
Results on H-Freeness Testing in Graphs of
Bounded r-Admissibility
Christine Awofeso #

Birkbeck, University of London, UK

Patrick Greaves #

Birkbeck, University of London, UK

Oded Lachish #

Birkbeck, University of London, UK

Felix Reidl #

Birkbeck, University of London, UK

Abstract
We study the property of H-freeness in graphs with known bounded average degree, i.e. the property
of a graph not containing some graph H as a subgraph. H-freeness is one of the fundamental graph
properties that has been studied in the property testing framework.

Levi [10] showed that triangle-freeness is testable in graphs of bounded arboricity, which is a
superset of e.g. planar graphs or graphs of bounded degree. Complementing this result is a recent
preprint [7] by Eden et al. which shows that, for every r ≥ 4, Cr-freeness is not testable in graphs of
bounded arboricity.

We proceed in this line of research by using the r-admissibility measure that originates from the
field of structural sparse graph theory. Graphs of bounded 1-admissibility are identical to graphs of
bounded arboricity, while graphs of bounded degree, planar graphs, graphs of bounded genus, and
even graphs excluding a fixed graph as a (topological) minor have bounded r-admissibility for any
value of r [12].

In this work we show that H-freeness is testable in graphs with bounded 2-admissibility for all
graphs H of diameter 2. Furthermore, we show the testability of C4-freeness in bounded 2-admissible
graphs directly (with better query complexity) and extend this result to C5-freeness. Using our
techniques it is also possible to show that C6-freeness and C7-freeness are testable in graphs with
bounded 3-admissibility. The formal proofs will appear in the journal version of this paper.

These positive results are supplemented with a lower bound showing that, for every r ≥ 4,
Cr-freeness is not testable for graphs of bounded (⌊r/2⌋ − 1)-admissibility. This lower bound will
appear in the journal version of this paper. This implies that, for every r > 0, there exists a graph H

of diameter r + 1, such that H-freeness is not testable on graphs with bounded r-admissibility. These
results lead us to the conjecture that, for every r > 4, and t ≤ 2r + 1, Ct-freeness is testable in
graphs of bounded r-admissibility, and for every r > 2, H-freeness for graphs H of diameter r is
testable in graphs with bounded r-admissibility.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Property Testing, Sparse Graphs, Degeneracy, Admissibility

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.12

1 Introduction

A graph property is a class of graphs closed under isomorphisms. A property-tester for
a property P is a probabilistic algorithm that receives as input the size of a graph G, a
distance parameter ϵ > 0 (among potentially other parameters), and oracle access to the
graph G. The algorithm accepts with probability at least 2/3 any input from P and rejects
with probability at least 2/3 an input that it is ϵ-far from the property P . The term “ϵ-far”
is a notion of distance that depends on the exact problem setting and discuss it further

© Christine Awofeso, Patrick Greaves, Oded Lachish, and Felix Reidl;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 12; pp. 12:1–12:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cawofe01@student.bbk.ac.uk
https://orcid.org/0009-0000-3550-1727
mailto:p.greaves@bbk.ac.uk
https://orcid.org/0009-0007-0752-0526
mailto:o.lachish@bbk.ac.uk
https://orcid.org/0000-0001-5406-8121
mailto:f.reidl@bbk.ac.uk
https://orcid.org/0000-0002-2354-3003
https://doi.org/10.4230/LIPIcs.STACS.2025.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Results on H-Freeness Testing in Graphs of Bounded r-Admissibility

below. The complexity measure of a property-tester is a function that bounds above the total
number of queries to the oracle the algorithm uses, as a function of the input parameters ϵ,
size of the graph and any other input parameters provided. A property is testable if it has a
property-tester whose query complexity is independent of the size of the input graph.

We study here the property of H-freeness, where H is a fixed known graph, i.e. the
property of graphs that do not have a subgraph isomorphic to H, which is one of the
fundamental graph properties that has been studied in the property testing framework.
H-freeness was studied in the dense, sparse and general graph models. In the dense model
it was shown implicitly in [1] that H-freeness is testable, for a more explicit result see [2].
Goldreich and Ron [8], showed that H-freeness is testable in the bounded degree graph model.
In an effort to move towards larger sparse1 graph classes, Czumaj et al. [4] showed that
H-freeness is testable in sparse graphs when H is a tree. This result is most likely tight for
sparse graphs as Alon et al. [3] showed that triangle-freeness is not testable in sparse graphs.

While this settles the question for the most general notion of sparse graphs, the question
is still open for a plethora of sparse graph subclasses which are more structured. Possibly
the most famous among them is the class of planar graphs. Czumaj et al. [5] showed that
H-freeness is testable for this class. Proceeding in this line of research, and moving to a much
larger class of sparse graphs, Levi [10] showed that triangle-freeness is testable in graphs of
bounded arboricity, which is a superset of the family of planar graphs. In Eden et al. [7] it
is shown that, for every r ≥ 4, Cr-freeness is not testable in graphs of bounded arboricity.
Specifically, it is shown that, in graphs of bounded arboricity, the query complexity of
C4-freeness and C5-freeness is Θ̃(n1/4), the query complexity of C6-freeness is Õ(n1/2), and
for every k ≥ 6, the query complexity of C6-freeness is O(n1−1/⌊k/2⌋) and Ω(n1/3). These
results also leave open the question of which sparse classes – somewhere between bounded
arboricity and planar graphs – and which values of r is Cr-freeness testable.

In order to identify a suitable notion of sparseness, we draw inspiration from the field
of structural sparse graph theory and propose the r-admissibility measure of graphs as a
parameter that governs the testability of H-freeness. 2-admissibility was originally defined
in [9], where it was simply referred to as admissibility. The more general notion of r-
admissibility2 for natural values of r was first defined in [6]. Strictly speaking, r-admissibility
is a family of measures where r governs how “deep” into the graph we look. We remark that,
graph classes with bounded 1-admissibility are equivalent to graphs with bounded arboricity
(both measures lie within a constant factor of each other). Many well-known sparse classes,
like planar graphs, graphs of bounded genus, graphs excluding a fixed (topological) minor
and graphs of bounded degree have bounded r-admissibility [12, 14, 6] meaning that the
r-admissibility of any member of such a class can be bounded by a function which only
depends on r and the class itself.

We show that C4-freeness is testable in graphs with bounded 2-admissibility, and that
H-freeness, for every H of diameter 2, is also testable in graphs with bounded 2-admissibility
and in particular C5-freeness is testable in graphs with bounded 2-admissibility. Using
our techniques it is possible to show that C6 and C7 are testable in graphs with bounded
3-admissibility. This result will appear in the journal version of this paper that will also
contain a lower bound which shows that, for every r ≥ 4, Cr-freeness is not testable in

1 Here sparse should be understood as having a linear number of edges or equivalently bounded average
degree

2 If you are interested in a more formal definition in this stage, we suggest that you proceed to Section 3,
and read up to Proposition 3 before you proceed here.

