exists a domain atom ui : xi such that ui ↠∗

R v, showing (id) applicable. ◀

5 Concluding Remarks

Our analysis indicates that there may be two interesting and possibly distinct first-order
extensions of bi-intuitionistic logic that may be worth exploring. The first is to consider
a logic with decreasing domains, i.e., if w ≤ u then D(u) ⊆ D(w) in the Kripke model.
Semantically, this logic is easy to define, but its proof theory is not at all obvious. We are
looking into the possibility of formalizing a notion of “non-existence predicate,” which is
dual to the existence predicate, suggested by Restall [34]. This non-existence predicate may
play a similar (but dual) role to the existence predicate in LBIQ(ID). The other extension is
motivated from a proof-theoretic perspective. As mentioned in Remark 19, it seems that
one can obtain a subsystem of LBIQ(ID) without the domain-shift rule (ds) that satisfies
cut-elimination. As discussed in Section 3, the (ds) rule is crucial to ensure the completeness
of BIQ(ID) in the presence of the exclusion operator, and so, a natural question to ask is
what the semantics of such a logic would look like.

References
1 Nuel D. Belnap. Display logic. Journal of philosophical logic, 11(4):375–417, 1982. doi:

10.1007/BF00284976.
2 Kai Brünnler. Deep sequent systems for modal logic. Archive for Mathematical Logic, 48(6):551–

577, 2009. doi:10.1007/s00153-009-0137-3.

CSL 2025

https://doi.org/10.1007/BF00284976
https://doi.org/10.1007/BF00284976
https://doi.org/10.1007/s00153-009-0137-3

41:20 Taking Bi-Intuitionistic Logic First-Order

3 Robert A. Bull. Cut elimination for propositional dynamic logic without *. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 38(2):85–100, 1992. doi:10.1002/
MALQ.19920380107.

4 Marcos A. Castilho, Luis Farinas del Cerro, Olivier Gasquet, and Andreas Herzig. Modal
tableaux with propagation rules and structural rules. Fundamenta Informaticae, 32(3, 4):281–
297, 1997. doi:10.3233/FI-1997-323404.

5 Agata Ciabattoni, Tim Lyon, Revantha Ramanayake, and Alwen Tiu. Display to labelled
proofs and back again for tense logics. ACM Transactions on Computational Logic, 22(3):1–31,
2021. doi:10.1145/3460492.

6 Ranald Clouston, Jeremy E. Dawson, Rajeev Goré, and Alwen Tiu. Annotation-free sequent
calculi for full intuitionistic linear logic - extended version. CoRR, abs/1307.0289, 2013.
arXiv:1307.0289.

7 Tristan Crolard. A formulae-as-types interpretation of subtractive logic. Journal of Logic and
Computation, 14(4):529–570, 2004. doi:10.1093/logcom/14.4.529.

8 Melvin Fitting. Tableau methods of proof for modal logics. Notre Dame Journal of Formal
Logic, 13(2):237–247, 1972. doi:10.1305/NDJFL/1093894722.

9 Melvin Fitting. Nested sequents for intuitionistic logics. Notre Dame Journal of Formal Logic,
55(1):41–61, 2014. doi:10.1215/00294527-2377869.

10 D. Gabbay, V. Shehtman, and D. Skvortsov. Quantification in Non-classical Logics. Studies
in Logic and Foundations of Mathematics. Elsevier, Amsterdam, London, 2009.

11 Gerhard Gentzen. Untersuchungen über das logische Schließen. I. Mathematische Zeitschrift,
39(1):176–210, 1935.

12 Gerhard Gentzen. Untersuchungen über das logische Schließen. II. Mathematische Zeitschrift,
39(1):405–431, 1935.

13 Rajeev Goré, Linda Postniece, and Alwen Tiu. Cut-elimination and proof-search for bi-
intuitionistic logic using nested sequents. In Carlos Areces and Robert Goldblatt, editors,
Advances in Modal Logic 7, pages 43–66, Nancy, France, 2008. College Publications. URL:
http://www.aiml.net/volumes/volume7/Gore-Postniece-Tiu.pdf.

14 Rajeev Goré, Linda Postniece, and Alwen Tiu. On the correspondence between display
postulates and deep inference in nested sequent calculi for tense logics. Logical Methods in
Computer Science, 7(2):1–38, 2011. doi:10.2168/LMCS-7(2:8)2011.

15 Rajeev Goré and Ian Shillito. Bi-intuitionistic logics: A new instance of an old problem. In
Advances in Modal Logic 13, pages 269–288, Helsinki, Finland, 2020. College Publications.
URL: http://www.aiml.net/volumes/volume13/Gore-Shillito.pdf.

16 Andrzej Grzegorczyk. A philosophically plausible formal interpretation of intuitionistic logic.
Indagationes Mathematicae, 26(5):596–601, 1964.

17 Ryo Ishigaki and Kentaro Kikuchi. Tree-sequent methods for subintuitionistic predicate logics.
In Nicola Olivetti, editor, Automated Reasoning with Analytic Tableaux and Related Methods,
volume 4548 of Lecture Notes in Computer Science, pages 149–164, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg. doi:10.1007/978-3-540-73099-6_13.

18 Ryo Kashima. Cut-free sequent calculi for some tense logics. Studia Logica, 53(1):119–135,
1994. doi:10.1007/BF01053026.

19 Tim Lyon. On the correspondence between nested calculi and semantic systems for intuitionistic
logics. Journal of Logic and Computation, 31(1):213–265, December 2020. doi:10.1093/
logcom/exaa078.

20 Tim Lyon. Refining Labelled Systems for Modal and Constructive Logics with Applications.
PhD thesis, Technische Universität Wien, 2021.

21 Tim Lyon, Alwen Tiu, Rajeev Goré, and Ranald Clouston. Syntactic interpolation for
tense logics and bi-intuitionistic logic via nested sequents. In Maribel Fernández and Anca
Muscholl, editors, 28th EACSL Annual Conference on Computer Science Logic, volume
152 of LIPIcs, pages 28:1–28:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.CSL.2020.28.

https://doi.org/10.1002/MALQ.19920380107
https://doi.org/10.1002/MALQ.19920380107
https://doi.org/10.3233/FI-1997-323404
https://doi.org/10.1145/3460492
https://arxiv.org/abs/1307.0289
https://doi.org/10.1093/logcom/14.4.529
https://doi.org/10.1305/NDJFL/1093894722
https://doi.org/10.1215/00294527-2377869
http://www.aiml.net/volumes/volume7/Gore-Postniece-Tiu.pdf
https://doi.org/10.2168/LMCS-7(2:8)2011
http://www.aiml.net/volumes/volume13/Gore-Shillito.pdf
https://doi.org/10.1007/978-3-540-73099-6_13
https://doi.org/10.1007/BF01053026
https://doi.org/10.1093/logcom/exaa078
https://doi.org/10.1093/logcom/exaa078
https://doi.org/10.4230/LIPIcs.CSL.2020.28

T. S. Lyon, I. Shillito, and A. Tiu 41:21

22 Tim S. Lyon. Nested sequents for intermediate logics: the case of Gödel-Dummett logics.
Journal of Applied Non-Classical Logics, 33(2):121–164, 2023. doi:10.1080/11663081.2023.
2233346.

23 Tim S. Lyon. Nested sequents for intermediate logics: The case of Gödel-Dummett logics,
2024. Updated version, on arXiv. URL: https://arxiv.org/abs/2306.07550, doi:10.48550/
arXiv.2306.07550.

24 Tim S. Lyon and Lucía Gómez Álvarez. Automating reasoning with standpoint logic via nested
sequents. In Proceedings of the 19th International Conference on Principles of Knowledge
Representation and Reasoning, pages 257–266, August 2022. doi:10.24963/kr.2022/26.

25 Tim S. Lyon and Jonas Karge. Constructive interpolation and concept-based beth definability
for description logics via sequents. In Kate Larson, editor, Proceedings of the Thirty-Third
International Joint Conference on Artificial Intelligence, IJCAI-24, pages 3484–3492. Inter-
national Joint Conferences on Artificial Intelligence Organization, August 2024. Main Track.
URL: https://www.ijcai.org/proceedings/2024/386, doi:10.24963/ijcai.2024/386.

26 Tim S. Lyon, Ian Shillito, and Alwen Tiu. Taking bi-intuitionistic logic first-order: A
proof-theoretic investigation via polytree sequents, 2024. Appended version on arXiv. URL:
https://arxiv.org/abs/2404.15855, doi:10.48550/arXiv.2404.15855.

27 E. G. K. López-Escobar. On the interpolation theorem for the logic of constant domains.
Journal of Symbolic Logic, 46(1):87–88, 1981. doi:10.2307/2273260.

28 Sara Negri. Proof analysis in modal logic. Journal of Philosophical Logic, 34(5-6):507, 2005.
29 Luís Pinto and Tarmo Uustalu. Relating sequent calculi for bi-intuitionistic propositional

logic. In Steffen van Bakel, Stefano Berardi, and Ulrich Berger, editors, Proceedings Third
International Workshop on Classical Logic and Computation, volume 47 of EPTCS, pages
57–72, 2010. doi:10.4204/EPTCS.47.7.

30 Luís Pinto and Tarmo Uustalu. A proof-theoretic study of bi-intuitionistic propositional
sequent calculus. Journal of Logic and Computation, 28(1):165–202, 2018. doi:10.1093/
LOGCOM/EXX044.

31 Linda Postniece. Deep inference in bi-intuitionistic logic. In Hiroakira Ono, Makoto Kanazawa,
and Ruy de Queiroz, editors, Logic, Language, Information and Computation, pages 320–334,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. doi:10.1007/978-3-642-02261-6_26.

32 Cecylia Rauszer. Applications of Kripke models to Heyting-Brouwer logic. Studia Logica,
36(1):61–71, 1977. doi:10.1007/BF02121115.

33 Cecylia Rauszer. An algebraic and Kripke-style approach to a certain extension of intuitionistic
logic, dissertations mathematicae, 1980.

34 Greg Restall. Constant domain quantified modal logics without boolean negation. Australasian
Journal of Logic, 3:45–62, 2005. doi:10.26686/ajl.v3i0.1772.

35 Dana Scott. Identity and existence in intuitionistic logic. In Applications of Sheaves: Proceedings
of the Research Symposium on Applications of Sheaf Theory to Logic, Algebra, and Analysis,
Durham, July 9–21, 1977, pages 660–696. Springer, 2006.

36 Ian Shillito. New Foundations for the Proof Theory of Bi-Intuitionistic and Provability Logics
Mechanized in Coq. PhD thesis, Australian National University, Canberra, 2023.

37 Alex K. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis,
University of Edinburgh. College of Science and Engineering. School of Informatics, 1994.

38 John G. Stell, Renate A. Schmidt, and David Rydeheard. A bi-intuitionistic modal logic:
Foundations and automation. Journal of Logical and Algebraic Methods in Programming,
85(4):500–519, 2016. Relational and algebraic methods in computer science. doi:10.1016/j.
jlamp.2015.11.003.

39 Gaisi Takeuti. Proof theory, volume 81. Courier Corporation, 2013.
40 Alwen Tiu, Egor Ianovski, and Rajeev Goré. Grammar logics in nested sequent calculus: Proof

theory and decision procedures. In Thomas Bolander, Torben Braüner, Silvio Ghilardi, and
Lawrence S. Moss, editors, Advances in Modal Logic 9, pages 516–537. College Publications,
2012. URL: http://www.aiml.net/volumes/volume9/Tiu-Ianovski-Gore.pdf.

41 Luca Viganò. Labelled Non-Classical Logics. Springer Science & Business Media, 2000.

CSL 2025

https://doi.org/10.1080/11663081.2023.2233346
https://doi.org/10.1080/11663081.2023.2233346
https://arxiv.org/abs/2306.07550
https://doi.org/10.48550/arXiv.2306.07550
https://doi.org/10.48550/arXiv.2306.07550
https://doi.org/10.24963/kr.2022/26
https://www.ijcai.org/proceedings/2024/386
https://doi.org/10.24963/ijcai.2024/386
https://arxiv.org/abs/2404.15855
https://doi.org/10.48550/arXiv.2404.15855
https://doi.org/10.2307/2273260
https://doi.org/10.4204/EPTCS.47.7
https://doi.org/10.1093/LOGCOM/EXX044
https://doi.org/10.1093/LOGCOM/EXX044
https://doi.org/10.1007/978-3-642-02261-6_26
https://doi.org/10.1007/BF02121115
https://doi.org/10.26686/ajl.v3i0.1772
https://doi.org/10.1016/j.jlamp.2015.11.003
https://doi.org/10.1016/j.jlamp.2015.11.003
http://www.aiml.net/volumes/volume9/Tiu-Ianovski-Gore.pdf

41:22 Taking Bi-Intuitionistic Logic First-Order

A Soundness

▶ Theorem 20 (Soundness). Let S be a sequent. If S is provable in LBIQ(ID) (LBIQ(CD)),
then S is (CD-)valid.

Proof. We argue the claim by induction on the height of the given derivation and consider
the LBIQ(ID) case as the LBIQ(CD) case is similar.

Base case. It is straightforward to show that any instance of (⊥L) or (⊤R) is valid; hence,
we focus on (ax) and show that any instance thereof is valid. Let us consider the following
instance of (ax), where w ↠∗

R u due to the side condition imposed on (ax), that is, there
exist v1, . . . , vn ∈ Lab(R) such that wRv1, . . . , vnRu ∈ R.

(ax)
R, T ,Γ, w :p(⃗t) ⊢ ∆, u :p(⃗t)

Let us suppose R, T ,Γ, w :p(⃗t) ⊢ ∆, u :p(⃗t) is invalid, i.e., a model M = (W,≤, U,D, I1, I2),
M -interpretation ι, and M -assignment α exist such that the following hold: ι(w) ≤
ι(v1), . . . , ι(vn) ≤ ι(u), M, ι(w), α ⊩ p(⃗t), and M, ι(u), α ̸⊩ p(⃗t). By the monotonicity
condition (M) (see Definition 3), it must be that M, ι(u), α ⊩ p(⃗t), giving a contradiction.
Thus, every instance of (ax) must be valid.

Inductive step. We prove the inductive step by contraposition, showing that if the conclusion
of the last inference in the given proof is invalid, then at least one premise of the final inference
must be invalid. We make a case distinction based on the last rule applied in the given
derivation.
(ds). Suppose R, T ,Γ, w :p(⃗t) ⊢ ∆ is invalid with t⃗ = t1, . . . , tn. Then, there exists a model

M , M -interpretation ι, and M -assignment α such that M, ι(w), α ⊩ p(⃗t). Therefore,
(α(t1), . . . , α(tn)) ∈ I2(w, p), and since I2(w, p) ⊆ D(w)n, we have that α(ti) ∈ D(ι(w))
for 1 ≤ i ≤ n. By the (C1) and (C2) conditions, we know that M, ι, α |= w : V T (⃗t).
Therefore, R, T , w :V T (⃗t),Γ, w :p(⃗t) ⊢ ∆ is invalid as well.

(∧L). If we assume that R, T ,Γ, w : φ ∧ ψ ⊢ ∆ is invalid, then there exists a model M ,
M -interpretation ι, and M -assignment α such that M, ι(w), α ⊩ φ ∧ ψ, implying that
M, ι(w), α ⊩ φ and M, ι(w), α ⊩ ψ, showing that the premise R, T ,Γ, w :φ,w :ψ ⊢ ∆ is
invalid as well.

(∧R). Let us suppose that R, T ,Γ ⊢ ∆, w :φ ∧ ψ is invalid. Then, there exists an model
M , M -interpretation ι, and M -assignment α such that M, ι(w), α ̸⊩ φ ∧ ψ. Hence, either
M, ι(w), α ̸⊩ φ or M, ι(w), α ̸⊩ ψ. In the first case, the left premise of (∧R) is invalid,
and in the second case, the right premise of (∧R) is invalid.

(∨L). Similar to the (∧R) case.
(∨R). Similar to the (∧L) case.
(→L). Assume R, T ,Γ, w : φ → ψ ⊢ ∆ is invalid and w ↠∗

R u, i.e. a sequence
wRv1, . . . , vnRu of relational atoms exist in R. By our assumption, there exists a
model M , M -interpretation ι, and M -assignment such that ι(w) ≤ ι(v1), . . . , ι(vn) ≤ ι(u)
and M, ι(w), α ⊩ φ → ψ. Because M, ι(w), α ⊩ φ → ψ and ≤ is transitive, we know that
either M, ι(u), α ̸⊩ φ or M, ι(u), α ⊩ ψ. In the first case, the left premise of (→L) is
invalid, and in the second case, the right premise of (→L) is invalid.

(→R). Assume that R, T ,Γ ⊢ ∆, w :φ → ψ is invalid. Then, there exists a model M , an
M -interpretation ι, and an M -assignment α such that M, ι(w), α ̸⊩ φ → ψ. Hence, there
exists a world u such that ι(w) ≤ u, M,u, α ⊩ φ, and M,u, α ̸⊩ ψ. Let ι′(v) = ι(v) for
all labels v ̸= u and ι′(u) = u otherwise. Then, M , ι′, and α falsify the premise of (→R),
showing it invalid.

T. S. Lyon, I. Shillito, and A. Tiu 41:23

(L). Similar to the (→R) case above.
(R). Similar to the (→L) case above.
(∃L). Suppose that S = R, T ,Γ, w : ∃xφ ⊢ ∆ is invalid. Then, there exists a model M ,

an M -interpretation ι, and an M -assignment α such that M, ι(w), α ⊩ ∃xφ. Therefore,
there exists an a ∈ D(ι(w)) such that M, ι(w), α[a/y] ⊩ φ(y/x) with y not occurring in
S. Then, as y is fresh, M , ι, and α[a/y] falsify the premise of (∃L), showing it invalid.

(∃R). Suppose that S = R, T ,Γ ⊢ ∆, w :∃xφ is invalid. Then, there exists a model M , and
M -interpretation ι, and M -assignment such that M, ι(w), α ̸⊩ ∃xφ. By the side condition
on (∃R), we know that A(t,Xw,R, T), meaning there exist labels u1, . . . , un ∈ Lab(S)
such that u1 : x1, . . . , un : xn ∈ T , V T (t) = {x1, . . . , xn}, and u1 ↠∗

R w, . . . , un ↠∗
R w. It

follows that ι(u1) ≤ ι(w), . . . , ι(un) ≤ ι(w) and α(x1) ∈ D(ι(u1)), . . . , α(xn) ∈ D(ι(un)).
By the increasing domain condition (ID), we have that α(x1) ∈ D(ι(w)), . . . , α(xn) ∈
D(ι(w)). Therefore, by the (C1) and (C2) conditions, we know that α(t) ∈ D(ι(w)),
showing that M, ι(w), α ̸⊩ φ(t/x), and thus, the premise is invalid.

(∀L). Suppose that S = R, T ,Γ, w : ∀xφ ⊢ ∆ is invalid. Then, there exists a model M ,
and M -interpretation ι, and M -assignment α such that M, ι(w), α ⊩ ∀xφ. By the side
condition on (∀L), we know that w ↠∗

R u and A(t,Xw,R, T). By the latter fact, there
exist labels v1, . . . , vn ∈ Lab(S) such that v1 : x1, . . . , vn : xn ∈ T , V T (t) = {x1, . . . , xn},
and v1 ↠∗

R w, . . . , vn ↠∗
R w. It follows that ι(v1) ≤ ι(w), . . . , ι(vn) ≤ ι(w) and α(x1) ∈

D(ι(v1)), . . . , α(xn) ∈ D(ι(vn)). By the increasing domain condition (ID), we have that
α(x1) ∈ D(ι(w)), . . . , α(xn) ∈ D(ι(w)). Therefore, by the (C1) and (C2) conditions
and our assumption, we know that α(t) ∈ D(ι(w)), showing that M, ι(w), α ⊩ φ(t/x).
By the fact that w ↠∗

R u, we know ι(w) ≤ ι(u) and α(t) ∈ D(ι(u)), showing that
M, ι(u), α ⊩ φ(t/x) by Proposition 6. Thus, the premise is invalid.

(∀R). Let us assume that R, T ,Γ ⊢ ∆, w :∀xφ is invalid. Then, there exists a model M , an
M -interpretation ι, and an M -assignment α such that M, ι(w), α ̸⊩ ∀xφ. Thus, there
exists a world u ∈ W such that ι(w) ≤ u, a ∈ D(u), and M,u, α[a/y] ̸⊩ φ(y/x). We
define ι′(v) = ι(v) if v ̸= u and ι′(u) = u. Then, M , ι′, and α[a/y] falsify the premise
R, w ≤ u, T , u :y,Γ ⊢ ∆, u :φ(y/x), showing it invalid. ◀

CSL 2025

Unifying Sequent Systems for Gödel-Löb
Provability Logic via Syntactic Transformations
Tim S. Lyon # Ñ

Technische Universität Dresden, Germany

Abstract
We demonstrate the inter-translatability of proofs between the most prominent sequent-based
formalisms for Gödel-Löb provability logic. In particular, we consider Sambin and Valentini’s sequent
system GLseq, Shamkanov’s non-wellfounded and cyclic sequent systems GL∞ and GLcirc, Poggiolesi’s
tree-hypersequent system CSGL, and Negri’s labeled sequent system G3GL. Shamkanov provided
proof-theoretic correspondences between GLseq, GL∞, and GLcirc, and Goré and Ramanayake showed
how to transform proofs between CSGL and G3GL, however, the exact nature of proof transformations
between the former three systems and the latter two systems has remained an open problem. We
solve this open problem by showing how to restructure tree-hypersequent proofs into an end-active
form and introduce a novel linearization technique that transforms such proofs into linear nested
sequent proofs. As a result, we obtain a new proof-theoretic tool for extracting linear nested sequent
systems from tree-hypersequent systems, which yields the first cut-free linear nested sequent calculus
LNGL for Gödel-Löb provability logic. We show how to transform proofs in LNGL into a certain
normal form, where proofs repeat in stages of modal and local rule applications, and which are
translatable into GLseq and G3GL proofs. These new syntactic transformations, together with those
mentioned above, establish full proof-theoretic correspondences between GLseq, GL∞, GLcirc, CSGL,
G3GL, and LNGL while also giving (to the best of the author’s knowledge) the first constructive proof
mappings between structural (viz. labeled, tree-hypersequent, and linear nested sequent) systems
and a cyclic sequent system.

2012 ACM Subject Classification Theory of computation → Proof theory; Theory of computation
→ Modal and temporal logics; Theory of computation → Constructive mathematics

Keywords and phrases Cyclic proof, Gödel-Löb logic, Labeled sequent, Linear nested sequent, Modal
logic, Non-wellfounded proof, Proof theory, Proof transformation, Tree-hypersequent

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.42

Funding Work supported by European Research Council, Consolidator Grant DeciGUT (771779).

1 Introduction

Provability logics are a class of modal logics where the □ operator is read as “it is provable
that” in some arithmetical theory. One of the most prominent provability logics is Gödel-Löb
logic (GL), which arose out of the work of Löb, who formulated a set of conditions on the
provability predicate of Peano Arithmetic (PA). The logic GL can be axiomatized as an
extension of the basic modal logic K by the single axiom □(□φ → φ) → □φ, called Löb’s
axiom. It is well-known that the axioms of GL are sound and complete relative to transitive and
conversely-wellfounded relational models [38]. In a landmark result, Solovay [41] remarkably
showed that GL is complete for PA’s provability logic, i.e., GL proves everything that PA can
prove about its own provability predicate.

The logic GL enjoys a rich structural proof theory, possessing a number of cut-free
sequent-style systems. Sequent systems in the style of Gentzen were originally provided by
Sambin and Valentini in the early 1980s [36, 37]; see also Avron [2]. (NB. In this work, we
take a Gentzen system to be a proof system whose rules operate over Gentzen sequents, i.e.,
expressions of the form φ1, . . . , φn ⊢ ψ1, . . . , ψk such that φi and ψj are logical formulae.)

© Tim S. Lyon;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 42; pp. 42:1–42:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:timothy_stephen.lyon@tu-dresden.de
https://sites.google.com/view/timlyon
https://orcid.org/0000-0003-3214-0828
https://doi.org/10.4230/LIPIcs.CSL.2025.42
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Unifying Sequent Systems for Gödel-Löb Provability Logic

Since then, a handful of alternative systems have been introduced, each of which either
generalizes the structure of sequents or generalizes the notion of proof. The labeled sequent
system G3GL was provided by Negri [31] and uses labeled sequents in proofs, which are binary
graphs whose nodes are Gentzen sequents. In a similar vein, the tree-hypersequent system
CSGL was provided by Poggiolesi [35] and uses tree-hypersequents in proofs, which are trees
whose nodes are Gentzen sequents. The use of (types of) graphs of Gentzen sequents in
proofs (as in G3GL and CSGL) allows for the systems to possess properties beyond those of
the original Gentzen systems [36, 37]. For example, both G3GL and CSGL enjoy invertibility
of all rules, rules are symmetric (i.e., for each logical connective, there is at least one rule
that introduces it in the antecedent and at least one rule that introduces it in the consequent
of the rule’s conclusion), and the close connection between the syntax of such sequents and
GL’s relational semantics makes such systems suitable for counter-model extraction.

Rather than generalizing the structure of sequents, Shamkanov [39] showed that one
could obtain alternative cut-free sequent systems for GL by generalizing the structure of
proofs. In particular, by taking the sequent calculus for the modal logic K4 and allowing for
non-wellfounded proofs, one obtains a non-wellfounded sequent system GL∞ for GL. Non-
wellfounded proofs were introduced to capture (co)inductive reasoning, and are potentially
infinite trees of sequents such that (1) every parent node is the conclusion of a rule with
its children the corresponding premises and (2) infinite branches satisfy a certain progress
condition, which ensures soundness (cf. [5, 11, 32, 39]). For GL, non-wellfounded proofs
correspond to regular trees (i.e., only contain finitely many distinct sub-trees), which means
such proofs can be “folded” into finite trees of sequents such that leaves are “linked” to
internal nodes of the tree, giving rise to cyclic proofs (cf. [1, 3, 4, 10]). Shamkanov [39]
additionally showed that one could obtain a cut-free cyclic sequent system GLcirc for GL by
allowing cyclic proofs in K4’s sequent calculus, which was then used to provide the first
syntactic proof of the Lyndon interpolation property for GL.

Due to the diversity in GL’s proof theory, it is natural to wonder about the relationships
between the various systems that have been introduced. Typically, proof systems are related
by means of proof transformations, which are functions that map proofs from one calculus
into another, are sensitive to the structure of the input proof, and operate syntactically by
permuting rules, replacing rules, or adding/deleting sequent structure in the input proof
to yield the output proof. Studying proof transformations between sequent systems is a
beneficial enterprise as it lets one transfer results from one system to another, thus alleviating
the need of independent proofs in each system (e.g., [9, 15]). Moreover, one can measure the
relative sizes or certain characteristics of proofs, giving insight into which systems are better
suited for specific (automated) reasoning tasks, and letting one “toogle” between differing
formalisms when one is better suited for a task than another (e.g., [24, 23]).

Indeed, the question of the relationship between G3GL and CSGL was asked by Poggi-
olesi [35] and answered in full by Goré and Ramanayake [15], who provided constructive
mappings of proofs between the two systems. Similarly, Shamkanov [39] provided syntactic
mappings of proofs between the systems GL∞ and GLcirc, and the Gentzen system GLseq (an
equivalent reformulation of Sambin and Valentini’s systems [36, 37]). Nevertheless, the inter-
translatability of proofs between the former two structural sequent systems (G3GL and CSGL)
and the latter three sequent systems (GLseq, GL∞, and GLcirc) has yet to be identified, and
presents a non-trivial open problem that we solve in this paper. Thus, our first contribution
in this paper is to “complete the picture” and establish complete correspondences between
the above five mentioned sequent systems by means of syntactic proof transformations.

T. S. Lyon 42:3

There is an inherent difficulty in transforming proofs that use structural sequents (e.g.,
labeled sequents or tree-hypersequents) into proofs that use Gentzen sequents. This is
due to the fact that structural sequents are (types of) graphs of Gentzen sequents, and
thus, possess a more complicated structure that must be properly “shed” during proof
transformations [23, 26]. To overcome this difficulty and define proof transformations from
G3GL and CSGL to GLseq, we rely on three techniques: first, we show how to restructure proofs
in CSGL so that they are end-active (cf. [21]), meaning rules only affect data at leaves or
parents of leaves in tree-hypersequents. Second, we introduce a novel linearization technique,
whereby we show how to shed the tree structure of tree-hypersequents in end-active proofs,
yielding a proof consisting solely of linear nested sequents [21], i.e., lines whose nodes are
Gentzen sequents. Linear nested sequents were introduced as an alternative (albeit equivalent)
formalism to 2-sequents [29, 30] that allows for sequent systems with complexity-optimal
proof-search that also retain fundamental admissibility and invertibility properties [21]. The
presented linearization technique is new and shows how to extract linear nested sequent
systems from tree-hypersequent systems, serving as the second contribution of this paper.
We conjecture that this method can be generalized and applied in other settings to provide
new linear nested sequent systems for modal and related logics. The technique also yields the
first (cut-free) linear nested sequent calculus for GL, which we dub LNGL, and which is the
third contribution of this paper. Last, we show that proofs in LNGL can be put into a specific
normal form that repeats in stages of modal and local rules. Such proofs are translatable
into GLseq proofs, which are translatable into G3GL proofs, thus establishing purely syntactic
proof transformations between the most prominent sequent systems for GL. These proof
transformations and systemic correspondences are summarized in Figure 1 below.

Outline of Paper. In Section 2, we recall the language, semantics, and axioms of Gödel-Löb
logic. In Section 3, we discuss Negri’s labeled system G3GL [31], Poggiolesi’s tree-hypersequent
system CSGL [35], and Goré and Ramanayake correspondence result for the two systems [15].
In Section 4, we show how to put proofs in CSGL into an end-active form (Theorem 18) and
specify our novel linearization method (Theorem 19), which yields the new linear nested
sequent system LNGL for GL. In Section 5, we recall the sequent calculus GLseq due to Sambin
and Valentini [36, 37], Shamkanov’s non-wellfounded system GL∞ and cyclic system GLcirc,
as well as Shamkanov’s correspondence result for the aforementioned three systems [39]. We
then show how to transform proofs in LNGL into proofs in GLseq (Theorem 24) and how
to transform proofs in GLseq into proofs in G3GL (Theorem 25). This establishes a six-way
correspondence between the systems G3GL, CSGL, GLseq, GL∞, GLcirc, and LNGL. Last, in
Section 6, we conclude and discuss future work.

G3GL oo [15] // CSGL Thm. 19 // LNGL

Thm. 24

zz
GL∞ oo [39] // GLseq

Thm. 25

dd

GLcirc//[39]oo

Name Type of System
G3GL Labeled Sequent System
CSGL Tree-Hypersequent System
LNGL Linear Nested Sequent System
GLseq Gentzen System
GL∞ Non-Wellfounded Sequent System
GLcirc Cyclic Sequent System

Figure 1 Proof transformations and correspondences between sequent systems for GL.

CSL 2025

42:4 Unifying Sequent Systems for Gödel-Löb Provability Logic

2 Gödel-Löb Provability Logic

We let Prop := {p, q, r, . . .} be a countable set of propositional atoms and define the language
L to be the set of all formulae generated via the following grammar in BNF:

φ ::= p | ¬φ | φ ∨ φ | □φ

where p ranges over Prop. We use φ, ψ, χ, . . . to denote formulae in L and define φ ∧ ψ :=
¬(¬φ ∨ ¬ψ) and φ → ψ := ¬φ ∨ ψ as usual.

▶ Definition 1 (Model). We define a model to be a tuple M = (W,R, V) such that
W is a non-empty set of worlds w, u, v, . . . (occasionally annotated);
R ⊆ W ×W is transitive and conversely-wellfounded;1

V : Prop 7→ 2W is a valuation function.

▶ Definition 2 (Semantic Clauses). We define the satisfaction of a formula φ in a model M
at world w, written M,w |= φ, recursively as follows:

M,w |= p iff w ∈ V (p);
M,w |= ¬φ iff M,w ̸|= φ;
M,w |= φ ∨ ψ iff M,w |= φ or M,w |= ψ;
M,w |= □φ iff ∀u ∈ W , if (w, u) ∈ R, then M,u |= φ;
M |= φ iff ∀w ∈ W , M,w |= φ.

We write |= φ and say that φ is valid iff for all models M , M |= φ. Gödel-Löb logic (GL) is
defined to be the set GL ⊂ L of all valid formulae.

As shown by Segerberg [38], the logic GL can be axiomatized by extending the axioms of
the modal logic K with Löb’s axiom □(□φ → φ) → □φ.

3 Labeled and Tree Sequent Systems

In this section, we review the labeled sequent calculus G3GL by Negri [31] and its corres-
pondence (proven by Goré and Ramanayake [15]) with a notational variant of Poggiolesi’s
tree-hypersequent system for GL [35]. Labeled sequents are binary graphs of traditional
Gentzen sequents, which encode the relational semantics of a logic directly in the syntax of
sequents. The formalism of labeled sequents has been extensively studied with the inception
of the formalism dating back to the work of Kanger [18] and achieving its modern form in the
work of Simpson [40]. It has been shown that labeled sequent systems can capture sizable
and diverse classes of logics in a cut-free manner while exhibiting fundamental properties
such as the admissibility of various structural rules and the invertibility of rules [40, 43, 31].

By contrast, tree-hypersequents, which are more traditionally known as nested sequents,
are trees of Gentzen sequents. The formalism was introduced independently by Kashima [19]
and Bull [7] with further influential works provided by Brünnler [6] and Poggiolesi [34, 35].
Such systems arose out of a call for cut-free sequent-style systems for logics not known
to possess a cut-free Gentzen system, such as the tense logic Kt and the modal logic S5.
Like labeled sequents, tree-hypersequent systems exhibit fundamental admissibility and
invertibility properties, having been defined for large classes of various logics such as tense
logics [14], intuitionistic modal logics [42, 25], and first-order non-classical logics [13, 27].

1 We note that R is conversely-wellfounded iff it does not contain any infinite ascending R-chains.

T. S. Lyon 42:5

id1R,Γ, x : p ⊢ x : p,∆ id2R,Γ, x : □φ ⊢ x : □φ,∆ irR, xRx,Γ ⊢ ∆

R, xRy, yRz, xRz,Γ ⊢ ∆
trR, xRy, yRz,Γ ⊢ ∆

R,Γ, x : φ ⊢ ∆ R,Γ, x : ψ ⊢ ∆
∨LR,Γ, x : φ ∨ ψ ⊢ ∆

R,Γ ⊢ x : φ,∆
¬LR,Γ, x : ¬φ ⊢ ∆

R,Γ, x : φ ⊢ ∆
¬RR,Γ ⊢ x : ¬φ,∆

R,Γ ⊢ x : φ, x : ψ,∆
∨RR,Γ ⊢ x : φ ∨ ψ,∆

R, xRy,Γ, x : □φ, y : φ ⊢ ∆
□LR, xRy,Γ, x : □φ ⊢ ∆

R, xRy,Γ, y : □φ ⊢ y : φ,∆
□R†

R,Γ ⊢ x : □φ,∆

Figure 2 Labeled Sequent Calculus G3GL for GL. The □R rule is subject to a side condition †,
namely, the rule is applicable only if the label y is fresh.

As observed by Goré and Ramanayake [15], restricting labeled sequents to be trees, rather
than more general, binary graphs (which may be disconnected or include cycles), yields
labeled tree sequents (cf. [17]), which are a notational variant of tree-hypersequents/nested
sequents. Via this observation, the authors established bi-directional proof transformations
between Negri’s labeled sequent calculus and Poggiolesi’s tree-hypersequent calculus for GL.
Proof theoretic correspondences between labeled and nested systems for various other logics
have been established in recent years as well; e.g., for tense logics [9], first-order intuitionistic
logics [23, 22], and intuitionistic modal logics [25]. Recently, it was proven in a general setting
that correspondences between labeled and nested systems are a product of two underlying
proof transformation techniques, structural rule elimination and introduction, and that
(Horn) labeled and nested systems tend to come in pairs, being dual to one another [28].

Reducing Negri’s labeled sequent system to one that uses trees, as opposed to binary
graphs, is the first step in establishing syntactic correspondences between the various sequent
systems for GL. As shown in the sequel, we will systematically reduce the structure of
sequents in proofs: first, going from binary graphs of Gentzen sequents to trees of Gentzen
sequents (this section), then from trees of Gentzen sequents to lines of Gentzen sequents
(Section 4), and last from lines of Gentzen sequents to Gentzen sequents themselves, which
are easily embedded in labeled sequent proofs, completing the circuit of correspondences
(Section 5). This yields correspondences between the most widely regarded sequent systems
for GL, as depicted in Figure 1.

3.1 Labeled Sequents
We let Lab = {x, y, z, . . .} be a countably infinite set of labels, define a relational atom to
be an expression of the form xRy with x, y ∈ Lab, and define a labeled formula to be an
expression of the form x : φ such that x ∈ Lab and φ ∈ L. We use upper-case Greek
letters Γ,∆,Σ, . . . to denote finite multisets of labeled formulae. For a set R of relational
atoms and multiset Γ of labeled formulae, we let Lab(R), Lab(Γ), and Lab(R,Γ) be the
sets of all labels occurring therein. For a multiset Γ of labeled formulae, we define the
multiset Γ(x) := {φ | x : φ ∈ Γ}, for a multiset of formulae Γ := φ1, . . . , φn, we define
x : Γ := x : φ1, . . . , x : φn, and for multisets Γ and ∆ of labeled formulae, we let Γ,∆ denote
the multiset union of the two. We define a labeled sequent to be an expression of the form
R,Γ ⊢ ∆ with R a set of relational atoms and Γ,∆ a multiset of labeled formulae. Given a
labeled sequent R,Γ ⊢ ∆, we refer to R,Γ as the antecedent and ∆ as the consequent. Below,
we clarify the interpretation of labeled sequents by explaining their evaluation over models.

CSL 2025

42:6 Unifying Sequent Systems for Gödel-Löb Provability Logic

R,Γ ⊢ ∆ (x/y)
R(x/y),Γ(x/y) ⊢ ∆(x/y)

R,Γ ⊢ ∆ w
R,R′,Γ,Γ′ ⊢ ∆,∆′

R,Γ, x : φ, x : φ ⊢ ∆
cLR,Γ, x : φ ⊢ ∆

R,Γ ⊢ x : φ, x : φ,∆
cRR,Γ ⊢ x : φ,∆

R,Γ ⊢ x : φ,∆ R,Γ, x : φ ⊢ ∆
cutR,Γ ⊢ ∆

Figure 3 Admissible rules.

▶ Definition 3 (Labeled Sequent Semantics). Let M = (W,R, V) be a model. We define an
M -assignment to be a function µ : Lab → W . A labeled sequent R,Γ ⊢ ∆ is satisfied on M

with M -assignment µ iff if for all xRy ∈ R and x : φ ∈ Γ, (µ(x), µ(y)) ∈ R and M,µ(x) |= φ,
then there exists a y : ψ ∈ ∆ such that M,µ(y) |= ψ. A labeled sequent is defined to be valid
iff it is satisfied on all models M with all M -assignments; a labeled sequent is defined to be
invalid otherwise.

Negri’s labeled sequent calculus G3GL (adapted to our signature) is shown in Figure 2.
The labeled calculus consists of three initial rules id1, id2, and ir. We refer to the conclusion
of an initial rule as a initial sequent. The tr rule is a structural rule that bottom-up adds
transitive edges to labeled sequents, and the remaining rules form pairs of left and right
logical rules, introducing complex logical formulae into either the antecedent or consequent
of the rule’s conclusion. We note that the □R rule is subject to a side condition, namely, the
label y must be fresh in any application of the rule, i.e., the label y is forbidden to occur in
the conclusion. We refer to the distinguished formulae in the conclusion (premises) of a rule
as the principal formulae (auxiliary formulae, respectively). For example, x : □φ is principal
in □R and xRy, x : □φ, y : φ are auxiliary.
▶ Remark 4. Negri’s original labeled system G3GL includes the following □L′ rule rather
than the □L rule. However, the left premise of the □L′ rule is provable in G3GL using □L,
□R, and tr [31]. We therefore opt to use the simpler □L rule in G3GL rather than the □L′

rule to simplify our work.

R, xRy,Γ, x : □φ ⊢ y : □φ,∆ R, xRy,Γ, x : □φ, y : φ ⊢ ∆
□L′

R, xRy,Γ, x : □φ ⊢ ∆

A derivation of a labeled sequent R,Γ ⊢ ∆ is defined to be a (potentially infinite) tree
whose nodes are labeled with labeled sequents such that (1) R,Γ ⊢ ∆ is the root of the
tree and (2) each parent node is the conclusion of a rule with its children the corresponding
premises. A proof is a finite derivation such that every leaf is an instance of an initial sequent.
We use π (potentially annotated) to denote derivations and proofs throughout the remainder
of the paper, and use this notation to denote derivations and proofs in other systems as well
with the context determining the usage. The height of a proof is defined as usual to be equal
to the length of a maximal path from the root of the proof to an initial sequent.
▶ Remark 5. We assume w.l.o.g. that every fresh variable used in a proof is globally fresh,
meaning there is a one-to-one correspondence between □R applications and their fresh
variables. This assumption is helpful, yet benign (cf. [31]).

As shown by Negri [31], the various rules displayed in Figure 3 are admissible in G3GL.
Note that the (x/y) rule applies a label substitution to the premise which replaces every
occurrence of the label y in a relational atom or labeled formula by x. We define a rule to be
admissible (height-preserving admissible) iff if the premises of the rule have proofs (of height
h1, . . . , hn), then the conclusion of the rule has a proof (of height h ≤ max{h1, . . . , hn}). We
refer to a height-preserving admissible rule as hp-admissible. Moreover, the non-initial rules

T. S. Lyon 42:7

of G3GL are height-preserving invertible. If we let r−1
i be the i-inverse of the rule r whose

conclusion is the ith premise of the n-ary rule r and premise is the conclusion of r, then we
say that r is (height-preserving) invertible iff r−1

i is (height-preserving) admissible for each
1 ≤ i ≤ n. We refer to height-preserving invertible rules as hp-invertible. The following
theorem is due to Negri [31].

▶ Theorem 6 (G3GL Properties [31]). The labeled sequent calculus G3GL satisfies the following:
(1) Each labeled sequent of the form R,Γ, x : φ ⊢ x : φ,∆ is provable in G3GL;
(2) All non-initial rules are hp-invertible in G3GL;
(3) The (x/y), w, cL, and cR rules are hp-admissible in G3GL;
(4) The cut rule is admissible in G3GL;
(5) φ is valid iff ⊢ x : φ is provable in G3GL.

3.2 Labeled Tree Sequents
A set T of relational atoms is a tree iff the graph G(T) = (V,E) forms a tree, where V =
{x | x ∈ Lab(T)} and E = {(x, y) | xRy ∈ T }. A tree sequent is defined to be an expression
of the form T ,Γ ⊢ ∆ such that (1) T is a tree, (2) if T ̸= ∅, then Lab(Γ,∆) ⊆ Lab(T), and
(3) if T = ∅, then |Lab(Γ,∆)| = 1, i.e. all labeled formulae in Γ,∆ share the same label. We
note that conditions (1)–(3) ensure that each tree sequent forms a connected graph that is
indeed of a tree shape. We use T and annotated versions thereof to denote tree sequents.
We define a flat sequent to be a tree sequent of the form Γ ⊢ ∆, that is, a flat sequent is
a sequent Γ ⊢ ∆ without relational atoms and where every labeled formula in Γ,∆ shares
the same label. The root of a tree sequent T ,Γ ⊢ ∆ is the label x such that there exists a
unique directed path of relational atoms in T from x to every other label y ∈ Lab(T ,Γ,∆);
if T = ∅, then the root is the single label x shared by all formulae in Γ,∆.

Every tree sequent encodes a tree whose vertices are flat sequents. In other words, each
tree sequent T = T , xRy1, . . . , xRyn,Γ ⊢ ∆ such that x is the root and y1, . . . , yn are all
children of x can be graphically depicted as a tree trx(T) of the form shown below:

x

x : Γ(x) ⊢ x : ∆(x)

uu))
try1 (T ,Γ ⊢ ∆) . . . tryn (T ,Γ ⊢ ∆)

▶ Definition 7 (Tree Sequent Calculus CSGL). We define CSGL := (G3GL \ {ir, tr}) ∪ {4L},
where the 4L is shown below and the rules of the calculus only operate over tree sequents.

T , xRy,Γ, x : □φ, y : □φ ⊢ ∆
4LT , xRy,Γ, x : □φ ⊢ ∆

The system CSGL is a notational variant of Poggiolesi’s eponymous tree-hypersequent
system [35], and thus, we identify the two systems with one another. The main difference
between the two systems is notational: the system defined above uses tree sequents, which
are tree-hypersequents “dressed” as labeled sequents [15]. We also note that Poggiolesi’s
original tree-hypersequent system CSGL uses a notational variant of the binary rule □L′

discussed in Remark 4. However, as with the labeled system G3GL, the left premise of this
rule is provable in CSGL. We have therefore opted to use the unary □L rule in CSGL to
simplify our work and note that this change is benign.

CSL 2025

42:8 Unifying Sequent Systems for Gödel-Löb Provability Logic

▶ Remark 8. Derivations, proofs, the height of a proof, (hp-)admissibility, the i-inverse of a
rule, and (hp-)invertibility are defined for CSGL analogous to how such notions are defined
for G3GL. We will apply these terms and concepts in the expected way to other sequent
systems as well to avoid repeating similar definitions.

The system CSGL differs from G3GL in that CSGL only allows for tree sequents in proofs,
lacks the structural rules ir and tr, and includes the 4L rule. We refer to 4L and □L
as propagation rules (cf. [12, 8]) since the rules bottom-up propagate data forward along
relational atoms, and we refer to ¬L, ¬R, ∨L, and ∨R as local rules since they only affect
formulae locally at a single label. For any rule, we call the label x labeling the principal
formula in the conclusion the principal label, for the 4L, □L, and □R rules, we refer to the
label y labeling the auxiliary formula(e) in the premise(s) as the auxiliary label, and for local
rules, the auxiliary label is taken to be the same as the principal label since they are identical.
Note that we define a label x in a tree sequent T ,Γ ⊢ ∆ to be a leaf iff x is a leaf in T , and
we define a label x to be a pre-leaf iff for all y ∈ Lab(T), if xRy ∈ T , then y is a leaf.

Since the tree sequent calculus CSGL is isomorphic to Poggiolesi’s tree-hypersequent
system, the two systems share the same properties. We note that in the setting of tree
sequents the (x/y) and w rules are less general than for labeled sequents. In particular, such
rules are assumed to preserve the “tree shape” of tree sequents when applied. Nevertheless,
the restricted forms of these rules are still hp-admissible in CSGL.

▶ Theorem 9 (CSGL Properties [35]). The tree sequent calculus CSGL satisfies the following:
(1) Each tree sequent of the form T ,Γ, x : φ ⊢ x : φ,∆ is provable in CSGL;
(2) All non-initial rules are hp-invertible in CSGL;
(3) The (x/y), w, cL, and cR rules are hp-admissible in CSGL;
(4) The cut rule is admissible in CSGL;
(5) φ is valid iff ⊢ x : φ is provable in CSGL.

Proofs in G3GL and CSGL are inter-translatable with one another. This correspondence
was established by Goré and Ramanayake [15] and is based on a couple observations. First,
the ir rule does not occur in G3GL proofs where the end sequent is a tree sequent. It is not
difficult to see why this is the case: if one takes a proof of a tree sequent, then bottom-up
applications of rules from G3GL will not allow for directed cycles to enter a sequent in a
proof. This follows from the fact that the conclusion of the proof is a tree sequent, which is
free of directed cycles, and each rule of G3GL either preserves relational atoms bottom-up,
adds a single relational atom from a label x to a fresh label y in the case of the □R rule, or
adds an undirected cycle in the case of tr. Since the conclusion of ir contains a directed cycle
xRx, such a sequent will never occur in such a proof.

▶ Observation 10 ([15]). The ir rule does not occur in any G3GL proof of a tree sequent.

Second, Goré and Ramanayake [15] show that instances of tr can be eliminated from
G3GL proofs not containing ir and replaced by instances of 4L. This elimination procedure
can be used to map G3GL proofs such that the end sequent is a tree sequent to CSGL proofs.
Conversely, if we let arbitrary labeled sequent appear in CSGL proofs, it can be shown that
4L can be eliminated from CSGL proofs and replaced by instances of tr. These elimination
results are proven syntactically, showing that proof transformations exist between CSGL and
G3GL for proofs of tree sequents as summarized in the theorem below. We refer to the reader
to [15] for the details.

▶ Theorem 11 ([15]). A tree sequent T is provable in G3GL iff it is provable in CSGL.

T. S. Lyon 42:9

id1G � Γ, p ⊢ p,∆
id2G � Γ,□φ ⊢ □φ,∆

G � Γ, φ ⊢ ∆ G � Γ, ψ ⊢ ∆
∨LG � Γ, φ ∨ ψ ⊢ ∆

G � Γ ⊢ φ,ψ,∆
∨RG � Γ ⊢ φ ∨ ψ,∆

G � Γ ⊢ φ,∆
¬LG � Γ,¬φ ⊢ ∆

G � Γ, φ ⊢ ∆
¬RG � Γ ⊢ ¬φ,∆

G � Γ,□φ ⊢ ∆ � Σ,□φ ⊢ Π
4LG � Γ,□φ ⊢ ∆ � Σ ⊢ Π

G � Γ,□φ ⊢ ∆ � Σ, φ ⊢ Π
□LG � Γ,□φ ⊢ ∆ � Σ ⊢ Π

G � Γ ⊢ ∆ �□φ ⊢ φ
□RG � Γ ⊢ □φ,∆

Figure 4 Linear Nested Sequent Calculus LNGL for GL.

4 Linearizing Tree Sequents in Proofs

We now show how to extract a linear nested sequent calculus from CSGL, dubbed LNGL (see
Figure 4). To the best of the author’s knowledge, this is the first linear nested sequent calculus
for Gödel-Löb provability logic. Linear nested sequents were introduced by Lellmann [21]
and are a finite representation of Masini’s 2-sequents [29]. Such systems operate over lines
of Gentzen sequents and have been used to provide cut-free systems for intermediate and
modal logics [20, 21, 29, 30].

The extraction of linear nested sequent proofs from tree sequent proofs takes place in
three phases. In the first phase, we show how to transform any CSGL proof into an end-active
proof, i.e., a proof such that principal and auxiliary formulae only occur at (pre-)leaves in
tree sequents (cf. [21]). In the second phase, we define our novel linearization technique,
where we identify specific paths in tree sequents and “prune” sub-trees, yielding a linear
nested sequent proof as the result. This technique is an additional contribution of this paper,
and we conjecture that this technique can be used in other settings to extract linear nested
sequent systems from tree sequent/nested sequent systems. In the third phase, we show
how to “reshuffle” a linear nested sequent proof so that the proof proceeds in repetitive
stages of local rules, propagation rules, and □R rules, which we refer to as a proof in normal
form. This transformation is motivated by one provided in [33] for so-called basic nested
systems, which transforms proofs in a similar manner to extract Gentzen sequent proofs. Our
transformation is distinct however as it works within the context of linear nested sequents.
The simpler data structure used in linear nested sequents and the “end-active” shape of the
rules in LNGL simplifies the process of reshuffling proofs into normal form.

A linear nested sequent is an expression of the form G := Γ1 ⊢ ∆1 � · · · � Γn ⊢ ∆n such
that Γi and ∆i are multisets of formulae from L for 1 ≤ i ≤ n. We use G, H, . . . to denote
linear nested sequents and note that such sequents admit a formula interpretation:

f(Γ ⊢ ∆) :=
∧

Γ →
∨

∆ f(Γ ⊢ ∆ � G) :=
∧

Γ → (
∨

∆ ∨□f(G))

We define a linear nested sequent G to be (in)valid iff f(G) is (in)valid. The linear nested
sequent calculus LNGL consists of the rules shown in Figure 4. We take the ¬L, ¬R, ∨L,
and ∨R rules to be local rules and the 4L and □L rules to be propagation rules in LNGL.
For 1 ≤ i ≤ n, we refer to Γi ⊢ ∆i as the i-component (or, as a component more generally)
of the linear nested sequent G = Γ1 ⊢ ∆1 � · · · � Γn ⊢ ∆n, we refer to Γn ⊢ ∆n as the end
component, and we define the length of G to be ||G|| := n, i.e., the length of a linear nested
sequent is equal to the number of its components. Comparing LNGL to CSGL, one can see
that LNGL is the calculus CSGL restricted to lines of Gentzen sequents and where rules only
operate in the last two components. Making use of the formula translation, it is a basic
exercise to show that if the conclusion of any rule is invalid, then at least one premise is
invalid, i.e., LNGL is sound.

CSL 2025

42:10 Unifying Sequent Systems for Gödel-Löb Provability Logic

▶ Theorem 12. If G is provable in LNGL, then G is valid.

When transforming CSGL proofs into LNGL proofs later on, it will be helpful to use the
weakening rule w shown in the lemma below. Observe that any application of w to id1 or id2
yields an initial sequent, and w permutes above every other rule of LNGL. As an immediate
consequence, we have that w is hp-admissible in LNGL.

▶ Lemma 13. The following weakening rule w is hp-admissible in LNGL.

G � Γ ⊢ ∆ � H w
G � Γ,Σ ⊢ Π,∆ � H

Furthermore, we have that the 4L and □L rules are hp-invertible in LNGL since the
premises of each rule may be obtained from the conclusion by w.

▶ Lemma 14. The 4L and □L rules are hp-invertble in LNGL.

From Tree Sequents to Linear Nested Sequents

To extract LNGL from CSGL, we first establish a set of rule permutation results, i.e., we show
that rules of a certain form in CSGL can always be permuted below other rules of a specific
form. We note that a rule r permutes below a rule r′ whenever an application of r followed by
r′ in a proof can be replaced by an application of r′ (potentially preceded by an application of
an i-inverse of r) followed by an application of r to derive the same conclusion. To make this
definition more concrete, we show (1) the permutation of a unary rule r below a binary rule
r′ below top-left, (2) the permutation of a binary rule r below a unary rule r′ below top-right,
(3) the permutation of a unary rule r below a unary rule r′ below bottom-left, and (4) the
permutation of a binary rule r below a binary rule r′ below bottom-right. In (1) and (4), we
note that the case where r is applied to the right premise of r′ is symmetric. Furthermore,
recall that r−1

1 and r−1
2 are the 1- and 2-inverses of r, respectively. (NB. For the definition of

the i-inverse of a rule, see Section 3.1.) We use (annotated versions of) the symbol S below
to indicate not only tree sequents, but linear nested sequents since we consider permutations
of rules in LNGL later on as well.

S0 r
S2 S1 r′

S3

⇝ S0

S1 r−1
S′

r′
S r
S3

S0 S1 r
S2 r′
S3

⇝
S0 r′
S

S1 r′
S′

r
S3

S0 r
S1 r′
S2

⇝
S0 r′
S r
S2

S0 S1 r
S2 S3 r′

S4

⇝
S0

S3 r−1
1S

r′
S′

S1

S3 r−1
2S′′

r′
S′′′

r
S4

The various admissible rule permutations we describe are based on the notion of end-activity,
which is a property of rule applications where principal and auxiliary formulae only occur at
(pre-)leaves in sequents. End-activity was first discussed by Lellmann [21] in the context of
mapping Gentzen sequent proofs into linear nested sequent proofs for non-classical logics.

▶ Definition 15 (End Active). A CSGL proof is end-active iff the following hold:
(1) The principal label in every instance of id1 and id2 is a leaf;
(2) The principal label of each local rule is a leaf;
(3) The principal and auxiliary label of a propagation rule is a pre-leaf and leaf, respectively.

T. S. Lyon 42:11

A rule r is end-active iff it satisfies its respective condition above; otherwise, the rule is
non-end-active. We note that we always take the □R rule to be end-active.

As stated in the following lemma, the end-activity of sequential rule applications de-
termines a set of permutation relationships between the rules of CSGL. The lemma is
straightforward to prove, though tedious due to the number of cases; its proof can be found
in the appendix.

▶ Lemma 16. The following permutations hold in CSGL:
(1) If r is a non-end-active local rule and r′ is non-initial and end-active, then r permutes

below r′ and r′ remains end-active after this permutation;
(2) if r is a non-end-active propagation rule and r′ is non-initial and end-active, then r

permutes below r′ and r′ remains end-active after this permutation.

Let us define a final-active proof in CSGL to be a proof such that the last inference is
end-active. Using the above lemma, every final-active proof π in CSGL can be transformed
into an end-active proof as follows: first, observe that the last inference in π is end-active
by assumption. By successively considering bottom-most instances of non-end-active local
and propagation rules r in π, we can repeatedly apply Lemma 16 to permute r lower in the
proof because all rules below r are guaranteed to be end-active. By inspecting the rules of
CSGL, we know that the trees within the tree sequents in π will never “grow” and tend to
“shrink” as they get closer to the conclusion of the proof, meaning, each non-end-active rule r
will eventually become end-active through successive downward permutations.2 This process
will eventually terminate and yield a proof where all non-initial rules are end-active for the
following two reasons: (1) As stated in the lemma above, permuting a non-end-active local
or propagation rule r′ below an end-active rule r preserves the end-activity of the rule r. (2)
Although downward permutations may require the i-inverse of a rule to be applied above
the permuted inferences, the hp-invertibility of all non-initial rules in CSGL (see Theorem 9)
ensures that the height of the proof does not grow after a downward rule permutation.

After all such downward permutations have been performed, the resulting proof is almost
end-active with the exception that initial rules may not be end-active. For example, as shown
below left, it may be the case that id1 is non-end-active and followed by a rule r. Since r is
guaranteed to be end-active at this stage, we know that the auxiliary label of r is distinct
from y, meaning, the conclusion will be an instance of id1 as shown below right.

id1T ,Γ, y : p ⊢ y : p,∆ (T ′,Γ′, y : p ⊢ y : p,∆′)
r

T ′′,Γ′′, y : p ⊢ y : p,∆′′
id1T ′′,Γ′′, y : p ⊢ y : p,∆′′

By replacing such rule applications r by id1 (or id2) instances, effectively “pushing” initial
rules down in the proof, we will eventually obtain initial rules such that the label y is auxiliary
in the subsequent rule application, which will then be a leaf since all non-initial rules of the
proof are end-active. Thus, every final-active proof in CSGL can be transformed into an
end-active proof.
▶ Remark 17. As a corollary, we note that every proof π in CSGL of a sequent ⊢ x : φ can be
transformed into an end-active proof as well. This is due to the fact that the last inference
in π must be end-active since the proof ends with ⊢ x : φ, i.e., π is final-active in this case.

2 Observe that ¬L, ¬R, ∨L, ∨R, □L, and 4L only affect the formulae associated with the label of a tree
sequent, whereas □R top-down removes a relational atom from a tree sequent. Therefore, the number
of relational atoms in tree sequents never increases as we move down paths in CSGL proofs from initial
sequents to the conclusion.

CSL 2025

42:12 Unifying Sequent Systems for Gödel-Löb Provability Logic

▶ Theorem 18. Each final-active proof in CSGL can be transformed into an end-active proof.

▶ Theorem 19. Each end-active proof in CSGL can be transformed into a proof in LNGL.

Proof. We prove that if there exists an end-active proof in CSGL of a tree sequent T ,Γ ⊢ ∆,
then there exists a path x1, . . . , xn of labels from the root x1 to a leaf xn in T ,Γ ⊢ ∆ such
that Γ(x1) ⊢ ∆(x1) � · · · � Γ(xn) ⊢ ∆(xn) is provable in LNGL. We argue this by induction
on the height of the end-active proof π in CSGL.

Base case. Suppose π consists of a single application of id1 or id2, as shown below:

id1T ,Γ, x : p ⊢ x : p,∆ id2T ,Γ, x : □φ ⊢ x : □φ,∆

We know that each initial sequent is end-active, i.e., the label x is a leaf in both tree sequents.
Therefore, since each sequent is a tree sequent, there exists a path y1, . . . , yn = x of labels
from the root y1 to the leaf x. By using this path, we obtain respective instances of id1 and
id2 as shown below:

id1Γ(y1) ⊢ ∆(y1) � · · · � Γ(x), p ⊢ p,∆(x)
id2Γ(y1) ⊢ ∆(y1) � · · · � Γ(x),□φ ⊢ □φ,∆(x)

Inductive step. For the inductive hypothesis (IH), we assume that the claim holds for every
end-active proof in CSGL of height h′ ≤ h, and aim to show that the claim holds for proofs
of height h+ 1. We let π be of height h+ 1 and argue the cases where π ends with □L or □R
as the remaining cases are shown similarly. Some additional cases are given in the appendix.

□L. Let us suppose that π ends with an instance of □L as shown below.

T , xRy,Γ, x : □φ, y : φ ⊢ ∆
□LT , xRy,Γ, x : □φ ⊢ ∆

By IH, we know there exists a path y1, . . . , yn of labels from the root y1 to the leaf yn in the
premise of □L such that G = Γ(y1) ⊢ ∆(y1) � · · · � Γ(yn) ⊢ ∆(yn) is provable in LNGL. Since
□L is end-active, we have three cases to consider: (1) neither x nor y occur along the path
in the premise, (2) only x occurs along the path in the premise, or (3) both x and y occur
along the path in the premise. In cases (1) and (2), we translate the entire □L inference as
the linear nested sequent G. In case (3), G has the form of the premise shown below with
Γ(yn−1) = Σ1,□φ and Γ(yn) = Σ2, φ. A single application of □L gives the desired result.

Γ(y1) ⊢ ∆(y1) � · · · � Σ1,□φ ⊢ ∆(yn−1) � Σ2, φ ⊢ ∆(yn)
□LΓ(y1) ⊢ ∆(y1) � · · · � Σ1,□φ ⊢ ∆(yn−1) � Σ2 ⊢ ∆(yn)

□R. Let us suppose that π ends with an instance of □R as shown below.

T , xRy,Γ, y : □φ ⊢ y : φ,∆
□RT ,Γ ⊢ x : □φ,∆

By IH, we know there exists a path y1, . . . , yn of labels from the root y1 to the leaf yn in the
premise of □R such that Γ(y1) ⊢ ∆(y1) � · · · � Γ(yn) ⊢ ∆(yn) is provable in LNGL. We have
three cases to consider: either (1) neither x nor y occur along the path, (2) only x occurs
along the path, or (3) both x and y occur along the path. In case (1), we translate the entire
□R instance as the single linear nested sequent G. In case (2), we know that x = yi for some
1 ≤ i ≤ n. To obtain the desired conclusion, we apply the hp-admissible w rule as shown

T. S. Lyon 42:13

below. Observe that the conclusion of the w application below corresponds to the linear
nested sequent obtained from the path y1, . . . , yn in the conclusion of the □R instance above.

Γ(y1) ⊢ ∆(y1) � · · · � Γ(yi) ⊢ ∆(yi) � · · · � Γ(yn) ⊢ ∆(yn) w
Γ(y1) ⊢ ∆(y1) � · · · � Γ(yi) ⊢ □φ,∆(yi) � · · · � Γ(yn) ⊢ ∆(yn)

Last, in case (3), we know that x = yn−1 and y = yn due to the freshness condition imposed
on the □R rule. In this case, G has the form of the premise shown below, meaning, a single
application of the □R rule gives the linear nested sequent corresponding to the path y1, . . . , yn

in the conclusion of the □R instance above.

Γ(y1) ⊢ ∆(y1) � · · · � Γ(yn−1) ⊢ ∆(yn−1) �□φ ⊢ φ
□RΓ(y1) ⊢ ∆(y1) � · · · � Γ(yn−1) ⊢ □φ,∆(yn−1)

◀

The following is an immediate consequence of Theorems 12, 18, 19 and Remark 17.

▶ Corollary 20 (LNGL Soundness and Completeness). φ is valid iff ⊢ φ is provable in LNGL.

Last, we show that every LNGL proof can be put into a normal form (see Definition 21 and
Theorem 18 below) such that (reading the proof bottom-up) □R instances are preceded by
4L instances, which are preceded by □L instances, which are preceded by local rule instances
(or, initial rules). We will utilize this normal form in the next section to show that every
LNGL proof can be transformed into a Gentzen sequent proof (Theorem 24). We let B be
a set of LNGL rules and define a block to be a derivation that only uses rules from B. We
use the following notation to denote blocks, showing that the set B of rules derives G from
G1, . . . ,Gn, and refer to G1, . . . ,Gn as the premises of the block B.

G1, . . . ,Gn
BG

▶ Definition 21 (Normal Form). A proof in LNGL is in normal form iff each bottom-up □R
application is derived from a block B of 4L rules, whose premise is derived from a block B′ of
□L rules, whose premise is derived from a block B′′ of local rules, as indicated below.

G � Γ ⊢ ∆ � Σ1 ⊢ Π1 . . . G � Γ ⊢ ∆ � Σn ⊢ Πn
B′′

G � Γ ⊢ ∆ � Γ′,Γ′′,□φ ⊢ φ
B′

G � Γ ⊢ ∆ � Γ′,□φ ⊢ φ
B

G � Γ ⊢ ∆ �□φ ⊢ φ
□RG � Γ ⊢ □φ,∆

We refer to block of rules of the above form as a complete block, and refer to the portion of
a complete block consisting of only □R, B, and B′ as a modal block.

As proven in the next section (Theorem 24), every normal form proof in LNGL can be
transformed into a proof in Sambin and Valentini’s Gentzen calculus GLseq. Therefore, we
need to show that every proof in LNGL can be put into normal form. We prove this by making
an observation about the structure of proofs in LNGL. Observe that local and propagation
rules in LNGL only affect the end component of linear nested sequents and preserve the
length of such sequents, whereas the □R rule increases the length of a linear nested sequent
by 1 when applied bottom-up. This implies that any LNGL proof π bottom-up proceeds in
repetitive stages, as we now describe. Let π be a proof in LNGL with conclusion G such that
||G|| = n. The conclusion G is derived with a block B of local and propagation rules that
only affect the n-component in inferences with the premises of the block B being initial rules
or derived by applications of □R rules. These applications of □R rules will have premises

CSL 2025

42:14 Unifying Sequent Systems for Gödel-Löb Provability Logic

idΓ, φ ⊢ φ,∆
Γ ⊢ φ,∆

¬LΓ,¬φ ⊢ ∆
Γ, φ ⊢ ∆

¬RΓ ⊢ ¬φ,∆
Γ, φ ⊢ ∆ Γ, ψ ⊢ ∆

∨LΓ, φ ∨ ψ ⊢ ∆

Γ ⊢ φ,ψ,∆
∨RΓ ⊢ φ ∨ ψ,∆

□Γ,Γ,□φ ⊢ φ
□GLΣ,□Γ ⊢ □φ,∆

□Γ,Γ ⊢ φ
□4Σ,□Γ ⊢ □φ,∆

Figure 5 Sequent calculus rules.

of length n+ 1 and will be preceded by blocks Bi of local and propagation rules that only
affect the (n+ 1)-component in inferences. The premises of the Bi blocks will then either be
initial rules or derived by applications of □R rules that have premises of length n+ 2, which
are preceded by blocks of local and propagation rules that only affect the (n+ 2)-component
in inferences, and so on. Every proof in LNGL will have this repetitive structure.

Let □R be applied in an LNGL proof π with premise G � Γ ⊢ ∆ �□φ ⊢ φ of length n. We
say that an instance of a local or propagation rule r in π is length-consistent with □R iff the
length of the conclusion of r is equal to n. Based on the discussion above, we can see that
for any □R application in a proof π, all length-consistent local and propagation rules will
occur in a block B above the □R application with B free of other □R rules. It is not difficult
to show that B can be transformed into a complete block by (1) successively permuting 4L
rules down into a block above □R, and (2) successively permuting □L rules down above the
4L block. After the permutations from (1) and (2) have been carried out, the premise of the
□L block will be derived by length-consistent local rule applications, showing that □R is
preceded by a complete block. As these permutations can be performed for every □R rule in
a proof, every proof can be put into normal form.

▶ Theorem 22. Every proof in LNGL can be transformed into a proof in normal form.

5 Sequent Systems and Correspondences

5.1 Gentzen, Cyclic, and Non-Wellfounded Systems
We use Γ, ∆, Σ, . . . to denote finite multisets of formulae within the context of sequent
systems. For a multiset Γ := φ1, . . . , φn, we define □Γ := □φ1, . . . ,□φn. A sequent is
defined to be an expression of the form Γ ⊢ ∆. The sequent calculus GLseq for GL consists
of the rules id, ¬L, ¬R, ∨L, ∨R, and □GL shown in Figure 5 and is an equivalent variant of
the Gentzen calculi GLSC and GLS introduced by Sambin and Valentini for GL [36, 37].3
The system GLseq is sound and complete for GL, admits syntactic cut-elimination, and the
weakening and contraction rules w, cL, and cR (shown below) are admissible (cf. [16, 39]).

Γ ⊢ ∆ w
Γ,Σ ⊢ Π,∆

Γ, φ, φ ⊢ ∆
cLΓ, φ ⊢ ∆

Γ ⊢ φ,φ,∆
cRΓ ⊢ φ,∆

Γ ⊢ φ,∆ Γ, φ ⊢ ∆
cutΓ ⊢ ∆

Shamkanov [39] showed that equivalent non-wellfounded and cyclic sequent systems could
be obtained for GL by taking the sequent calculus for the modal logic K4 and generalizing the
notion of proof. The sequent calculus K4seq is obtained by replacing the □GL rule in GLseq
with the □4 rule shown in Figure 5. Let us now recall Shamkanov’s non-wellfounded sequent
calculus GL∞ and cyclic sequent calculus GLcirc for GL. We present Shamkanov’s systems in

3 GLseq differs from Sambin and Valentini’s original systems in that multisets are used instead of sets,
rules for superfluous logical connectives (e.g., conjunction ∧ and implication →) have been omitted as
these are definable in terms of other rules, and the weakening rules have been absorbed into id and □GL.

T. S. Lyon 42:15

a two-sided format, i.e., using two-sided sequents Γ ⊢ ∆ rather than one-sided sequents of
the form Γ. This makes the correspondence between Shamkanov’s systems and GLseq clearer
as well as saves us from having to introduce a new language for GL since one-sided sequents
use formulae in negation normal form. Translating proofs with two-sided sequents to proofs
with one-sided sequents and vice-versa can be easily obtained by standard techniques, and
so, this minor modification causes no problems.

A derivation of a sequent Γ ⊢ ∆ is defined to be a (potentially infinite) tree whose nodes
are labeled with sequents such that (1) Γ ⊢ ∆ is the root of the tree, and (2) each parent
node is taken to be the conclusion of a rule in K4seq with its children the corresponding
premises. A non-wellfounded proof is a derivation such that all leaves are initial sequents.
GL∞ is the non-wellfounded sequent system obtained by letting the set of provable sequents
be determined by non-wellfounded proofs.

A cyclic derivation is a pair π = (κ, c) such that κ is a finite derivation in K4seq and c

is a function with the following properties: (1) c is defined on a subset of the leaves of κ,
(2) the image c(x) lies on the path from the root of κ to x and does not coincide with x, and
(3) both x and c(x) are labeled by the same sequent. If the function c is defined at a leaf
x, then we say that a back-link exists from x to c(x). A cyclic proof is a cyclic derivation
π = (κ, c) such that every leaf x is labeled by an instance of id or there exists a back-link
from x to the node c(x). GLcirc is the cyclic sequent system obtained by letting the set of
provable sequents be determined by cyclic proofs.

Shamkanov established a three-way correspondence between GLseq, GL∞, and GLcirc,
providing syntactic transformations mapping proofs between the three systems.4

▶ Theorem 23 ([39]). Γ ⊢ ∆ is provable in GLseq iff Γ ⊢ ∆ is provable in GL∞ iff Γ ⊢ ∆ is
provable in GLcirc.

5.2 Completing the Correspondences
▶ Theorem 24. If π is a normal form proof of ⊢ φ in LNGL, then π can be transformed into
a proof of ⊢ φ in GLseq.

Proof. We show how to transform the normal form proof π of ⊢ φ in LNGL into a proof π′

of ⊢ φ in GLseq in a bottom-up manner. For the conclusion ⊢ φ of the proof π, we take ⊢ φ

to be the conclusion of π′. We now make a case distinction on bottom-up applications of
rules applied in π. For each rule ¬L, ¬R, ∨L, or ∨R, we translate each premise of the rule as
its end component. For example, the ∨L rule will be translated as shown below.

G � Γ, φ ⊢ ∆ G � Γ, ψ ⊢ ∆
∨LG � Γ, φ ∨ ψ ⊢ ∆

Γ, φ ⊢ ∆ Γ, ψ ⊢ ∆
∨LΓ, φ ∨ ψ ⊢ ∆

Suppose now that we encounter a □R rule while bottom-up translating the proof π into a
proof in GLseq. Since π is in normal form, we know that □R is preceded by a modal block
(see Definition 21), that is, □R is (bottom-up) preceded by a block B4L of 4L rules, which is
preceded by a block B□L of □L rules, i.e., the modal block has the shape shown below. We
suppose that □Σ1 are the principal formulae of the 4L applications, □Σ2 are those formulae
principal in both 4L and □L applications, and □Σ3 are those formulae principal only in □L
applications.

4 We note that Shamkanov’s proof transformation from GLseq to GL∞ relies on the admissibility of the
cut rule in GLseq. This is not problematic however since GLseq admits syntactic cut-elimination.

