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Abstract
Algorithmic meta-theorems state that problems definable in a fixed logic can be solved efficiently
on structures with certain properties. An example is Courcelle’s Theorem, which states that all
problems expressible in monadic second-order logic can be solved efficiently on structures of small
treewidth. Such theorems are usually proven by algorithms for the model-checking problem of the
logic, which is often complex and rarely leads to highly efficient solutions. Alternatively, we can solve
the model-checking problem by grounding the given logic to propositional logic, for which dedicated
solvers are available. Such encodings will, however, usually not preserve the input’s treewidth.

This paper investigates whether all problems definable in monadic second-order logic can
efficiently be encoded into sat such that the input’s treewidth bounds the treewidth of the resulting
formula. We answer this in the affirmative and, hence, provide an alternative proof of Courcelle’s
Theorem. Our technique can naturally be extended: There are treewidth-aware reductions from
the optimization version of Courcelle’s Theorem to maxsat and from the counting version of the
theorem to #sat. By using encodings to sat, we obtain, ignoring polynomial factors, the same
running time for the model-checking problem as we would with dedicated algorithms. Another
immediate consequence is a treewidth-preserving reduction from the model-checking problem of
monadic second-order logic to integer linear programming (ilp). We complement our upper bounds
with new lower bounds based on ETH; and we show that the block size of the input’s formula and
the treewidth of the input’s structure are tightly linked.

Finally, we present various side results needed to prove the main theorems: A treewidth-preserving
cardinality constraints, treewidth-preserving encodings from cnfs into dnfs, and a treewidth-aware
quantifier elimination scheme for qbf implying a treewidth-preserving reduction from qsat to sat.
We also present a reduction from projected model counting to #sat that increases the treewidth
by at most a factor of 2k+3.59, yielding a algorithm for projected model counting that beats the
currently best running time of 22k+4

· poly(|ψ|).
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15:2 Structure-Guided Automated Reasoning

1 Introduction

Many tools from the automated reasoning quiver can be implemented efficiently if a graphical
representation of the given formula with good structural properties is given. The textbook
example is the satisfiability problem (sat), which can be solved in time O

(
2kpoly(|ψ|)

)
on

formulas ψ whose primal graph Gψ has treewidth k. (The primal graph contains a vertex
for every variable of the formula and connects them if they appear together in a clause. Its
treewidth intuitively measures how close it is to being a tree.) The result extends to the
maximum satisfiability problem (maxsat), in which the clauses of the formula have weights
and the goal is to minimize the weights of falsified clauses, and to the model counting problem
(#sat), in which the goal is to compute the number of satisfying assignments. In this article,
we will use the notation tower(h, t) to describe a tower of twos of height h with t at the top,
and tower*(h, t) as shorthand to hide polynomial factors, e.g., O

(
2kpoly(|ψ|)

)
= tower*(1, k):

▶ Fact 1 (folklore, see for instance [1, 4, 5, 14, 24, 29, 30]). One can solve sat, maxsat, and
#sat in time tower*(1, k) if a width-k tree decomposition is given.

It is worth to take some time to inspect the details of Fact 1. The hidden polynomial
factor is not the subject of this paper (as indicated by the notation), but can be made as
small as O(|φ|) [10, 26]. Our focus will be the value on top of the tower, which in Fact 1 is
simply “k”. Under the exponential-time hypothesis (ETH), this is best possible.

The natural extension of the satisfiability problem to higher logic is the validity problem of
fully quantified Boolean formulas (qsat). While it is well-known that qsat is fixed-parameter
tractable (i.e., it is in FPT) with respect to treewidth [11], the dependencies on the treewidth
is less sharp than in Fact 1. The height of the tower depends on the quantifier alternation
qa(ψ) of the formula, while the top value has the form O(k + log k + log log k + . . . ) due to
the management of nested tables in the involved dynamic program.

▶ Fact 2 ([11, 10]). One can solve qsat in time tower*
(

qa(ψ) + 1, O(k)
)

if a width-k tree
decomposition is given.