C. Awofeso, P. Greaves, O. Lachish, and F. Reidl 12:3

graphs of bounded (⌊r/2⌋ − 1)-admissibility. This implies that for every r > 0, there exists
a graph H of diameter r + 1 such that H-freeness is not testable on graphs with bounded
r-admissibility. The above leads us to conjecture that, for every r ∈ N and t ≤ 2r + 1,
Ct-freeness is testable in graphs with bounded r-admissibility and furthermore for every
r > 2, H-freeness, for H of diameter r, is testable in graphs with bounded r-admissibility.

Techniques

All the lower bounds use Yao’s Minimax Principle [13] and the construction of suitable input
instances. The graph constructions used for the lower bounds, unsurprisingly, are very similar
to the ones used in [7] to prove a lower bound on testing C4-freeness in bounded arboricity
graphs. We chose to provide our lower bounds here and not refer to [7], to demonstrate
how they apply to testing Cr-freeness of graphs of bounded ⌊r/2⌋ − 1-admissibility, for
natural values of r. This is not covered in [7]. In addition, the graphs provided in the proof
also demonstrate that, for every natural value of r and large enough n, there are bounded
r-admissibility graphs with n vertices some of which have degree Ω(

√
n). It should be noted

that these graphs are also “far” from being planar.
All upper bounds are based on the same algorithm and can be seen as a variation of the

“standard” BFS (breadth first search) based testers for the bounded degree graph model.
Many examples of “standard” BFS testers can be found in [8]. In such testers, initially a
small subset of the vertices of the graph is selected uniformly at random (u.a.r.) and then a
fixed depth BFS is performed (using oracle queries) from every vertex in the selected set.
The tester presented here (Algorithm 1) differs from the “standard” testers at the BFS stage
as follows: While the “standard” testers queries proceeds with the BFS by querying all
neighbours of a vertex v, Algorithm 1 randomly selects size at most min{α, degG(v)} subset
of [degG(v)], where α is a parameter provided to the algorithm and degG v is the degree of
the vertex v in the input graph G, and queries the identity of the ith neighbour of the vertex,
for every i in the selected set. We note Algorithm 1 behaves like the “standard” BFS based
tester if the input graph has maximum degree α.

H-subgraphAlgorithm 1 has a one-sided error, i.e. it only rejects if it detects an H-subgraph (a
subgraph that is isomorphic to H), therefore, to prove its correctness, it is sufficient to show
that, given oracle access to a bounded admissibility graph that is ϵ-far from being H-free,
Algorithm 1 rejects with high probability.

To prove the required rejection probability we show the following. Given an input graph
G with bounded admissibility, we can remove edges from the graph in a process we refer to
as trimming to obtain a new auxiliary graph G̃. We relate this graph G̃ to G in two ways:
first we show that if G is far from H-freeness, then so is G̃. Then we show that if there
exists an H-subgraph in G̃, then this subgraph includes a vertex with low degree, such that
if Algorithm 1 starts its search from this vertex in G (not in G̃), then with high probability
it will discover an H-subgraph (though not necessarily the one we just referred to). The
“high probability” is proved to be sufficiently large by using the properties of the graph G̃.
Note that the construction of G̃ is only a tool for this proof, it is not actually constructed by
the testing algorithm.

Finally, we show that when G̃ is far from being H-free, then there are many such low
degree vertices in G. This implies that with sufficiently high probability Algorithm 1 initially
selects such a vertex.

STACS 2025

12:4 Results on H-Freeness Testing in Graphs of Bounded r-Admissibility

2 Preliminaries

N ,R,[k] We use N for the set of integer numbers, R for the set of real numbers, R+ for the set of
positive real numbers. For an integer k, we use [k] as a shorthand for the set {1, 2, . . . , k}.
In this paper, all graphs are simple. For a graph G we use V (G) and E(G) to refer to its
vertex- and edge-set, respectively. For a vertex u ∈ V (G) we use the notation NG(u) to
denote the set of all of u’s neighbours in G. We omit the subscript, when clear for context.
The diameter of a graph is the maximum of the distance between u and v over all pairs of
vertices u and v in V (G).

Heavy We use the notation Heavyα(G), where α ∈ N to denote the set of vertices in V (G) that
have degree larger than α. We write Heavyα when G is clear from context. In some places
we will use the notation without initially stating the value of α, in those cases α is calculated
further down when its concrete value is required.

xP y For sequences of vertices x1, x2, . . . , xℓ, in particular paths, we use notations like x1Pxℓ,
x1 or x1P or Pxℓ to indicate subpaths P that are part of the larger path. For example, the
notation uPv for a path u, a, b, c, v would mean that P is the subpath a, b, c, whereas uP in
the same context would mean that P is the subpaths a, b, c, v. All the paths in this paper
are simple. Though paths here are undirected, we often treat them as directed by specifying
a start and end vertex.

Property testing

We work only with properties of (p, r)-admissible graphs, which we formally define in the
next section. At this stage it is enough to know that both p and r take integer values that
are strictly positive and that a (p, r)-admissible graph of n vertices can have at most pn

edges.
graph property,

far, close
A graph property (or simply property in this paper) is a class of graphs closed under

isomorphism and we say that a graph has the property if it is contained in this class. The
distance of a graph G from a property of (p, r)-admissible graphs is the minimum number
of edges that must be removed/added to G in order to arrive at a (p, r)-admissible graph
with the property. We say a graph is ϵ-far from a property of (p, r)-admissible graph, if
the graph’s distance to the property is at least ϵpn (an ϵ portion of the maximum number
of edges possible in (p, r)-admissible graphs) and otherwise we say that it is ϵ-close to the
property.

Property tester A property tester is a randomised algorithm that receives oracle access to a graph as part
of its input. An oracle can answer the following queries for vertices u, v ∈ V (G):

the degree deg(v) of a vertex v (degree query),
the ith neighbour of v in G (neighbour query),
whether {u, v} is an edge in G (adjacency query).

By combining these queries it can in particular reveal the whole neighbourhood of a vertex v

using 1 + deg(v) queries. The oracle returns the special symbol “⊥” when asked out of range
neighbour queries, e.g. when asked to return the 10th neighbour of a vertex with less than
10 neighbours.

Formally, a property tester for a property P of (p, r)-admissible graphs, is a randomized
algorithm A that receives as input parameters n ∈ N , p, r ∈ [n], ϵ > 0 and oracle access to
a (p, r)-admissible graph G with n vertices. If the graph G is ϵ-far from P , then A rejects
with probability at least 2/3. If the graph G is in P , then A accepts with probability 1
(if the tester is one-sided) or with probability at least 2/3 (if the tester is two-sided). The

C. Awofeso, P. Greaves, O. Lachish, and F. Reidl 12:5

complexity measure of a property tester is a function depending on n, p, r, and ϵ which
bounds the maximum number of queries the tester makes on an input graph with those
parameters.

H-free,
H-subgraph

In this paper, we study the property of (p, r)-admissible graphs that are H-free. That is,
graphs that are (p, r)-admissible and do not have any H-subgraph (a subgraph isomorphic
to H). In some cases, H may be a specific graph, for example, H may be a Ci (cycle of
length i), for some i ≥ 3 and we then refer to the problem as Ci-freeness.