CSL 2025

42:16 Unifying Sequent Systems for Gödel-Löb Provability Logic

G � Γ,□Σ1,□Σ2,□Σ3 ⊢ ∆ �□Σ1,□Σ2,Σ2,Σ3,□φ ⊢ φ
B□LG � Γ,□Σ1,□Σ2,□Σ3 ⊢ ∆ �□Σ1,□Σ2,□φ ⊢ φ

B4LG � Γ,□Σ1,□Σ2,□Σ3 ⊢ ∆ �□φ ⊢ φ
□RG � Γ,□Σ1,□Σ2,□Σ3 ⊢ □φ,∆

We bottom-up translate the entire block as shown below, where the conclusion is obtained
from the end component of the modal block’s conclusion. Note that we may apply the w
rule because it is admissible in GLseq.

□Σ1,□Σ2,Σ2,Σ3,□φ ⊢ φ w
□Σ1,□Σ2,□Σ3,Σ1,Σ2,Σ3,□φ ⊢ φ

□GLΓ,□Σ1,□Σ2,□Σ3 ⊢ □φ,∆

Last, suppose an instance of id1 or id2 is reached in the translation as shown below left.

id1G � Γ, p ⊢ p,∆
id2G � Γ,□φ ⊢ □φ,∆ idΓ, p ⊢ p,∆ idΓ,□φ ⊢ □φ,∆

In each case, we translate the linear nested sequent as its end component, yielding the
respective Gentzen sequents shown above right, both of which are instances of id. ◀

Last, the following theorem completes the circuit of proof transformations and establishes
syntactic correspondences between G3GL, CSGL, LNGL, GLseq, GL∞ and GLcirc.

▶ Theorem 25. If Γ ⊢ ∆ is provable in GLseq, then x : Γ ⊢ x : ∆ is provable in G3GL.

Proof. By induction on the height of the proof π in GLseq. The base case immediately follows
from Theorem 6-(1), and the ¬L, ¬R, ∨L, and ∨R cases of the inductive step straightforwardly
follow by applying IH and then the corresponding rule in G3GL. Therefore, we need only
show the case where π ends with an application of □GL, as shown below left.

□Γ,Γ,□φ ⊢ φ
□GLΣ,□Γ ⊢ □φ,∆

x : □Γ, x : Γ, x : □φ ⊢ x : φ w
yRx, y : □Γ, x : □Γ, x : Γ, x : □φ ⊢ x : φ

□L
yRx, y : □Γ, x : □Γ, x : □φ ⊢ x : φ

4L
yRx, y : □Γ, x : □φ ⊢ x : φ

□R
y : □Γ ⊢ y : □φ (x/y)
x : □Γ ⊢ x : □φ w

x : Σ, x : □Γ ⊢ x : □φ, x : ∆

To obtain the desired proof, we first apply the hp-admissible w rule (Theorem 6), followed
by applications of the □L rule and admissible 4L rule (cf. [15]). Applying the □R rule,
followed by applications of the hp-admissible (x/y) and w rules (Theorem 6), gives the
desired conclusion. ◀

6 Concluding Remarks

There are various avenues for future research: first, it would be interesting to look into the
properties of the new linear nested sequent calculus LNGL, investigating additional admissible
structural rules, how the system can be amended to allow for the hp-invertibility of all
rules, and also looking into syntactic cut-elimination. Second, by employing a methodology
for extracting nested sequent systems from relational semantics [28], we can integrate this
approach with the linearization technique to develop a general method for extracting (cut-free)

T. S. Lyon 42:17

linear nested systems from the semantics of various modal, intuitionistic, and related logics.
Third, it seems worthwhile to see if the proof transformation techniques discussed in this
paper can be applied to structural cyclic systems (e.g., cyclic labeled sequent systems for
classical and intuitionistic Gödel-Löb logic [11]) to remove extraneous structure and extract
simpler (cyclic) Gentzen systems.

References
1 Bahareh Afshari and Graham E. Leigh. Cut-free completeness for modal mu-calculus. In 2017

32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–12, 2017.
doi:10.1109/LICS.2017.8005088.

2 Arnon Avron. On modal systems having arithmetical interpretations. Journal of Symbolic
Logic, 49(3):935–942, 1984. doi:10.2307/2274147.

3 James Brotherston. Cyclic proofs for first-order logic with inductive definitions. In Bernhard
Beckert, editor, Automated Reasoning with Analytic Tableaux and Related Methods, pages
78–92, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. doi:10.1007/11554554_8.

4 James Brotherston. Formalised inductive reasoning in the logic of bunched implications. In
Hanne Riis Nielson and Gilberto Filé, editors, Static Analysis, pages 87–103, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg. doi:10.1007/978-3-540-74061-2_6.

5 James Brotherston and Alex Simpson. Sequent calculi for induction and infinite descent.
Journal of Logic and Computation, 21(6):1177–1216, October 2010. doi:10.1093/logcom/
exq052.

6 Kai Brünnler. Deep sequent systems for modal logic. Archive for Mathematical Logic, 48(6):551–
577, 2009. doi:10.1007/s00153-009-0137-3.

7 Robert A. Bull. Cut elimination for propositional dynamic logic without *. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 38(2):85–100, 1992. doi:10.1002/
MALQ.19920380107.

8 Marcos A Castilho, Luis Farinas del Cerro, Olivier Gasquet, and Andreas Herzig. Modal
tableaux with propagation rules and structural rules. Fundamenta Informaticae, 32(3, 4):281–
297, 1997. doi:10.3233/FI-1997-323404.

9 Agata Ciabattoni, Tim Lyon, Revantha Ramanayake, and Alwen Tiu. Display to labelled
proofs and back again for tense logics. ACM Transactions on Computational Logic, 22(3):1–31,
2021. doi:10.1145/3460492.

10 Anupam Das and Marianna Girlando. Cyclic hypersequent system for transitive closure logic.
Journal of Automated Reasoning, 67(3):27, 2023. doi:10.1007/s10817-023-09675-1.

11 Anupam Das, Iris van der Giessen, and Sonia Marin. Intuitionistic Gödel-Löb Logic, à la
Simpson: Labelled Systems and Birelational Semantics. In Aniello Murano and Alexandra
Silva, editors, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024),
volume 288 of Leibniz International Proceedings in Informatics (LIPIcs), pages 22:1–22:18,
Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.CSL.2024.22.

12 Melvin Fitting. Tableau methods of proof for modal logics. Notre Dame Journal of Formal
Logic, 13(2):237–247, 1972. doi:10.1305/NDJFL/1093894722.

13 Melvin Fitting. Nested sequents for intuitionistic logics. Notre Dame Journal of Formal Logic,
55(1):41–61, 2014. doi:10.1215/00294527-2377869.

14 Rajeev Goré, Linda Postniece, and Alwen Tiu. Cut-elimination and proof-search for bi-
intuitionistic logic using nested sequents. In Carlos Areces and Robert Goldblatt, editors,
Advances in Modal Logic 7, pages 43–66. College Publications, 2008. URL: http://www.aiml.
net/volumes/volume7/Gore-Postniece-Tiu.pdf.

15 Rajeev Goré and Revantha Ramanayake. Labelled tree sequents, tree hypersequents and
nested (deep) sequents. In Thomas Bolander, Torben Braüner, Silvio Ghilardi, and Lawrence S.
Moss, editors, Advances in Modal Logic 9, pages 279–299. College Publications, 2012. URL:
http://www.aiml.net/volumes/volume9/Gore-Ramanayake.pdf.

CSL 2025

https://doi.org/10.1109/LICS.2017.8005088
https://doi.org/10.2307/2274147
https://doi.org/10.1007/11554554_8
https://doi.org/10.1007/978-3-540-74061-2_6
https://doi.org/10.1093/logcom/exq052
https://doi.org/10.1093/logcom/exq052
https://doi.org/10.1007/s00153-009-0137-3
https://doi.org/10.1002/MALQ.19920380107
https://doi.org/10.1002/MALQ.19920380107
https://doi.org/10.3233/FI-1997-323404
https://doi.org/10.1145/3460492
https://doi.org/10.1007/s10817-023-09675-1
https://doi.org/10.4230/LIPIcs.CSL.2024.22
https://doi.org/10.4230/LIPIcs.CSL.2024.22
https://doi.org/10.1305/NDJFL/1093894722
https://doi.org/10.1215/00294527-2377869
http://www.aiml.net/volumes/volume7/Gore-Postniece-Tiu.pdf
http://www.aiml.net/volumes/volume7/Gore-Postniece-Tiu.pdf
http://www.aiml.net/volumes/volume9/Gore-Ramanayake.pdf

42:18 Unifying Sequent Systems for Gödel-Löb Provability Logic

16 Rajeev Goré and Revantha Ramanayake. Valentini’s cut-elimination for provability logic
resolved. The Review of Symbolic Logic, 5(2):212–238, 2012. doi:10.1017/S1755020311000323.

17 Ryo Ishigaki and Kentaro Kikuchi. Tree-sequent methods for subintuitionistic predicate logics.
In Nicola Olivetti, editor, Automated Reasoning with Analytic Tableaux and Related Methods,
volume 4548 of Lecture Notes in Computer Science, pages 149–164, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg. doi:10.1007/978-3-540-73099-6_13.

18 Stig Kanger. Provability in logic. Almqvist & Wiksell, 1957.
19 Ryo Kashima. Cut-free sequent calculi for some tense logics. Studia Logica, 53(1):119–135,

1994. doi:10.1007/BF01053026.
20 Roman Kuznets and Björn Lellmann. Interpolation for intermediate logics via hyper- and

linear nested sequents. In Guram Bezhanishvili, Giovanna D’Agostino, George Metcalfe, and
Thomas Studer, editors, Advances in Modal Logic 12, pages 473–492. College Publications,
2018. URL: http://www.aiml.net/volumes/volume12/Kuznets-Lellmann.pdf.

21 Björn Lellmann. Linear nested sequents, 2-sequents and hypersequents. In Hans De Nivelle,
editor, Automated Reasoning with Analytic Tableaux and Related Methods, volume 9323 of
Lecture Notes in Computer Science, pages 135–150, Cham, 2015. Springer International
Publishing. doi:10.1007/978-3-319-24312-2_10.

22 Tim Lyon. On the correspondence between nested calculi and semantic systems for intuitionistic
logics. Journal of Logic and Computation, 31(1):213–265, December 2020. doi:10.1093/
logcom/exaa078.

23 Tim Lyon. Refining labelled systems for modal and constructive logics with applications. PhD
thesis, TU Wien, 2021. URL: https://arxiv.org/abs/2107.14487, arXiv:2107.14487.

24 Tim Lyon, Alwen Tiu, Rajeev Goré, and Ranald Clouston. Syntactic interpolation for tense
logics and bi-intuitionistic logic via nested sequents. In Maribel Fernández and Anca Muscholl,
editors, 28th EACSL Annual Conference on Computer Science Logic (CSL 2020), volume
152 of Leibniz International Proceedings in Informatics (LIPIcs), pages 28:1–28:16, Dagstuhl,
Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
CSL.2020.28.

25 Tim S. Lyon. Nested sequents for intuitionistic modal logics via structural refinement. In
Anupam Das and Sara Negri, editors, Automated Reasoning with Analytic Tableaux and
Related Methods, pages 409–427, Cham, 2021. Springer International Publishing. doi:10.
1007/978-3-030-86059-2_24.

26 Tim S. Lyon, Agata Ciabattoni, Didier Galmiche, Dominique Larchey-Wendling, Daniel Méry,
Nicola Olivetti, and Revantha Ramanayake. Internal and external calculi: Ordering the jungle
without being lost in translations. Found on arXiv, 2023. URL: https://arxiv.org/abs/
2312.03426, doi:10.48550/arXiv.2312.03426.

27 Tim S. Lyon and Eugenio Orlandelli. Nested sequents for quantified modal logics. In Revantha
Ramanayake and Josef Urban, editors, Automated Reasoning with Analytic Tableaux and
Related Methods, pages 449–467, Cham, 2023. Springer Nature Switzerland. doi:10.1007/
978-3-031-43513-3_24.

28 Tim S. Lyon and Piotr Ostropolski-Nalewaja. Foundations for an abstract proof theory in
the context of horn rules. Found on arXiv, 2024. URL: https://arxiv.org/abs/2304.05697,
doi:10.48550/arXiv.2304.05697.

29 Andrea Masini. 2-sequent calculus: A proof theory of modalities. Annals of Pure and Applied
Logic, 58(3):229–246, 1992. doi:10.1016/0168-0072(92)90029-Y.

30 Andrea Masini. 2-sequent calculus: Intuitionism and natural deduction. Journal of Logic and
Computation, 3(5):533–562, 1993. doi:10.1093/LOGCOM/3.5.533.

31 Sara Negri. Proof analysis in modal logic. Journal of Philosophical Logic, 34(5):507–544, 2005.
doi:10.1007/s10992-005-2267-3.

32 Damian Niwiński and Igor Walukiewicz. Games for the µ-calculus. Theoretical Computer
Science, 163(1):99–116, 1996. doi:10.1016/0304-3975(95)00136-0.

https://doi.org/10.1017/S1755020311000323
https://doi.org/10.1007/978-3-540-73099-6_13
https://doi.org/10.1007/BF01053026
http://www.aiml.net/volumes/volume12/Kuznets-Lellmann.pdf
https://doi.org/10.1007/978-3-319-24312-2_10
https://doi.org/10.1093/logcom/exaa078
https://doi.org/10.1093/logcom/exaa078
https://arxiv.org/abs/2107.14487
https://arxiv.org/abs/2107.14487
https://doi.org/10.4230/LIPIcs.CSL.2020.28
https://doi.org/10.4230/LIPIcs.CSL.2020.28
https://doi.org/10.1007/978-3-030-86059-2_24
https://doi.org/10.1007/978-3-030-86059-2_24
https://arxiv.org/abs/2312.03426
https://arxiv.org/abs/2312.03426
https://doi.org/10.48550/arXiv.2312.03426
https://doi.org/10.1007/978-3-031-43513-3_24
https://doi.org/10.1007/978-3-031-43513-3_24
https://arxiv.org/abs/2304.05697
https://doi.org/10.48550/arXiv.2304.05697
https://doi.org/10.1016/0168-0072(92)90029-Y
https://doi.org/10.1093/LOGCOM/3.5.533
https://doi.org/10.1007/s10992-005-2267-3
https://doi.org/10.1016/0304-3975(95)00136-0

T. S. Lyon 42:19

33 Elaine Pimentel, Revantha Ramanayake, and Björn Lellmann. Sequentialising nested systems.
In Serenella Cerrito and Andrei Popescu, editors, Automated Reasoning with Analytic Tableaux
and Related Methods, volume 11714 of Lecture Notes in Computer Science, pages 147–165,
Cham, 2019. Springer International Publishing. doi:10.1007/978-3-030-29026-9_9.

34 Francesca Poggiolesi. The method of tree-hypersequents for modal propositional logic. In David
Makinson, Jacek Malinowski, and Heinrich Wansing, editors, Towards Mathematical Philosophy,
volume 28 of Trends in logic, pages 31–51. Springer, 2009. doi:10.1007/978-1-4020-9084-4_
3.

35 Francesca Poggiolesi. A purely syntactic and cut-free sequent calculus for the modal
logic of provability. The Review of Symbolic Logic, 2(4):593–611, 2009. doi:10.1017/
S1755020309990244.

36 G. Sambin and S. Valentini. A modal sequent calculus for a fragment of arithmetic. Studia
Logica: An International Journal for Symbolic Logic, 39(2/3):245–256, 1980. URL: http:
//www.jstor.org/stable/20014984.

37 Giovanni Sambin and Silvio Valentini. The modal logic of provability. the sequential approach.
Journal of Philosophical Logic, 11(3):311–342, 1982. URL: http://www.jstor.org/stable/
30226252, doi:10.1007/BF00293433.

38 Krister Segerberg. An Essay in Classical Modal Logic. Uppsala: Filosofiska Föreningen och
Filosofiska Institutionen vid Uppsala Universitet, 1971.

39 D. S. Shamkanov. Circular proofs for the Gödel-Löb provability logic. Mathematical Notes,
96(3):575–585, 2014. doi:10.1134/S0001434614090326.

40 Alex K Simpson. The proof theory and semantics of intuitionistic modal logic. PhD thesis,
University of Edinburgh. College of Science and Engineering. School of Informatics, 1994.

41 Robert M. Solovay. Provability interpretations of modal logic. Israel Journal of Mathematics,
25(3):287–304, 1976. doi:10.1007/BF02757006.

42 Lutz Straßburger. Cut elimination in nested sequents for intuitionistic modal logics. In Frank
Pfenning, editor, Foundations of Software Science and Computation Structures, volume 7794 of
Lecture Notes in Computer Science, pages 209–224, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg. doi:10.1007/978-3-642-37075-5_14.

43 Luca Viganò. Labelled Non-Classical Logics. Springer Science & Business Media, 2000.

A Proofs for Section 4

▶ Lemma 16. The following permutations hold in CSGL:
(1) If r is a non-end-active local rule and r′ is non-initial and end-active, then r permutes

below r′ and r′ remains end-active after this permutation;
(2) if r is a non-end-active propagation rule and r′ is non-initial and end-active, then r

permutes below r′ and r′ remains end-active after this permutation.

Proof. Follows from Lemmas 26 and 27 below. ◀

▶ Lemma 26. If r is a non-end-active local rule and r′ is non-initial and end-active, then r
permutes below r′ and r′ remains end-active after this permutation.

Proof. We let r be an instance of ¬R as the cases where r is either ¬L, ∨L, or ∨R are shown
similarly. We show that r can be permuted down r′ and consider a representative number of
cases when r′ is either ∨R, 4L, or □R as the remaining cases are similar.

∨R. By our assumption that ¬R is non-end-active and ∨R is end-active, we know that the
labels x and y are distinct. Hence, we can permute the ¬R instance below the ∨R instance.
Observe that ∨R remains end-active after the permutation.

T ,Γ, x : φ ⊢ y : ψ, y : χ,∆
¬RT ,Γ ⊢ x : ¬φ, y : ψ, y : χ,∆
∨RT ,Γ ⊢ x : ¬φ, y : ψ ∨ χ,∆

T ,Γ, x : φ ⊢ y : ψ, y : χ,∆
∨RT ,Γ, x : φ ⊢ y : ψ ∨ χ,∆
¬RT ,Γ ⊢ x : ¬φ, y : ψ ∨ χ,∆

CSL 2025

https://doi.org/10.1007/978-3-030-29026-9_9
https://doi.org/10.1007/978-1-4020-9084-4_3
https://doi.org/10.1007/978-1-4020-9084-4_3
https://doi.org/10.1017/S1755020309990244
https://doi.org/10.1017/S1755020309990244
http://www.jstor.org/stable/20014984
http://www.jstor.org/stable/20014984
http://www.jstor.org/stable/30226252
http://www.jstor.org/stable/30226252
https://doi.org/10.1007/BF00293433
https://doi.org/10.1134/S0001434614090326
https://doi.org/10.1007/BF02757006
https://doi.org/10.1007/978-3-642-37075-5_14

42:20 Unifying Sequent Systems for Gödel-Löb Provability Logic

4L. By our assumption, we know that z is distinct from y in the inferences shown below
left, meaning, we can permute ¬R below 4L as shown below right. Observe that 4L remains
end-active after the permutation.

T , xRy,Γ, x : □ψ, y : □ψ, z : φ ⊢ ∆
¬RT , xRy,Γ, x : □ψ, y : □ψ ⊢ z : ¬φ,∆
4LT , xRy,Γ, x : □ψ ⊢ z : ¬φ,∆

T , xRy,Γ, x : □ψ, y : □ψ, z : φ ⊢ ∆
4LT , xRy,Γ, x : □ψ, z : φ ⊢ ∆

¬RT , xRy,Γ, x : □ψ ⊢ z : ¬φ,∆

□R. By our assumption, we know that z is distinct from y in the inferences shown below
left, meaning, we can permute ¬R below □R as shown below right. Trivially, the □R rule
remains end-active after the permutation.

T , xRy,Γ, y : □ψ, z : φ ⊢ y : ψ,∆
¬RT , xRy,Γ, y : □ψ ⊢ y : ψ, z : ¬φ,∆
□RT ,Γ ⊢ x : □ψ, z : ¬φ,∆

T , xRy,Γ, y : □ψ, z : φ ⊢ y : ψ,∆
□RT ,Γ, z : φ ⊢ x : □ψ,∆

¬RT ,Γ ⊢ x : □ψ, z : ¬φ,∆
◀

▶ Lemma 27. If r is a non-end-active propagation rule and r′ is non-initial and end-active,
then r permutes below r′ and r′ remains end-active after this permutation.

Proof. We consider the case where r is an instance of □L as the 4L case is similar. We show
that r can be permuted down r′ and consider a representative number of cases when r′ is
either ¬L, 4L, or □R as the remaining cases are similar.

¬L. By our assumption, we know that z is distinct from y in the inferences below left. We
can therefore permute □L below ¬L as shown below right and we observe that ¬L remains
end-active.

T , xRy,Γ, x : □φ, y : φ ⊢ z : ψ,∆
□LT , xRy,Γ, x : □φ ⊢ z : ψ,∆

¬LT , xRy,Γ, x : □φ, z : ¬ψ ⊢ ∆

T , xRy,Γ, x : □φ, y : φ ⊢ z : ψ,∆
¬LT , xRy,Γ, x : □φ, y : φ, z : ¬ψ ⊢ ∆
□LT , xRy,Γ, x : □φ, z : ¬ψ ⊢ ∆

4L. Let us suppose we have a □L instance followed by a 4L instance. There are two cases to
consider: either the principal formula of □L is the same as for 4L, or the principal formulae
are distinct. We show the first case as the second case is similar. Then, our inferences are
of the form shown below left, where y and z are distinct due to our assumption. We may
permute □L below 4L as shown below right and we observe that 4L remains end-active.

T , xRy, xRz,Γ, x : □φ, y : φ, z : □φ ⊢ ∆
□LT , xRy, xRz,Γ, x : □φ, z : □φ ⊢ ∆

4LT , xRy, xRz,Γ, x : □φ ⊢ ∆

T , xRy, xRz,Γ, x : □φ, y : φ, z : □φ ⊢ ∆
4LT , xRy, xRz,Γ, x : □φ, y : φ ⊢ ∆

□LT , xRy, xRz,Γ, x : □φ ⊢ ∆

□R. Suppose we have an instance of □L followed by an application of □R as shown below.

T , xRy, zRu,Γ, x : □φ, y : φ, u : □ψ ⊢ u : ψ,∆
□LT , xRy, zRu,Γ, x : □φ, u : □ψ ⊢ u : ψ,∆

□RT , xRy,Γ, x : □φ ⊢ z : □ψ,∆

By our assumption, the labels y and u are distinct, meaning, we can permute □L below □R
as shown below. Trivially, □R remains end-active after the permutation is performed.

T , xRy, zRu,Γ, x : □φ, y : φ, u : □ψ ⊢ u : ψ,∆
□RT , xRy,Γ, x : □φ, y : φ ⊢ z : □ψ,∆

□LT , xRy,Γ, x : □φ ⊢ z : □ψ,∆
◀

T. S. Lyon 42:21

▶ Theorem 19. Each end-active proof in CSGL can be transformed into a proof in LNGL.
Proof. We have included additional cases of the inductive step that are not included in the
main text.

4L. Let us suppose that π ends with an application of 4L as shown below.
T , xRy,Γ, x : □φ, y : □φ ⊢ ∆

4LT , xRy,Γ, x : □φ ⊢ ∆
By IH, we know there exists a path y1, . . . , yn of labels from the root y1 to the leaf yn in the
premise of 4L such that G = Γ(y1) ⊢ ∆(y1) � · · · � Γ(yn) ⊢ ∆(yn) is provable in LNGL. Since
4L is end-active, there are three cases to consider: either (1) neither x nor y occur along the
path, (2) only x occurs along the path, or (3) both x and y occur along the path. In each
case, the conclusion is obtained by taking the linear nested sequent corresponding to the
path y1, . . . , yn in the conclusion of the 4L instance above. In the first and second cases, we
translate the entire 4L instance as the single linear nested sequent G. In the third case, we
have that x = yn−1 and y = yn, meaning, the premise of the 4L instance shown below is
provable in LNGL by IH, where Γ(yn−1) = Σ1,□φ and Γ(yn) = Σ2,□φ. As shown below, a
single application of 4L yields the desired conclusion.

Γ(y1) ⊢ ∆(y1) � · · · � Σ1,□φ ⊢ ∆(yn−1) � Σ2,□φ ⊢ ∆(yn)
4LΓ(y1) ⊢ ∆(y1) � · · · � Σ1,□φ ⊢ ∆(yn−1) � Σ2 ⊢ ∆(yn)

∨L. Let us suppose that π ends with an instance of ∨L as shown below.
T ,Γ, x : φ ⊢ ∆ T ,Γ, x : ψ ⊢ ∆

∨LT ,Γ, x : φ ∨ ψ ⊢ ∆
By IH, we know there exist paths v = y1, . . . , yn and v = z1, . . . , zk of labels from the root v
to the leaves yn and zk in the premises of ∨L such that G = Γ(v) ⊢ ∆(v)� · · ·�Γ(yn) ⊢ ∆(yn)
and H = Γ(v) ⊢ ∆(v) � · · · � Γ(zk) ⊢ ∆(zk) are provable in LNGL. There are two cases to
consider: either (1) x ̸= yn or x ̸= zk, or (2) x = yn = zk. In the first case, if x ̸= yn, then
we translate the entire ∨L inference as the single linear nested sequent G, and if x ≠ zk,
then we translate the entire ∨L inference as H. In the second case, we know that the left
premise G and right premise H of the ∨L inference below are provable with Γ(yn) = Σ, φ
and Γ(zk) = Σ, ψ, and so, a single application of ∨L gives the desired result.

Γ(y1) ⊢ ∆(y1) � · · · � Σ, φ ⊢ ∆(yn) Γ(y1) ⊢ ∆(y1) � · · · � Σ, ψ ⊢ ∆(yn)
∨LΓ(y1) ⊢ ∆(y1) � · · · � Σ, φ ∨ ψ ⊢ ∆(yn)

◀

▶ Theorem 22. Every proof in LNGL can be transformed into a proof in normal form.
Proof. Let π be a proof in LNGL. We consider an arbitrary instance of a □R rule in π and
first show that every length-consistent 4L rule above □R can be permuted down into a block
B of 4L rules above □R. Afterward, we will show that every length-consistent □L rule can
be permuted down into a block B′ of □L rules above B. As a result, all length-consistent
local rules will occurs in a block B′′ above the premise of the block B′, showing that □R
is preceded be a complete block. As these permutations can be performed for every □R
instance in π, we obtain a normal form proof as the result.

Let us choose an application of □R in π, as shown below, proceeded by a (potentially
empty) block R of 4L rules.

... R
G � Γ ⊢ ∆ �□φ ⊢ φ

□RG � Γ ⊢ □φ,∆

CSL 2025

42:22 Unifying Sequent Systems for Gödel-Löb Provability Logic

We now select a bottom-most, length-consistent application of a 4L rule above the chosen
□R application that does not occur within the block R of 4L rules. We show that 4L can be
permuted below every local rule and □L rule until it reaches and joins the R block. We show
that 4L can be permuted below ¬R, ∨L, and □L as the remaining cases are similar. Note
that we are guaranteed that no other □R applications occur below 4L and above R since
then 4L would not be length-consistent with the chosen □R application.

Suppose 4L occurs above a ¬R application as shown below left. The rules can be permuted
as shown below right.

G � Γ,□φ ⊢ ∆ � Σ, ψ,□φ ⊢ Π
4LG � Γ,□φ ⊢ ∆ � Σ, ψ ⊢ Π

¬RG � Γ,□φ ⊢ ∆ � Σ ⊢ ¬ψ,Π

G � Γ,□φ ⊢ ∆ � Σ, ψ,□φ ⊢ Π
¬RG � Γ,□φ ⊢ ∆ � Σ,□φ ⊢ ¬ψ,Π
4LG � Γ,□φ ⊢ ∆ � Σ ⊢ ¬ψ,Π

Suppose that we have 4L followed by an application of the ∨L rule.

G � Γ,□φ ⊢ ∆ � Σ,□φ,ψ ⊢ Π
4LG � Γ,□φ ⊢ ∆ � Σ, ψ ⊢ Π G � Γ,□φ ⊢ ∆ � Σ, χ ⊢ Π

∨LG � Γ,□φ ⊢ ∆ � Σ, ψ ∨ χ ⊢ Π

Invoking the hp-invertibility of 4L (Lemma 14), we can permute 4L below ∨L as shown below.

G � Γ,□φ ⊢ ∆ � Σ,□φ,ψ ⊢ Π
G � Γ,□φ ⊢ ∆ � Σ, χ ⊢ Π

4L−1
G � Γ,□φ ⊢ ∆ � Σ,□φ, χ ⊢ Π

∨LG � Γ,□φ ⊢ ∆ � Σ,□φ,ψ ∨ χ ⊢ Π
4LG � Γ,□φ ⊢ ∆ � Σ, ψ ∨ χ ⊢ Π

Last, we show (below left) one of the cases where 4L is applied above a □L rule. We can
permute the rules as shown below right.

G � Γ,□ψ,□φ ⊢ ∆ � Σ,□ψ,φ ⊢ Π
4LG � Γ,□ψ,□φ ⊢ ∆ � Σ, φ ⊢ Π
□LG � Γ,□ψ,□φ ⊢ ∆ � Σ ⊢ Π

G � Γ,□ψ,□φ ⊢ ∆ � Σ,□ψ,φ ⊢ Π
□LG � Γ,□ψ,□φ ⊢ ∆ � Σ,□ψ ⊢ Π

4LG � Γ,□ψ,□φ ⊢ ∆ � Σ ⊢ Π

We can repeat the above downward permutations of bottom-most, length-consistent 4L
rules, so that all length-consistent 4L rules occur in a block B above □R as shown below,
where we let R′ be a (potentially empty) block of □L rules above the B block of 4L rules.

...
R′

H B
G � Γ ⊢ ∆ �□φ ⊢ φ

□RG � Γ ⊢ □φ,∆

Next we show that every length-consistent □L rule occurring above the block R′ can be
permuted down to the block R′. Let □L occur above the block R′ be length-consistent with
the chosen □R rule. Notice that we need only consider downward permutations of □L rules
with local rules as all 4L rules have already been permuted downward and no other □R rule
can occur between □L and R′ because then □L would not be length-consistent. We show
how to permute the □L rule below a ∨L instance; the remaining cases are simple and similar.

G � Γ,□φ ⊢ ∆ � Σ, ψ, φ ⊢ Π
□LG � Γ,□φ ⊢ ∆ � Σ, ψ ⊢ Π G � Γ,□φ ⊢ ∆ � Σ, χ ⊢ Π

∨LG � Γ,□φ ⊢ ∆ � Σ, ψ ∨ χ ⊢ Π

T. S. Lyon 42:23

By using the hp-invertibility of □L (Lemma 14), we can permute □L below the ∨L rule.

G � Γ,□φ ⊢ ∆ � Σ, φ, ψ ⊢ Π
G � Γ,□φ ⊢ ∆ � Σ, χ ⊢ Π

□L−1
G � Γ,□φ ⊢ ∆ � Σ, φ, χ ⊢ Π

∨LG � Γ,□φ ⊢ ∆ � Σ, φ, ψ ∨ χ ⊢ Π
□LG � Γ,□φ ⊢ ∆ � Σ, ψ ∨ χ ⊢ Π

By successively permuting all □L rules down into a block above B, we have that □R is
preceded by a complete block in the proof. As argued above, this implies that every proof in
LNGL can be put into normal form. ◀

CSL 2025

Linear Realisability over Nets: Multiplicatives
Adrien Ragot #

LIPN – UMR 7030 CNRS, Université Sorbonne Paris Nord, France
Dipartimento di Matematica e Fisica, Università Degli Studi Roma Tre, Italy

Thomas Seiller #

CNRS, LIPN – UMR 7030, Université Sorbonne Paris Nord, France

Lorenzo Tortora de Falco #

Dipartimento di Matematica e Fisica, Università Degli Studi Roma Tre, Italy
GNSAGA, Istituto Nazionale di Alta Matematica, Roma, Italy

Abstract
We provide a new realisability model based on orthogonality for the multiplicative fragment of linear
logic, both in presence of generalised axioms (MLL✠) and in the standard case (MLL). The novelty
is the definition of cut elimination for generalised axioms. We prove that our model is adequate and
complete both for MLL✠ and MLL.

2012 ACM Subject Classification Theory of computation → Linear logic; Theory of computation
→ Program semantics

Keywords and phrases Linear Logic, Proof Nets, Realisability, Orthogonality, Hypergraphs, Rewrit-
ing, Correctness

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.43

Funding Adrien Ragot: Supported by a VINCI PhD fellowship from the Franco-Italian Université.
Thomas Seiller : Partially supported by the ANR-22-CE48-0003-01 project DySCo.

Introduction

Since the inception of Linear Logic (LL), proofs are represented as graphs that naturally live
in a wider space of agents called proof structures (nets in this paper) that can freely interact.
These nets were introduced by J.Y. Girard in [7], together with the desequentialisation: a
simple process transforming proof trees from the sequent calculus of LL into nets. However,
not every net is the desequentialisation of a proof: it is impossible to extract a proof tree
from a net that “contains” cycles or disconnections [5]. Nets can therefore present forms of
(what we call) geometrical incorrectness, and geometrically correct nets are (representants
of) proof trees of LL. More recently, J.Y. Girard proposed Ludics, an interpretation of LL
given in terms of “desseins”: proof trees of the LL sequent calculus with the addition of the
daimon (✠) rule, a generalised axiom allowing to prove any sequent. Ludics introduces a new
kind of incorrectness that we call provability incorrectness: dessein are geometrically correct
(they are proof trees) but can be provably incorrect. In the standard theory of proof nets
geometrical and provability correctness coincide; it is the presence of daimons that allows to
distinguish between provability correctness and geometrical correctness.

Understanding the relationship between correctness and computational behavior is (one
of) the goal(s) of realisability, which, restricted to LL, will be our focus in this paper. We
briefly sum up the existing works on linear realisability1 by positioning them with respect to
Table 1. We also recall if these models enjoy completeness or not. Two lines of research on
realisability of LL can be identified.

1 We use the expression linear realisability in the sense of [20] i.e. realisability models for LL.

© Adrien Ragot, Thomas Seiller, and Lorenzo Tortora de Falco;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 43; pp. 43:1–43:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ragot@lipn.fr
https://orcid.org/0009-0007-8848-460X
mailto:thomas.seiller@cnrs.fr
https://orcid.org/0000-0001-6313-0898
mailto:tortora@uniroma3.it
https://orcid.org/0000-0002-3987-1095
https://doi.org/10.4230/LIPIcs.CSL.2025.43
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Linear Realisability over Nets: Multiplicatives

Table 1 Presence of incorrectness, restricted to multiplicative linear logic, for realisability models.

MLL MLL✠

Proof Nets no incorrectness provability incorrectness
Nets geometrical incorrectness geometrical and provability incorrectness

One was initiated by V. De Paiva Dialectica Interpretation [6] and led to P. Oliva’s
adequate and complete realisability model of first order LL [14] where realisers are proof
trees (with standard axioms) from a decorated sequent calculus of LL. As a consequence
realisers are typed and are “by construction” geometrically and provably correct (placing this
model in the top left corner of Table 1).

The other originates in the work of J.Y. Girard: Ludics [10], whose “desseins” are
geometrically correct but can be provably incorrect (top right corner of Table 1), which
enjoys completeness. E. Beffara proposed adequate models in a concurrent π-calculus [2]
and conjunctive structure [3]. T. Seiller’s interaction graphs (inspired by Girard’s Geometry
of Interaction [8]) model various LL fragments adequately [15–19]. Beffara’s and Seiller’s
approaches exhibit both geometrical and provability incorrectness (bottom-right corner of
Table 1), but contain no completeness result.

We give the first complete realisability model of the multiplicative fragment of linear
logic in terms of nets, essentially the well–known untyped proof–structures of LL [9] with
daimons, as in the work of P.L. Curien [4]: this places us in the bottom–right corner of
Table 1. The main tool we use in our approach to realisability is LL cut elimination: we
interpret formulas as types, sets of nets closed under bi–orthogonality, where the notion of
orthogonality is defined via the rewriting rules of nets induced by cut elimination. We prove
completeness for MLL✠, multiplicative LL with generalised axioms, meaning our model can
capture geometrical correctness. As a byproduct we obtain completeness for the standard
multiplicative fragment of linear logic (MLL), thus capturing provability correctness.

Although not expressed in the terms of realisability, a completeness result for MLL✠ (in
the atomic case) using a notion of orthogonality is already apparent in the work of P.L.
Curien [4], where the partitions involved in the Danos Regnier criterion [5] are encoded using
daimons. More precisely, one can test the geometrical correctness of a net by confronting
it against carefully chosen opponents (which as in the work of Béchet [1] are geometrically
correct nets). However the method in [4] does not allow to derive a completeness result for
MLL. By contrast, we use geometrically incorrect opponents to prove completeness for MLL
(Remark 87).

The novelty is the cut elimination of non-homogenous cuts (a generalised axiom against
a connective – say a tensor): unlike in Ludics 2 [10] our daimon is the “perfect” oppon-
ent/evaluation context; it never stops responding during computation and never prevents
proof search to go on (Figure 4 and Remark 24). These new cut elimination steps are key
to interactively identify provability correctness and so to obtain our completeness result for
MLL (Remark 86). The computational behavior of the daimon also differs from Krivine’s
continuations involved in classical realisability [12]: they restore a previously stored context
while our daimon rather behaves like an adaptive evaluation context.
The general aim is to understand the computational content of proofs and of (incorrect) nets,
following a “purely interactive approach to logic” (to quote [10]). We follow the approach
initiated with Ludics, we present a framework in which proofs and refutations are objects

2 In Ludics, the daimon means the end of the game, or the end of the proof search.

A. Ragot, T. Seiller, and L. Tortora de Falco 43:3

of the same nature that can freely interact: a proof–object proves a formula A whenever it
“defeats” all the refutations of A. The correctness of an object is evaluated using a dynamic
criterion (we make an object interact with each of its refutations) rather than a static one
(such as a typing discipline).

Outline. In Section 1, we give a detailed introduction of nets that we define as ordered
hypergraphs. In Section 2, we recall the elementary notions of multiplicative linear logic,
we introduce the ✠-links and we formulate the criterion of Danos Regnier [5] in our setting.
In Section 3, we define orthogonality between two nets as “successful interaction” through
cut elimination (Definition 42); this leads to the notion of type: a set of nets closed under
bi–orthogonality. We then show how to perform the usual multiplicative constructions
in the framework of types. In Section 4, we define our realisability model interpreting
formulas as types and we prove its adequacy: a net representing a proof of A is a realiser
of A (Theorem 64). In Section 5, we relate correctness criteria with orthogonality. The
Danos-Regnier criterion applied to a cut-free net with conclusion A yields a set of nets called
tests (Definition 74). We prove that the tests of A are proofs of A⊥ (Theorem 77) and that
the interaction between a net π with conclusion A and its tests allows to determine whether
or not π is indeed a proof: we thus extend to our framework a result of Béchet [1]. In
Section 6, we prove the completeness of our realisability model: if a net S realises A (in every
basis), then S is a proof of A in MLL✠ (Theorem 85). Finally we show that completeness of
MLL✠ implies that of MLL (Theorem 88).

1 Untyped nets

We introduce the framework of nets in which our construction takes place. Nets are a special
kind of directed hypergraphs together with an order of some of their vertices which will come
in play later on to define the notion of orthogonality. These hypergraphs enjoy a natural
notion of sum (Definition 6). In subsection 1.2, we define our “realisers” that we call nets
and their computational rules, the cut elimination procedure as known for multiplicative
proof structures [9] but with a novelty: the generalised axiom or daimon–link (✠) which
behave like an adaptative evaluation context.

1.1 Directed hypergraphs
Given a set X we will let P≤(X) denote the set of totally ordered finite subsets of X. An
element of P≤(X) is equivalently a finite sequence of elements of X but, without repetitions.

▶ Definition 1. Suppose given a set L of labels. A directed (L-labelled) hypergraph is a tuple
(V, E, s, t, ℓ) where V is a finite set of positions and E is a finite set of links, s : E → P≤(V)
is the source map, t : E → P≤(V) is the target map and ℓ : E → L is the labelling map.

Given a link e ∈ E, since the finite sets t(e) and s(e) are totally ordered, to support
readability we will represent them as sequences: they are respectively called the target and
the source sets of e. A source (resp. target) of e is an element of its source (resp. target) set
s(e) (resp.t(e)). The set of targets and sources of e is the domain of the link e. We will use
superscripts to denote sequences of positions (p, q, u, . . .). A link is a loop when its target set
and source set are not disjoint.

Convention. Along this work we assume all the hypergraphs to be loop–free i.e. containing
only links which are not loops.

CSL 2025

43:4 Linear Realisability over Nets: Multiplicatives

Given an hypergraph H with E as its set of links, we denote s(H) (resp. t(H)) the set of
all positions which are source (resp. target) of at least one link:

s(H) =
⋃

e∈E

s(e), t(H) =
⋃

e∈E

t(e).

A conclusion/output (resp. a premise/input) of a directed hypergraph H is a position which
is the source (resp. target) of no link in H, i.e. an element of V \ s(H) (resp. of V \ t(H)).
The set of conclusions (resp. premises) of an hypergraph H is denoted out(H) (resp. in(H)).
A position p is isolated in an hypergraph H if p is both an output and an input of H, i.e.
p /∈ s(H) ∪ t(H). The size of a directed hypergraph is the number of its links. There is a
unique empty hypergraph H = (V, E, s, t, ℓ) with V = E = s = t = ∅.

An isomorphism of hypergraphs f : (V1, E1, s1, t1, ℓ1) → (V2, E2, s2, t2, ℓ2) is a pair of
functions (fV , fE) such that fV : V1 → V2 and fE : E1 → E2 are bijections, fE preserve labels
i.e. ℓ(fE(e)) = ℓ(e), and fE preserves the target and source of a link, i.e. s2(fE(e)) = f∗

V (s1(e))
and t2(fE(e)) = f∗

V (t1(e)), where f∗
V is the natural extension of fV to sequences of positions.

Along this work we work with hypergraphs up to isomorphism.

▶ Notation 2. We denote ⟨u ▷l v⟩ the hypergraph (V, E, s, t, ℓ) such that E = {e}, V =
s(e) ∪ t(e), s(e) = u, t(e) = v and ℓ(e) = l (an example of such a single–link hypergraph is
found in Figure 1a). In the sequel ⟨u ▷l v⟩ will denote both the described hypergraph and
its unique link.

▶ Notation 3. We write u · v the concatenation of sequences. Given u = (u1, . . . , un) a
sequence of elements of a set X and an integer i ∈ {1, . . . , n}, we denote by u<i (resp. u>i)
the sequence (u1, . . . , ui−1) (resp. (ui+1, . . . , un)). Moreover, given two – potentially empty –
sequences u and v we denote by u[i← v] the sequence u<i · v · u>i.

A link is initial (resp. final) when it has no input (resp. no output). A position is
initial (resp. final) when it is an output (resp. input) of an initial (resp. final) link. In an
hypergraph H, a link e is terminal when every target of e is a conclusion of H – thus a final
link is a terminal link.

▶ Example 4. For instance a link ⟨▷ℓ a, b, c⟩ is an initial link and the positions a, b and c

are initial, on the other hand a link ⟨a, b ▷ℓ c⟩ is not initial and neither are the positions a, b

or c.

Hypergraphs enjoy a natural notion of sum based on the disjoint union of the set of links.

▶ Notation 5. Given two sets X0 and X1 we denote X0 ⊎X1 the set X0 ∪X1 whenever X0
and X1 are disjoint. Given two functions f : X0 → E and g : X1 → E with disjoint domains
we denote f ⊎g the function which takes an element x of X0⊎X1, and returns f(x) if x ∈ X0
and g(x) if x ∈ X1.

▶ Definition 6. Given two hypergraphs H1 = (V1, E1, t1, s1, ℓ1) and H2 = (V2, E2, t2, s2, ℓ2)
such that E1 ∩ E2 = ∅. The sum of H1 and H2 is defined as:

H1 +H2 = (V1 ∪ V2, E1 ⊎ E2, t1 ⊎ t2, s1 ⊎ s2, ℓ1 ⊎ ℓ2).

▶ Remark 7. Whenever H1 = (V1, E1, t1, s1, ℓ1) and H2 = (V2, E2, t2, s2, ℓ2) are such that
E1 ∩ E2 ̸= ∅, we will abusively write their sum as H1 +H2 = (V1 ∪ V2, E1 ⊎ E2, t1 ⊎ t2, s1 ⊎
s2, ℓ1⊎ℓ2), since up to renaming the sets of links of two hypergraphs can always be considered
disjoint.

A. Ragot, T. Seiller, and L. Tortora de Falco 43:5

d

a b c

e

α

(a) The representation of
the single–link hypergraph
⟨a, b, c ▷α d, e⟩ (Notation 2).

d

a b

c

e

α

β

u

v

(b) The sum of two single link
hypergraphs ⟨a, b, c ▷α d, e⟩
and ⟨b, u ▷β v⟩ (Definition 6).

d

a b c

e

α β

u

v

b′

(c) The parallel sum of the
two single link hypergraphs
⟨a, b, c ▷α d, e⟩ and ⟨b, u ▷β v⟩
(Definition 11).

Figure 1 Hypergraphs can naturally be represented in a graphical way, we illustrate the notation
of a hypergraph containing a single link, the sum of hypergraphs and the parallel sum of hypergraphs.
In Figure 1c The position b is present in both hypergraphs therefore we rename it in one of the two
hypergraphs: thus ⟨a, b, c ▷α d, e⟩ ∥ ⟨b, u ▷β v⟩ equals ⟨a, b, c ▷α d, e⟩ ∥ ⟨b′, u ▷β v⟩ (that is, upto
isomorphism).

▶ Remark 8. Vertices may overlap in a sum (as we take the union of vertex sets rather than
the disjoint union). As a consequence, a position may be input (or output) of several distinct
links (Figure 1b). We can describe hypergraphs as sums of simple hypergraphs; namely those
that contain only one link. Indeed using Notation 2, an hypergraph consisting of two links
⟨a ▷ℓ b⟩ and ⟨c ▷ℓ′ d⟩ is in fact equal to the sum of the single-link hypergraphs ⟨a ▷ℓ b⟩ and
⟨c ▷ℓ′ d⟩. By induction on the number of links, this shows that any hypergraph H without
isolated positions can be written as H =

∑
e∈E⟨s(e) ▷ℓ(e) t(e)⟩.

▶ Example 9. In the hypergraph ⟨▷ℓ1 a, b, c⟩+ ⟨a ▷ℓ2 d⟩+ ⟨▷ℓ3 e⟩+ ⟨e ▷ℓ4⟩ the set of initial
positions is {a, b, c, e}, while e is the only final position of the hypergraph, and it belongs to
the domain of the unique final link ⟨e ▷ℓ4⟩.

▶ Remark 10. The sum of hypergraphs enjoys the properties of an abelian monoid; associ-
ativity, commutativity, and a neutral element which is the empty hypergraph.

We will also use extensively the notion of parallel composition or parallel sum of hyper-
graphs, an analogue of the union–graph of two simple graphs.

▶ Definition 11. Given H1 = (V1, E1, t1, s1, ℓ1) and H2 = (V2, E2, t2, s2, ℓ2) two hypergraphs
such that V1 ∩ V2 = E1 ∩ E2 = ∅, we define their parallel sum as: H1 ∥ H2 = (V1 ⊎ V2, E1 ⊎
E2, t1 ⊎ t2, s1 ⊎ s2, ℓ1 ⊎ ℓ2).

▶ Remark 12. The parallel sum of two hypergraphs H1 and H2 corresponds to a regular sum
whenever the sets of vertices are disjoint. Just like the sum, parallel composition can always
be performed between two hypergraphs (up to a renaming, see Figure 1c).

A hypergraph H = (V, E, t, s, ℓ) is: (1) target–surjective whenever t(H) = V , (2) source–
disjoint if the sets s(e) for e ∈ E are pairwise disjoint, (3) target–disjoint if the sets t(e) for
e ∈ E are pairwise disjoint (Figure 2). A module is an hypergraph which is target–disjoint
and source–disjoint, which means that for each position p there exists at most one link e

such that s(e) (resp. t(e)) contains p. Any single–link hypergraph is a module. Uncarefully
summing two modules does not necessarily result in a module; for instance the single link
hypergraphs e = ⟨▷ℓ a⟩ and e′ = ⟨▷ℓ′ a⟩ are both modules but their sum isn’t as a is the
target of the two links e and e′.

CSL 2025

43:6 Linear Realisability over Nets: Multiplicatives

d

a b

c

e

α

β

u

v

(a) The sum of two single link
hypergraphs ⟨a, b, c ▷α d, e⟩ +
⟨b, u ▷β v⟩. The hypergraph
is target–disjoint, but because
b belongs to the source of both
links it is not source–disjoint,
it is also not target surjective.

d

a b c

e

α

β

u

v

(b) The sum of two single
link hypergraphs ⟨a, b, c ▷α

d, e⟩+ ⟨e, u ▷β v⟩. The hyper-
graph is target–disjoint and
source–disjoint, however it is
not target surjective.

d

a b c

e

α

β

u

v

γ

δ

(c) The sum of four single link
hypergraphs ⟨a, b, c ▷α d, e⟩ +
⟨e, u ▷β v⟩ + ⟨▷γ a, b⟩ + ⟨▷δ

c, u⟩. The hypergraph is target–
disjoint, source–disjoint, and tar-
get surjective.

Figure 2 Properties of hypergraphs: source–disjoint, target–disjoint and target–surjective hyper-
graphs.

An arrangement of a directed hypergraph H is a total order <a on its set of conclusions;
equivalently the order may be identified as a bijection a : {1, . . . , card(out(H))} → out(H).
An ordered hypergraph is a pair (H, a) of an hypergraph H together with an arrangement a
of H. Given an ordered hypergraph (H, a) with n conclusions for an integer 1 ≤ i ≤ n, we
denote a(i) by H(i) whenever there is no ambiguity. The arrangement a is denoted a(H),
and we might refer to H as the unordered hypergraph underlying (H, a).

For n, m ∈ N we denote by [n; m] the set of integers i such that n ≤ i ≤ m. Given two
functions f : [1; n] → E and g : [1; m] → E we denote f ⊔+ g : [1; m + n] → E the function
such that f ⊔+ g(i) = f(i) when 1 ≤ i ≤ n and f ⊔+ g(i) = g(i− n) when n + 1 ≤ i ≤ n + m.
This operation is not commutative. The parallel sum of two ordered hypergraph (H1, a1) and
(H2, a2) naturally yields an ordered hypergraph as (H1 ∥ H2, a1 ⊔+ a2) (note that however
this is not a commutative operation).

1.2 Multiplicative nets
Up to this point we have allowed any kind of link to occur in a hypergraph. We now consider
untyped multiplicative nets in which only some specific kinds of links occur. We fix the set
of labels as the set made of the daimon (✠) the tensor (⊗) the par (`) and the cut (cut)
symbol. Furthermore we fix a family of links, namely ✠-labelled links that have no inputs
(they are initial links), cut-labelled links that have exactly two inputs and no outputs (they
are final links), ⊗- and `-labelled links that have exactly two inputs and one output. As a
consequence, the hypergraphs considered will closely resemble to multiplicative linear logic
proof structures, with two important points of divergence: the absence of typing and the
presence of generalised axioms, a standard MLL axiom link can be seen as daimon link with
two conclusions 3.

Formally we fix a countable set Pos of positions and a family of links L defined as:

L ≜ {⟨p1, p2 ▷⊗ p⟩, ⟨p1, p2 ▷` p⟩, ⟨p1, p2 ▷cut⟩ | p1, p2, p ∈ Pos} ∪ {⟨▷✠ p1, . . . , pn⟩ | n ∈ N, p1, . . . , pn ∈ Pos}.

3 To be precise one should say that an atomic standard MLL axiom link is a daimon link with two
conclusions (Remark 29).

A. Ragot, T. Seiller, and L. Tortora de Falco 43:7

qj

✠

qj−1· · ·q1 qj+1 · · · qk

cut

pi

✠

pi−1· · ·p1 pi+1 · · · pn

⟨▷✠ p⟩ + ⟨pi, qj ▷cut⟩ + ⟨▷✠ q⟩

→ · · · · · ·qj−1q1 qj+1 qkpi−1p1 pi+1 pn· · · · · ·

✠

⟨▷✠ p[i ← ϵ], q[j ← ϵ]⟩

p1 p2

p

`
q1 q2

q

⊗

cut

⟨p1,p2▷`p⟩+⟨p,q▷cut⟩+⟨q1,q2▷⊗q⟩

→
p1 q1

cut

p2 q2

cut

⟨p1,q1▷cut⟩+⟨q2,q2▷cut⟩

Figure 3 Rewriting defining the homogeneous cut elimination. We provide a representation of
each hypergraph involved above its expression. In the step of the glueing cut we assume the two
daimons to be distinct i.e. the cut is acyclic. In this figure p = p1, . . . , pn while q = q1, . . . , qk.

▶ Definition 13. A multiplicative module is an ordered hypergraph M = (|M | , a(M)) where
|M | is a sum of links of L which is a module.

A multiplicative net is a multiplicative module S = (|S| , a(S)) where |S| is target–
surjective.

From now on we will omit the word multiplicative but a module (resp. net) will always be
a multiplicative module (resp. net). For a module M (resp. a net S) we refer to |M | (resp.
|S|) as the unordered hypergraph underlying M (resp. S). An unordered module (resp. net)
is the unordered hypergraph underlying a module (resp. net).
▶ Remark 14. For two nets S1 = (V1, E1, s1, t1, ℓ1) and S2 = (V2, E2, s2, t2, ℓ2), if S1 + S2
remains a net then S1 + S2 = S1 ∥ S2. Indeed, by Definition 6, E1 ∩ E2 = ∅. Then, by
target–disjointness t(S1) ∩ t(S2) = ∅; and finally because S1 and S2 are target surjective we
have V1 ∩ V2 = t(S1) ∩ t(S2) = ∅, so that Definition 11 applies.
▶ Notation 15. Given an integer n we denote by ✠n any multiplicative net consisting of a
single daimon link with n outputs, i.e. isomorphic to ⟨▷✠ p1, . . . , pn⟩.

▶ Definition 16. Given a multiplicative net S the type of a cut link c = ⟨p, q ▷cut⟩ occurring
in S is the multiset of the two labels of the links of output p and q; for readability we write
these multisets as ordered pairs. Thus there are six types of cuts (up to symmetry). More
precisely, we distinguish: multiplicative cuts, of type (⊗/`); clash cuts, of type (⊗/⊗) or
(`/`); glueing cuts, of type (✠/✠); non–homogeneous cuts, of type (⊗/✠) or (`/✠), which
are respectively called reversible and irreversible cuts. In a net S, a cut ⟨p, q ▷cut⟩ is cyclic
whenever p and q are targets of the same link.

▶ Remark 17. Each cut link occurring in a net S has a type since a net is target–surjective.
However in a module this isn’t true: for instance in the module ⟨p, q ▷cut⟩ consisting of a
single cut link, the type of the cut link is not defined.
▶ Remark 18. The inputs of a cut link ⟨p, q ▷cut⟩ are ordered, making the two links ⟨p, q ▷cut⟩
and ⟨q, p ▷cut⟩ distinct. However (up to isomorphism) this plays no role during cut elimination.

Multicative nets comes with their notion of computation called cut elimination: it is a
rewriting on nets and more precisely it rewrites a redex (that is a sub–net made of a single
cut link and two non–cut links) into redexes or daimons (in the very specific case of glueing
cuts). Up to isomorphism, how a redex is rewritten depends solely on its type (Definition 16).

▶ Definition 19. The relation of homogeneous cut elimination on unordered nets is denoted
by →h and it is the rewriting relation defined as the contextual closure (with respect to the
sum) of the relation defined in Figure 3.

CSL 2025

43:8 Linear Realisability over Nets: Multiplicatives

q1 q2

q

`

pan· · ·a1 bm· · ·b1

✠

cut

⟨q1, q2 ▷` q⟩ + ⟨q, p ▷cut⟩ + ⟨▷✠ a, p, b⟩

→
q1 p1

✠

aσ(k)· · ·aσ(1)q2

✠

aσ′(k′)· · ·aσ′(1)bτ(h)· · ·bτ(1) b′
τ ′(h′)· · ·b′

τ ′(1)p2

cut

cut

⟨q1, p1 ▷cut⟩ + ⟨q2, p2 ▷cut⟩ + ⟨▷✠ σ(a), p1, τ(b)⟩ + ⟨▷✠ σ′(a), p2, τ′(b)⟩

p1 p2

p

⊗

qqi· · ·q1 qn· · ·qi+1

✠

cut

⟨p1, p2 ▷⊗ p⟩ + ⟨p, q ▷cut⟩ + ⟨▷✠ q<i, q, q>i⟩

→
p1 p2 q1qi· · ·q1 qn· · ·qi+1

✠

cut

cut

q2

⟨p1, q1 ▷cut⟩ + ⟨p2, q2 ▷cut⟩ + ⟨▷✠ q<i, q1, q2, q>i⟩

Figure 4 Rules defining the non–homogeneous cut elimination. In the elimination of the (`/✠)
cut - first row - a = (a1, . . . , an) and b = (b1, . . . , bm) while σ(a) = (aσ(1), . . . , aσ(k)) , σ′(a) =
(aσ′(1), . . . , aσ′(k′)) , τ(b) = (bτ(1), . . . , bτ(h)) , τ ′(b) = (bτ ′(1), . . . , bτ ′(h′)) (with n = k + k′ and m =
h + h′) are sequences that define a partition of {a1, . . . , an, b1, . . . , bn} more precisely {a1, . . . , an} =
{aσ(1), . . . , aσ(k), aσ′(1), . . . , aσ′(k′)} and {b1, . . . , bn} = {bτ(1), . . . , bτ(h), bτ ′(1), . . . , bτ ′(h′)}, and
σ, σ′, τ, τ ′ are permutations. Furthermore p1, p2, q1, q2 are fresh positions. The figure is slightly
misleading: q1 and q2 may be elements of a or b (in the first row) while p1 and p2 may be elements
of q1, . . . , qi−1, qi+1, . . . , qn (in the second row), these cases are illustrated in Figure 13. This has an
important consequence: a cut can belong to a cycle and still be reducible (Remark 28).

▶ Remark 20. The (homogeneous) cut elimination procedure on unordered nets leave the
conclusions unchanged. As a consequence the homogeneous cut elimination can be lifted
from unordered nets to nets: whenever two unordered nets are such that S → S′, for any
arrangement a of S we have (S, a)→ (S′, a).

The following result is easily established, in particular since the number of links strictly
decreases during homogeneous cut elimination.

▶ Proposition 21. Homogeneous cut elimination is confluent and strongly normalizing.

▶ Definition 22. The non homogeneous reduction is denoted →nh and it is defined on
unordered nets as the contextual closure of the relation given in Figure 4.

▶ Remark 23. The non–homogeneous reduction preserves the conclusion of the nets, hence it
can be lifted to ordered nets – as in remark 20.

▶ Remark 24. In the framework of Multiplicative Linear Logic (Section 2, Figure 6c), non
homogeneous cut elimination simulates proof search in the sequent calculus:

✠
Γ, A ` B

✠
A⊥, A

✠
B⊥, B

⊗
A⊥ ⊗B⊥, A, B

`
A⊥ ⊗B⊥, A ` B

cut
Γ, A ` B

→∗ ✠
Γ, A, B

`
Γ, A ` B

✠
Γ, A⊗B

✠
A⊥, A

✠
B⊥, B

⊗
A⊥, B⊥, A⊗B

`
A⊥ ` B⊥, A⊗B

cut
Γ, A⊗B

→∗ ✠
Γ1, A

✠
Γ2, B

⊗
Γ, A⊗B

This also illustrates the non determinism of the (✠/`) reduction step which corresponds to
proof search on a formula of the form A⊗B: going from bottom to top the ⊗–introduction
rule splits the context Γ, which is a non deterministic process. A consequence of non
determinism is the loss of confluence for cut elimination (but not of strong normalisation,
Proposition 30); since splitting the context is irreversible, a net can have different normal
forms, like the second net of figure 5b (from left to right) which coincides with the second net
of figure 5c: this same net reduces, following the two figures, to two different normal forms.

A. Ragot, T. Seiller, and L. Tortora de Falco 43:9

▶ Remark 25. A cyclic cut is a glueing cut. Indeed, given a cyclic cut link ⟨p, q ▷cut⟩ in a
net, because p and q belong to the target of a same link e and the only links which may have
several targets are daimon links it follows that e is a daimon link.

▶ Remark 26. The side condition of Figure 3 entails that a cyclic cut is not reducible: for
example the net ⟨▷✠ p, q⟩+ ⟨p, q ▷cut⟩ is a net in normal form.

▶ Remark 27. A cut link which is not reducible is either a clashing cut or a cyclic glueing
cut. Notice, however, that while clashing cuts never disappear during cut elimination, cyclic
cuts may disappear (see Figure 10b).

▶ Remark 28. In the standard framework of MLL proof structures the cut elimination of an
axiom against a cut is defined as the identification of the two extreme positions, therefore
eliminating such a cut may create loops (Section 1). To avoid loops from occurring during cut
elimination an ad hoc condition is usually added (see for example [13]). In our framework,
this condition is the rather natural side condition of Figure 3.

✠

p1 p2 ⊗ `

cut cut

q r

q1 q2 r1 r2

✠

✠ ✠

→

✠

p1 p1
2

⊗

cut
cut

q

q1 q2

r1 r2

✠

p2
2

cut

✠ ✠

✠

→

✠

p1 ⊗

cut

q

q1 q2

r2

✠

p2
2

cut

✠

✠

→

✠

p1

⊗

cut

q

q1 q2

✠

✠

→

✠

p1
1

cut

q1 q2

✠ ✠

p2
1

cut

→

✠

p1
1

cut

q1

✠

(a) Eliminating first the irreversible cut (✠/`) produces a neta which cannot normalize in ✠0.
a The (✠/`) reduction step is not deterministic but in this very special case any choice yields the same

net.

✠

p1 p2 ⊗ `

cut cut

q r

q1 q2 r1 r2

✠

✠ ✠

→∗

✠

p2

cut

r

q2 p2
1

cut

`
r1 r2

✠ ✠

→

✠

p1
2

cut

q2 r1 r2

✠

p2
1

cut

p2
2

cut

✠

✠

→∗ ✠

(b) Eliminating the reversible cut (✠/⊗) produces a cycle which can be eliminated by the elimination of
the (✠/`) cut remaining, hence that net can normalize in ✠0.

✠

p1
1 p2 `

cut
cut

r

q1 q2

r1 r2

✠

✠

p2
1

cut

✠

→

✠

p2

cut

r

q2 p2
1

cut

`
r1 r2

✠ ✠

→

✠

p1
2

cut

q2 r1 r2

✠

p2
1

cut

p2
2

cut

✠

✠

→

q2 r2

✠

p2
1

cut

p2
2

cut

✠

✠

→
q2

✠

p2
1

cut

✠

(c) Non determinism also comes from the choice of how we reduce (`/✠) cuts, different choices leading to
different normal forms: the “wrong” choice results in a net which cannot normalize to ✠0.

Figure 5 Non homogeneous cut eliminations contains two sources of non–determinism.

▶ Remark 29. Notice that whenever daimons are binary and typed by dual atomic formulas
the cut elimination procedure for MLL✠ defined in Definition 19 is exactly the standard cut
elimination procedure for MLL [7], [13].

CSL 2025

43:10 Linear Realisability over Nets: Multiplicatives

The rewriting rule, denoted →, associated with cut elimination is the union of the
homogeneous and non–homogeneous cut elimination i.e. →h ∪ →nh. We write S

c−→S′, when
S′ is obtained from S by eliminating the cut c. We write by S →mult S′ (resp. S →¬mult S′)
whenever S

c−→S′ and c is multiplicative (resp. not multiplicative). Given two binary relations
R1 and R2 on a set X we denote by R1 ·R2 their composition, i.e. for two x, y ∈ X xR1 ·R2y

if and only if there exists z such that xR1z and zR2y.

▶ Proposition 30. Cut elimination is strongly normalising, furthermore:
1. →∗ can be factorised as →∗

mult · →∗
¬mult.

2. If c is a (`/✠) cut in S; if S
c−→· →∗ S′ then S →∗ · c−→S′.

3. If c is not a (`/✠) cut in S; if S →∗ · c−→S′ then S
c−→· →∗ S′.

A, B ≜ X ∈ Var
| A ` B | A ⊗ B

H1, H2 ≜ A ∈ Form
| H1, H2 | H1 ∥ H2

(a) Grammar defining Form
(first two rows), and grammar
defining Hseq (last two rows).

(A ` B)⊥ = A⊥ ⊗B⊥ (A⊗B)⊥ = A⊥ ` B⊥

(b) De Morgan laws lifting the involution (·)⊥ from Var to Form.

✠
Γ

Γ, A, B
`

Γ, A ` B

Γ, A ∆, B
⊗

Γ, ∆, A⊗B

Γ, A ∆, A⊥
cut

Γ, ∆
Γ, A, B, ∆

ex
Γ, B, A, ∆

ax
A, A⊥

(c) Rules used for constructing the proof trees. The rules
(✠,`, ⊗, cut, ex) define the MLL✠ fragment. Substituting the (✠)–
daimon rule with the (ax)–axiom rule results in the fragment MLL,
that is (ax,`, ⊗, cut, ex).

Figure 6 Grammar of formulas and (hyper)sequent, de Morgan laws and inference rules.

⟨c ▷ℓ a, p1, b⟩ + ⟨p1, p2 ▷` p⟩ →l` ⟨c ▷ℓ a, p, b⟩ ⟨c ▷ℓ a, p2, b⟩ + ⟨p1, p2 ▷` p⟩ →r` ⟨c ▷ℓ a, p, b⟩

Figure 7 The two cases (left and right) defining the switching rewriting. The left reduction →l`
destroys p1 and makes p2 a conclusion; while the right reduction →r` destroys p2 and makes p1 a
conclusion.

✠
Γ

π1

A, Γ
π2

A⊥, ∆
cut

Γ, ∆

π1

A, Γ
π2

B, ∆
⊗

Γ, ∆, A ⊗ B

π0

A, B, Γ
`

A ` B, Γ

π0

Γ, B, A, ∆
ex

Γ, A, B, ∆
⟨▷✠ p1, . . . , pn⟩ S1 + S2+ S1 + S2+ S0+ (S0, a)

⟨S1(1), S2(1) ▷cut⟩ ⟨S1(1), S2(1) ▷⊗ p⟩ ⟨S0(1), S0(2) ▷` p⟩

Figure 8 Induction defining the relation ≡R. The proof in the first row is represented by a
net below it in the second row. The position p is always supposed fresh. In each case and for
each 0 ≤ i ≤ 2, Si is a net which represent πi i.e. Si ≡R πi. In the case of the exchange rule
we explicitly mention the arrangement i.e. the order of the conclusion and assume (S0, a′) ≡R π0

and a(i) = a′(i) whenever i ≤ |Γ| or |Γ| + 2 < i. On the other hand, a′(|Γ| + 1) = a(|Γ| + 2) and
a′(|Γ| + 2) = a(|Γ| + 1).

2 Multiplicative Linear Logic and proof nets

We define the well–known notion of proof net [7] in our setting: in the presence of the
generalised axiom (✠), proof nets are similar to the paraproof nets of Curien [4] (which
come from Girard Ludics [10]). We then formulate the Danos–Regnier criterion [5]: testing
the acyclicity and connectedness of (several) graphs allows to determine whether a net is a
(para)proof net or not [4].

A. Ragot, T. Seiller, and L. Tortora de Falco 43:11

We fix a countable set Var of propositional variables. The set Var comes with an (explicit)
involution (·)⊥; for each atomic variable X there exists its dual atomic variable X⊥ in
Var. The set Form of formulas of multiplicative linear logic is defined by the grammar in
Figure 6a. The involution (·)⊥ is lifted from Var to Form as in Figure 6b. The set Hseq of
hypersequents is defined by the grammar in Figure 6a, a sequent is an hypersequent without
the parallel “∥” constructor. The introduction of hypersequents is naturally suggested by the
constructions on types (Section 3): indeed as the interpretation of the `–connective is based
on the interpretation of the “,”–connective, the interpretation of the ⊗–connective relies on
that of the “∥”–connective (Definition 49 and Definition 58). Technically hypersequents are
necessary in our proof of the completeness theorem (Theorem 88).

A proof of MLL (resp. MLL✠) is a tree constructed using the rules (ax,`,⊗, cut, ex) (resp.
(✠,`,⊗, cut, ex)) of Figure 6c.

▶ Definition 31. A net S represents4 a proof π of MLL✠, denoted π ≡R S or S ≡R π,
whenever the relation defined in Figure 8 holds. A net represents a proof of MLL whenever it
represents a proof of MLL✠ where every sequent conclusion of a (✠)–rule has shape A, A⊥

for A ∈ Form. A representation of a proof π is a net S which represents π. A proof net of
MLL✠ (resp. MLL) is a net which represents a proof of MLL✠ (resp. MLL): we say that S is
correct. A net S is correctly typeable5 by a sequent Γ whenever it represents a proof of Γ in
MLL✠.

▶ Notation 32. Let P denote MLL or MLL✠ and let S be a net. We write S ⊢P Γ whenever
there exists a proof π in P such that S is the representation of π. Furthermore we denote
⦃Γ : P⦄ the set of all the nets S such that S ⊢P Γ.

A substitution is a map θ : Var→ Form such that θ(X⊥) = θ(X)⊥ for each X ∈ Var. A
substitution can be lifted to formulas and hypersequents by induction: θ(A⊗B) = θ(A)⊗θ(B)
; θ(A ` B) = θ(A) ` θ(B) ; θ(A ∥ B) = θ(A) ∥ θ(B) ; θ(A, B) = θ(A), θ(B). Given two
hypersequents, we denote ∆ ≤ Γ whenever there exists a substitution θ such that θ∆ = Γ.

▶ Proposition 33. Let Γ and ∆ be two sequents and suppose ∆ ≤ Γ. For any net S: (1) if
S ⊢MLL✠ ∆ then S ⊢MLL✠ Γ and (2) if S ⊢MLL ∆ then S ⊢MLL Γ.

▶ Definition 34. The switching rewriting is defined on unordered nets as the contextual
closure of the rules in Figure 7. A switching of a net S is a normal form of S for the
switching rewriting: we often denote it σS.

▶ Remark 35. The switching rewriting strongly normalizes since every step reduces the
number of links of the net. The rewriting is also non-deterministic and non-confluent, every
normal form is a par–free net. The switching rewriting can be lifted to (ordered) nets; with
the notations of Figure 7 whenever an unordered net |S| with n conclusions is such that
|S| →l` |S′| we define (|S| , a) →l` (|S′| , a′) where a′(i) = a(i) for each 1 ≤ i ≤ n and
a′(n + 1) = p2 i.e. the new conclusion is made last conclusion (similarly we can define it for
the case →r`).

4 In the standard Linear Logic terminology π is a sequentialisation of the proof net S.
5 Notice that with the expressions “correctly typeable” we mean here that the net is both correct (it

represents a proof) and that we can label its conclusions with the formulas of Γ.

CSL 2025

43:12 Linear Realisability over Nets: Multiplicatives

▶ Definition 36. The undirected multigraph6 induced by two partitions P and Q of a set X is
(V, E, brd) denoted G(P, Q) where: (1) V = {1}×P ∪{2}×Q the vertices are the classes of P

and Q (as a disjoint union); (2) E = X; (3) For any edge x in X; brd(x) = {(1, Px), (2, Qx)}
where Px ∈ P is such that x ∈ Px and Qx ∈ Q is such x ∈ Qx.

Two partitions P and Q of a set X are orthogonal if the multigraph G(P, Q) is acyclic
and connected.

▶ Definition 37. In a net S denote p ≥S q the relation which holds whenever there exists
a link e such that p ∈ s(e) and q ∈ t(e). Denote ≥∗

S its reflexive and transitive closure; a
position p is above a position q whenever p ≥∗

S q. Given a position q we denote q ↑i S the
set of initial positions which are above q in S.

▶ Remark 38. Given a cut–free net S with conclusions p1, . . . , pn the sets p1 ↑i S, . . . , pn ↑i S

form a partition of the initial positions of S. We denote this partition ↑i S.
▶ Notation 39. Let S be a net and let {d1, . . . , dn} be the set of daimon links of S. The
partition {t(d1), . . . , t(dn)} on the set of initial positions of S is denoted by P✠(S).

Reformulated in the context of hypergraphs we get the following theorem from [5].

▶ Theorem 40 ([4, 5]). Given a cut–free net S, the following assertions are equivalent:
1. S is a proof net of MLL✠;
2. For every switching σS of S, the partitions P✠(S) and ↑i σS of the set of initial positions

of S are orthogonal;
3. Every switching σS of S is acyclic and connected7.

3 Interaction of nets, orthogonality, and types

We define how nets can interact and if the interaction of two nets leads to the ✠-link with
no outputs (✠0) we say they are orthogonal. This recalls classical realisability proposed by
J.-L. Krivine [12], where (the closure by antireduction of) the set {✠0} will play the role of
the pole. Notice, however, that our setting is fully symmetrical: both the elements of truth
values and falsity values are nets.