In contrast to Fact 1, there is a big-oh on top of the tower in Fact 2. The higher order
version of the model counting problem is the projected model counting problem (pmc), in
which we need to count the number of models that are not identical on a given set of variables.

▶ Fact 3 ([15]). One can solve pmc in time tower*
(
2, k + 4

)
if a width-k tree decomposition

is given.

The fine art of automated reasoning is descriptive complexity, which studies the complexity
of problems in terms of the complexity of a description of these problems; independent of
any abstract machine model [21, 25]. A prominent example is Courcelle’s Theorem that
states that the problems that can be expressed in monadic second-order logic can be solved
efficiently on instances of bounded treewidth [12]. Differently phrased, the theorem states
that the model-checking problem for mso logic (mc(mso)) is fixed-parameter tractable (the
parameter is the size of the formula and the treewidth of the structure):

▶ Fact 4 ([12]). One can solve mc(mso) in time tower*
(

qa(φ) + 1, O(k + |φ|)
)

if a width-k
tree decomposition is given.

For instance, the 3-coloring problem (Can we color the vertices of a graph with three
colors such that adjacent vertices obtain different colors?) can be described by the sentence:

φ3col = ∃R∃G∃B ∀x∀y � (Rx ∨Gx ∨Bx)
∧ Exy → ¬((Rx ∧Ry) ∨ (Gx ∧Gy) ∨ (Bx ∧By)).
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The sentence can be read aloud as: There are three colors red, blue, and green (∃R∃G∃B)
such that for all vertices x and y (∀x∀y) we have that (i) each vertex has at least one color
(Rx ∨ Gx ∨ Bx), and (ii), if x and y are connected by an edge (Exy) then they do not
have the same color (¬((Rx ∧Ry) ∨ (Gx ∧Gy) ∨ (Bx ∧By))). The model-checking problem
mc(mso) obtains as input a relational structure S (say a graph like or ) and an mso
sentence φ (as the one from above) and asks whether S is a model of φ, denoted by S |= φ.
In our example we have |= φ3col and ̸|= φ3col. Using Fact 4, we can conclude from
φ3col that the 3-coloring problem parameterized by the treewidth lies in FPT.

Instead of utilizing Fact 4, another reasonable approach is to ground the mso sentence
to a propositional formula and to then apply Fact 1. Formally, this means to reduce the
model checking problem mc(mso) to sat, i.e., given a relational structure S and an mso
sentence φ, we need to produce, in polynomial time, a propositional formula ψ such that
S |= φ iff ψ ∈ sat. The naïve way of doing so is by generating an indicator variable Xu

for every set variable X and every element u in the universe of S. Then we replace every
first-order ∃-quantifier by a “big-or” and ∀-quantifier by a “big-and”:

ψ3col =

∀x∀y︷ ︸︸ ︷∧
u∈V (G)

∧
v∈V (G)

Rx∨Gx∨Bx︷ ︸︸ ︷
(Ru ∨ Gu ∨ Bu ) ∧

Exy→︷︸︸︷∧
{u,v}∈E(G)

¬((Ru ∧ Rv ) ∨ (Gu ∧ Gv ) ∨ (Bu ∧ Bv )).

propositional variables
The emerging question now is whether an automated translation such as the one we

just sketched preserves treewidth in the following sense: Given a relational structure S
of treewidth tw(S) and an mso sentence φ, can we mechanically derive a propositional
formula ψ with S |= φ iff ψ ∈ sat and tw(ψ) ≤ f

(
tw(S)

)
for some function computable

f : N → N? Consider for instance the following graph shown on the left (it is “almost a
tree” and has treewidth 2) and the primal graph of ψ3col obtained using the just sketched
transformation on the right. In this example, the tree-like structure is preserved, as the
treewidth gets increased by a factor of 3 and is at most 6:
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We recap this finding as the following observation: The automated grounding process
from mc(mso) to sat implies a reduction from the 3-coloring problem parameterized by the
input’s treewidth to sat. We can, thus, derive that the 3-coloring problem can be solved in
time tower*(1, 3k) using Fact 1 – without actually utilizing Courcelle’s Theorem!