Knowledge graphIn further sections, we use the term knowledge graph to refer to the graph that includes
all the vertices, edges and anti-edges (learned from negative answers to neighbour queries)
that the algorithm discovered via queries.

3 Graph degeneracy and admissibility, related notations and necessary
lemmas

G, ordered graph,
π(G)

An ordered graph is a pair G = (G, ≤) where G is a graph and ≤ is a total order relation on
V (G). We write ≤G to denote the ordering of G and extend this notation to derive relations
<G, >G, ≥G. For simplicity we will call G an ordering of G and we write π(G) for the set of
all possible orderings of G.

before and after
neighbourhood,
N

−
G (u), N

+
G (u),

∆+
G (u), ∆−(G)

We use the same notations for graphs and ordered graphs, additionally we write N−
G (u) :=

{v ∈ N(u) | v <G u} for the before neighbourhood and N+
G (u) := {v ∈ N(u) | v >G u} for

the after neighbourhood of a vertex u ∈ G. We omit the graphs in the subscripts if clear
from the context. We further use deg−

G (u) := |N−
G (u)| and deg+

G (u) := |N+
G (u)|, as well as

∆−(G) := maxu∈G deg−
G (u) and ∆+(G) := maxu∈G deg+

G (u). We omit subscripts if clear from
the context.

▶ Definition 1 (Degeneracy). DegeneracyA graph G is γ-degenerate if there exists an ordering G (a
degeneracy ordering) such that ∆−(G) ≤ γ.

In particular, for every vertex v in a γ-degenerate graph G and every degeneracy ordering G
of the graph it holds that deg−

G (v) ≤ γ. Consequently, the number of edges in a γ-degenerate
graph is bounded by γn. A degeneracy ordering of a graph can be computed in time O(n+m)
and O(γn) for γ-degenerate graphs [11].

Admissibility

Figure 1 On the left, the green highlighted edges form an example of a maximal 2-admissible
path packing of size 2 that is rooted at the blue vertex in position 5. On the right, the yellow
highlighted edges form an example of a maximal 3-admissible path packing of size 3 that is rooted at
the blue vertex in position 5. In both packings the only vertex common to all the paths is their root.
Also in both packing every path’s end vertex is smaller than the root and all the path’s internal
vertices are all larger than the root.

r-admissible pathLet G = (G, ≤) and v ∈ V (G). A path vPx is r-admissible in G if its length ∥vPx∥ ≤ r,
x <G v and min P >G v. That is, the path goes from v to x using only vertices w such that
w >G v and x satisfies v >G x.

STACS 2025

12:6 Results on H-Freeness Testing in Graphs of Bounded r-Admissibility

Target For every integer i > 0 we let Targeti
G(v) be the set of all vertices in u ∈ V (G) such that

u <G v and u is reachable from v via an r-admissible path vPu of length exactly i. We omit
the subscript G when it is clear from context.

(r,G)-admissible
path packing

An r-admissible path packing is a collection of paths {vPixi}i with joint root v and the
additional properties that every path vPixi is r-admissible and the subpaths Pixi are all
pairwise vertex-disjoint (cf. Figure 1). In particular, all endpoints {xi}i are distinct.ppr

G, admr(G),
admr(G)

We
write ppr

G(v) to denote maximum size of any r-admissible path packing rooted at v.

▶ Definition 2 (Admissibility). The r-admissibility of an ordered graph G, denoted admr(G)
and the admissibility of an unordered graph G, denoted admr(G) are3

admr(G) := max
v∈G

ppr
G(v) and admr(G) := min

G∈π(G)
admr(G).

Admissibility
ordering

If G is an ordering of G such that admr(G) = admr(G), then we call G an admissibility
ordering of G. The 1-admissibility of a graph coincides with its degeneracy and therefore
such orderings are easily computable in linear time. For r ≥ 2 an optimal ordering can also
be computed in linear time in n, albeit the machinery required is much more complicated,
see [6].

(p, r)-admissible,
admr-bounded

We say that a graph G is (p, r)-admissible if admr(G) = p. Note that, by definition, if
a graph G is (p, r)-admissible it is also (p, r′)-admissible for all r′ ≤ r. We call a graph
class admr-bounded if all of its members are (p, r)-admissible for some finite value p.

The following is a well-known result in the field of sparse graphs, we replicate it here
using our notation for completeness:

▶ Proposition 3. Let r and p be natural numbers, and G = (G, ≤) such that admr(G) = p,
then for every v ∈ V (G), and h ∈ [r] it holds that |Targeth

G(v)| ≤ p(p−1)h−1 and in particular
|N−

G (v)| ≤ p.

Proof. Let v be an arbitrary vertex in V (G), and h ∈ [r]. Note first that, by construction,
N−

G (v) = Target1
G(v), and hence we only need to prove the bound on |Targeth

G(v)|.
For every u ∈ Targeth

G(v), let vPuu be an r-admissible path of length h; such a path
exists by the definition of Targeth

G(v). Let W be a subgraph of G defined as follows: V (W)
includes exactly the vertex v, all the vertices in Targeth

G(v) and all the vertices in Pu, for
every u ∈ Targeth

G(v); and E(W) includes every edge of G participating in a path vPuu for
some u ∈ Targeth

G(v).
By construction, the set of vertices Targeth

G(v) is independent in W and for every
w ∈ Targeth

G(v), degW (w) = 1. Also by construction, the distance in W of v from any vertex
in Targeth

G(v) is at most h. Hence, we can find a rooted tree T in W with the following
properties: v is the root of T , the set Targeth

G(v) is the set of leaves of T and the depth of T

is at most h.
We next show that the degree of every vertex in the tree is at most p. This implies that

indeed |Targeth
G(v)| ≤ p(p − 1)h−1 and in particular |N−

G (v)| ≤ p.
Let pv be the degree of v in W . Since T is a tree, there are at most pv edge disjoint

paths from v to the leaves of T (the vertices in Targeth
G(v)). These paths have length at

most h, they share only the vertex v, and they correspond to r-admissible paths of G. The
last part holds since u >G v, for every internal vertex u (non-leaf or root vertex) of T and,

3 Note that some authors choose to define the admissibility as 1 + maxv∈G ppr
G(v) as this matches with

some other, related measures.

C. Awofeso, P. Greaves, O. Lachish, and F. Reidl 12:7

for every w ∈ Targeth
G(v) (the leaves of T), it holds that w <G v. Therefore, these paths are

an r-admissible packing of G, and hence their number pv ≤ p, and in particular the degree
of v in T is at most p.

We now show that this applies also to every internal vertex y of T . We notice that it
also holds that w <G y, for every w ∈ Targeth

G(v) ∪ {v}. However, it is not necessarily the
case that u <G y when u is an internal vertex of T . This is resolved by noticing that for any
x ∈ Targeth

G(v) and path yPx in T , if P has a vertex that is smaller than y, then instead of
taking the path yPx, we take its shortest subpath yP ′x′ such that x′ <G y. Now, the same
reasoning we used for v implies that the degree of y in T is at most p. ◀

4 Upper bounds strategy and the testing algorithm

In this section we present Algorithm 1 which is used for all upper bounds presented. Al-
gorithm 1 receives as an input a graph H, a set of parameters including the parameter p and
oracle access to a graph G. We note that for each upper bound shown in this paper, the
parameters provided to Algorithm 1, in addition to p, are dependent on the graph H.