The notion of ordered hypergraph and arrangement introduced in Section 1 will now
explicitly come into play as it is necessary for defining the interactions of nets (see Figure 9a).
We will denote by #S the number of outputs of a net S. Given a partial function f : N→ E

with a finite domain of cardinality n and ordered as i1 < i2 < · · · < in, the collapse of f ,
denoted f↓, is the total function with domain [1; n] such that f↓(m) = f(im) for any integer
1 ≤ m ≤ n.

▶ Definition 41. Let S = (|S| , a(S)) and T = (|T | , a(T)) be two nets and k = min(#S, #T),
we define their interaction S :: T = (|S :: T | , a(S :: T)) as:

|S :: T | ≜ |S|+ |T |+
∑

1≤i≤min(#S,#T)⟨S(i), T (i) ▷cut⟩ a(S :: T) ≜

∅ when #S = #T

a(S) ↾[k+1;#S] ↓ when #S > #T

a(T) ↾[k+1;#T] ↓ when #S < #T

6 Recall that a multigraph is a graph where two vertices may be connected by several edges (not to
be confused with the notion of hypergraph of Definition 1). The function brd maps each edge to its
endpoints.

7 We refer to the graph naturally induced by the net σS.

A. Ragot, T. Seiller, and L. Tortora de Falco 43:13

` ⊗

✠

a b c p q

✠

d r

cut

(a) Representation of the in-
teraction S :: T of two nets
S = ⟨▷✠ a, b, c⟩ + ⟨a, b ▷` d⟩
and T = ⟨▷✠ p, q⟩+⟨p, q ▷⊗ r⟩.

⊗

✠ ✠

p1 p2

p

cut

q

✠

→

✠ ✠

p1 p2q1 q2

✠

cut cut
→

✠

p2q2

✠

cut → ✠

(b) The cut elimination procedure applied to S′ :: T ′ leads to ✠0,
showing that S′ ⊥ T ′. In this figure S′ = ⟨▷✠ q⟩ and T ′ = ⟨▷✠

p1⟩ + ⟨▷✠ p2⟩ + ⟨p1, p2 ▷⊗ p⟩.

Figure 9 The interaction of two nets (Definition 41) and two orthogonal nets (Definition 42).

▶ Definition 42. Two nets S1 and S2 are orthogonal if S1 :: S2 →∗ ✠0
8: when this holds

we write S1 ⊥ S2. For a net S and a set of nets Λ, if for every λ ∈ Λ we have S ⊥ λ we
write S ⊥ Λ.

▶ Remark 43. Since cut links are asymmetric, namely ⟨p, q ▷cut⟩ and ⟨q, p ▷cut⟩ are distinct
nets, the interactions S :: T and T :: S are not the same net. However, this has no consequence
on cut elimination because the reduction steps do not depend on the order of the inputs of a
cut link. Thus S :: T reduces to ✠0 if and only if T :: S does, and as expected the relation of
orthogonality is symmetric.

▶ Definition 44. Given a set A of multiplicative nets, we define the orthogonal of A as
A⊥ = {P | ∀R ∈ A, P ⊥ R}. A type A is a set of multiplicative nets such that A⊥⊥ = A.9

▶ Remark 45. Since cut elimination preserves the conclusions of a net and ✠0 has no output,
two orthogonal nets have the same number of conclusions. Thus, for every type A, for every
R ∈ A and for every S ∈ A⊥, the nets R and S have the same number of conclusions: we
denote by #A the number of conclusions of the nets in A. Obviously #A = #A⊥.

▶ Remark 46. Clash cuts are preserved during cut elimination, thus a net containing such a
cut cannot reduce to ✠0. Hence, there cannot be two nets S and S′ respectively in A and
A⊥ such that their ith conclusions S(i) and S′(i) are both outputs of a `–link (or ⊗–link):
their interaction S :: S′ contains a clash cut and thus the nets cannot be orthogonal.

▶ Remark 47. A net S which is orthogonal to the daimon link with a single output (i.e. ✠1)
has a single conclusion which can be the output of a daimon link, a tensor link or a par
link. For instance the three cut–free nets ⟨▷✠ p⟩, ⟨▷✠ p1⟩ + ⟨▷✠ p2⟩ + ⟨p1, p2 ▷⊗ p⟩ and
⟨▷✠ p1, p2⟩+ ⟨p1, p2 ▷` p⟩ are all orthogonal to ✠1 (one case is proved in Figure 9b).

The following proposition is a key step for proving propositions 51 and 54.

▶ Proposition 48. Given three net S and T and R such that #S ≥ #T +#R: the interaction
S :: (T ∥ R) is equal to (S :: T) :: R.

In the following definition 49 the side condition #S ≥ #A ensures that whenever a net S

in A � B interacts with a net of T ∈ A⊥ the remaining conclusions of S :: T are conclusions
of S, this will allow to activate Proposition 48.

8 Note that we require the existence of such a reduction, not all reductions need to behave this way.
9 Equivalently, a type is a set A such that A = B⊥ for some set B, see, for instance, [11].

CSL 2025

43:14 Linear Realisability over Nets: Multiplicatives

▶ Definition 49. Given two sets of nets A and B their functional composition denoted
A � B, and their parallel composition denoted A ∥ B are defined as follows:

A � B ≜ {S | for any T ∈ A⊥, S :: T ∈ B and #S ≥ #A} A ∥ B ≜ {S ∥ T | S ∈ A, T ∈ B}⊥⊥

▶ Remark 50 (Density of the parallel composition). For any two types A and B we have
(A ∥− B)⊥ = (A ∥ B)⊥, where A ∥− B = {S ∥ T | S ∈ A, T ∈ B}.

▶ Proposition 51 (Duality). Given two types A and B: (A ∥ B)⊥ = A⊥ � B⊥ and
(A � B)⊥ = A⊥ ∥ B⊥.

▶ Remark 52. The duality of the constructions (Proposition 51) ensures that the set of types
is closed under the ∥ and � operations. Moreover, the intersection of two types is still a type.
This is not the case for the union which needs to be closed under bi–orthogonal.

▶ Remark 53. For two types A and B the unordered nets of A ∥ B and of B ∥ A are the
same, so as the unordered nets of A � B and B � A.

▶ Proposition 54. Given A, B and C three types; (A � B) � C = A � (B � C) and
(A ∥ B) ∥ C = A ∥ (B ∥ C).

▶ Definition 55. Given A and B two types with one conclusion, we define their tensor
product (denoted ⊗) and their compositional product (denoted `):

A⊗B ≜ {S + ⟨S(1), S(2) ▷⊗ p⟩ | S ∈ A ∥ B}⊥⊥ A ` B ≜ {S + ⟨S(1), S(2) ▷` p⟩ | S ∈ A � B}⊥⊥

where p denotes a fresh position.

▶ Proposition 56 (Duality). Given A and B two types with one conclusion, (A⊗B)⊥ =
A⊥ ` B⊥ and (A ` B)⊥ = A⊥ ⊗B⊥.

4 Realisability Model: Adequacy

We introduce our realisability model on untyped nets and prove it is adequate. We identify a
sufficient property of interpretation bases to prove adequacy (Theorem 64): for any basis
B satisfying the property, a net S representing an MLL✠ proof of a sequent Γ is a realiser
of Γ i.e. it belongs to JΓKB. This adequacy result immediately applies to MLL, since a net
representing a proof of MLL represents, in particular, a proof of MLL✠.

We start by giving an interpretation of formulas and hypersequents of multiplicative
linear logic. We provide an interpretation of hypersequents instead of sequents as it turns
out that handling hypersequents is more convenient and proving a result on hypersequents
proves it on sequents too. However, do keep in mind that the proof trees we defined using
Figure 6c are constructed with sequents.

▶ Definition 57. An interpretation basis B is a function that associates with each atomic
proposition X a type JXKB, the interpretation of X, such that:

Each net in JXKB has one conclusion.
For any atomic proposition X, we have JX⊥KB ⊆ JXK⊥

B .

A. Ragot, T. Seiller, and L. Tortora de Falco 43:15

a b c

d

⊗

✠

cut

✠

→

a1 b c

✠

cut

✠

a2

cut
→

a1 b

✠

cut

(a) The elimination of a (✠/⊗) cut preserves cycles in a net.

a b c

d

`

✠

cut

✠

→

a1 b c

✠

cut

✠

a2

cut

✠

→

c

✠ ✠

a2

cut → ✠0

(b) The elimination of a (✠/`) cut may break a cycle in a net.

a b c

d

`

✠

cut

✠

→

a1 b c

✠

cut

✠

a2

cut

✠

→

a1 b

✠

cut

✠

(c) The elimination of a (✠/`) cut can preserve cycles.

Figure 10 The evolution of (switching) cycles and (switching) disconnections during non homo-
geneous cut elimination.

▶ Definition 58. Given an interpretation basis B, the interpretation of MLL formulas and
of hypersequents of MLL is defined by induction:

JA ⊗ BKB ≜ JAKB ⊗ JBKB.
JA ` BKB ≜ JAKB ` JBKB.

JH1, H2KB ≜ JH1KB � JH2KB.
JH1 ∥ H2KB ≜ JH1KB ∥ JH2KB.

▶ Remark 59. Using duality of types (Proposition 56) and the properties of orthogonality
one proves that for an interpretation basis B and an MLL formula A we have JA⊥KB ⊆ JAK⊥

B .

▶ Definition 60. A multiplicative net realises – with respect to an interpretation basis B –
an hypersequent H of MLL formulas whenever it belongs to JHKB.

▶ Notation 61. For a hypersequent H, we will often write S ⊩B H instead of S ∈ JHKB, and
sometimes S ⊩ H or S ∈ JHK when there is no ambiguity on the basis B.

From the point of view of cut elimination, a daimon link with n outputs may be thought
as the approximation of a proof net with n outputs. More precisely, by iterating the process
we have seen in Remark 24, every cut–free proof π of a formula C can be obtained by
applying the cut elimination procedure to the daimon link ✠1 (of conclusion C) cut against
the appropriate identities of C, C⊥ (this generalises to a sequent Γ and ✠n). Furthermore
daimon links and proof nets (with the same number of conclusions) are interchangeable
with respect to geometrical correctness (Table 1): in a correct (resp. incorrect) net S,
substituting a daimon link with n outputs by a proof net with n outputs produces a correct
(resp. incorrect) net. However, proof nets and daimons (with the same number of conclusions)
differ on realisability: for instance a proof net ending with a tensor link can never realise a
formula of the form A ` B whereas a daimon link can (Theorem 64). We will thus say that
a daimon link “approximates” a sequent: this suggests Definition 62.

CSL 2025

43:16 Linear Realisability over Nets: Multiplicatives

▶ Definition 62. A type A is approximable if and only if ✠1 ∈ A. A basis B is approximable
if for each X ∈ Var, the type JXKB is approximable.

▶ Remark 63. Because inclusion is preserved by bi–orthogonal closure, a type A is approxim-
able if and only if {✠1}

⊥⊥ ⊆ A which is equivalent to the inclusion A⊥ ⊆ {✠1}⊥.

▶ Theorem 64 (Adequacy). Let B be an approximable basis. For any net S and sequent Γ
S ⊢MLL✠ Γ⇒ S ⊩B Γ.

Proof. The technique is standard in the works on realisability (see [12] or [14]): one proceeds
by induction on the size of a proof π represented by S. For the base case one must show that
✠n realises any sequent Γ with n formulas. To do so one first checks that, for any formula A,
JAKB is approximable (✠1 ∈ JAKB). ◀

▶ Remark 65. An approximable basis yields adequacy, in particular, for MLL. Notice, however,
that there exist bases yielding an interpretation that is adequate for MLL but not for MLL✠.

5 Testability and tests

The partitions involved in the Danos Regnier criterion (Theorem 76) and their orthogonality
with the daimons of a net can be translated as tests; so that for a formula A, a net S testable
by A (definition 66 below) and orthogonal to tests(A) is a correct net (Theorem 76). We
will show that these tests are proofs of MLL✠ (Theorem 77). This means that for realisers
in an approximable basis, testability (Definition 66) and correct typeability (Definition 31)
coincide: this is Proposition 82.

▶ Definition 66 ((Atomic) testable cut–free nets). A formula labelling of a cut–free net S is
a function τ : VS → Form such that:

(Par) When ⟨p1, p2 ▷` p⟩ occurs in S: if τ(p1) = A and τ(p2) = B then τ(p) = A ` B.
(Tens) When ⟨p1, p2 ▷⊗ p⟩ occurs in S: if τ(p1) = A and τ(p2) = B then τ(p) = A⊗B.

A formula labelling of a cut–free net S is atomic when for each daimon link ⟨▷✠ p1, . . . , pn⟩
in S the formula τ(pi) is a propositional variable.

A cut–free net S with n conclusions is testable (resp. atomic testable) by a sequent
Γ = A1, . . . , An, which we denote S |≃ Γ (resp. S |≃at Γ), if there exists a formula (resp. an
atomic formula) labelling τ of S such that τ(S(i)) = Ai for each 1 ≤ i ≤ n.

▶ Remark 67. S |≃ Γ iff S |≃at ∆ and Γ = θ∆ for some substitution θ and sequent ∆.

▶ Remark 68. S |≃at Γ iff S without its ✠–links is the syntactic forest of (the formulas of) Γ.

▶ Remark 69. A cut–free proof net S ⊢✠MLL Γ is in particular testable by that sequent i.e.
S |≃ Γ. However, a net S |≃ Γ which is testable by Γ may not be a proof net because it could
contain cycles or disconnections: the testability condition only provides information on the
multiplicative links constituting the net S. When is S atomic testable by A, orthogonality
with the tests of A coincides with correctness (Proposition 75).

▶ Remark 70. Let S |≃at
A1, . . . , An be a cut–free net. For any nets T1, . . . , Tn cut–free

and atomically testable respectively by A1
⊥, . . . , An

⊥ denoting S0 the normal form of
S :: T1 ∥ · · · ∥ Tn, S0 is obtained by homogeneous cut–elimination, and we have (1) S0 equals
✠0 (2) S0 is equal to the sum of k ≥ 2 daimon without conclusions (S0 =

∑
1≤i≤k ✠0) or (3)

S0 contains a cyclic cut (S0 = R + ⟨▷✠ q⃗, a, r⃗, b, p⃗⟩+ ⟨a, b ▷cut⟩).

A. Ragot, T. Seiller, and L. Tortora de Falco 43:17

▶ Remark 71. Given a net S = (|S| , a(S)) we denote S✠ = (
∣∣S✠

∣∣ , a(S✠)) the net such that∣∣S✠
∣∣ is the hypergraph consisting of the daimon links occurring in S. The arrangement

a(S✠) is induced by a(S) because above every conclusion of S there is binary tree: each
initial position p can be associated with a sequence ξ = adr(p) of {l,r}∗ and an integer
i = root(p) so that going up from S(i) following the left/right instruction of ξ one reaches
the initial position p. The initial positions of S are then ordered by the lexicographical order
of (root(p), adr(p)) fixing l ≤ r.
▶ Notation 72. Given a net S with n initial positions, and P = {C1, . . . , Ck} a partition of the
initial positions of S we denote by NatS(P) the partition {a(S✠)−1(C1), . . . , a(S✠)−1(Ck)}
of {1, . . . , n}. We might abusively write Nat(P) for NatS(P).

▶ Proposition 73. Let A be a formula, given two cut free nets S |≃at
A and T |≃at

A⊥ the
assertions are equivalent:
1. The nets S and T are orthogonal.
2. The nets S✠ and T✠ are orthogonal.
3. The partition NatS(P✠(S)) and NatT (P✠(T)) are orthogonal.

▶ Definition 74. A cut-free net T is a test of a formula A if T |≃at
A⊥ and there exists a net

S |≃at
A and a switching σS such that NatT (P✠(T)) = NatS(↑i σS). We denote by tests(A)

the set {S | S is a test of A}.

▶ Proposition 75. For S cut–free, S |≃at
A, we have: S ⊢MLL✠ A⇔ S ⊥ tests(A).

A net S with n conclusion can always be transformed in a net with 1 conclusion by
putting a bunch of par–links below its conclusions; this allows to generalise the previous
proposition.

▶ Theorem 76 (Danos–Regnier Tests). Given a cut–free net S |≃at
A1, . . . , An; S ⊢MLL✠

A1, . . . , An if and only if S is orthogonal to tests(A1) ∥ · · · ∥ tests(An).

▶ Theorem 77. Any test T of a formula A is correctly typeable by A⊥, T ⊢MLL✠ A⊥.

Proof. Consider a test T of A then by Theorem 76 any net S ⊢MLL✠ A is orthogonal to T .
By the counter–proof criterion [4] a net N |≃at

A⊥ orthogonal to each proof of A is a proof;
therefore it follows that T is a proof of A⊥. ◀

▶ Remark 78. Theorem 76 is a refinement of the counter–proof criterion of P.L. Curien [4]:
if S |≃at

A and S ⊥ tests(A) then S ⊢MLL✠ A – and every element of tests(A) are proofs of A⊥

(Theorem 77), but the converse does not hold.
From Theorem 76 and Theorem 77 one obtains an “interactive” criterion for the nets of
multiplicative linear logic (MLL). One takes a net of S of MLL (i.e. a net with binary daimons)
and confronts it with the tests of the according formulas (Definition 74). A straightforward
consequence of the Theorem 76 is the reformulation of Béchet’s theorem in our framework.

▶ Corollary 79. Let S |≃at
A1, . . . , An be a cut–free net. If S is not correct then there exists

nets T1 ∈ tests(A1), . . . , Tn ∈ tests(An) such that the normal form of S :: T1 ∥ · · · ∥ Tn is not
correct: we are in case (2) or (3) of Remark 70.

▶ Remark 80. The Corollary 79 obviously applies to MLL nets, the main difference with
Béchet’s original result is that his opponents are MLL proof nets (in our framework they are
MLL✠ proof nets). However it is not difficult to adapt our techniques to obtain Béchet’s
result.

CSL 2025

43:18 Linear Realisability over Nets: Multiplicatives

▶ Remark 81. Consider an approximable basis B and a sequent Γ = A1, . . . , An we have
JΓKB = (JA1K⊥

B ∥ · · · ∥ JAnK⊥
B)⊥. By Theorem 64, for any A⊥

i we have ⦃A⊥
i : MLL✠

⦄ ⊆ JA⊥
i KB

while tests(Ai) ⊆ ⦃A⊥
i : MLL✠

⦄ (Theorem 77) thus tests(Ai) ⊆ JA⊥
i KB ⊆ JAiK⊥

B (Remark 59).
Because the ∥–construction preserves inclusions and orthogonality inverts inclusions we derive
that JΓKB ⊆ (tests(A1) ∥ · · · ∥ tests(An))⊥.

Remark 81 combined with the previous theorem (Theorem 76) means that for realisers in
an approximable basis, testability and (correct) typeability collapse.

▶ Proposition 82. Given B an approximable basis10 and a sequent Γ for any cut–free net
S ∈ JΓKB the assertions are equivalent:
1. S |≃ Γ i.e. S |≃at ∆ for some sequent ∆ ≤ Γ.
2. S ⊢MLL✠ Γ.

6 Completeness

Using Proposition 82 we provide a completeness result; we exhibit an approximable basis for
which a net S realising a sequent Γ is testable, and so equivalently S ⊢MLL✠ Γ. This basis,
denoted 1, maps each atomic formula to {✠1}

⊥⊥ .

▶ Proposition 83. For any sequent Γ and any cut–free net S; if S ∈ JΓK1 then S |≃ Γ.

▶ Remark 84. By the Proposition 83 and the Theorem 64 we have that S ∈ JΓK1 iff S ⊢MLL✠ Γ.
Since the base 1 is approximable, Proposition 82 allows to prove:

▶ Theorem 85 (MLL✠ completeness). Given a cut–free net S and a sequent Γ;
If for all basis B we have S ∈ JΓKB, then S ⊢MLL✠ Γ.
S ∈ JΓKB for any approximable basis B iff S ⊢MLL✠ Γ.

▶ Remark 86. The non homogeneous cut elimination allows to distinguish the types JX, X⊥KB
and JX, Y KB for a well chosen basis: for instance for the basis, that we will denote B⟨`⟩,
which maps positive propositional variables to {✠`}⊥ and negative propositional variables
to {✠`}

⊥⊥ , where ✠` denotes the geometrically incorrect net ⟨▷✠ a⟩+ ⟨▷✠ b⟩+ ⟨a, b ▷` c⟩.
In that case, (1) because ✠2 is not orthogonal to ✠` ∥ ✠` (Figure 11) it follows that

✠2 /∈ JX, XKB⟨`⟩ and more generally ✠2 /∈ JX, Y KB⟨`⟩; (2) by the property expressed
in Remark 90 (and illustrated in Figure 12), ✠2 ∈ JX, X⊥KB⟨`⟩; (3) point (1) above is
not in contradiction with the theorem of adequacy (Theorem 64) because, even though
✠2 ⊢MLL✠ X, Y , the basis B⟨`⟩ is not approximable.
▶ Remark 87. The ability to distinguish realisers of the sequents X, X⊥ and X, Y (Remark 86)
allows us to derive the completeness result for MLL (Theorem 88) from the completeness
result for MLL✠ (Theorem 85). In Remark 86, to show that ✠2 /∈ JX, Y KB⟨`⟩ we have used
incorrect nets (specifically ✠`), which explains that the completeness theorem for MLL
(Theorem 88) refers to any basis B (and not only to approximable basis). In the terms of
Table 1, we retrieve provability correctness by using interactions with geometrically incorrect
nets.

▶ Theorem 88 (MLL completeness). Let S be a cut–free net such that each of its daimon
link has exactly two outputs, Γ be a sequent such that S |≃at Γ; if S ∈ JΓKB for any basis B
then, S ⊢MLL Γ.

10 The Proposition 82 actually holds for any “adequate” basis B.

A. Ragot, T. Seiller, and L. Tortora de Falco 43:19

✠

p1 p2 ` `

cut cut

q r

q1 q2 r1 r2

✠ ✠✠ ✠

→

✠

p1 p1
2

`

cut cut

q

q1 q2

r1 r2

✠ ✠

✠ ✠

p2
2

✠

cut

→

✠

p1 p1
2

`

cut cut

q

q1 q2

r1

✠
✠

✠ ✠

Figure 11 The daimon link ✠2 is not orthogonal to ✠` ∥ ✠`: a disconnected net never reduces
to a connected one (and ✠0 is connected).

a b

g h

✠

cut cut

S Sp1 pn. . . →∗

✠

p1 pn. . .

Figure 12 The interaction of two orthogonal nets S and S with a daimon reduces to a daimon
(with two less outputs).

▶ Remark 89. A result of adequacy for MLL can also be stated: given an interpretation
basis B (not necessarily approximable) such that for each propositional variable X we have
JX⊥KB = JXK⊥

B , for any net S, if S ⊢MLL Γ then S ∈ JΓKB.

▶ Remark 90. The completeness result for MLL (Theorem 88) only identifies cut–free and
atomic proofs (i.e. where axioms introduce sequents of the form X, X⊥). This is because
for any atomic formulas X and Y , and for any basis B such that JX⊥KB = JXK⊥

B , ✠2 ∈
JX`X⊥, Y `Y ⊥KB while X`X⊥ and Y `Y ⊥ are not dual formulas: contrary to the atomic
case we cannot use ✠2 to distinguish JX ` X⊥, Y ` Y ⊥KB⟨`⟩ from JX ` X⊥, X⊥ ⊗XKB⟨`⟩.

The fact that ✠2 ∈ JX ` X⊥, Y ` Y ⊥KB⟨`⟩ (and more generally for any basis B such
that JX⊥KB = JXK⊥

B) is derived from the fact that, for any integer k and for any two
orthogonal nets S1 and S2 with one conclusion, the interaction ✠k+2 :: (S1 ∥ S2) has
at least one reduction to ✠k by cut elimination (Figure 12). We use this property for
k = 2 and k = 4 to show that ✠2 ∈ JX ` X⊥, Y ` Y ⊥KB. More precisely, we prove that,
✠2 ⊥ JX ` X⊥K⊥

B ∥ JY ` Y ⊥K⊥
B : given S, S and R, R two pairs of orthogonal nets (with one

conclusion), when all nets S, S, R, R have disjoint sets of vertices, we can derive the following:

⟨▷✠ a, b⟩ :: S + S + ⟨S(1), S(1) ▷⊗ q⟩+ R + R + ⟨R(1), R(1) ▷⊗ r⟩
→ · → ⟨▷✠ a1, a2, b1, b2⟩ :: S + S + R + R

→∗ ⟨▷✠ b1, b2⟩ :: R + R

→∗ ✠0

References
1 Denis Bechet. Minimality of the correctness criterion for multiplicative proof nets. Mathematical

Structures in Computer Science, 8(6):543–558, 1998. URL: http://journals.cambridge.org/
action/displayAbstract?aid=44779, doi:10.1017/S096012959800262X.

2 Emmanuel Beffara. A concurrent model for linear logic. Electronic Notes in Theoretical Com-
puter Science, 155:147–168, 2006. Proceedings of the 21st Annual Conference on Mathematical
Foundations of Programming Semantics (MFPS XXI). doi:10.1016/j.entcs.2005.11.055.

CSL 2025

http://journals.cambridge.org/action/displayAbstract?aid=44779
http://journals.cambridge.org/action/displayAbstract?aid=44779
https://doi.org/10.1017/S096012959800262X
https://doi.org/10.1016/j.entcs.2005.11.055

43:20 Linear Realisability over Nets: Multiplicatives

3 Emmanuel Beffara, Félix Castro, Mauricio Guillermo, and Étienne Miquey. Concurrent
realizability on conjunctive structures. In Marco Gaboardi and Femke van Raamsdonk, editors,
8th International Conference on Formal Structures for Computation and Deduction, FSCD
2023, July 3-6, 2023, Rome, Italy, volume 260 of LIPIcs, pages 28:1–28:21. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.FSCD.2023.28.

4 Pierre-Louis Curien. Introduction to linear logic and ludics, part II. CoRR, abs/cs/0501039,
2005. arXiv:cs/0501039.

5 Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive for Mathematical
Logic, 28(3):181–203, October 1989. doi:10.1007/BF01622878.

6 Valeria C. V. de Paiva. A dialectica-like model of linear logic. In David H. Pitt, David E.
Rydeheard, Peter Dybjer, Andrew M. Pitts, and Axel Poigné, editors, Category Theory
and Computer Science, pages 341–356, Berlin, Heidelberg, 1989. Springer Berlin Heidelberg.
doi:10.1007/BFB0018360.

7 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987. doi:
10.1016/0304-3975(87)90045-4.

8 Jean-Yves Girard. Multiplicatives. In G. Lolli, editor, Logic and Computer Science: New
Trends and Applications, pages 11–34. Rosenberg & Sellier, 1987.

9 Jean-Yves Girard. Proof-nets: The parallel syntax for proof-theory. In Logic and Algebra,
pages 97–124. Marcel Dekker, 1996.

10 Jean-Yves Girard. Locus solum: From the rules of logic to the logic of rules. In Laurent
Fribourg, editor, Computer Science Logic, pages 38–38, Berlin, Heidelberg, 2001. Springer
Berlin Heidelberg.

11 Jean-Baptiste Joinet and Thomas Seiller. From abstraction and indiscernibility to classification
and types: revisiting hermann weyl’s theory of ideal elements. Kagaku tetsugaku, 53(2):65–93,
2021. doi:10.4216/jpssj.53.2_65.

12 Jean-Louis Krivine. Realizability in classical logic. Panoramas et synthèses, 27:197–229, 2005.
URL: https://hal.science/hal-00154500.

13 International Research Network (IRN) Linear Logic. Handbook of Linear Logic. Interna-
tional Research Network (IRN) Linear Logic, 2023. URL: https://ll-handbook.frama.io/
ll-handbook/ll-handbook-public.pdf.

14 Paulo Oliva. Modified realizability interpretation of classical linear logic. In 22nd Annual
IEEE Symposium on Logic in Computer Science (LICS 2007), pages 431–442, 2007. doi:
10.1109/LICS.2007.32.

15 Thomas Seiller. Interaction graphs: Multiplicatives. Annals of Pure and Applied Logic,
163(12):1808–1837, 2012. doi:10.1016/j.apal.2012.04.005.

16 Thomas Seiller. Interaction graphs: Exponentials. Log. Methods Comput. Sci., 15, 2013.

17 Thomas Seiller. Interaction graphs: Full linear logic. CoRR, abs/1504.04152, 2015. arXiv:
1504.04152.

18 Thomas Seiller. Interaction graphs: Additives. Annals of Pure and Applied Logic, 167(2):95–154,
2016. doi:10.1016/j.apal.2015.10.001.

19 Thomas Seiller. Interaction graphs: Graphings. Annals of Pure and Applied Logic, 168(2):278–
320, 2017. doi:10.1016/j.apal.2016.10.007.

20 Thomas Seiller. Mathematical informatics, 2024. Habilitation thesis. URL: https://theses.
hal.science/tel-04616661.

https://doi.org/10.4230/LIPICS.FSCD.2023.28
https://arxiv.org/abs/cs/0501039
https://doi.org/10.1007/BF01622878
https://doi.org/10.1007/BFB0018360
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.4216/jpssj.53.2_65
https://hal.science/hal-00154500
https://ll-handbook.frama.io/ll-handbook/ll-handbook-public.pdf
https://ll-handbook.frama.io/ll-handbook/ll-handbook-public.pdf
https://doi.org/10.1109/LICS.2007.32
https://doi.org/10.1109/LICS.2007.32
https://doi.org/10.1016/j.apal.2012.04.005
https://arxiv.org/abs/1504.04152
https://arxiv.org/abs/1504.04152
https://doi.org/10.1016/j.apal.2015.10.001
https://doi.org/10.1016/j.apal.2016.10.007
https://theses.hal.science/tel-04616661
https://theses.hal.science/tel-04616661

A. Ragot, T. Seiller, and L. Tortora de Falco 43:21

A Additional Figures

p1 p2

p

⊗
qqi· · · qn· · ·qi+1

✠

cut

q1 → p1 p2 q1qi· · · qn· · ·qi+1

✠

cut

q2

cut

q1 p1 p2

p

⊗

qqi· · · qn· · ·qi+1

✠

cut

q1 → p1 p2 q1qi· · · qn· · ·qi+1

✠

cut

q2

cut

q1

(a) Extra cases for the elimination of (✠/⊗) cuts, on the left the elimination step when one of the inputs
belongs to the daimon above the cut, on the right the elimination step when both inputs belong to the
daimon above the cut.

q1 q2

q

`
pa1 an· · · b1 bm· · ·

✠

cut

→
q1 p1

✠

aσ(k)· · ·aσ(1)q2

✠

aσ′(k′)· · ·aσ′(1)bτ(h)· · ·bτ(1) b′
τ ′(h′)· · ·b′

τ ′(1)p2

cut cut

q1 q2

q

`
pa1 an· · · b1 bm· · ·

✠

cut

→
q1 p1

✠

aσ(k)· · ·aσ(1) q2

✠

aσ′(k′)· · ·aσ′(1)bτ(h)· · ·bτ(1) b′
τ ′(h′)· · ·b′

τ ′(1)p2

cut cut

(b) Extra cases for the elimination of (✠/`) cuts: when one of the inputs belongs to the daimon above
the cut.

q1 q2

q

`
pa1 an· · · b1 bm· · ·

✠

cut

→
q1p1

✠

aσ(k)· · ·aσ(1)q2

✠

aσ′(k′)· · ·aσ′(1)bτ(h)· · ·bτ(1) b′
τ ′(h′)· · ·b′

τ ′(1)p2

cut

cut

q1 q2

q

`
pa1 an· · · b1 bm· · ·

✠

cut

→
q1p1

✠

aσ(k)· · ·aσ(1) q2

✠

aσ′(k′)· · ·aσ′(1)bτ(h)· · ·bτ(1) b′
τ ′(h′)· · ·b′

τ ′(1)p2

cut cut

q1 q2

q

`
pa1 an· · · b1 bm· · ·

✠

cut

→
q1 p1

✠

aσ(k)· · ·aσ(1)q2

✠

aσ′(k′)· · ·aσ′(1)bτ(h)· · ·bτ(1) b′
τ ′(h′)· · ·b′

τ ′(1)p2

cut cut

q1 q2

q

`
pa1 an· · · b1 bm· · ·

✠

cut

→
q1 p1

✠

aσ(k)· · ·aσ(1) q2

✠

aσ′(k′)· · ·aσ′(1)bτ(h)· · ·bτ(1) b′
τ ′(h′)· · ·b′

τ ′(1)p2

cut cut

(c) Extra cases for the elimination of (✠/`) cuts: when both inputs belong to the daimon above the cut.

Figure 13 Complements to Figure 4 for defining non homogeneous cut elimination (Definition 22).

CSL 2025

Classical Linear Logic in Perfect Banach Lattices
Pedro H. Azevedo de Amorim # Ñ

Oxford University, UK

Leon Witzman #

Nanyang Technological University, Singapore

Dexter Kozen #

Cornell University, Ithaca, NY, USA

Abstract
In recent years, researchers have proposed various models of linear logic with strong connections
to measure theory, with probabilistic coherence spaces (PCoh) being one of the most prominent.
One of the main limitations of the PCoh model is that it cannot interpret continuous measures.
To overcome this obstacle, Ehrhard has extended PCoh to a category of positive cones and linear
Scott-continuous functions and shown that it is a model of intuitionistic linear logic. In this work
we show that the category PBanLat1 of perfect Banach lattices and positive linear functions of
norm at most 1 can serve the same purpose, with some added benefits. We show that PBanLat1 is
a model of classical linear logic (without exponential) and that PCoh embeds fully and faithfully
in PBanLat1 while preserving the monoidal and ∗-autonomous structures. Finally, we show how
PBanLat1 can be used to give semantics to a higher-order probabilistic programming language.

2012 ACM Subject Classification Theory of computation → Categorical semantics; Theory of com-
putation → Linear logic; Theory of computation → Denotational semantics; Theory of computation
→ Probabilistic computation

Keywords and phrases Probabilistic Semantics, Linear Logic, Categorical Semantics

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.44

Funding Pedro H. Azevedo de Amorim: Pedro H. Azevedo de Amorim was funded by the National
Science Foundation under grant CCF-2008083. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.
Dexter Kozen: Dexter Kozen was funded by the National Science Foundation under grants AitF-
1637532, SaTC-1717581, and CCF-2008083. Any opinions, findings, and conclusions or recommend-
ations expressed in this material are those of the authors and do not necessarily reflect the views of
the National Science Foundation.

Acknowledgements The authors would like to thank Raphaëlle Crubillé, Christine Tasson, Thomas
Ehrhard and Fredrik Dahlqvist for lively discussions on the subject. We would also like to thank
Arthur Azevedo de Amorim and Michael Roberts for reading an earlier draft of this work.

1 Introduction

Recent work has shown that linear logic has deep connections to the semantics of probabilistic
programming languages [8, 13, 10, 12, 11, 25, 9, 19, 7]. By using monoidal closed categories
instead of cartesian closed categories, linear logic provides an alternative categorical framework
for higher-order functions. This was foreshadowed in early work on probabilistic semantics
[20] in which bounded linear operators on Banach lattices were used to interpret a first-order
imperative probabilistic programming language. This can be seen as evidence that a linear
approach might be a natural alternative to cartesian closed categories.

© Pedro H. Azevedo de Amorim, Leon Witzman, and Dexter Kozen;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 44; pp. 44:1–44:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pedro.azevedodeamorim@cs.ox.ac.uk
https://pedrohaa.github.io/
https://orcid.org/0000-0002-8338-8973
mailto:witz0001@e.ntu.edu.sg
https://orcid.org/0000-0003-2074-7307
mailto:kozen@cornell.edu
https://orcid.org/0000-0002-8007-4725
https://doi.org/10.4230/LIPIcs.CSL.2025.44
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Classical Linear Logic in Perfect Banach Lattices

Since then, many probabilistically-flavored models of linear logic have appeared. For
instance, the connection between the early work of Kozen [20] and linear logic has been
recently made precise by Dahlqvist and Kozen [7], where the category of regular ordered
Banach spaces and regular maps (RoBan) was used to extend the semantics of Kozen [20]
with higher-order functions. They also showed that RoBan is a model of intuitionistic linear
logic.

An appealing aspect of the RoBan model is that ordered Banach spaces are mathematic-
ally well-understood objects with a well-developed classical theory, thus providing a plethora
of useful theorems to reason about programs. This is illustrated by Dahlqvist and Kozen [7]
by using results from ergodic theory to prove the correctness of a Gibbs sampling algorithm
implemented in a higher-order language. However, the programming model supported by
the semantics is somewhat brittle, in that the soundness of the system depends on a tricky
interaction between three different type grammars with several syntactic restrictions.

A different approach was taken by Ehrhard and Danos [8], in which a category PCoh
was defined and shown to be a model of classical linear logic. The model was used to
interpret a version of PCF extended with discrete probabilities [13]. Although this category
handles discrete probabilities very nicely, it cannot interpret continuous distributions such as
the normal distribution over R, a severe limitation for real-world applications. To remedy
this, a category of positive cones with measurability paths and linear Scott-continuous
functions CLinm has recently been introduced and shown to be a conservative extension of
the intuitionistic fragment of PCoh [6].

From a programming point of view, the language of Ehrhard et al. [12] is an extension of
the simply typed λ-calculus with recursion, making it a simple and expressive programming
model. However, the definition of positive cone with measurability paths deviates from
standard objects from the probability literature and thus would require a large amount of
mathematical effort to rephrase useful theorems that could be used to reason about programs.

Although these previous approaches are valuable contributions to our understanding
of higher-order probabilistic programming through linear logic, missing up to now is a
comprehensive model that embodies the following desirable aspects:

extends PCoh to admit continuous measures;
is a model of classical (not just intuitionistic) linear logic, thus allowing it to handle other
computational interpretations of linear logic such as session types;
has a simple and expressive programming model that can handle higher-order computation;
is based on well-understood classical structures from measure theory and functional
analysis.

In this paper we propose such a model. Our model extends PCoh with continuous probabil-
ities and satisfies all of the properties above. Our model is based on complete normed vector
lattices, called Banach lattices. To accommodate the second point, we work with spaces with
an involutive linear negation, the so-called perfect spaces.

Compared to previous models, our model has simpler tensor product, which we believe
lead to a more perspicuous and theoretically satisfying generalization of PCoh. For example,
we invite a comparison with CLinm, where the construction rely on categorical machinery
which, though elegant, are indirect.

Most importantly, Banach lattices can be seen as an abstraction of ordinary measure
spaces and are well-studied in functional analysis, with many results from measure theory
holding for certain classes of Banach lattices. There is a vast literature on the subject; see
Fremlin [14] for a thorough introduction.

P. H. Azevedo de Amorim, L. Witzman, and D. Kozen 44:3

In order to justify the viability of our model, we show that it can be used to interpret a
recently introduced higher-order probabilistic calculus [2], and we extend the core calculus
with recursion.

Summary of contributions
In §3, we define the category PBanLat1 of perfect Banach lattices and order-continuous
positive linear operators with norm at most 1 and show that it is a model of classical
linear logic.
In §4, we show that there is a full and faithful monoidal closed functor PCoh →
PBanLat1. This is a more adequate extension than the model CLinm proposed by
Ehrhard [11], since it also accommodates the classical aspects of the linear structure of
PCoh.
In §5, we show that PBanLat1 is isomorphic to a category of lattices of positive complete
cones.
In §6, we show that PBanLat1 is a model to the recently defined calculus by Azevedo
de Amorim [2].

Our work contributes both to the study of quantitative models of linear logic as well as to
a deeper understanding of higher-order probability theory, shedding light on the importance
of linear logic as a vehicle to interpret higher-order programs without cartesian closure.

2 Riesz spaces

Our model depends on technical definitions and constructions from the vector lattice literature.
This section contains a brief self-contained presentation of the subject. We point the interested
reader to introductory texts [1, 26] for good presentations of much of the material presented
in this section.

Although we are primarily interested in Banach lattices – normed vector lattices with a
completeness property – we start by defining the objects in the general unnormed case.

▶ Definition 1. Let R+ = {a ∈ R | a ≥ 0}. A Riesz space is a partially-ordered vector space
(V, ≤) over R such that

if x ≤ y, then x + w ≤ y + w;
if x ≤ y, then αx ≤ αy for α ∈ R+; and
it is an upper semilattice with respect to ≤ with join operation ∨.

It follows that the space is also a lattice with meet operation x ∧ y = −(−x ∨ −y).

Many standard vector spaces are Riesz spaces.

▶ Example 2. The following are Riesz spaces:
Rn with the pointwise ordering;
the set of bounded sequences of real numbers with pointwise ordering;
the set of signed measures on a measurable space;
the set of bounded measurable functions on a measurable space.

Unlike the real numbers, there are elements that are neither negative nor positive, but
a notable characteristic of Riesz spaces is that every element decomposes uniquely into its
positive and negative parts.

▶ Definition 3. For v an element of a Riesz space, define v+ = v ∨ 0, v− = (−v) ∨ 0 and
|v| = v ∨ −v = v+ + v−.

CSL 2025

44:4 Classical Linear Logic in Perfect Banach Lattices

Then v+ and v− are the unique positive elements such that v = v+ − v− and v+ ∧ v− = 0.
Thus Riesz spaces are completely characterized by their positive elements. This often
simplifies constructions, as one can often prove a property for the positive elements, then
extend to the entire space using this decomposition.

Given a Riesz space V , let V + denote the set of positive elements of V . Using the
decomposition property mentioned above, it follows that V = V + − V +, where − applied to
sets denotes elementwise subtraction.

2.1 Order convergence

Every topology gives rise to a notion of convergence. For normed spaces, one usually studies
convergence in the norm topology. However, ordered spaces also carry an order topology.

▶ Definition 4. Let D be a directed set and V a Riesz space. A net {vα}α∈D is a function
D → V . We say that the net is increasing (respectively, decreasing) and write {vα}↑
(respectively, {vα}↓) if α ≤D β implies vα ≤V vβ (respectively, vα ≥V vβ).

▶ Definition 5. Given a decreasing net {xα}, we write {xα} ↓ 0 if inf{xα} = 0.

▶ Definition 6 (Order convergence). We say that a net {xα} converges in order to x and
write xα

o−→ x if there is a decreasing net {yα} ↓ 0 such that for all α, |xα − x| ≤ yα.

In general, this notion of convergence is neither weaker nor stronger than convergence in
the norm topology. However, when a net converges in both order and norm, it converges to
the same value in both. When it is clear from the context, we will denote order convergence
as →.

2.2 Riesz subspaces, solids, ideals and bands

In the theory of Riesz spaces, there are classes of subspaces that have many interesting
properties that will be used in our constructions.

▶ Definition 7. A subset S of a Riesz space is
solid if x ∈ S and |y| ≤ |x| implies y ∈ S,
an ideal if it is a solid linear subspace,
a band if it is an ideal and closed under existing suprema.

▶ Definition 8. We say that a Riesz space V is Archimedean if for every v ∈ V +, {v/n}n∈N ↓
0. Furthermore, if every bounded subset of V admits a supremum, then we say that V is
Dedekind complete.

▶ Proposition 9. Every band in a Dedekind complete Riesz space is Dedekind complete.

▶ Definition 10. A Riesz subspace A ⊆ V is said to be order dense if for every element
0 < v ∈ V there is an element a ∈ A such that 0 < a ≤ v.

▶ Theorem 11 ([1, Theorem 1.34]). A Riesz subspace A is order dense in an Archimedean
Riesz space V iff for every v ∈ V +,

{a ∈ A | 0 ≤ a ≤ v} ↑ v.

P. H. Azevedo de Amorim, L. Witzman, and D. Kozen 44:5

2.3 Order-continuous functions
As usual when studying vector spaces with extra structure, we care only about linear maps
that interact nicely with the extra structure. In our case, the linear functions will have to
respect the partial order.

We call a linear function f : V → W positive if it maps positive elements of V to positive
elements of W ; that is, it restricts to a function V + → W +. A linear function is regular if it
can be written as the difference of two positive functions.

▶ Definition 12. A linear function T : V → W between Riesz spaces V and W if Tvα
o−→ Tv

whenever {vα} is an increasing net with supremum v.

We can also characterize the positive order-continuous functions as those that preserve
existing suprema and infima.

Order continuity interacts well with order density. Indeed, it is possible to show using
Theorem 11 the following lemma

▶ Lemma 13. If V is an Archimedian Riesz space and f, g : V → W are two linear
order-continuous functions that agree on an order-dense subset of V , then f = g.

This lemma will come in handy when constructing our model. Furthermore, the space
of order-continuous linear functions on certain Riesz spaces are well-behaved subsets of the
regular linear functions.

▶ Theorem 14 ([1, Theorem 1.57]). If W is Dedekind complete, then the set of order-
continuous linear functions V → W is a band in the space of regular functions, thus forms a
Dedekind-complete Riesz space.

Proof. The Riesz space structure is given by Theorem 1.18 of Aliprantis and Burkinshaw [1].
◀

▶ Definition 15. A Riesz space is separated if for every distinct pair v1, v2 ∈ V , there exists
an order-continuous linear functional f : V → R such that f(v1) ̸= f(v2).

2.4 Normed Riesz spaces
Now we will introduce normed Riesz spaces. In the context of probabilistic semantics, the
norm plays an important role, as it can be used to distinguish between arbitrary measures
and (sub)-probability distributions, the measures with norm at most 1.

▶ Definition 16. Let V be a real vector space. A norm is a function ∥ · ∥ : V → R+ such that:
∥v∥ = 0 iff v = 0
∥αv∥ = |α| ∥v∥
∥v + u∥ ≤ ∥v∥ + ∥u∥.

For Riesz spaces, we require the norm to satisfy the additional property

|v| ≤ |u| implies ∥v∥ ≤ ∥u∥.

If the Riesz space is also complete with respect to the norm, we call it a Banach lattice. In
vector space models of linear logic, the norm is typically used to distinguish between the
product & and the coproduct ⊕, as they both have the same underlying set, but distinct
norms. However, in the context of program semantics, the norm also has the extra role of
allowing the interpretation of recursive programs.

CSL 2025

44:6 Classical Linear Logic in Perfect Banach Lattices

▶ Example 17. The set M(R) of signed measures over the Borel σ-algebra on R is a Riesz
space (cf. Section 2.6). We can equip it with the total variation norm ∥µ∥ = µ+(R) + µ−(R).

Theorem 14 shows that by assuming the right amount of structure on the Riesz space, the
set of order-continuous linear functions between Riesz spaces also has a lattice structure. It is
not immediately clear whether this result generalizes to the normed case. Luckily, Dedekind
completeness is once again enough.

▶ Example 18. Let V and W be normed Riesz spaces with W Dedekind complete. The set
of order-continuous linear functions V → W can be equipped with the regular norm

∥T∥r = sup
∥x∥V ≤1

∥|T |(x)∥W

where |T | is given by Theorem 14 and Definition 3.

▶ Definition 19. Let V be a normed Riesz space. The closed unit ball of V is the set
B(V) = {v ∈ V | ∥v∥ ≤ 1}.

Banach lattices
Banach lattices are normed Riesz spaces that are also Banach spaces. In the usual categorical
study of Banach spaces, the relevant morphisms are the norm-continuous linear functions.

▶ Definition 20. A linear function f between normed Riesz spaces V and W is said to be
norm-continuous (or norm-bounded) if supv∈B(V) ∥f(v)∥ is finite.

Since we are interested in spaces with two distinct structures, a partial order and a norm,
it is not immediately clear which class of morphisms one should care about. In general, the
space of all norm-continuous linear functions between Banach lattices is not a Banach lattice,
making them unable to give semantics to linear implication.

Normed Riesz spaces are also problematic, as not every order-continuous function is norm-
continuous, making it unclear how one would equip the space of order-continuous functions
with a norm. However, if the codomain is a Banach lattice, then every order-continuous
linear function is also norm-continuous [1]. This suggests that one should work with Banach
lattices but only use order-continuous linear functions.

▶ Definition 21. The category BanLat1 has separated Banach lattices as objects and
order-continuous positive linear functions of norm at most one as morphisms.

These objects have been widely studied in functional analysis, being influential in the
linear operator approach to measure theory [14]. A subtlety when working with a norm
and a partial order is that there are two distinct notions of convergence in play that on the
surface appear only tenuously related. However, a useful property has been identified in the
literature that brings some harmony between the two.

▶ Definition 22. A normed Riesz space is said to satisfy the (sequential) weak Fatou property
if every norm-bounded monotone (sequence) net has a supremum.

In the context of program semantics, the sequential version of this property has been
used before to interpret recursive programs [8, 12].

▶ Lemma 23. Let f : V → V be a positive order-continuous function (not necessarily linear)
such that f(B(V)) ⊆ B(V). If V satisfies the weak Fatou property, then f admits a fixpoint.

P. H. Azevedo de Amorim, L. Witzman, and D. Kozen 44:7

Proof. It can be directly shown that the limit of the ω-chain {fn(0)}n∈N is a fixpoint of f .
Note that when f is linear, the theorem is trivially true, since f(0) = 0. ◀

▶ Lemma 24 ([14, Lemma 354B(d)]). Every band in a Banach lattice is a Banach lattice.

▶ Theorem 25. If V and W are Banach lattices, then the set of order-continuous linear
functions between V and W is a Banach lattice.

Proof. The proof is a direct consequence of Banach lattices being Dedekind complete – e.g.
Fremlin [14, Proposition 354E(e)] – and the space of order-continuous being a band in the
space of regular linear functions. ◀

2.5 Dualities
The category BanLat1 seems to be a good candidate in which to interpret intuitionistic
linear logic. However, since the linear negation connective (−)⊥ is usually interpreted as the
linear dual V ⊸ R in models of linear logic based on vector spaces over R, BanLat1 would
not be able to model classical linear logic, since there are examples of Banach lattices that
are not isomorphic to their bidual, e.g. summable real sequences.

A recurring challenge in models of linear logic is to make an involutive linear negation –
typical of finite-dimensional spaces – coexist with !V , which requires infinite-dimensional
spaces. Since we are interested in defining a model of classical linear logic, we should only
work with Riesz spaces that are isomorphic to their bidual.

▶ Definition 26. Let V σ denote the space of order-continuous functionals V ⊸ R. A Riesz
space V is said to be perfect if the map σV = λxf .f(x) : V ⊸ V σσ is an isomorphism.

We will write σ for σV when V is clear from context.

▶ Definition 27. The category PBanLat1 has perfect Banach lattices as objects and positive
order-continuous linear functions of norm at most one as morphisms.

Although the definition of perfect spaces is simple, it is difficult to manipulate in practice.
The following theorems provide some alternative characterisations, both in the normed and
unnormed cases:

▶ Theorem 28 ([21, Theorem 41.4, Volume XIII]). Let V be a separated normed Riesz space.
Then V is perfect and Banach iff V has the weak Fatou property.

▶ Theorem 29 ([1, Theorem 1.71]). A Riesz space V is perfect iff
it is separated;
whenever 0 ≤ {xα}α:D↑ and supα:D{f(xα)}α:D < ∞ for all positive f ∈ V σ and directed
set D, there exists x ∈ V such that 0 ≤ {xα}α:D ↑ x.

▶ Corollary 30. Bands of perfect Riesz spaces are also perfect.

▶ Lemma 31. Every perfect Riesz space is Dedekind complete.

Proof. The proof follows from the second condition of Theorem 29. ◀

▶ Lemma 32. Every Riesz space of the form V σ is perfect.

CSL 2025

44:8 Classical Linear Logic in Perfect Banach Lattices

Proof. To show the first point of Theorem 29, assume that f1 ≠ f2 ∈ V σ. Then there is
v ∈ V such that f1(v) ̸= f2(v). Using the fact that λf .f(v) is an element of V σσ, we can
conclude that V σ is separated. For the second point, let us assume that 0 ≤ {fα}↑ and that
for all F ∈ V σσ, if F ≥ 0, then supα F (fα) < ∞. From this hypothesis, it follows that for
all v ∈ V , if v ≥ 0, then supα fα(v) = supα σ(x)(fα) < ∞. This means that the function
f(x) = supα fα(x) is well-defined, linear, and order-continuous. By Lemma 1.18 in Aliprantis
and Burkinshaw [1], V σ is Dedekind complete and f bounds fα. ◀

An interesting fact that is not obvious from the definitions is that the bidual of Riesz spaces
can be seen as a sort of completion procedure. We formalize this claim using adjunctions,
but first we need a lemma.

▶ Lemma 33 ([1, Theorem 1.70]). Let V be an Archimedean Riesz space. The set σ(V) is
an order-dense Riesz subspace of V σσ.

▶ Theorem 34. The functor (−)σσ : BanLat1 → PBanLat1 is left adjoint to the forgetful
functor U .

Proof. We observe that if f : V ⊸ W , then σ−1 ◦ fσσ : V σσ ⊸ W . In the other direction,
if we have a function f : V σσ ⊸ W , we can consider its restriction f ↾ V : V ⊸ W . To show
that these operations are inverses, we use Theorem 11 and Lemma 33, which allow us to
show that if two order-continuous functions agree on σ(V), then they agree everywhere. ◀

Note that this implies that PBanLat1 is a reflective subcategory of BanLat1, which
means that it is closed under the same (co)limits that exists in BanLat1, c.f. Borceux [3,
Section 3.5].

2.6 Signed measures as Riesz spaces
Measures are usually defined as countably additive, nonnegative real-valued functions on a
σ-algebra. Signed measures provide a slight generalization by dropping the requirement of
nonnegativity.

▶ Definition 35. Let (X, Σ) be a measurable space. A signed measure is a function µ : Σ → R
such that µ(∅) = 0 and µ(

⋃
i∈N

Ai) =
∑
i∈N

µ(Ai) for disjoint sets (Ai)i∈N. The infinite series on

the right hand side must converge absolutely.

An important difference between ordinary measures and signed measures is that signed
measures come equipped with a natural vector space structure. Indeed, it can be shown that
signed measures are perfect Riesz spaces.

▶ Lemma 36. Let (X, Σ) be a measurable space. The space M(X, Σ) of signed measures is
a normed Riesz space.

Proof. The vector space structure is defined pointwise with lattice structure defined by
µ∨ν = (µ−ν)+ +ν using the Hahn-Jordan decomposition and the norm is the total-variation
norm. ◀

When a measure µ is positive, its total variation norm is its total mass µ(X).

▶ Theorem 37. Let (X, Σ) be a measurable space. The space M(X, Σ) of signed measures
with the total variation norm is a perfect Banach lattice.

Proof. The proof follows by applying Theorem 28, the lemma above and observing that since
the order of measures is given pointwise, you can define their suprema pointwise as well. ◀

P. H. Azevedo de Amorim, L. Witzman, and D. Kozen 44:9

3 Models of linear logic

The categorical semantics of linear logic is very well understood; see Mellies [22] for an
overview. In this section, we show that PBanLat1 is a model of classical linear logic.

3.1 Symmetric Monoidal Closed Structure
In order for PBanLat1 to interpret the multiplicative fragment of linear logic, i.e. give
semantics to a linear λ-calculus with tensors, it must be a symmetric monoidal closed category.
Concretely, it needs a monoidal product ⊗ such that for every object A, the functor A ⊗ −
has a right adjoint A ⊸ −, known as linear implication.

For models based on vector spaces, the monoidal product is typically given by the tensor
product. For such models, linear implication has a natural interpretation in terms of linear
functions. Furthermore, since our spaces are perfect, we have an involutive linear negation
A⊥ defined as the space A ⊸ R, and, in models of classical linear logic, the equation
A ⊗ B = (A ⊸ B⊥)⊥ holds. Thus the tensor product ⊗ can be defined in terms of linear
implication ⊸ and negation ⊥ in such models.

Note that this circumvents one of the main complications with the model of Ehrhard [11],
where the existence of a suitable monoidal product is established non-constructively using a
categorical density argument.

3.1.1 Internal Homs
Since the category PBanLat1 has order-continuous linear functions with norm at most 1
as morphisms, it makes sense to define the internal hom object V ⊸ W as the space of
order-continuous linear functions between perfect Banach lattices V and W . This definition
is justified by the following theorem.

▶ Lemma 38 (c.f. Section B). If V and W are perfect Riesz spaces, then the set of order
continuous linear functions V ⊸ W is a perfect Riesz space.

From Theorem 25 and the theorem above, it follows that if V and W are perfect Banach
lattices, then so is V ⊸ W . By using standard techniques from the literature on vector
models of linear logic, we have

▶ Theorem 39. The operation ⊸ : PBanLat1
op × PBanLat1 → PBanLat1 is functorial.

3.1.2 Monoidal structure
As mentioned above, the monoidal structure on vector space models of linear logic is usually
defined as a tensor product, and monoidal closure is obtained from the universal property of
tensor products. The usual recipe for defining tensor products is to use a free construction
modulo the tensor product equations. When working with infinite-dimensional spaces, a
completion procedure may be required as well.

Indeed, this is the approach taken by Fremlin [15], in which a tensor product is defined for
perfect Riesz spaces via a more traditional construction using the completion of the algebraic
tensor product. It is also shown by Fremlin [15] that V ⊗ W ∼= (V ⊸ W ⊥)⊥, meaning that
their construction is isomorphic to ours.

In contrast, our construction starts with the definition V ⊗ W ≜ (V ⊸ W σ)σ, as required
by the laws of linear logic. We then show that it satisfies the expected universal property of
tensor products: for every biliear function f : V × W → Y , there is a unique linear function
f̂ : V ⊗ W → Y such that f̂ ◦ ι = f , where ι : V × W → Y is the bilinear inclusion function.

CSL 2025

44:10 Classical Linear Logic in Perfect Banach Lattices

We show this using the fact that the internal hom can be used to classify bilinear functions
using V ⊸ (W ⊸ Y), then showing that this space is isomorphic to V ⊗ W ⊸ Y .

▶ Lemma 40. V ⊗ W ⊸ Y ∼= V ⊸ W ⊸ Y .

Proof. If V and W are perfect Riesz spaces, then V ⊸ W ∼= W σ ⊸ V σ. Then

V ⊗ W ⊸ Y = (V ⊸ W σ)σ ⊸ Y

∼= Y σ ⊸ (V ⊸ W σ) ∼= V ⊸ Y σ ⊸ W σ

∼= V ⊸ W ⊸ Y. ◀

▶ Theorem 41. V ⊗ W , defined as (V ⊸ W σ)σ, satisfies the universal property of tensor
products.

Proof. Observe that the set of (norm bounded) bilinear order-continuous functions V ×W →
Y is (isometrically, in the normed case) isomorphic to V ⊸ W ⊸ Y . We must now show
V ⊗ W ⊸ Y ∼= V ⊸ W ⊸ Y . This is exactly Lemma 40. ◀

Using the universal property of tensor products and the (easy to prove) facts that
V ⊗ (W ⊗ Y) ∼= (V ⊗ W) ⊗ Y and V ⊗ W ∼= W ⊗ V , we can conclude:

▶ Theorem 42. PBanLat1 is a symmetric monoidal closed category.

It is difficult in general to give an intuitive characterization of the elements of a tensor
product. This is also the case with our construction. Nevertheless, in the context of measures,
we can give some intuition for the elements of M(A) ⊗ M(B). Let µA and µB be probability
distributions on measurable spaces A and B, respectively. The product distribution µA ⊗ µB

is the joint probability distribution on A×B with marginals µA and µB obtained by sampling
µA and µB independently. This is an element of M(A)⊗M(B), but there are also other joint
distributions in M(A) ⊗ M(B) that do not represent independent samples. For example,
let A = B = {0, 1} and consider the joint distribution 1

2 (δ0 ⊗ δ0 + δ1 ⊗ δ1). Sampling this
distribution returns (0, 0) or (1, 1), each with probability 1/2, so the two components are
clearly not independent.

In general, not every joint distribution is an element of the tensor product, as explained
by Dahlqvist and Kozen [7]. From a programming point of view, the universal property of
tensor products says that the behavior of a program taking inputs of type M(A) ⊗ M(B) is
fully characterized by independent distributions over A and B.

3.2 ∗-autonomous categories
Classical linear logic differs from its intuitionistic variant by requiring that linear negation
be involutive, that is, A⊥⊥ = A for every formula A. Categorically, this is modeled by
∗-autonomous categories, symmetric monoidal closed categories C with a functor (−)∗ :
Cop → C such that every object A is naturally isomorphic to A∗∗ and for every three objects
A, B, C, there is a natural bijection Hom(A ⊗ B, C∗) ∼= Hom(A, (B ⊗ C)∗). Equivalently, a
∗-autonomous category is a symmetric monoidal closed category C equipped with a dualizing
object ⊥ such that for every object A, the unit ∂A : A → (A ⊸ ⊥) ⊸ ⊥ is an isomorphism.

In our case, the dualizing object is R, the unit is the linear function σV : V → V σσ, and
the isomorphism holds by assumption.

▶ Theorem 43. PBanLat1 is a ∗-autonomous category.

P. H. Azevedo de Amorim, L. Witzman, and D. Kozen 44:11

3.3 Cartesian and co-Cartesian structure
Cartesian and co-Cartesian structure are useful in the formation of product and sum types.
In models of linear logic, these are represented by linear conjunction & and disjunction ⊕,
respectively. In PBanLat1, both operations have V × W as their underlying set with lattice
operations defined componentwise. In the normed case, we can distinguish them by choosing
different norms.

▶ Definition 44. Let V and W be normed Riesz spaces. We define
the product V & W = (V × W, ∥−∥sum), where ∥(v, w)∥sum = ∥v∥ + ∥w∥.
the coproduct V ⊕ W = (V × W, ∥−∥max), where ∥(v, w)∥max = max(∥v∥, ∥w∥).

Since convergence for both is defined componentwise, by using Theorem 28 we can show
that if V and W are perfect and Banach, then V & W and V ⊕ W are as well. The unit ⊤
for the product and 0 for the coproduct are both the trivial Riesz space {0}.

▶ Theorem 45. PBanLat1 is (co-)Cartesian.

4 Probabilistic coherence spaces and Banach lattices

Probabilistic coherence spaces (PCS) [8] are a model of linear logic with a vector space
flavor. It has been shown by Ehrhard [11] that its intuitionistic fragment can be fully and
faithfully embedded in a category of positive cones. In this section, we show that Banach
lattices, contrary to previous work [11], extends the ∗-autonomous structure of the category
of probabilistic coherence spaces as well as its symmetric monoidal closed structure. We
make use of the vector space construction presented in the original paper [8].

▶ Definition 46. A Probabilistic Coherence Space (PCS) is a pair (|X|, P(X)), where |X| is
a countable set and P(X) ⊆ |X| → R+ called the web such that:

∀a ∈ |X| ∃εa > 0 εa · δa ∈ P(X), where δa(a′) = 1 iff a = a′ and 0 otherwise;
∀a ∈ |X| ∃λa ∀x ∈ P(X) xa ≤ λa;
P(X)⊥⊥ = P(X), where P(X)⊥ = {x ∈ |X| → R+ | ∀v ∈ P(X)

∑
a∈X xava ≤ 1}.

▶ Definition 47. Let (|X|, P(X)) be a PCS. Its linear negation is the PCS (|X|, P(X)⊥).

▶ Definition 48. Let (|X|, P(X)) and (|Y |, P(Y)) be PCSs. The PCS X ⊸ Y is the pair
(|X| × |Y |, P(X ⊸ Y)), where P (X ⊸ Y)) = {M : |X| × |Y | → R+ | ∀v ∈ P(X) M · v ∈
P(Y)}, where (M · v)(y) =

∑
x:X M(x, y)v(x).

The intuition behind Definition 46 is that the web of every PCS corresponds to the
positive unit ball of a partially-ordered vector space. This idea is used by Ehrhard and
Danos [8] to define a functor that maps every PCS to a Banach space. It is possible to
show that this vector space can be equipped with a Riesz space structure, where the order is
defined pointwise.

▶ Definition 49. Given a PCS (|X|, PX), we define BX = {u ∈ R|X| | |u| ∈ PX} and
eX =

⋃
λ>0

λBX. The pair (eX, u 7→ sup
u′∈PX⊥

⟨|u|, u′⟩) is the normed Riesz space associated

with the PCS (|X|, PX).

It is shown by Ehrhard and Danos [8] that eX is a Banach space. Furthermore, the
lattice structure can be defined pointwise, making eX a Banach lattice. Later in this section
we will show that e can be made into a functor.

CSL 2025

44:12 Classical Linear Logic in Perfect Banach Lattices

PCoh and duality
In this section we show that the functor e preserves the ∗-autonomous structure of PCoh.

▶ Theorem 50 (c.f. Section C). For every probabilistic coherence space X, there is a natural
isomorphism e(X⊥) ∼= e(X)σ.

▶ Corollary 51. For every PCS (|X|, P(X)) the vector space eX is a perfect Banach lattice.

Since convergence for PCS is defined componentwise, it is possible to use a similar proof
technique to show

▶ Theorem 52. The operation e is monoidal closed and functorial.

Proof. The functoriality of e has been proven in Section 5.1 of Ehrhard and Danos [8]. The
proof of preservation of monoidal closure is similar to the proof of Theorem 50. ◀

Another important theorem which is direct to show is.

▶ Theorem 53. The functor e : PCoh → PBanLat1 is full and faithful.

5 Categories of Cones and PBanLat1

Even though PBanLat1 is a mathematically natural model of linear logic, it relies on tools
from functional analysis not usually familiar to computer scientists. On the other hand, in
recent years, cones have found numerous applications in semantics of programming languages
and logics [12, 6, 23, 18]. In this section we show that PBanLat1 is isomorphic to a category
cones, meaning that computer scientists can translate their intuitions about cones to this
novel setting without having to learn functional analysis.

As it was frequently mentioned throughout this paper, every Banach lattice gives rise to a
positive cone. Furthermore, since every PBanLat1 morphism f : V → W is positive and has
norm at most 1, it restricts to a linear function B(V)+ → B(W)+. With this observations we
state a few definitions from previous work [6, 11], which assume that the cones are separated.

▶ Definition 54 (cf. [12, Definition 4.1]). A cone C is a R+-semimodule with a norm
∥ · ∥ : C → R+ such that it satisfies the cancellation property x + y1 = x + y2 implies y1 = y2,
for every points x, y1 and y2.

Every cone can be equipped with the partial order x ≤ y if and only if there is a z such
that x + z = y, meaning that it is possible to define a partial subtraction operation whenever
x ≤ y, calling y − x the element such that x + (y − x) = y.

A function f : C1 → C2 between cones is linear if it commutes with addition and scalar
multiplication, it is monotonic if it preserves the order relation, and it is Scott-continuous
if for every directed set xα with supremum x, supα f(xα) = f(x). As is the case with
partially-ordered vector spaces, there are different classes of cones where the order and the
norm have particular properties:

▶ Definition 55. A cone C is said to be:
Sequentially complete if every norm-bounded sequence has a least upper bound.
Directed complete if every norm-bounded directed set has a least upper bound.
A lattice cone if the poset structure is a lattice.

P. H. Azevedo de Amorim, L. Witzman, and D. Kozen 44:13

Using this notation, it seems appropriate to imagine that there should be a functor
PBanLat1 → CLat, where CLat is the category of directed complete cone lattices. It is
unclear, however, if there is a mapping on morphisms. Luckily, the lemma below guarantees
that the mapping is well-defined. Its proof follows from the weak Fatou property.

▶ Lemma 56. Let V and W be two perfect Banach lattices and f : V → W a linear,
positive function of norm at most 1. The function f is order-continuous if and only if
supx∈A f(x) = f(v) whenever A ⊆ V + is a non-empty upwards-directed set with supremum v.

Since the mapping on morphisms is basically the identity, the functorial laws hold, which
allows us to conclude that there is a functor PBanLat1 → CLat.

Next, we would like to map every positive cone to a vector space. Let C be a positive cone
and define C − C = {(c1, c2) | c1, c2 ∈ C}/ ∼, where ∼ is the binary relation (c1, c2) ∼ (c3, c4)
iff c1 + c4 = c2 + c3. Intuitively, C − C corresponds to the vector space of formal differences
c1 − c2 of elements in C. The equivalence relation is used to capture the fact that, for
instance, (3, 2) and (4, 3) should represent the same real number, since 3 − 2 = 1 = 4 − 3.

▶ Theorem 57 (c.f. Section D). Let C be a directed complete cone lattice. Then C − C is a
perfect Banach lattice.

By linearity, Scott-continuous functions f : C → D with norm at most 1 extend to order-
continuous functions f : (C − C) → (D − D) with norm at most 1 and we can prove that
there is a functor CLat → PBanLat1. With this functor and the positive cone restriction
functor defined, it is a direct calculation to show:

▶ Theorem 58. The categories PBanLat1 and CLat are isomorphic.

Variables x, y, z

Reals r ∈ R
MK Expressions M ::= x | r | uniform | (M1, M2) | π1 M | π2 M

| let x = M in N

LL Expressions t, u ::= x | λx.t | t u | t ⊗ u | let x ⊗ y = t in u

| sample ti as xi in M

Types MK τ ::= R | τ × τ

Types LL τ ::= 1 | Mτ | τ ⊸ τ | τ ⊗ τ

Linear Contexts Γ ::= x1 : τ1, . . . , xn : τn

MK Contexts Γ ::= x1 : τ1, . . . , xn : τn

Figure 1 Terms and Types of λLL
MK .

6 A Probabilistic Calculus

Though it is theoretically interesting understanding how PBanLat1 relates to existing
models of linear logic, we are also interested in using it as a semantic basis for a language
with probabilistic primitives. Being symmetric monoidal closed, it can give semantics to
the linear λ-calculus. This, however, is insufficient from a programming point of view. The
linearity restrictions are severely limiting in terms of which programs one can define in this
language. A frequently used solution to this lack of expressivity is to use the exponential
modality, where the coKleisli category is Cartesian closed, meaning that it can interpret the
λ-calculus.

CSL 2025

44:14 Classical Linear Logic in Perfect Banach Lattices

However, even though we have not defined a linear logic exponential in PBanLat1, we
can still get non-linear programming by using recent work [2] that proposes a new syntax for
programming with linear operators and Markov kernels. The proposed two-level calculus
allows for non-linear programs to be defined by using a lax-monoidal modality.

The λLL
MK metalanguage

The semantic structure used to interpret the calculus of Azevedo de Amorim [2] is given
by a triple (C, L, M), where C is roughly a category of Markov kernels1, L is a symmetric
monoidal closed category and M : C → L is a lax monoidal functor.

This two-level structure manisfests itself at the syntactic level by having a two-level syntax:
the first level is used to program kernels while the second one serves as a kind of metalanguage
that has access to higher-order functions, both of which are depicted in Figure 1, The linear
language has linear function types, which allows for higher-order programming and, unlike
most languages based on linear logic, it has a modality M, which corresponds to the types
that may be sampled from. The variables bound by the linear context are, roughly speaking,
computations. In the language for kernels there are no linearity restrictions and, therefore,
variables, i.e. samples from distributions, can be freely duplicated and discarded. Under this
perspective, the variables in MK programs should be thought of as values. The intuition
behind this language is that linearity forbids distributions to be sampled more than once,
but once you have the sample in hands, it can be used as many times as you want.

Each layer has its own typing judgement relations ⊢LL and ⊢MK , which we go over in
more detail in Section A. We highlight one of the most interesting rules; it is the rule that
allows programs to be transported between layers:

Sample
x1 : τ1 · · · xn : τn ⊢MK M : τ ∆; Γi ⊢LL ti : Mτi 0 < i ≤ n

∆; Γ1, · · · , Γn ⊢LL sample ti as xi in M : Mτ

Operationally, it samples from n LL programs {ti}i, each sample is bound to the corresponding
variable in {xi}i and finally the continuation M is executed.

We want to model λLL
MK with PBanLat1. For that we still need a CD category and a

lax monoidal functor. For the CD category we will use the category of measurable spaces
and sub-Markov kernels.

▶ Definition 59. The category sStoch has measurable spaces as objects and sub-Markov
kernels as morphisms, i.e. measurable functions between a measurable space and the space of
subprobability distributions over a measurable space.

sStoch is a CD category, which means that it is symmetric monoidal, with the monoidal
product being the product measurable space.

▶ Theorem 60 (c.f. Section E). There is a lax monoidal functor M : sStoch → PBanLat1.

This means that the triple (sStoch, PBanLat1, M) is a λLL
MK model.

7 Related work

There have been a number of semantics of linear logic based on vector space-like objects. Two
important families of such semantics are the ones based on probabilistic coherence spaces
and the ones based on Banach spaces. As we will explain below, we see our model as a nice
synthesis of these two approaches.

1 a CD category, to be more precise

P. H. Azevedo de Amorim, L. Witzman, and D. Kozen 44:15

Positive Cone Semantics of Linear Logic

To overcome the limitation that PCoh cannot represent continuous distributions, Ehrhard
et al. define a cartesian closed category CStabm [12], which uses normed R+-semimodule –
which are in correspondence with positive cones of partially ordered vector spaces – to
interpret a probabilistic variant of PCF with continuous distributions. In a follow-up paper,
Ehrhard [11] has defined a category CLinm of sequentially complete positive cones with
measurability paths and linear Scott continuous maps in which PCoh embeds fully and
faithfully.

A similar approach was taken by Slavnov [24], who defined a category CCones of so-called
coherent cones and linear contractive functions and showed that it is a model of classical
linear logic. These cones come equipped with a different notion of completeness that is
stronger than sequential completeness but weaker than ours.