For a second example consider the optimization and counting version of the dominating
set problem: Given a graph G, the task is either to find a minimum-size set S ⊆ V (G) of
vertices such that every vertex is in S or adjacent to vertex in S, or to count the number of
such sets. Optimization and counting problems can be modeled in descriptive complexity by
“moving” an existential second-order quantifier (“guessing” the solution) out of the sentence
and making it a free variable. The task is either to find a set of minimum size such that the
given structure together with this set is a model of the formula, or to count the number of
such sets. For instance, the following formula describes that X is a dominating set:

φds(X) = ∀x∃y �Xx ∨ (Exy ∧Xy).

STACS 2025



15:4 Structure-Guided Automated Reasoning

We will also say that the formula Fagin-defines the property that X is a dominating set. The
problem #fd(mso) asks, given a relational structure S and an mso formula with a free-set
variable X, how many subsets S of the universe of S satisfy S |= φ(S). The optimization
problem fd(mso) gets as additional input an integer t and asks whether there is such a S
with |S| ≤ t. The reduction from mc(mso) to sat can be extended to a reduction from
fd(mso) to maxsat and from #fd(mso) to pmc. In order to ground fd(mso), we add new
indicator variables Xu for the free-variable X and every element u of S (as we did for the
second-order quantifiers). For fd(mso), we additionally add a soft clause (¬Xu) for each of
these variables – implying that we seek a model that minimizes |X|. We may now again ask:
If we mechanically ground φds(X) on a structure of bounded treewidth to a propositional
formula ψds, what can we say about the treewidth of ψds? Unfortunately, not so much. Even
if the input has treewidth 1, the primal graph of ψds may become a clique (of treewidth n):
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It follows that we cannot derive an fpt-algorithm for the dominating set problem or its
counting version by reasoning about ψds, while we can conclude the fact from φds using
appropriate versions of Courcelle’s Theorem. To summarize, we can naturally describe
model-checking, optimization, and counting problems using monadic second-order logic.
Using Courcelle’s Theorem, we can solve all of these problems in fpt-time on structures of
bounded treewidth. Alternatively, we may ground the mso formulas to propositional logic
and solve the problems using Fact 1. The produced encodings sometimes preserve the input’s
structure (as for 3-coloring) and, thus, themselves serve as proof that the problems lie in FPT.
However, the input’s structure can also get eradicated, as we observed for the dominating
set problem. The present paper is concerned with the question whether there is a unifying
grounding procedure that maps Fagin-defined mso properties to propositional logic while
preserving the input’s treewidth.

Contribution I: Faster Structure-guided Reasoning. Before we develop a unifying, structure-
aware grounding process from the model-checking problem of monadic second order logic to
propositional logic, we first improve both of the underlying results. In particular, we remove
the logarithmic dependencies on k in top of the tower of Fact 2 and, thus, provide the first
major improvement on qbf upper bounds with respect to treewidth since 20 years:

▶ Theorem 1 (QBF Theorem). One can solve qsat in time tower*
(

qa(ψ) + 1, k + 3.92
)

if a
width-k tree decomposition is given.

This bound matches the eth lower bound for qsat:

▶ Fact 5 ([16]). Unless ETH fails, qsat cannot be solved in time tower*(qa(ψ)+1, o(tw(ψ))).

We will prove Theorem 1 fully in the spirit of an automated reasoning paper by an encoding
into sat. In particular, we will not need any pre-requirements other than Fact 1. With a
similar encoding scheme, we will also slightly improve on Fact 3:

▶ Theorem 2 (PMC Theorem). One can solve pmc in time tower*
(
2, k + 3.59

)
if a width-k

tree decomposition is given.