Algorithm 1 The PBFS.

Input: n ∈ N , p ∈ [n], α, τ ∈ R, fixed graph H and oracle access to a graph G

Set S0 = ∅
Repeat ⌈4α/(ϵp)⌉ times

Add to S0 an independently and u.a.r selected vertex from V (G)
for i = 1, 2, . . . , τ do

Set Si = ∅
for v ∈ Si−1 \

⋃i−2
j=0 Sj do

Query the degree of v

Set X = ∅
Repeat ⌈2α⌉ times

Add to X an independently and u.a.r selected integer k from [deg(v)]
if deg(v) ≤ ⌈α⌉ then

Set X = [deg(v)]
for k ∈ X do

query the identity of the k’th neighbour of v and add the answer to Si

if the knowledge graph contains a H-subgraph then
Reject

else
Accept

Algorithm 1 can be seen as a variation of the “standard” BFS (breadth first search) based
testers for properties of bounded degree graphs. In such testers, initially a small subset of
the graph’s vertices is randomly selected and then a fixed depth BFS is performed (using
oracle queries) from every vertex in the selected set.

Algorithm 1 differs from the “standard” testers, at the BFS stage: In the “standard”
tester the search is expanded to all neighbours of a discovered vertex (until the fixed depth
is reached). In contrast, Algorithm 1 only queries a subset of neighbours, specifically for

STACS 2025

12:8 Results on H-Freeness Testing in Graphs of Bounded r-Admissibility

a vertex v it randomly selects a size at most min{deg(v), ⌈α⌉} subset X ⊆ [degG(v)] and
then it queries the identity of every ith neighbour for i ∈ X. We call this type of search
pseudo-BFS and refer to it with the acronym PBFS.PBFS

▶ Lemma 4. On input n ∈ N , p ∈ [n], α, τ ∈ R, ϵ > 0, fixed graph H, the query complexity
of Algorithm 1 is O((α/(ϵp))ατ).

Proof. The proof follows directly from the algorithm. ◀

Upper bound strategy

Algorithm 1 has a one-sided error, i.e. it only rejects if it discovers an H-subgraph. That is,
once Algorithm 1 finished its last query, its knowledge graph has an H-subgraph). Therefore,
to prove its correctness, it is sufficient to show that, with high constant probability, it rejects
a bounded admissibility graph that is ϵ-far from being H-free.

To prove the required rejection probability we proceed as follows: given an input graph
G with bounded admissibility, a new graph G̃ is constructed by initially setting G̃ = G, and
then removing edges from G̃, in a process we refer to as trimming. We call G̃ the auxiliary
graph.

We relate th auxiliary graph G̃ to G in two ways: first we show that if G is far from
H-freeness, then so is G̃. Then we show that if there exists an H-subgraph in G̃, then this
subgraph includes a vertex with low degree, such that assuming Algorithm 1 starts its search
from this vertex in G (not in G̃), then with high probability it will discover an H-subgraph
of G (though not necessarily the one we just referred to). The “high probability” is proved to
be sufficiently large by using the properties of the graph G̃. Finally, we show that when G̃ is
far from being H-free, then there are many such low degree vertices in G. This implies that
with sufficiently high probability Algorithm 1 initially selects such a vertex in the sample
set S0.

The “trimming” process is problem dependent. The simplest case is for C4-freeness
in adm2-bounded graphs and we provide some intuition here before the full formal treatment
in the next section. Suppose that v ∈ Heavyα and u ∈ Target2

G(v). Suppose also that the set
X of their common neighbours, not including those in Heavyα, is small relative to the degree
of v in G. In the trimming process we then remove all edges that are incident to v as well as
some vertex in X. We can then show that (i) we did not remove too many edges and (ii) if u

and v participate in a C4-subgraph (a subgraph isomorphic to a C4) in G̃, then a large enough
portion of the neighbours of v, are also neighbours of u and are not in Heavyα. Therefore,
if v is encountered in the first iteration of the external loop of Algorithm 1 (guaranteed to
happen if S0 has a neighbour of v that is not in Heavyα), then with high probability the
knowledge graph will include two edges vw1 and vw2, where w1 and w2 are not in Heavyα

and are common neighbours of both u and v. Since the PBFS continues with these common
neighbour and they are both not in Heavyα, the edges uw1 and uw2 will also appear in
the knowledge graph. Thus, the knowledge graph contains a C4-subgraph. Similar – but
more involved – ideas work for H-freeness, when H has diameter 2 and for C6-freeness and
C7-freeness.

It is important to note that proving the above properties (i) and (ii) hold relies on
the graph G being admr-bounded (for some problem-dependent value of r), and we make
extensive use of Proposition 3.

C. Awofeso, P. Greaves, O. Lachish, and F. Reidl 12:9

5 Testing C4-freeness in adm2-bounded graphs

In this section we fix some ϵ > 0, an integer p > 0, α = 32p2/ϵ. The input graph G is
(p, 2)-admissible and we let G be an ordering of G with adm2(G) = p.

Trimming. In the trimming procedure we construct G̃ from G. We begin with G̃ = G and
then remove edges from E(G̃) as follows:
1. For every v ∈ Heavyα(G), and u ∈ N−(v), the edge uv is removed from E(G̃).
2. For every v ∈ V (G) and u ∈ Target2

G(v), if |NG̃(u) ∩ NG̃(v)| ≤ degG(v)/(α/2), then for
every w ∈ NG̃(u) ∩ NG̃(v), the edge vw is removed from E(G̃).

3. The previous step is repeated until it does not result in the removal of any edges from
E(G̃).

We first show that this trimming procedure preserves farness:

▶ Lemma 5. If G is ϵ-far from being C4-free, then G̃ is ϵ/2-far from being C4-free.

Proof. Initially E(G̃) = E(G) and then edges are removed from E(G̃) in Steps 1 and 2 of
the trimming. We next show that, in Step 1 of the trimming, at most ϵ|E(G)|/4 edges are
removed from E(G̃), and that the same applies to Step 2 of the trimming. This implies the
lemma.

In Step 1 of the trimming, for every v ∈ Heavyα(G) we remove |N−
G (v)| edges. Thus,

the total number of edges removed in this step is at most
∑

v∈Heavyα(G) |N−
G (u)|. By

Proposition 3, for every u ∈ V (G), it holds that |N−
G (u)| ≤ p. Hence, the preceding sum is

at most
∑

v∈Heavyα(G) p = p · |Heavyα(G)| and

p · |Heavyα(G)| = p · |Heavyα(G)|
|E(G)| |E(G)| ≤ p · |Heavyα(G)|

α|Heavyα(G)|/2 |E(G)| = 2p

α
|E(G)| <

ϵpn

4 ,

where the first inequality follows since |E(G)| ≥ α|Heavyα(G)|/2 (the sum of degrees is twice
the number of edges), and the last equality holds because α = 32p2/ϵ.