From a mathematical point of view, the objects of both CCones and CStabm are not
as well understood as Banach lattices, making them not ideal semantic frameworks to reason
about probabilistic programs, since many useful lemmas for reasoning about programs would
have to be reproved. Besides, our model provides a clear mathematical justification for
having Fatou-like properties in the semantics: it is forced upon it by Theorem 28 instead of
being there for denotational reasons, as is the case of CStabm, or in enabling the exponential
construction, as is the case of CCones, showing a kind of canonicity of our model.

Vector Space Semantics of Linear Logic

Dahlqvist and Kozen [7] have defined a category of partially ordered Banach spaces RoBan,
shown that it is a model of intuitionistic linear logic, and used it to interpret a higher-order
imperative probabilistic language with while loops and soft-conditioning.

Their model also uses a mathematically well-understood class of vector spaces. That
being said, by using a more general class of vector spaces than we do, their model has less
structure than ours. A practical consequence of this lack of structure is that in order to
guarantee the soundness of their semantics, they define 6 type grammars that are used for
different program constructs. As an example, in order to interpret conditionals and while
loops the context may only have Dedekind complete types.

Another relevant vector space model is the one based on complex coherent Banach
spaces [17]. However, since they are complex vector spaces, it is unclear if it would be
possible to embed PCoh into them.

Neither RoBan nor CStabm are models of classical linear logic.

8 Conclusion

In this paper we have shown that PBanLat1 is a model of classical linear logic that
conservatively extends PCoh and can be used to give semantics to a recursive probabilistic
calculus. Our model differs from existing extensions of PCoh that only extends PCoh’s
intuitionistic fragment, meaning that they do not have an involutive negation. We believe
that our model is a good fit for formal verification purposes because Riesz spaces have decades
of research and have been extensively used in the formalization of stochastic processes.

For future work, we are interested in showing that PBanLat1 can accommodate expo-
nentials and use this category for reasoning about correctness properties of probabilistic
programs such as inference algorithms.

CSL 2025

44:16 Classical Linear Logic in Perfect Banach Lattices

References
1 Charalambos D Aliprantis and Owen Burkinshaw. Positive operators. Springer, 2006. doi:

10.1007/978-1-4020-5008-4.
2 Pedro H. Azevedo de Amorim. A higher-order language for markov kernels and linear

operators. In Foundations of Software Science and Computation Structures (FoSSaCS), 2023.
doi:10.1007/978-3-031-30829-1_5.

3 Francis Borceux. Handbook of categorical algebra: volume 1, Basic category theory, volume 1.
Cambridge University Press, 1994.

4 Francis Borceux. Handbook of categorical algebra: volume 2, Categories and Structures,
volume 2. Cambridge University Press, 1994.

5 Kenta Cho and Bart Jacobs. Disintegration and bayesian inversion via string diagrams.
Mathematical Structures in Computer Science, 2019.

6 Raphaëlle Crubillé. Probabilistic stable functions on discrete cones are power series. In Logic
in Computer Science (LICS), 2018.

7 Fredrik Dahlqvist and Dexter Kozen. Semantics of higher-order probabilistic programs with
conditioning. In Principles of Programming Languages (POPL), 2019.

8 Vincent Danos and Thomas Ehrhard. Probabilistic coherence spaces as a model of higher-
order probabilistic computation. Information and Computation, 209(6):966–991, 2011. doi:
10.1016/J.IC.2011.02.001.

9 Thomas Ehrhard. On Köthe sequence spaces and linear logic. Mathematical Structures in
Computer Science, 12(5):579–623, 2002. doi:10.1017/S0960129502003729.

10 Thomas Ehrhard. Differentials and distances in probabilistic coherence spaces. arXiv preprint,
2019. arXiv:1902.04836.

11 Thomas Ehrhard. On the linear structure of cones. In Logic in Computer Science (LICS),
2020.

12 Thomas Ehrhard, Michele Pagani, and Christine Tasson. Measurable cones and stable,
measurable functions: a model for probabilistic higher-order programming. In Principles of
Programming Languages (POPL), 2017.

13 Thomas Ehrhard, Christine Tasson, and Michele Pagani. Probabilistic coherence spaces are
fully abstract for probabilistic PCF. In Principles of Programming Languages (POPL), 2014.

14 David H Fremlin. Measure theory. Torres Fremlin, 2000.
15 DH Fremlin. Abstract Köthe spaces IV. In Mathematical Proceedings of the Cambridge

Philosophical Society, pages 45–52. Cambridge University Press, 1968.
16 Tobias Fritz. A synthetic approach to markov kernels, conditional independence and theorems

on sufficient statistics. Advances in Mathematics, 370:107239, 2020.
17 Jean-Yves Girard. Coherent banach spaces: a continuous denotational semantics. Theoretical

Computer Science, 227(1-2):275–297, 1999. doi:10.1016/S0304-3975(99)00056-0.
18 Klaus Keimel and Gordon D Plotkin. Mixed powerdomains for probability and nondeterminism.

Logical Methods in Computer Science, 2017.
19 Marie Kerjean and Christine Tasson. Mackey-complete spaces and power series–a topological

model of differential linear logic. Mathematical Structures in Computer Science, 28(4):472–507,
2018. doi:10.1017/S0960129516000281.

20 Dexter Kozen. Semantics of probabilistic programs. In Symposium on Foundations of Computer
Science (SFCS), 1979.

21 WAJ Luxemberg and AC Zaanen. Notes on Banach function spaces VI-XIII. Proceedings of
the Koninklijke Nederlandse Akademie van Wetenschappen, Series A, 66:251–263, 1963.

22 Paul-André Mellies. Categorical semantics of linear logic. Panoramas et syntheses, 27:15–215,
2009.

23 Peter Selinger. Towards a semantics for higher-order quantum computation. In Quantum
Programming Languages (QPL), 2004.

https://doi.org/10.1007/978-1-4020-5008-4
https://doi.org/10.1007/978-1-4020-5008-4
https://doi.org/10.1007/978-3-031-30829-1_5
https://doi.org/10.1016/J.IC.2011.02.001
https://doi.org/10.1016/J.IC.2011.02.001
https://doi.org/10.1017/S0960129502003729
https://arxiv.org/abs/1902.04836
https://doi.org/10.1016/S0304-3975(99)00056-0
https://doi.org/10.1017/S0960129516000281

P. H. Azevedo de Amorim, L. Witzman, and D. Kozen 44:17

24 Sergey Slavnov. Linear logic in normed cones: probabilistic coherence spaces and bey-
ond. Mathematical Structures in Computer Science, 31(5):495–534, 2021. doi:10.1017/
S0960129521000177.

25 Christine Tasson and Thomas Ehrhard. Probabilistic call by push value. Logical Methods in
Computer Science, 15, 2019. doi:10.23638/LMCS-15(1:3)2019.

26 Adriaan C Zaanen. Introduction to operator theory in Riesz spaces. Springer, 2012.

A A Metalanguage for Linear Operators and Markov Kernels

In this section we further explain the two-level language λLL
MK and its semantics. The

language MK corresponds to an effectful language with probabilistic primitives and where
free variables are assumed to be values, as opposed to computations. For instance, the
program x : N, y : N ⊢MK x + y : N is interpreted as a deterministic program. This language
is interpreted in a CD category, which can be seen as an abstraction for programming with
commutative effects [16].

▶ Definition 61 ([5, Definition 2.2]). CD categories are symmetric monoidal categories
such that every object A has a commutative comonoid structure copyA : A → A ⊗ A and
deleteA : A → 1 satisfying certain structural properties.

In the context of probabilistic programming, there are many CD categories to choose
from. In particular, for any subprobability monad, its Kleisli category is a CD category.
This is the case for the sStoch category, since it can be characterized as the category of
measurable sets and measurable functions A → G(B), where G is the subprobability monad
over Meas.

The language LL is basically a linear λ-calculus. By itself, linearity limits the expressivity
of the language quite a bit. In the original paper, the author argues that for probabilistic
programming, the linear usage of variables is, semantically, too restrictive, since many linear
probabilistic calculi, in the algebraic sense, may use variables more than once [2]. This
observation led to the introduction of the M modality in the LL language which allows
MK programs to be called from an LL program. Semantically, this is interpreted as a lax
monoidal functor.

▶ Definition 62 ([4, Definition 6.4.1]). Let C and D be monoidal categories. A (lax) monoidal
functor is a functor F : C → D equipped with a natural transformation εA,B : FA ⊗D FB →
F (A ⊗C B) and a morphism ID → F (IC) making certain coherence diagrams commute.

From a programming point of view, types Mτ should be thought of as types that can
be sampled from. Supposing that the language has a primitive uniform for the uniform
distribution over the unit interval the Sample construct can be used to write the program

sample uniform as x in (x + x)

The program above samples from a uniform distribution and adds the result to itself. This
program illustrates why this syntax increases the expressivity of the linear λ-calculus. By
allowing the continuation x + x to be an MK program, variables may be freely reused or
discarded without worrying about syntactic restriction imposed by linearity.

However, once inside the MK language, there is no way of going back to the higher-order
language, meaning that the program sample uniform as x in (sample uniform as y in (x + y)) is
not well-typed. This is mitigated by lax monoidality, which makes it possible to simultaneously
sample from distributions: sample (uniform, uniform) as (x, y) in (x + y).

CSL 2025

https://doi.org/10.1017/S0960129521000177
https://doi.org/10.1017/S0960129521000177
https://doi.org/10.23638/LMCS-15(1:3)2019

44:18 Classical Linear Logic in Perfect Banach Lattices

Var

Γ, x : τ ⊢MK x : τ

Const
r ∈ R

Γ ⊢MK r : R

Uniform

Γ ⊢MK uniform : R

Let
Γ ⊢MK t : τ1 Γ, x : τ1 ⊢MK u : τ

Γ ⊢MK let x = t in u : τ

Pair
Γ ⊢MK t : τ1 Γ ⊢MK u : τ2

Γ ⊢MK (t, u) : τ1 × τ2

Proj1
Γ ⊢MK t : τ1 × τ2

Γ ⊢MK π1t : τ1

Proj2
Γ ⊢MK t : τ1 × τ2

Γ ⊢MK π2t : τ2

Axiom

x : τ ⊢LL x : τ

Unit

· ⊢LL unit : 1

Abstraction
Γ, x : τ1 ⊢LL t : τ2

Γ ⊢LL λx.t : τ1 ⊸ τ2

Application
Γ1 ⊢LL t : τ1 ⊸ τ2 Γ2 ⊢LL u : τ1

Γ1, Γ2 ⊢LL t u : τ2

Tensor
Γ1 ⊢LL t : τ1 Γ2 ⊢LL u : τ2

Γ1, Γ2 ⊢LL t ⊗ u : τ1 ⊗ τ2

LetTensor
Γ1 ⊢LL t : τ1 ⊗ τ2 Γ2, x : τ1, y : τ2 ⊢LL u : τ

Γ1, Γ2 ⊢LL let x ⊗ y = t in u : τ

Sample
x1 : τ1 · · · xn : τn ⊢MK M : τ ∆; Γi ⊢LL ti : Mτi 0 ≤ i < n

∆; Γ1, · · · , Γn ⊢LL sample ti as xi in M : Mτ

Figure 2 Typing rules for λLL
MK .

▶ Definition 63. A model of λLL
MK is a triple (C, L, M), where C, a symmetric monoidal

closed category L and M : M → C is a lax monoidal functor.

The typing rules are depicted in Figure 2. They are basically the amalgamation of the
rules for programming with CD categories, i.e. a first-order expression language with pairs,
with symmetric monoidal closed categories, i.e. the linear λ-calculus with tensor types. The
main novelty is the introduction of the lax monoidal modality M and its accompanying
typing rule Sample which connects the MK and LL languages.

Much like the typing rules, the categorical semantics of λLL
MK is the combination of the

categorical semantics of the internal languages of CD categories and the linear λ-calculus
with the exception of the Sample rule that makes use of the functor M. The full semantics
is depicted in Figure 3.

B Proof of Lemma 38

By Theorem 14, V ⊸ W is a Riesz space. Applying Theorem 29, we can also show that it is
perfect. To show separability, let f1, f2 : V ⊸ W be distinct functions. Then there is a point
v ∈ V such that f1(v) ̸= f2(v). Since W is perfect, it is separated, therefore there exists

P. H. Azevedo de Amorim, L. Witzman, and D. Kozen 44:19

Var

τ × Γ idτ ×delΓ−−−−−−→ τ

Let
Γ M−→ τ1 Γ × τ1

N−→ τ2

Γ copy;(id×M);N−−−−−−−−−−→ τ2

× Intro
Γ M−→ τ1 Γ N−→ τ2

Γ copy;M×N−−−−−−−→ τ1 × τ2

× Elimi

Γ M−→ τ1 × τ2

Γ
M ;(idτi

×del)
−−−−−−−−→ τi

Var

τ
idτ−−→ τ

Abstraction
Γ ⊗ τ1

t−→ τ2

Γ cur(t)−−−→ τ1 ⊸ τ2

Application
Γ1

t−→ τ1 ⊸ τ2 Γ2
u−→ τ1

Γ1 ⊗ Γ2
(t⊗u);ev−−−−−→ τ2

⊗ Intro
Γ1

t−→ τ1 Γ2
u−→ τ2

Γ1 ⊗ Γ2
t⊗u−−→ τ1 ⊗ τ2

⊗ Elim
Γ1

t−→ τ1 ⊗ τ2 Γ2 ⊗ τ1 ⊗ τ2
u−→ τ

Γ1 ⊗ Γ2
(id⊗t);u−−−−−→ τ

Sample
τ1 × · · · × τn

M−→ τ Γi
ti−→ Mτi

Γ1 ⊗ · · · ⊗ Γn
t1⊗···⊗tn−−−−−−→ Mτ1 ⊗ · · · ⊗ Mτn

µ−→ M(τ1 × · · · × τn) MM−−−→ Mτ

Figure 3 Categorical Semantics of λLL
MK .

g : W ⊸ R such that g(f1(v)) ̸= g(f2(v)). Then the order-continuous function λf .g(f(v))
separates the points f1 and f2, therefore V ⊸ W is separated.

Now let 0 ≤ {fα}↑ be an increasing net such that supα F (fα) < ∞ for all positive
F : (V ⊸ W) ⊸ R. We can define an f such that fα ↑ f pointwise. Let v ∈ V + and let
F : W ⊸ R be a positive functional. Consider the functional λf .F (f(v)) : (V ⊸ W) ⊸ R.
By hypothesis, supα(F (fα(v))) < ∞, and since W is perfect and {fα(v)} is a positive net in
W , there exists f(v) ∈ W such that fα(v) ↑ f(v). This defines f on elements of V +, and for
arbitrary v ∈ V we take f(v) = f(v+) − f(v−). Then supα fα = f .

C Proof of Theorem 50

If u ∈ e(X⊥), consider the element fu = λx.⟨u+, x⟩ − ⟨u−, x⟩. It is possible to show that
the function λx.⟨u, x⟩ is positive and Scott-continuous, therefore order-continuous for every
u ∈ P(X). Using this result, it is not hard to show that fu ∈ e(X)σ.

Conversely, consider an element f ∈ e(X)σ. Without loss of generality, we can assume
that f is positive. We want to associate to f an element in e(X⊥). As is shown by Ehrhard
and Danos [8], we can alternatively characterize the space e(X) as

{u ∈ R|X| | ∃λ > 0 ∀u′ ∈ P(X⊥) ⟨|u|, u′⟩ ≤ λ}.

CSL 2025

44:20 Classical Linear Logic in Perfect Banach Lattices

Consider the function fδ = λx.f(δx). Let us show that fδ ∈ e(X⊥). To do this, we show
that for every u ∈ P(X), ⟨|f ′|, u⟩ is uniformly bounded. Let (uα)α∈Pfin(X) be the ascending
net uα,a = ua if a ∈ α and 0 otherwise. By expanding the definition, we get the equality

⟨|fδ|, uα⟩ =
∑

a∈|X|

|f(δa)|uα,a =

∑
a∈|X|

|f(δauα,a)| =
∑

a∈|X|

f(δauα,a).

We get the last equality from f being a positive function. Since every uα has finite support,
the expression above is well defined.

∑
a∈|X|

f(δauα,a) = f

 ∑
a∈|X|

δauα,a

 = f(uα)

Since f is order-continuous and monotone and {uα} is an increasing net, we can conclude
that ⟨|fδ|, u⟩ ≤ f(u), therefore for every u ∈ P(X), ⟨|fδ|, u⟩ ≤ ∥f∥ and fδ ∈ e(X⊥). If f is
not positive, we decompose it as the difference of two positive maps f = f+ − f− and define
fδ = f+

δ − f−
δ .

A direct calculation shows that this is indeed an isomorphism.

D Proof of Theorem 57

Let C be a directed complete lattice cone. In order to define functions over it we use
the universal property of quotients: it suffices to define it over every pair (c1, c2) while
guaranteeing that the function acts the same over every equivalence class.

For instance, the vector space structure can be simply defined componentwise. Let
(c1, c2), (c3, c4) ∈ C − C then we define

(c1, c2) + (c3, c4) = (c1 + c3, c2 + c4)
α(c1, c2) = (αc1, αc2) for α ≥ 0
α(c1, c2) = (−αc2, −αc1) otherwise

The lattice operations require a bit more ingenuity, and we first observe the equation
u ∨ v = u + (v − u)+ which holds in every Riesz space, reducing the lowest upper bound
operation to addition and the positive part. By doing some algebraic manipulations we get that
if (c1, c2), (c3, c4) ∈ C − C then we define (c1, c2) ∨ (c3, c4) = (c1, c2) − ((c3, c4) − (c1, c2))+ =
(c1, c2) + (c3 + c2 − (c1 + c4) ∧ (c2 + c3), 0) = (c1 + c3 + c2 − (c1 + c4) ∧ (c2 + c3), c2). The
lattice equations such as commutativity and idempotency follow by unfolding the definitions
and from C being a lattice.

Before defining a norm over C − C we first need the following lemma

▶ Lemma 64. (C − C)+ ∼= {(c, 0) | c ∈ C} ∼= C.

Proof. The mapping {(c, 0) | c ∈ C} → (C − C)+ is the injection through the equivalence
class function and the mapping in the other direction can be constructed by observing that
whenever (c1, c2) ≥ (0, 0) it can be shown that c1 ≥ c2 and, therefore, (c1 − c2, 0) = (c1, c2)
and this decomposition is unique, since (c, 0) = (d, 0) implies, by definition of ∼ that c = d.
The second isomorphism is trivial. ◀

P. H. Azevedo de Amorim, L. Witzman, and D. Kozen 44:21

Given a norm over C it is possible to extend it to a norm over C − C. This follows
from the property of normed Riesz spaces, where ∥|v|∥ = ∥v∥ which forces us to define
∥(c1, c2)∥ = ∥|(c1, c2)|∥C . Note that since |(c1, c2)| is a positive element of C − C, by the
lemma above it can be mapped back to an element of C which, in turn, has a norm.

Therefore, we have shown that C − C is a normed Riesz space. Since C has the directed
completeness property it follows that C − C has the weak Fatou property and, therefore, it
is Banach and perfect.

E Proof of Theorem 60

There is a standard functor M that maps measurable sets to the vector space of signed
measures and sub-Markov kernels f : A → MB to the linear function Mf(µ) =

∫
fdµ. The

proof of linearity is standard, but order-continuity requires a few words. Let {µα} ↓ 0 be a
descending arrow, Mf(µα) =

∫
fdµα ≤

∫
1dµα = µα(A) which, as µα goes to zero, so does

µα(A), making f̃ order-continuous. The functorial laws also follows from standard proofs
from the literature.

To show that M is lax monoidal, we need to define a natural transformation µX,Y :
M(X) ⊗ M(Y) → M(X × Y) which is easily defined by the universal property of the tensor
product and a morphism ε : R ⊸ M(1) which maps a real number r to the measure rδ{∗},
where ∗ is the only member of the singleton set 1. Showing that the necessary diagrams
commute follows from the universal property of the tensor product.

CSL 2025

Insights from Univalent Foundations:
A Case Study Using Double Categories
Nima Rasekh # Ñ

Institute of Mathematics and Computer Science, University of Greifswald, Germany

Niels van der Weide # Ñ

Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands

Benedikt Ahrens #

Delft University of Technology, The Netherlands
University of Birmingham, UK

Paige Randall North #

Department of Information and Computing Sciences and Mathematical Institute,
Utrecht University, The Netherlands

Abstract
Category theory unifies mathematical concepts, aiding comparisons across structures by incorporating
not just objects, but also morphisms capturing interactions between objects. Of particular importance
in some applications are double categories, which are categories with two classes of morphisms,
axiomatizing two different kinds of interactions between objects. These have found applications in
many areas of mathematics and theoretical computer science, for instance, the study of lenses, open
systems, and rewriting.

However, double categories come with a wide variety of equivalences, which makes it challenging
to transport structure along equivalences. To deal with this challenge, we propose the univalence
maxim: each notion of equivalence of categorical structures has a corresponding notion of univalent
categorical structure which induces that notion of equivalence. We also prove corresponding
univalence principles, which allow us to transport structure and properties along equivalences. In
this way, the usually informal practice of reasoning modulo equivalence becomes grounded in an
entirely formal logical principle.

We apply this perspective to various double categorical structures, such as (pseudo) double
categories and double bicategories. Concretely, we characterize and formalize their definitions in Coq
UniMath up to chosen equivalences, which we achieve by establishing their univalence principles.

2012 ACM Subject Classification Theory of computation Logic and verification; Theory of
computation Type theory

Keywords and phrases formalization of mathematics, category theory, double categories, univalent
foundations

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.45

Related Version Previous Version: https://arxiv.org/abs/2402.05265

Supplementary Material Software: https://doi.org/10.5281/zenodo.13828995 [36]

Funding Niels van der Weide: This research was supported by the NWO project “The Power of
Equality” OCENW.M20.380, which is financed by the Dutch Research Council (NWO).

Acknowledgements We gratefully acknowledge the work by the Coq development team in providing
the Coq proof assistant and surrounding infrastructure, as well as their support in keeping UniMath
compatible with Coq. We are very grateful to Mike Shulman for answering our questions about
profunctors. We would also like to thank Lyne Moser for many valuable discussions and explanations
regarding double categories, their equivalences, and important references. The first author is grateful
to the Max Planck Institute for Mathematics in Bonn for its hospitality and financial support.

© Nima Rasekh, Niels van der Weide, Benedikt Ahrens, and Paige Randall North;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 45; pp. 45:1–45:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nima.rasekh@uni-greifswald.de
https://nimarasekh.github.io
https://orcid.org/0000-0003-0766-2755
mailto:nweide@cs.ru.nl
https://nmvdw.github.io
https://orcid.org/0000-0003-1146-4161
mailto:B.P.Ahrens@tudelft.nl
https://orcid.org/0000-0002-6786-4538
mailto:p.r.north@uu.nl
https://orcid.org/0000-0001-7876-0956
https://doi.org/10.4230/LIPIcs.CSL.2025.45
https://arxiv.org/abs/2402.05265
https://doi.org/10.5281/zenodo.13828995
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Insights from Univalent Foundations: A Case Study Using Double Categories

1 Introduction

The advancement of mathematics has resulted in ever more intricate structures, which come
with various commonly used identifications, weakening set-theoretic equalities. For instance,
groups have one common type of identification: isomorphisms. Two groups have the same
group-theoretic properties if and only if they are isomorphic. Hence, structures on, and
properties of, groups can be transported along isomorphisms. Already in this first example
we can witness the challenge of dealing with equivalences in set-theoretic foundations. Indeed,
one needs to prove every time that a suitable structure or property can be transported along
isomorphisms of groups, as only transport along equalities would come for free.

If we generalize groups, we encounter one of the first examples of a structure with
more than one important type of sameness: categories. Indeed, it comes with two major
identifications, isomorphisms and categorical equivalences. Here, our choice depends on
whether we study objects of a category up to equality, as is often done in the study of
syntax [5, 12], in which case we use isomorphisms; or whether we study objects up to
isomorphism, the more common choice, in which case we use categorical equivalences. Hence,
we now need suitable results regarding transporting structures and properties both for
isomorphisms and categorical equivalences [10, 17, 24], which is significantly more challenging
given the amount of data an equivalence entails. At least we can still benefit from the fact
that categorical equivalences generalize isomorphism, meaning it often suffices to restrict to
the case of categorical equivalences.

The situation becomes untenable when we further generalize to higher categories, and
particularly double categories, a structure that is a key ingredient in the study of lenses [11, 13],
rewriting [9, 8], open systems [7, 6], and programming language theory [28, 14]. Double
categories come with objects, two classes of morphisms, known as horizontal and vertical
morphisms, and suitable data detailing how they interact, known as squares. This additional
structure enables a wide range of configurations and identifications. In particular we can
employ the squares to relax the associativity and unitality of the composition of horizontal
or vertical morphisms. Also, we can use the intricate structure to define a wide range of
equivalences, with the fascinating observation that none of them is more general than all the
others.

As a result, a significant part of the double categorical literature has exclusively focused
on one type of equivalences, called horizontal equivalence (Section 5), which prioritizes hori-
zontal morphisms and hence ignores the natural symmetry between horizontal and vertical
morphisms inherent to the definition of a double category. Examples include the work on
limits [20], adjunctions [21], formal category theory [31], lenses [13] and open systems [6]. At
the same time, symmetric notions of equivalences, such as gregarious equivalences (Section 9),
have received far less attention, even though they are the natural context for other important
double categorical constructions, such as the square functor [16]. The square functor is
already conjecturally applied to modern aspects of algebraic geometry [18], with other anti-
cipated applications currently hindered by insufficient theoretical advances in this direction.
Addressing this situation requires the ability to adjust our definition of double categories
based on the equivalence of interest, which can then be employed in the aforementioned
examples.

Beyond mathematics, the fact that double categories do not come with a distinguished
notion of equivalence also complicates any effort formalizing double category theory in
intensional type theories via proof assistants. Indeed, we would like to have suitable principles
that permit transporting results regarding double categories along equivalences. However, as

N. Rasekh, N. van der Weide, B. Ahrens, and P. R. North 45:3

there are several incomparable equivalences in the literature, it is not possible to only have
one principle. We would rather need one such transport principle, and corresponding notion
of double category, for each equivalence.

The Univalence Maxim. In this paper, we propose the univalence maxim to resolve
the aforementioned challenges and to provide suitable transport principles, formally. Our
univalence maxim takes place in univalent type theory, a variant of Martin-Löf type theory
with the univalence axiom.

In type theory, Martin-Löf’s identity type is a fundamental concept, capturing formally
when two objects are considered “the same”. The univalence axiom adds extensionality
principles, postulating that the identity type of types coincides with the type of equivalences
between these types. That is, two types are identified if we have an equivalence between
them, and thus equivalent types have the same properties. This perspective also extends to
structures. Indeed, in univalent foundations, each notion of structure comes with a notion of
equivalence such that identity of structures corresponds to equivalence. For instance, one can
prove that identity of algebraic structures, such as groups, corresponds to isomorphism. The
correspondence between identity and equivalence for structures is known as the structure
identity principle. Such principles allow us to prove directly that structure and properties
can be transported along equivalences.

The univalence maxim we propose says the following: for every chosen equivalence of
a given categorical structure, there exists a tailored definition for which identity precisely
coincides with the chosen notion of equivalence. We can already witness manifestations of
the maxim for categories, which, as we discussed, can be considered up to isomorphism or up
to categorical equivalence. Indeed, in the univalent setting we have two notions of categories,
namely setcategories, whose properties are automatically invariant under isomorphisms,
and univalent categories, whose properties are automatically invariant under categorical
equivalences. See Section 2 for further details.

While we can already apply the univalence maxim to categories, its true power manifests
in the more complicated framework of double categories. Indeed, beyond obtaining precise
transport principles which assist formalization, by establishing a correspondence between
various double categorical equivalences and suitably defined double categories, we are for
the first time able to structure the existing zoo of double categorical notions that can be
found in the literature, the results of which we summarized in the Diagrammatic Summary
below. Having such principles available also helps with the formalization of double categories,
because it allows us to view equivalences via the usual Martin-Löf identity type.

Contributions. In this paper we apply the univalence maxim to categories, 2-categories and
double categories. More specifically,
1. in Section 4 we define (pseudo) double setcategories and prove that they are invariant

under isomorphisms;
2. we provide a further generalization to double bicategories (Section 7) and univalent double

bicategories invariant under gregarious equivalences (Section 9).
3. we also develop the theory of double bicategories, such as companions (Section 8) and

computationally feasible methods to establish univalence (Section 10).

We review univalent categories and 2-categories following [3, 2] in Section 2 and univalent
pseudo double categories in Section 5 following our previous work in [34].

CSL 2025

45:4 Insights from Univalent Foundations: A Case Study Using Double Categories

Diagrammatic Summary. We can summarize our major double categorical notions and their
relations diagrammatically. Here a dashed arrow represents an inclusion that only respects
the categorical structure (i.e. only holds in classical setting), whereas a solid arrow indicates
an inclusion that respects categorical structure and univalence conditions. Moreover, an
arrow labeled V denotes the underlying vertical 2-category or bicategory (Definitions 3.7
and 7.1), whereas an arrow labeled H is the underlying horizontal 2-category or bicategory
(Definitions 3.7 and 7.1).

Strict Dbl Setcat (4.1) Ps Dbl Setcat (4.1) 2-Setcat (2.4)

Weak Dbl Setcat (7.7) Bisetcat (2.4)

Univ Ps Dbl Cat (5.1) Univ 2-Cat (2.6)

Univ Weak Dbl Cat (9.4) Univ Dbl Bicat (9.4) Univ Bicat (2.8)

HV

V

H

HV

V

H

HV

HV

Formalization. The main results have been formalized using the Coq proof assistant and
the UniMath library. Links to the corresponding identifier in the code are in blue.

There are two differences between the formalization and the definitions presented in the
paper. While in the paper, we present strict double categories as a special instance of pseudo
double categories (Definition 3.1), we use an unfolded approach in the formalization. Second,
here we define Verity double bicategories (Definition 7.1) using two bicategories whose types
of objects are equal. This is not so in the formalization, where instead a more unfolded
approach is used.

Related Work. The study of (higher) categories in univalent foundations has a rich history.
Indeed, a study of univalent categories was commenced by Ahrens, Kapulkin, and Shulman
in [3], and later extended by Ahrens, Frumin, Maggesi, Veltri, and Van der Weide to a
study of univalence for 2-categories and bicategories in [2]. Both these works are reviewed
more carefully in Section 2. This existing work on (2-)categories motivated us to pursue
univalence principles for double categorical structures. This first commenced with [34], where
we focused on univalence principles for horizontal equivalences, given their centrality in
the current double categorical literature. In that paper we introduced univalent pseudo
double categories and proved that their identities correspond to horizontal equivalences.
Further details regarding our past work can be found in Section 5. The current paper is a
natural continuation of that effort, generalizing from horizontal equivalences to gregarious
equivalences and from double categories to double bicategories. This effort was also motivated
by work in [4], where Ahrens, North, Shulman, and Tsementzis established a very broad
univalence principle, which in particular applies to univalent double (bi)categories and hence
establishes the basis for our work in Section 9.

Double categories acquired some attention from the formalization community, and several
libraries on formalized mathematics contain double categories. Murray, Pronk, and Szyld [27]
worked towards defining double categories in the Lean proof assistant1. In 1lab [32], internal

1 https://github.com/leanprover-community/mathlib/pull/18204

https://github.com/leanprover-community/mathlib/pull/18204

N. Rasekh, N. van der Weide, B. Ahrens, and P. R. North 45:5

categories are defined, and thus double categories are also defined as category objects in
the category of setcategories. Finally, in the library by Hu and Carette [22] a definition of
double category has been implemented2. Each of these formalization only considers strict
double categories, whereas we also consider weaker notions. In addition, our formalization
contains a study of various univalence principles.

2 (2-)Categories in Univalent Foundations

In this section we realize the vision of the univalence maxim for categories and bicategories,
based on work done in [2, 3]. More precisely, we analyze two notions of equivalences for
categories (isomorphisms, equivalences) and three notions of equivalences for 2-categories
and bicategories (isomorphisms, equivalences, biequivalences). For each of these notions, we
define a categorical structure whose identities correspond to that notion of equivalence.

We start with categories. In classical mathematics a category is defined as a class of
objects and a set of morphisms, depending on two objects, with a unital and associative
composition of morphisms. In univalent foundations, categories are defined to have a type
of objects and a set of morphisms [3, Definition 3.1]. Here a type is called a set if any two
identities between two terms are equal.

Note that categories have two important notions of equivalences: isomorphisms and equi-
valences. Categories that are invariant under isomorphism, are also known has setcategories.
The other notion of interest, univalent categories, are categories that are invariant under
equivalence. These notions are defined as follows.

▶ Definition 2.1. A category is said to be a setcategory if its type of objects is a set. A
category C is said to be univalent if for all objects x, y : C the map idtoisox,y, which sends
identities p : x = y to isomorphisms idtoisox,y(p) : x ∼= y, is an equivalence of types.

The univalence condition implies that equalities of categories are precisely categorical
equivalences [3, Theorem 6.17], giving us the desired invariance property. Univalent categories
provide us with an alternative way to characterize the fact that setcategories are invariant
under isomorphisms:

▶ Proposition 2.2. The category of setcategories and functors is univalent.

Unfortunately, we cannot repeat the argument and incorporate the equivalence invariance
of univalent categories into the construction of a univalent category, as the type of equivalences
between two univalent categories is generally too complex and does not form a set. However,
we can in fact construct a univalent bicategory of univalent categories [2, Proposition 3.19].

▶ Proposition 2.3. The bicategory of univalent categories, functors, and natural transforma-
tions is univalent.

Next we look at bicategories, and 2-categories, which are bicategories with identity
associators and unitors. As bicategories not only have objects and 1-morphisms, but also
2-morphisms between 1-morphisms, the number of relevant equivalences increases significantly.
Here we focus in particular on three equivalences: isomorphisms of bicategories, equivalences
of bicategories (equivalences of the underlying 1-categories that are isomorphisms of 2-
morphisms), and biequivalences. Our goal is to construct for each type of equivalence a
bicategory (2-category) such that their identities correspond to the chosen equivalence.

2 https://github.com/agda/agda-categories/blob/36abe6bff98be027bd4fcc3306d6dac8b2140079/
src/Categories/Double/Core.agda

CSL 2025

https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.CategoryTheory.Core.Setcategories.html#setcategory
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.CategoryTheory.Core.Univalence.html#is_univalent
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.CategoryTheory.Categories.CategoryOfSetCategories.html#is_univalent_cat_of_setcategory
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.Core.Examples.BicatOfUnivCats.html#univalent_cat_is_univalent_2
https://github.com/agda/agda-categories/blob/36abe6bff98be027bd4fcc3306d6dac8b2140079/src/Categories/Double/Core.agda
https://github.com/agda/agda-categories/blob/36abe6bff98be027bd4fcc3306d6dac8b2140079/src/Categories/Double/Core.agda

45:6 Insights from Univalent Foundations: A Case Study Using Double Categories

For the first kind of equivalence, taking Definition 2.1 as motivation we analogously
impose appropriate set level restrictions to obtain isomorphism invariance.

▶ Definition 2.4. A bicategory (2-category) is said to be a bisetcategory (2-setcategory)
if its type of objects and of 1-morphisms are sets.

▶ Proposition 2.5. The two categories given by bisetcategories and functors, and by 2-
setcategories and functors are univalent.

For the second kind of equivalence, we combine Proposition 2.2 and Proposition 2.3.

▶ Definition 2.6. A 2-category is said to be univalent if the underlying 1-category is
univalent and the 2-morphisms form a set.

▶ Proposition 2.7. Identities of univalent 2-categories correspond to equivalences.

Finally, we want a 2-categorical structure invariant under biequivalence. In light of
Proposition 2.3, all hom categories need to be univalent, which we call the local univalence
condition. Moreover, we also need a global univalence condition, stating that identities of
objects correspond to equivalences in the 2-category. In general this means that objects
form a 2-type and compositions of 1-morphisms is generally not strictly associative or unital.
Hence, this univalence condition only applies to bicategories.

▶ Definition 2.8. A bicategory is univalent if it is globally and locally univalent.

See [2, Definition 3.1] for a more explicit description of its definition. Finally, univalent
bicategories do exhibit the anticipated invariance property; see [4, Example 9.1].

▶ Proposition 2.9. Identities of univalent bicategories correspond to biequivalences.

3 Definition of Pseudo Double Categories

In the previous section, we reviewed (bi)categories and showed how imposing additional
conditions in univalent foundations lead to (bi)categories up to a desired notion of sameness.
For the rest of this paper, we conduct a similar analysis for double categorical structures. As
mentioned in the introduction, defining a double category is more complex and involves more
data, providing a wider range of examples and equivalences. Consequently, our analysis is
more challenging and valuable, and more relevant to the broader literature.

In this transitional section we commence with a review of a general definition of pseudo
double categories and explicate our examples. Then, in the next two sections we show how
imposing additional conditions result in the desired equivalences.

▶ Definition 3.1. A pseudo double category consists of
1. a category C called the vertical category;
2. for all objects x : C and y : C, a type x y of horizontal morphisms;
3. for every object x : C a horizontal identity idx : x x;
4. for all horizontal morphisms h : x y and k : y z, a horizontal composition

h⊙ k : x z;
5. for all horizontal morphisms h : x1 y1 and k : x2 y2 and vertical morphisms

vx : x1 x2 and vy : y1 y2, a set
(
vx

h
k vy

)
of squares;

6. for all horizontal morphisms h : x y, we have a vertical identity idvsq(h) :
(
idx h

h idy
)
;

7. for all τ1 :
(
v1

h
k w1

)
and τ2 :

(
v2

k
l w2

)
, a square τ1 ·sq τ2 :

(
v1 · v2

h
l w1 · w2

)
;

https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.Core.Strictness.html#bisetcat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.CategoryTheory.Core.TwoCategories.html#univalent_two_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.Core.Univalence.html#is_univalent_2
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Core.DoubleCats.html#double_cat

N. Rasekh, N. van der Weide, B. Ahrens, and P. R. North 45:7

8. for all v : x y, we have a horizontal identity idhsq(v) :
(

v idx

idy
v
)

;

9. for all τ1 :
(

v1
h1
k1

v2

)
and τ2 :

(
v2

h2
k2

v3

)
, a square τ1 ⊙sq τ2 :

(
v1

h1⊙h2
k1⊙k2

v3

)
;

10. for all h : x y, we have a left unitor λh :
(

idx idx⊙h
h idy

)
;

11. for all h : x y, we have a right unitor ρh :
(

idx h⊙idy

h idy
)

;
12. for all h1 : w x, h2 : x y, and h3 : y z, we have an associator

α(h1,h2,h3) :
(

idw h1⊙(h2⊙h3)
(h1⊙h2)⊙h3

idz
)

.

This data is required to satisfy several laws, which are found in the literature [34].
A strict double category is a pseudo double category in which horizontal morphisms

form a set and in which the unitors and associators are identities.

We now give precise definitions of the four major classes of examples that play a prominent
role throughout this paper: squares, spans, structured cospans and profunctors.

▶ Example 3.2. Let C be a category. Then we define a pseudo double category Sq(C) of
squares . The objects are objects in C and the horizontal and vertical morphisms are
morphisms in C. The type of squares

(
v1

h1
h2

v2

)
is defined to be h1 · v2 = v1 · h2.

▶ Example 3.3. Let C be a category with pullbacks. Then we define a pseudo double
category Span(C) of spans . The objects are objects in C and the vertical morphisms are
morphisms in C. The horizontal morphisms are spans, which are diagrams of the form
x

φ←− z
ψ
− y; and Given morphisms f : x1 x2 and g : y1 y2, then a square with

f and g as vertical sides and spans x1
φ1←− z1

ψ1− y1 and x2
φ2←− z2

ψ2− y2 as horizontal
sides is a morphism h : z1 z2 such that the following diagram commutes.

x1 z1 y1

x2 z2 y1

φ1

φ2

ψ1

ψ2

f gh

Even if C is a setcategory, Span(C) is generally only a pseudo double category. This
is because composition of spans is given by pullbacks, which is only weakly unital and
associative. Note that spans have been used in the study of rewriting systems [9, 8].

▶ Example 3.4. Suppose that we have a functor L : C1 C2. We define the double
category StructCospan(L) of structured cospans . The objects are objects in C1 and
the vertical morphisms are morphisms in C1. The horizontal morphisms are structured
cospans, which are diagrams of the form L(x)

φ
− z

ψ←− L(y); Given two structured cospans
L(x1)

φ1− z1
ψ1←−− L(y1) and L(x2)

φ2− z2
ψ2←−− L(y2), and two morphisms f : x1 x2

and g : y1 y2, a square consists of a morphism h : z1 z2 such that the following
diagram commutes

L(x1) z1 L(y1)

L(x2) z2 L(y1)φ2

ψ1

ψ2

L(f) L(g)h

φ1

Note that structured cospans are used to study open systems [7, 6].

CSL 2025

https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Core.StrictDoubleCats.html#strict_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.SquareDoubleCat.html#strict_square_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.SquareDoubleCat.html#strict_square_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.SpansDoubleCat.html#spans_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.StructuredCospansDoubleCat.html#structured_cospans_double_cat

45:8 Insights from Univalent Foundations: A Case Study Using Double Categories

▶ Example 3.5. We define the pseudo double category Prof of profunctors . The objects
are small setcategories and the vertical morphisms are functors. The horizontal morphisms
are profunctors from a category C to D, meaning functors of the form Dop × C Set,
and given profunctors P : C1 D1 and Q : C2 D2 and functors F : C1 C2 and
G : D1 D2, we define squares

(
F P

Q G
)

to be natural transformations P ⇒ (F ×G) ·Q.
Again, this pseudo double category will not be a strict double category, as profunctors do
not compose strictly. Note that profunctors are important in the study of lenses [11, 13].

Note that the composition of profunctors is defined as a colimit in the category of sets.
To guarantee that the desired colimit exists, we require that the involved categories are small.

▶ Example 3.6 (Gradual type theory, [28, Definition 5.2]). Let C be a 2-category. We define a
pseudo double category Coreflect(C) of coreflections . The objects are objects in C, the
vertical morphisms are morphisms in C, and the horizontal morphisms are adjunctions in C
whose unit is an equality (i.e., coreflections). The squares are given by 2-cells in C.

Double categories include the data of several (2-)categories. These are known as the
underlying 2-categories, and they are defined as follows.

▶ Definition 3.7. Given a pseudo double category C, we define a strict 2-category Ver(C),
which we call the underlying vertical 2-category as the 2-category whose objects are
objects in C, whose 1-cells are vertical morphisms in C, and whose 2-cells are squares with
horizontal identity sides.

In addition, we define a bicategory Hor(C), which we call the underlying horizontal
bicategory , as the bicategory whose objects are objects in C, whose 1-cells are horizontal
morphisms in C, and whose 2-cells are squares with vertical identity sides.

4 (Pseudo) Double Set-categories

Having defined strict and pseudo double categories, we now impose conditions to obtain
isomorphism invariant definitions, following the vision of the univalence maxim. Concretely,
we first construct isomorphism invariant notions of (pseudo) double categories and then
study several classes of examples. Following Section 2 and Definition 2.1, we need to impose
a set level condition to obtain isomorphism invariance, motivating the following definitions.

▶ Definition 4.1. A strict double setcategory is a strict double category whose objects
form a set. In addition, a pseudo double setcategory is a double category whose objects
and horizontal morphisms form a set.

Using similar ideas to the one used in Proposition 2.2, we confirm their desired invariance.

▶ Theorem 4.2. The category of strict double setcategories, with objects being strict double
setcategories and morphisms being strict double functors, is univalent.

▶ Theorem 4.3. The category of pseudo double setcategories, with objects being pseudo
double setcategories and morphisms being strict double functors, is univalent.

We now review our motivating examples in light of this invariance property.

▶ Proposition 4.4. Let C be a setcategory. Then Sq(C) is a strict double setcategory.

▶ Proposition 4.5. For a setcategory C with pullbacks, Span(C) is a pseudo double setcategory.

https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.ProfunctorDoubleCat.html#strict_profunctor_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.Coreflections.html#coreflections_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Underlying.VerticalTwoCategory.html#underlying_vert_two_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Underlying.HorizontalBicategory.html#horizontal_bicat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Underlying.HorizontalBicategory.html#horizontal_bicat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Core.StrictDoubleCats.html#strict_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Core.PseudoDoubleSetCats.html#pseudo_double_setcat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Core.CatOfStrictDoubleCats.html#univalent_cat_of_strict_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Core.CatOfPseudoDoubleCats.html#univalent_cat_of_pseudo_double_setcategory
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.SquareDoubleCat.html#strict_square_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.SpansDoubleCat.html#spans_pseudo_double_setcat

N. Rasekh, N. van der Weide, B. Ahrens, and P. R. North 45:9

▶ Proposition 4.6. Suppose that C1 and C2 are setcategories and that C2 has pushouts. Then
StructCospan(L) is a pseudo double setcategory.

▶ Proposition 4.7. Let C be a 2-setcategory. Then Coreflect(C) as defined in Example 3.6 is
a pseudo double setcategory.

The previous examples are very consistent with our intuition that an isomorphism invariant
category should indeed result in isomorphism invariant double categories of squares, (co)spans,
coreflections, or polynomials. Observe the class of examples of profunctors, Example 3.5, is
in fact not a pseudo double setcategory. See Proposition 5.7 for a more detailed discussion.
Let us instead present one further example coming from 2-category theory.

▶ Example 4.8. For a bisetcategory B we define the pseudo double setcategory B̂ , whose
objects are objects in B. Vertical morphisms are morphisms in B, and horizontal morphisms
x y are identities x = y. Squares

(
f p

q g
)

are 2-cells f · idtoiso(q)⇒ idtoiso(p) · g.

We end this section by observing that the set condition is preserved by taking underlying
bicategories. This results supports the intuitive fact that taking underlying 2-categories
preserves isomorphism invariance.

▶ Proposition 4.9. If C is a strict double setcategory, then Ver(C) is a strict 2-setcategory.

▶ Proposition 4.10. If C is a pseudo double setcategory, then Ver(C) is a strict 2-setcategory.

▶ Proposition 4.11. If C is a pseudo double setcategory, then Hor(C) is a bisetcategory.

5 Univalent Pseudo Double Categories

In the previous section we focused on isomorphism invariance. In this section we continue
realizing our univalence maxim, this time studying pseudo double categories invariant under
vertical equivalences, which are characterized by inducing equivalences on the underlying
vertical category and for any two objects x, y inducing equivalences on the category given by
horizontal morphisms x y and squares with trivial vertical sides. Our analysis relies on
our previous work done in [34]. We then end this section analyzing several examples.

Following Definition 2.1, we would expect a univalence condition for these two underlying
categories. This, however, implies that the underlying horizontal category is neither univalent
nor has a set of objects, meaning horizontal composition cannot be strict. Thus we have to
work with pseudo double categories, resulting in the following definition.

▶ Definition 5.1. A pseudo double category C is said to be univalent if its underlying
vertical category is univalent and if for all x, y : C the category whose objects are horizontal
morphisms x y and whose morphisms are squares with vertical identity sides, is univalent.

Building on our insights in Proposition 2.3, we similarly construct a univalent bicategory
of univalent pseudo double categories [34].

▶ Theorem 5.2. The bicategory of univalent pseudo double categories with lax double functors
is univalent.

Note that we use lax double functors in Theorem 5.2 whereas we use strict double functors
in Theorems 4.2 and 4.3. As the univalence condition is motivated by vertical equivalences, it
is not symmetric. For examples identities of objects only correspond to vertical isomorphisms,
and identities of horizontal morphisms correspond to isomorphisms of squares (composed
vertically). However, some double categories satisfy a stronger univalence condition that is
in fact symmetric.

CSL 2025

https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.StructuredCospansDoubleCat.html#structured_cospans_pseudo_double_setcat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.Coreflections.html#coreflections_pseudo_double_setcat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.BiSetcatToDoubleCat.html#bisetcat_to_pseudo_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Underlying.VerticalTwoCategoryStrict.html#strict_underlying_vertical_two_setcat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Underlying.VerticalTwoCategory.html#underlying_vert_two_setcat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Underlying.HorizontalBicategory.html#horizontal_bisetcat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Core.UnivalentDoubleCats.html#univalent_double_cat_to_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Core.BicatOfDoubleCats.html#is_univalent_2_bicat_of_double_cats

45:10 Insights from Univalent Foundations: A Case Study Using Double Categories

▶ Definition 5.3. A pseudo double category C is said to be symmetrically univalent if
the horizontal morphisms form a set, C is univalent, the category of objects and horizontal
morphisms is univalent, and for all x, y : C the category of vertical morphisms x y and
squares with horizontal identity sides, is univalent.

Let us present a variety of examples of univalent and symmetrically univalent pseudo
double categories. Again we focus on our three classes of interest, namely squares, spans and
profunctors [34], but we also provide additional examples.

▶ Proposition 5.4. If C is a univalent category, then Sq(C) is a symmetrically univalent
pseudo double category.

▶ Proposition 5.5. Let C be a univalent category with pullbacks. Then the pseudo double
category Span(C), is univalent, but not symmetrically univalent.

▶ Proposition 5.6. If C1 and C2 are univalent categories such that C2 has pushouts, then
StructCospan(L) is a univalent pseudo double category.

▶ Proposition 5.7. The pseudo double category of profunctors is univalent.

▶ Proposition 5.8. If C is a univalent 2-category. Then Coreflect(C) is a univalent pseudo
double category.

In the later sections, we analyze enriched versions of double categories of profunctors
benefiting from appropriately defined weak double categories (Example 7.5). However, if we
focus on categories enriched over a poset, which includes quantales and has found applications
in automata theory [1, 30] and fuzzy logic [15], we do get stricter double categories.

▶ Proposition 5.9. Suppose that V is a complete and cocomplete symmetric monoidal category
and suppose that V is a poset. Then we have a univalent pseudo double category whose
objects are univalent categories enriched over V, vertical morphisms are enriched functors,
horizontal morphisms are enriched profunctors, and whose squares are given by enriched
natural transformations.

▶ Remark 5.10. Note we cannot construct a univalent pseudo double category given by
univalent categories, functors and profunctors. Indeed, the type of univalent categories is a
2-type as it includes all 1-types, by [33, Example 9.9.6] and [2, Example 2.18], and hence
cannot be the objects of a univalent category, which is at most a 1-type ([3, Lemma 3.8]).

In the last section we observed that double setcategories (both pseudo and strict) preserve
isomorphism invariance when taking underlying bicategories. We might hence anticipate
similar results for univalent pseudo categories. Unfortunately we only have a partial result.
Indeed, vertical equivalences are preserved by taking the underlying vertical 2-category,
confirmed by the following result.

▶ Proposition 5.11. If D is univalent, then so is Ver(D).

However, it is generally untrue that univalent pseudo double categories will induce globally
univalent underlying horizontal bicategories. Indeed, the underlying horizontal bicategory of
the pseudo double category Prof is given by small setcategories, profunctors and 2-morphisms,
and we already observed in Proposition 5.7 that profunctors can be an isomorphism without
the underlying categories being isomorphic. However, not all hope is lost and we do recover
a local univalence condition.

▶ Proposition 5.12. If D is a univalent, then Hor(D) is locally univalent.

Note that Hor(D) is not necessarily univalent. This necessitates a double categorical
notion that accommodates biequivalences of bicategories.

https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Core.SymmetricUnivalent.html#symmetric_univalent
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.SquareDoubleCat.html#square_univalent_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.SpansDoubleCat.html#spans_univalent_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.StructuredCospansDoubleCat.html#structured_cospans_univalent_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.ProfunctorDoubleCat.html#setcat_profunctor_univalent_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.Coreflections.html#coreflections_univalent_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.EnrichedProfunctorDoubleCat.html#quantale_enriched_profunctor_univalent_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Underlying.VerticalTwoCategory.html#is_univalent_underlying_vert_two_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Underlying.HorizontalBicategory.html#is_univalent_2_1_horizontal_bicat

N. Rasekh, N. van der Weide, B. Ahrens, and P. R. North 45:11

6 Motivating Verity Double Bicategories

Pseudo-double categories only exhibit non-strict compositions in the horizontal direction and
are hence unable to incorporate all relevant examples (Remark 5.10) or biequivalences as an
invariant (Proposition 5.12). We hence require a notion of a doubly weak double category
with non-strict compositions in both directions. However, providing a direct definition similar
to Definition 3.1 results in a fully faithful embedding from pseudo double-categories that
does not preserve vertical equivalences. In univalent foundations, in addition to the non-
preservation of equivalences, this embedding also does not preserve univalence. Concretely,
due to the strictness of vertical compositions, identities in the type of objects correspond to
vertical isomorphisms, whereas the weak vertical composition and symmetric nature of
weak double categories demands that identities correspond to a pair of horizontal and vertical
equivalences which interact well with each other, i.e. form a companion pair (Section 8).
Hence, a univalent pseudo double category results in a non-univalent weak double category.

Univalent foundations hence can propose a solution to non-preservation of equivalences,
namely by introducing a pre-double categorical structure, whose notion of univalence can
incorporate both univalent pseudo double categories and univalent weak double categories,
which will in particular imply preservation of equivalences. Taking the previous paragraph as
motivation what such a structure should entail is a notion of 2-morphisms divorced from the
2-morphisms induced by squares (as defined in Definition 3.7). By appropriately choosing
the 2-cells we can then restrict to both cases of interest:

If we choose the vertical 2-cells to be identities then equivalences in the vertical 2-category
would be isomorphism, recovering the identities of univalent pseudo-categories;
if we choose the vertical (and horizontal) 2-cells to coincide with 2-cells induced by
squares, then identities of objects correspond to equivalences we expect to see in weak
double categories.

Thus, in order to pursue our study of equivalences of double categories, we first develop
pre-double category theory, whose structure involves objects, horizontal (vertical) morphisms,
horizontal (vertical) 2-morphisms, and squares, along with appropriately coherent compos-
itions. Fortunately, a suitable candidate for such a notion has already been proposed by
Verity , where it is called a double bicategory [35], along with a univalence principle [4].
Hence, for the remainder of the paper the aim is to study and formalize double bicategories,
study its univalence principle, and establish an embedding from univalent pseudo categories
to univalent double bicategories.

7 Verity Double Bicategories

Following the discussion of Section 6 we commence with the definition and formalization of
double bicategories due to Verity [35], and also describe various examples. In Section 9 we
will then pursue its univalence principles.

▶ Definition 7.1. A Verity double bicategory B consists of
1. a bicategory HB whose objects, 1-cells, and 2-cells are called horizontal;
2. a bicategory VB with the same type of objects as HB, and whose objects, 1-cells, and

2-cells are called vertical;
3. for all objects x1, x2, y1, y2 : HB, horizontal 1-cells h1 : x1 x2 and h2 : y1 y2, and

vertical 1-cells v1 : x1 y1 and v2 : x2 y2 a set
(

v1
h1
h2

v2

)
of squares;

4. for all horizontal 1-cells h : x y a square idhsq(h) :
(
idx h

h idy
)
;

CSL 2025

https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.DoubleBicat.VerityDoubleBicat.html#verity_double_bicat

45:12 Insights from Univalent Foundations: A Case Study Using Double Categories

5. for all vertical 1-cells v : x y a square idvsq(v) :
(

v idx

idy
v
)

;
6. for all s1 :

(
v1

h
k w1

)
and s2 :

(
v2

k
l w2

)
, a square s1 ·sq s2 :

(
v1 · v2

h
l w1 · w2

)
;

7. for all s1 :
(

v1
h1
k1

v2

)
and s2 :

(
v2

h2
k2

v3

)
, a square s1 ⊙sq s2 :

(
v1

h1⊙h2
k1⊙k2

v3

)
;

8. for all vertical 2-cells τ : v1 ⇒ v2 and squares s :
(
v2

h
k w

)
, a square τ ◁ s :

(
v1

h
k w

)
;

9. for all vertical 2-cells τ : w1 ⇒ w2 and squares s :
(
v h
k w1

)
, a square τ ▷ s :

(
v h
k w2

)
;

10. for all horizontal 2-cells τ : h1 ⇒ h2 and squares s :
(

v h2
k w

)
, a square τ △ s :

(
v h1
k w

)
;

11. for all horizontal 2-cells τ : k1 ⇒ k2 and squares s :
(
v h
k1

w
)
, a square τ ▽ s :

(
v h
k2

w
)
.

We call HB the underlying horizontal bicategory and VB the underlying vertical
bicategory. In addition to the data explicated here, we have various laws governing their
behavior. See the formalization or [35, Definition 1.4.1] for further details

Let us note that this definition does in fact satisfy all the desired conditions outlined in
Section 6. Indeed, we have independently defined horizontal and vertical 2-cells and compos-
itions of all 1-morphisms are defined weakly, giving us a symmetric definition. Following our
vision, we now define weak double categories by adding an appropriate saturation condition
identifying 2-cells with certain squares.

▶ Definition 7.2. Suppose we have a Verity double bicategory B. For all horizontal 1-
cells h1, h2 : x y we have a map CellToSqH sending 2-cells τ : h1 ⇒ h2 to the square
τ △ idhsq(h2) :

(
idx h1

h2
idy

)
. We say that B is horizontally saturated if CellToSqH is an

equivalence. Similarly, the map CellToSqV sends vertical 2-cells τ : v1 ⇒ v2 to the square
τ ◁ idvsq(v2) :

(
v1

idx

idy
v2

)
, and B is vertically saturated if CellToSqV is an equivalence. A

weak double category is a horizontally and vertically saturated Verity double bicategory.

Our definition of weak double categories by definition comes with an inclusion in Verity
double bicategories. We now establish the second inclusion suggested in Section 6 and show
that every pseudo double category gives rise to a Verity double bicategory.

▶ Example 7.3. Suppose that we have a pseudo double category C. We define a Verity
double bicategory C . Its underlying horizontal bicategory is the discrete bicategory on the
underlying vertical category of C, and the underlying vertical bicategory is the underlying
horizontal bicategory of C. The squares are defined to be squares in C. Note that C is
vertically saturated, but not necessarily horizontally saturated.

Notice that the assignment of the horizontal 2-cells in Example 7.3 is not unique, and
our choice is motivated by the desire to realize our programme, meaning to guarantee
that univalent pseudo-double categories give us univalent Verity double bicategories. See
Remark 10.10 for more details

We now proceed to look at several examples of Verity double bicategories. By Example 7.3,
every pseudo double category results in a Verity double bicategory. So here we focus on
examples giving us weak double categories, again motivated by our three classes of examples
introduced in Section 3, squares, profunctors and spans.

▶ Example 7.4. Let B be a bicategory. We define a Verity double bicategory Sq(B) of
squares . The horizontal bicategory HSq(B) is B, and the vertical bicategory VSq(B) is Bco.
The squares

(
v h
k w

)
are defined to be 2-cells h · w ⇒ v · k. Note that Sq(B) is both

horizontally and vertically saturated, meaning it is a weak double category.

In Example 7.4, the 2-cells in the vertical bicategory VSq(B) are reversed. This is necessary
to get the right whiskering operations.

https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.DoubleBicat.CellsAndSquares.html#horizontally_saturated
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.DoubleBicat.CellsAndSquares.html#vertically_saturated
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.DoubleBicat.CellsAndSquares.html#is_weak_double_cat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.DoubleCatToDoubleBicat.html#double_cat_to_verity_double_bicat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.SquareDoubleBicat.html#square_verity_double_bicat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.SquareDoubleBicat.html#square_verity_double_bicat

N. Rasekh, N. van der Weide, B. Ahrens, and P. R. North 45:13

▶ Example 7.5. We define a Verity double bicategory Prof of profunctors . The underlying
horizontal bicategory HProf is the bicategory UnivCatco of small univalent categories, and the
objects of VProf are small univalent categories, the 1-cells are profunctors, and the 2-cells are
natural transformations. The squares are defined in the same way as in Example 3.5.

The identity and composition operations for profunctors are defined in the same way as
in Example 3.5. For the details of the whiskering constructions, we refer the reader to the
formalization. Note that Prof is both vertically and horizontally saturated, giving us a weak
double category.

Similarly, we define the Verity double bicategory ProfV of enriched profunctors .
Let V be a complete and cocomplete symmetric monoidal closed category. The underlying
horizontal bicategory HProfV is the bicategory UnivCatco

V of small univalent enriched categories,
and the objects of the underlying vertical VProfV are small univalent categories, 1-cells are
enriched profunctors, and 2-cells are enriched natural transformations. The squares are
defined in a similar way as in Example 3.5.

Identity, composition, and whiskering operations are defined similarly to Example 7.5.
Since ProfV is both vertically and horizontally saturated, it is a weak double category.

Note here we use small categories in Example 7.5 to guarantee that the desired coends
exist, analogous to Example 3.5.

Unlike the previous sections we do not construct a weak double category of spans in a
bicategory, as such a construction would require additional categorical layers; see also [25,
Section 4]. However, we do have one additional example motivated by mate calculus.

▶ Example 7.6 (Mate calculus, [23, Proposition 2.2]). Let B be a bicategory. We define
a Verity double bicategory LAdj(B) . The horizontal bicategory HLAdj(B) is the bicategory
whose objects are objects in B, 1-cells are left adjoints, and 2-cells are mate-pairs, and the
vertical bicategory VLAdj(B) is Bco. Given adjunctions h : x ⊣ y and k : x′ ⊣ y′, and 1-cells
v : x x′ and w; y y’, squares

(
v h
k w

)
are defined to be 2-cells h · w ⇒ v · k.

▶ Remark 7.7. Similar to Section 4, we can impose a set condition on the types of objects
and morphisms to define Verity double bisetcategories and weak double setcategories, whose
identities, analogous to Theorems 4.2 and 4.3, correspond to isomorphisms. However, similar
to the classical setting (Section 6), pseudo double setcategories fully faithfully embeds in weak
double setcategories, hence obviating the need to generalize to any pre-double categorical
notion, such as Verity double bicategories.

Given these similarities, we proceed to the study of univalent Verity double bicategories
and their relation to univalent pseudo categories and univalent weak double categories.

8 Companion Pairs

In the previous section we defined Verity double bicategories and showed that this general
notion includes both pseudo double categories and weak double categories. Our major aim
is to show that these assignments preserves univalence. Due to the symmetric nature of
Verity double bicategories, equivalences of objects are symmetric as well, so they need to be
given by a pair of horizontal and vertical equivalences that interact well with each other. In
this section we provide a precise characterization of the interaction between horizontal and
vertical morphisms, via companion pairs.

CSL 2025

https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.ProfunctorDoubleBicat.html#univcat_profunctor_verity_double_bicat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.EnrichedProfunctorDoubleBicat.html#enriched_profunctor_verity_double_bicat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.MateDoubleBicat.html#mate_verity_double_bicat

45:14 Insights from Univalent Foundations: A Case Study Using Double Categories

▶ Definition 8.1. Suppose that we have a Verity double bicategory B and a horizontal
morphism h : x y and a vertical morphism v : x y. Then we say that h and v form
a companion pair if we have squares η :

(
v h

idy
idy

)
and ε :

(
idx idx

h v
)

such that the
squares ρ▷ ℓ−1 ◁(ε⊙sq η) and ρ▽ ℓ−1 △(ε ·sq η) are identity squares. Here, ℓ is the left unitor.
We call η the unit and ε the counit.

An alternative approach to the interaction between horizontal and vertical morphisms is
given by conjoints, which are companion pairs in the horizontal dual of B. This notion is
prevalent in formal category theory [29, 37, 38].

Beyond the definition we also need several key properties of companion pairs that we
confirm here. Concretely, we want to know that companion pairs include identities and are
closed under composition. Moreover, companions, if they exist, are unique up to isomorphism.
Finally, companions of equivalences are also equivalences.

▶ Proposition 8.2. Given an object x in a Verity double bicategory B, then the horizontal
identity idx and vertical identity idx form a companion pair.

▶ Proposition 8.3. Given companion pairs h1 : x y and v1 : x y, and h2 : y z

and v2 : y z, then h1 · h2 and v1 · v2 also form a companion pair.

▶ Proposition 8.4. Let B be a Verity double bicategory such that HB and VB are locally
univalent and such that B is vertically saturated. For every horizontal 1-cell h : x y, we
have that all vertical 1-cells v, v′ : x y that form a companion pair with h are equal.

▶ Proposition 8.5. Suppose that we have a Verity double bicategory B such that B is vertically
saturated. Given a horizontal adjoint equivalence l ⊣ r such that l and r have companion
pairs l′ and r′ respectively, then we have a vertical adjoint equivalence given by l′ ⊣ r′.

In many important examples of Verity double bicategories, every horizontal 1-morphism
has a companion, which is a key ingredient towards establishing its univalence condition.
This holds for Sq(B), Prof, and ProfV, whereas if we have a pseudo double category C, then
C has companion pairs if C has.

▶ Proposition 8.6. Let B be a bicategory. Given a 1-cell f : x y in B, then f and f

form a companion pair in Sq(B).

▶ Proposition 8.7. Suppose that we have a functor F : C1 C2. Note that F gives rise to
a profunctor repℓ(F) : C1 C2 that sends objects x : C1 and y : C2 to the set of morphisms
F (y) x. Then F and repℓ(F) form a companion pair.

9 Univalent Double Bicategories

In this section we use companion pairs introduced in Section 8 to present a univalence
principle for double bicategories (Section 7), further advancing our general maxim. Given
the amount data a Verity double bicategory involves, we split up the univalence condition
into two parts. The first one is a local conditions imposed on the hom-categories in the
underlying horizontal and vertical bicategories.

▶ Definition 9.1. A Verity double bicategory B is said to be locally univalent if both HB
and VB are locally univalent.

The second univalence condition is global and focuses on the type of objects in Verity
double bicategories. Here we use companion pairs.

https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.DoubleBicat.CompanionPairs.html#are_companions
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.DoubleBicat.CompanionPairs.html#id_are_companions
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.DoubleBicat.CompanionPairs.html#comp_are_companions
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.DoubleBicat.CompanionPairUnique.html#isaprop_companion_pair
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.DoubleBicat.CompanionPairAdjEquiv.html#companion_of_adjequiv
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.SquareDoubleBicat.html#all_companions_square_verity_double_bicat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.ProfunctorDoubleBicat.html#all_companions_univcat_profunctor_verity_double_bicat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.DoubleBicat.LocalUnivalence.html#locally_univalent_verity_double_bicat

N. Rasekh, N. van der Weide, B. Ahrens, and P. R. North 45:15

▶ Definition 9.2. A gregarious equivalence from x to y in a Verity double bicategory
B consists of a horizontal adjoint equivalence h : x y, a vertical adjoint equivalence
v : x y such that h and v form a companion pair.

▶ Proposition 9.3. Given an object x in a Verity double bicategory, then the horizontal
identity idx and the vertical identity idx form a gregarious equivalence.

Following [4], we define gregarious univalence using gregarious equivalences.

▶ Definition 9.4. Given a Verity double bicategory and objects x and y, we define the map
IdToGregEqx,y sending identities x = y to gregarious equivalences using path induction and
the fact that the identity is a gregarious equivalence (Proposition 9.3). A Verity double
bicategory is said to be gregarious univalent if the map IdToGregEqx,y is an equivalence
of types for all x and y.

Following the univalence principle in [4, Example 9.3], identities of gregarious univalent
Verity double bicategories are equivalent to the type of gregarious equivalences between them.
Finally, by Definition 7.2, a weak double category is univalent if it is univalent as a double
bicategory, confirming our intuition presented in Section 6.

10 Univalence and Weak Horizontal Invariance

In this final section we tie up our discussion of univalent double categorical structures,
by establishing the following two facts. First, there is a large class of univalent double
bicategories, such as Sq(B), Prof, and ProfV. Second, every univalent pseudo double category
gives rise to a univalent Verity double bicategory.

To deal with the complicated nature of gregarious univalence, we use a more conceptual
approach. We define a notion of weakly horizontally invariant double bicategory and show
that in this case (with some minor conditions) gregarious univalence reduces to horizontal
univalence. We end this section with checking these two properties for our cases of interest.

Let us start with the definition of weak horizontal invariance.

▶ Definition 10.1. A Verity double bicategory is weakly horizontally invariant if every
horizontal adjoint equivalence has a companion pair.

▶ Proposition 10.2. Let B be a Verity double bicategory such that HB is globally univalent.
Then B is weakly horizontally invariant.

This is because the horizontal identity has a companion, and to construct companions for
arbitrary adjoint equivalence, we use induction on adjoint equivalences. Proving the main
theorem requires the following proposition, which characterizes gregarious equivalences.

▶ Proposition 10.3. Let B be a weakly horizontally invariant Verity double bicategory
such that B is vertically saturated and such that HB and VB are locally univalent. Then a
horizontal morphism h : x y is an adjoint equivalence if and only if we have a vertical
1-cell v : x y such that h and v are a gregarious equivalence.

▶ Theorem 10.4. Let B be a locally univalent, vertically saturated, and weakly horizontally
invariant Verity double bicategory. Then B is gregarious univalent if and only if the bicategory
HB is globally univalent.

We now apply Theorem 10.4 to our cases of interest.

CSL 2025

https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.DoubleBicat.GregariousEquivalence.html#gregarious_equivalence
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.DoubleBicat.GregariousEquivalence.html#id_is_gregarious_equivalence
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.DoubleBicat.GlobalUnivalence.html#gregarious_univalent
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.DoubleBicat.CompanionPairs.html#weakly_hor_invariant
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.DoubleBicat.CompanionPairs.html#univalent_2_0_weakly_hor_invariant
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.DoubleBicat.GregariousEquivalence.html#hor_left_adjoint_equivalence_weq_gregarious_equivalence
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.DoubleBicat.GlobalUnivalence.html#hor_globally_univalent_weq_gregarious_univalent

45:16 Insights from Univalent Foundations: A Case Study Using Double Categories

▶ Proposition 10.5. Let B be a univalent bicategory. Then Sq(B) is weakly horizontally
invariant and univalent.

▶ Proposition 10.6. Prof is weakly horizontally invariant and univalent.

▶ Proposition 10.7. ProfV is weakly horizontally invariant and univalent.

▶ Proposition 10.8. If B be a univalent bicategory, then LAdj(B) is weakly horizontally
invariant and univalent.

▶ Proposition 10.9. Suppose that we have a univalent pseudo double category C. Then the
double bicategory C is weakly horizontally invariant and univalent.

▶ Remark 10.10. The choice of 2-cells in Example 7.3 was not unique, and our choice was
motivated by Proposition 10.9. To obtain gregarious univalence, the horizontal 2-morphisms
need to be trivial so that identities are given by isomorphisms. For instance, in the univalent
pseudo-double category of setcategories, functors and profunctors, the resulting Verity double
bicategory is univalent because the 2-cells are identities.

Let us end by observing that weak horizontal invariance has already been employed to
study equivalences of double categories, however, from a categorical perspective [26].

11 Conclusion

In this paper we presented a connection between equivalences of categorical structures and
formalizations thereof in UniMath. More specifically, we introduced the univalence maxim for
categorical structures, which says that every notion of equivalence comes with a corresponding
notion of univalent categorical structure, whose identity type corresponds to the given notion
of equivalence. We studied the maxim for many different examples, namely categories,
2-categories, and double categories.

As a result of the maxim, we realize that the univalent setting is the appropriate framework
to articulate and formalize (higher) categorical definitions and results, as it provides direct
access to valuable transport principles along (higher) categorical equivalences of interest,
by transforming categorical equivalences into identities (Proposition 2.9 and Theorem 5.2).
Moreover, the univalence maxim empowers us to compare and contrast different double
categorical notions, tying together disparate results in the double categorical literature and
facilitating a holistic approach to all double categorical notions. Concretely, in the univalent
setting, we can compare double categories that differ in their strictness properties, for example
strict vs. pseudo double categories, and double categories that differ in their chosen notion
of sameness, for example pseudo double categories up to isomorphism vs. pseudo double
categories up to horizontal equivalence. Here we note that the second type of comparison is
not possible in set theoretical foundations.

Finally, let us note that in several cases we obtained a univalence principle by establishing
the univalence of an appropriately defined (bi)category. One future aim is to generalize this
approach to bicategories and Verity double bicategories, which would require developing
tricategory theory [19].

References
1 Samson Abramsky and Steven Vickers. Quantales, observational logic and process semantics.

Math. Structures Comput. Sci., 3(2):161–227, 1993. doi:10.1017/S0960129500000189.

https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.SquareDoubleBicat.html#univalent_square_verity_double_bicat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.ProfunctorDoubleBicat.html#univalent_univcat_profunctor_verity_double_bicat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.EnrichedProfunctorDoubleBicat.html#univalent_enriched_profunctor_verity_double_bicat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.MateDoubleBicat.html#univalent_mate_verity_double_bicat
https://benediktahrens.gitlab.io/unimathdoc4/v20240923/UniMath.Bicategories.DoubleCategories.Examples.DoubleCatToDoubleBicat.html#univalent_enriched_profunctor_verity_double_bicat
https://doi.org/10.1017/S0960129500000189

N. Rasekh, N. van der Weide, B. Ahrens, and P. R. North 45:17

2 Benedikt Ahrens, Dan Frumin, Marco Maggesi, Niccolò Veltri, and Niels van der Weide.
Bicategories in univalent foundations. Math. Struct. Comput. Sci., 31(10):1232–1269, 2021.
doi:10.1017/S0960129522000032.

3 Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and
the Rezk completion. Mathematical Structures in Computer Science, 25:1010–1039, 2015.
doi:10.1017/S0960129514000486.