▶ Fact 6 ([15]). Unless ETH fails, pmc cannot be solved in time tower*(2, o(tw(ψ))).
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Contribution II: A SAT Version of Courcelle’s Theorem. We answer the main question of
the introduction in the affirmative and provide a unifying, structure-aware encoding scheme
from properties Fagin-defined with monadic second-order logic to variants of sat:
▶ Theorem 3 (A SAT Version of Courcelle’s Theorem). Assuming that the mso formulas on
the left side are in prenex normal form and that a width-k tree decomposition is given, there
are encodings from . . .
1. mc(mso) to sat of size tower*(qa(φ), (k + 9)|φ| + 3.92);
2. fd(mso) to maxsat of size tower*(qa(φ) + 1, (k + 9)|φ| + 3.92);
3. #fd(mso) to #sat of size tower*(qa(φ) + 1, (k + 9)|φ| + 3.92).
All encodings of size tower*(s, t) have a treewidth of tower(s, t) and can be computed in linear
time with respect to their size.

In conjunction with Fact 1, the theorem implies Courcelle’s Theorem with sharp bounds
on the values on top of the tower:
▶ Corollary 4. One can solve mc(mso) in time tower*(qa(φ) + 1, (k + 9)|φ| + 3.92), and
fd(mso) and #fd(mso) in time tower*(qa(φ) + 2, (k + 9)|φ| + 3.92) if a width-k tree
decomposition is given.

Since the reduction [27] from sat to integer linear programming (ilp) is treewidth-
preserving and results in an instance of bounded domain, another consequence of Theorem 3
is an “ilp Version of Courcelle’s Theorem” via the dynamic program for ilp [22].

Contribution III: ETH Lower Bounds for the Encoding Size. Given that we can encode
mso definable properties into sat while preserving the input’s treewidth, we may ask next
whether we can improve on the size of the encodings. While it is well-known that incarnations
of Courcelle’s Theorem have to depend on the input’s treewidth and the formula’s size in a
non-elementary way [3] (and hence, the encodings have to be huge at some point as well),
these insights do not give us precise bounds on achievable encoding sizes.
▶ Theorem 5 (ETH Lower Bound). Under ETH, there is no sat encoding for mc(mso) of
size tower*(qa(φ) − 2, o(tw(S))) that can be computed in this time.

We can make the lower bound a bit more precise in the following sense: The value at the
top of the tower actually does not just depend on the treewidth tw(S), but on the product
of the treewidth and the block size bs(φ) of the sentence φ. The block size of a formula is
the maximum number of consecutive quantifiers of the same type.
▶ Theorem 6 (Trade-off Theorem). Under ETH, there is no sat encoding for mc(mso) of
size tower*(qa(φ) − 2, o(tw(S) bs(φ))) that can be computed within this time.

1.1 Related Work
The concept of treewidth was discovered multiple times. The name was coined in the work by
Robertson and Seymour [28], while the concept was studied by Arnborg and Proskurowski [2]
under the name partial k-trees simultaneously. However, treewidth was discovered even
earlier by Bertelè and Brioschi [6], and independently by Halin [19]. Courcelle’s Theorem was
proven in a series of articles by Bruno Courcelle [12], see also the textbook by Courcelle and
Engelfriet for a detailed introduction [13]. The expressive power of monadic second-order logic
was studied before, prominently by Büchi who showed that mso over strings characterizes
the regular languages [9]. Related to our treewidth-aware reduction from mc(mso) to sat is
the work by Gottlob, Pichler, and Wei, who solve mc(mso) using monadic Datalog [18]; and
the work of Bliem, Pichler, and Woltran, who solve it using asp [8].

STACS 2025



15:6 Structure-Guided Automated Reasoning

1.2 Structure of this Article
We provide preliminaries in the next section, prove Theorem 1 and 2 in Section 3, and
establish a sat version of Courcelle’s Theorem in Section 4. The technical details of the
latter can be found in the technical report version of this article. We extend the result to
Fagin-definable properties in Section 5 and provide corresponding ETH lower bounds in
Section 6. We conclude and provide pointers for further research in the last section, which
also contains an overview table of this article’s results. Due to lack of space, most proofs are
only avilable in the technical report and are replaced by a proof sketch within the main text.
The corresponding positions are clearly marked with a “▼”.