In Step 2 of the trimming, for every v ∈ V (G) and u ∈ Target2
G(u) at most degG(v)/(α/2)

edges are removed. Thus, in this step, at most
∑

v∈V (G)
∑

u∈Target2
G(v) degG(v)/(α/2) edges

are removed. By Proposition 3, for every u ∈ V (G), it holds that |Target2
G(u)| < p2. Hence,

the preceding sum is strictly less than
∑

v∈V (G) p2 degG(v)/(α/2) = (ϵ/8)
∑

v∈V (G) degG(v) ≤
ϵpn/4, where the first equality follows because α = 32p2/ϵ. ◀

▶ Lemma 6. Every C4-subgraph C of G̃ that has more than one vertex from Heavyα(G),
has exactly two vertices w1 and w2 from Heavyα(G), all the other two vertices of C are
neighbours of both w1 and w2 and, there exists i ∈ {1, 2}, such that |NG(w1) ∩ NG(w2)| ≥
degG(wi)/(α/2).

Proof. Let C be a C4-subgraph of G̃ such that |V (C) ∩ Heavyα(G)| > 1 and w1 and w2 be
two vertices in V (C) ∩ Heavyα(G). Assume without loss of generality that w1 >G w2, and
otherwise rename the vertices accordingly.

According to Step 1 of the trimming, w1w2 ̸∈ E(G̃) and hence w1 and w2 are not adjacent
in C. By the same reasoning w1 and w2 are the only vertices of Heavyα(G) in V (C). We
conclude that C consists of the two vertices w1 and w2 in Heavyα(G) and two vertices that
are not in Heavyα(G) and are neighbours of both w1 and w2.

Let v ∈ V (C)\Heavyα(G) and Y = NG̃(w1)∩NG̃(w2). By the same reasoning as before we
may conclude that v >G w1. Thus, as w1 >G w2, w2 ∈ Target2

G(w1). Consequently, by Step 1
of the trimming, |Y | > degG(w1)/(α/2), since otherwise Y = ∅ in contradiction to v ∈ Y

STACS 2025

12:10 Results on H-Freeness Testing in Graphs of Bounded r-Admissibility

(because v is adjacent to both w1 and w2). As G̃ is a subgraph of G and Y ∩ Heavyα(G) = ∅
(because of Step 1 of the trimming), we can conclude that also in the graph G it holds that
|(NG(w1) ∩ NG(w2)) \ Heavyα(G)| > degG(w1)/(α/2). ◀

The next two lemmas show that if the set S0 selected by Algorithm 1 contains specific types
of vertices from V (G) \ Heavyα(G), then it rejects with sufficient probability to prove the
main Theorem of this section.

▶ Lemma 7. Suppose that Algorithm 1 is executed with oracle access to G and parameters p,
H = C4, α = 32p2/ϵ, τ = 3 and let S0 be the set selected by the algorithm in the first step.
Assume there exists a vertex v ∈ S0 \ Heavyα(G) such that v is in a C4-subgraph C of G̃

and C satisfies |V (C) ∩ Heavyα(G)| ≤ 1. Then Algorithm 1 rejects with probability 1.

Proof. Let v be as in the statement of the lemma. Since C is a C4-subgraph that includes,
together with v, three vertices from V (C) \ Heavyα(G) in G, it follows that C includes a
path P of length 2 that consists of v and two other vertices from V (C) \ Heavyα(G).

Now, as Algorithm 1 will execute a PBFS of depth 3 (we set τ = 3) it is guaranteed that
the knowledge graph constructed by Algorithm 1 will include all vertices of P and all edges
incident to these vertices. In particular, the knowledge graph eventually has C as a subgraph
with probability 1 and the claim follows. ◀

▶ Lemma 8. Suppose that Algorithm 1 is executed with oracle access to G and parameters,
p, H = C4, α = 32p2/ϵ, τ = 3. Let S0 be the set selected by the algorithm in the first
step. Assume there exists a vertex v ∈ S0 \ Heavyα(G) such that v is in a C4-subgraph C

of G̃ and C satisfies |V (C) ∩ Heavyα(G)| ≥ 2. Then Algorithm 1 rejects with probability at
least 5/6.

Proof. Let v be as in the statement of the lemma. By Lemma 6, C has exactly two vertices
w1 and w2 from Heavyα(G), the other two vertices of C are neighbours of both w1 and w2
and are not in Heavyα(G). Since degG(v) < α, Algorithm 1 queries all of v’s edges, in the
first iteration of the PBFS. Thus after the first iteration of the PBFS the knowledge graph
already contains the edges vw1 and vw2.

We show next that with with probability at least 5/6 Algorithm 1 queries a neighbour
u ≠ v of w1 that is not in Heavyα(G) and is also a neighbour of w2, so after the second
iteration of the PBFS the knowledge graph also contains the edge uw1. We note that this
implies the lemma, because in the third iteration of the PBFS (this is the last iteration,
since τ = 3) Algorithm 1 will discover all the edges incident to u, since degG(u) ≤ α, and in
particular it will discover the edge uw2, which implies that after the end of the PBFS from v

the knowledge graph will contain a C4-subgraph and hence Algorithm 1 will reject.
Let Y = (NG(w1) ∩ NG(w2)) \ Heavyα(G). According to Lemma 6, there exists i ∈

1, 2 such that |Y | ≥ degG(wi)/(α/2). Without loss of generality assume that i = 1 and
otherwise rename w1 and w2 accordingly. Since degG(w1) ≥ α, we can conclude that
|Y | ≥ 2 and hence we can assume that at least 1/2 of the vertices in Y are not v. Thus,
|Y \ {v}| ≥ degG(wi)/(2α/2)). Algorithm 1 selects a vertex from N(w1) independently and
u.a.r. 2α times and hence the probability that none of them are from |Y \ {v}| is at most
(1 − 1/α)2α < e−2 < 1/6. So with probability at least 5/6 Algorithm 1 finds a vertex u in
Y \ {v}) and the claim follows. ◀

▶ Theorem 9. Suppose that Algorithm 1 is executed with oracle access to G and parameters,
p, H = C4, α = 32p2/ϵ, τ = 3, then (i) if G is C4-free, then Algorithm 1 accepts with
probability 1; and (ii) if G is ϵ-far from being C4-free, then Algorithm 1 rejects with probability
at least 2/3. Algorithm 1 uses at most O(p7/ϵ5) queries.

C. Awofeso, P. Greaves, O. Lachish, and F. Reidl 12:11

Proof. The query complexity of the algorithm follows from Lemma 4 and the values of α

and τ .
If G is C4-free, then the knowledge graph constructed by Algorithm 1 will not have a

C4-subgraph and hence Algorithm 1 accepts with probability 1. So assume in the sequel that
G is ϵ-far from C4-freeness.

Let U be the set of all vertices in V (G) \ Heavyα(G) that participate in a C4-subgraph
of G̃. Since the degree of all vertices in V (G) \ Heavyα(G) is less than α, if we remove every
edge that is incident to a vertex from U , then the total number of edges we removed is
bounded above by α|U | and the resulting graph does not have a C4-subgraph. Now, by
Lemma 5, G̃ is ϵ/2-far from C4-freeness it must be the case that α|U | ≥ ϵnp/2. Consequently,
|U | ≥ ϵnp/(2α).