4 Benedikt Ahrens, Paige Randall North, Michael Shulman, and Dimitris Tsementzis. The
Univalence Principle, 2022. To be published in Mem. AMS. arXiv:2102.06275v3.

5 Steve Awodey. Natural models of homotopy type theory. Math. Struct. Comput. Sci., 28(2):241–
286, 2018. doi:10.1017/S0960129516000268.

6 John C. Baez and Kenny Courser. Structured cospans. Theory Appl. Categ., 35:Paper No. 48,
1771–1822, 2020.

7 John C. Baez, Kenny Courser, and Christina Vasilakopoulou. Structured versus Decorated
Cospans. Compositionality, 4, September 2022. doi:10.32408/compositionality-4-3.

8 Nicolas Behr, Russ Harmer, and Jean Krivine. Fundamentals of compositional rewriting theory.
J. Log. Algebraic Methods Program., 135:100893, 2023. doi:10.1016/J.JLAMP.2023.100893.

9 Nicolas Behr, Paul-André Melliès, and Noam Zeilberger. Convolution products on double
categories and categorification of rule algebras. In Marco Gaboardi and Femke van Raamsdonk,
editors, 8th International Conference on Formal Structures for Computation and Deduction,
FSCD 2023, July 3-6, 2023, Rome, Italy, volume 260 of LIPIcs, pages 17:1–17:20. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.FSCD.2023.17.

10 Georges Blanc. Équivalence naturelle et formules logiques en théorie des catégories. Arch.
Math. Logik Grundlag., 19(3-4):131–137, 1978. doi:10.1007/BF02011874.

11 Guillaume Boisseau and Jeremy Gibbons. What you needa know about yoneda: profunctor
optics and the yoneda lemma (functional pearl). Proc. ACM Program. Lang., 2(ICFP):84:1–
84:27, 2018. doi:10.1145/3236779.

12 Simon Castellan, Pierre Clairambault, and Peter Dybjer. Categories with families: Unityped,
simply typed, and dependently typed. In Joachim Lambek: The Interplay of Mathematics,
Logic, and Linguistics, volume 20 of Outst. Contrib. Log., pages 135–180. Springer, Cham,
2021. doi:10.1007/978-3-030-66545-6_5.

13 Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregiàn, Bartosz Milewski, Emily
Pillmore, and Mario Román. Profunctor optics, a categorical update. CoRR, abs/2001.07488,
2020. arXiv:2001.07488.

14 Pierre-Évariste Dagand and Conor McBride. A categorical treatment of ornaments. In 28th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA,
USA, June 25-28, 2013, pages 530–539. IEEE Computer Society, 2013. doi:10.1109/LICS.2
013.60.

15 Fredrik Dahlqvist and Renato Neves. An internal language for categories enriched over
generalised metric spaces. In 30th EACSL Annual Conference on Computer Science Logic,
volume 216 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 16, 18. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CSL.2022.16.

16 Charles Ehresmann. Catégories structurées. III. Quintettes et applications covariantes. In
Topol. et Géom. Diff. (Sém. C. Ehresmann), Vol. V, volume Vol. V of Cahiers du Séminaire
dirigé par Charles Ehresmann, page 21. Inst. Henri Poincaré, Paris, 1963.

17 P. Freyd. Properties invariant within equivalence types of categories. In A. Heller and
M. Tierney, editors, Algebra, Topology and Category Theory: A Collection of Papers in Honor
of Samuel Eilenberg, pages 55–61. Academic Press, New York, 1976.

18 Dennis Gaitsgory and Nick Rozenblyum. A study in derived algebraic geometry. Vol. II.
Deformations, Lie theory and formal geometry, volume 221 of Mathematical Surveys and
Monographs. American Mathematical Society, Providence, RI, 2017. doi:10.1090/surv/221.2.

19 R. Gordon, A. J. Power, and Ross Street. Coherence for tricategories. Mem. Amer. Math.
Soc., 117(558):vi+81, 1995. doi:10.1090/memo/0558.

CSL 2025

https://doi.org/10.1017/S0960129522000032
https://doi.org/10.1017/S0960129514000486
https://arxiv.org/abs/2102.06275v3
https://doi.org/10.1017/S0960129516000268
https://doi.org/10.32408/compositionality-4-3
https://doi.org/10.1016/J.JLAMP.2023.100893
https://doi.org/10.4230/LIPICS.FSCD.2023.17
https://doi.org/10.1007/BF02011874
https://doi.org/10.1145/3236779
https://doi.org/10.1007/978-3-030-66545-6_5
https://arxiv.org/abs/2001.07488
https://doi.org/10.1109/LICS.2013.60
https://doi.org/10.1109/LICS.2013.60
https://doi.org/10.4230/LIPIcs.CSL.2022.16
https://doi.org/10.1090/surv/221.2
https://doi.org/10.1090/memo/0558

45:18 Insights from Univalent Foundations: A Case Study Using Double Categories

20 Marco Grandis and Robert Pare. Limits in double categories. Cahiers Topologie Géom.
Différentielle Catég., 40(3):162–220, 1999.

21 Marco Grandis and Robert Pare. Adjoint for double categories. Addenda to: “Limits in double
categories” [Cah. Topol. Géom. Différ. Catég. 40 (1999), no. 3, 162–220; mr1716779]. Cah.
Topol. Géom. Différ. Catég., 45(3):193–240, 2004.

22 Jason Z. S. Hu and Jacques Carette. Formalizing category theory in agda. In Catalin Hritcu
and Andrei Popescu, editors, CPP ’21: 10th ACM SIGPLAN International Conference on
Certified Programs and Proofs, Virtual Event, Denmark, January 17-19, 2021, pages 327–342.
ACM, 2021. doi:10.1145/3437992.3439922.

23 G. M. Kelly and Ross Street. Review of the elements of 2-categories. In Category Seminar
(Proc. Sem., Sydney, 1972/1973), volume Vol. 420 of Lecture Notes in Math., pages 75–103.
Springer, Berlin-New York, 1974.

24 Michael Makkai. First order logic with dependent sorts, with applications to category theory,
1995. URL: http://www.math.mcgill.ca/makkai/folds/foldsinpdf/FOLDS.pdf.

25 Jeffrey C. Morton. Double bicategories and double cospans. J. Homotopy Relat. Struct.,
4(1):389–428, 2009.

26 Lyne Moser, Maru Sarazola, and Paula Verdugo. A model structure for weakly horizontally
invariant double categories. Algebr. Geom. Topol., 23(4):1725–1786, 2023. doi:10.2140/agt.
2023.23.1725.

27 Zach Murray, Dorette Pronk, and Martin Szyld. Implementing double categories in the lean
proof assistant, 2022. Talk at Science Atlantic Mathematics, Statistics, and Computer Science
Conference, October 15, 2022. URL: https://www.mathstat.dal.ca/~mszyld/Zach_slides.
pdf.

28 Max S. New and Daniel R. Licata. Call-by-name gradual type theory. Log. Methods Comput.
Sci., 16(1), 2020. doi:10.23638/LMCS-16(1:7)2020.

29 Max S. New and Daniel R. Licata. A formal logic for formal category theory. In Orna
Kupferman and Pawel Sobocinski, editors, Foundations of Software Science and Computation
Structures - 26th International Conference, FoSSaCS 2023, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April
22-27, 2023, Proceedings, volume 13992 of Lecture Notes in Computer Science, pages 113–134.
Springer, 2023. doi:10.1007/978-3-031-30829-1_6.

30 Kimmo I. Rosenthal. Quantaloids, enriched categories and automata theory. Appl. Categ.
Structures, 3(3):279–301, 1995. doi:10.1007/BF00878445.

31 Michael Shulman. Framed bicategories and monoidal fibrations. Theory Appl. Categ., 20:No.
18, 650–738, 2008.

32 The 1Lab Development Team. The 1Lab. URL: https://1lab.dev.
33 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of

Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.
34 Niels van der Weide, Nima Rasekh, Benedikt Ahrens, and Paige Randall North. Univalent

double categories. In Amin Timany, Dmitriy Traytel, Brigitte Pientka, and Sandrine Blazy,
editors, Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2024, London, UK, January 15-16, 2024, pages 246–259. ACM, 2024.
doi:10.1145/3636501.3636955.

35 Dominic Verity. Enriched categories, internal categories and change of base. Repr. Theory
Appl. Categ., 20:1–266, 2011.

36 Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. Unimath — a computer-checked
library of univalent mathematics. available at http://unimath.org. doi:10.5281/zenodo.1
3828995.

37 R. J. Wood. Abstract proarrows. I. Cahiers Topologie Géom. Différentielle, 23(3):279–290,
1982.

38 R. J. Wood. Proarrows. II. Cahiers Topologie Géom. Différentielle Catég., 26(2):135–168,
1985.

https://doi.org/10.1145/3437992.3439922
http://www.math.mcgill.ca/makkai/folds/foldsinpdf/FOLDS.pdf
https://doi.org/10.2140/agt.2023.23.1725
https://doi.org/10.2140/agt.2023.23.1725
https://www.mathstat.dal.ca/~mszyld/Zach_slides.pdf
https://www.mathstat.dal.ca/~mszyld/Zach_slides.pdf
https://doi.org/10.23638/LMCS-16(1:7)2020
https://doi.org/10.1007/978-3-031-30829-1_6
https://doi.org/10.1007/BF00878445
https://1lab.dev
https://homotopytypetheory.org/book
https://doi.org/10.1145/3636501.3636955
http://unimath.org
https://doi.org/10.5281/zenodo.13828995
https://doi.org/10.5281/zenodo.13828995

Coslice Colimits in Homotopy Type Theory
Perry Hart #

Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA

Kuen-Bang Hou (Favonia) #

Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA

Abstract
We contribute to the theory of (homotopy) colimits inside homotopy type theory. The heart of our
work characterizes the connection between colimits in coslices of a universe, called coslice colimits,
and colimits in the universe (i.e., ordinary colimits). To derive this characterization, we find an
explicit construction of colimits in coslices that is tailored to reveal the connection. We use the
construction to derive properties of colimits. Notably, we prove that the forgetful functor from a
coslice creates colimits over trees. We also use the construction to examine how colimits interact with
orthogonal factorization systems and with cohomology theories. As a consequence of their interaction
with orthogonal factorization systems, all pointed colimits (special kinds of coslice colimits) preserve
n-connectedness, which implies that higher groups are closed under colimits on directed graphs. We
have formalized our main construction of the coslice colimit functor in Agda.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases colimits, homotopy type theory, category theory, higher inductive types,
synthetic homotopy theory

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.46

Related Version Technical report: https://doi.org/10.48550/arXiv.2411.15103 [6]

Supplementary Material Software (Agda Code): https://github.com/PHart3/colimits-agda/
tree/v0.1.0 [7]

Funding This material is based upon work supported by the Air Force Office of Scientific Research
under award number FA9550-21-1-0009. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
United States Air Force.

Acknowledgements We thank the anonymous reviewers for their feedback that improved the writing
of this paper. We also thank the anonymous reviewer for HoTT/UF 2023 who pointed out the
relationship between adjunctions and factorization systems.

1 Introduction

Homotopy type theory (HoTT) extends Martin-Löf type theory (MLTT) with univalence and
higher inductive types [27]. The key feature of HoTT is that all types behave as homotopy
types of topological spaces [9]. Thus, with HoTT, we can use purely type-theoretic methods
to prove new properties of spaces. Moreover, higher inductive types (HITs) let us bring a
vast range of spaces into HoTT. As a result, HoTT is a useful system for developing synthetic
homotopy theory and formalizing it in proof assistants like Coq and Agda [5, 8].

We study HITs arising as (homotopy) colimits in coslices of a universe, called coslice
colimits. Coslices of a universe are type-theoretic versions of coslice categories. A colimit
in a category is an object formed by gluing together simpler objects in a coherent fashion.
The coherent requirement ensures that the colimit has a universal property, which reduces
proofs about the colimit to proofs about the simpler objects it is built out of. When these
objects are spaces, perhaps endowed with extra structure, colimits built out of them find

© Perry Hart and Kuen-Bang Hou;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 46; pp. 46:1–46:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hart1262@umn.edu
https://orcid.org/0000-0002-7247-362X
mailto:kbh@umn.edu
https://orcid.org/0000-0002-2310-3673
https://doi.org/10.4230/LIPIcs.CSL.2025.46
https://doi.org/10.48550/arXiv.2411.15103
https://github.com/PHart3/colimits-agda/tree/v0.1.0
https://github.com/PHart3/colimits-agda/tree/v0.1.0
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 Coslice Colimits in Homotopy Type Theory

wide use in homotopy theory. For example, the class of HITs we study includes colimits of
pointed spaces. Such colimits are key to the Brown representability theorem, which is about
homotopy functors on the (∞-)category of pointed connected spaces. Indeed, its proof relies
on the fact that this category is generated under colimits by compact cogroups.

1.1 Contributions
In this section, we explain the contributions of the paper along with its organization. We
start by outlining the heart of the paper, which we call the main connection. Afterward,
we describe three independent applications of the main connection in synthetic homotopy
theory. Details, proofs, and related additional results are found in our associated technical
report [6]. Further, we have formalized in Agda our construction of A-colimits as well as the
universality of ordinary colimits for Corollary 21.

1.1.1 The main connection (Section 5)
Suppose U is a universe and A is a type in U . We want to construct colimits in the coslice A/U ,
or A-colimits. The (wild) category A/U has objects

∑
T :U A→ T and morphisms X →A Y :=∑

k:pr1(X)→pr1(Y) k ◦ pr2(X) ∼ pr2(Y). Here, ∼ is defined by f1 ∼ f2 :=
∏
x:X f1(x) = f2(x)

for any dependent functions f1, f2 :
∏
x:X Y (x), called the type of homotopies from f1 to f2.

HoTT has a general schema for HITs that would let us simply postulate A-colimits. We,
however, explicitly construct A-colimits with just the machinery of MLTT augmented with
pushouts (Section 5.3).1 We take this different approach to reveal the connection between
A-colimits and their underlying colimits in U . In fact, our construction is not a case of a
general method to encode higher-dimensional HITs with pushouts but rather tailored to
reveal this connection.

Why do we care about this connection? It sheds light on three established areas of
synthetic homotopy theory. We preview them now and return to them in Sections 6–8.

The universality of colimits (Section 6)

The universality of colimits is a special feature of locally cartesian closed (LCC) ∞-categories,
such as that of spaces. The main connection will establish a well-known classical result inside
type theory: The forgetful functor A/U → U creates colimits of diagrams over contractible
graphs (Theorem 18), which make up a large subclass of graphs.2 Examples of such colimits
include sequential colimits [25]. With the forgetful functor creating colimits, we can transfer
universality of ordinary colimits to A-colimits over contractible graphs (Corollary 21). This
is notable as LCC ∞-categories are not closed under coslices.

The categories of higher groups are cocomplete (Section 7)

A striking feature of colimits is their interaction with (orthogonal) factorization systems. In
Section 7, we use the main connection to show that colimits in A/U preserve left classes of
maps of factorization systems on U . It is significant that we consider factorization systems
on U rather than A/U . We could derive a similar preservation theorem for systems on A/U
directly from the universal property of an A-colimit. In practice, however, the factorization

1 A theoretical advantage of such a construction is that pushouts, the simplest nontrivial HITs, can be
postulated with a less powerful schema than that required to postulate A-colimits.

2 For a definition of creating (co)limits, see [16].

P. Hart and K.-B. Hou 46:3

systems we tend to care about are on U . Since the main connection relates the action of
A-colimits on maps to the action of the underlying ordinary colimits on maps (Section 5.4),
we manage to deduce the preservation theorem for systems on U .

To prove this theorem, we find it useful to develop the theory of factorization systems
in a more general setting than U . In Section 4.1, we study such systems on wild categories,
which make up one approach to category theory in HoTT. We prove that if a functor F
of well-behaved wild categories with factorization systems has a right adjoint G, then F

preserves the left class when G preserves the right class (Theorem 13). We combine this
result with the main connection to deduce the desired preservation property.

When we focus on the (n-connected, n-truncated) factorization system on U [27,
Chapter 7.6] and take A as the unit type, the main connection shows that the colimit
of every diagram of pointed n-connected types is n-connected. One useful corollary of this
is that the higher category (n, k) GType of k-tuply groupal n-groupoids considered by [2] is
cocomplete on (directed) graphs for all truncation levels −2 ≤ n ≤ ∞ and −1 ≤ k < ∞
(Example 23).

Cohomology sends colimits to weak limits (Section 8)

Finally, we examine how colimits interact with cohomology theories, which are important
algebraic invariants of spaces. To do so, we consider weak limits, which are key ingredients
in the Brown representability theorem (BRT). A weak colimit in a category need not satify
the uniqueness property required of a colimit. The BRT specifies conditions for a presheaf
on the homotopy category Ho(Top∗,c) of pointed connected spaces to be representable. The
standard proof of the BRT requires the presheaf to send countable homotopy colimits in
Top∗,c to weak limits in Set [14, Section 1.4.1]. Eilenberg-Steenrod cohomology theories
enjoy this property as set-valued functors.

In Section 8, we use the main connection to establish a restricted, type-theoretic version
of this property. From the main connection we derive another construction of A-colimits, as
pushouts of coproducts (Corollary 26), which mirrors a well-known classical lemma. We take
A as the unit type and combine the new construction with the Mayer-Vietoris sequence to
find that cohomology takes finite colimits to weak limits assuming the axiom of choice.

2 Additional related work

2.1 Construction of nonrecursive 2-HITs
The HITs we consider are nonrecursive 2-HITs, in the sense that they have only nonrecursive
constructors of points and of paths of dimension one or two. Van Doorn et al. explicitly
construct nonrecursive 2-HITs in MLTT augmented with pushouts [28, Section 5]. When
specialized to A-colimits, however, their construction has a significantly different form from
ours and does not directly lead to the properties of A-colimits we derive. Moreover, they do
not prove the full induction principle enjoyed by the 2-HIT for their construction, whereas
we do for ours. The full induction principle is necessary (and sufficient) to characterize the
2-HIT uniquely.

2.2 Orthogonal factorization systems
Our work also builds on the theory of factorization systems. Such systems play important
roles in model category theory [20], a key framework for classical homotopy theory. Moreover,
in type theory, Rijke et al. have shown that factorization systems on U are closely connected

CSL 2025

46:4 Coslice Colimits in Homotopy Type Theory

to modalities [22], which are important in logic. We extend factorization systems to wild
categories other than U . Moreover, we lift factorization systems on U to wild categories of
U -valued diagrams (Lemma 22).

3 Background on type theory and colimits

Before describing the main connection and its applications, we need to review the type
system we work in. For us, the most important data type of this system is the ordinary
colimit, i.e., the colimit of a diagram of types over a graph. We define this type in Section 3.3
and call it “ordinary” to distinguish it from the notion of coslice colimit. The latter takes
place in coslices of a universe rather than the universe itself, and we will construct coslice
colimits out of ordinary colimits.

3.1 Type system

We assume the reader is familiar with MLTT and HITs in the style of [27]. We will work
in MLTT augmented with ordinary colimits and denote this system by MLTT + Colim. In
fact, we need only augment MLTT with pushouts as they let us construct all nonrecursive
1-HITs, including ordinary colimits, with all of their computational properties. Notably,
MLTT + Colim comes with strong function extensionality for free. This property is critical
for reasoning about functions in type theory and underlies our entire development (see, for
example, Lemma 8). Overall, we carry out our proofs inside MLTT + Colim until Section 7.
For Section 7 and Section 8, we also assume Voevodsky’s univalence axiom.

Before reviewing ordinary colimits, we recall two essential constructions in our type
system. The first is the function ap : (x = y) → (f(x) = f(y)) defined by path induction
for all functions f : X → Y and x, y : X. (We use = for the identity type and ≡ for
definitional equality.) If we view X as an ∞-groupoid, then ap is the action of f on
morphisms of X (thereby exhibiting f as a functor). The second is the transport function
transpY :

∏
x,y:X

∏
p:x=y Y (x) → Y (y) for any type family Y over X. This notion also

gives us a dependent version of ap: If f :
∏
x:X Y (x), then we have a function apdf :∏

x,y:X
∏
p:x=y transpY (p, f(x)) = f(y). The transport function is essential for stating the

induction principle for HITs, e.g., the colimits in Section 3.3. It also satisfies the following
coherence law, which we need for our construction of A-colimits.

▶ Lemma 1. Let f, g : X → Y . For all x, y : X, p : x = y, and H : f ∼ g, we have a
commuting square of identities

f(x) g(x)

f(y) g(y)

H(x)

apf (p) apg(p)

transpz 7→f(z)=g(z)(p,H(x))

Finally, a remark on notation: we may use the Agda notation (x : X) → Y (x) for the
type

∏
x:X Y (x) for any type family Y over X.

P. Hart and K.-B. Hou 46:5

3.2 Graphs
Let U be a universe and A : U . In classical 1-category theory, a diagram in a category C is
a functor F : I → C, where I is the shape of the diagram. As long as C is cocomplete, we
can form the functor colimI sending each diagram over I to its colimit in C. We, however,
want the colimit of a diagram in the ∞-category A/U . This requires the diagram to be an
∞-functor: the functor laws must satisfy coherence laws up to homotopy, which themselves
must satisfy higher coherence laws, and so on at arbitrarily high levels. It is unknown whether
such ∞-functors are definable in HoTT.

To avoid infinite coherence conditions, we specialize I to the free category generated by
a graph. A graph Γ is a pair (Γ0,Γ1) consisting of a type Γ0 : U of vertices and a family
Γ1 : Γ0 → Γ0 → U of edges. A Γ-shaped diagram F in A/U is a pair (F0, F1) consisting of a
function F0 : Γ0 → A/U and a family of maps F1 : (i, j : Γ0)→ Γ1(i, j)→ F0(i)→A F0(j).
We may write F for F0 and F1. The induced diagram in A/U satisfies all the infinite
coherence laws because its domain is freely generated by the points and edges of Γ.

▶ Example 2. For each graph Γ and D : Ob(A/U), the constant diagram constΓ(D) at
D is defined by (constΓ(D))0 (i) := D and (constΓ(D))1 (i, j, g) := idD. We often refer to
constΓ(D) simply by D.

We will see that A-colimits interact nicely with trees. A tree is a graph without non-
directed cycles. Formally, a graph Γ is a tree if the quotient Γ0/Γ1 is contractible. Both N
and Z are trees when equipped with the successor ordering:

N ≡ 0 1 2 · · · Z ≡ · · · −1 0 1 · · ·

Another example of a tree is a span • ← • → •, on which pushouts are defined.
Rijke has defined the notion of directed tree and has defined an interpretation function

sending an element of a W-type to a directed tree [23, The underlying trees of elements of
W-types]. Intuitively, a directed tree is a rooted graph such that for each vertex v, there is a
single directed path (including the trivial path) from v to the root. Every directed tree is a
tree in our sense [6, Corollary 4.0.6]. Thus, elements of a W-type can be realized as trees.

3.3 Colimits in U
Let F be a Γ-shaped diagram in U . The (ordinary) colimit of F is the HIT colimΓ(F)
generated by

Fi Fj

ι : (i : Γ0)→ Fi → colimΓ(F)
κ : (i, j : Γ0) (g : Γ1(i, j))→ ιj ◦ Fi,j,g ∼ ιi

colimΓ(F)

Fi,j,g

ιi ιj

κi,j,g

These two constructors make colimΓ(F) a cocone under F (or F -cocone): a type C equipped
with maps u :

∏
i:Γ0

Fi → C and homotopies K :
∏
i,j,g uj ◦ Fi,j,g ∼ ui. What characterizes

colimΓ(F) as a colimit of F is that κ is a (homotopy) initial F -cocone [24]. Equivalently, for
every X : U , the function

postcomp : (colimΓ(F)→ X) → CoconeF (X)
postcomp(f) :=

(
λi.f ◦ ιi, λiλjλgλ(x : Fi). apf (κi,j,g(x))

)
is an equivalence, where CoconeF (X) denotes the type of F -cocones on X.

CSL 2025

https://unimath.github.io/agda-unimath/trees.underlying-trees-of-elements-of-w-types.html
https://unimath.github.io/agda-unimath/trees.underlying-trees-of-elements-of-w-types.html

46:6 Coslice Colimits in Homotopy Type Theory

Our proof of Theorem 15 will use the induction principle for colimΓ(F). This states that
for every type family E over colimΓ(F) together with data

r :
∏
i:Γ0

∏
x:Fi

E(ιi(x)) R :
∏
i,j:Γ0

∏
g:Γ1(i,j)

∏
x:Fi

transpE(κi,j,g(x), r(j, Fi,j,g(x))) = r(i, x)

we have a function ind(E, r,R) :
∏
z:colimΓ(F) E(z) that satisfies ind(E, r,R)(ιi(x)) ≡ r(i, x)

and is equipped with an identity ρind(E,r,R)(i, j, g, x) : apdind(E,r,R)(κi,j,g(x)) = R(i, j, g, x).

4 Wild categories

Any universe, along with its coslices, fits into the framework of wild categories. This is one
approach to category theory in HoTT and is used by other works of synthetic homotopy
theory [3, 5, 11]. It is useful for the relationship between A-colimits and factorization systems
we establish in Section 7. This requires us to formulate factorization systems on categories
other than universes, namely the category of type-valued diagrams over a graph.

The key distinction between wild categories and (pre-)categories [27, Chapter 9.1] is that
the latter have 0-truncated hom types. This means that instead of trivializing the higher
coherence data for morphisms, wild categories simply ignore them. We choose them over
pre-categories because we will focus on universes and their coslices (see Example 7), which
are wild categories but not pre-categories.

▶ Definition 3 ([6, Definition 3.1.1]). A wild category (in a universe U) is a tuple consisting
of a type Ob : U of objects, a family hom : Ob→ Ob→ U of hom types, identity morphisms
id, composition ◦, left LId and right RId unit laws for ◦, and associativity laws assoc for ◦.

By itself, the data of a wild category is insufficient for our work on factorization systems.
We need two extra ingredients. The first is the notion of a wild bicategory. The second is a
wild-categorical version of univalence.

▶ Definition 4. A wild category C is a (wild) bicategory if it is equipped with identities
(a) ap−◦f (assoc(k, g, h)) · assoc(k, g ◦ h, f) · apk◦−(assoc(g, h, k)) =

assoc(k ◦ g, h, f) · assoc(k, g, h ◦ f) for all composable morphisms k, g, h, and f
(b) assoc(g, id, h) · apg◦−(LId(h)) = ap−◦h(RId(g)) for all composable morphisms g and h.3

▶ Remark. For us, a bicategory is always a wild (2, 1)-category since the 2-cells, which are
identities in U , are invertible.

Before moving to univalence, we transfer a well-known lemma of classical 2-category
theory to type theory. This was first proved for monoidal categories [10], but the proof is
applicable to all bicategories. (The type-theoretic version also appears as [3, Lemma 4.3].)

▶ Lemma 5 ([6, Lemma 3.1.3]). Let C be a bicategory. For all A,B,C : Ob(C), f : homC(A,B),
g : homC(B,C), we have LId(g ◦ f)−1 · assoc(id, g, f)−1 · ap−◦f (LId(g)) = reflg◦f .

▶ Definition 6. We say that a wild category C is univalent if the canonical function(
A =Ob(C) B

)
→ (A ≃C B) is an equivalence. Here, elements of the righthand type are

equivalences, defined as bi-invertible morphisms (in the manner of [27, Definition 4.3.1]).

3 A wild bicategory is called a wild 2-precategory by [3].

P. Hart and K.-B. Hou 46:7

▶ Example 7. The following are univalent bicategories assuming the univalence axiom.
The category U of types and functions
For each A : U , the coslice A/U of U under A
The category Diag(Γ, A/U) of Γ-shaped diagrams in A/U . We define its hom types (natural
transformations) when we present the action of the A-colimit on maps (Section 5.4).

Our ultimate interest is in colimits in the wild category A/U . This category is defined by

Ob(A/U) :=
∑
X:U A→ X homA/U (X,Y) := X →A Y

For each X : Ob(A/U), the identity morphism on X is
(
idpr1(X), λa.reflpr2(X)(a)

)
. Composition

is defined by (g, gp) ◦ (f, fp) :=
(
g ◦ f, λa. apg(fp(a)) · gp(a)

)
. The associativity and unit laws

follow from routine path algebra. Note that the categories 0/U and U are equivalent.
We write ty and str for the functions pr1 : Ob(A/U) → U and pr2 : (Z : Ob(A/U)) →

A→ pr1(Z), i.e., the underlying type and structure map of an object in A/U , respectively.
Also, we write fun and pt for the functions pr1 : homA/U (W,Z) → ty(W) → ty(Z) and
pr2 :

(
h : homA/U (W,Z)

)
→ pr1(h) ◦ str(W) ∼ str(Z), respectively.

▶ Lemma 8. Let f, g : X →A Y . Define f ∼A g as the type of homotopies H : fun(f) ∼ fun(g)
equipped with a commuting triangle

fun(f)(str(X)(a)) str(Y)(a)

fun(g)(str(X)(a))

pt(f)(a)

H(str(X)(a))
pt(g)(a)

for each a : A. The canonical function f = g → f ∼A g is an equivalence, with inverse
denoted by ⟨−,−⟩ : f ∼A g → f = g.

Elements of f ∼A g are called A-homotopies between f and g.

4.1 Orthogonal factorization systems
We now introduce (orthogonal) factorization systems on wild categories. For us, the key
property of such systems is that they interact nicely with adjunctions. In Section 7, we
deduce from this property, combined with the main connection, that A-colimits preserve the
left classes of factorization systems on U .

▶ Definition 9. Let C be a wild category. An orthogonal factorization system (OFS) on C
consists of predicates L,R :

∏
A,B:C homC(A,B)→ Prop such that

1. both L and R are closed under composition and have all identities
2. for every h : homC(A,B), the following type is contractible:

factL,R(h) :=
∑

D:Ob(C)

∑
f :homC(A,D)

∑
g:homC(D,B)

(g ◦ f = h)× L(f)×R(g)

For the next lemma, where C is a univalent bicategory, C is similar enough to U that the
proof of the lemma for U can be transferred to C.4 Indeed, univalence lets us characterize the
identity types of factL,R(h) via the fundamental theorem of identity types [21, Theorem 11.2.2].
Moreover, Lemma 5 gives us a suitable diagonal filler for the key commuting square used by
the proof. Before stating the next lemma, we need a definition.

4 For the proof of this lemma for U , see [22, Lemma 1.46].

CSL 2025

46:8 Coslice Colimits in Homotopy Type Theory

▶ Definition 10. Let C be a wild category. Let l : homC(A,B) and H be a property of
morphisms in C. We say that l has the left lifting property against H if for every r :
homC(C,D) such that H(r) and every commuting square

A C

B D

f

l r

g

S

the type of diagonal fillers∑
d:homC(B,C)

∑
Hf :d◦l=f

∑
Hg :r◦d=g

assoc(r, d, l) · apr◦−(Hf) = ap−◦l(Hg) · S

is contractible.

▶ Lemma 11 ([6, Corollary 3.3.6]). Suppose that C is a univalent bicategory with an OFS
(L,R). A map is in L if and only if it has the left lifting property against R.

This alternative definition of L is useful for the proof of Theorem 13, below. For this
theorem, we need to introduce adjoint pairs of functors between wild categories.

▶ Definition 12. Let L : C → D and R : D → C be functors of wild categories. An adjunction
L ⊣ R consists of an equivalence α : homD(LA,X) ≃ homC(A,RX) for all A : Ob(C) and
X : Ob(D) along with naturality proofs:

n1 :
∏

A:Ob(C)

∏
X,Y :Ob(D)

∏
g:homD(X,Y)

∏
h:homD(LA,X)

R(g) ◦ α(h) = α(g ◦ h)

n2 :
∏

Y :Ob(D)

∏
A,B:Ob(C)

∏
f :homC(A,B)

∏
h:homD(LB,Y)

α(h) ◦ f = α(h ◦ L(f))

▶ Theorem 13 ([6, Corollary 3.3.9]). Consider an adjunction L ⊣ R where both C and D are
univalent bicategories. If R preserves R, then L preserves L.

5 The main connection

Let U be a universe. Let Γ be a graph and suppose F is a diagram in A/U over Γ. Working
in MLTT + Colim, we want to construct the A-colimit of F so as to show the connection
between A-colimits and ordinary colimits. After defining A-colimit, we mention a reasonable
yet wrong approach to constructing it. Then, we explain another construction and prove it
is correct by exhibiting it as left adjoint to the constant diagram functor. The Agda proof of
this adjunction is found in the folder [7, Colimit-code/Main-Theorem].

5.1 Definition of A-colimits
We can generalize ordinary colimits in Section 3 to all coslices A/U . For each Y : Ob(A/U),
an F -cocone on Y consists of a family of maps h : (i : Γ0)→ Fi →A Y in A/U together with
an identity Hi,j,g : hj ◦ Fi,j,g = hi for all i, j : Γ0 and g : Γ1(i, j). In this situation, we say
that Y is a colimit of F if (h,H) is initial in the category of F -cocones. This means that for
each X : Ob(A/U), the function

postcomp(h,H) : (Y →A X) → CoconeF (X)
postcomp(h,H, f) :=

(
λi.f ◦ hi, λiλjλg.assoc(f, hj , Fi,j,g) · apf◦−(Hi,j,g)

)

P. Hart and K.-B. Hou 46:9

is an equivalence. We must include the associativity term since associativity of maps does
not hold judgmentally in A/U (whereas it does in U).

Observe that by a variant of Lemma 8, hj ◦ Fi,j,g = hi is equivalent to the type of
homotopies ηi,j,g : fun(hj) ◦ fun(Fi,j,g) ∼ fun(hi) equipped with a commuting square

fun(hj)(fun(Fi,j,g)(str(Fi)(a))) fun(hi)(str(Fi)(a))

fun(hj)(str(Fj)(a)) str(Y)(a)

ηi,j,g(str(Fi)(a))

apfun(hj)(pt(Fi,j,g)(a)) pt(hi)(a)

pt(hj)(a)

(2-c)

of paths for each a : A. It is this family of 2-cells which distinguishes the colimit of F , in
A/U , from colimΓ(F(F)). Here, we reuse F to denote the evident forgetful functor from
Γ-shaped diagrams in A/U to those in U . The 2-cells affect colimΓ(F(F)) by collapsing its
nontrivial loops formed by paths of the form η(str(Fi)(a)). We call such loops distinguished
loops in colimΓ(F(F)). For example, if i ≡ j and Fi,j,g ≡ idFi , then (2-c) is equivalent to
η(str(Fi)(a)) = reflfun(hi)(str(Fi)(a)). In this case, it fills the loop η(str(Fi)(a)).

5.2 Misleading approach

If our setting behaved like the classical one, the colimit of F in A/U would arise as the
ordinary colimit of the augmented diagram: F(F) augmented with the canonical arrow from
A to F(Fi) for each i : Γ0 [17, Proposition 4.6]. If Γ is discrete, i.e., Γ1 is the empty relation,
then the A-colimit of F inside HoTT is, in fact, the colimit of

A

F(Fi) · · · F(Fj)

In general, though, this construction is wrong inside HoTT. For example, the pointed colimit
of the diagram 1 id−→ 1 is trivial, but the colimit of the augmented diagram

1

1 1

id

id

id

is the circle S1. The reason for the discrepancy between the classical case and ours is that
unless Γ is discrete, the augmented diagram inside HoTT adds arrows that are intended as
composites but are not interpreted as such in the model of HoTT. Rather, the model sees
them as freely added to the diagram.

5.3 Our approach

Our approach to building the colimit of F never creates an augmented diagram, thereby
avoiding the problem of Section 5.2. We start with the ordinary colimit colimΓ(F(F)) which
ignores the coslice structure of F . Then, we glue onto this colimit the 2-cells required by the
coslice colimit. We do this via a quotient of colimΓ(F(F)) that fills its distinguished loops.

CSL 2025

46:10 Coslice Colimits in Homotopy Type Theory

To this end, define colimΓ A
ψ−→ colimΓ(F(F)) by colimit induction, as the function

induced by the cocone

A A

colimΓ(F(F))

idA

ιi◦str(Fi) ιj◦str(Fj)
W

under the constant diagram at A. The homotopy W : ιj ◦ str(Fj) ∼ ιi ◦ str(Fi) is defined by
W (a) := apιj (pt(Fi,j,g)(a))−1 · κi,j,g(str(Fi)(a)). Intutively, ψ finds the distinguished loops
of colimΓ(F(F)). Next, form the pushout square

colimΓ A colimΓ(F(F))

A PF

[idA]i:Γ0

ψ

inr

inl

⌟

which, by the definition of pushout types, comes with a homotopy gluePF
: inl◦ [idA] ∼ inr ◦ψ.

This pushout is our approach to forming the desired quotient of colimΓ(F(F)).

▶ Example 14. Suppose that Γ has a single vertex v and a single loop ℓ at v. Let 2
denote the type of booleans. Define the pointed diagram F over Γ by Fv := (2, true) and
Fv,v,ℓ := (id2, refl). Then colimΓ(F(F)) ≃ S1 + S1. In this case, the function ψ traces the
left copy of S1, the distinguished loop, exactly once. The pushout PF is formed from S1 +S1

by filling this loop, which collapses the left copy of S1 to a point. As a result, PF ≃ 1 + S1.

Back to the general case, with the equivalence ⟨−,−⟩ of Lemma 8, we can form an F -cocone
on (PF , inl)

Fi Fj

PF

(inr◦ιi,τi) (inr◦ιj ,τj)

Fi,j,g

⟨δi,j,g,ϵi,j,g⟩ (τi(a) := gluePF
(ιi(a))−1)

as follows. We have a homotopy δi,j,g := λ(x : ty(Fi)). apinr(κi,j,g(x)) from inr ◦ ιj ◦ fun(Fi,j,g)
to inr ◦ ιi. Further, for each a : A, we have a chain ϵi,j,g(a) of identities

apinr(κi,j,g(str(Fi)(a)))−1 · apinr◦ιj (pt(Fi,j,g)(a)) · τj(a)

= apinr(apιj (pt(Fi,j,g)(a))−1 · κi,j,g(str(Fi)(a)))−1 · τj(a) · reflinl(a)

= apinr(apψ(κi,j,g(a)))−1 · τj(a) · reflinl(a) (via ρψ(i, j, g, a))
= apinr(apψ(κi,j,g(a)))−1 · τj(a) · apinl(ap[idA](κi,j,g(a))) (via ρ[idA](i, j, g, a))

= transpinr◦ψ∼inl◦[idA](κi,j,g(a), τj(a)) (Lemma 1)
= τi(a) (by apdglue(−)−1(κi,j,g(a)))

Let K(PF) denote this F -cocone structure on (PF , inl).

▶ Theorem 15 ([6, Theorem 5.4.3]). The function

postcomp(K(PF), T, fT) : ((PF , inl)→A (T, fT)) → CoconeF (T, fT)

is an equivalence for every (T, fT) : Ob(A/U).

P. Hart and K.-B. Hou 46:11

Proof. We construct an inverse CoconeF (T, fT) Θ−→ ((PF , inl)→A (T, fT)) of
postcomp(K(PF), T, fT) as follows. Let (r,K) : CoconeF (T, fT). The forgetful func-
tor F from cocones under F to ordinary cocones under F(F) gives rise to the function
indF(r,K) : colimΓ(F(F))→ T by colimit induction. For all i : Γ0 and a : A, we have

fT (a) fun(ri)(str(Fi(a))) indF(r,K)(str(Fi(a)))pt(ri)(a)−1

Further, for all i, j : Γ0, g : Γ1(i, j), and a : A, we have a chain of identities

transpfT ◦[idA]=indF(r,K)◦ψ(x)(κi,j,g(a), pr2(rj)(a)−1)

= apfT
(ap[idA](κi,j,g(a)))−1 · pr2(rj)(a)−1 · apindF(r,K)

(apψ(κi,j,g(a))) (Lemma 1)

= apfT
(ap[idA](κi,j,g(a)))−1 · pr2(rj)(a)−1 · appr1(rj)(pt(Fi,j,g)(a))−1 · pr1(Ki,j,g)(str(Fi)(a))

(via ρψ(i, j, g, a) and then ρindF(r,K) (i, j, g, str(Fi)(a)))

=
(

pr1(Ki,j,g)(str(Fi)(a))−1 · appr1(rj)(pt(Fi,j,g)(a)) · pr2(rj)(a)
)−1

(via ρ[idA](i, j, g, a))

= pr2(ri)(a)−1 (by ap−−1 (pr2(Ki,j,g)(a)))

By induction on colimΓ A, this gives us a homotopy fT ◦ [idA] ∼ indF(r,K) ◦ ψ and thus a
function hr,K : PF → T

colimΓ A colimΓ(F(F))

A PF

T

hr,K

fT

indF(r,K)

defined by pushout induction on PF . Finally, since h(inl(a)) ≡ fT (a) for all a : A, we have

Θ(r,K) :=
(
hr,K , λa.reflfT (a)

)
: (PF , inl)→A (T.fT)

Each of the homotopies postcomp(K(PF), T, fT)◦Θ ∼ id and Θ◦postcomp(K(PF), T, fT) ∼ id
requires intricate computations to prove. We leave their proofs to the formalization (see the
folders [7, Colimit-code/R-L-R] and [7, Colimit-code/L-R-L], respectively). ◀

5.4 Action on maps
So far, we have defined a function colimA

Γ := P : Ob(Diag(Γ, A/U)) → Ob(A/U) sending a
Γ-shaped diagram in A/U to its A-colimit. We now make P a functor by describing its action
on maps of diagrams. We want to describe this action in terms of the action of the ordinary
colimit functor by using the special form of P’s object function. Moreover, we must verify
that such a description is correct by proving that P is left adjoint to the constant diagram
functor, i.e., enjoys the universal property of the colimit functor.

Suppose that F and G are Γ-shaped diagrams in A/U . The type of natural transformations
from F to G consists of families d : (i : Γ0)→ ty(Fi)→A ty(Gi) of maps equipped with an
A-homotopy Gi,j,g ◦ di ∼A dj ◦ Fi,j,g for all i, j, g, where ∼A is as in Lemma 8. Consider a
natural transformation δ :=

(
d,

〈
ξ, ξ̃

〉)
Fi Fj

Gi Gj

Fi,j,g

djdi

Gi,j,g

⟨ξi,j,g,ξ̃i,j,g⟩

CSL 2025

46:12 Coslice Colimits in Homotopy Type Theory

from F to G, where ⟨−,−⟩ is as in Lemma 8. We form a map colimA
Γ (δ) : colimA

Γ (F) →A

colimA
Γ (G) as follows. Start with the function colimΓ(F(F)) δ̄−→ colimΓ(F(G)) induced by the

following map of U -valued diagrams over Γ:

ty(Fi) ty(Fj)

ty(Gi) ty(Gj)

fun(di)

fun(Fi,j,g)

fun(dj)

fun(Gi,j,g)

ξi,j,g

Note that for each a : A,

ξ̃i,j,g(a) : ξi,j,g(str(Fi)(a))−1·apfun(Gi,j,g)(pt(di)(a))·str(Gi,j,g)(a) = apfun(dj)(pt(Fi,j,g)(a))·pt(dj)(a)

We may assume that ξ̃i,j,g(a) instead has the equivalent type

ξi,j,g(str(Fi)(a)) = apfun(Gi,j,g)(pt(di)(a)) · str(Gi,j,g)(a) · pt(dj)(a)−1 · apfun(dj)(pt(Fi,j,g)(a))−1︸ ︷︷ ︸
Ei,j,g(a)

Here we abbreviate the right endpoint of the path by Ei,j,g(a). Now, the triangle

colimΓ A

colimΓ(F(F)) colimΓ(F(G))

ψF ψG

δ̄

(ψ-tri)

commutes by induction on colimΓ A. Indeed, the computation rules of these functions give us

Ci(a) := apιi(pt(di)(a)) : δ̄(ψF (ιi(a))) = ψG(ιi(a))

for all i : Γ0 and a : A. Further, by defining Λi,j,g(a) := Cj(a) · apψG
(κi,j,g(a)), we have a

chain of identities

transpδ̄◦ψF ∼ψG (κi,j,g(a), Cj(a))

= apδ̄(apψF
(κi,j,g(a)))−1 · Cj(a) · apψG

(κi,j,g(a)) (Lemma 1)

=
(
apιj

(ξi,j,g(str(Fi)(a)))−1 · κi,j,g(fun(di)(str(Fi)(a)))
)−1 · apιj ◦fun(dj)(pt(Fi,j,g)(a)) · Λi,j,g(a)

(via ρψF
(i, j, g, a) and then ρδ̄(i, j, g, str(Fi)(a)))

=
(
apιj

(Ei,j,g(str(Fi)(a)))−1 · κi,j,g(fun(di)(str(Fi)(a)))
)−1 · apιj ◦fun(dj)(pt(Fi,j,g)(a)) · Λi,j,g(a)

(by ap(
apιj

(−)−1·κi,j,g(fun(di)(str(Fi)(a)))
)−1

····
(ξ̃i,j,g(a)))

= Ci(a) (via ρψG
(i, j, g, a))

for all i, j : Γ0, g : Γ1(i, j), and a : A, so (ψ-tri) commutes. We now have a map

A colimΓ A colimΓ(F(F))

A colimΓ A colimΓ(F(G))

id id δ̄λx.refl[id](x) λx.C(x)−1

of spans, which induces a function Ψδ : PF → PG by the universal property of pushouts. Since
Ψδ(inl(a)) ≡ inl(a) for all a : A, we may take colimA

Γ (δ) as
(
Ψδ, λa.reflinl(a)

)
: PF →A PG.

P. Hart and K.-B. Hou 46:13

To verify that the functor Diag(Γ, A/U) colimA
Γ−−−−→ A/U we’ve defined is correct, we must

show that it is left adjoint to the constant diagram functor. To do so, we construct the terms
n1 and n2 required by Definition 12.

▶ Lemma 16 ([6, Lemma 5.4.5]). For every map s : V →A U , the following square commutes:

colimA
Γ (F)→A V colimA

Γ (F)→A U

CoconeF (V) CoconeF (U)

s◦−

postcomp(K(PF),V) postcomp(K(PF),U)

CoconeF (s◦−)

▶ Lemma 17 ([6, Lemma 5.4.12]). For every V : Ob(A/U) and δ : F ⇒A G, the following
square commutes:

colimA
Γ (G)→A V colimA

Γ (F)→A V

CoconeG(V) CoconeF (V)

postcomp(K(PG),V)

CoconeV (−◦δ)

−◦colimA
Γ (δ)

postcomp(K(PF),V)

The two lower horizontal functions are induced by post-composition with s and pre-
composition with δ [6, Definition 5.4.11], respectively.

Lemma 16 is a routine computation, whereas Lemma 17 is quite difficult. The proof of
Lemma 17 is easier for the map colimA

Γ (F)→A colimA
Γ (G) obtained by applying the inverse

of postcomp(K(PF),PG, inl) to the canonical F -cocone on PG induced by δ. Therefore, we
decide to reduce the goal to an equality between this map and colimA

Γ (δ). We achieve this by
showing that they belong to the same fiber of postcomp(K(PF),PG, inl), which is contractible
by Theorem 15. Though much easier than a direct approach to Lemma 17, this method
requires intricate computations. We have formalized both Lemma 16 and Lemma 17 (see [7,
Colimit-code/Map-Nat/CosColimitPstCmp.agda] and [7, Colimit-code/Map-Nat/CosCo
limitPreCmp.agda], respectively).

6 Creation of colimits

Classically, if D is an ∞-category, then all forgetful functors of ∞-coslices create D-shaped
colimits when the ∞-groupoid obtained by freely inverting all morphisms of D is contractible
(see [15, Tag 02KS]). Theorem 18 expresses the same result inside HoTT.

▶ Theorem 18. The forgetful functor A/U → U creates colimits over trees.

Proof. The idea is that a tree has no cycles, and thus we have no distinguished loops to fill.
As a result, coslice colimits over trees look the same as their underlying colimits in U .

To be precise, suppose that Γ is a tree and let F be a diagram in A/U over Γ. Then the
function [idA] : colimΓ A→ A is an equivalence, and one can check that

colimΓ A colimΓ(F(F))

A colimΓ(F(F))

ψ

[idA]

ψ◦[idA]−1

id

CSL 2025

https://kerodon.net/tag/02KS

46:14 Coslice Colimits in Homotopy Type Theory

is a pushout square. By uniqueness of pushouts, this gives us an equivalence γ : PF
≃−→

colimΓ(F(F)) such that γ(inr(ιi(x))) ≡ ιi(x) for all i : Γ0 and x : ty(Fi). We also see that

apγ(apinr(κi,j,g(x))) = apγ◦inr(κi,j,g(x)) ≡ apid(κi,j,g(x)) = κi,j,g(x)

for all i, j : Γ0, g : Γ1(i, j), and x : ty(Fi). This means that γ is a morphism of cocones under
F(F). It follows that the forgetful functor preserves colimits over Γ.

It remains to prove that the forgetful functor reflects colimits over Γ. Consider an
A-cocone J under F

Fi Fj

C

Fi,j,g

ri rj

⟨H,K⟩

as well as the cocone F(J) := (ty(C), fun ◦ r,H) under F(F) obtained by applying the
forgetful functor to J . Suppose that F(J) is colimiting in U . By the universal property of
colimits in A/U , we have a morphism (PF , inl) τ−→ C of A-cocones, which induces a morphism
PF

F(τ)−−−→ ty(C) of cocones in U . This morphism is unique by the universal property of
ordinary colimits. Moreover, by the uniqueness of ordinary colimits, there is a cocone
equivalence from PF to ty(C) as both of them are colimiting. This implies F(τ) is an
equivalence. Thus, τ is an A-cocone morphism whose underlying function PF → ty(C) is an
equivalence. This means that τ is an A-cocone equivalence, so that J is colimiting. ◀

▶ Remark. The fact that the forgetful functor U∗ → U from pointed types creates pushouts
appears in the agda-unimath library, though without proof [23, Pushouts of pointed types].

Theorem 18 lets us lift powerful features of ordinary colimits to A-colimits. For example,
let Γ be a graph and F be an A-diagram over Γ. We say that colimA

Γ (F) is universal, or
pullback-stable [19], if for every pullback square

colimA
Γ (F)×V Y Y

colimA
Γ (F) V

π2

π1
⌟

h

f

(pb)

in A/U , the canonical map

σf,h : colimA
i:Γ(Fi ×V Y)→A colimA

Γ (F)×V Y

is an equivalence.5 The distinguishing feature of a LCC ∞-category, such as U , is that all of
its colimits are universal. Although the coslice of a LCC category need not be LCC, we now
show that all of its colimits over trees are universal.

▶ Lemma 19. The forgetful functor F : A/U → A preserves limits.

Proof. The functor F is right adjoint to the functor X 7→ X +A, so it preserves limits. ◀

▶ Theorem 20. All colimits in U are universal.

5 We show how to construct pullbacks in A/U in [6, Note 6.0.4].

https://unimath.github.io/agda-unimath/synthetic-homotopy-theory.pushouts-of-pointed-types.html

P. Hart and K.-B. Hou 46:15

We have formalized Theorem 20 in Agda (see the folder [7, Pullback-stability]).

▶ Corollary 21. For each tree Γ and each A-diagram F over Γ, the colimit colimA
Γ (F) is

universal.

Proof. Suppose that Γ is a tree and consider the pullback square (pb). By Theorem 18
combined with Theorem 20, the function

ty(colimA
i:Γ(Fi ×V Y)) fun(σf,h)−−−−−−→ ty(colimA

Γ (F))×ty(V) ty(Y)

is an equivalence. The codomain is in this form because F preserves pullbacks by Lemma 19.
It follows that σf,h is an equivalence. ◀

7 Preservation of the left class of an OFS

In this section, we combine our construction of colimA
Γ (δ) from Section 5.4 with Theorem 13 to

prove that colimA
Γ always preserves the left class of an OFS on U . We assume the univalence

axiom to have access to the the tools of univalent bicategories developed in Section 4.
Let (L,R) be an OFS on U . For all diagrams F,G : DΓ := Diag(Γ,U) and natural

transformations (H, γ) : F ⇒ G, define the predicates L̂(H, γ) := (i : Γ0) → L(Hi) and
R̂(H, γ) := (i : Γ0)→ R(Hi).

▶ Lemma 22 ([6, Theorem 7.0.8]). Let Q : F ⇒ G. The following type is contractible:

factL̂,R̂(Q) :=
∑
M :DΓ

∑
S:F⇒M

∑
T :M⇒G

(T ◦ S = Q)× L̂(S)× R̂(T).

By Lemma 22, we see that (L,R) lifts levelwise to DΓ. Since the functor constΓ : U → DΓ
clearly takes R to R̂, we deduce that colimΓ(−) takes L̂ to L by Theorem 13.6

For each X,Y : Ob(A/U), consider the predicate LA(f, p) := L(f) on X →A Y . Also,
define the predicate L̂A on maps of A-diagrams over Γ by L̂A(H, γ) :=

∏
i:Γ0
LA(Hi). Then

the functor colimA
Γ takes L̂A to LA. Indeed, consider a map δ : A ⇒A B of A-diagrams over

Γ. The underlying function of colimA
Γ (δ) is induced by the morphism of spans

A colimΓ A colimΓ(F(A))

A colimΓ A colimΓ(F(B))

id id δ̄

Thus, if δ is in L̂A, then all three vertical functions are in L. Since a map of spans is a map
of diagrams, we see that colimA

Γ (δ) is in LA.
Recall that a type X is (L,R)-connected if the function X → 1 is in L. If F is a

diagram of pointed types over Γ such that each ty(Fi) is (L,R)-connected, then the type
colim∗

Γ(F) := colim1
Γ(F) is also (L,R)-connected. Indeed, we can deduce that colim∗

Γ 1 = 1
from the construction of PF . Thus, colim∗

Γ takes the unique map F ⇒∗ 1 of pointed diagrams
to (c, cp) : colim∗

Γ(F)→∗ colim∗
Γ 1 where c : colim∗

Γ(F)→ 1 is the constant map. In addition,
L(c) holds because colim∗

Γ takes L̂1 to L1.

6 The adjunction colimΓ ⊣ constΓ follows directly from the equivalence postcomp in Section 3.3.

CSL 2025

46:16 Coslice Colimits in Homotopy Type Theory

▶ Example 23. Let n be a truncation level [27, Chapter 7]. The archetypal OFS in HoTT
has n-connected functions as its left class and n-truncated ones as its right. Thus, by our
preceding argument, if each ty(Fi) is n-connected, then so is colim∗

Γ(F).
Now, let −1 ≤ k < ∞ also be a truncation level. Recall the category (n, k) GType of

k-tuply groupal n-groupoids [2]. (These are examples of higher groups, in the sense of group
theory). This is equivalent to the full subcategory U∗

≥k,≤n+k of U∗ on (k − 1)-connected,
(n+ k)-truncated pointed types. For each truncation level m, consider the m-truncation
functor ∥−∥m : A/U → A/U , which takes a type X to the universal m-type admitting
a function from X [27, Section 7.3]. This functor preserves colimits as a left adjoint [6,
Proposition 3.4.6], and its associated counit is an isomorphism. It follows that U∗

≥k,≤n+k,
hence (n, k) GType, inherits colimits over graphs from U∗.

It is a special feature of pointed colimits that they always preserve n-connectedness. If Γ
is not a tree, then colimΓ may fail to preserve n-connectedness. Indeed, let Γ be the graph
with a single point ∗ and a single edge from ∗ to itself. Define the diagram F over Γ by
F0(∗) := 1 and F∗,∗,∗ := id1. Then colimΓ(F) is equivalent to the circle S1, which is not
1-connected.

▶ Remark 24. Although Example 23 is only about pointed types, we do benefit from the
formulation of the main connection for general coslices. Indeed, for each object G of U∗

≥k,≤n+k,
the coslice G/U∗

≥k,≤n+k is a reflective subcategory of ty(G)/U≥k,≤n+k for which the reflector is
2-coherent [6, Definition B.0.1]. (Here U≥k,≤n+k denotes the subuniverse of (k − 1)-connected,
(n+ k)-truncated types.) Hence G/U∗

≥k,≤n+k inherits colimits over graphs from the coslice
ty(G)/U≥k,≤n+k [6, Corollary 7.1.3]. In its full generality, Section 5 gives us an explciit
construction of such colimits.

In particular, let n,m : N with n > 0 and m < n. The Eilenberg-MacLane space
K(Z, n) [13] is the free group on one generator in the category (n,m) GType. Therefore,
when m > 0, we may view K(Z, n)/U∗

≥m,≤n+m as a higher version of the category of pointed
abelian groups [18]. We see, then, that Section 5 lets us build colimits of higher pointed
abelian groups inside HoTT.

8 Mapping colimits to weak limits

Finally, we look at the interaction between colimits and (Eilenberg-Steenrod) cohomology
theories. Specifically, we apply the 3× 3 lemma to the main connection to obtain the familiar
construction of colimA

Γ (F) as a pushout of coproducts in A/U . Afterward, we apply this new
construction to the Mayer-Vietoris sequence to prove that cohomology theories send finite
colimits to weak limits in Set assuming the axiom of choice.

8.1 Decomposition of A-colimits into simpler pieces
To make use of the 3× 3 lemma, we first form the following grid of commuting squares:∑

i,j,g ty(Fi)
(∑

i,j,g ty(Fi)
)

+
(∑

i,j,g ty(Fi)
) ∑

i ty(Fi)

(∑
i,j Γ1(i, j)

)
×A

((∑
i,j Γ1(i, j)

)
×A

)
+

((∑
i,j Γ1(i, j)

)
×A

)
Γ0 ×A

A A A

id + id (i,x)+(j,fun(Fi,j,g)(x))

(i,j,g,str(Fi)(a))

pr2

(i,j,g,str(Fi)(a))+(i,j,g,str(Fi)(a))

id + id (i,a)+(j,a)

pr2 + pr2

(i,str(Fi)(a))

pr2

idA idA

P. Hart and K.-B. Hou 46:17

Call the pushouts of the left, middle, and right vertical spans V1, V2, and V3, respectively. Call
the pushouts of the top, middle, and bottom horizontal spans H1, H2, and H3, respectively.
We can form two additional pushouts from this grid:

V2 V3 H2 H1

V1 PV H3 PH

δ2

δ1 inr

η1

η2 inr

inl

⌟

inl

⌟

δ1 denotes the function induced by the middle-to-left map of spans;
δ2 denotes the function induced by the middle-to-right map of spans;
η1 denotes the function induced by the middle-to-top map of spans; and
η2 denotes the function induced by the middle-to-bottom map of spans.

The 3 × 3 lemma now gives us an equivalence τ1 : PH
≃−→ PV of types defined by double

induction on pushouts [12, Section VII].

▶ Note. Let ∆ be a discrete graph and G an A-diagram over ∆. The pushout

∆0 ×A
∑
i:∆0

ty(Gi)

A D

(i,a) 7→(i,str(Gi)(a))

pr2 inr

inl

⌟

together with inl is the coproduct of the Gi in A/U . We denote D by
∨
i:∆0

ty(Gi).

▶ Lemma 25. We have two equivalences of spans

A colimΓ A colimΓ(F(F))

H3 H2 H1

V1 V2 V3

∨
i,j,g ty(Fi)

(∨
i,j,g ty(Fi)

)
∨

(∨
i,j,g ty(Fi)

) ∨
i ty(Fi)

≃

[idA] ψ

≃ ≃

η2 η1

δ1 δ2

≃

id ∨ id ν

where ν is defined by double induction on pushouts through the commuting square

A
∨
i,j,g ty(Fi)

∨
i,j,g ty(Fi)

∨
i ty(Fi)(i,j,g,x)7→inr(i,x)

(i,j,g,x)7→inr(j,fun(Fi,j,g)(x))reflinl(a)

Notice that the pushout of the topmost span appearing in Lemma 25 is exactly PF . As a
result, the equivalence supplied by the 3× 3 lemma gives us colimA

Γ (F) as a familiar pushout
of coproducts.

CSL 2025

46:18 Coslice Colimits in Homotopy Type Theory

▶ Corollary 26 ([6, Corollary 5.5.3]). We have a pushout square(∨
i,j,g ty(Fi)

)
∨

(∨
i,j,g ty(Fi)

) ∨
i ty(Fi)

∨
i,j,g ty(Fi) colimA

Γ (F)

ν

id ∨ id ⌟

8.2 Weak continuity of cohomology
With this new construction of colimA

Γ , we can transfer the weak continuity of cohomology to
HoTT. This application is described in detail in [6, Section 8].

Let Ab denote the category of abelian groups. Suppose that H∗ : (U∗)op → Ab is a
cohomology theory.7 Consider the pushout

Z Y

X P

g

f inr

inl

⌟

of a span of pointed maps. In [4], Cavallo constructs the Mayer-Vietoris sequence for P , a
long exact sequence (LES) of the form

· · · Hn−1(P) Hn−1(X)×Hn−1(Y) Hn−1(Z)

Hn(P) Hn(X)×Hn(Y) Hn(Z) · · ·
(Hn(inl),Hn(inr)) Hn(f)−Hn(g)

Let F be a diagram of pointed types over a finite graph Γ, which means that Γ0 is finite
and Γ1(i, j) is finite for all i, j : Γ0. As cohomology preserves finite wedges [4, Section 4.2],
Corollary 26 combined with this LES gives us an exact squence

Hn(colim∗
Γ(F))

∏
i,j,gH

n(Fi)×
∏
iH

n(Fi)
∏
i,j,gH

n(Fi)×
∏
i,j,gH

n(Fi)
ζn µn−νn

(prod-cohom)

for each n : Z.8 Here, ζn is defined as the composite

Hn(colim∗
Γ(F))

∏
i,j,gH

n(Fi)×
∏
iH

n(Fi)

Hn(
∨
i,j,g Fi)×Hn(

∨
i Fi)

ζn

(Hn(inl),Hn(inr)) ∼=×∼=

and µn and νn are defined by (f, h) 7→ (f, λiλjλg.Hn(Fi,j,g)(hj)) and (f, h) 7→ (f, λiλjλg.hi),
respectively. Moreover, the universal property of limits in Ab induces a commuting triangle

7 See [1, Section 6] for a description of Eilenberg-Steenrod cohomology theory inside HoTT. A slightly
more general definition, which works in our setting, is found in [6, Section 8.1].

8 When H∗ is a singular cohomology theory, we may extend the class of graphs to those satisfying the
set-level axiom of choice, in the sense of [1, Definition 6.1].

P. Hart and K.-B. Hou 46:19

Hn(colim∗
Γ(F)) limΓ H

n(F)

Hn(Fi)

∆F

Hn(ιi) pri

for each i : Γ0, induced by the cone (Hn(colim∗
Γ(F)), Hn(ι)) over Hn(F). One can check

that the exactness of (prod-cohom) implies that ∆F is epic as a map of sets.
At this stage, if we were in a classical system, then it would follow that ∆F has a section,

which in turn would imply that Hn(colim∗
Γ(F)) is a weak limit in Set. Inside HoTT, we may

assume the axiom of choice [27, Chapter 3.8] to conclude that ∆F is merely a weak limit.9
In this sense, H∗ enjoys a restricted version of weak continuity inside HoTT.

9 Conclusion and future work

We explored colimits inside HoTT. The heart of our work was the connection between
A-colimits and ordinary colimits, i.e., the main connection. To derive the main connection,
we found an explicit construction of A-colimits that was tailored to reveal the connection. We
used the main connection to prove that the forgetful functor from a coslice creates colimits
over trees and that A-colimits over trees are universal. We also used the main connection
to examine how colimits interact with factorization systems. As a result, we found that all
pointed colimits preserve n-connectedness, which implies that higher groups are closed under
colimits on directed graphs. Finally, we used the main connection to see that cohomology
takes finite colimits to weak limits in Set assuming the axiom of choice.

A natural direction is to extend our development to colimits of diagrams over 2-
computads [26]. To our knowledge, colimits of type-valued diagrams over higer-dimensional
graphs have not been developed in the untruncated setting. We believe both Section 6 and
Section 7 can be generalized to the setting of 2-computads.

References
1 Ulrik Buchholtz and Kuen-Bang Hou (Favonia). Cellular Cohomology in Homotopy Type

Theory. Logical Methods in Computer Science, Volume 16, Issue 2, 2020. doi:10.23638/LMC
S-16(2:7)2020.

2 Ulrik Buchholtz, Floris van Doorn, and Egbert Rijke. Higher Groups in Homotopy Type
Theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’18, pages 205–214, New York, NY, USA, 2018. Association for Computing
Machinery. doi:10.1145/3209108.3209150.

3 Paolo Capriotti and Nicolai Kraus. Univalent higher categories via complete Semi-Segal types.
Proc. ACM Program. Lang., 2(POPL), 2017. doi:10.1145/3158132.

4 Evan Cavallo. Synthetic Cohomology in Homotopy Type Theory. Master’s thesis, Carnegie
Mellon University, 2015. URL: https://staff.math.su.se/evan.cavallo/works/thesis15
.pdf.

5 J Daniel Christensen and Luis Scoccola. The Hurewicz theorem in homotopy type theory.
Algebraic and Geometric Topology, 23(5):2107–2140, 2023. doi:10.2140/agt.2023.23.2107.

6 Perry Hart and Kuen-Bang Hou. Coslice Colimits in Homotopy Type Theory, 2024. arXiv:
2411.15103.

7 Perry Hart and Kuen-Bang Hou (Favonia). A formalized construction of coslice colimits, 2024.
v0.1.0. URL: https://github.com/PHart3/colimits-agda/tree/v0.1.0.

9 As in [27, Chapter 3.10], the adverb merely refers to propositional truncation.

CSL 2025

https://doi.org/10.23638/LMCS-16(2:7)2020
https://doi.org/10.23638/LMCS-16(2:7)2020
https://doi.org/10.1145/3209108.3209150
https://doi.org/10.1145/3158132
https://staff.math.su.se/evan.cavallo/works/thesis15.pdf
https://staff.math.su.se/evan.cavallo/works/thesis15.pdf
https://doi.org/10.2140/agt.2023.23.2107
https://arxiv.org/abs/2411.15103
https://arxiv.org/abs/2411.15103
https://github.com/PHart3/colimits-agda/tree/v0.1.0

46:20 Coslice Colimits in Homotopy Type Theory

8 Kuen-Bang Hou (Favonia), Eric Finster, Daniel R. Licata, and Peter LeFanu Lumsdaine.
A Mechanization of the Blakers-Massey Connectivity Theorem in Homotopy Type Theory.
In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’16, pages 565–574, New York, NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2933575.2934545.

9 Krzysztof Kapulkin and Peter LeFanu Lumsdaine. The simplicial model of Univalent Founda-
tions (after Voevodsky). J. Eur. Math. Soc., 23(6):2071–2126, 2021. doi:10.4171/JEMS/1050.

10 Max Kelly. On MacLane’s Conditions for Coherence of Natural Associativities, Commutativit-
ies, etc. Journal of Algebra, 1(4):397–402, 1964. doi:10.1016/0021-8693(64)90018-3.

11 Nicolai Kraus and Jakob von Raumer. Path Spaces of Higher Inductive Types in Homotopy
Type Theory . In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 1–13, Los Alamitos, CA, USA, June 2019. IEEE Computer Society. doi:
10.1109/LICS.2019.8785661.

12 Daniel R. Licata and Guillaume Brunerie. A Cubical Approach to Synthetic Homotopy Theory.
In 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science, pages 92–103,
2015. doi:10.1109/LICS.2015.19.

13 Daniel R. Licata and Eric Finster. Eilenberg-MacLane spaces in homotopy type theory.
In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), CSL-LICS ’14, New York, NY, USA, 2014. Association for
Computing Machinery. doi:10.1145/2603088.2603153.

14 Jacob Lurie. Higher Algebra. Unpublished, 2017. URL: https://www.math.ias.edu/~lurie
/papers/HA.pdf.

15 Jacob Lurie. Kerodon. https://kerodon.net, 2024.
16 nLab authors. created limit. https://ncatlab.org/nlab/show/created+limit, 2024.

Revision 21.
17 nLab authors. (infinity,1)-limit. https://ncatlab.org/nlab/show/%28%E2%88%9E%2C1%29-l

imit, 2024. Revision 78.
18 nLab authors. pointed abelian group. https://ncatlab.org/nlab/show/pointed+abelian+

group, November 2024. Revision 3.
19 nLab authors. pullback-stable colimit. https://ncatlab.org/nlab/show/pullback-stable+

colimit, October 2024. Revision 18.
20 Emily Riehl. Categorical Homotopy Theory. New Mathematical Monographs. Cambridge

University Press, 2014. doi:10.1017/CBO9781107261457.
21 Egbert Rijke. Introduction to Homotopy Type Theory, 2022. arXiv:2212.11082.
22 Egbert Rijke, Michael Shulman, and Bas Spitters. Modalities in homotopy type theory. Logical

Methods in Computer Science, Volume 16, Issue 1, January 2020. doi:10.23638/LMCS-16(1:
2)2020.

23 Egbert Rijke, Elisabeth Stenholm, Jonathan Prieto-Cubides, Fredrik Bakke, and others. The
agda-unimath library. URL: https://github.com/UniMath/agda-unimath/.

24 Kristina Sojakova. Higher Inductive Types as Homotopy-Initial Algebras. SIGPLAN Not.,
50(1):31–42, 2015. doi:10.1145/2775051.2676983.

25 Kristina Sojakova, Floris van Doorn, and Egbert Rijke. Sequential Colimits in Homotopy Type
Theory. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’20, pages 845–858, 2020. doi:10.1145/3373718.3394801.

26 Ross Street. Limits indexed by category-valued 2-functors. Journal of Pure and Applied
Algebra, 8(2):149–181, 1976. doi:10.1016/0022-4049(76)90013-X.

27 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

28 Floris van Doorn, Jakob von Raumer, and Ulrik Buchholtz. Homotopy Type Theory in
Lean. In Interactive Theorem Proving, pages 479–495. Springer International Publishing, 2017.
doi:10.1007/978-3-319-66107-0_30.

https://doi.org/10.1145/2933575.2934545
https://doi.org/10.4171/JEMS/1050
https://doi.org/10.1016/0021-8693(64)90018-3
https://doi.org/10.1109/LICS.2019.8785661
https://doi.org/10.1109/LICS.2019.8785661
https://doi.org/10.1109/LICS.2015.19
https://doi.org/10.1145/2603088.2603153
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://kerodon.net
https://ncatlab.org/nlab/show/created+limit
https://ncatlab.org/nlab/revision/created+limit/21
https://ncatlab.org/nlab/show/%28%E2%88%9E%2C1%29-limit
https://ncatlab.org/nlab/show/%28%E2%88%9E%2C1%29-limit
https://ncatlab.org/nlab/revision/%28%E2%88%9E%2C1%29-limit/78
https://ncatlab.org/nlab/show/pointed+abelian+group
https://ncatlab.org/nlab/show/pointed+abelian+group
https://ncatlab.org/nlab/revision/pointed+abelian+group/3
https://ncatlab.org/nlab/show/pullback-stable+colimit
https://ncatlab.org/nlab/show/pullback-stable+colimit
https://ncatlab.org/nlab/revision/pullback-stable+colimit/18
https://doi.org/10.1017/CBO9781107261457
https://arxiv.org/abs/2212.11082
https://doi.org/10.23638/LMCS-16(1:2)2020
https://doi.org/10.23638/LMCS-16(1:2)2020
https://github.com/UniMath/agda-unimath/
https://doi.org/10.1145/2775051.2676983
https://doi.org/10.1145/3373718.3394801
https://doi.org/10.1016/0022-4049(76)90013-X
https://homotopytypetheory.org/book
https://doi.org/10.1007/978-3-319-66107-0_30

A Rewriting Theory for Quantum λ-Calculus
Claudia Faggian #

IRIF, CNRS, Université Paris Cité, France

Gaetan Lopez #

IRIF, CNRS, Université Paris Cité, France

Benoît Valiron #

Université Paris-Saclay, CNRS, CentraleSupélec, ENS Paris-Saclay, Inria,
Laboratoire Méthodes Formelles, 91190, Gif-sur-Yvette, France

Abstract
Quantum lambda calculus has been studied mainly as an idealized programming language – the
evaluation essentially corresponds to a deterministic abstract machine. Very little work has been
done to develop a rewriting theory for quantum lambda calculus. Recent advances in the theory of
probabilistic rewriting give us a way to tackle this task with tools unavailable a decade ago. Our
primary focus are standardization and normalization results.

2012 ACM Subject Classification Theory of computation → Quantum computation theory; Theory
of computation → Operational semantics; Theory of computation → Equational logic and rewriting;
Theory of computation → Linear logic

Keywords and phrases quantum lambda-calculus, probabilistic rewriting, operational semantics,
asymptotic normalization, principles of quantum programming languages

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.47

Related Version Extended Version: http://arxiv.org/abs/2411.14856 [25]

Funding This work has been partially funded by the French National Research Agency (ANR) by
the projects PPS ANR-19-CE48-0014, TaQC ANR-22-CE47-0012 and within the framework of “Plan
France 2030”, under the research projects EPIQ ANR-22-PETQ-0007, OQULUS ANR-23-PETQ-
0013, HQI-Acquisition ANR-22-PNCQ-0001 and HQI-R&D ANR-22-PNCQ-0002.

1 Introduction

Quantum computation is a model of computation in which one has access to data coded
on the state of objects governed by the law of quantum physics. Due to the unique nature
of quantum mechanics, quantum data exhibits several non-intuitive properties [37]: it is
non-duplicable, it can exist in superposition, and reading the memory exhibits a probabilistic
behavior. Nonetheless, the mathematical formalization is well-established: the state of a
quantum memory and the available manipulations thereof can be expressed within the theory
of Hilbert spaces.