2 Preliminaries: Background in Logic and Structural Graph Theory

We use the notation of Knuth [23] and consider propositional formulas in conjunctive normal
form (cnfs) like ψ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x4 ∨ ¬x5) ∧ (x2) ∧ (x6) as set of sets
{{x1,¬x2,¬x3}, {¬x1, x4,¬x5}, {x2}, {x6}}. We denote the sets of variables, literals, and
clauses of ψ as vars(ψ), lits(ψ), and clauses(ψ). A (partial) assignment is a subset β ⊆ lits(ψ)
such that |{x,¬x} ∩ β| ≤ 1 for all x ∈ vars(ψ), that is, a set of literals that does not
contain both polarities of any variable. We use β⊑ vars(ψ) to denote partial assignments.
The formula conditioned under a partial assignment β is denoted by ψ|β and obtained by
removing all clauses from ψ that contain a literal l ∈ β and by removing all literals l′ with
¬l′ ∈ β from the remaining clauses. A assignment is satisfying for a cnf ψ if ψ|β = ∅, and it
is contradicting if ∅ ∈ ψ|β. A dnf is a disjunction of conjunctions, i.e., a set of terms. We
use the same notations as for cnfs, however, in ψ|β we delete terms that contain a literal
that appears negated in β and remove the literals in β from the remaining terms. Hence, β
is satisfying if ∅ ∈ ψ|β, and contradicting if ψ|β = ∅.

The model counting problem asks to compute the number of satisfying assignments of
a cnf and is denoted by #sat. In projected model counting (pmc) we count the number
of models that are not identical on a given set of variables. In the maximum satisfiability
problem (maxsat) we partition the clauses of ψ into a set hard(ψ) of hard clauses and a set
soft(ψ) of weighted soft clauses, i.e., every clause C ∈ soft(ψ) comes with a weight w(C) ∈ Q.
The formula is then called a wcnf and the goal is to find under all assignments β⊑ vars(ψ)
with hard(ψ)|β = ∅ the one that maximizes

∑
C∈soft(ψ),{C}|β=∅ w(c). In a fully quantified

Boolean formula (a qbf, also called a second-order propositional sentence) all variables are
bounded by existential or universal quantifiers. Throughout the paper we assume that qbfs
are in prenex normal form, meaning that all quantifers appear in the front of a quantifier-free
formula called the matrix. As is customary, we assume that the matrix is a cnf if the last
(i.e., most inner) quantifier is existential, and a dnf otherwise. A qbf is valid if it evaluates
to true (see Chapter 29–31 in [7]). Define qsat to be the problem of deciding whether a
given qbf is valid.

2.1 Descriptive Complexity
A vocabulary is a finite set τ = {Ra1

1 , Ra2
2 , . . . , Raℓ

ℓ } of relational symbols Ri of arity ai. A
(finite, relational) τ -structure S is a tuple

(
U(S), RS

1 , R
S
2 , . . . , R

S
ℓ

)
with universe U(S) and

interpretations RS
i ⊆ U(S)ai . The size of S is |S| = |U(S)| +

∑ℓ
i=1 ai · |RS

i |. We denote the
set of all τ -structures by struc[τ ] – e.g., struc[{E2}] is the set of directed graphs.

Let τ be a vocabulary and x0, x1, x2, . . . be an infinite repertoire of first-order variables.
The first-order language L(τ) is inductively defined, where the atomic formulas are the
strings xi = xj and Ri(x1, . . . , xai) for relational symbols Ri ∈ τ . If α, β ∈ L(τ) then so are



M. Bannach and M. Hecher 15:7

¬(α), (α ∧ β), and ∃xi(α). A variable that appears next to ∃ is called quantified and free
otherwise. We denote a formula φ ∈ L(τ) with φ(xi1 , . . . , xiq ) if xi1 , . . . , xiq are precisely the
free variables in φ. A formula without free variables is called a sentence. As customary, we
extend the language of first-order logic by the usual abbreviations, e.g., α → β ≡ ¬α ∨ β

and ∀xi(α) ≡ ¬∃xi(¬α). To increase readability, we will use other lowercase Latin letters
for variables and drop unnecessary braces by using the usual operator precedence instead.
Furthermore, we use the dot notation in which we place a “�” instead of an opening brace
and silently close it at the latest syntactically correct position. A τ -structure S is a model
of a sentence φ ∈ L(τ), denoted by S |= φ, if it evaluates to true under the semantics of
quantified propositional logic while interpreting equality and relational symbols as specified
by the structure. For instance, φundir = ∀x∀y �Exy → Eyx over τ = {E2} describes the set
of undirected graphs, and we have |= φundir and ̸|= φundir.