Algorithm 1 selects ⌈4α/(ϵp)⌉ vertices u.a.r. for the set S0. The probability that none of
them are from U is at most (1 − ϵp/(2α))4α/(ϵp) < e−2 < 1/6. So with probability at least
5/6, the set S0 includes a vertex v ∈ V (G) \ Heavyα(G) that participates in a C4-subgraph
of G̃.

Let C be a C4-subgraph of G̃ that includes a vertex v ∈ V (G) \ Heavyα(G). One of
two cases applies to C: Either (a) C includes at most one vertex from Heavyα(G) or (b)
C includes more than one vertex from Heavyα(G). We now show that given v ∈ S0, with
probability at least 5/6, the knowledge graph of Algorithm 1 eventually has a C4-subgraph.
By using the union bound we can conclude that Algorithm 1 rejects with probability at
least 2/3.

According to Lemma 7, if case (a) occurs, then Algorithm 1 rejects with probability 1.
According to Lemma 8, if case (b) occurs, then Algorithm 1 rejects with probability at
least 5/6. We conclude that Algorithm 1 rejects with probability at least (5/6)2 > 2/3, as
claimed. ◀

6 Testing H-freeness in adm2-bounded graphs when H has
diameter 2

In this section we fix ϵ > 0, p ∈ N , α = 3|V (H)|⌈ϵ−122|V (H)|+4p2 log p⌉. As before, G is an
arbitrary (p, 2)-admissible graph and G is an ordering of G with adm2(G) = p. Finally, H is
an arbitrary diameter 2 graph.

The trimming process in this section depends on the structure of H and requires an extra
construct (H). Let us first provide some intuition why this is required.

Suppose that H̃ is an H-subgraph of G̃ and h is the largest vertex in V (H̃) \ Heavyα(G).
We show below that the number of vertices like h in G̃ is large enough to ensure that with
high enough probability one of them will be in the set S0 selected by Algorithm 1.

Ideally, in H̃, every vertex u ∈ V (H̃), is reachable from h via vertices not from Heavyα(G).
This is an ideal case, because of the following. The depth of the PBFSs used is |V (H)|. Thus,
as the PBFS queries all the neighbours of vertices V (H̃) \ Heavyα(G), all these vertices will
be discovered and also all edges incident to them. This means that the algorithm discovers
all the edges of H̃ except those that are incident on two vertices from V (H̃) ∩ Heavyα(G).
The trimming we use ensures that there are no edges between heavy vertices, so in particular,
this latter case cannot occur and Algorithm 1 will discover H̃.

If we do not find ourselves in the ideal case, H̃ has a separator K̃ that consists only of
vertices from Heavyα(G). By similar reasoning to the ideal case, if h is included in the set
S0 that Algorithm 1 selects, it discovers all the vertices in H̃ that can be reached from h via
vertices in V (H̃) \ Heavyα(G), this includes all the vertices of K̃. Let us denote the subgraph
found so far by H̃1. The algorithm now still needs to find the remaining vertices of H̃ that
are “behind” the separator, let us call denote this subgraph by H̃2.

STACS 2025

12:12 Results on H-Freeness Testing in Graphs of Bounded r-Admissibility

The problem here is that the vertices K̃ of on the boundary between H̃1 and H̃2 have a
high degree, therefore the probability to discover H̃2 may be arbitrarily small. We therefore
design a trimming process that will ensure that there are many “useful” H̃2-subgraphs
H̃ ′

2 isomorphic to H̃2 in G̃ that can serves to complete H̃1 into a graph isomorphic to H.
Specifically, a subgraph H̃ ′

2 is useful if K̃ ⊂ V (H̃ ′
2) and there exists an isomorphism from H̃ ′

2
to H̃2 which maps every vertex of K̃ to itself.

Let Q′ be a maximum family of vertex disjoint useful H̃2-subgraphs with respect to the
fixed graph H̃1. If Q′ is small then we can remove them all simply by removing all edges
between members of Q′ and K̃. If this is not possible, Q′ must be sufficiently large and the
PBFS can discover one of its members with sufficiently high probability.

The above is a simplification, since H̃ might disconnect into more than two components
when removing the separator K̃. In this case we also need to ensure that the members of Q′

are sufficiently disjoint.
Finally, in the preceding discussion we fixed a single H̃ with separator K̃, however H̃ is of

course not known in advance. We therefore enumerate all possible sets K ⊂ H that can take
the role of K̃ (not that, by Proposition 3, we only need to look at sets of size < p2). Since K

consists only of heavy vertices and our trimming removes edges between heavy vertices, we
can further assume K to be independent.

▶ Definition 10 (Kernel and H).Kernel, H A kernel K of the graph H is an independent subset of
V (H) of size less than p2 for which H has two subgraphs H1 and H2 such that
1. both H1 and H2 are induced and connected,
2. V (H1) ∩ V (H2) = K,
3. V (H1) ∪ V (H2) = V (H),
4. every edge of H that is incident to a vertex from V (H1) and V (H2), is incident to an

edge from K (K is a vertex separator in H),
5. the induced subgraph of H1 on the vertices V (H1) \ K is connected.

We define H to be the family of ordered pairs (H2, K) over all kernels K of H.

▶ Definition 11 (Sibling subgraphs). Let L be a a subset of V (G̃), and R1 and R2 be two
subgraphs of G̃, both including the set of vertices L. We say that R1 and R2 are siblings if
V (R1) ∩ V (R2) = L and there exists an isomorphism ϕ from R1 to R2, such that, for every
ℓ ∈ L, ϕ(ℓ) = ℓ.

We say a set of graphs is a set of sibling graphs by L, if every pair of graphs in the set are
siblings by L.

Trimming Trimming. In the trimming procedure we construct G̃ from G. We begin with G = G̃ and
then remove edges from E(G̃) as follows:
1. For every v ∈ Heavyα(G), and u ∈ N−(v), the edge uv is removed from E(G̃).
2. For every v ∈ Heavyα(G), (H2, K) ∈ H and size |K| subset M ⊆ Target2

G(v), if a
maximum set of vertex disjoint H2-subgraphs of G̃ that are siblings by M , and are
isomorphic to H2 so that the vertices of M are mapped to the vertices of K, has size at
most 2|V (H)| degG(v)/α, then, for every vertex w in a subgraph of this set, we remove
every edge incident to w and a vertex in Target2

G(v).
3. The previous steps are repeated until it does not result in the removal of any edges from

E(G̃).

▶ Proposition 12. For every v ∈ Heavyα(G), (H2, K) ∈ H and size |K| subset M ⊆
Target2

G(v), if in some execution of Step 2, for a maximum family of vertex disjoint H2-
subgraphs that are siblings by M , and are isomorphic to H2 so that the vertices of M are

C. Awofeso, P. Greaves, O. Lachish, and F. Reidl 12:13

mapped to the vertices of K, the following holds: for every vertex w in a subgraph of this
set, we remove every edge incident to w and a vertex in Target2

G(v), then after the specific
execution of Step 2, there does not exist any H2-subgraph that is a sibling by M of a subgraph
in the maximum family.