Knill’s QRAM model [34] describes a generic interface for interacting with such a quantum
memory. The memory is modeled with uniquely identified quantum registers, each holding
one quantum bit – also called a qubit. The interface should make it possible to create and
discard registers and apply elementary operations on arbitrary registers. These operations
consist of unitary gates and measurements. The former are internal, local modifications of
the memory state, represented by a quantum circuit, while the latter are the operations for
reading the memory. Measurements are probabilistic operations returning a classical bit of
information.

© Claudia Faggian, Gaetan Lopez, and Benoît Valiron;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 47; pp. 47:1–47:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:faggian@irif.fr
https://orcid.org/0009-0009-8875-3595
mailto:Gaetan.Lopez@irif.fr
mailto:benoit.valiron@universite-paris-saclay.fr
https://orcid.org/0000-0002-1008-5605
https://doi.org/10.4230/LIPIcs.CSL.2025.47
http://arxiv.org/abs/2411.14856
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 A Rewriting Theory for Quantum λ-Calculus

Quantum algorithms are typically designed with a model akin to Knill’s QRAM [37].
A quantum algorithm consists of the description of a sequence of quantum operations,
measurements, and classical processing. The control flow is purely classical, and generally,
the algorithm’s behavior depends on the results of past measurements. An algorithm,
therefore, mixes classical processing and interaction with quantum memory in a potentially
arbitrary way: Quantum programming languages should be designed to handle it.

Quantum λ-Calculus and Linear Logics. In the last 20 years, many proposals for quantum
programming languages have emerged [28, 30, 40, 39, 8, 11]. Similar to classical languages,
the paradigm of higher-order, functional quantum programming languages have been shown
to be a fertile playground for the development of well-founded, formal quantum languages
aiming at the formal analysis of quantum programs [40, 11].

The quantum λ-calculus of Selinger&Valiron [42] lies arguably at the foundation of the
development of higher-order, quantum functional programming languages [14, 13, 38, 12, 35].
Akin to other extensions of lambda-calculus with probabilistic [17, 15, 21] or non-deterministic
behavior [16], the quantum lambda calculus extends the regular lambda calculus – core of
functional programming languages – with a set interface to manipulate a quantum memory.
Due to the properties of the quantum memory, quantum lambda-calculi should handle
non-duplicable data and probabilistic behavior.

One of the critical points that a quantum programming language should address is the
problem of the non-duplicability of quantum data. In the literature, non-duplicable data
is usually captured with tools coming from linear logic. The first approach [42, 38, 12]
consists in using types, imposing all functions to be linear by default, and with the use of a
special type !A to explicitly pinpoint duplicable objects of type A. An alternative – untyped
– approach [13, 14] considers instead an untyped lambda calculus, augmented with a special
term construct “!” and validity constraints to forbid the duplication of qubits.

Probabilistic and Infinitary Behavior. A quantum λ-calculus featuring all of quantum
computation should not only permit the manipulation of quantum register with unitary
operations but should also give the possibility to measure them, and retrieve a classical bit
of information. As the latter is a probabilistic operation, an operational semantics for a
quantum λ-calculus is inherently probabilistic. As in the non-quantum case, probabilistic
choice and unbounded recursion yield subtle behaviors.

Fair Coin. Consider the following program L, written in a mock-up ML language with
quantum features, similar to the language of [42]:

L := if meas(Hnew) then I else Ω.

For this introduction, we only describe its behavior informally. The term L above produces
a qubit1 in state

√
2

2 (|0⟩+ |1⟩) by creating a fresh qubit in state |0⟩ (this is the role of new),
and applying the Hadamard gate H. Measuring this qubit amounts to flipping a fair coin
with equal probability 1

2 . In one case, the program returns the identity function I; otherwise,
it diverges – the term Ω stands for the usual, non-terminating looping term.

1 The reader unfamiliar with the notation should not worry, as the formal details are not essential at
this point: just retain that the state of our qubit is a superposition of two (basis) states, which play the
role of head and tail. When needed, in Section 3 we provide a brief introduction to the mathematical
formalism for quantum computation [37].

C. Faggian, G. Lopez, and B. Valiron 47:3

The program L, therefore, uses the quantum memory only once (at the beginning of the
run of the program), and it terminates with probability 1

2 .

Unbounded Use of Fair Coin. In the context of probabilistic behavior, unbounded loops
might terminate asymptotically: A program may terminate with probability 1, but only at
the limit (almost sure termination). A simple example suffices to illustrate this point.

Consider a quantum process R that flips a coin by creating and measuring a fresh qubit.
If the result is head, the process stops, outputting I. If the result is tail, it starts over. In
our mock-up ML, the program R is

R := letrec fx =
(
if (meas x)then I else f(Hnew)

)
in f(Hnew). (1)

After n iterations, the program R is in normal form with probability 1
2 + 1

22 + · · ·+ 1
2n . Even

if the termination probability is 1, this probability of termination is not reached in a finite
number of steps but as a limit. The program in Equation (1) is our leading example: we
formalize it in Example 4.3.

Operational Semantics of Quantum Programs. As it is customary when dealing with
choice effects, the probabilistic behavior is dealt with by fixing an evaluation strategy. Think
of tossing a (quantum) coin and duplicating the result, versus tossing the coin twice, which is
indeed one key issue at the core of confluence failure in such settings (as observed in [16, 13]).
Following the standard approach adopted for functional languages with side effects, the
evaluation strategy in quantum λ-calculi such as [42, 38, 12] is a deterministic call-by-value
strategy: an argument is reduced to a value before being passed to a function.

One aspect that has been seldom examined is however the properties of the general
reduction associated to the quantum lambda-calculus: this is the purpose of this paper.

A Rewriting Theory for the Quantum λ-Calculus. Lambda calculus has a rich, powerful
notion of reduction, whose properties are studied by a vast amount of literature. Such a general
rewriting theory provides a sound framework for reasoning about programs transformations,
such as compiler optimizations or parallel implementations, and a base on which to reason
about program equivalence. The two fundamental operational properties of lambda calculus
are confluence and standardization. Confluence guarantees that normal forms are unique,
standardization that if a normal form exists, there is a strategy that is guaranteed to terminate
in such a form.

As pioneered by Plotkin [41], standardization allows to bridge between the general
reduction (where programs transformation can be studied), and a specific evaluation strategy,
which implements the execution of an idealized programming language. Summarizing the
situation, for programming languages, there are two kinds of term rewriting: run-time
rewriting (“evaluation”) and compile-time rewriting (program transformations).

In the context of quantum lambda-calculi, the only line of research discussing rewriting
(rather than fixing a deterministic strategy) has been pursued by Dal Lago, Masini, and
Zorzi [14, 13]: working with an untyped quantum lambda-calculus, they establish conflu-
ence results (and also a form of standardization, but only for the sub-language without
measurement [13] – therefore, without the probabilistic behavior).

In this paper, we study not only confluence but also standardization and normalization
results for a quantum λ-calculus featuring measurement, and where β reduction (the engine
of λ-calculus) is fully unrestricted. Recent advances in probabilistic and monadic rewriting
theory [9, 12, 19, 33, 6, 23, 27, 32] allow us to tackle this task with a formalism and powerful

CSL 2025

47:4 A Rewriting Theory for Quantum λ-Calculus

techniques unavailable a decade ago. Still, quantum rewriting is more challenging than
probabilistic rewriting because we need to manage the states of the quantum memory. The
design of the language is, therefore, also delicate: we need to control the duplication of qubits
while allowing the full power of β-reduction.

Contributions. We can summarize the contributions of the paper as follows. These are
described in more details in Section 5, once all the necessary materials have been set up.

An untyped quantum lambda-calculus, closely inspired by [14] but re-designed to allow
for a more general reduction, now encompassing the full strength of β-reduction; validity
constraints make it quantum-compatible.
The calculus is equipped with a rich operational semantics, which is sound with respect
to quantum computation. The general reduction enables arbitrary β-reduction; surface
reduction (in the spirit of [43] and other calculi based on Linear Logic) plays the role of
an evaluation strategy.
We study the rewriting theory for the system, proving confluence of the reduction, and
standardization.
We obtain a normalization result that scales to the asymptotic case, defining a normalizing
strategy w.r.t. termination at the limit.

Missing proofs and some more technical details are given in the extended version [25].

2 Setting the Scene: the Rewriting Ingredients

This section is devoted to a more detailed (but still informal) discussion of two key elements:
the style of λ-calculus we adopt, and what standardization results are about. The calculus
is then defined in Section 3, its operational semantics in Section 4; standardization and
normalization in the following sections.

Untyped Quantum λ-Calculus. Our quantum calculus is built on top of Simpson’s calculus
Λ! [43], a variant of untyped λ-calculus inspired by Girard’s Linear Logic [29]. In this choice,
we follow [14, 13, 12]. Indeed, the fine control of duplication which Λ! inherits from linear
logic makes it an ideal base for quantum computation.

The Bang operator ! plays the role of a marker for non-linear management: duplicability
and discardability of resources. Abstraction is refined into linear abstraction λx.M and non-
linear abstraction λ!x.M . The latter allows duplication of the argument, which is required
to be suspended as thunk !N , behaving as the !-box of linear logic.

▶ Example 2.1 (duplication, or not). (λx.Hx)(new) is a valid term, but (λx.⟨x, x⟩)(new)
which would duplicate the qubit created by new is not. Instead, we can validly write
(λ!x.CNOT⟨Hx, x⟩)(!new) which thunks new and then duplicate it, yielding CNOT⟨Hnew, new⟩.
Notice that this term produces an entangled pair of qubits.

In our paper, as well as in [14, 13, 12], surface reduction (i.e., no reduction is allowed in
the scope of the ! operator) is the key ingredient to allow for the coexistence of quantum bits
with duplication and erasing. Unlike previous work however, in our setting β-reduction – the
engine of λ-calculus – is unconstrained. We prove that only quantum operations needs to be
surface, making ours a conservative extension of the usual λ-calculus, with its full power.

C. Faggian, G. Lopez, and B. Valiron 47:5

Table 1 Summarizing Standard Factorization and Normalization Results.

Call-by-name λ-calculus Call-by-value λv-calculus Linear λ!-calculus
General reduction: (→β) General reduction: (→βv) General reduction: (→β!)
Evaluation: head (→h) Evaluation: weak-left (→l) Evaluation: surface (→s)
1. Head factorization: 1. Weak-left factorization: 1. Surface factorization:

M →∗
β N iff M →∗

h · →∗
¬h N M →∗

βv
N iff M →∗

l · →∗
¬l N M →∗

β! N iff M →∗
s · →∗

¬s N

2. Head normalization: 2. Convergence to a value: 2. Surface normalization:
M →∗

β H iff M →∗
h H ′ M →∗

βv
V iff M →∗

l V ′ M →∗
β! S iff M →∗

s S′

Call-by-Value... or rather, Call-by-Push-Value. The reader may have recognized that
reduction in our calculus follows the Call-by-Push-Value paradigm, with the Bang operator
thunking a computation. In fact, Simpson’s calculus [43], more precisely the fragment
without linear abstraction, is essentially an untyped version of Call-by-Push-Value, and it
has been extensively studied in the literature of Linear Logic also with the name of Bang
calculus [20, 31, 10], as a unifying framework which subsumes both Call-by-Name (CbN) and
Call-by-Value(CbV) calculi.

A Taste of Standardization and Normalization: Pure λ-Calculi. Termination and conflu-
ence concern the existence and the uniqueness of normal forms, which are the results of a
computation. Standardization and normalization are concerned with how to compute a given
outcome. For example, is there a strategy which guarantees termination, if possible? The
desired outcome is generally a specific kind of terms. In the classical theory of λ-calculus (à
la Barendregt), the terms of interest are head normal forms. In the Call-by-Value approach,
the terms of computational interest are values.

Classical λ-calculus. The simplest form of standardization is factorization: any reduction
sequence can be re-organized so as to first performing specific steps and then everything else.
A paradigmatic example is the head factorization theorem of classical λ-calculus (theorem
11.4.6 in [7]): every β-reduction sequence M →∗

β N can be re-organized/factorized so as to
first reducing head redexes and then everything else – in symbols M →∗

h · →∗
¬h N .

A major consequence is head normalization, relating arbitrary β reduction with head
reduction, w.r.t. head normal forms, the terms of computational interest in classical λ-calculus.
A term M has head normal form if and only if head reduction terminates:

M →∗
β H(hnf) ⇔ M →∗

h H
′(hnf)

Plotkin’s Call-by-Value. This kind of results takes its full computational meaning in
Plotkin’s [41] Call-by-Value λ-calculus The terms of interest are here values. Plotkin relates
arbitary β reduction (→βv) and the evaluation strategy →l which only performs weak-left
steps (no reduction in the scope of abstractions), by establishing

M →∗
βv
V (value) ⇔ M →∗

l V
′(value)

In words: the unconstrained reduction (→βv
) returns a value if and only if the evaluation

strategy (→l) returns a value. The proof relies on a factorization: M →∗
βv

N iff M →∗
l

· →∗
¬l N .

Simpson’s pure calculus. Standardization and Normalization results have been established
by Simpson also for its calculus Λ! [43]. Here, the evaluation strategy is surface reduction,
i.e. no reduction is allowed in the scope of a ! operator.

CSL 2025

47:6 A Rewriting Theory for Quantum λ-Calculus

Summary. The table in Table 1 summarize the factorization and normalization result for
the three calculi (respectively based on β, βv, β!) which we have discussed.

3 Untyped Quantum λ-Calculus

Quantum lambda-calculus is an idealization of functional quantum programming language:
following Selinger and Valiron [42], it consists of a regular λ-calculus together with specific
constructs for manipulating quantum data and quantum operations. One of the problems
consists in accomodating the non-duplicability of quantum information: in a typed setting [42]
one can rely on a linear type system. In our untyped setting, we instead base our language
on Simpson’s λ-calculus [43], extended with constructs corresponding to quantum data and
quantum operations.

Due of entanglement, the state of an array of quantum bits cannot be separated into
states of individual qubits: the information is non-local. A corollary is that quantum data
cannot easily be written inside lambda-terms: unlike Boolean values or natural numbers, one
cannot put in the grammar of terms a family of constants standing for all of the possible
values a quantum bit could take. A standard procedure [42] relies on an external memory
with register identifiers used as placeholders for qubits inside the lambda-term. As they
stands for qubits, these registers are taken as non-duplicable.

In the original quantum lambda-calculus [42], regular free variables of type qubit were
used to represent registers. In this work, being untyped we prefer to consider two kinds of
variables: regular term variables, and special variables, called registers and denoted by ri

with i ∈ N, corresponding to the qubit number i in the quantum memory. The language is
also equipped with three term constructs to manipulate quantum information. The first term
construct is new, producing the allocation of a fresh qubit2. The second term construct is
meas(ri,M0,M1), corresponding to a destructive measurement of the qubit ri. The evaluation
then probabilistically continues as M0 or M1, depending on the measure being |0⟩ or |1⟩.
Finally, assuming that the memory comes with a set of built-in unitary gates ranged over by
letters A,B,C, the term UA corresponds to a function applying the gate A to the indicated
qubits.

Raw Terms. Formally, raw terms M,N,P, . . . are built according to the following grammar.

M,N,P ::= x | !M | λx.M | λ!x.M |MN | ri | UA | new | meas(P,M,N) (terms Λq)

where x ranges over a countable set of variables, ri over a disjoint set of registers where i ∈ N
is called the identifier of the register, and UA over a set of build-in n-ary gates. In this paper,
we limit the arity n to be 1 or 2. Pairs do not appear as a primitive construct, but we adopt
the standard encoding, writing ⟨M,N⟩ as sugar for λf. (f M)N . We also use the shorthand
⟨M1, . . . ,Mn⟩ for ⟨M1⟨M2, . . .⟩⟩. The variable x is bound in both λx.P and λ!x.P . As usual,
we silently work modulo α-equivalence. Given a term of shape meas(P,M,N), we call M
and N its branches. As usual, the set of free variables of a term M are denoted with FV(M).
The set of registers identifiers for a term M is denoted with Reg(M).

▶ Remark 3.1. Without any constraints, one could write terms such as ⟨r0, r0⟩ or λx.⟨x, x⟩.
Both are invalid: the former since a qubit cannot be duplicated, the latter since λ-abstractions
are meant to be linear in Simpson’s calculus.

2 Unlike the original quantum λ-calculus [42], the term new literally evaluates to a qubit.

C. Faggian, G. Lopez, and B. Valiron 47:7

Terms Validity. To deal with the problem in Remark 3.1, we need to introduce the notions
of context and surface context, to speak of occurrences and surface occurrences of subterms.

A context is a term with a hole. We define general contexts where the hole can appear
anywhere, and surface contexts for contexts where holes do not occur in the scope of a !
operator, nor in the branches of a meas(−,−,−). They are generated by the grammars

C ::= L M |MC | CM | λx.C | λ!x.C | meas(C,M,N) | (contexts)
meas(M,C, N) | meas(M,N,C) | !C,

S ::= L M |MS | SM | λx.S | λ!x.S | meas(S,M,N), (surface contexts)

where L M denotes the hole of the corresponding context. The notation CLRM (or SLRM) stands
for the term where the only occurrence of a hole L M in C (or S) is replaced with the term R,
potentially capturing free variables of R.

Contexts and surface contexts allow us to formalize two notions of occurence of a subterm
T . The pair (C, T) (resp. (S, T)) is an occurence (resp. surface occurence) of T in M whever
M = CLT M (resp. M = SLT M). By abuse of notation, we will simply speak of occurrence of a
subterm in M , the context being implicit.

We can now define a notion of valid terms, agreeing with the quantum principle of
no-cloning.

▶ Definition 3.2 (Valid Terms, and Linearity). A term M is valid whenever
no register occurs in M more than once, and every occurrences of registers are surface;
for every subterm λx.P of M , x is linear in P , i.e. x occurs free exactly once in P and,
moreover, this occurrence of x is surface.

▶ Remark 3.3. The validity conditions for registers and linear variables do not allow us to
put registers inside branches. So for instance a term such as

λz. meas(r0, z (UA r1), z (UB r1)).

is invalid in our syntax. This function would measure r0 and performs an action on r1 based
on the result. If one cannot write such a term directly with the constraints we have set on
the language, one can however encode the corresponding behavior as follows:

(λ!f.fzr1) meas(r0, !(λux.u(UAx)), !(λux.u(UBx)).

The action on the register r1 is the function f whose definition is based on the result of the
measurement of r0.

Quantum Operations. Before diving into the definition of the notion of program, we briefly
recall here the mathematical formalism for quantum computation [37].

The basic unit of information in quantum computation is a quantum bit or qubit. The
state of a single qubit is a normalized vector of the 2-dimensional Hilbert space C2. We
denote the standard basis of C2 as {|0⟩, |1⟩}, so that the general state of a single qubit can
be written as α|0⟩+ β|1⟩, where |α|2 + |β|2 = 1.

The basic operations on quantum states are unitary operations and measurements. A
unitary operation maps an n-qubit state to an n-qubit state, and is described by a unitary
2n × 2n-matrix. We assume that the language provides a set of built-in unitary operations,
including for example the Hadamard gate H and the controlled not gate CNOT:

H := 1√
2

(
1 1
1 −1

)
CNOT :=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2)

CSL 2025

47:8 A Rewriting Theory for Quantum λ-Calculus

Measurement acts as a projection. When a qubit α|0⟩ + β|1⟩ is measured, the observed
outcome is a classical bit: either 0 or 1, with probabilities |α|2 and |β|2, respectively. Moreover,
the state of the qubit collapses to |0⟩ (resp. |1⟩) if 0 (resp. 1) was observed.

Programs. In order to associate quantum states to registers in lambda-terms, we introduce
the notion of program, consisting of a quantum memory and a lambda-term of Λq. A program
is closed under permutation of register identifiers.

The state of one qubit is a normalized vector in E = C2. The state of a quantum
memory (also called qubits state in the remainder of the document) consisting of n qubits
is a normalized vector Q ∈ En = (C2)⊗n, the n-fold Kronecker product of E . The size of
Q is written |Q| := n. We identify a canonical basis element of En with a string of bits
of size n, denoted with |b0. . .bn−1⟩. A state Q ∈ En is therefore in general of the form
Q =

∑
b0,...bn−1∈{0,1} αb0...bn−1 |b0. . .bn−1⟩. If σ is a permutation of {0, . . . n − 1}, we define

σ(Q) as σ(Q) =
∑

b0,...bn−1∈{0,1} αb0...bn−1 |bσ(0). . .bσ(n−1)⟩.
A raw program p is then a pair [[[Q;M]]], where Q ∈ En and where M is a valid term such

that Reg(M) = {0, . . . , n − 1}. We call n the size of Q and we denote it with |Q|. If σ is a
permutation over the set {0..n− 1}, the re-indexing σ(p) of p is the pair [[[σ(Q);σ(M)]]] where
σ(M) is M with each occurence of ri replaced by rσ(i).

▶ Definition 3.4 (Program). A program is an equivalence class of raw programs under
re-indexing. We identify programs with their representative elements. The set of all programs
is denoted with P.

▶ Example 3.5. The following two raw programs are equal modulo re-indexing: [[[|ψ⟩ ⊗
|ϕ⟩; ⟨r0, r1⟩]]] = [[[|ϕ⟩ ⊗ |ψ⟩; ⟨r1, r0⟩]]]. In both cases, |ψ⟩ is the first qubit in the pair and |ϕ⟩ the
second one. Re-indexing is agnostic with respect to entanglement, and we also have the raw
program [[[α|00⟩ + β|01⟩ + γ|10⟩ + δ|11⟩; ⟨r0, r1⟩]]] being a re-indexation of the raw program
[[[α|00⟩ + γ|01⟩ + β|10⟩ + δ|11⟩; ⟨r1, r0⟩]]]: they are two representative elements of the same
program.

4 Operational Semantics

The operational semantics of λ-calculus is usually formalized by means of a rewriting system.
In the setting of λ-calculus, the rewriting rules are also known as reductions.

Rewriting System. We recall that a rewriting system is a pair (A,→) consisting of a set A
and a binary relation → on A whose pairs are written t→ s and called reduction steps. We
denote →∗ (resp. →=) the transitive-reflexive (resp. reflexive) closure of →. We write t← u

if u→ t. If →1,→2 are binary relations on A then →1 · →2 denotes their composition.

Probabilistic Rewriting. In order to define the operational semantics of the quantum lambda
calculus, we need to formalize probabilistic reduction. We do so by means of a rewrite system
over multidistributions, adopting the monadic approach recently developed in the literature
of probabilistic rewriting (see e.g. [6, 12, 19, 23]). Reduction is here defined not simply on
programs, but on (monadic) structures representing probability distributions over programs,
called multidistributions.

The operational semantics of the language is defined by specifying the probabilistic
behavior of programs, then lifting reduction to multidistributions of programs. Let us recall
the notions.

C. Faggian, G. Lopez, and B. Valiron 47:9

Probability Distributions. Given a countable set Ω, a function µ : Ω→ [0, 1] is a probability
subdistribution if ∥µ∥ :=

∑
ω∈Ω µ(ω) ≤ 1 (a distribution if ∥µ∥ = 1). Subdistributions allow

us to deal with partial results. We write D(Ω) for the set of subdistributions on Ω, equipped
with the pointwise order on functions: µ ≤ ρ if µ(ω) ≤ ρ(ω) for all ω ∈ Ω. D(Ω) has a bottom
element (the subdistribution 0) and maximal elements (all distributions).
Multidistributions. We use multidistributions [6] to syntactically represent distributions.
A multidistribution m = {{ qipi }}i∈I on the set of programs P is a finite multiset of pairs
of the form qipi, with qi ∈]0, 1], pi ∈ P, and

∑
i qi ≤ 1. The set of all multidistributions

on P is MD(P). The sum of two multidistributions is noted +, and is simply the union of
the multisets. The product q · m of a scalar q and a multidistribution m is defined pointwise
q · {{ pipi }}i∈I := {{ (q · pi)pi }}i∈I . We write {{p }} for {{ 1p }}.

4.1 The Rewrite System Q
Q is the rewrite system (MD(P),⇒) where the relation ⇒⊆ MD(P) × MD(P) is monadically
defined in two phases. First, we define one-step reductions from a program to a multidistribu-
tion. For example, if p is the program [[[1√

2 (|0⟩+ |1⟩); meas(r0,M,N)]]], the program p reduces
in one step to {{ 1

2[[[|⟩;M]]], 1
2[[[|⟩;N]]] }}. Then, we lift the definition of reduction to a binary

relation on MD(P), in the natural way. So for instance, reusing p above, {{ 1
2 p, 1

2[[[Q; (λx.xx)F]]] }}
reduces in one step to {{ 1

4[[[|⟩;M]]], 1
4[[[|⟩;N]]], 1

2[[[Q;FF]]] }}. Let us see the details.

I. Programs Reduction. We first define the reduction of a program p to a multidistribution.
The operational behavior of p is given by beta reduction, denoted with →β , and specific
rules for handling quantum operations – the corresponding reduction is denoted with →q.
Formally, the relations →β and →q (also called reduction steps) are subsets of P × MD(P)
and are defined in Figure 2 by contextual closure of the root rules 7→β and 7→q, given in
Figure 1. The relation → is then the union →β ∪ →q.
The root rules. They are given in Figure 1. We call redex the term on the left-hand
side of a rule. Beta rules come in two flavors, the linear one (b), which does not allow for
duplication, and the non-linear one (b!), which possibly duplicate boxes (i.e. terms of shape
!M). Quantum rules act on the qubits state, exactly implement the operation which we had
informally described in Section 3. Notice that the rule (m) has a probabilistic behaviour.
The qubit which has been measured can be discharged (as we actually do).
Contextual Closures. They are defined in Figure 2. Observe that while the β rules are
closed under arbitrary contexts C, while the quantum rules are restricted to surface contexts
S (no reduction in the scope of a ! operator, nor in the branches of meas(−,−,−)). This
constraints guarantee that qubits are neither duplicated nor delated.
▶ Remark 4.1 (Reindexing). As in [42], reduction is defined on programs, which are equivalence
classes. We define the rules on a convenient representative. For example, in Figure 1 rule
(u1) reduces the redex UAr0. Modulo reindexing, the same rules can be applied to any other
register.

II. Lifting. The lifting of a relation →r⊆ P × MD(P) to a relation on multidistributions is
defined in Figure 3. In particular, →,→β ,→q, lift to ⇒,⇒β ,⇒q, respectively.

Reduction Sequences. A ⇒-sequence (or reduction sequence) from m is a sequence m =
m0, m1, m2, . . . such that mi ⇒ mi+1 for every i. We write m0 ⇒∗ m to indicate the existence of
a finite reduction sequence from m0, and m0 ⇒k m to specify the number k of ⇒-steps. Given
a program p and m0 = {{p }}, the sequence m0 ⇒ m1 ⇒ · · · naturally models the evaluation of
p; each mk expresses the “expected” state of the system after k steps.

CSL 2025

47:10 A Rewriting Theory for Quantum λ-Calculus

β rules Quantum rules

(b) [[[Q; (λx.M)N]]] 7→β {{ [[[Q; M{N/x}]]] }}
(!b) [[[Q; (λ!x.M)!N]]] 7→β {{ [[[Q; M{N/x}]]] }}

(n) [[[Q; new]]] 7→q {{ [[[Q ⊗ |0⟩; rn]]] }} where |Q| = n

(m) [[[Q; meas(rn, M, N)]]] 7→q {{ |α0|2[[[Q0; M]]], |α1|2[[[Q1; N]]] }}
where Q = α0Q0 ⊗ |0⟩ + α1Q1 ⊗ |1⟩ and Q has n + 1 qubits

(u1) for A unary operator:
[[[Q; UA r0]]] 7→q {{ [[[Q′; r0]]] }} where Q′ is (A ⊗ Id)Q

(u2) for A binary operator:
[[[Q; (UA ⟨r0, r1⟩]]] 7→q {{ [[[Q′; ⟨r0, r1⟩]]] }} where Q′ is (A ⊗ Id)Q.

Figure 1 Root rules (7→).

β steps Quantum steps
[[[Q; M]]] 7→β {{ [[[Q; M ′]]] }}

[[[Q; CLMM]]] →β {{ [[[Q; CLM ′M]]] }}
[[[Q; M]]] 7→q {{ pi[[[Qi; Mi]]] }}

[[[Q; SLMM]]] →q {{ pi[[[Qi; SLMiM]]] }}

→ := →β ∪ →q

Figure 2 Contextual closure of root rules: (→).

Validity. Validity of terms is preserved:

▶ Proposition 4.2. If M is a valid term, and [[[Q;M]]] → {{ pi[[[Qi;Mi]]] }}, then Mi is a valid
term.

Notice that the restriction of →q to surface contexts is necessary to respect the linearity of
quantum computation, avoiding duplication or deletion of qubits.

Examples. Let us see the definitions at work in a few examples. We first formalize the
recursive program from Equation (1). Recall that H is the Hadamar gate, and I := λx.x.

▶ Example 4.3 (Flipping the quantum coin). The program in Equation (1) can be written
as p := [[[|⟩; ∆!∆]]], where |⟩ is just the empty memory and ∆ := λ!x. meas(Hnew, I, x!x). A
reduction from p behaves as follows. At every reduction step, we underline the redex.

{{ [[[|⟩; ∆!∆]]] }} ⇒ {{ [[[|⟩; meas(UHnew, I,∆!∆)]]] }} ⇒ {{ [[[|0⟩; meas(UHr0, I,∆!∆)]]] }}

⇒ {{ [[[
√

2
2 (|0⟩+ |1⟩); meas(r0, I,∆!∆)]]] }} ⇒ {{ 1

2[[[|⟩; I]]], 1
2[[[|⟩; ∆!∆]]] }}

⇒ . . .⇒ {{ 1
2[[[|⟩; I]]], 1

4[[[|⟩; I]]], 1
4[[[|⟩; ∆!∆]]] }} ⇒ . . .

Notice that the first step is a non-linear β reduction. The reduction of new allocates a fresh
qubit in the memory, corresponding to the register r0. The redex UHr0 applies the Hadamar
gate H to that qubit. The last reduction performs measurement, yielding a probabilistic
outcome.

▶ Example 4.4 (Entangled pair). Let p := [[[|⟩; let ⟨x, y⟩ =
UCNOT⟨UHnew, new⟩ in meas(y, I, I)x]]] (where let ⟨x, y⟩ . . . is sugar for an oppor-
tune encoding). This program produces an entangled pair of qubits (notice how CNOT is
applied to a pair of registers) and then measures one of the qubits. Let us formalize its
behaviour:

{{p }} ⇒s
∗ {{ [[[
√

2
2 (|0⟩+ |1⟩)⊗ |0⟩; let ⟨x, y⟩ = UCNOT⟨r0, r1⟩ in meas(y, I, I)x]]] }}

⇒s {{ [[[
√

2
2 |00⟩+

√
2

2 |11⟩; let ⟨x, y⟩ = ⟨r0, r1⟩ in meas(y, I, I)x]]] }}

⇒s
∗ {{ [[[
√

2
2 |00⟩+

√
2

2 |11⟩; meas(r1, I, I)r0]]] }} ⇒s {{
1
2[[[|0⟩; Ir0]]], 1

2[[[|1⟩; Ir0]]] }}

C. Faggian, G. Lopez, and B. Valiron 47:11

{{ p }} ⇒ {{ p }}
p → m

{{ p }} ⇒ m
({{ pi }} ⇒ mi)i∈I

{{ pipi | i ∈ I }} ⇒
∑

i∈I
pi · mi

Figure 3 Lifting of →.

4.2 Surface Reduction and Surface Normal Forms

So far, we have defined a very liberal notion of reduction, in which β is unrestricted – it can
validly be performed even inside a !-box. What shall we adopt as evaluation strategy?

In the setting of calculi based on linear logic, as Simpson’s calculus [43] and the Bang
calculus [20], the natural candidate is surface reduction: the restriction of beta to surface
contexts (→s β) plays a role akin to that of head reduction in classical λ-calculus, yielding
to similar factorization and normalization results which relate →β and →s β (as recalled in
Table 1). The terms of interest are here surface normal forms (snf), such as x or !M .
They are the analog of values in Plotkin’s Call-by-Value λ-calculus and of head normal forms
in classical λ-calculus – such an analogy can indeed be made precise [20, 31, 10]3.

In our setting, surface reduction and surface normal forms(snf) also play a privileged
role.

Surface Reduction. Surface steps →s ⊆ P × MD(P) (Figure 5) are the union →q ∪ →s β of
quantum steps together with →s β , i.e. the closure under surface contexts S of the β rules.
A program p is a surface normal form (snf) if p ̸→s , i.e. no surface reduction is possible
from it.

A →-step which is not surface is noted →¬s . The lifting of →s ,→¬s to relations on multidis-
tributions is denoted ⇒s ,⇒¬s respectively.

▶ Remark 4.5. Notice that →¬s steps do not act on the qubits state, since they are β steps.

Strict Lifting. To guarantee normalization results (Section 7), we will need a stricter form
of lifting, noted ⇒

s
(Figure 4), forcing a reduction step to be performed in each program of

the multidistribution r, if a redex exists. Clearly ⇒
s
⊆⇒s .

p ̸→s

{{ p }} ⇒
s

{{ p }}

p →s m

{{ p }} ⇒
s

m

({{ pi }} ⇒
s

mi)i∈I

{{ pipi | i ∈ I }} ⇒
s

∑
i∈I

pi · mi

Figure 4 Strict lifting of →s .

▶ Example 4.6. We will prove that the strict lifting ⇒
s

guarantees to reach snf, if any exist.
This is obviously not the case for ⇒s -sequences:

{{ 1
2Inew,

1
2(λ!x.x!x)!(λ!x.x!x) }} ⇒s {{

1
2Inew,

1
2(λ!x.x!x)!(λ!x.x!x) }} ⇒s {{

1
2Inew,

1
2(λ!x.x!x)!(λ!x.x!x) }} ⇒s . . .

3 A consequence of Girard’s translation of Call-by-Name and Call-by-Value λ-calculi into Linear Logic.

CSL 2025

47:12 A Rewriting Theory for Quantum λ-Calculus

On the Interest of Surface Normal Forms. What is the result of running a quantum
program? In general, since computation is probabilistic, the result of executing a program
will be a distribution over some outcomes of interest. A natural choice are programs of shape
p := [[[Q;S]]], with S in surface normal form, ensuring that at this point, the qubits state Q is a
stable piece of information (it will not further evolve in the computation). Indeed:

a program p ̸→s (i.e. in snf) will no longer modify the qubits state.

▶ Remark 4.7. Notice instead that a program p ̸→q (no quantum step is possible) is not
necessarily done in manipulating the quantum memory. Further β reductions may unblock
further quantum steps. Think of (λ!x.CNOT⟨Hx, x⟩)(!new) from Example 2.1.

4.3 Sum-up Tables
Let us conclude the section summarizing the reduction relations at play.

Relations.
P × MD(P) Definition Lifted to MD(P) × MD(P) Strict lifting

→β contextual closure of β-rules ⇒β

→s β closure by surface context of β-rules ⇒s β ⇒
s β

→q closure by surface context of q-rules ⇒q ⇒q

→ →β ∪ →q ⇒
→s →s β ∪ →q ⇒s ⇒

s

→¬s → − →s ⇒¬s

Reduction Sequences.
Finite reduction sequence

m ⇒∗ n there is a ⇒-sequence from m to n
m ⇒s

∗ n there is a ⇒s -sequence from m to n

m ⇒
s

∗ n there is a ⇒
s

-sequence from m to n

5 Rewriting Theory for Q: Overview of the Results

We are now going to study reduction on multidistributions of programs, namely the general
reduction ⇒ (corresponding to the lifting of →) and surface reductions (corresponding to the
lifting of →s), and the relation between the two. Let us discuss each point.
1. The reduction ⇒ allows for unrestricted β reduction. For example, we can rewrite in the

scope of a Bang operator ! (perhaps to optimize the thunked code before copying it several
times). We prove that ⇒ is confluent, providing a general framework for rewriting theory.
This (very liberal) reduction has a foundational role, in which to study the equational
theory of the calculus and to analyze programs transformations.

2. Surface reduction ⇒s ⊆⇒ plays the role of an evaluation strategy, in which however
the scheduling (how redexes should be fired) is not fully specified4. For example p =
[[[|⟩; ⟨new, Hnew⟩]]] has two surface redexes, enabling two different steps. We will prove (by

4 This is not only convenient, as it allows for parallel implementation, but it is necessary for standardiza-
tion [26]

C. Faggian, G. Lopez, and B. Valiron 47:13

proving a diamond property) that surface reduction (⇒
s

) is “essentially deterministic”
in the sense that while the choice of the redex to fire is non-deterministic, the order in
which such choices are performed are irrelevant to the final result.

3. The two reductions are related by a standardization result (Theorem 6.7) stating that
if m ⇒∗ n then m ⇒s ∗ · ⇒¬s

∗ n. Standardization is the base of normalization results,
concerning properties such as “program p terminates with probability p.”

4. We prove that ⇒
s

is a normalization strategy for ⇒, namely if p may converge to surface
normal form with probability p using the general reduction ⇒, then ⇒

s
reduction must

converge to surface normal form with probability p. Informally, we can write that
m ⇓ p implies m ⇓s p (corresponding to the last line in Table 1). To formalize and prove
such a claim we will need more tools, because probabilistic termination is asymptotic, i.e.
it appears as a limit of a possibly infinite reduction. We treat this in Section 7, where we
rely on techniques from [2, 23, 24].

6 Confluence and Finitary Standardization

We first recall standard notions which we are going to use.

Confluence, Commutation, and all That (a quick recap). The relation → is confluent
if ←∗ · →∗ ⊆ →∗ · ←∗. A stricter form is the diamond ← · → implies → · ←, which is
well known to imply confluence. Two relations →◦ and →• on A commute if : ←◦

∗ · →•
∗

implies →• ∗ · ←◦
∗. Confluence and factorization are both commutation properties: a relation

is confluent if it commutes with itself.
An element u ∈ A is a →-normal form if there is no t such that u→ t (written u ̸→).

On normalization. In general, a term may or may not reduce to a normal form. And if it
does, not all reduction sequences necessarily lead to normal form. How do we compute a
normal form? This is the problem tackled by normalization: by repeatedly performing only
specific steps, a normal form will be computed, provided that t can reduce to any. Intuitively,
a normalizing strategy for → is a reduction strategy which, given a term t, is guaranteed to
reach normal form, if any exists.

6.1 Surface Reduction has the Diamond Property
In this section, we first prove that surface reduction (⇒s and ⇒

s
) has the diamond property:

r⇐s m⇒s s implies r⇒s n⇐s s (for some n) (Diamond)

then we show that ⇒ is confluent.
Here we adapt techniques used in probabilistic rewriting [6, 22, 26]. Proving the diamond

property is however significantly harder than in the case of probabilistic λ-calculi, because we
need to take into account also the qubits state, and the corresponding registers. If a program
p = [[[Q;M]]] has two different reductions, we need to join in one step not only the terms, but
also their qubits states, working up to re-indexing of the registers (recall that programs are
equivalence classes modulo re-indexing, see also Example 3.5). The following is an example,
just using the simple construct new. Measurement makes the situation even more delicate.

▶ Example 6.1. Let p = [[[|⟩; ⟨new, (Hnew)⟩]]]. The following are two different reduction
sequences form p. The two normal forms are the same program (Definition 3.4). Here,
|+⟩ :=

√
2

2 (|0⟩+ |1⟩).

CSL 2025

47:14 A Rewriting Theory for Quantum λ-Calculus

[[[|⟩; ⟨new, (Hnew)⟩]]] →s {{ [[[|0⟩; ⟨r0, (Hnew)⟩]]] }} ⇒s {{ [[[|0⟩; ⟨r0, (Hr1)⟩]]] }} ⇒s {{ [[[|0⟩ ⊗ |+⟩; ⟨r0, r1⟩]]] }}

[[[|⟩; ⟨new, (Hnew)⟩]]] →s {{ [[[|0⟩; ⟨new, (Hr0)⟩]]] }} ⇒s {{ [[[|+⟩; ⟨new, (r0)⟩]]] }} ⇒s {{ [[[|+⟩ ⊗ |0⟩; ⟨r1, r0⟩]]] }}

The key result is the following version of diamond (commutation). The proof – quite
technical – is given in the extended version [25]. Recall that ⇒

s
⊆⇒s .

▶ Lemma 6.2 (Pointed Diamond). Assume p = [[[Q;M]]] and that M has two distinct redexes,
such that p →s b m1 and p →s c m2. Then there exists n such that m1 ⇒

s c n and m2 ⇒
s b n.

Moreover, no term Mi in m1 = {{ pi[[[Qi;Mi]]] }}i∈I and no term Mj in m2 = {{ pj[[[Qj ;Mj]]] }}j∈J

is in snf.

From the above result we obtain the diamond property.

▶ Proposition 6.3 (Diamond). Surface reductions ⇒s and ⇒
s

have the diamond property.

In its stricter form, the diamond property guarantees that the non determinism in the
choice of the redex is irrelevant – hence the reduction ⇒

s
is essentially deterministic. The

technical name for this property is Newman’s random descent [36]: no matter the choice of
the redex, all reduction sequences behave the same way, i.e. have the same length, and if
terminating, they do so in the same normal form. Formalized by Theorem 7.3, we use this
fact to establish that ⇒

s
is a normalizing strategy for ⇒.

6.2 Confluence of ⇒
We modularize the proof of confluence by using a classical technique, Hindley-Rosen lemma,
stating that if ⇒1 and⇒2 are binary relations on the same set R, then their union ⇒1 ∪ ⇒2
is confluent if both ⇒1 and ⇒2 are confluent, and ⇒1 and ⇒2 commute.

▶ Theorem 6.4. The reduction ⇒ satisfies confluence.

Proof. The proof that ⇒β ∪ ⇒q is confluent, is easily obtained from Lemma 6.2, by using
Hindley-Rosen Lemma. We already have most of the elements: ⇒β is confluent: because
→β is; ⇒q is confluent: because it is diamond (Proposition 6.3); ⇒q and ⇒β commute: by
Lemma 6.2, we already know that ⇒q and ⇒s β commute, hence we only need to verify that
⇒q and ⇒¬s β commute, which is easily done. ◀

6.3 Surface Standardization
We show that any sequence⇒∗ can be factorized as⇒s ∗ · ⇒¬s

∗ (Theorem 6.7). Standardization
is proved via the modular technique proposed in [1], which in our notation can be stated as
follows:

▶ Lemma 6.5 (Modular Factorization [1]). ⇒∗ ⊆ ⇒s ∗ · ⇒¬s
∗ if the following conditions hold:

1. ⇒∗
β ⊆ ⇒s β

∗ · ⇒¬s β
∗, and

2. ⇒¬s β · ⇒s q ⊆ ⇒s q · ⇒β.

Condition 1. in Lemma 6.5 is immediate consequence of Simpson’s surface standardization
for the Λ! calculus [43] stating that→∗

β ⊆ →s β
∗ · →¬s β

∗. Condition 2. in Lemma 6.5 is obtained
from the following pointed version:

C. Faggian, G. Lopez, and B. Valiron 47:15

▶ Lemma 6.6. [[[Q;M]]] →¬s β {{ [[[Q;P]]] }} and [[[Q;P]]]→q n implies [[[Q;M]]]→q · ⇒β n.

Proof. By induction on the context S such that P = SLRM and
[[[Q; SLRM]]]→q {{ pi[[[Qi; SLRiM]]] }} = n. We exploit in an essential way the fact that M

and P have the same shape. ◀

By Lemmas 6.5 and 6.6, we obtain the main result of this section:

▶ Theorem 6.7 (Surface Standardization). m⇒∗ n implies m⇒s ∗ · ⇒¬s
∗ n

▶ Remark 6.8 (Strict vs non-strict). Please observe that standardization is stated in terms
of the non-strict lifting (⇒s) of →s , as ⇒

s
could reduce more than what is desired. Dually,

normalization holds in terms of the strict lifting ⇒
s

, for the reasons already discussed in
Example 4.6.

A Reading of Surface Standardization. A program p in snf will no longer modify the
qubits state. Intuitively, p has already produced the maximal amount of quantum data that it
could possibly do. We can read Surface Standardization as follows. Assume {{p }} ⇒∗ n where
all terms in n are in snf (we use metavariables Si, S

′
i to indicate terms in snf). Standardization

guarantees that surface steps suffice to reach a multidistribution n′ whose programs have the
exact same information content as n:

{{p }} ⇒∗ n = {{ pi[[[Qi;Si]]] }}i∈I implies {{p }} ⇒s ∗ n′ = {{ pi[[[Qi;S′
i]]] }}i∈I .

This because Theorem 6.7 implies {{p }} ⇒s ∗ n′ ⇒¬s
∗ n, and from n′ ⇒¬s

∗ n we deduce that
each element pi[[[Qi;Si]]] in n must come form an element pi[[[Qi;S′

i]]] in n′ where S′
i is in snf and

where the qubits state Qi (and the associated probability pi) are exactly the same.

7 Probabilistic Termination and Asymptotic Normalization

What does it mean for a program to reach surface normal form (snf)? Since measurement
makes the reduction probabilistic, we need to give a quantitative answer.

Probabilistic Termination. The probability that the system described by the multidis-
tribution m = {{ pi[[[Qi;Mi]]] | i ∈ I }} is in surface normal form is expressed by a scalar
p = P(m) ∈ [0, 1] which is defined as follows:

P(m) =
∑
i∈I

qi qi =
{
pi if Mi snf
0 otherwise

Let p = [[[Q;M]]] and m0 = {{p }}. Let m0 ⇒ m1 ⇒ m2 ⇒ · · · a reduction sequence. P(mk)
expresses the probability that after k steps p is in snf. The probability that p reaches snf along
the (possibly infinite) reduction sequence ⟨mn⟩n∈N is easily defined as a limit: supn{P(mn)}.
We also say that the sequence ⟨mn⟩n∈N converges with probability supn{P(mn)}.

▶ Example 7.1 (Recursive coin, cont.). Consider again Example 4.3. After 4 steps, the
program terminates with probability 1

2 . After 4 more steps, it terminates with probability
1
2 + 1

4 , and so on. At the limit, the reduction sequence converges with probability
∑∞

k:1
1

2k = 1.

CSL 2025

47:16 A Rewriting Theory for Quantum λ-Calculus

Table 2 Limit of (possibly infinite) reduction sequences.

Convergence (Def.n7.2)
m ⇓ p there is a ⇒-sequence from m which converges with probability p

m ⇓s p there is a ⇒s -sequence from m which converges with probability p

m ⇊s p there is a ⇒
s

-sequence from m which converges with probability p

7.1 Accounting for Several Possible Reduction Sequences
Since ⇒ is not a deterministic reduction, given a multidistribution m, there are several
possible reduction sequences from m, and therefore several outcomes (limits) are possible.
Following [23], we adopt the following terminology:

▶ Definition 7.2 (Limits). Given m, we write
m ⇓ p, if there exists a ⇒-sequence ⟨mn⟩n∈N from m whose limit is p.
Lim(m,⇒) := {p | m ⇓ p} is the set of limits of m.
JmK denotes the greatest element of Lim(m,⇒), if any exists.

Intuitively, JpK is the best result that any ⇒-sequence from p can effectively produce. If the
set Lim(p,⇒) has a sup α but not a greatest element (think of the open interval [0, 1)), it
means that in fact, no reduction can produce α as a limit. Notice also that, when reduction
is deterministic, from any p there is only one maximal reduction sequence, and so it is always
the case that JpK = supn{P(pn)}. Below we exploit the interplay between different rewriting
relations, and their limit; it is useful to summarize our notations in Table 2.

7.2 Asymptotic Normalization
Given a quantum program p, does JpK exists? If this is the case, can we define a normalizing
strategy which is guarantee to converge to JpK? The answer is positive. The main result of
this section is that such a normalizing strategy does exist, and it is ⇒

s
. More precisely, we

show that any ⇒
s

-reduction sequence from p converges to the same limit, which is exactly

JpK. We establish the following results, for any arbitrary m ∈ MD(P). Theorem 7.3 is a direct
– and the most important – consequence of the diamond property of ⇒

s
. The proof uses

both point 1. and point 2. of Lemma 6.2. For Theorem 7.4, the proof relies on an abstract
technique from [24].

▶ Theorem 7.3 (Random Descent). All ⇒
s

-sequences from m converge to the same limit.

▶ Theorem 7.4 (Asymptotic completeness). m ⇓ p implies m ⇊s q, with p ≤ q.

Theorem 7.4 states that, for each m, if ⇒ reduction may converge to snf with probability p,
then ⇒

s
reduction must converge to snf with probability (at least) p. Theorem 7.3 states

that, for each m, the limit q of strict surface reductions (⇒
s

) from m is unique.
Summing-up, the limit q of ⇒

s
reduction is the best convergence result that any sequence

from m can produce. Since ⇒
s
⊆⇒, then q is also the greatest element in Lim(m,⇒), i.e.

JmK = q. We hence have proved the following, where item (2.) is the asymptotic analogue of
the normalization results in Table 1.

▶ Theorem 7.5 (Asymptotic normalization). For each p ∈ P, (1.) the limit Lim(p,⇒) has a
greatest element JpK, and (2.) p ⇊s JpK.

C. Faggian, G. Lopez, and B. Valiron 47:17

8 Related Work and Discussion

In this paper, we propose a foundational notion of (untyped) quantum λ-calculus with a
general reduction, encompassing the full strength of β-reduction while staying compatible with
quantum constraints. We then introduce an evaluation strategy, and derive standardization
and confluence results. We finally discuss normalization of programs at the limit.

Related Works. For quantum λ-calculi without measurement, hence without probabilistic
behavior, confluence [13, 5] (and even a special form of standardization [13]) have been studied
since early work. When dealing with measurement, the analysis is far more challenging. To
our knowledge, only confluence has been studied, in pioneering work by Dal Lago, Masini
and Zorzi [14]. Remarkably, in order to deal with probabilistic and asymptotic behavior,
well before the advances in probabilistic rewriting of which we profit, the authors introduce a
very elaborated technique. Notice that in [14] reduction is non-deterministic, but restricted
to surface reduction. In our paper, their result roughly corresponds to the diamond property
of ⇒s , together with Theorem 7.3.

No “standard” standardization results (like the classical ones we recall in Table 1) exist
in the literature for the quantum setting. Notice that the form of standardization in [13]
is a reordering of the (surface) measurement-free reduction steps, so to perform first beta
steps, then quantum steps, in agreement with the idea that a quantum computer consists
of a classical device “setting up” a quantum circuit, which is then fed with an input. A
similar refinement is also possible for the corresponding fragment of our calculus (namely
measurement-free →s), but clearly does not scale: think of (λx.x) meas(UH new,M,N), where
the argument of a function is guarded by a measurement.

Our term language is close to [14]. How such a calculus relate with a Call-by-Value
λ-calculus such as [42]? A first level of answer is that our setting is an untyped λ-calculus;
linear abstraction, together with well forming rules, allows for the management of quantum
data. In [42], the same role is fulfilled by the (Linear Logic based) typing system.

Despite these differences, we do expect that our results can be transferred. As already
mentioned, the redex (λ!x.M)!N reflects a Call-by-Push-Value mechanism, which in untyped
form has been extensively studied in the literature with the name of Bang calculus [20, 31, 10],
as a uniform framework to encode both Call-by-Name (CbN) and Call-by-Value (CbV).
Semantical but also syntactical properties, including confluence [20, 31] and standardization
[24, 3] are analyzed in the Bang setting, and then transferred via reverse simulation to both
CbV and CbN. More precisely, a CbV (resp. CbN) translation maps forth-and-back weak
(resp. head) reduction into surface reduction. Surface normal forms are the CbV image of
values (and the CbN image of head normal forms). Since the Bang calculus is exactly the
fragment of Simpson’s calculus [43] without linear abstraction, one may reasonably expect
that our calculus can play a similar role in the quantum setting. It seems however that a
back-and forth translation of CbV (or CbN) will need to encompass types.

A last line of works worth mentioning is the series of works based on Lineal [5, 4, 18].
However, these works differ from our approach in the sense that the λ-terms themselves are
subject to superposition: the distinction between classical and quantum data in an untyped
setting is unclear.

CSL 2025

47:18 A Rewriting Theory for Quantum λ-Calculus

References

1 Beniamino Accattoli, Claudia Faggian, and Giulio Guerrieri. Factorize factorization. In
29th EACSL Annual Conference on Computer Science Logic, CSL 2021, January 25-28,
2021, Ljubljana, Slovenia (Virtual Conference), volume 183 of LIPIcs, pages 6:1–6:25. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CSL.2021.6.

2 Zena M. Ariola and Stefan Blom. Skew confluence and the lambda calculus with letrec. Annals
of Pure and Applied Logic, 117(1):95–168, 2002. doi:10.1016/S0168-0072(01)00104-X.

3 Victor Arrial, Giulio Guerrieri, and Delia Kesner. The benefits of diligence. International
Joint Conference on Automated Reasoning, IJCAR 2024,, 2024.

4 Pablo Arrighi, Alejandro Díaz-Caro, and Benoît Valiron. The vectorial lambda-calculus.
Information and Computation, 254:105–139, 2017. doi:10.1016/j.ic.2017.04.001.

5 Pablo Arrighi and Gilles Dowek. Lineal: A linear-algebraic lambda-calculus. Logical Methods
in Computer Science, 13(1), 2017. doi:10.23638/LMCS-13(1:8)2017.

6 Martin Avanzini, Ugo Dal Lago, and Akihisa Yamada. On probabilistic term rewriting. Sci.
Comput. Program., 185, 2020. doi:10.1016/J.SCICO.2019.102338.

7 Hendrik Pieter Barendregt. The Lambda Calculus – Its Syntax and Semantics, volume 103 of
Studies in logic and the foundations of mathematics. North-Holland, 1984.

8 Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin T. Vechev. Silq: a high-level
quantum language with safe uncomputation and intuitive semantics. In Alastair F. Donaldson
and Emina Torlak, editors, Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI’20, pages 286–300. ACM, 2020.
doi:10.1145/3385412.3386007.

9 Olivier Bournez and Florent Garnier. Proving positive almost sure termination under strategies.
In Rewriting Techniques and Applications, RTA, pages 357–371, 2006. doi:10.1007/11805618_
27.

10 Antonio Bucciarelli, Delia Kesner, Alejandro Ríos, and Andrés Viso. The bang calculus
revisited. Inf. Comput., 293:105047, 2023. doi:10.1016/J.IC.2023.105047.

11 Christophe Chareton, Sébastien Bardin, Franccois Bobot, Valentin Perrelle, and Benoît Valiron.
An automated deductive verification framework for circuit-building quantum programs. In
Nobuko Yoshida, editor, Proceedings of the 30th European Symposium on Programming
Languages and Systems, ESOP 2021, volume 12648 of Lecture Notes in Computer Science,
pages 148–177. Springer, 2021. doi:10.1007/978-3-030-72019-3_6.

12 Ugo Dal Lago, Claudia Faggian, Benoît Valiron, and Akira Yoshimizu. The geometry of
parallelism: classical, probabilistic, and quantum effects. In Giuseppe Castagna and Andrew D.
Gordon, editors, Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL 2017, Paris, France, January 18-20, 2017, pages 833–845. ACM,
2017. doi:10.1145/3009837.

13 Ugo Dal Lago, Andrea Masini, and Margherita Zorzi. On a measurement-free quantum
lambda calculus with classical control. Math. Struct. Comput. Sci., 19(2):297–335, 2009.
doi:10.1017/S096012950800741X.

14 Ugo Dal Lago, Andrea Masini, and Margherita Zorzi. Confluence results for a quantum
lambda calculus with measurements. Electr. Notes Theor. Comput. Sci., 270(2):251–261, 2011.
doi:10.1016/j.entcs.2011.01.035.

15 Ugo Dal Lago and Margherita Zorzi. Probabilistic operational semantics for the lambda
calculus. RAIRO Theor. Informatics Appl., 46(3):413–450, 2012. doi:10.1051/ita/2012012.

16 Ugo de’Liguoro and Adolfo Piperno. Non deterministic extensions of untyped lambda-calculus.
Inf. Comput., 122(2):149–177, 1995. doi:10.1006/INCO.1995.1145.

17 Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Probabilistic lambda-calculus and
quantitative program analysis. J. Log. Comput., 15(2):159–179, 2005. doi:10.1093/LOGCOM/
EXI008.

https://doi.org/10.4230/LIPIcs.CSL.2021.6
https://doi.org/10.1016/S0168-0072(01)00104-X
https://doi.org/10.1016/j.ic.2017.04.001
https://doi.org/10.23638/LMCS-13(1:8)2017
https://doi.org/10.1016/J.SCICO.2019.102338
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1007/11805618_27
https://doi.org/10.1007/11805618_27
https://doi.org/10.1016/J.IC.2023.105047
https://doi.org/10.1007/978-3-030-72019-3_6
https://doi.org/10.1145/3009837
https://doi.org/10.1017/S096012950800741X
https://doi.org/10.1016/j.entcs.2011.01.035
https://doi.org/10.1051/ita/2012012
https://doi.org/10.1006/INCO.1995.1145
https://doi.org/10.1093/LOGCOM/EXI008
https://doi.org/10.1093/LOGCOM/EXI008

C. Faggian, G. Lopez, and B. Valiron 47:19

18 Alejandro Díaz-Caro, Mauricio Guillermo, Alexandre Miquel, and Benoît Valiron. Realizability
in the unitary sphere. In Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS’19, pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.8785834.

19 Alejandro Díaz-Caro and Guido Martinez. Confluence in probabilistic rewriting. Electr. Notes
Theor. Comput. Sci., 338:115–131, 2018.

20 Thomas Ehrhard and Giulio Guerrieri. The bang calculus: an untyped lambda-calculus
generalizing call-by-name and call-by-value. In Proceedings of the 18th International Symposium
on Principles and Practice of Declarative Programming (PPDP 2016), pages 174–187. ACM,
2016. doi:10.1145/2967973.2968608.

21 Thomas Ehrhard, Michele Pagani, and Christine Tasson. The computational meaning of
probabilistic coherence spaces. In Proceedings of the 26th Annual IEEE Symposium on Logic
in Computer Science, LICS 2011, June 21-24, 2011, Toronto, Ontario, Canada, pages 87–96.
IEEE Computer Society, 2011. doi:10.1109/LICS.2011.29.

22 Claudia Faggian. Probabilistic rewriting: Normalization, termination, and unique normal
forms. In Herman Geuvers, editor, 4th International Conference on Formal Structures for
Computation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany, volume
131 of LIPIcs, pages 19:1–19:25. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPICS.FSCD.2019.19.

23 Claudia Faggian. Probabilistic rewriting and asymptotic behaviour: on termination and unique
normal forms. Log. Methods Comput. Sci., 18(2), 2022. doi:10.46298/LMCS-18(2:5)2022.

24 Claudia Faggian and Giulio Guerrieri. Factorization in call-by-name and call-by-value calculi
via linear logic. In Foundations of Software Science and Computation Structures - 24th
International Conference, FOSSACS 2021, volume 12650 of Lecture Notes in Computer
Science, pages 205–225. Springer, 2021. doi:10.1007/978-3-030-71995-1_11.

25 Claudia Faggian, Gaetan Lopez, and Benoît Valiron. A rewriting theory for quantum λ-calculus.
CoRR, abs/2411.14856, 2024. arXiv:2411.14856.

26 Claudia Faggian and Simona Ronchi Della Rocca. Lambda calculus and probabilistic
computation. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13. IEEE, 2019. doi:
10.1109/LICS.2019.8785699.

27 Francesco Gavazzo and Claudia Faggian. A relational theory of monadic rewriting systems, part
I. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome,
Italy, June 29 - July 2, 2021, pages 1–14. IEEE, 2021. doi:10.1109/LICS52264.2021.9470633.

28 Simon J. Gay. Quantum programming languages: survey and bibliography. Mathematical
Structures in Computer Science, 16(4):581–600, 2006. doi:10.1017/S0960129506005378.

29 Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987. doi:10.1016/
0304-3975(87)90045-4.

30 Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron.
Quipper: A scalable quantum programming language. In Hans-Juergen Boehm and Cormac
Flanagan, editors, Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI’13, pages 333–342. ACM, 2013. doi:10.1145/2491956.
2462177.

31 Giulio Guerrieri and Giulio Manzonetto. The bang calculus and the two Girard’s translations.
In Proceedings Joint International Workshop on Linearity & Trends in Linear Logic and
Applications (Linearity-TLLA 2018), volume 292 of EPTCS, pages 15–30, 2019. doi:10.4204/
EPTCS.292.2.

32 Jan-Christoph Kassing, Florian Frohn, and Jürgen Giesl. From innermost to full almost-sure
termination of probabilistic term rewriting. In Naoki Kobayashi and James Worrell, editors,
Foundations of Software Science and Computation Structures - 27th International Conference,
FoSSaCS 2024, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceedings,
Part II, volume 14575 of Lecture Notes in Computer Science, pages 206–228. Springer, 2024.
doi:10.1007/978-3-031-57231-9_10.

CSL 2025

https://doi.org/10.1109/LICS.2019.8785834
https://doi.org/10.1145/2967973.2968608
https://doi.org/10.1109/LICS.2011.29
https://doi.org/10.4230/LIPICS.FSCD.2019.19
https://doi.org/10.46298/LMCS-18(2:5)2022
https://doi.org/10.1007/978-3-030-71995-1_11
https://arxiv.org/abs/2411.14856
https://doi.org/10.1109/LICS.2019.8785699
https://doi.org/10.1109/LICS.2019.8785699
https://doi.org/10.1109/LICS52264.2021.9470633
https://doi.org/10.1017/S0960129506005378
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.4204/EPTCS.292.2
https://doi.org/10.4204/EPTCS.292.2
https://doi.org/10.1007/978-3-031-57231-9_10

47:20 A Rewriting Theory for Quantum λ-Calculus

33 Maja H. Kirkeby and Henning Christiansen. Confluence and convergence in probabilis-
tically terminating reduction systems. In Logic-Based Program Synthesis and Trans-
formation - 27th International Symposium, LOPSTR 2017, pages 164–179, 2017. doi:
10.1007/978-3-319-94460-9_10.

34 Emanuel H. Knill. Conventions for quantum pseudocode. Technical Report LAUR-96-2724,
Los Alamos National Laboratory, Los Alamos, New Mexico, US., 1996.

35 Dongho Lee, Valentin Perrelle, Benoît Valiron, and Zhaowei Xu. Concrete categorical model
of a quantum circuit description language with measurement. In Mikolaj Bojanczyk and
Chandra Chekuri, editors, Proceedings of the 41st IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2021, volume 213 of
LIPIcs, pages 51:1–51:20, 2021. doi:10.4230/LIPIcs.FSTTCS.2021.51.

36 M.H.A. Newman. On theories with a combinatorial definition of equivalence. Annals of
Mathematics, 43(2), 1942.

37 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2002.

38 Michele Pagani, Peter Selinger, and Benoît Valiron. Applying quantitative semantics to higher-
order quantum computing. In Suresh Jagannathan and Peter Sewell, editors, Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’14), pages 647–658. ACM, 2014. doi:10.1145/2535838.2535879.

39 Luca Paolini, Mauro Piccolo, and Margherita Zorzi. qPCF: higher-order languages and
quantum circuits. Journal of Automated Reasoning, 63(4):941–966, 2019. doi:10.1007/
s10817-019-09518-y.

40 Jennifer Paykin, Robert Rand, and Steve Zdancewic. QWIRE: a core language for quantum
circuits. In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL’17, pages 846–858.
ACM, 2017. doi:10.1145/3009837.3009894.

41 Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput.
Sci., 1(2):125–159, 1975. doi:10.1016/0304-3975(75)90017-1.

42 Peter Selinger and Benoît Valiron. A lambda calculus for quantum computation with classical
control. Mathematical Structures in Computer Science, 16:527–552, 2006. doi:10.1017/
S0960129506005238.

43 Alex K. Simpson. Reduction in a linear lambda-calculus with applications to operational
semantics. In Term Rewriting and Applications, 16th International Conference (RTA 2005),
volume 3467 of Lecture Notes in Computer Science, pages 219–234, 2005. doi:10.1007/
978-3-540-32033-3_17.

A Convention for Garbage Collection

In the definition of programs, we use the convention that the size of the memory is exactly
the number of registers manipulated in the term. The memory will grow when new qubits
are allocated, and shrink when qubits are read (see Figure 1): the reduction perform garbage
collection on the fly.

If this makes it easy to identify identical programs, it makes the proofs a bit cumbersome.
We therefore rely for them on an equivalent representation, where a program can have
spurious qubits, as long as they are not entangled with the rest of the memory – i.e. when
measuring them would not change the state of the registers manipulated by the term. So for
instance, in this model [[[|0⟩ ⊗ |ψ⟩; r1]]] is the same as [[[ϕ; r0]]].

https://doi.org/10.1007/978-3-319-94460-9_10
https://doi.org/10.1007/978-3-319-94460-9_10
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.51
https://doi.org/10.1145/2535838.2535879
https://doi.org/10.1007/s10817-019-09518-y
https://doi.org/10.1007/s10817-019-09518-y
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1017/S0960129506005238
https://doi.org/10.1017/S0960129506005238
https://doi.org/10.1007/978-3-540-32033-3_17
https://doi.org/10.1007/978-3-540-32033-3_17

C. Faggian, G. Lopez, and B. Valiron 47:21

B Technical properties

In all proofs we freely use the following closure property, which is immediate by definition of
context and surface context.

▶ Fact B.1 (Closure).

[[[Q;M]]]→c {{ pi[[[Qi;Mi]]] }}
[[[Q; SLMM]]]→q {{ pi[[[Qi; SLMiM]]] }}

1.
[[[Q;M]]]→β {{ [[[Q;M ′]]] }}

[[[Q; CLMM]]]→β {{ [[[Q; CLM ′M]]] }} 2.

Surface closure (point 1.) also holds with →β in place of →q.

We will also use the following lemma (analog to substitutivity in [7], p.54) The proof is
straightforward.

▶ Lemma B.2 (Substitutivity). Assume [[[Q;P]]] ∈ P and [[[Q;P]]]→ {{ pi[[[Qi;Pi]]] }}. Then for each
term N : [[[Q;P{N/x}]]]→ {{ pi[[[Qi;Pi{N/x}]]] }}.

The converse also holds, and it is simply Fact B.1, that can be reformulated as follows.

▶ Fact B.3. Assume [[[Q;N]]] ∈ P, [[[Q;N]]]→q {{ pi[[[Qi;Ni]]] }} and P a term such that x is linear
in P . Then [[[Q;P{N/x}]]]→q {{ pi[[[Qi;P{Ni/x}]]] }}

Surface Reduction. has a prominent role. We spell-out the definition.

Surface Reduction Step →s

→s := →s β ∪ →q

Surface Beta Step →s β (Surface) q-Step →q

[[[Q; M]]] 7→β {{ [[[Q; M ′]]] }}
[[[Q; SLMM]]] →s β {{ [[[Q; SLM ′M]]] }}

[[[Q; M]]] 7→q {{ pi[[[Qi; Mi]]] }}
[[[Q; SLMM]]] →q {{ pi[[[Qi; SLMiM]]] }}

Figure 5 Surface Reduction Steps.

C Surface Reduction has the Diamond Property

We obtain the diamond property (Proposition 6.3) from the pointed diamond, result using
the following technique (from [26]) , which allows us to work pointwise.

▶ Lemma (pointwise Criterion (FaggianRonchi19)). Let →a,→b⊆ P × MD(P) and ⇒a,⇒b

their lifting. To prove that ⇒a,⇒b diamond-commute, i.e.

If p⇒b m1 and p⇒a m2, then ∃r s.t. n⇒a r and s⇒b r.

it suffices to prove the property (#) below (stated in terms of a single program p)

(#) If p→b m1 and p→a m2, then ∃r s.t. n⇒a r and s⇒b r.

The same result holds with ⇒ in place of ⇒.

The criterion together with Lemma 6.2 (Point 1.) yields

▶ Prop (6.3). Surface reduction ⇒s has the diamond property. The same holds for ⇒
s

.

CSL 2025

47:22 A Rewriting Theory for Quantum λ-Calculus

D Finitary Standardization

Shape Preservation. We recall a basic but key property of contextual closure. If a step →γ

is obtained by closure under non-empty context of a rule 7→γ , then it preserves the shape
of the term. We say that T and T ′ have the same shape if both terms belong to the same
production (i.e., both terms are an application, an abstraction, a variable, a register, a term
of shape !P , new, etc).

▶ Fact D.1 (Shape preservation). Assume[[[Q;M]]]→ {{ pi[[[Qi;Mi]]] }}, M = CLRM,Mi = CLRiM
and that the context C is non-empty. Then (for each i), M and Mi have the same shape.

An easy-to-verify consequence is the following, stating that non-surface steps (→¬s)
do not change the quantum memory
do not change the shape of the terms

Notice that the qubit state is unchanged by →¬s steps, since it can only be a →¬s β step

▶ Lemma D.2 (Redexes and normal forms preservation). Assume [[[Q;M]]] →¬s β {{ [[[Q;M ′]]] }}.
1. M is a redex iff M ′ is a redex. In this case, either both are β-redexes, or both meas-redexes.
2. M is s-normal if and only if M ′ is s-normal.

Proof of Lemma 6.6.

▶ Lemma (Lemma 6.6). [[[Q;M]]] →¬s β {{ [[[Q;P]]] }} and [[[Q;P]]]→q n implies [[[Q;M]]]→q · ⇒β n.

Proof. By induction on the context S such that P = SLRM and
[[[Q; SLRM]]]→q {{ pi[[[Qi; SLRiM]]] }} = n. We exploit in an essential way the fact that M

and P have the same shape. ◀

E Asymptotic normalization

Proof Sketch. The proof of Theorem 7.4 relies on an abstract result from the literature
[24], which here we reformulate in our setting:

▶ Lemma E.1 (Asymptotic completeness criterion [24]). Assume
i. s-factorisation: if m⇒∗ n then m⇒s ∗ · ⇒¬s

∗ n;
ii. ¬s-neutrality : m ⇒¬s m′ implies P(m) = P(m′).

Then: m ⇓ p implies m ⇓s p.

Proof of Theorem 7.4. We establishing the two items below, and then compose them.
1. m ⇓ p implies m ⇓s p

2. m ⇓s p implies m ⇊s p
′, with p ≤ p′

Item (1.) holds because ⇒s satisfies both conditions in Lemma E.1: point (i.) holds by
Theorem 6.7, point (ii.) by Lemma D.2. Item (2.) is immediate. ◀

Quantum and Classical Markovian Graphical
Causal Models and Their Identification
Jonathan Barrett #

University of Oxford, UK

Isaac Friend #

University of Oxford, UK

Aleks Kissinger #

University of Oxford, UK

Abstract
Markov categories allow formalization of probabilistic and causal reasoning in a general setting that
applies uniformly to many different kinds of classical probabilistic processes. It has so far been
challenging, however, to generalize these techniques to reasoning about quantum processes, as the
quantum no-cloning theorem forbids “copy” maps of the sort that have been used to axiomatize
conditional independence, and the related notions of complete common causes and Markovianity, in
classical Bayesian networks. Here, we introduce a new categorical notion of Markovian causal model,
according to which a distinguished subcategory of “common cause” maps plays a similar role to that
of “copy” maps in the categorical formulation of Bayesian networks. Moreover, defining causal models
as second-order processes yields a clean and flexible formulation of interventions. Our formalism is
both rich enough to handle “complete common cause” assumptions and general enough to encompass
not only standard classical causal identification scenarios, but also quantum causal scenarios and
new kinds of classical causal identification based on imperfect observations. Furthermore, we show
that one can reason uniformly across all of these cases using string-diagrammatic techniques.

2012 ACM Subject Classification Computing methodologies → Causal reasoning and diagnostics;
Theory of computation → Categorical semantics; Theory of computation → Quantum computation
theory

Keywords and phrases causal inference, Bayesian networks, quantum combs, process theories

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.48

Funding Isaac Friend: This research was supported in part by Perimeter Institute for Theoretical
Physics. Research at Perimeter Institute is supported by the Government of Canada through the
Department of Innovation, Science and Economic Development and by the Province of Ontario
through the Ministry of Colleges and Universities.
Aleks Kissinger : This publication was made possible through the support of the ID# 62312 grant
from the John Templeton Foundation, as part of the “The Quantum Information Structure of
Spacetime” Project (QISS). The opinions expressed in this publication are those of the author(s)
and do not necessarily reflect the views of the John Templeton Foundation.

Acknowledgements We thank Elie Wolfe and Rob Spekkens for insights regarding the classes of
instruments that can be used for causal identification.