We obtain the language of second-order logic by allowing quantification over relational
variables of arbitrary arity, which we will denote by uppercase Latin letters. A relational
variable is said to be monadic if its arity is one. A monadic second-order formula is one in
which all quantified relational variables are monadic. The set of all such formulas is denoted
by mso. The model checking problem for a vocabulary τ is the set mcτ (mso) that contains all
pairs (S, φ) of τ -structures S and mso sentences φ with S |= φ. Whenever τ is not relevant
(meaning that a result holds for all fixed τ), we will refer to the problem as mc(mso). We
note that in the literature there is often a distinction between mso1- and mso2-logic, which
describes the way the input is encoded [20]. Since we allow arbitrary relations, we do not
have to make this distinction.

2.2 Treewidth and Tree Decompositions
While we consider graphs G as relational structures G as discussed in the previous section, we
also use common graph-theoretic terminology and denote with V (G) = U(G) and E(G) = EG

the vertex and edge set of G. Unless stated otherwise, graphs in this paper are undirected
and we use the natural set notations and write, for instance, {v, w} ∈ E(G). The degree of a
vertex is the number of its neighbors. A tree decomposition of G is a pair (T, χ) in which
T is a tree (a connected graph without cycles) and χ : V (T ) → 2V (G) a function with the
following two properties:
1. for every v ∈ V (G) the set {x | v ∈ χ(x) } is non-empty and connected in T ;
2. for every {u, v} ∈ E(G) there is at least one node x ∈ V (T ) with {u, v} ⊆ χ(x).

The width of a tree decomposition is the maximum size of its bags minus one, i.e.,
width(T, χ) = maxx∈V (T ) |χ(x)| − 1. The treewidth tw(G) of a graph G is the minimum
width any tree decomposition of G must have. We do not require additional properties of tree
decompositions, but we assume that T is rooted at a root(T ) ∈ V (T ) and, thus, that nodes
t ∈ V (T ) may have a parent(t) ∈ V (T ) and children(t) ⊆ V (T ). Without loss of generality,
we may also assume | children(t)| ≤ 2.

▶ Example 7. The treewidth of the Big Dipper constellation (as graph shown on the left) is
at most two, as proven by the tree decomposition on the right:

a
b c d

e

f
g

{a, b} {b, c} {c, d} {d, f}

{d, f, e}

{d, f, g}
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15:8 Structure-Guided Automated Reasoning

2.3 Treewidth of Propositional Formulas and Relational Structures
The definition of treewidth can be lifted to other objects by associating a graph to them.
The most common graph for cnfs (or dnfs) ψ is the primal graph Gψ, which is the graph
on vertex set V (Gψ) = vars(ψ) that connects two vertices by an edge if the corresponding
variables appear together in a clause. We then define tw(ψ) := tw(Gψ) and refer to a tree
decomposition of Gψ as one of ψ. Note that other graphical representations lead to other
definitions of the treewidth of propositional formulas. A comprehensive listing can be found in
the Handbook of Satisfiability [7, Chapter 17]. A labeled tree decomposition (T, χ, λ) extends
a tree decomposition with a mapping λ : V (T ) → 2ψ (i.e., a mapping from the nodes of T
to a subset of the clauses (or terms) of ψ) such that for every clause (or term) C there is
exactly one t ∈ V (T ) with C ∈ λ(t) that contains all variables appearing in C. It is easy
to transform a tree decomposition (T, χ) into a labeled one (T, χ, λ) by traversing the tree
once’s and by duplicating some bags. Hence, we will assume throughout this article that all
tree decompositions are labeled.