Proof. Recall that H has diameter 2, so if it has a separator K, then all the vertices of H

that are not in the separator must be adjacent to some vertex in the separator. Therefore in
Step 2, when for every w in a subgraph of the set all edges between w and Target2

G(v) are
removed, we have that every such vertex w cannot participate in any subgraph like the one
in the set. Hence, as the family is of maximum size the proposition follows. ◀

▶ Lemma 13. If G is ϵ-far from being H-free, then G̃ is ϵ/2-far from being H-free.

Proof. Note that initially E(G̃) = E(G) and then edges are removed from E(G̃) in Steps (1)
and (2) of the trimming. Given that the value of α here is larger than the value used in
Section 5, and that Step 1 of the trimming here is the same as Step 1 in Section 5, by the
same considerations as in Lemma 5, at most ϵpn/4 edges are removed from E(G̃), at Step 1
of the trimming. So, to complete the proof, we only need to show that in Step 1 of the
trimming also at most ϵpn/4 edges are removed from E(G̃).

According to Step 2 of the trimming, the total number of edges removed from E(G̃), for
every vertex in Heavyα(G), is bounded above by the product of the following values:

|H|, and
(p2)!, which is an upper bound on the number of option to choose (while considering
order) a size |K| subset of Target2

G(v) (where, for every v ∈ V (G), by Proposition 3,
|Target2

G(v)| < p2), and
2|V (H)| degG(v)/α, the threshold for edge removal for number of subgraphs in a maximum
set of sibling subgraphs, and
p2|V (H)|, the number of edges incident to a vertex from Target2

G(v) and vertices in a
subgraph of a maximum set of sibling subgraphs.

The size of H is the number of subsets V (H) with size less than p2. Hence, |H| < 2|V (H)|.
So, the total number of edges removed from E(G̃) is at most∑

v∈Heavyα(G)

2|V (H)| · (p2)! · (2|V (H)| degG(v)/α) ·p2|V (H)| <
ϵ

8
∑

v∈Heavyα(G)

degG(v) ≤ ϵpn

4 ,

where the first equality follows because α = 3|V (H)|⌈ϵ−122|V (H)|+4p2 log p⌉. ◀

▶ Proposition 14. Let H̃ be a H-subgraph of G̃. Heavyα(G) is an independent set in G̃,
the largest vertex in H̃ is not in Heavyα(G) and if H̃ has a separator U ⊆ Heavyα(G), then
U = Heavyα(G) ∩ V (H̃) and U is the only separator in H̃ consisting of only vertices from
Heavyα(G).

Proof. According to Step 1 of the trimming, for every v ∈ Heavyα(G), if vu ∈ E(G̃), then
u >G v. Thus, as one vertex is greater than the other for every pair of vertices in Heavyα(G)
there cannot be an edge in G̃ that is incident to both. Therefore, Heavyα(G) is an independent
set. By the same reasoning, the largest vertex in an H-subgraph of G̃ is not in Heavyα(G),
since it is adjacent to vertices smaller than it (H is connected, because it has diameter 2).

Finally, for the last part the claim, in the proof of Proposition 12, we noticed that for
every separator of H, every vertex of H that is not in the separator must be adjacent to
some vertex in the separator. The same applies to H̃. So, if a separator of H̃ is a subset

STACS 2025

12:14 Results on H-Freeness Testing in Graphs of Bounded r-Admissibility

of Heavyα(G), then every vertex that is adjacent to some vertex in the separator is not in
Heavyα(G) and in particular all the vertices of H̃ that are not in the separator. This also
implies that U is the only separator in H̃ consisting of only vertices from Heavyα(G). ◀

▶ Lemma 15. Let H̃ be an H-subgraph of G̃ and U = V (H̃) ∩ Heavyα(G) and suppose that
U is a separator of H̃, then |U | < p2.

Proof. Let v be the largest vertex in U . Since H is of diameter 2, it has a common neighbour
with every vertex in U . By Step 1, v does not have any neighbours smaller than it and hence
together with the previous we can conclude that U \ {v} ⊆ Target2

G(u). By Proposition 3,
Target2

G(u) ≤ p(p − 1) and the lemma follows. ◀

▶ Theorem 16. If Algorithm 1 is executed with oracle access to G and parameters, p, H,
α = 3|V (H)|⌈ϵ−122|V (H)|+4p2 log p⌉, τ = |H|, then (i) if G is H-free, then Algorithm 1 accepts
with probability 1; and (ii) if G is ϵ-far from being H-free, then Algorithm 1 rejects with
probability at least 2/3. Algorithm 1 uses at most O(2(|V (H)|+1)(2|V (H)|+4p2 log p)) queries.

Proof. The query complexity of the algorithm follows from Lemma 4 and the values of α

and τ .
If G is H-free, then knowledge graph of Algorithm 1, will never have an H-subgraph and

hence, Algorithm 1 accepts with probability 1. So, from here on in this proof, assume that
G, is ϵ-far from H-freeness.

Let U be the set of all vertices in V (G) that are the largest vertices in a H-subgraph
of G̃. By Proposition 14, U ∩ Heavyα(G) = ∅ and therefore, by the same reasoning as in
Theorem 9, it holds that |U | > ϵnp/(2α) and, with probability at least 5/6 that S0 ∩ U ≠ ∅.
So, assume that v is a vertex in S0 that is the largest vertex in a H-subgraph H̃ of G̃.

One of two cases applies to H̃: (a) every vertex u ∈ V (H̃), is reachable from v via the
vertices in V (H̃)\Heavyα(G), and (b) there exists a set M such that M = V (H̃)∩Heavyα(G)
that is a separator of H̃.

If case (a) applies, then as we already described previously in this section, with prob-
ability 1, the knowledge graph of Algorithm 1 will eventually have an H-subgraph. Thus,
Algorithm 1 will reject with probability 1. So, from here on we assume that case (b) applies.

So, assume that H̃ has a separator M consisting only of vertices from Heavyα(G)
(by Proposition 14, this separator includes all the vertices of Heavyα(G) ∩ V (H̃)). Since
v ̸∈ Heavyα(G), the diameter of H is 2 and Heavyα(G) is an independent set, for every
vertex in M , v is either its neighbour or shares a neighbour x with it, where x ̸∈ Heavyα(G).
This ensures that, with probability 1, after two steps of the PBFS all the vertices in M are
discovered. By similar consideration to the previous case, with probability 1, all vertices
reachable from v via vertices not in Heavyα(G) are added to the knowledge graph. For every
one these vertices that is not in Heavyα(G) also all the edges incident on them are also in
the knowledge graph. This implies that all the edges between the vertices of M and the
vertices added to the knowledge graph as described are also in the knowledge graph.

It remains to show that with sufficiently high probability, the edges required to complete
the above to H-subgraph are included in the knowledge graph. Let ℓ be the largest vertex in
M . Let H̃ ′ be an induced subgraph of H̃ that includes all the vertices of M and all other
vertices of H̃ that are separated from v by M . By Step 2, of the trimming we are guaranteed
that there exists a family Q, of size greater than 2|V (H)| degG(v)/α, that consists of vertex
disjoint subgraphs of G̃, where every graph in the family is either H̃ ′ or its sibling by M .