1 Introduction

Within the study of probabilistic reasoning, causal inference involves discerning from data
the causal relationships responsible for generating them, and hence the effects of hypothetical
interventions. Many researchers in quantum information and the foundations of quantum
theory have tried to adapt concepts from causal inference to a setting in which, roughly,
quantum systems replace random variables as causal relata, and quantum channels replace
functions or stochastic maps as causal mechanisms [15, 17, 19, 1, 12]. A natural approach to

© Jonathan Barrett, Isaac Friend, and Aleks Kissinger;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 48; pp. 48:1–48:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jonathan.barrett@cs.ox.ac.uk
https://orcid.org/0000-0002-2222-0579
mailto:isaac.friend@cs.ox.ac.uk
https://orcid.org/0000-0001-6320-5861
mailto:aleks.kissinger@cs.ox.ac.uk
https://orcid.org/0000-0002-6090-9684
https://doi.org/10.4230/LIPIcs.CSL.2025.48
https://www.templeton.org/grant/the-quantuminformation-structure-ofspacetime-qiss-second-phase
https://www.templeton.org/grant/the-quantuminformation-structure-ofspacetime-qiss-second-phase
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Quantum and Classical Markovian Graphical Causal Models and Their Identification

studying quantum generalizations of probabilistic reasoning is to start from the literature on
categorical probability theory (e.g., [14, 11]), and simply replace a category of probabilistic
processes with a category of quantum processes, which one hopes satisfies enough axioms
to support analogous calculations to the classical case. But we quickly run into a major
obstacle: an important axiom used in categorical probability to define Markov categories,
and slight variations such as CD and CDU categories, is the existence of “copy” maps for all
objects. Such maps are the basis of abstract formulations of conditional independence, and
hence the Markov condition for Bayesian networks. When Bayesian networks are understood
as causal models as in the work of Pearl [16], Markovianity sometimes involves a variable
being “copied” and the copies distributed to other parts of the network that depend on the
variable. The Markov condition for causal Bayesian networks is central to classical causal
inference.

Such “copy” maps are forbidden for quantum processes, however, as famously shown
by the quantum no-cloning [20] and no-broadcasting [2] theorems. While it is possible to
define complete common causes, and hence Markovianity, in the quantum setting in several
equivalent ways [1, 3], the absence of an explicit representation of copying as a well-defined
quantum process in its own right limits the translation of standard causal inference techniques
to the quantum setting. The present work solves this problem by introducing an abstract,
categorical notion of Markovian causal model that can be instantiated in either a quantum
or a classical setting1. As in prior work on categorical causal inference [13] (which depended
on “copy” structure and did not include quantum models), a causal model involves two
symmetric monoidal categories: a syntactic category, whose morphisms encode an abstract
causal structure as a formal composition of “black boxes,” and a semantic category, in
which the abstract causal structure is functorially interpreted as a particular data-generating
process, e.g., by filling in the black boxes with concrete stochastic matrices. Generalizing [13],
we will provide a notion of abstract causal structure that can be interpreted in either a
classical or a quantum semantic category. In particular, this framework subsumes ordinary
classical Bayesian networks.

After defining the basic framework, we will describe how our formalism handles interven-
tions, and pose the causal identification problem to which we will apply our mathematical
technology. Causal identification is a type of causal inference problem for which the effects of
counterfactual interventions are to be inferred from a combination of qualitative hypotheses
(represented by a graph) and observational data. Our formulation of causal models lets
us treat the statistics from a very restricted class of interventions as “observational data”
available for inference. The precise class of interventions we choose is treated as a parameter
in our framework, so different classes of interventions yield different kinds of causal identifi-
cation problems. This flexibility is needed in the quantum case, where there is no standard
notion of “passive observation,” but is also useful in the classical case, where we can now
study inference tasks whose input data have been obtained via imperfect procedures.

In classical causal inference, the assumption that an unknown causal model is a Markovian
model based on a known graph, amounting to the assumption that there are no latent variables
influencing multiple observed variables (i.e., no latent confounders), greatly expands the
class of causal queries that can be answered with observational data. In particular, with
this assumption, one can identify from the graph and the observational data the response
of the model to arbitrary interventions. We demonstrate that a certain Markovianity

1 The resulting notion of quantum Markovian causal model, specifically (CPM, Unitary•)-valued Marko-
vian model, is closely related to proposals in [8] and [1, 3].

J. Barrett, I. Friend, and A. Kissinger 48:3

assumption formulated in our new framework is similarly powerful in the quantum setting,
allowing the identification of the entire data-generating process from only very limited
probing operations. We simultaneously demonstrate that for classical causal identification,
noisy and disturbing observations can sometimes serve in place of ordinary perfect passive
observations. The uniform handling of the classical and quantum cases is made possible by
the string-diagrammatic calculus for (compact) symmetric monoidal categories.

2 Process theories

Throughout the paper, we will use process theoretic terminology, following, e.g., [5], to discuss
morphisms in a symmetric monoidal category. Namely, we will refer to symmetric monoidal
categories (C,⊗, I) as process theories and the morphisms therein as processes. Because of
their physical interpretation, we also introduce special terminology for morphisms into and
out of the monoidal unit I. In a process theory, morphisms of the form ρ : I → A are called
states, and morphisms of the form π : A → I are called effects. Morphisms of the form
λ : I → I are called numbers or scalars.

We will focus on process theories equipped with distinguished families of discarding maps
dA : A → I, one map for each object A, satisfying dA⊗B = dA ⊗ dB and dI = 1I . The main
utility of discarding maps is allowing us to say when a process is causal, which in the classical
and quantum settings imposes a normalization constraint.

▶ Definition 1. A process f : A → B is called causal if dB ◦ f = dA.

▶ Example 2. The process theory Mat[R+] has as objects natural numbers and as processes
M : m → n the n × m matrices whose entries are non-negative real numbers {M i

j | 1 ≤
i ≤ n, 1 ≤ j ≤ m}. The monoidal product is given by tensor product of matrices (a.k.a.
Kronecker product), whose unit is the 1 × 1 matrix [1] : 1 → 1. Discarding maps dn : n → 1
are the 1 × n matrices (i.e., row vectors) consisting of all 1s. Composing with dn corresponds
to summing over an output index (i.e., marginalization). Consequently, causal states are
column vectors of positive numbers whose entries sum to 1 (i.e., probability distributions), and
causal processes are matrices whose columns each sum to 1 (i.e., stochastic maps, equivalent
to conditional probability distributions with P (i|j) := M i

j).

▶ Example 3. The process theory CPM has as objects finite-dimensional Hilbert spaces
H,K, ... and as morphisms completely positive maps Φ : L(H) → L(K), where L(H) is the
algebra of operators H → H. The monoidal product is again given by tensor product, whose
unit is the identity map on L(C) ∼= C. Discarding maps are trace maps. A state ρ : C → L(H)
is fixed by a single positive operator ρ(1) ∈ L(H), and causal states correspond to trace-1
positive operators. More generally, causal processes are the trace-preserving completely
positive maps.

Since both matrices of positive numbers and completely positive maps are closed under
sums, both Mat[R+] and CPM are additively enriched. We will first use this fact in
Definition 4 to define instruments.

The presentation will use string diagram notation, with processes depicted as boxes and
objects as wires in diagrams read from bottom to top. A process theory’s monoidal unit
object I and the identity process I → I are both depicted by empty space, and other identity
processes are depicted as wires. Discarding, which will later serve as a counit for an internal
comonoid structure, is depicted with a black dot.

CSL 2025

48:4 Quantum and Classical Markovian Graphical Causal Models and Their Identification

f : A → B ⇝ f

A

B

A

ρ : I → A ⇝ ρ

A

π : A → I ⇝ π

A

dA : A → I ⇝

Diagrammatically, the causality condition for a process f : A → B from Definition 1 is

f

A

B

=
A (1)

3 Causal Bayesian networks

The usual notion of a joint probability distribution being Markov compatible with a directed
acyclic graph (DAG) is that it factorizes in such a way that each variable (labeling a node of
the graph) is independent when conditioned on its parents. For example, a joint distribution
P (ABCDE) is Markov compatible with DAG

G :=
A

B C

D E

(2)

precisely when P (ABCDE) = P (A)P (B|A)P (C|A)P (D|BC)P (E|C).
We now recall the string-diagrammatic formulation of Markov compatibility of a joint

probability distribution with a DAG G, given, e.g., in [13]. First, we introduce for each object
X in Mat[R+] a “copy” map X → X ⊗ X, whose composition with a point distribution
ψ : I → X (i.e., a column vector with a single 1 entry and 0s elsewhere) is ψ ⊗ ψ. With
“copy” as comultiplication–depicted by a black dot with one input and two output wires–and
discarding as counit, each object in Mat[R+] is given a cocommutative comonoid structure:

= = = = (3)

A symmetric monoidal category equipped with a compatible family of “copy” and discard
maps for all objects is called a CD category. If in addition we impose the causality condition
of Definition 1 on all maps, the category is called a Markov category. The copy and
discard maps above endow Mat[R+] with the structure of a CD category; the subcategory
Stoch ⊆ Mat[R+] of stochastic (i.e., causal) maps is a Markov category.

We can form the string diagram associated with a DAG G by introducing a box a :
X1 ⊗ . . .⊗Xn → A for every node A in G with parents {X1, . . . , Xn}. We compose these
boxes by connecting each output A to the output of the overall diagram, as well as to the
inputs of each of the children of A in G, introducing copy maps where necessary. A state
being Markov with respect to G then means simply that it factorizes according to that
diagram, for some choice of stochastic matrices a, b, c, . . . For example, a state ω is Markov
with respect to the graph G from (2) when it can be decomposed as follows:

J. Barrett, I. Friend, and A. Kissinger 48:5

A B C D E

ω =

a

d e

b c

D E

CB

A

(4)

This diagrammatic condition corresponds precisely to the usual factorization of P (ABCDE)
given before, where P (ABCDE) is the joint probability distribution given by the state ω.

The right-hand side of (4) may be said to represent ω as a Bayesian network. While
Bayesian networks can in general just be seen as an efficient way to represent joint probability
distributions, we can additionally provide them with a causal interpretation, using them to
model how a certain scenario would respond to possible interventions. To model the effects
of interventions using a Bayesian network, we interpret each of the boxes a, b, c, . . . as some
actual (e.g., physical) mechanism that determines (stochastically) the value of its output,
given any value of its input. One introduces a concept of local intervention whereby, for
example, a change can be made at the input to box c while the rest of the network is left
unchanged. In [13], local intervention is represented by endofunctors that “cut” diagrams
like the one in Eq. 4. Such an intervention results in a different overall state from ω (the
new state is sometimes called a “do-conditional” in the causal inference literature [16]).
A Bayesian network representation of a state that is Markov compatible with DAG G,
interpreted causally in this way, is called a Markovian G-based causal model.

In a causal inference problem, one is given a state like ω together with certain qualitative
assumptions about how the state is generated, and the task is to determine further proper-
ties of the data-generating process and compute how ω would change under hypothetical
interventions. One sort of qualitative assumption is that ω is generated by a Markovian
causal model based on a certain DAG. Such an assumption turns out quite powerful for
inference: with it, one can evaluate the results of essentially any hypothetical intervention.
Discussions of “quantum causal modeling” naturally suggest the question of whether a
“quantum Markovianity assumption” might provide similar inferential power in quantum
causal scenarios. We therefore seek to formulate quantum Markovian causal models based
on DAGs, and an associated inference problem.

Two obstacles arise. First, it is unclear what quantity constitutes the quantum analog of
the state (ω in Eq. 4) that is an input in classical inference. That state carries “observational
data,” i.e., the probability distribution generated by the causal model when variables
are merely observed rather than intervened on. In operational quantum theory, there
is no standard notion of passive observation as distinct from more “active” intervention.
Our solution makes no such distinction in principle, and instead simply allows any set
of interventions to be declared the “accessible” ones whose outcome distributions will be
available for inference. The second obstacle is the absence of copy maps in quantum theory.
The assumption that observational data are generated by a process like the one on the
right-hand side of Eq. 4 is useful for inference because copy maps guarantee, for example,
that any randomness shared between the inputs to b and c is accounted for by variable A.
(The Bayesian network representation in Eq. 4 also uses copy maps to produce an observed
output for each variable while allowing the variable’s value to be fed forward, undisturbed,
to the rest of the network.) Our solution here allows any subtheory of maps in a process
theory to take the role typically played by copy maps in distributing “information” from

CSL 2025

48:6 Quantum and Classical Markovian Graphical Causal Models and Their Identification

the output of one box to the inputs of other boxes. With such a general framework, there
remains the question of which choices of parameters in the quantum setting give a specific
notion of “Markovian causal model” that is especially useful for inference. The answer, in
Section 7, depends on a theorem showing how unitary quantum maps (more generally, what
are called “autonomous” quantum channels) mimic the “function-maps” in Mat[R+].

4 Generalized causal models

4.1 Combs and instruments
The interventional causal models studied in this paper will involve second-order processes,
or combs [4], taking first-order processes as input and producing other first-order processes
(usually numbers, i.e. processes I → I). We will represent second-order processes as first-
order ones by invoking the (self-dual) compact structures in the process theories Mat[R+] and
CPM: every object A is equipped with a pair of maps ∪A : I → A⊗A and ∩A : A⊗A → I,
called “cups” and “caps” respectively, satisfying the so-called yanking equations, which are
depicted in string diagram notation as follows:

= = = =

In Mat[R+], cups and caps are given by Kronecker delta matrices, with the two indices
treated as either inputs or outputs: ∪ij = ∩ij = δij . In CPM, ∪H is given by the un-
normalized maximally entangled state

∑
ij |ii⟩⟨jj| and ∩H is its associated effect, seen as a

completely positive map from L(H) ⊗ L(H) to C.
Using this structure, we can, for example, represent a process that takes processes of

type A → A′ and produces processes of type B → B′ as a normal, first-order process
f : B⊗A′ → A⊗B′. We then indicate its higher-order interpretation by drawing f as a box
with a “hole” in it, often called a comb, and use cups and caps to define “plugging” another
box into that hole:

f

A′

A

B

B′

⇝ f

B

A

A′

B′

(5) f

B

A

A′

B′

g :=

f

A′

A

A′

g

B

B′

(6)

As in [9, 10], a classical or quantum causal model will involve a comb in Mat[R+] or
CPM, respectively, encoding the stable mechanisms governing a repeated causal scenario.
The “holes” in the comb will represent loci of intervention, where one can interact with the
data-generating process in various ways, e.g., by implementing a causal map (a classical or
quantum channel), or observing the value of a random variable and then feeding forward a
certain state. An intervention procedure at a “hole” in a classical or quantum comb will be
represented mathematically by an instrument.

▶ Definition 4. An instrument of type A → A′ valued in Mat[R+] or CPM is a finite set
of maps {ϕi : A → A′}i whose sum

∑
i ϕi is a causal map. Each map ϕi is called a branch

of the instrument.

Branches correspond to possible outcomes of the intervention procedure. The probabilities of
these outcomes are determined by the branches and by the process in which one is intervening.

J. Barrett, I. Friend, and A. Kissinger 48:7

▶ Example 5. The preparation of a causal state is represented by an instrument branch
{ρ : I → A}. A demolition measurement on a quantum system is represented by an
instrument whose branches are effects {ϕi : A → I}i. The only causal effect is the discarding
map dA, so the instrument condition says

∑
i ϕi = dA. For a causal state ρ, the probability

of getting outcome i is P (i|ρ) := ϕi ◦ ρ. From the instrument condition, it follows that∑
i P (i|ρ) =

∑
i ϕi ◦ ρ = dA ◦ ρ = 1.

If f in Eq. 5 is a causal process in Mat[R+] or CPM, and one selects instruments I → B,
A → A′, and B′ → I, then f will map each possible triple of branches to a probability,
understood as the probability of realizing this triple when probing f with the selected
instruments. Causal inference in general consists in using such probabilities–imagined to
have been learned experimentally over many trials–to compute properties of f , whose value
is initially unknown, and thereby predict how f would respond to other combinations of
instruments.

This paper focuses on a kind of causal inference problem called causal identification,
for which certain properties of the comb, namely its “shape,” are assumed in advance, and
those assumptions used together with the probabilities just described to compute the further
properties of interest. The assumption we will formalize and use for inference is Markovianity.
We will now give a process-theoretic definition of Markovian causal model that can be
instantiated in either Mat[R+]–where we recover a standard definition of Markovian causal
model–or CPM.

4.2 Abstract and concrete causal structures

We extend the recipe from [13] where a directed acyclic graph is used to generate a process
theory whose morphisms are abstract causal structures encoding qualitative assumptions
that will be used for inference. For a finite directed acyclic graph G = (VG, EG) with vertex
set VG and edge set EG, let G0 be a free symmetric monoidal category whose objects are
generated by the set VG ⊎EG and whose morphisms are generated by discarding maps for
all objects and two additional kinds of maps:

x : e1 ⊗ . . .⊗ ej → X AX : X → e′
1 ⊗ . . .⊗ e′

k (7)

for each X ∈ VG, where {e1, . . . , ej} are the in-edges of X and {e′
1, . . . , e

′
k} are the out-edges

of X.
From the free category G0, we form the “syntactic” process theory G by additionally

imposing the causality equation (1) for every generating map. In particular, for Z a vertex
with no out-edges, AZ = dZ .

We then associate to the graph G a process cG : X1 ⊗ . . . ⊗ Xn → X1 ⊗ . . . ⊗ Xn in
G, called the abstract causal structure associated with G, by taking each of the generators
from (7) and plugging each input wire labeled by an edge to the unique associated output
wire. The inputs and outputs of cG are all labeled by vertices, each vertex labeling exactly
one input and one output wire. Each input/output pair is depicted as a hole in a wire and
labeled by the corresponding vertex in VG.

▶ Example 6. The directed graph G indicates the abstract causal structure cG:

CSL 2025

48:8 Quantum and Classical Markovian Graphical Causal Models and Their Identification

G =
X

Y

Z

cG =

x

AX

y

AY

z

X

Y

Z

The graph is one of the inputs for the causal inference problem we will be studying. Just
as in [13] being given the graph in (2) would let an agent assume that the observed probability
distribution is generated by a process conforming to (4), being given the three-node graph in
this example will let an agent assume that the unknown causal scenario is represented by a
comb conforming to cG. A class of interventional causal models respecting this abstract causal
structure is defined relative to a pair of process theories (C, Ccc), where Ccc is a subtheory of
C called the “common-cause” subtheory. (The common-cause subtheory is a parameter in the
framework; specifying the common-cause subtheory is part of defining a causal identification
problem. We will study the consequences of various choices of common-cause subtheory.)

▶ Definition 7. A G-based, (C, Ccc)-valued Markovian interventional causal model consists
of a discarding-preserving functor of process theories (i.e., a discarding-preserving symmetric
monoidal functor) F : G → C such that F (AX) is in Ccc for every X ∈ VG.

The process F (cG) is a concrete causal structure, i.e., it is a morphism in C, such as a
stochastic matrix (in the classical case) or a quantum channel, that assigns probabilities
to outcomes of intervention procedures implemented at intervention loci (loci for short)
represented by the input/output pairs that form the “holes” in the abstract and concrete
causal structures. We will consider scenarios in which F is initially unknown, and we will try
to compute elements in F ’s image from those probabilities.

In these scenarios, the process theories C and Ccc, like the graph G, are given in advance.
A process F (AX) in the common-cause subtheory Ccc distributes information from locus X
toward the loci labeled by X’s children in G. The common-cause subtheory determines what
it means to assume (ultimately for the purpose of inference) that a locus is the complete
common cause of the loci labeled by its children in G. There are no conditions on Ccc a priori,
except that it should contain the family of discarding processes. In particular, we could
have Ccc = C, in which case the notion of “complete common cause” is trivialized. However,
for some classes of models below, Ccc will be a subtheory of processes that we think of as
disallowing confounding between their outputs due to latent variables/systems. In this case,
any observed correlations are thought of as arising entirely from the causal dependency of
multiple output variables/systems on some input. We will formulate this concept for relevant
subtheories of classical and quantum processes, where it will bestow significant inferential
power. The basic idea is simple: if one wishes to infer the value of a process known to
decompose according to a certain string diagram, then knowing that certain boxes are valued
in a smaller subtheory will tend to make the task easier. We will show that certain classical
and quantum subtheories are particularly useful in this regard, for mathematical reasons that
are precisely analogous between the two settings. Nevertheless, it is important to understand
that the term “Markovian” is used in Def. 7 in a new and abstract sense.

J. Barrett, I. Friend, and A. Kissinger 48:9

The causal models studied in this paper are valued in the process theories Mat[R+]
and CPM. Denote by Func the subtheory of Mat[R+] consisting of function-maps, i.e.,
stochastic maps whose columns each contain precisely one 1. This theory is equivalent to
the theory of finite sets and functions: associate with each matrix M in Func the unique
function f with M i

j := 1 if and only if f(j) = i. Relevant subtheories of CPM include the
theories Unitary and Isom of unitary and isometric quantum channels, i.e. completely
positive maps of the form U(ρ) := U ◦ ρ ◦U† for U a unitary or an isometry. For a subtheory
D of a process theory C with discarding, the theory D• is formed by adjoining discarding
maps for all objects. Thus we have, e.g., Func• = Func, and Unitary• is the theory of
what are called autonomous quantum channels [18].

4.3 Recovering classical causal Bayesian networks
One reason for our use of the term “Markovian” in a manner specific to the new framework
we are introducing is that this framework subsumes ordinary Markovian causal Bayesian
networks. The key to establishing the relationship is the following property of function-maps
in Mat[R+]2:

A A
=A (8)

▶ Proposition 8. For any (Mat[R+],Func•)-valued model of directed acyclic graph G, the
state in Mat[R+] derived by plugging a copy map into each locus (as in the left-hand side
of Eq. 9) is Markov compatible with G in the standard sense used in probabilistic graphical
modeling. Conversely, any Bayesian network based on DAG G is derivable from some G-based,
(Mat[R+],Func•)-valued causal model by this prescription.

Proof. A state like the one in Eq. 4 is a G-based, (Mat[R+],Func•)-valued model composed
with copy maps at all loci. The common-cause functions following the loci happen also to
be copy maps, which are indeed morphisms in Func•. On the other hand, starting from a
(Mat[R+],Func•)-valued model with generic common-cause functions also yields a state of
this form, thanks to Eq. 8 for functions:

a

d′ e′

b′ c′

D E

CB

A

a

d e

b c

CB

A

AA

AB AC

D

AD

E

AE

a

b c

CB

A

==

AA AA

d e

AC AC

D E

AB

(9)

◀

2 In synthetic probability based on Markov categories [11], Eq. 8 defines conditional independence of a
map’s outputs (conditioned on its input).

CSL 2025

48:10 Quantum and Classical Markovian Graphical Causal Models and Their Identification

We have now shown using Eq. 8 how some of the copy maps in classical Bayesian
networks emerge in our framework when Func• is the common-cause subtheory. In the
next section, after posing the general identification problem, we will show how standard
“observational data” can be extracted from our classical interventional models via what we
call perfect passive observation instruments, which do not involve copy maps. We will then
have recovered the standard notion of classical causal identification as just one case on the
same footing as quantum and new classical problems.

5 Interventions and the identification problem

▶ Definition 9. For a given abstract causal structure, a semantic process theory C, and
an object A in C for each locus in the abstract causal structure, a local intervention regime
assigns to each A an instrument in C of type A → A.

For a fixed local intervention regime and a fixed classical or quantum model of the abstract
causal structure, “implementing” the intervention regime for one iteration of the causal
scenario results in the joint realization of a combination of maps at all the loci: at each locus,
one branch of the instrument assigned to that locus is realized. The joint probability of this
combination of local outcomes is the number resulting from plugging the maps into their loci.
The problem of causal identification is to use such probabilities from a limited set of local
intervention regimes, together with the shape of the abstract causal structure (equivalently,
the graph), to infer probabilities of outcome combinations under other local intervention
regimes.

The set of local intervention regimes whose outcome statistics are to be used for inference
is constructed as follows: for each locus A, an accessible set IA of instruments A → A is given.
These accessible sets of instruments define a set of accessible local intervention regimes.

▶ Definition 10. Given an accessible set IA of instruments for each locus A in an abstract
causal structure, an accessible local intervention regime assigns to each A an instrument
from IA.

The probabilities available for inference are the probabilities that can be “learned” from
accessible local intervention regimes. That is, for each accessible local intervention regime,
the joint probability of each combination of branches will be considered known.

Note that we will always assume every accessible set IA contains the identity instrument
of the appropriate type. An identity instrument has one branch, an identity process, depicted
by a wire. Assuming the universal availability of identity instruments is a way of assuming
that given any allowed local intervention regime, one can also choose to “do nothing” at one
of the loci, keeping the same instruments at all other loci3.

In causal identification, what one is trying to identify is the image of some map in the
syntactic process theory G under F . Knowing such an image might allow one to determine
how the model would respond to certain local intervention regimes. For instance, if one
were confronted with an unknown model of the abstract causal structure in Example 6,
inferring the value of F (y ◦AX) would allow one to predict the outcome probabilities for a

3 The reason identity interventions are usually not discussed in classical causal inference literature is that
they can be simulated from perfect passive observational data, by “marginalization.” This is no longer
the case, however, when we move beyond classical perfect passive observation. For example, performing
a quantum measurement and then marginalizing over the outcome will not in general lead to the same
statistics on the remaining loci as not doing the measurement at all.

J. Barrett, I. Friend, and A. Kissinger 48:11

local intervention regime consisting of an identity instrument at Z and arbitrary instruments
at X and Y . However, one is initially given only limited access to the functor F , namely
the probabilities associated with accessible local intervention regimes applied to the whole
data-generating process F (cG). For simplicity, we will focus on the problem of inferring
F (cG) itself, from which one can compute the outcome probabilities for arbitrary local
intervention regimes. In general, however, we might only be interested in predicting the
results of interventions at certain loci, in which case we might be able to focus on a simpler
problem.

In full, the causal identification problem we will study is defined by the following in each
instance: a directed acyclic graph G, specifying an abstract causal structure cG ∈ G; a
semantic process theory C (either Mat[R+] or CPM) and a subtheory Ccc; a G-based, (C, Ccc)-
valued Markovian interventional causal model F ; and an accessible set IA of instruments for
each locus A.

The inputs for the identification task are the (labeled) graph G, the pair of concrete process
theories (C, Ccc), the accessible set of instruments for each locus A, and the data generated by
F (cG) under each accessible local intervention regime (i.e., the joint probabilities of realizing
combinations of branches). The task is to compute F (cG). If this task is possible, we will
say G-based (C, Ccc)-valued models are identifiable from the accessible sets of instruments.

For the kinds of classical and quantum causal scenarios we are studying, there always
exist finite sets of local instruments that, if declared accessible, suffice for identification
regardless of the common-cause subtheory4. In contrast, we will consider how accessible sets
that do not suffice for identification of models with one common-cause subtheory become
sufficient when the common-cause subtheory is further restricted.

A typical example in the case of C = Mat[R+] is for the accessible set of instruments at
each locus to consist of the “perfect passive observations.” Note that when reasoning in both
the classical and quantum process theories simultaneously, we draw generic states and effects
as asymmetric triangles, reserving symmetric triangles for Mat[R+] alone.

▶ Definition 11. For object A in Mat[R+], the perfect passive observation instrument of
type A → A has branches

A

A

i

i

where the state labeled i is given by the column vector with 1 in row i and all other entries 0,
and the effect labeled i is the matrix transpose of that column vector.

Knowing which branch of a perfect passive observation instrument has been implemented
means being certain of the value a random variable has taken, and certain that the variable
retains that value as it is input to subsequent causal mechanisms.

In the previous section, we saw that any (Mat[R+],Func•)-valued model can be translated
diagrammatically into a Bayesian network by plugging “copy” maps into all loci. This
procedure is equivalent to considering such a model with perfect passive observations at
each locus. We can see this by noting that the probability of any particular joint outcome
associated with a joint state ω such as the one in (4) can be obtained by plugging in the
effect associated to that outcome, e.g.:

4 See p. 107 of [9] for a way to construct such sets, and explanation of how the construction represents the
idea of controlled experiments, from which we expect to be able to deduce any data-generating process.

CSL 2025

48:12 Quantum and Classical Markovian Graphical Causal Models and Their Identification

P (A = a,B = b, C = c,D = d,E = e) =

a

A B
b

C

c

D
d

E

e

ω

Then, we can apply the following equation satisfied by the copy and any effect associated
with a unit vector:

x

=
x

x

to obtain a perfect passive observation at every locus; e.g.,

a

d e

b c

CB

A

AA

AB AC

D

AD

E

AE

a

b c

d e

a

d e

b c

AA

AB AC

AD AE

a

b c

d e

=

a

b c

d e

a

A B
b

C

c

D
d

E

e

ω
=

Hence, knowing the state ω is the same as knowing the probabilities associated with perfect
passive observations.

We now study what kinds of classical models can be identified from perfect passive
observations.

▶ Proposition 12. Perfect passive observation instruments do not suffice for identifying
(Mat[R+],Mat[R+])-valued Markovian models.

The proposition means that for some graphs G, there are multiple G-based,
(Mat[R+],Mat[R+])-valued Markovian models that behave identically under all local in-
tervention regimes involving only perfect passive observation instruments, but differently
under other local intervention regimes. It should not surprise readers familiar with causal
inference; if the common-cause maps can be arbitrary stochastic matrices, they can essen-
tially introduce confounding. The modifier “Markovian” would not ordinarily be applied
to generic instances of what we are calling (Mat[R+],Mat[R+])-valued Markovian models.
It would, however, describe what we call (Mat[R+],Func•)-valued Markovian models. For
these models, where common-cause maps are restricted to functions, there are no hidden
confounders and identification from perfect passive observation is always possible.

▶ Proposition 13. (Mat[R+],Func•)-valued Markovian models are identifiable from perfect
passive observation instruments.

In the proof in Appendix A, the last rewriting step uses the fact that the classical “copy”
map literally copies the state that leaves a locus after a perfect passive observation. In
quantum inference, and in classical inference with generalized observation, this calculation
will be unavailable, and a new technique will be introduced to take its place.

J. Barrett, I. Friend, and A. Kissinger 48:13

5.1 Quantum and generalized classical observation
In some classical causal scenarios, observational data are noisy5. After one learns the result
of a test, one’s credences about the possible values of the variable are given by a probability
distribution. Furthermore, one’s credences about the possible values being fed forward may
be different–one may understand that the procedure whereby one learns about the variable’s
value tends to change the value. We now study causal identification in such situations
and in quantum scenarios by process-theoretically generalizing perfect passive observation
instruments to kinds of classical and quantum instruments that may be “noisy” rather
than “perfect,” and “disturbing” rather than “passive,” but are consistent with the idea of
observational instruments as those for which the state leaving a locus is determined by the
effect that has been realized there, and not by the experimenter’s further choice. Quantum
causal identification with, e.g., projective measurement instruments turns out similar to
classical causal identification with noisy and disturbing instruments.

The generalized observations that will constitute the accessible sets of instruments are
such that when one learns an outcome, one models the observation as having implemented
an effect followed by a state.

▶ Definition 14. A process of type A → A′ is called ◦-separable if it consists of an effect
A → I followed by a state I → A′.

▶ Definition 15. An instrument of type A → A′ is ◦-separable if each of its branches is a
◦-separable process.

▶ Example 16. A surgical intervention, composed of a discarding map followed by a causal
state preparation, corresponds to a ◦-separable instrument with one branch.

▶ Example 17. A classical perfect passive observation instrument is a ◦-separable instrument.

▶ Example 18. Any orthonormal basis for a finite-dimensional Hilbert space induces a
◦-separable CPM-valued instrument called an ONB measurement (a.k.a. a non-degenerate
von Neumann measurement).

The entities that will serve as well as perfect passive observation instruments for causal
identification are “complete sets of ◦-separable instruments,” whose definition invokes the
concept of “informational completeness.”

▶ Definition 19. A set of effects {πj : A → I} is called informationally complete for A if
any state ρ : I → A is uniquely determined by the set of numbers πj ◦ ρ. Similarly, a set
of states {ρj : I → A} is called informationally complete for A if any effect π : A → I is
uniquely determined by the set of numbers π ◦ ρj.

In Mat[R+] and CPM, a set is informationally complete if and only if it spans the relevant
vector space, where the vector space associated with an object A in CPM is the space L(A)
of linear operators on Hilbert space A.

▶ Definition 20. A set of ◦-separable instruments of type A → A will be called complete
if (i) the set of all states appearing in the branches of the instruments is informationally
complete for A, and (ii) the set of all effects appearing in the branches of the instruments is
informationally complete for A.

5 Hidden Markov models, the standard means of modeling this phenomenon, graphically represent
variables quite differently from causal Bayesian networks, and moreover are not meant for studying
interventions.

CSL 2025

48:14 Quantum and Classical Markovian Graphical Causal Models and Their Identification

▶ Example 21. In Mat[R+], a perfect passive observation instrument by itself constitutes a
complete set of ◦-separable instruments.

▶ Example 22. For any object in CPM, there is a finite set of ONB measurements forming
a complete set of ◦-separable instruments. One example is the set of ONB measurements
corresponding to the bases of eigenvectors for the d2 generalized Pauli matrices on a Hilbert
space of dimension d.

▶ Example 23. In Mat[R+], let

ϕ =
[
.8 .9

]
ϕ′ =

[
.2 .1

]
ψ =

[
.5
.5

]
ψ′ =

[
.9
.1

]
The instrument with branches ψ ◦ ϕ and ψ′ ◦ ϕ′ constitutes a single-instrument marginally
informationally complete set of ◦-separable instruments of type 2 → 2. When a locus
representing a binary random variable (with values denoted 1 and 2) is probed with this
instrument, if the variable’s true value is 1, ψ ◦ ϕ is realized with probability .8 and ψ′ ◦ ϕ′

with probability .2. If the true value of the variable is 2, ψ ◦ ϕ is realized with probability
.9 and ψ′ ◦ ϕ′ with probability .2. If branch ψ ◦ ϕ is realized, the value of the variable fed
forward after the probing is totally randomized. If branch ψ′ ◦ ϕ′ is realized, the value fed
forward is 1 with probability .9 and 2 with probability .1. Instruments that are “biased”
toward the realization of certain branches can be thought of as modeling certain kinds of
selection effects, which are an important topic of study both in statistics in general and in
causal identification research [7].

We will show how classical and quantum Markovian causal models with appropriately
restricted common-cause subtheories can be identified when the accessible set of instruments
at each locus is a complete set of ◦-separable instruments.

6 Quantum common causes and convolution of maps

In this section, we will establish that autonomous quantum channels satisfy a quantum
version of Eq. 8, where the quantum meaning of the “copy” dot will be given. Ultimately Eq.
8 will be exploited for identification of both classical and quantum Markovian causal models.

We pass from CPM to the larger process theory FVect of all linear maps to introduce
super-operators that are not completely positive but will be used for diagrammatic quantum
causal inference. First, we define super-operators

µ : L(HA) ⊗ L(HA) → L(HA) δ : L(HA) → L(HA) ⊗ L(HA)

where µ corresponds to matrix multiplication, i.e., µ(ρ⊗ σ) := ρσ, and δ is its adjoint with
respect to the Hilbert-Schmidt inner product. The latter is easiest to describe concretely by
its action on basis elements written in Dirac’s “bra-ket” notation (see Appendix B):

δ(|i⟩⟨j|) :=
∑

k

|i⟩⟨k| ⊗ |k⟩⟨j|

Now we introduce diagrammatic notation like that used in the classical case. We’ll write:

µ := δ := IHA
:= A trHA

:= A dA,B =
A

B

J. Barrett, I. Friend, and A. Kissinger 48:15

It is straightforward to show a few basic identities using these generators, e.g.,

A⊗B

A⊗B

=

A⊗B A AB B

A B

= = =

and their (vertical) mirror-images, which imply that δ and trHA
give every object of the form

L(HA) in FVect a comonoid structure. Here, in contrast to the classical case, the comonoid
structure is non-cocommutative, i.e., Eq. 3 does not hold. This structure has been described
in [6].

The classical maps depicted by and A are the matrix transposes of those depicted
by the already-defined vertical mirror images of the respective diagrams.

The following two definitions are the diagrammatic equivalents of those for the same
terms in Appendix B.

▶ Definition 24. The convolution Φ1 ∗ Φ2 of two quantum or classical maps Φ1,Φ2 : A → B

is µ ◦ (Φ1 ⊗ Φ2) ◦ δ.

▶ Definition 25. For both FVect and Mat[R+], the convolution inverse of a map, indicated
by that map’s diagram inside {−}−1, satisfies

f f

A

B

A

B

=
−1

When this notation is used in calculations for Section 7, one or both of the objects A and B
will be the unit object, i.e., f will be an effect or a number. This notation is consistent with
the use of {−}−1 for inverses of positive real numbers in the proof of Prop. 13.

With the quantum semantics for the black dot, the essential similarity between autonomous
quantum channels and function-maps can be stated as follows:

▶ Theorem 26. Any autonomous quantum channel A satisfies Eq. 8.

The theorem follows from Propositions 31 and 36 in Appendix B. It implies that the common-
cause maps in (CPM,Unitary•)-valued Markovian models can be rewritten just as the
classical common-cause function-maps are, e.g., in the first equality of (9). This rewriting,
together with convolution inverses, will yield an identification technique for (CPM,Unitary•)
models.

7 Identification

We will study the causal identification problem as described in Section 5, focusing on classical
and quantum cases in which the accessible set of instruments at each locus is a complete
set of ◦-separable instruments. Specifically, we will show, for the smallest graph in which
two arrows leave a single vertex, that in both the classical and quantum settings, if the
common-cause subtheory Ccc is appropriately restrictive, any complete sets of ◦-separable
instruments at all loci suffice for identification; otherwise, generic such sets do not suffice.

▶ Example 27. Strictly positive Markovian models based on the graph G of Example 6 valued
in (Mat[R+],Mat[R+]) or (CPM, Isom•) are not identifiable from arbitrary complete sets
of ◦-separable instruments.

CSL 2025

48:16 Quantum and Classical Markovian Graphical Causal Models and Their Identification

For (Mat[R+],Mat[R+]), the statement follows from Proposition 12. For (CPM, Isom•),
an example of a pair of models that respond differently to some interventions but are
indistinguishable under local projective measurement can be constructed from the example
at the end of Section 3 of [9]. (The labels X and Z are swapped relative to the labeling in
Example 6; the common-cause map AZ is the parallel composite of an identity map and the
state u.) Here common-cause maps from Isom• can be thought of as potentially introducing
unseen auxiliary systems that correlate outcomes at multiple loci.

If the common-cause subtheory is restricted to Func• in the classical case or Unitary•
in the quantum case, complete sets of ◦-separable instruments at all loci become sufficient
for identification.

▶ Proposition 28. Markovian models based on the graph G of Example 6 valued in
(Mat[R+],Func•) or (CPM,Unitary•) are identifiable whenever the accessible set of in-
struments at each locus is a complete set of ◦-separable instruments.

The proof, in Appendix A, applies Theorem 26 and convolution inverses of quantum and
classical maps.

8 Conclusion

This paper has addressed the problem of defining quantum Markovian graphical causal models
by formulating causal models as combs and replacing the copy maps of categorical probability
by “common cause” maps describing how information may be shared among intervention
loci. The framework allows the formulation of causal inference problems parametrized by
the process theory, common-cause subtheory, and available sets of instruments. When the
quantum common-cause subtheory consists of autonomous quantum channels, Theorem 26
gives the quantum causal models a structure that can be used to identify the models even
when one is given access to only highly restricted probing operations. Meanwhile, the
formalism permits the study of new kinds of classical causal identification problems solvable
when function-maps are taken as the classical common-cause subtheory.

References
1 John-Mark A. Allen, Jonathan Barrett, Dominic C. Horsman, Ciarán M. Lee, and Robert W.

Spekkens. Quantum Common Causes and Quantum Causal Models. Phys. Rev. X, 7(3):031021,
July 2017. doi:10.1103/PhysRevX.7.031021.

2 Howard Barnum, Carlton M. Caves, Christopher A. Fuchs, Richard Jozsa, and Benjamin
Schumacher. Noncommuting Mixed States Cannot Be Broadcast. Phys. Rev. Lett., 76(15):2818–
2821, April 1996. Publisher: American Physical Society. doi:10.1103/PhysRevLett.76.2818.

3 Jonathan Barrett, Robin Lorenz, and Ognyan Oreshkov. Quantum Causal Models, 2019.
doi:10.48550/arXiv.1906.10726.

4 G. Chiribella, G. M. D’Ariano, and P. Perinotti. Quantum Circuit Architecture. Phys. Rev.
Lett., 101(6):060401, August 2008. Publisher: American Physical Society. doi:10.1103/
PhysRevLett.101.060401.

5 Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning. Cambridge University Press, 2017. doi:10.1017/
9781316219317.

6 Bob Coecke and Robert W. Spekkens. Picturing classical and quantum Bayesian inference.
Synthese, 186(3):651–696, June 2012. doi:10.1007/s11229-011-9917-5.

https://doi.org/10.1103/PhysRevX.7.031021
https://doi.org/10.1103/PhysRevLett.76.2818
https://doi.org/10.48550/arXiv.1906.10726
https://doi.org/10.1103/PhysRevLett.101.060401
https://doi.org/10.1103/PhysRevLett.101.060401
https://doi.org/10.1017/9781316219317
https://doi.org/10.1017/9781316219317
https://doi.org/10.1007/s11229-011-9917-5

J. Barrett, I. Friend, and A. Kissinger 48:17

7 Juan D. Correa, Jin Tian, and Elias Bareinboim. Identification of Causal Effects in the
Presence of Selection Bias. Proceedings of the AAAI Conference on Artificial Intelligence,
33(01):2744–2751, July 2019. Section: AAAI Technical Track: Knowledge Representation and
Reasoning. doi:10.1609/aaai.v33i01.33012744.

8 Fabio Costa and Sally Shrapnel. Quantum causal modelling. New Journal of Physics,
18(6):063032, June 2016. Publisher: IOP Publishing. doi:10.1088/1367-2630/18/6/063032.

9 Isaac Friend and Aleks Kissinger. Identification of Causal Influences in Quantum Processes.
In Stefano Gogioso and Matty Hoban, editors, Proceedings 19th International Conference on
Quantum Physics and Logic, Wolfson College, Oxford, UK, 27 June - 1 July 2022, volume 394
of Electronic Proceedings in Theoretical Computer Science, pages 101–115. Open Publishing
Association, 2023. doi:10.4204/EPTCS.394.7.

10 Isaac Friend and Aleks Kissinger. Identification of causal influences in quantum processes.
Physical Review A, 109(4):042214, April 2024. Publisher: American Physical Society. doi:
10.1103/PhysRevA.109.042214.

11 Tobias Fritz. A synthetic approach to Markov kernels, conditional independence and theorems
on sufficient statistics. Advances in Mathematics, 370:107239, August 2020. doi:10.1016/j.
aim.2020.107239.

12 Christina Giarmatzi and Fabio Costa. A quantum causal discovery algorithm. npj Quantum
Information, 4(1):17, March 2018. doi:10.1038/s41534-018-0062-6.

13 Bart Jacobs, Aleks Kissinger, and Fabio Zanasi. Causal Inference by String Diagram Surgery.
In Mikołaj Bojańczyk and Alex Simpson, editors, Foundations of Software Science and
Computation Structures, pages 313–329, Cham, 2019. Springer International Publishing.
doi:10.1007/978-3-030-17127-8_18.

14 Bart Jacobs and Fabio Zanasi. The Logical Essentials of Bayesian Reasoning. CoRR,
abs/1804.01193, 2018. arXiv: 1804.01193. arXiv:1804.01193.

15 M. S. Leifer and Robert W. Spekkens. Towards a formulation of quantum theory as a causally
neutral theory of Bayesian inference. Phys. Rev. A, 88(5):052130, November 2013. Publisher:
American Physical Society. doi:10.1103/PhysRevA.88.052130.

16 Judea Pearl. Causality. Cambridge University Press, 2 edition, 2009. doi:10.1017/
CBO9780511803161.

17 Katja Ried, Megan Agnew, Lydia Vermeyden, Dominik Janzing, Robert W. Spekkens, and
Kevin J. Resch. A quantum advantage for inferring causal structure. Nature Physics, 11(5):414–
420, May 2015. doi:10.1038/nphys3266.

18 Benjamin Schumacher and Michael D. Westmoreland. Locality and Information Transfer in
Quantum Operations. Quantum Information Processing, 4(1):13–34, February 2005. doi:
10.1007/s11128-004-3193-y.

19 Sally Shrapnel, Fabio Costa, and Gerard Milburn. Quantum Markovianity as a supervised
learning task. International Journal of Quantum Information, 16(08):1840010, 2018. doi:
10.1142/S0219749918400105.

20 W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature, 299(5886):802–
803, October 1982. doi:10.1038/299802a0.

A Identifiability proofs

In our study of identifiability conditions, we always assume that all models, whether classical
or quantum, are strictly positive in the following sense:

▶ Definition 29. An interventional causal model based on graph G is called strictly positive
if for each generating map of the form x : e1 ⊗ . . .⊗ ej → X in G, in the case C = Mat[R+]
the stochastic matrix F (x) has only strictly positive entries, or in the case C = CPM the
quantum channel F (x) has full Choi rank.

CSL 2025

https://doi.org/10.1609/aaai.v33i01.33012744
https://doi.org/10.1088/1367-2630/18/6/063032
https://doi.org/10.4204/EPTCS.394.7
https://doi.org/10.1103/PhysRevA.109.042214
https://doi.org/10.1103/PhysRevA.109.042214
https://doi.org/10.1016/j.aim.2020.107239
https://doi.org/10.1016/j.aim.2020.107239
https://doi.org/10.1038/s41534-018-0062-6
https://doi.org/10.1007/978-3-030-17127-8_18
https://arxiv.org/abs/1804.01193
https://doi.org/10.1103/PhysRevA.88.052130
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1038/nphys3266
https://doi.org/10.1007/s11128-004-3193-y
https://doi.org/10.1007/s11128-004-3193-y
https://doi.org/10.1142/S0219749918400105
https://doi.org/10.1142/S0219749918400105
https://doi.org/10.1038/299802a0

48:18 Quantum and Classical Markovian Graphical Causal Models and Their Identification

The Choi rank of a quantum channel is defined in terms of the channel’s Choi matrix,
discussed in Appendix B. When a strictly positive classical or quantum model is composed
with any non-zero state and any non-zero effect, the result is a strictly positive real number.
Our strict positivity assumption serves a similar purpose to that of standard requirements of
strictly positive distributions in causal inference, which guarantee that relevant conditional
probabilities are defined; here the guarantee is that scalars inverted in our identification
protocols are in fact non-zero, and more generally that effects have “convolution inverses.”

One common feature of Mat[R+] and CPM that will help with causal identification is
local process tomography.

▶ Proposition 30. The theories Mat[R+] and CPM have local process tomography: any
process f : A⊗B → C ⊗D is determined by numbers

f

A B

C D

k l

i j

(10)

where i, j, k, and l index any informationally complete sets of states or effects for the
appropriate objects.

We will often leave the interpretation functor F from the syntactic process theory G into
the semantic process theory implicit and use boldface to distinguish abstract processes in G
from their images under F , writing, e.g., x := F (x). Labels for objects/intervention loci will
be identical between the syntactic and semantic process theories, since the distinction will
already be clear from the labels for processes.

Proof of Proposition 13. The proposition can be proven with techniques from [13], via the
equivalence we have discussed between our (Mat[R+],Func•)-valued Markovian models
and the causal Bayesian networks formulated in that article. Here, however, we prove the
proposition only for one graph, so that the procedure can be compared directly with the one
in Section 7 for quantum and classical identification from generalized observation.

An unknown (Mat[R+],Func•)-valued Markovian model based on the graph G in Exam-
ple 6 is a functorial interpretation of the abstract causal structure cG in that example. Since
the common-cause subtheory is Func•, Eq. (8) applies to the common-cause maps, which
can then be absorbed into larger processes y′ and z′, resulting in a new representation for
the unknown model:

x

y

z

AX AX

⇝

x

y

zAY

Y

Z

X

X

Y

Z

(11)

Inferring the values of the processes x, y′, and z′ on the right-hand side–which one does by
inferring all their matrix entries–is equivalent to inferring the process F (cG).

J. Barrett, I. Friend, and A. Kissinger 48:19

One first computes the processes x and y′ by determining all their matrix entries. For x,
the numbers

x

y′

z′

x
=

i

i

i

are obtained via a local intervention regime consisting of perfect passive observation at locus
X and identity interventions at Y and Z. The process y′ is tomographically determined as
follows:

= y′

z′

x

y′

y′

=

y′

−1

x

=

x

−1

x

j

j

j

i i

j

i

i

i

i

i

i

j

The desired quantity has been rewritten as the product of a probability obtained via perfect
passive observation at X and Y (and identity intervention at Z) and a number obtainable
from the known value of x.

Finally, z′ is computed from probabilities obtained via a local intervention regime
consisting of perfect passive observation at all three loci, and from inverses of numbers
already determined in previous steps.

=

y′

= =z′

j i

k

z′

j i

k

i

j

x

i

−1

x

i

y′

i

j

−1

z′

j i

k

y′

i

j

x

i

−1

x

i

y′

i

j

−1

y′

z′

x

j

j

i

i

y′

i

j

−1

k

k

−1

x

i

◀

CSL 2025

48:20 Quantum and Classical Markovian Graphical Causal Models and Their Identification

Proof of Proposition 28. As in the demonstration of Prop. 13, but now for both the classical
and quantum cases, Eq. 8 and defining new unknown processes y′ and z′ lead to a
simplification of the unknown model as shown in expression (11). To identify the model, one
proceeds as before to compute the processes x and y′ by determining the probabilities given
by their composition with appropriate informationally complete sets of states and effects.

The union of the accessible set of instruments at a locus, say X, is a set of maps, indexed
by, say, ϕ. Each map ϕ is composed of an effect fX(ϕ) and a state gX(ϕ), where fX and gX

are functions associated with locus X. Marginal informational completeness of the set of
instruments means that the set {fX(ϕ)}ϕ of effects and the set {gX(ϕ)}ϕ of states are each
informationally complete for system-type X.

One determines x by learning for the informationally complete set of effects fX(ϕ) the
probability

x

y

z

gX(ϕ)

fX(ϕ)

x

fX(ϕ)

=

The right-hand diagram is a probability learned from probing with ◦-separable instruments at
locus X and identity instruments elsewhere. In contrast to the case of classical perfect passive
observation, inferring the value of x now might involve more than one local intervention
regime, so that X can be probed with multiple instruments.

Next, one proceeds to determine y′ tomographically as in the proof of Prop. 13, but in
general collating data from multiple local intervention regimes:

=
y′

z′

gX(ϕ)

x

fX(ϕ)

fY (ψ)

gY (ψ)

y′

fY (ψ)

gX(ϕ)

y′

gX(ϕ)

fY (ψ)

=

y′

gX(ϕ)

fY (ψ)

−1

x

fX(ϕ)

=

x

fX(ϕ)

−1

x

fX(ϕ)

At this point, in the case of classical perfect passive observation, the computation of
z in the proof of Prop. 13 uses the fact that the classical “copy” map literally copies the
pure states that leave a locus after a perfect observation. For quantum measurements, even
maximally informative projective measurements, and for generalized classical observation,
the state leaving the first locus is not copiable, and hence this calculation isn’t available.

J. Barrett, I. Friend, and A. Kissinger 48:21

In this general case, once one has computed the values of x and y′, one can tomographically
determine the value of the process

y′

z′

fY (ψ)

gY (ψ)

(12)

for each map ψ in a marginally informationally complete set, from the numbers

y′

z′

fY (ψ)

gY (ψ)

gX(ϕ)

x

fX(ϕ)

fZ(ω)

gZ(ω)

−1

x

fX(ϕ)

y′

z′

fY (ψ)

gY (ψ)

gX(ϕ)

fZ(ω)

=

which one can learn for informationally complete sets of states gX(ϕ) and effects fZ(ω).
Knowing also the value of y′, one can compute for each ψ the convolution inverse of

fY (ψ) ◦ y′, and compose it with the process (12) as follows:

y′

z′

fY (ψ)

gY (ψ)

y′

fY (ψ)
y′

fY (ψ)=

y′

z′

fY (ψ)

gY (ψ)

−1

−1 =

z′

gY (ψ)

= z′

gY (ψ)

One now knows the latter process for an informationally complete set of states gX(ψ), and
hence obtains the value of the process z′. The known processes x, y′, and z′ can now be
composed to form the entire data-generating process in expression (11), completing the
causal inference. ◀

CSL 2025

48:22 Quantum and Classical Markovian Graphical Causal Models and Their Identification

B Choi-Jamiołkowski isomorphism and channel convolution

The Choi-Jamiołkowski isomorphism gives a bijective correspondence between linear super-
operators E : L(HA) → L(HB) and linear maps ρE : HB ⊗ H∗

A → HB ⊗ H∗
A. The linear map

ρE , called the Choi matrix of E , can be defined explicitly in terms of a basis {|i⟩A} ⊂ HA

and its dual basis {|i⟩A∗} ⊂ H∗
A as follows:

ρE :=
∑

ij

E(|i⟩A⟨j|) ⊗ |i⟩A∗⟨j| (13)

Here we have used Dirac’s “bra-ket” notation to write operators/matrices as products of
basis vectors (“kets” |i⟩A) and their associated dual vectors (“bras” A⟨i|).

The Choi-Jamiołkowski isomorphism states that E is completely positive if and only if ρE

is positive. Now, for a quantum channel Φ : L(HA) → L(HB) ⊗ L(HC) define the following
three positive operators:

ρBC|A := ρΦ ρB|A := IHC
⊗ trHC

(ρΦ) ρC|A := IHB
⊗ trHB

(ρΦ) (14)

We can regard each of these as an operator on HB ⊗ HC ⊗ H∗
A (note that we have suppressed

“swap” maps above).
Theorem 2 in [1] implies the following, which will be used to establish Eq. 8 for autonomous

quantum channels6.

▶ Proposition 31. If Φ is an autonomous quantum channel, then it satisfies

ρBC|A = ρB|AρC|A (15)

We therefore proceed to study channels satisfying Eq. 15.

B.1 Channel convolution
Satisfying Eq. 15 will be shown equivalent to decomposing in a certain way with respect
to the following convolution operation for superoperators. For (not necessarily completely
positive) linear maps Φ1,Φ2 : L(HA) → L(HB), let Φ1 ∗ Φ2 : L(HA) → L(HB) be a new
linear map defined on basis elements |i⟩⟨j| ∈ L(HA) as follows:

Φ1 ∗ Φ2(|i⟩⟨j|) :=
∑

k

Φ1(|i⟩⟨k|)Φ2(|k⟩⟨j|)

First, we show that the Choi-Jamiołkowski isomorphism carries this operation to matrix
multiplication.

▶ Lemma 32. Let ρΦ1 , ρΦ2 , and ρΦ1∗Φ2 be the Choi matrices of the super-operators Φ1,Φ2,

and Φ1 ∗ Φ2, respectively. Then ρΦ1ρΦ2 = ρΦ1∗Φ2 .

Proof. Unroll (13) and simplify. ◀

Although the convolution of an arbitrary pair of completely positive maps need not be
completely positive, the convolution of a pair of completely positive maps that commute
under convolution is completely positive:

6 Theorem 2 in [1] is used in that article to motivate a definition of quantum Markovianity based on
the idea that directed edges in a graph should indicate signaling relations between input and output
systems of a unitary quantum channel.

J. Barrett, I. Friend, and A. Kissinger 48:23

▶ Corollary 33. For completely positive maps Φ1,Φ2 : L(HA) → L(HB), the super-operator
Φ1 ∗ Φ2 is completely positive if and only if Φ1 ∗ Φ2 = Φ2 ∗ Φ1.

Proof. Suppose Φ1 ∗ Φ2 = Φ2 ∗ Φ1. Then, using Theorem 32, we have: ρΦ1ρΦ2 = ρΦ1∗Φ2 =
ρΦ2∗Φ1 = ρΦ2ρΦ1 . So ρΦ1∗Φ2 is the product of commuting positive operators ρΦ1 and ρΦ2 ,
and hence positive itself. Therefore Φ1 ∗ Φ2 is completely positive. Conversely, if Φ1 ∗ Φ2 is
completely positive then ρΦ1∗Φ2 is positive. Hence, by Theorem 32, ρΦ1ρΦ2 is also positive,
which is only possible if the positive operators ρΦ1 and ρΦ2 commute. This in turn implies
that ρΦ1∗Φ2 = ρΦ2∗Φ1 . By an inverse application of the Choi-Jamiołkowski isomorphism, we
conclude that Φ1 ∗ Φ2 = Φ2 ∗ Φ1. ◀

Now, we can get a fully channel-based version of Eq. 15. For Hilbert spaces HA,HB , we
define the (un-normalized) depolarizing channel as follows for all states ρ ∈ L(HA):

dA,B(ρ) = tr(ρ)IHB

This channel is equivalent to the identity operator under the Choi-Jamiołkowski isomorphism,
so it behaves as a unit for channel convolution.

For a channel ΦBC|A := Φ, we define the reduced channels ΦB|A and ΦC|A simply by
applying d to the appropriate output:

ΦB|A := (1HB
⊗ dHC

) ◦ Φ ΦC|A = (dHB
⊗ 1HC

) ◦ Φ

One can straightforwardly check that the Choi matrices of these channels are the reduced
states in (14). From that fact and Lemma 32, we can immediately conclude:

▶ Lemma 34. A channel Φ : L(HA) → L(HB) ⊗L(HC) has Choi matrices satisfying Eq. 15
if and only if ΦBC|A = ΦB|A ∗ ΦC|A.

▶ Definition 35. The convolution inverse of a completely positive map Φ is a linear map
Φ(−1) satisfying Φ ∗ Φ(−1) = Φ(−1) ∗ Φ = dA,B.

A completely positive map has a convolution inverse if and only if its associated Choi
matrix ρΦ is invertible; in that case, the convolution inverse is the linear map defined by the
usual matrix inverse ρ−1

Φ under the Choi-Jamiołkowski isomorphism. For classical positive
matrices, we can define the convolution inverse similarly, and it is given concretely by the
positive matrix whose elements are (M (−1))i,j := 1/Mi,j .

From the graphical rules for convolution in Section 6, we can derive the condition for a
quantum map to satisfy Eq. 8:

▶ Proposition 36. The Choi matrix of channel Φ : L(HA) → L(HB) ⊗ L(HC) factors
according to Eq. 15 if and only if

B

A

Φ

C

= ΦΦ

Proof. Writing Φ as ΦBC|A, we apply Lemma 34, then simplify:

ΦB|A ∗ ΦC|A ΦB|A ΦC|A:=

A

B CB

=

A

ΦBC|A

C

ΦBC|A

:=

ΦBC|A

= ΦBC|AΦBC|A

◀

CSL 2025

Minimality in Finite-Dimensional ZW-Calculi
Marc de Visme #

Université Paris-Saclay, Inria, CNRS, ENS Paris-Saclay,
Laboratoire Méthodes Formelles, 91190, Gif-sur-Yvette, France

Renaud Vilmart #

Université Paris-Saclay, Inria, CNRS, ENS Paris-Saclay,
Laboratoire Méthodes Formelles, 91190, Gif-sur-Yvette, France

Abstract
The ZW-calculus is a graphical language capable of representing 2-dimensional quantum systems
(qubit) through its diagrams, and manipulating them through its equational theory. We extend the
formalism to accommodate finite dimensional Hilbert spaces beyond qubit systems.

First we define a qudit version of the language, where all systems have the same arbitrary
finite dimension d, and show that the provided equational theory is both complete – i.e. semantical
equivalence is entirely captured by the equations – and minimal – i.e. none of the equations are
consequences of the others. We then extend the graphical language further to allow for mixed-
dimensional systems. We again show the completeness and minimality of the provided equational
theory.

2012 ACM Subject Classification Theory of computation → Quantum computation theory; Theory
of computation → Equational logic and rewriting; Theory of computation → Semantics and reasoning

Keywords and phrases Quantum Computing, Categorical Quantum Mechanics, ZW-calculus, Qudits,
Finite Dimensional Hilbert Spaces, Completeness, Minimality

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.49

Related Version Full version with proofs: https://arxiv.org/abs/2401.16225

Funding This work is supported by the PEPR integrated project EPiQ ANR-22-PETQ-0007 part of
Plan France 2030, by the projects ANR-22-PNCQ-0002 and ANR-22-CE47-0012.

Acknowledgements The authors would like to thank Antoine Guilmin-Crépon for discussions about
the minimality of the present equational theories. The diagrams of the present paper were drawn
using the TikZit tool [33].

1 Introduction

Graphical languages for quantum computations are a product of the categorical quantum
mechanics program [1,15] devoted to studying the foundations of quantum mechanics through
the prism of category theory. These graphical languages come in different flavours, depending
on which generators are used to build the diagrams (graphical representations of the quantum
operators), and critically, displaying different kinds of interactions between said generators.
The ZX-calculus describes the interaction between two complementary bases [13], the ZW-
calculus, the interaction between the two “spiders” derived from the “GHZ” and “W” states,
the only two fully entangled tripartite states up to SLOCC-equivalence [14], and the ZH-
calculus the interaction between the same GHZ-state inferred spider and a spider obtained
by generalising the Hadamard gate [3].

The equations that describe these interactions form “equational theories” that define
syntactic equivalence classes of diagrams, that are also semantically equivalent. When the
syntactic equivalence matches perfectly the semantic one (i.e. when two diagrams represent the
same quantum operator iff they can be turned into one another), we say that the equational

© Marc de Visme and Renaud Vilmart;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 49; pp. 49:1–49:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marc.de-visme@inria.fr
https://orcid.org/0009-0004-7227-7540
mailto:renaud.vilmart@inria.fr
https://orcid.org/0000-0002-8828-4671
https://doi.org/10.4230/LIPIcs.CSL.2025.49
https://arxiv.org/abs/2401.16225
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Minimality in Finite-Dimensional ZW-Calculi

theory is complete. Complete equational theories have been found for the aforementioned
graphical languages, betimes for restrictions of them [2,4, 10,11,24,26,29,31,47].

As is customary for the computer science part of the quantum computation community,
the focus was largely set onto qubit systems, i.e. systems where the base quantum system
is 2-dimensional, yet this is enough to get applications in optimisation [5, 34], quantum
error correction [18, 28, 46], verification [22, 27], simulation [35–37]... However, physics allows
for qudit systems (where the base quantum system is d-dimensional with d > 2) and even
infinite dimensional systems. Several attempts have hence been made to go beyond the qubit
case [7, 25, 48], but it was only recently that a complete equational theory was found for
d-dimensional (i.e. qudit) systems [42] and later for finite dimensional systems (so-called
“qufinite”, i.e. for the category FdHilb) [50]. The results were obtained by generalising both
the ZX and the ZW calculi and mixing them together. The W-node in particular allows
for a neat intuitive (and unique) normal form for the diagrams. Satisfying the necessary
conditions for every diagram to be normalisable then yields a complete equational theory.
However, we believe that the ones obtained in [42, 50] are far from being minimal, due in
particular to the presence of the generators from both the ZX and the ZW calculi.

From a foundational perspective, it can be enlightening to know if an equation is a defining
property of quantum systems (and hence necessary), or on the contrary if it is derivable from
more fundamental properties (see e.g. [16,21]). The redundancy in the equational theory may
also cause issues when trying to explore the space of equivalent diagrams, or to transport the
completeness result to other diagrammatic languages for qudit systems (every equation has
to be proven in the new language, hence the fewer the better); or when trying to generalise
further, e.g. to the FdHilb setting.

We argue here that the ZW-calculus is enough to get a natural normal form (akin to
that of [42]) even in the qudit version, and provide an elegant equational theory that we
show to be complete, resorting to the normal form instead of transporting the completeness
result from [42], for the reason described above. We also show that the equational theory is
minimal, meaning that none of the equations can be derived from the others, hence avoiding
the aforementioned redundancy in the presentation.

We then adapt diagrams and the equational theory of the graphical language to accom-
modate all finite dimensional Hilbert spaces (FdHilb), in a way that requires no additional
generator and only one new equation. Here again we prove the completeness and the
minimality of the equational theory, by leveraging that of the qudit setting.

The paper is split into two parts, Section 2 and Section 3, devoted respectively to the
Quditd version, and to the FdHilb version. In the Quditd version, diagrams and their
interpretation are introduced in Section 2.1 and the equational theory is introduced and
discussed in Section 2.2. We then show its minimality in Section 2.3 and its completeness
in Section 2.4. In the FdHilb version, diagrams and their interpretation are introduced in
Section 3.1, and the equational theory is introduced and shown to be complete in Section 3.2.
All missing proofs are provided in the full version.

The Dirac Notation
All the upcoming diagrams can be given an interpretation as a linear map, in the appropriate
category. In quantum information, it is usual to express such linear maps using the so-called
Dirac notation. The current section hence serves as a gentle introduction to this notation.

Let d ≥ 2. In the d-dimensional Hilbert space Cd, the canonical basis{ (
1 0 · · · 0

)⊺
,

(
0 1 · · · 0

)⊺
, . . . ,

(
0 0 · · · 1

)⊺ }

M. de Visme and R. Vilmart 49:3

is usually denoted {|0⟩ , |1⟩ , ..., |d− 1⟩} (with (.)⊺ being the transpose). All 1-qudit systems
have states that live in Cd and that can hence be represented by linear combinations of the
elements of this basis: |ψ⟩ = a0 |0⟩ + a1 |1⟩ + ...+ ad−1 |d− 1⟩ (notice that the “ket” notation
|.⟩ is used for states in general, not only basis elements).

To combine systems, we use the tensor product (Kronecker product): (. ⊗ .) which is
a fairly standard operation on linear maps. In particular, the overall state obtained by
composing two 1-qudit systems in respective states |ψ⟩ and |φ⟩ is simply |ψ⟩ ⊗ |φ⟩. Notice
that {|i⟩ ⊗ |j⟩}0≤i<d,0≤j<d′ forms a basis of Cd ⊗ Cd′ ≃ Cd×d′ . It is customary to write
|ψ,φ⟩ to abbreviate |ψ⟩ ⊗ |φ⟩.

The “bra” notation ⟨.| is used to represent the dagger (the conjugate transpose) of a
state, i.e. ⟨ψ| = |ψ⟩† = |ψ⟩

⊺
. The choice of the “bra-ket” notation is such that composing

a bra with ket forms the bracket, the usual inner product in Cd: ⟨ψ| ◦ |φ⟩ = ⟨ψ|φ⟩. Linear
combinations of “ket-bras” |i⟩ ⟨j| of the canonical basis can be used to represent any linear

map of the correct dimensions, e.g. the 1-qudit identity: id =
d−1∑
k=0

|k⟩⟨k|.

2 ZW-Calculus for Qudit Systems

In this section, we introduce a graphical language for quantum systems that all have the
same fixed dimension d (d ≥ 2): qudit systems.

2.1 Diagrams of ZWd and their Interpretation

First, we need to introduce the mathematical objects at the heart of the graphical language –
the diagrams – and what they represent.

As is traditional for graphical languages for finite-dimensional quantum systems, we work
with a †-compact prop [38,45,51]. Categorically speaking, this is a symmetric, compact closed
monoidal category generated by a single object, endowed with a contravariant endofunctor
that behaves well with the symmetry and the compact structure. The following explains
some of these concepts in more detail.

Let us denote ZWd the †-compact prop generated by:

the Z-spiders r

n...

...
m

: n → m, for r ∈ C
and n,m ≥ 0

the state |1⟩ 1 : 0 → 1

the W-nodes
...
n

: 1 → n, for n ≥ 0

the global scalars r : 0 → 0, for r ∈ C

the swap : 2 → 2 representing the symmetry of the prop

the cup : 2 → 0 and cap : 0 → 2 representing the compact structure

and the identity : 1 → 1.

All these generators can be composed sequentially and in parallel, as follows:

...

...
D1

...
D2

:=
...

...
D2 ◦

...

...
D1 and

...

...
D1

...

...
D2 :=

...

...
D1 ⊗

...

...
D2

CSL 2025

49:4 Minimality in Finite-Dimensional ZW-Calculi

The symmetry and the compact structure satisfy the following identities:

=
...
...D

= ...
...
D = = =

This compact structure in particular allows us to define the “upside-down” version of the

generators, for instance:
...

:= and
1

:= 1

The † functor is defined inductively as:

(D2 ◦D1)† = D†
1 ◦D†

2
(D1 ⊗D2)† = D†

1 ⊗D†
2

(r)† = r̄

 r

n...

...
m

†

= r

m...

...
n

with the other generat-
ors being mapped to their
upside-down version.

Notice that thank to the identities satisfied by the †-compact prop, the †-functor is involutive.
As will be made clearer in what follows, in ZWd, d ≥ 2 represents the dimension of the

“base” quantum system, called qudit. As this d will be fixed in the following, we may forget
to specify it. For convenience, we define an empty white node as a parameter-1 Z-spider:...

... := 1
...
... and give the 0 → 1 W-node a special symbol, akin to that of |1⟩ (as its

interpretation, as we will see later, is merely |0⟩): := . We generalise the ket symbol

inductively as follows (for 2 ≤ k < d):
k+1

:=
1 k

. These last symbols can be given
an upside-down definition using the compact structure as was done for |1⟩ and the W-node.

2.1.1 The Interpretation
The point of the diagrams of the ZWd is to represent quantum operators on multipartite
d-dimensional systems. The way those are usually specified is thanks to the category Quditd.
This forms again a symmetric †-compact prop, where the base object is 1 := Cd, and
morphisms n → m are linear maps Cdn → Cdm . The symmetry and the compact structure
correspond to their counterparts in ZWd, they will be stated out in the following, as part of
the interpretation of ZWd diagrams. The † functor is the usual † of linear maps over C.

We may hence interpret diagrams of the ZWd-calculus thanks to the functor J.K : ZWd →
Quditd inductively defined as follows:

JD2 ◦D1K = JD2K ◦ JD1K

JD1 ⊗D2K = JD1K ⊗ JD2K
r z

=
∑

k

|k⟩⟨k|

r z
=

∑
k,ℓ

|ℓ, k⟩⟨k, ℓ|

q y
=

q y† =
∑

k

|k, k⟩

u

v r

n...

...
m

}

~ =
d−1∑
k=0

rk
√
k!

n+m−2
|km⟩⟨kn|

t

...
n

|

=
∑

k∈{0,...,d−1}
i1+...+in=k

√(
k

i1, ..., in

)
|i1, ..., in⟩⟨k|

r
1

z
= |1⟩

JrK = r

where
(

k

i1, ..., in

)
= k!

i1!...in! is a multinomial coefficient. Notice that the interpretation

of the 0 → 1 W-node is simply:
r z

=
∑

k∈{0,...,d−1}
0=k

√(
k
0
)

|k⟩ = |0⟩, and that of the black

node symbol k for k < d is |k⟩ up to renormalisation:
s

k
{

=
√(

k
1,...,1

)
|k⟩ =

√
k! |k⟩. The

M. de Visme and R. Vilmart 49:5

presence of
√

· · · on the coefficients is not particularly relevant, and is simply an artefact
of us maintaining some symmetry between generators and their dagger. Indeed, we wants

k

k

{
= k!, and for that the coefficient k! needs to be split between both nodes, resulting in

either an asymmetric presentation or a square root (see Section A for an equivalent semantics,
without any

√
· · · but asymmetric instead).

Notice also that the interpretation of the Z-spider differs from more usual generalisations
of its qubit counterpart, because of the

√
k!n+m−2 which depends on the degree of the spider.

While it makes the interpretation of the diagrams slightly more complicated, it allows us – as
will be stated later – to quite conveniently generalise equations from the qubit ZW-calculus,
and hence have a simpler equational theory. It will be shown in the following (Corollary 10),
that the above set of generators makes for a universal calculus, i.e. any linear map of Quditd

can be represented by a ZWd-diagram.
To gain intuition about the upcoming equations between diagrams, it can be useful to

semantically decompose a diagram into sums of simpler ones1. To do so, it can be convenient
to understand |k⟩ as a bunch of k indistinguishable particles:

u

v
...

k
}

~ =
∑

i1+...+in=k

(
k

i1, ..., in

) s
i1 in...

{
(1)

t
k ℓ

|

=

s

k + ℓ

{
if k + ℓ < d

0⃗ if k + ℓ ≥ d

(2)

u

v
k

r
...
n

}

~ = rk

s
k k...

n

{
(3)

s
k

ℓ

{
= k! ⟨k|ℓ⟩ (4)

r z
=

d−1∑
k=0

1
k!

s
k

k

{
(5)

Equation (1) explains how the W-node spreads the k “particles” that enter it following a
multinomial distribution. Equation (2) shows that the 2 → 1 W-node takes two bunches of
particles k and ℓ and regroups them into one, and yields the null state if k + ℓ exceeds the
“capacity” (i.e. the dimension) of a single wire. This will be proven graphically (Lemma 30)
from the upcoming equational theory (Figure 1). When k + ℓ < d, the fact that there is no
additional scalar is due to the rescaling of the k-dots to represent

√
k! |k⟩. This rescaling also

makes the “copy” more natural: The Z-spider 1 → n copies any bunch of k particles entering
it, yielding global scalar rk in the process, as is shown by Equation (3). This will again be
proven graphically (Lemma 27) from the equational theory. The rescaling, however, forces
Equation (4). Finally, it can be useful to decompose the identity as a linear combination of
products of kets and bras as is done in Equation (5).

2.2 Equational Theory

With the above interpretation of the ZWd, different diagrams may yield the same linear map.
All axioms of symmetric †-compact props in particular preserve the interpretation. More
generally, we may want to relate together all diagrams that have the same semantics. This
is done through an equational theory, i.e. a set of equations that can be applied locally in a
diagram without changing the semantics of the whole.

1 Notice that here, such decompositions are merely semantical. The upcoming completeness is only
interested in equivalence between single diagrams.

CSL 2025

49:6 Minimality in Finite-Dimensional ZW-Calculi

2.2.1 Equations of the ZWd-Calculus
On top of the axioms of symmetric †-compact props, we assume some conventional equations
about the topology of the generators, which should align with the symmetries of the symbols
used to depict them. The Z-spider does not distinguish between any of its connections: it is
“flexsymmetric” [9], meaning that we can interchange any of its legs without changing the

semantics. Graphically, for any permutation of wires σ:
r

...