A similar approach can be used to define tree decompositions of arbitrary structures:
The primal graph GS of a structure S, in this context also called the Gaifman graph, has as
vertex set the universe of S, i.e., V (GS) = U(S), and contains an edge {u, v} ∈ E(GS) iff u

and v appear together in some tuple of S. As before, we define tw(S) := tw(GS). One can
alternatively define the concept of tree decompositions directly over relational structures,
which leads to the same definition [17].

3 New Upper Bounds for Second-Order Propositional Logic

Central to our reductions are treewidth-preserving encodings from qsat to sat and from pmc
to #sat. These encoding establishes new proofs of Chen’s Theorem [11] and the theorem by
Fichte et al. [15], and improve the dependencies on k in the tower of Fact 2 and 3.

3.1 Treewidth-Aware Encodings from QSAT to SAT
We use a quantifier elimination scheme that eliminates the most-inner quantifier block at
the cost of introducing O(2k|φ|) new variables while increasing the treewidth by a factor of
12 · 2k. Let first φ = Q1S1 . . . ∀ℓSℓ �ψ be the given qbf, in which ψ is a dnf. Let further
(T, χ, λ) be the given labeled width-k tree decomposition of φ. We describe an encoding into
a qbf, in which the last quantifier block QℓSℓ gets replaced by new variables in Sℓ−1.

We have to encode the fact that for an assignment on
⋃ℓ−1
i=1 Si all assignments to Sℓ

satisfy ψ, i. e., at least one term in ψ. For that end, we introduce auxiliary variables for every
term d ∈ terms(ψ) and any partial assignment α of the variables in Sℓ that also appear in
the bag that contains d. More precisely, let λ−1(d) be the node in V (T ) with d ∈ λ(t) and
let α⊑χ(λ−1(d)) ∩Sℓ be an assignment of the variables of the bag that are quantified by Qℓ.
We introduce the variable satαd that indicates that this assignment satisfies d:∧

d∈terms(ψ)

∧
α⊑χ(λ−1(d))∩Sℓ

{d}|α̸=∅

[
satαd ↔

∧
x∈lits({d}|α)

x
]
, // α may satisfy d (1)

∧
d∈terms(ψ)

∧
α⊑χ(λ−1(d))∩Sℓ

{d}|α=∅

[
¬satαd

]
. // α falsifies d (2)

We have to track whether ψ can be satisfied by a local assignment α. For every t ∈ V (T )
and every α⊑χ(t) ∩ Sℓ we introduce a variable satα≤t that indicates that α can be extended
to a satisfying assignment for the subtree rooted at t. Furthermore, we create variables
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satα<t,t′ for t′ ∈ children(t) that propagate the information about satisfiability along the tree
decomposition. That is, satα<t,t′ is set to true if there is an assignment β⊑χ(t′) ∩ Sℓ that
can be extended to a satisfying assignment and that is compatible with α:

// Either there is a term satisfing the bag or we can propagate:∧
t∈V (T )

∧
α⊑χ(t)∩Sℓ

[
satα≤t ↔

∨
d∈λ(t)

satαd ∨
∨

t′∈children(t)

satα<t,t′
]
, (3)

// Propagate satisfiability:∧
t∈V (T )

∧
α⊑χ(t)∩Sℓ

∧
t′∈children(t)

[
satα<t,t′ ↔

∧
β⊑χ(t′)∩Sℓ

β∩lits(χ(t))=α∩lits(χ(t′))

satβ≤t′
]
. (4)

Finally, since Qℓ = ∀, we need to ensure that for all possible assignments of Sℓ there is at
least one term that gets satisfied. Since satisfiability gets propagated to the root of the tree
decomposition by the aforementioned constraint, we can enforce this property with:∧

α⊑χ(root(T ))∩Sℓ

satα≤root(T ). (5)

The following lemma observes the correctness of the construction, and the subsequent
lemma handles the case Qℓ = ∃.

▶ Lemma 8 (▼). There is an algorithm that, given a qbf φ = Q1S1 . . . ∃ℓ−1Sℓ−1∀ℓSℓ �