Let be the graph H̃∗ induced by H̃ ′ on V (H̃ ′) \ M If we were guaranteed that H̃∗ is
connected, then we would only need to show that with high probability Algorithm 1 will
discover an edge incident to ℓ and a vertex x of this subgraph (or similar subgraph of one of

C. Awofeso, P. Greaves, O. Lachish, and F. Reidl 12:15

its siblings in M , that does not share any vertices with the part of the H-subgraph already
discovered). This holds because, every vertex in H̃∗ is not in Heavyα(G), and there are
enough steps of the PBFS so that the PBFS reaches all the vertices in H̃∗ and discovers all
the edges adjacent to them (the PBFS has |V (H)| steps, and the vertices on a shortest path
from ℓ to x are not in H̃∗), thus the PBFS will discover all the vertices of H̃∗ and the edges
incident on them.

However, the above guarantee does not hold. So H̃∗ may contain almost |V (H)| connected
components. Regardless, if for every one of these connected components, the knowledge
graph has it as a subgraph or has its isomorphic equivalent in one of the subgraphs in Q,
and if none of the isomorphic equivalent shares a vertex with other vertices of H̃ ′ in the
knowledge graph, the knowledge graph has an H-subgraph.

For each connected component, there are at least 3|V (H)| degG (ℓ)/α ≥ 3|V (H)|α/α =
3|V (H)| vertex disjoint copies (where the inequality follows because ℓ ∈ Heavyα(G)). So, at
least two thirds of the copies of such connected component do not include any other vertices
from H̃.

The probability of not discovering one such component is (1 − 4|V (H)|/(3α))2α ≤
e−|V (H)|/6 < (6|V (H)|)−1. By the union bound, with probability at least 5/6, the knowledge
graph has all the subgraphs required so that in has a H-subgraph. Thus, the proof is
complete. ◀

7 Testing C6 and C7-freeness in adm3-bounded graphs

The proof of the following theorem will appear in the journal version of this paper.

▶ Theorem 17 (⋆). If Algorithm 1 is executed with oracle access to G and parameters, H = C7,
α = ⌈212p4/ϵ⌉, τ = 7, then (i) if G is C7-free, then Algorithm 1 accepts with probability 1;
and (ii) if G is ϵ-far from being C7-free, then Algorithm 1 rejects with probability at least
2/3. Algorithm 1 uses at most O(p27/ϵ8) queries.

8 Lower bounds for testing Cr-freeness for r ≥ 4

The proof of the following theorem will appear in the journal version of this paper.

▶ Theorem 18 (⋆). For every integer r ≥ 4 and sufficiently large integer n, every two-sided
Property-Tester for the Cr-freeness, has query complexity Ω(n1/4), on (2⌊r/2⌋ − 1) input
graphs of size n.

References
1 Noga Alon, Richard A. Duke, Hanno Lefmann, Vojtech Rödl, and Raphael Yuster. The

algorithmic aspects of the regularity lemma. J. Algorithms, 16(1):80–109, 1994. doi:10.1006/
JAGM.1994.1005.

2 Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. Efficient testing of large
graphs. Comb., 20(4):451–476, 2000. doi:10.1007/S004930070001.

3 Noga Alon, Tali Kaufman, Michael Krivelevich, and Dana Ron. Testing triangle-freeness
in general graphs. SIAM Journal on Discrete Mathematics, 22(2):786–819, 2008. doi:
10.1137/07067917X.

4 Artur Czumaj, Oded Goldreich, Dana Ron, C Seshadhri, Asaf Shapira, and Christian Sohler.
Finding cycles and trees in sublinear time. Random Structures & Algorithms, 45(2):139–184,
2014. doi:10.1002/RSA.20462.

STACS 2025

https://doi.org/10.1006/JAGM.1994.1005
https://doi.org/10.1006/JAGM.1994.1005
https://doi.org/10.1007/S004930070001
https://doi.org/10.1137/07067917X
https://doi.org/10.1137/07067917X
https://doi.org/10.1002/RSA.20462

12:16 Results on H-Freeness Testing in Graphs of Bounded r-Admissibility

5 Artur Czumaj and Christian Sohler. A characterization of graph properties testable for general
planar graphs with one-sided error (it’s all about forbidden subgraphs). In 2019 IEEE 60th
Annual Symposium on Foundations of Computer Science (FOCS), pages 1525–1548. IEEE,
2019. doi:10.1109/FOCS.2019.00089.

6 Zdeněk Dvořák. Constant-factor approximation of the domination number in sparse graphs.
European Journal of Combinatorics, 34(5):833–840, July 2013. doi:10.1016/j.ejc.2012.12.
004.

7 Talya Eden, Reut Levi, and Dana Ron. Testing c_k-freeness in bounded-arboricity graphs. In
Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson, editors, 51st International
Colloquium on Automata, Languages, and Programming, ICALP 2024, July 8-12, 2024, Tallinn,
Estonia, volume 297 of LIPIcs, pages 60:1–60:20. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2024. doi:10.4230/LIPICS.ICALP.2024.60.

8 Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. In Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing, pages 406–415, 1997.
doi:10.1145/258533.258627.

9 H. A. Kierstead and W. T. Trotter. Planar graph coloring with an uncooperative partner.
Journal of Graph Theory, 18(6):569–584, October 1994. doi:10.1002/jgt.3190180605.

10 Reut Levi. Testing triangle freeness in the general model in graphs with arboricity O(
√

n). In
48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July
12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 93:1–93:13.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.ICALP.2021.
93.

11 David W Matula and Leland L Beck. Smallest-last ordering and clustering and graph coloring
algorithms. Journal of the ACM (JACM), 30(3):417–427, 1983. doi:10.1145/2402.322385.

12 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity: Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and Combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

13 Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.
In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977), pages 222–227.
IEEE Computer Society, 1977.

14 Xuding Zhu. Colouring graphs with bounded generalized colouring number. Discrete Mathem-
atics, 309(18):5562–5568, 2009. doi:10.1016/J.DISC.2008.03.024.

https://doi.org/10.1109/FOCS.2019.00089
https://doi.org/10.1016/j.ejc.2012.12.004
https://doi.org/10.1016/j.ejc.2012.12.004
https://doi.org/10.4230/LIPICS.ICALP.2024.60
https://doi.org/10.1145/258533.258627
https://doi.org/10.1002/jgt.3190180605
https://doi.org/10.4230/LIPICS.ICALP.2021.93
https://doi.org/10.4230/LIPICS.ICALP.2021.93
https://doi.org/10.1145/2402.322385
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1016/J.DISC.2008.03.024

	1 Introduction
	2 Preliminaries
	3 Graph degeneracy and admissibility, related notations and necessary lemmas
	4 Upper bounds strategy and the testing algorithm
	5 Testing C_4-freeness in adm_2-bounded graphs
	6 Testing H-freeness in adm_2-bounded graphs when H has diameter 2
	7 Testing C_6 and C_7-freeness in adm_3-bounded graphs
	8 Lower bounds for testing C_r-freeness for r > = 4