...
σ

...

... ...
=

r

... On the

other hand, the binary W -node is only co-commutative, which, together with the upcoming
Equation (a), means that all the outputs of the n-ary W-node can be exchanged, i.e. for any

permutation of wires σ: ...
σ
...

=
...

. With all this in place, we can give the core of the

equational theory, in Figure 1. When diagram D1 can be turned into diagram D2 using the
rules of ZWd, we write ZWd ⊢ D1 = D2.

r
s

...

... ...

...
=
(s)

...

...
rs

...

...
=
(a)

=
(id)

...
d =

(h) 0

...
m

r

n...
n̸=0=
(b1) r r...

m

n...

...

...

=
(b2)

...

...

r s

=
(+)

r+s k =
(e)

1

r

...
=

(cp)
r ·

1 1...
1

=
(ℓ)

1

=
(u)

1
(d−1)! ·

d-1

Figure 1 Equational theory ZWd for the qudit ZW-calculus.

▶ Remark 1. In this framework, we can tensor global scalars together r⊗ s, which graphically
could be confused with their product rs. This is actually unambiguous in the equational
theory, as, using Equation (cp):

ZWd ⊢ r ⊗ s =
(cp)

r ·
1

s
=

(cp)

1

s

r =
(s)

1

rs
=

(cp)
rs

Moreover, using Equation (e), one can easily show that global scalar 1 is the empty diagram
(Lemma 21). Scalar multiplication is assumed to be automatically applied, and scalar 1 is
assumed to be automatically removed in the following after Lemma 21 is proven.

All rules up to (e) are fairly standard generalisations of rules of the qubit ZW-calculus
(with (b2) being inspired from [42] to avoid using a fermionic swap2). The non-conventional

2 The fermionic swap, introduced in [24], is a generator that in many situations behave like the actual
swap. The qubit version of ZW uses the fermionic swap, but this generator loses many properties (for
instance its involution, or the fact that it maps |k, ℓ⟩ to |ℓ, k⟩ up to some coefficient) when going in
larger dimensions. By not using it here, we avoid having to axiomatise it.

M. de Visme and R. Vilmart 49:7

√
k

n+m−2 coefficients in the interpretation of the Z-spider seem to be necessary for Equations
(s), (b1) and (+) to all work. Notice that this makes the Z-spider non-special, meaning

that: ̸= . Equation (ℓ) however gives a context in which that inequality becomes an

equality. Finally, Equation (u) shows how a 0 → 1 Z-spider can be obtained by distributing
d− 1 “particles” over two paths, and erasing (or post-selecting) adequately one of the two
paths.
▶ Remark 2. Thanks to the compact structure and its interaction with the generators of
the language, all upside-down version of the equations of Figure 1 are derivable, by simply
deforming the diagrams to get the actual axiom. For instance, the upside-down version of
(+) can be derived as follows:

ZWd ⊢
r s

= r s = r s =
(+) r+s

= r+s

▶ Proposition 3. All equations in ZWd are sound, i.e.:

ZWd ⊢ D1 = D2 =⇒ JD1K = JD2K

Proof. This is a straightforward verification for most of the equations. They can all be proven
using the aforementioned identities (Equations 1 to 5) in the semantics of the diagrams,
especially the decomposition of the identity (Equation 5). Equations (b2) and (+) require
respectively the Vandermonde identity and the binomial formula:∑

k1+...+kp=m

(
n1

k1

)
...

(
np

kp

)
=

(
n1 + ...+ np

m

)
and (r + s)n =

n∑
k=0

(
n

k

)
rksn−k. ◀

2.3 Minimality
Minimality of an equational theory states that every single equation is necessary: none can
be derived from the others. Said otherwise, as soon as we remove one of the equations, some
equalities (that were previously provable) become unprovable. Minimality is fundamental, as
it allows us to pinpoint properties that are necessary to our model, and a contrario those
that are consequences of the necessary ones. Notice however that there is usually not a single
minimal equational theory, for two reasons: 1) it often happens that one equation can be
replaced by an equivalent one, and 2) one could start with a totally different set of equations.
Most of the equations we chose are generalisations or adapatations of equations that were
already used by other graphical languages, and are usually motivated by either categorical
or physical considerations. We only “filled in the blanks” with equations (ℓ) and (u).

In trying to prove minimality, it often happens that two equations fail to be proven
necessary individually, but that the pair (i.e. at least one of the two) can be proven necessary.
Such cases underline some sort of proximity between the two equations, and the obstacle it
poses to minimality can sometimes be circumvented (somewhat artificially) by merging them
into a single, potentially slightly less intuitive, equation. This happened once here: we merged

equations ...
d = and

0
= , that we initially had as axioms, into Equation (h). This

finally provides us with a minimal equational theory for qudit ZW-calculus.
To prove that an equation is necessary, we define a non-standard interpretation which

is preserved by all the equations (including the axioms of †-compact props), except the

CSL 2025

49:8 Minimality in Finite-Dimensional ZW-Calculi

equation of interest. When such an interpretation is exhibited, we can safely conclude
that the equation is necessary, since if it were a consequence of the others, it would also
preserve this interpretation. Interpretations like these sometimes simply take the form of a
quantity that turns out to be invariant for all equations except the one that is considered.
In the realm of quantum graphical theories, such arguments were used for single equations
in [23, 30, 32, 39, 44], partial minimality results were obtained for Clifford ZX-calculus [6],
unrestricted ZX-calculus [47], and quite recently, full minimality (with completeness) was
obtained for quantum circuits [12].

In the following, we show that the equational theory ZWd from Figure 1 is minimal,
i.e. that none of the equations can be derived from the others. It is to be noted that most of
the equations in Figure 1 are schemas, that is they are parametrised, and the equation is
assumed for all possible values of the parameters. Our minimality result is “weak” in the
sense that for each equation schema, we show that at least one of the occurrences cannot be
derived from the other equations, but we do not pinpoint for which parameters the equation
is necessary or not. Nevertheless:

▶ Theorem 4. All equations in ZWd are necessary, hence ZWd is minimal.

Several arguments in the proof are graphical, meaning that they rely on the understanding
that a diagram can also be seen as a special kind of graph with vertices (inputs, outputs,
Z-spiders, W-nodes, states, global scalars) and edges (wires, cup, cap, with swaps representing
crossings). As such, when we talk about “a W-node in a diagram D”, we actually refer to
a vertex (of the Z type) of said diagram. One argument in the proof require the notion
of “effective Z-path”, that is a path that goes only through Z-spiders and trivial W-nodes –
which W-nodes that could be replaced by identity wires without it making any difference –
and that can be used in non-trivial computations.

▶ Definition 5 (Sole effective output of a W-node). Let D be a diagram with a collections of n
distinguished W -node. Let’s call “a1”,. . . ,“an” one output of each, as shown in Equation (6)
below. We say that wires “a1”,. . . ,“an” are jointly the sole effective outputs of the W-nodes
if Equation (8) is satisfied:

...

...
D = ...D′

...

...

a1 ... an

...
(6)

u

wwwww
v ...

D′

...

...
a1

...

...
an

...

...

}

�����
~

=

u

wwwww
v ...

D′

...

...

a1

...

...
an

...

...

...

...

}

�����
~

(7)

In particular, if we only consider one W-node that has a sole effective output – we call such
a node a trivial W-node – it follows that:

u

www
v ...D′

...

...

a

}

���
~

=

u

www
v ...D′

...

...

a

}

���
~

(8)

M. de Visme and R. Vilmart 49:9

▶ Definition 6 (Effective Z-path). An effective Z-path of a diagram D is a path going from a
boundary to another (inputs and/or outputs), such that:

For each W-node it goes through, it cannot use two outputs of the W-node (so it must use
its input). Considering all those W-nodes at once, those outputs must be jointly the sole
effective outputs of those W-nodes.
There exists a state |ϕ⟩ that is not of the form λ |0⟩ or λ |1⟩ for some λ ∈ C, that inhabits
the path. That is, if we feed to JDK the state |ϕ⟩ and/or the effect ⟨ϕ| to the two inputs
and/or outputs of the path, then the result is not 0⃗.

We can now prove Theorem 4:

Proof. We consider each of these equations individually, and give more details in the full
version:
(s) When applying the transformation that turns all Z-spider parameters and global scalars

to their real part (r 7→ Re(r)), Equation (s) is the only one that is not preserved.
(a) It is the only equation permitting to create non-trivial W-nodes with arity > d from a

diagram that only has non-trivial W-nodes with arity ≤ d.
(id) It is the only equation that can create nodes connected to boundaries from a node-free

diagram.
(h) To each wire in a diagram D, we associate a number 0 ≤ k < d (or more graphically we

annotate each wire by some number k)3. The procedure to do so is as follows:
1. annotate all wires with d− 1
2. rewrite the annotations using the following rules, until a fixed point is reached:

a
a ̸=0→ 0

1
a

a>1→
1

1
...

a

b1 bn

→
...

min(a,
∑

bi)

min(a, b1) min(a, bn)

a0 ak

ak+1 aq

r

...

...
→

a a

a a
r

...

...
with a := min(ai)

This simple procedure obviously terminates, as a step is only applied if at least one of the
annotations is decreased. By considering inputs and outputs of D (which are the only
wires that can be guaranteed to remain during rewrites with ZWd), we can check that
Equation (h) is the only one that can modify the outcome of the procedure.

(b1) Consider diagrams as graphs, and use the above definition of an “effective Z-path”. All
equations except (b1) preserve the existence of effective Z-paths, although proving it for
(b2) is quite involved and relies on the following lemma:

▶ Lemma 7.
Let D be a diagram of the form shown in Equation (9), such that we have Equation (10).

...

...
D = ... D′

...

...

...
...

...
...

...

...

(9)

3 The annotations produced here are upper bounds on the value of the kets that can go through the wires.
As such, they are very closely related to the capacities from Section 3.

CSL 2025

49:10 Minimality in Finite-Dimensional ZW-Calculi

t ...

...
D

|

=

u

wwwwwww
v

... D′

...

...

...
...

...
...

...

... }

�������
~

=

u

wwwwwww
v

...

... D′

...

...

...
...

...
...

... }

�������
~

(10)

Then Equation (11) is satisfied:
u

wwwww
v

D′

...

...

...

...

...

... }

�����
~

=

u

wwwww
v

D′

...

...

...

...

...

... }

�����
~

(11)

(b2) Consider diagrams as graphs, and define a “W-path” in the diagram as a path 1) that
goes from a boundary to another boundary, 2) which cannot use two outputs of a W-node
(if it goes through a W-node, it has to use the input edge) and 3) that does not go through
a Z-spider. All equations, except (b2), preserve the existence of a W-path. (b2) is the
only equation that can bring the number of W-paths from non-zero to zero (which is
done by adding a Z-spider on the path).

(+) Take the interpretation that maps all the Z-spider parameters (and the global scalars)
to their absolute value (r 7→ |r|). This interpretation preserves all equations except (+).

(e) It is the only equation that can create generators out of empty diagrams.
(cp) It is the only equation that can create a non-real scalar from a diagram with only real

scalars.
(ℓ) Let ϖ := ei π

d−1 be the first (2d− 2)-th root of unity. Consider the †-compact monoidal
functor (i.e. functor that preserves compositions, symmetry and compact structure) that
maps the generators as follows:

1 7→ ϖ 1 r

n...

...
m

7→ rϖn+m−2

n...

...
m

...
n

7→
...
n

When d > 2, all equations but (ℓ) are preserved by this functor. We can make the
argument work when d = 2 by choosing any ϖ such that ϖ2 ̸= 1 and by working up to a
scalar factor.

(u) Take the interpretation that maps 1 (and subsequently all
k

) to . All rules hold
(up to a the scalar factor) except (u). ◀

2.4 Completeness

Completeness of an equational theory with respect to a semantics is the fundamental property
that ensures that semantical equivalence of diagrams is entirely captured by the equational
theory. Minimality is worthless without some form of completeness, as it is extremely
simple to design minimal, but not complete, equational theories. For instance, the empty
equational theory (that contains no axiom) is minimal but clearly not complete for the qudit
ZW-diagrams. We hence show in this section that we indeed have completeness.

M. de Visme and R. Vilmart 49:11

2.4.1 Normal Form and Universality
The usual way to prove completeness is to show that any diagram can be put in a normal form,
and that this normal form is unique and similar for all equivalent diagrams. As is customary
in a category that is compact-closed, we can focus on states, as there is an isomorphism
between operators and states [1]:

...

...
D =

...
D ...

... =:
...
⌜D⌝

...

Proving completeness requires a fair amount of diagrammatic derivations, especially when
starting from a minimal equational theory, to get enough material to define a normalisation
strategy.

▶ Definition 8. We define N : Quditd → ZWd as the functor that maps any n-qudit state

|ψ⟩ = r0 |0...0⟩ + r1 |0...01⟩ + ...+ ri

∣∣xi
1...x

i
n

〉
+ ...

to the diagram below. We say of any diagram in the image of N that it is in normal form.

N (|ψ⟩) =

1

r0 r1
ri√

xi
1!...xi

n
!

...
x i
1

... ...
...
xi

n

...

This construction is a direct generalisation of the normal form of the qubit ZW-diagrams [24],
which is also considered in [25] in the context of q-arithmetic. It creates a diagram whose
interpretation is the starting state:

▶ Proposition 9. ∀ |ψ⟩ ∈ Quditd[0, n], JN (|ψ⟩)K = |ψ⟩.

Where for any category C, we write C[n,m] for the set all the morphisms from n to m.
As a simple consequence of this proposition, any qudit operator can be represented by a
diagram of ZWd:

▶ Corollary 10 (Universality). ∀f ∈ Quditd[n,m], ∃Df ∈ ZWd[n,m], JDf K = f .

Since we defined the normal form as the image of a map from the semantics, any diagram
can only be associated to a unique normal form.

2.4.2 Completeness
Our goal now is to show that any diagram can be put in normal form. To do so, we show
that all generators can be put in normal form, and that all compositions of diagrams in
normal form can be put in normal form.

We start by showing the latter for the tensor product:

▶ Proposition 11. The spatial composition of diagrams in normal form can be put in normal
form, i.e. ZWd ⊢ N (v1) ⊗ N (v2) = N (v1 ⊗ v2).

When turning arbitrary operators into states, the sequential composition turns into the
application of cups onto pairs of outputs of the state, as:

...

...
D1

...
D2

= ...
⌜D2⌝

...
⌜D1⌝ =

Prop. 11
...

⌜D2⌝⊗ ⌜D1⌝

CSL 2025

49:12 Minimality in Finite-Dimensional ZW-Calculi

▶ Proposition 12. The diagram obtained by applying a cup to two outputs of a diagram
in normal form can be put in normal form.

Then we move on to showing that all the generators can be put in normal form. To do
so, the following lemma will prove useful:

▶ Lemma 13. The diagram obtained by applying to two outputs of a normal form can
be put in normal form.

▶ Proposition 14. All generators of the ZWd-calculus can be put in normal form.

Putting all the latter results together, we can show the completeness of the language:

▶ Theorem 15 (Completeness for Qudit Systems). The language is complete: for any two
diagrams D1 and D2 of the ZWd-calculus:

JD1K = JD2K ⇐⇒ ZWd ⊢ D1 = D2

Proof. By Proposition 14, any generator of the language can be put in normal form. Thanks
to Propositions 11 and 12, compositions of diagrams in normal form can be put in normal
form. As a consequence, any diagram can be put in normal form. By uniqueness of this
normal form, if two diagrams share the same semantics, they can be rewritten into the same
diagram. This proves completeness. ◀

3 Finite Dimensional Hilbert Spaces

In the previous setting, all systems are required to be d-dimensional for some fixed d. Here we
relax that constraint, which allows us to go “mixed-dimensional” and to represent morphisms
of FdHilb4.

FdHilb is the strict symmetric monoidal †-compact category of finite dimensional Hilbert
spaces [1]. Its objects are tensor products of finite dimensional Hilbert spaces Cd(d ∈ N\{0}),
and its morphisms are linear maps between them. The symmetry and the compact structure
are naturally extended from that of Quditd.

In this new setting, we will be able to represent all morphisms of FdHilb, at the cost
of annotating the wires of the diagrams to keep track of their dimensions. Instead of the
dimension itself, we rather annotate the wire with its dimension −1, i.e. with the largest k
such that |k⟩ is allowed on the wire. We call such k the capacity of the wire. This makes the
bookkeeping a little bit less tedious.

3.1 Diagrams and Interpretation
We also require the following constraints for the capacities around each generator:

All capacities around a Z-spider are the same
The input capacity of the W-node must be larger than (or equal to) each of its outputs

The first constraint follows from the fact that Z-spiders in ZW can be seen as a generalisation
of graph edges – more precisely they can be seen as hyperedges. Hence the whole hyperedge
should have a single capacity. The second constraint simply comes from the fact that a
larger capacity on the outputs of a W-node will never be used, so we might as well prevent

4 Technically, the skeleton of FdHilb, i.e. where all d-dimensional Hilbert spaces are identified with the
canonical representative Cd. We take the liberty in this paper to name FdHilb this skeleton.

M. de Visme and R. Vilmart 49:13

it. When considering 1 → 1 W-nodes, which represent projections, this restriction allows us
to see at a glance which side has the largest dimension.

The first restriction further allows us to put the capacity annotation on the Z-spider
rather than on all its legs, making annotating diagrams less cumbersome.

We now work with a †-compact symmetric monoidal category, which is not a prop
anymore. Our base objects are Cd for d ∈ N \ {0}. Every pair of objects can be composed
with ⊗ to form a third object, with ⊗ being associative, and with the tensor unit I being
I := C1. We work with a strict monoidal category, so we consider I ⊗ Cd = Cd = Cd ⊗ I.
To simplify notations, we represent objects Cd1 ⊗ Cd2 ⊗ ... ⊗ Cdn by a list of capacities
Ld1 − 1, d2 − 1, ..., dn − 1M (the tensor product simply becomes the concatenation of lists).
The tensor unit is represented by LM. Since L0M = LM, we forbid 0 capacities on the wires.

In this new setting, the generators are generalised as follows:

Z-spiders a r

n...

...
m

: L
n︷ ︸︸ ︷

a, ..., aM → L
m︷ ︸︸ ︷

a, ..., aM with r ∈ C and a ≥ 1

W-nodes ...
bn

a

b1

: LaM → Lb1, ..., bnM with a ≥ max
1≤i≤n

(bi) and bi ≥ 1

state |1⟩
1

a : LM → LaM with a ≥ 1

global scalars r : LM → LM with r ∈ C

with the symmetry and the compact structure being generalised to
ba

: La, bM → Lb, aM
a

: LM → La, aM and
a

: La, aM → LM,

(again with a, b ≥ 1) and the identity to a : LaM → LaM (a ≥ 1).

Diagrams can still be composed together both sequentially and in parallel. The sequential
composition prevents us from composing diagrams with unmatched objects (e.g. two Z-spiders
with different capacities in sequence). Diagrams with capacities are called ZWf -diagrams,
and are graphical representations of the morphisms of the †-compact symmetric monoidal
category FdHilb (the dagger functor can be given in ZWf in a similar way as ZWd).

The compact structure still allows us to define upside-down versions of the W-node and the
kets. Again, we give the LM → LaM W-node a special symbol (for a ≥ 1): a := a , and we

generalise the ket symbol inductively as follows (for k ≥ 1 and a > k):
k+1
a :=

a

1 k
1 k

.

The interpretation of these diagrams is now a monoidal functor J.K : ZWf → FdHilb
inductively defined as:

CSL 2025

49:14 Minimality in Finite-Dimensional ZW-Calculi

JD2 ◦D1K = JD2K ◦ JD1K

JD1 ⊗D2K = JD1K ⊗ JD2K
r

a

z
=

a∑
k=0

|k⟩⟨k|

s
a

{
=

s

a

{†

=
a∑

k=0
|k, k⟩

JrK = r
t

...
bn

a

b1

|

=
∑

0≤ki≤bi

k1+...+kn≤a

√(
k1+...+kn

k1, ..., kn

)
|k1, ..., kn⟩⟨k1+...+kn|

t
ba

|

=
a∑

k=0

b∑
ℓ=0

|ℓ, k⟩⟨k, ℓ|

t

a r

n...

...
m

|

=
a∑

k=0
rk

√
k!

n+m−2
|km⟩⟨kn|

s
1

a

{
= |1⟩

By composition, one can check that, for k > 1 and a ≥ k:
s

k
a

{
=

√
k! |k⟩.

Notice that we use the same notation for the interpretation of ZWd-diagrams, and for the
interpretation of the ZWf -diagrams. Which interpretation we are referring to should be clear
from the context.

3.2 Complete Equational Theory
We once again equip the language with an equational theory ZWf , defined in Figure 2.
This equational theory only slightly differs from the one for qudit systems in Figure 1. It
is interesting to notice that 1) the associativity of the W-node is broken down into two
equations (a) and (o), whose choice depends on the capacities involved, 2) the W-bialgebra
equation (b2) does not need a context anymore, but instead side conditions on the capacities,
3) we managed to remove Equation (e), 4) we now need an equation (i) that states that a
|1⟩, when “injected” into a larger dimensional Hilbert space, is still a |1⟩.

We also notice the existence of an interesting equation, that we did not include in Figure 2
as it turns out to be derivable; and which states that a 0 → 1 Z-state can be “copied” by the

W-node, as follows:
a+b

a b
= ba .

The category Quditd is a full subcategory of FdHilb, and as such there is an obvious
inclusion functor Quditd

id
↪→ FdHilb. This inclusion transports to the ZW-calculi: we can

turn any ZWd-diagram into a ZWf -diagram through ιd in such a way that the following

diagram commutes:

ZWd ZWf

Quditd FdHilb

J.KJ.K
ιd

id
.

The functor ιd simply takes a ZWd-diagram and annotates all its wires with d− 1.
We show that the present equational theory is complete. To do so, we need to adapt the

notion of normal form from qudit systems (and we again use the map/state duality to focus
on states rather than arbitrary morphisms):

▶ Definition 16. We define N : FdHilb → ZWf as the functor that maps any n-ary state
|ψ⟩ ∈ FdHilb[LM, La1, ..., anM]:

|ψ⟩ = r0 |0...0⟩ + r1 |0...01⟩ + ...+ ri

∣∣xi
1...x

i
n

〉
+ ...

M. de Visme and R. Vilmart 49:15

a
a

r
s

...

... ...

...
=
(s)

a

...

...
rs

...

... an

b

c

a1

(∗)=
(a)

c

...... ana1 an

b

c

a0 ...
=
(o)

an

b

a0

c

...

a

a
=

(id)
a

bmb1

a

...
m

r

n...
n̸=0=
(b1)

a a

b1 bm
r r...

m

n...

c

a1 an

b1 bm

...

...

(∗)=
(b2)

ℓ1,1

a1 an

b1

ℓn,m

bm

...

...

aa

a

r s

=
(+)

a r+s 1

1

r

...
=

(cp)
r · 11

1 1...
a

b-1

...
b =

(h)

a

b-1 .0

1 =
(ℓ)

1
a
1

=
(i) a

1
1

a =
(u)

1
a! ·

a

a
a

a

Figure 2 Equational theory ZWf for the finite-dimensional ZW-calculus. In (a), we require that
b = c or b ≥

∑
i
ai; and in (b2) that c ≥ min(

∑
ai,

∑
bi) on the lhs, and that ℓij = min(ai, bj) on

the rhs.

to the diagram below. We say of any diagram in the image of N that it is in normal form.

N (|ψ⟩) =

1

1 1 1

ana1

1

r0 r1
ri√

xi
1!...xi

n
!

...
x i
1

... ...
...
xi

n

...

We can once again show that N builds a diagram that represents |ψ⟩:

▶ Lemma 17. ∀ |ψ⟩ ∈ FdHilb[LM, La1, ..., anM], JN (|ψ⟩)K = |ψ⟩

We hence get universality of the language as a direct consequence:

▶ Corollary 18 (Universality of ZWf).
∀f ∈ FdHilb[La1, ..., anM, Lb1, ..., bmM], ∃Df ∈ ZWf [La1, ..., anM, Lb1, ..., bmM], JDf K = f

Most of the arguments given for the minimality of ZWd can be adapted to arguments for
the necessity of the equations of ZWf , and the few remaining equations can be given a new
argument. We hence have:

▶ Theorem 19. The equational theory ZWf is minimal.

Proof. The argument given for the necessity of Equation (b2) now works for the necessity of
Equation (o), and that of Equation (e) now works for Equation (b2). Namely, Equation (b2)
is the only that can create a non-empty diagram from an empty diagram. A less artificial
argument for Equation (b2) is that it is the only equation that can create a capacity > k

from a diagram whose capacities are all ≤ k for k ≥ 1. Moreover:
Equation (i) is the only equation that can create a |1⟩ with capacity a ≠ 1, from a

diagram whose |1⟩s are all on capacity 1.

CSL 2025

49:16 Minimality in Finite-Dimensional ZW-Calculi

We can reformulate the argument of Equation (a) as: It is the only equation permitting
to create non-trivial W-nodes with arity ≥ 3 from a diagram where all non-trivial W-nodes
have arity ≤ 2.

In the argument of Equation (ℓ), one can take for ϖ any complex number such that
ϖ2 ̸= 1, and by working up to a scalar factor, as is done initially for d = 2.

In the argument of Equation (h), we can instantiate the protocol by annotating the wires
with their capacities, then continue with the protocol as explained in the initial argument.

All the other arguments work right off the bat for their mixed-dimensional counterpart,
hence the result of minimality. ◀

Using the normal form, we can then leverage the completeness from the qudit ZW-calculus
to get the similar result in the current setting:

▶ Theorem 20 (Completeness for Finite Dimensional Systems). The language is complete: for
any two diagrams D1 and D2 of the ZWf -calculus:

JD1K = JD2K ⇐⇒ ZWf ⊢ D1 = D2

Proof. The right-to-left implication (soundness) is again a straightforward verification. The
other is proven in its entirety in the full version, and uses the completeness of ZWd for qudit
systems. The idea is to show that i) we can turn both D1 and D2 into a diagram with a high
enough capacity d everywhere (except boundaries), and that ii) all the equations of ZWd can
be proven in ZWf (through ιd). ◀

4 Related Work

4.1 Qudit Framework
The first and only result to date of a complete equational theory for a graphical language
describing qudit systems comes from the “ZXW-calculus” [42]. There, the authors start
from a qudit version of the ZX-calculus and most probably end up requiring a W-node in
the definition of a normal form, and hence in the equational theory leading to completeness.
We argue here that we can get a complete equational theory purely inside the ZW-calculus.
By keeping the number of generators as low as possible, we also end up with few, intuitive
equations in the equational theory.

The W-node we used is a different generalisation of the qubit W-node than the one used
in [42]. The version we used offers two advantages with respect to the aims of the paper.
First, it allows to use a single parameter in the Z-spiders (which aligns with the spirit of
keeping things as minimal as possible) and to sum such parameters together, while the other
version requires to have (d − 1)-sized lists of coefficients as parameters in order to get a
(+)-like rule to sum coefficients together. Second, it allows us to define |k⟩ (up to a scalar) as
a composition using only |1⟩ and the W-node. Again, this lowers the number of generators,
as all the |k⟩ (for k > 1) become syntactic sugar.

Focussing on ZW-calculus is not a new idea. The first ever completeness proof for
qubit graphical languages was in the (qubit) ZW-calculus, introduced in [14] and tweaked
and made complete in [24, 26]. The ZW-calculus noticeably has very nice combinatorial
properties different from those of its counterparts, which in particular allows for a very
natural notion of normal form. It is hence not suprising that some attempts were made to get
a complete equational theory of qudit systems purely in ZW. There have then been tentative
generalisations for qudit systems, in particular in [25] where q-arithmetic is used, and in [49]

M. de Visme and R. Vilmart 49:17

where the W-node is generalised in a different way (and that we encounter in [42]). It is
to be noted that our two main generators are essentially the same as in [25], except with
usual arithmetic instead of q-arithmetic. While some equations are sound with respect to
the q-arithmetic semantics, others are truly specific to the standard arithmetic. Adapting
the results of the present paper to q-arithmetic semantics hence seems non-trivial. Other
presentations for qudit systems have also been proposed (without proof of completeness)
in [17, 43]. Finally, complete presentations for fragments of qudit quantum mechanics can be
found e.g. in [8, 40].

Another system we are close to is QPath [19]. Our W-node is merely the “triangle” node
of QPath that we truncated to a finite dimension5, and we generalised their “line weight” to
an n-ary Z-spider. The degree-2 Z-spider furthermore has exactly the same interpretation as
the line weight. While in QPath the triangle nodes satisfy a bialgebra, this is not the case
when truncating to finite dimension. Here we could either resort to define a “fermionic swap”
that would replace the usual swap in the bialgebra (as in [25] and [49]), or give a context in
which the bialgebra works (as is done in [42]). While such a “fermionic swap” exists in our
setting, it does not have all the nice properties of the qubit fermionic swap, that in particular
allow us to see it as a quasi-proper swap. Instead we went with the latter solution, which as
it turns out works in our setting, despite the W-node having a different interpretation from
that of [42], and we end up with Equation (b2).

4.2 Finite Dimensional Framework

Another complete presentation of a graphical language for FdHilb was announced recently
before the first version of the current paper [50]. This one builds upon the aforementioned
ZXW-calculus, and introduces a new generator that takes two systems, of dimensions a and
b, and builds a system of dimension a× b. Our approach builds upon ZWd, the qudit version
of the ZW-calculus from Section 2 and hence starts with fewer generators and equations. As
a consequence, the graphical language for FdHilb we end up with has fewer equations as
well. Moreover, we did not require a new generator, and simply promoted the qudit W-node
to work with any mix of dimensions in a natural manner, which was enough to provide us
with universality.

A version of the ZX-calculus for FdHilb was recently provided and shown to be com-
plete [41]. The proof of completeness for their graphical language was obtained by transporting
the property from the ZWf -calculus of the first version of the current paper to the ZX-calculus,
through a system of translations between the two languages.

5 Conclusion

In this paper, we explored the potential for a minimal yet complete diagrammatic language
for quantum mechanics beyond qubit systems. This starts with a well-chosen generalisation of
the generators of the ZW-calculus, allowing us to have few and intuitive equations. For both
qudit systems and finite dimensional systems, we showed that the diagrams are universal, and
that the equational theories are both minimal and complete for their respective interpretation.

5 The idea of truncating this tensor has also been considered in [20] during a translation between graphical
languages.

CSL 2025

49:18 Minimality in Finite-Dimensional ZW-Calculi

References
1 S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In Proceedings of

the 19th Annual IEEE Symposium on Logic in Computer Science, 2004., pages 415–425, July
2004. doi:10.1109/LICS.2004.1319636.

2 Miriam Backens. The ZX-calculus is complete for stabilizer quantum mechanics. In New
Journal of Physics, volume 16, page 093021. IOP Publishing, September 2014. doi:10.1088/
1367-2630/16/9/093021.

3 Miriam Backens and Aleks Kissinger. ZH: A complete graphical calculus for quantum
computations involving classical non-linearity. In Peter Selinger and Giulio Chiribella, editors,
Proceedings of the 15th International Conference on Quantum Physics and Logic, Halifax,
Canada, 3-7th June 2018, volume 287 of Electronic Proceedings in Theoretical Computer
Science, pages 23–42, 2019. doi:10.4204/EPTCS.287.2.

4 Miriam Backens, Aleks Kissinger, Hector Miller-Bakewell, John van de Wetering, and Sal
Wolffs. Completeness of the ZH-calculus. Compositionality, 5, July 2023. doi:10.32408/
compositionality-5-5.

5 Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, Leo Lobski, and John van de
Wetering. There and back again: A circuit extraction tale. arXiv: Quantum Physics, 2020.
arXiv:2003.01664.

6 Miriam Backens, Simon Perdrix, and Quanlong Wang. Towards a Minimal Stabilizer ZX-
calculus. Logical Methods in Computer Science, Volume 16, Issue 4, December 2020. doi:
10.23638/LMCS-16(4:19)2020.

7 Robert I. Booth and Titouan Carette. Complete ZX-Calculi for the Stabiliser Fragment in
Odd Prime Dimensions. In Stefan Szeider, Robert Ganian, and Alexandra Silva, editors,
47th International Symposium on Mathematical Foundations of Computer Science (MFCS
2022), volume 241 of Leibniz International Proceedings in Informatics (LIPIcs), pages 24:1–
24:15, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.MFCS.2022.24.

8 Robert I. Booth, Titouan Carette, and Cole Comfort. Graphical symplectic algebra, 2024.
doi:10.48550/arXiv.2401.07914.

9 Titouan Carette. Wielding the ZX-calculus, Flexsymmetry, Mixed States, and Scalable Nota-
tions. (Manier le ZX-calcul, flexsymétrie, systèmes ouverts et limandes). PhD thesis, University
of Lorraine, Nancy, France, 2021. URL: https://tel.archives-ouvertes.fr/tel-03468027.

10 Titouan Carette, Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Completeness
of Graphical Languages for Mixed States Quantum Mechanics. In Christel Baier, Ioannis
Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium
on Automata, Languages, and Programming (ICALP 2019), volume 132 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 108:1–108:15, Dagstuhl, Germany, 2019. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2019.108.

11 Titouan Carette, Etienne Moutot, Thomas Perez, and Renaud Vilmart. Compositionality
of Planar Perfect Matchings: A Universal and Complete Fragment of ZW-Calculus. In
Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on
Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 120:1–120:17, Dagstuhl, Germany, 2023. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2023.120.

12 Alexandre Clément, Noé Delorme, and Simon Perdrix. Minimal equational theories for
quantum circuits, 2023. doi:10.48550/arXiv.2311.07476.

13 Bob Coecke and Ross Duncan. Interacting quantum observables: Categorical algebra and
diagrammatics. New Journal of Physics, 13(4):043016, April 2011. doi:10.1088/1367-2630/
13/4/043016.

14 Bob Coecke and Aleks Kissinger. The compositional structure of multipartite quantum
entanglement. In Automata, Languages and Programming, pages 297–308. Springer Berlin
Heidelberg, 2010. doi:10.1007/978-3-642-14162-1_25.

https://doi.org/10.1109/LICS.2004.1319636
https://doi.org/10.1088/1367-2630/16/9/093021
https://doi.org/10.1088/1367-2630/16/9/093021
https://doi.org/10.4204/EPTCS.287.2
https://doi.org/10.32408/compositionality-5-5
https://doi.org/10.32408/compositionality-5-5
https://arxiv.org/abs/2003.01664
https://doi.org/10.23638/LMCS-16(4:19)2020
https://doi.org/10.23638/LMCS-16(4:19)2020
https://doi.org/10.4230/LIPIcs.MFCS.2022.24
https://doi.org/10.4230/LIPIcs.MFCS.2022.24
https://doi.org/10.48550/arXiv.2401.07914
https://tel.archives-ouvertes.fr/tel-03468027
https://doi.org/10.4230/LIPIcs.ICALP.2019.108
https://doi.org/10.4230/LIPIcs.ICALP.2023.120
https://doi.org/10.48550/arXiv.2311.07476
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1007/978-3-642-14162-1_25

M. de Visme and R. Vilmart 49:19

15 Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning. Cambridge University Press, Cambridge, 2017. doi:
10.1017/9781316219317.

16 Joseph Collins and Ross Duncan. Hopf-frobenius algebras and a simpler drinfeld double.
Electronic Proceedings in Theoretical Computer Science, 318:150–180, May 2020. doi:10.
4204/eptcs.318.10.

17 Niel de Beaudrap and Richard D. P. East. Simple zx and zh calculi for arbitrary finite
dimensions, via discrete integrals, 2023. arXiv:2304.03310.

18 Niel de Beaudrap and Dominic Horsman. The ZX calculus is a language for surface code
lattice surgery. Quantum, 4:218, January 2020. doi:10.22331/q-2020-01-09-218.

19 Giovanni de Felice and Bob Coecke. Quantum linear optics via string diagrams. In Stefano
Gogioso and Matty Hoban, editors, Proceedings 19th International Conference on Quantum
Physics and Logic, QPL 2022, Wolfson College, Oxford, UK, 27 June - 1 July 2022, volume
394 of EPTCS, pages 83–100, 2022. doi:10.4204/EPTCS.394.6.

20 Giovanni de Felice, Razin A. Shaikh, Boldizsár Poór, Lia Yeh, Quanlong Wang, and Bob
Coecke. Light-matter interaction in the zxw calculus. Electronic Proceedings in Theoretical
Computer Science, 384:20–46, August 2023. doi:10.4204/eptcs.384.2.

21 Ross Duncan and Kevin Dunne. Interacting frobenius algebras are hopf. In 2016 31st Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–10, 2016.

22 Ross Duncan and Maxime Lucas. Verifying the Steane code with Quantomatic. In Bob Coecke
and Matty Hoban, editors, Proceedings of the 10th International Workshop on Quantum
Physics and Logic, Castelldefels (Barcelona), Spain, 17th to 19th July 2013, volume 171
of Electronic Proceedings in Theoretical Computer Science, pages 33–49. Open Publishing
Association, 2014. doi:10.4204/EPTCS.171.4.

23 Ross Duncan and Simon Perdrix. Graphs states and the necessity of Euler decom-
position. Mathematical Theory and Computational Practice, 5635:167–177, 2009. doi:
10.1007/978-3-642-03073-4.

24 Amar Hadzihasanovic. A diagrammatic axiomatisation for qubit entanglement. In 2015 30th
Annual ACM/IEEE Symposium on Logic in Computer Science, pages 573–584, July 2015.
doi:10.1109/LICS.2015.59.

25 Amar Hadzihasanovic. The Algebra of Entanglement and the Geometry of Composition. PhD
thesis, University of Oxford, 2017. arXiv:1709.08086.

26 Amar Hadzihasanovic, Kang Feng Ng, and Quanlong Wang. Two complete axiomatisations
of pure-state qubit quantum computing. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’18, pages 502–511, New York, NY, USA,
2018. ACM. doi:10.1145/3209108.3209128.

27 Anne Hillebrand. Quantum Protocols involving Multiparticle Entanglement and their Rep-
resentations. Master’s thesis, University of Oxford, 2011. URL: https://www.cs.ox.ac.uk/
people/bob.coecke/Anne.pdf.

28 Jiaxin Huang, Sarah Meng Li, Lia Yeh, Aleks Kissinger, Michele Mosca, and Michael Vasmer.
Graphical css code transformation using zx calculus. Electronic Proceedings in Theoretical
Computer Science, 384:1–19, August 2023. doi:10.4204/eptcs.384.1.

29 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A complete axiomatisation of the
ZX-calculus for Clifford+T quantum mechanics. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’18, pages 559–568, New York, NY, USA,
2018. ACM. doi:10.1145/3209108.3209131.

30 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Y-calculus: A language for real
matrices derived from the zx-calculus. Electronic Proceedings in Theoretical Computer Science,
266:23–57, February 2018. doi:10.4204/eptcs.266.2.

31 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Completeness of the ZX-Calculus. Lo-
gical Methods in Computer Science, Volume 16, Issue 2, June 2020. doi:10.23638/LMCS-16(2:
11)2020.

CSL 2025

https://doi.org/10.1017/9781316219317
https://doi.org/10.1017/9781316219317
https://doi.org/10.4204/eptcs.318.10
https://doi.org/10.4204/eptcs.318.10
https://arxiv.org/abs/2304.03310
https://doi.org/10.22331/q-2020-01-09-218
https://doi.org/10.4204/EPTCS.394.6
https://doi.org/10.4204/eptcs.384.2
https://doi.org/10.4204/EPTCS.171.4
https://doi.org/10.1007/978-3-642-03073-4
https://doi.org/10.1007/978-3-642-03073-4
https://doi.org/10.1109/LICS.2015.59
https://arxiv.org/abs/1709.08086
https://doi.org/10.1145/3209108.3209128
https://www.cs.ox.ac.uk/people/bob.coecke/Anne.pdf
https://www.cs.ox.ac.uk/people/bob.coecke/Anne.pdf
https://doi.org/10.4204/eptcs.384.1
https://doi.org/10.1145/3209108.3209131
https://doi.org/10.4204/eptcs.266.2
https://doi.org/10.23638/LMCS-16(2:11)2020
https://doi.org/10.23638/LMCS-16(2:11)2020

49:20 Minimality in Finite-Dimensional ZW-Calculi

32 Emmanuel Jeandel, Simon Perdrix, Renaud Vilmart, and Quanlong Wang. ZX-calculus:
Cyclotomic supplementarity and incompleteness for Clifford+T quantum mechanics. In Kim G.
Larsen, Hans L. Bodlaender, and Jean-Francois Raskin, editors, 42nd International Symposium
on Mathematical Foundations of Computer Science (MFCS 2017), volume 83 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 11:1–11:13, Dagstuhl, Germany, 2017.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2017.11.

33 Aleks Kissinger. Tikzit, 2019. URL: https://tikzit.github.io/index.html.
34 Aleks Kissinger and John van de Wetering. Reducing the number of non-Clifford gates

in quantum circuits. Phys. Rev. A, 102:022406, August 2020. doi:10.1103/PhysRevA.102.
022406.

35 Aleks Kissinger and John van de Wetering. Simulating quantum circuits with zx-calculus
reduced stabiliser decompositions. Quantum Science and Technology, 7(4):044001, July 2022.
doi:10.1088/2058-9565/ac5d20.

36 Aleks Kissinger, John van de Wetering, and Renaud Vilmart. Classical Simulation of Quantum
Circuits with Partial and Graphical Stabiliser Decompositions. In François Le Gall and
Tomoyuki Morimae, editors, 17th Conference on the Theory of Quantum Computation, Com-
munication and Cryptography (TQC 2022), volume 232 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 5:1–5:13, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.TQC.2022.5.

37 Mark Koch, Richie Yeung, and Quanlong Wang. Speedy contraction of zx diagrams with
triangles via stabiliser decompositions, 2023. arXiv:2307.01803.

38 Stephen Lack. Composing PROPs. In Theory and Applications of Categories, volume 13,
pages 147–163, 2004. URL: http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html.

39 Simon Perdrix and Quanlong Wang. Supplementarity is necessary for quantum diagram
reasoning. In 41st International Symposium on Mathematical Foundations of Computer
Science (MFCS 2016), volume 58 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 76:1–76:14, Krakow, Poland, August 2016. doi:10.4230/LIPIcs.MFCS.2016.76.

40 Boldizsár Poór, Robert I. Booth, Titouan Carette, John van de Wetering, and Lia Yeh.
The qupit stabiliser zx-travaganza: Simplified axioms, normal forms and graph-theoretic
simplification. Electronic Proceedings in Theoretical Computer Science, 384:220–264, August
2023. doi:10.4204/eptcs.384.13.

41 Boldizsár Poór, Razin A. Shaikh, and Quanlong Wang. Zx-calculus is complete for finite-
dimensional hilbert spaces, 2024. arXiv:2405.10896.

42 Boldizsár Poór, Quanlong Wang, Razin A. Shaikh, Lia Yeh, Richie Yeung, and Bob Coecke.
Completeness for arbitrary finite dimensions of zxw-calculus, a unifying calculus. In 2023
38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–14, 2023.
doi:10.1109/LICS56636.2023.10175672.

43 Patrick Roy, John van de Wetering, and Lia Yeh. The qudit zh-calculus: Generalised
toffoli+hadamard and universality. Electronic Proceedings in Theoretical Computer Science,
384:142–170, August 2023. doi:10.4204/eptcs.384.9.

44 Christian Schröder de Witt and Vladimir Zamdzhiev. The zx-calculus is incomplete for
quantum mechanics. Electronic Proceedings in Theoretical Computer Science, 172:285–292,
December 2014. doi:10.4204/eptcs.172.20.

45 Peter Selinger. A survey of graphical languages for monoidal categories. In New Structures
for Physics, pages 289–355. Springer, 2010.

46 Alex Townsend-Teague, Julio Magdalena de la Fuente, and Markus Kesselring. Floquetifying
the colour code. Electronic Proceedings in Theoretical Computer Science, 384:265–303, August
2023. doi:10.4204/eptcs.384.14.

47 Renaud Vilmart. A near-minimal axiomatisation of zx-calculus for pure qubit quantum
mechanics. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 1–10, June 2019. doi:10.1109/LICS.2019.8785765.

https://doi.org/10.4230/LIPIcs.MFCS.2017.11
https://tikzit.github.io/index.html
https://doi.org/10.1103/PhysRevA.102.022406
https://doi.org/10.1103/PhysRevA.102.022406
https://doi.org/10.1088/2058-9565/ac5d20
https://doi.org/10.4230/LIPIcs.TQC.2022.5
https://arxiv.org/abs/2307.01803
http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html
https://doi.org/10.4230/LIPIcs.MFCS.2016.76
https://doi.org/10.4204/eptcs.384.13
https://arxiv.org/abs/2405.10896
https://doi.org/10.1109/LICS56636.2023.10175672
https://doi.org/10.4204/eptcs.384.9
https://doi.org/10.4204/eptcs.172.20
https://doi.org/10.4204/eptcs.384.14
https://doi.org/10.1109/LICS.2019.8785765

M. de Visme and R. Vilmart 49:21

48 Quanlong Wang. Qutrit zx-calculus is complete for stabilizer quantum mechanics. In Bob
Coecke and Aleks Kissinger, editors, Proceedings 14th International Conference on Quantum
Physics and Logic, Nijmegen, The Netherlands, 3-7 July 2017, volume 266 of Electronic
Proceedings in Theoretical Computer Science, pages 58–70, 2018. doi:10.4204/EPTCS.266.3.

49 Quanlong Wang. A non-anyonic qudit zw-calculus, 2021. arXiv:2109.11285.
50 Quanlong Wang and Boldizsár Poór. Completeness of qufinite zxw calculus, a graphical

language for mixed-dimensional quantum computing, 2023. arXiv:2309.13014.
51 Fabio Zanasi. Interacting Hopf Algebras – the theory of linear systems. PhD thesis, Université

de Lyon, 2015. URL: http://www.zanasi.com/fabio/#/publications.html.

A Asymmetric Presentation for Qudit Systems

In this section, we give an alternative semantics for the ZWd-diagrams, which breaks the
up/down symmetry of the generators. On the one hand, the dagger-functor becomes less
natural; on the other hand, the combinatorics associated to the diagrams becomes simpler
(except for the cap):

JD2 ◦D1K ⇝ = JD2K ⇝ ◦ JD1K ⇝

JD1 ⊗D2K ⇝ = JD1K ⇝ ⊗ JD2K ⇝
r z

⇝ =
∑

k

|k⟩⟨k|

r z

⇝ =
∑
k,ℓ

|ℓ, k⟩⟨k, ℓ|

q y

⇝ =
∑

k

k! ⟨k, k|

q y ⇝ =
∑

k

1
k! |k, k⟩

u

v r

n...

...
m

}

~

⇝

=
d−1∑
k=0

rkk!n−1 |km⟩⟨kn|

t

...
n

|

⇝

=
∑

k∈{0,...,d−1}
i1+...+in=k

(
k

i1, ..., in

)
|i1, ..., in⟩⟨k|

s ... {

⇝ =
∑

k∈{0,...,d−1}
i1+...+in=k

|k⟩⟨i1, ..., in|

r
1

z

⇝ = |1⟩ and
s

1

{

⇝ = ⟨1|

JrK ⇝ = r

As a direct consequence, we have:
s

k
{

⇝ = |k⟩ and
s

k

{

⇝ = k! ⟨k|

This semantics being equivalent to J−K ⇝ , the equational theory of ZWd-diagrams remains
universal, sound and complete in this setting.

B Lemmas for Completeness of Qudit

The full version on Arxiv details the proof of completeness of ZWd’s equational theory,
including the proof of the following derivable equations:

▶ Lemma 21.

ZWd ⊢ 1 =

▶ Lemma 22.

ZWd ⊢ =

▶ Lemma 23.

ZWd ⊢

...

...

=

...

...

CSL 2025

https://doi.org/10.4204/EPTCS.266.3
https://arxiv.org/abs/2109.11285
https://arxiv.org/abs/2309.13014
http://www.zanasi.com/fabio/#/publications.html

49:22 Minimality in Finite-Dimensional ZW-Calculi

▶ Lemma 24.

ZWd ⊢
...

= ...

▶ Lemma 25.

ZWd ⊢ 1
1

=

▶ Lemma 26.

ZWd ⊢
0

=

▶ Lemma 27.

ZWd ⊢
k

r
...
n

= rk ·
k k...

n

▶ Lemma 28.

ZWd ⊢ ...

r s

=
r+s

...

▶ Lemma 29.

ZWd ⊢ =

▶ Lemma 30.

ZWd ⊢
k ℓ

=

k + ℓ if k + ℓ < d

0 · if k + ℓ ≥ d

▶ Lemma 31.

ZWd ⊢

1

=
1

▶ Lemma 32.

ZWd ⊢

1

=

1

▶ Lemma 33.

ZWd ⊢
...
n

...
m

= ... (
n

i1,...,im

) ...
...
n

...
n

...
i1

...
im

...
ij

... ...
where on the right-hand-side, there are as
many Z-spiders as there are ways to de-
compose n as a sum of m natural numbers:
n = i1 + ...+ im.

▶ Lemma 34.

ZWd ⊢

1 1

=

1

▶ Lemma 35. With 0 < k < d:

ZWd ⊢ ...
k

k

=
k!

... 11 1

▶ Lemma 36. If 0 < k < d:

ZWd ⊢ k!
1

= ...
k

k

▶ Lemma 37. If k ̸= ℓ:

ZWd ⊢
k

k
= k! and ZWd ⊢

k

ℓ
= 0

▶ Lemma 38.

ZWd ⊢
1

r
= r ·

1

1/r

▶ Lemma 39. If 0 ≤ k < d:

ZWd ⊢ ...
k

1

=
1

▶ Lemma 40. If 0 ≤ k < d, we have:

ZWd ⊢
1

k ...

=
1

k!

▶ Lemma 41. The bialgebra between W-
nodes can be used in the following context,
if 0 ≤ ki < d for all i:

ZWd ⊢ ...
kn

...
k1

...

1

...

=

...

...

1
...
kn

...
k1

	p000-Frontmatter
	Preface
	Program Committee Members
	External Reviewers

	p001-Fernandez
	p002-Bouyer
	p003-Forster
	p004-Pimentel
	1 Introduction
	2 A game model for costs
	2.1 Playing with subexponentials
	2.2 About cut-admissibility
	2.2.1 Infinite costs
	2.2.2 Linearity
	2.2.3 Accumulated costs

	2.3 Discussion – part I

	3 A game model for polarisation
	3.1 Playing with models
	3.2 Playing all models
	3.3 From games to proofs
	3.4 Discussion – part II

	p005-Venema
	1 Modal automata
	2 Some results

	p006-Rossman
	1 Introduction
	2 Comparing the three proofs of the finitary HPT
	2.1 First proof via ∃^+-indistinguishable co-retracts
	2.2 Second proof via AC^0 lower bounds
	2.3 New proof via the Cai-Fürer-Immerman construction

	3 Preliminaries
	3.1 Structures and homomorphisms
	3.2 First-order logic

	4 Characterization of ∃^+ definability via the cops-and-robber game
	4.1 Cops-and-robber game
	4.2 ∃^+ definability of homomorphism-closed classes

	5 Generalized Cai-Fürer-Immerman construction
	6 Proof of the equi-rank finitary HPT
	7 Open questions

	p007-Eleftheriadis
	1 Introduction
	2 Preliminaries
	3 Failure of preservation on graphs of cliquewidth 4
	4 Extension preservation on strongly flip-flat classes
	5 Conclusion
	A The proof of Lemma 5
	B The proof of Theorem 18

	p008-VanBergerem
	1 Introduction
	2 Preliminaries
	2.1 Clique-Width
	2.2 Monadic Second-Order Logic
	2.3 VC Dimension
	2.4 Parameterized Complexity

	3 Tractability for One-Dimensional Training Data on Well-Behaved Classes
	4 Hardness for One-Dimensional Training Data
	5 PAC Learning in Higher Dimensions
	6 Consistent Learning in Higher Dimensions
	6.1 Type Definitions
	6.2 Computing the Realizable Types

	7 Hardness of Checking Consistency in Higher Dimensions
	8 Conclusion

	p009-Kojelis
	1 Introduction
	2 Preliminaries
	3 The Two-Variable Sub-fragment
	4 More Than Two Variables
	5 Counting With Reversed Relations
	6 Discussion
	A Preliminaries
	B Counting With Reversed Relations
	C Discussion

	p010-Frenkel
	1 Introduction
	2 Preliminaries
	3 The Cardinality of Second-order HyperLTL Models
	4 The Complexity of Second-order HyperLTL Satisfiability
	5 The Complexity of Second-order HyperLTL Model-Checking
	6 Second-order HyperLTL with Minimality/Maximality Constraints
	7 Second-order HyperLTL with Least Fixed Points
	8 Related Work
	9 Conclusion

	p011-Colcombet
	1 Introduction
	1.1 Contributions
	1.2 Overview of the proofs
	1.3 Historical Background
	1.4 Structure of the paper

	2 Preliminaries
	2.1 Ordinals
	2.2 Monadic second-order logic of order
	2.3 Definability
	2.4 BMSO

	3 The tree case
	3.1 Trees
	3.2 Cantor-Bendixson rank
	3.3 Therorem 2 implies Theorem 1

	4 The omega^beta case for beta an ordinal of cofinality omega
	5 Reduction of MSO[otpob] to MSO[otpobpo]
	6 Countable ordinals
	7 Conclusion
	A Proof of Lemma 17
	B Beyond countable ordinals
	B.1 Definable ordinals < omega_2
	B.2 omega_1^beta for countable beta
	B.3 Definability is equivalent to Decidability for alpha < omega_1^{omega_1}

	p012-Haber
	1 Introduction
	1.1 Background and Previous Results
	1.2 Our Results

	2 Some Probabilistic Results
	2.1 Defining Sets of Logarithmic Size
	2.2 Expressing Unary Relations
	2.3 Non-Conditioned Results

	3 Proof of the Main Theorem

	p013-Lichter
	1 Introduction
	2 The Weifeiler-Leman Algorithm and Coherent Configurations
	3 Deciding Identification for Graphs With 5-Bounded Color Classes
	4 Identification for Structures With Bounded Abelian Color Classes
	5 Hardness
	6 Conclusion
	A Construction of One-Way Switches

	p014-Rassmann
	1 Introduction
	2 Preliminaries
	3 Finite Variable Counting Logics with Restricted Requantification
	4 The Role of Reusability
	5 Space Complexity
	6 Graphs Identified by Logics with Restricted Requantification
	7 Outlook

	p015-VanBergerem
	1 Introduction
	2 Preliminaries
	3 {FOC_{2}} has Unbounded VC Dimension
	4 Bound on the Number of Types
	5 VC Density and VC Dimension
	6 Stability
	7 Final Remarks

	p016-Dawar
	1 Introduction
	2 Preliminaries
	2.1 Hardness of Approximation in Optimization
	2.2 Label Cover Games
	2.3 Undefinability of Approximation

	3 The Reduction
	3.1 Regular 3XOR
	3.2 Reducing to Transitive Games
	3.3 The final (weighted) 2-to-2 game
	3.4 Irregular soundness case
	3.5 2 2 games

	4 Definability
	4.1 Perfect completeness
	4.2 Vocabularies
	4.3 Undefinability of Regular 3XOR
	4.4 Shuffling variables
	4.5 The reduction to the transitive game
	4.6 Weight approximation
	4.7 Defining the weighted game
	4.8 Defining W

	5 Consequences
	5.1 Unique Games
	5.2 Vertex Cover
	5.3 Graph Colouring

	6 Conclusion

	p017-Jaakkola
	1 Introduction
	1.1 Contributions
	1.2 Related work, techniques and applications

	2 Preliminaries
	3 Upper bound formulas
	4 Lower bounds via formula size games
	5 Expected description complexity
	6 Entropy and description complexity
	7 Conclusion
	A Appendix
	A.1 Proof of Theorem 1 continued
	A.2 Proof of Theorem 3
	A.3 Proof of Lemma 11

	p018-Scoones
	1 Introduction
	2 Automata and Decision Problems
	2.1 Multi-Priced Timed Automata
	2.2 The Gap Domination Problem

	3 Mixed Integer Bilinear Systems
	3.1 The Satisfiability Problem
	3.2 The Gap Satisfiability Problem

	4 Decidability in the Bounded Case
	4.1 Preliminaries
	4.2 Relaxation and Rounding
	4.3 Decision Procedure

	5 Conclusion

	p019-Almagor
	1 Introduction
	2 Preliminaries
	3 The Emptiness and Membership Problems in 2-OCNs and Variants
	3.1 Emptiness of 2-DOCNs is Undecidable
	3.2 Emptiness of 2-OCNs over Bounded Languages is Decidable
	3.3 Emptiness of Sweeping 2-OCNs is Decidable
	3.4 The Membership Problem for 2-OCN is Polytime

	4 On the Semilinearity of 2-OCN Languages
	5 2-DOCN vs 1-OCN: A Pumping Lemma for 2-DOCN
	6 Research Directions
	A Detailed Construction of V in Section 3.2
	B Proof of Theorem 6

	p020-Draghici
	1 Introduction
	2 Main definitions
	2.1 Expressions, valuations and substitutions
	2.2 Cost register automata

	3 Regular substitution languages
	3.1 Substitution languages associated to CRAs
	3.2 The structure of witnesses with additive and reset substitutions only

	4 CRAs with two registers
	4.1 Simplifying assumptions
	4.2 Unboundedness witnesses
	4.3 Unboundedness implies the existence of a witness

	5 Output-minimum CRAs
	5.1 Output-minimum CRAs with no transpositions
	5.2 Output-minimum CRAs with transpositions

	6 Stateless CRAs
	7 Conclusions and open problems

	p021-Morvan
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Contributions
	1.4 Related Work

	2 Preliminaries
	2.1 Automata & Relations
	2.2 Induced Relations

	3 Synchronous Algebras
	3.1 Types & dependent Sets
	3.2 Synchronous Algebras
	3.3 Recognizability
	3.4 Syntactic Morphisms & Algebras

	4 The Lifting Theorem & Pseudovarieties
	4.1 Elementary Formulation
	4.2 Pseudovarieties of Synchronous Relations

	5 Discussion

	p022-Casares
	1 Introduction
	2 Preliminaries
	2.1 Automata
	2.2 Acceptance conditions
	2.3 History-determinism
	2.4 Residuals and prefix-independence
	2.5 Morphisms of automaton structures

	3 First properties and examples
	3.1 A central example
	3.2 Duality Büchi - coBüchi
	3.3 From generalised (co)Büchi to (co)Büchi

	4 Polynomial-time minimisation of HD generalised coBüchi automata
	4.1 Minimisation of HD coBüchi automata
	4.2 Minimal HD generalised coBüchi automata: prefix-independent case
	4.3 Minimal HD generalised coBüchi automata: general case

	5 NP-completeness of minimisation of deterministic and HD generalised Büchi automata
	5.1 Containment in {NP} and bounds on the necessary number of colours
	5.2 Hardness of state minimisation

	6 Conclusion

	p023-Goeminne
	1 Introduction
	2 Multiplayer reachability games
	3 Permissiveness in strategies
	4 Characterizations of permissive equilibria
	4.1 Characterization of permissive Nash equilibria
	4.2 Characterization of permissive subgame perfect equilibria

	5 Computation of permissive equilibria
	5.1 Symbolic trees and forests
	5.2 Decision problems over permissive Nash equilibria
	5.3 Decision problems over permissive subgame perfect equilibria

	6 Conclusion

	p024-Antoine
	1 Introduction
	2 Modal logics of overwhelming truth
	2.1 The abstract modal logic of overwhelming truth
	2.2 Variants

	3 Soundness and completeness with respect to S5
	4 Hypersequents for overwhelming truth with determined formulas
	4.1 A variant of Poggiolesi's hypersequent calculus for S5
	4.2 Reasoning on determined formulas in hypersequent calculus

	5 Sequent calculus for a non-nested logic of overwhelming truth
	6 Discussion
	A Proofs of Section 2
	B Proofs of Section 3
	C Proofs of Section 4
	D Proofs of Section 5

	p025-Papafilippou
	1 Introduction
	2 Modal logic
	3 Extensions and fixed points
	3.1 The reflexive modality
	3.2 Fixed Point Theorems
	3.3 The mu-calculus

	4 Model equivalence games
	5 The playing field
	6 The lower bound
	7 Succinctness
	7.1 Succinctness of definable fixed points
	7.2 Size of interpolants

	8 Conclusion

	p026-Aceto
	1 Introduction
	2 Preliminaries
	3 The complexity of deciding characteristic formulae modulo preorders
	3.1 The complexity of satisfiability
	3.2 The complexity of primality

	4 Finding characteristic formulae: The gap between trace simulation and the other preorders
	5 A note on deciding characteristic formulae modulo equivalence relations
	6 Conclusions

	p027-Antoine
	1 Introduction
	2 Background: automata and simulation
	2.1 Automata and their algebraic operations
	2.2 The simulation lattice
	2.3 Systems of linear inequalities

	3 Syntax and semantics
	3.1 Syntax
	3.2 Semantics
	3.3 Inequational theory

	4 Automata-diagrams
	4.1 From automata to string diagrams...
	4.2 ...and back

	5 Completeness
	6 Conclusion
	A Algebraic operations on NFA
	B Background on SMCs and props
	B.1 Props, String Diagrams, and Symmetric Monoidal Theories
	B.2 (Pre-)Ordered Props and Symmetric Monoidal Inequality Theories

	p028-Bonchi
	1 Introduction
	2 Motivating Example: the Fibonacci sequence
	3 Preliminaries and notation
	4 Coinduction up-to
	5 Induction up-to
	5.1 Relating Coinduction up-to and Induction Up-to via Involution

	6 Strong Induction is an up-to technique
	6.1 Strong Induction on natural numbers
	6.2 Strong Induction on Words

	7 From Lattice to Categories
	7.1 Initial agebras and the induction definition principle
	7.2 Comonadic Recursion
	7.3 Course-of-Value Iteration
	7.4 Back to Fibonacci

	8 Conclusions and future work
	A Appendix to Section 5
	B Details on Section 7.4

	p029-Humeau
	1 Introduction
	2 Codensity and coupling-based liftings: correspondences by example
	3 Preliminaries: *quantales and *pseudometrics
	4 *Liftings, *dualities, and *correspondences
	4.1 *Well-behaved *modalities
	4.2 *Liftings and *correspondences
	4.3 *Kantorovich-Rubinstein dualities and tools to get them

	5 *Correspondences through coproducts and products
	5.1 Coproduct functors
	5.2 Product functors
	5.3 Constant and *identity functors
	5.4 Putting it together: *correspondences for polynomial functors

	6 *Dualities for the *powerset and *probability distribution functors
	7 *Correspondences for grammars of functors
	8 A counter-example: *conditional transition systems
	9 Conclusions and future work

	p030-Cirstea
	1 Introduction
	2 Labelled Markov Chains and Stream Semantics
	3 Axiomatizing Stream Semantics
	4 Blueprint for Proving Completeness
	5 Step 1: Convex (Co)Algebras and the Functor G
	6 Step 2: PTerm/{} as a G-coalgebra
	7 Step 3: Properness of G
	8 Discussion and Related Work

	p031-Heijltjes
	1 Introduction
	2 The probabilistic event lambda-calculus
	3 Probabilistic types
	4 Comparison with counting quantifiers
	5 Sequencing
	5.1 Encoding call–by–value
	5.2 The abstract machine
	5.3 Big-step semantics

	6 Sequential probabilistic types
	7 Conclusions
	A Proofs for Section 6
	A.1 Probabilistic machine termination
	A.2 Probabilistic head normalization

	p032-Vollmer
	1 Introduction
	2 Mixed Graded/Linear Logic: Proofs and Terms
	2.1 Sequent Calculus
	2.2 Metatheory

	3 Model
	4 Natural Deduction
	5 Discussion
	5.1 Relating linear base vs. graded base calculi
	5.2 Related work on adjoint logics
	5.3 Further work

	p033-Forster
	1 Introduction
	2 Preliminaries
	3 Probabilistic Metric Trace Semantics
	4 Graded Monads and Graded Algebras
	5 Graded Quantitative Theories
	6 Graded Quantitative Semantics and Graded Logics
	7 Expressivity Criteria
	8 Case Study: Fuzzy Metric Trace Semantics
	9 Conclusions

	p034-Maestracci
	1 Introduction
	2 Partial Metric Spaces
	3 Quantifying lambda-Theories
	4 Quantifying Scott Domains
	5 Quantifying a Reflexive Object
	6 Quantifying the Taylor Expansion
	7 Conclusions

	p035-Gomes
	1 Introduction
	2 Guarded Kleene algebra with tests
	2.1 Syntax
	2.2 Semantics
	2.3 Axioms

	3 Union bound logic - Approximate Hoare logic
	4 Approximate Guarded Kleene algebra with tests (aGKAT)
	4.1 Definition and theory of aGKAT
	4.2 Semantic reasoning

	5 Encoding aHL in aGKAT
	6 Example
	7 Related work
	8 Discussion and future work
	A An example showing that aGKAT is more expressive than aHL

	p036-AzevedodeAmorim
	1 Introduction
	2 Kleene Algebra and Commutable Sets
	2.1 Commuting conditions
	2.2 Regular Languages

	3 Undecidability via Effective Inseparability
	4 Representing Relations
	5 Proving Representability
	5.1 Automata theory
	5.2 Bounded-Output Terms
	5.3 Putting Everything Together

	6 Conclusion and Related Work
	A Detailed Proofs

	p037-Nakamura
	1 Introduction
	2 Preliminaries
	2.1 Syntax: terms of KA with complement
	2.2 Semantics: language models
	2.3 (Generalized) relational models

	3 RSUB: finite relational models for language models
	4 From quantifier-free formulas to equations
	4.1 Undecidability via Hoare hypothesis elimination

	5 Graph characterization for KA_{{overline{x}, overline{1}, , }} terms
	5.1 Graph languages for KA_{{overline{x}, overline{1}, , }}
	5.2 Word languages for KA_{{overline{x}, overline{1}, }}

	6 PSPACE decidability for KA_{{overline{x}, overline{1}, }} terms
	6.1 Saturable paths for RSUB
	6.2 Automata from saturable paths

	7 Conclusion and Future directions
	A Slight Extensions of theorem: LANG and ORD
	B Proof of corollary: graph characterization
	C Proof of proposition: witness
	D Proof of lemma: saturable path
	E Proof of lemma: sound and completeness

	p038-Heurtel
	1 Introduction
	2 LOPP: Linear optical quantum circuits with single-photon semantics
	2.1 Syntax and single-photon semantics
	2.2 Simpler equational theory of LOPP
	2.3 Useful triangular forms

	3 LOfi-calculus
	3.1 Fock space
	3.2 Syntax and many-photon semantics
	3.3 Equational theory of LOfi

	4 Unique normal forms leading to the completeness of the LOfi-calculus
	4.1 Deterministic rewriting procedure
	4.2 Normal forms of the LOfi-calculus
	4.3 The normal forms are unique: sketch of the proof
	4.4 Completeness of the LOfi-calculus: Proof of Theorem 31

	5 Outlook
	A Notations
	B Properties of the triangular forms of Section 2.3
	C Choice of the generators
	D Derivation in LOPP of the rule (14)

	p039-Barrett
	1 Introduction
	2 Preliminaries
	3 The Merge and Eversion Lemmas
	4 Strict Linearity
	5 Cut Elimination
	6 Conclusion
	A Omitted proofs

	p040-Kirst
	1 Introduction
	2 Preliminaries
	3 Basics of Bi-intuitionistic Logic
	3.1 Syntax
	3.2 Axiomatic Calculus
	3.3 Basic Proof-Theoretic Results
	3.4 Constant Domain Axioms
	3.5 Constant Domain Kripke Semantics

	4 A Forest of Lindenbaum Lemmas
	4.1 Standard Lindenbaum Lemma
	4.2 Constant Domain Lindenbaum Lemma
	4.3 Dual Constant Domain Lindenbaum Lemma

	5 Completeness and Conservativity
	6 Discussion
	6.1 Coq Development
	6.2 Related Work
	6.3 Future Work

	A Appendix

	p041-Lyon
	1 Introduction
	2 Logical Preliminaries
	3 Polytree Sequent Systems
	3.1 Semantics and Proof Systems
	3.2 Reachability Rules
	3.3 The Domain Shift Rule (ds)
	3.4 Soundness and Completeness
	3.5 Intuitionistic Subsystems

	4 Cut-Elimination
	5 Concluding Remarks
	A Soundness

	p042-Lyon
	1 Introduction
	2 Gödel-Löb Provability Logic
	3 Labeled and Tree Sequent Systems
	3.1 Labeled Sequents
	3.2 Labeled Tree Sequents

	4 Linearizing Tree Sequents in Proofs
	5 Sequent Systems and Correspondences
	5.1 Gentzen, Cyclic, and Non-Wellfounded Systems
	5.2 Completing the Correspondences

	6 Concluding Remarks
	A Proofs for Section 4

	p043-Ragot
	1 Untyped nets
	1.1 Directed hypergraphs
	1.2 Multiplicative nets

	2 Multiplicative Linear Logic and proof nets
	3 Interaction of nets, orthogonality, and types
	4 Realisability Model: Adequacy
	5 Testability and tests
	6 Completeness
	A Additional Figures

	p044-AzevedodeAmorim
	1 Introduction
	2 Riesz spaces
	2.1 Order convergence
	2.2 Riesz subspaces, solids, ideals and bands
	2.3 Order-continuous functions
	2.4 Normed Riesz spaces
	2.5 Dualities
	2.6 Signed measures as Riesz spaces

	3 Models of linear logic
	3.1 Symmetric Monoidal Closed Structure
	3.1.1 Internal Homs
	3.1.2 Monoidal structure

	3.2 *-autonomous categories
	3.3 Cartesian and co-Cartesian structure

	4 Probabilistic coherence spaces and Banach lattices
	5 Categories of Cones and {PBanLat_1}
	6 A Probabilistic Calculus
	7 Related work
	8 Conclusion
	A A Metalanguage for Linear Operators and Markov Kernels
	B Proof of Lemma 38
	C Proof of Theorem 50
	D Proof of Theorem 57
	E Proof of Theorem 60

	p045-Rasekh
	1 Introduction
	2 (2-)Categories in Univalent Foundations
	3 Definition of Pseudo Double Categories
	4 (Pseudo) Double Set-categories
	5 Univalent Pseudo Double Categories
	6 Motivating Verity Double Bicategories
	7 Verity Double Bicategories
	8 Companion Pairs
	9 Univalent Double Bicategories
	10 Univalence and Weak Horizontal Invariance
	11 Conclusion

	p046-Hart
	1 Introduction
	1.1 Contributions
	1.1.1 The main connection (Section 5)

	2 Additional related work
	2.1 Construction of nonrecursive 2-HITs
	2.2 Orthogonal factorization systems

	3 Background on type theory and colimits
	3.1 Type system
	3.2 Graphs
	3.3 Colimits in U

	4 Wild categories
	4.1 Orthogonal factorization systems

	5 The main connection
	5.1 Definition of A-colimits
	5.2 Misleading approach
	5.3 Our approach
	5.4 Action on maps

	6 Creation of colimits
	7 Preservation of the left class of an OFS
	8 Mapping colimits to weak limits
	8.1 Decomposition of A-colimits into simpler pieces
	8.2 Weak continuity of cohomology

	9 Conclusion and future work

	p047-Faggian
	1 Introduction
	2 Setting the Scene: the Rewriting Ingredients
	3 Untyped Quantum lambda-Calculus
	4 Operational Semantics
	4.1 The Rewrite System {Q}
	4.2 Surface Reduction and Surface Normal Forms
	4.3 Sum-up Tables

	5 Rewriting Theory for {Q}: Overview of the Results
	6 Confluence and Finitary Standardization
	6.1 Surface Reduction has the Diamond Property
	6.2 Confluence of = = >
	6.3 Surface Standardization

	7 Probabilistic Termination and Asymptotic Normalization
	7.1 Accounting for Several Possible Reduction Sequences
	7.2 Asymptotic Normalization

	8 Related Work and Discussion
	A Convention for Garbage Collection
	B Technical properties
	C Surface Reduction has the Diamond Property
	D Finitary Standardization
	E Asymptotic normalization

	p048-Barrett
	1 Introduction
	2 Process theories
	3 Causal Bayesian networks
	4 Generalized causal models
	4.1 Combs and instruments
	4.2 Abstract and concrete causal structures
	4.3 Recovering classical causal Bayesian networks

	5 Interventions and the identification problem
	5.1 Quantum and generalized classical observation

	6 Quantum common causes and convolution of maps
	7 Identification
	8 Conclusion
	A Identifiability proofs
	B Choi-Jamiołkowski isomorphism and channel convolution
	B.1 Channel convolution

	p049-DeVisme
	1 Introduction
	2 ZW-Calculus for Qudit Systems
	2.1 Diagrams of ZW_d and their Interpretation
	2.1.1 The Interpretation

	2.2 Equational Theory
	2.2.1 Equations of the ZW _d-Calculus

	2.3 Minimality
	2.4 Completeness
	2.4.1 Normal Form and Universality
	2.4.2 Completeness

	3 Finite Dimensional Hilbert Spaces
	3.1 Diagrams and Interpretation
	3.2 Complete Equational Theory

	4 Related Work
	4.1 Qudit Framework
	4.2 Finite Dimensional Framework

	5 Conclusion
	A Asymmetric Presentation for Qudit Systems
	B Lemmas for Completeness of Qudit

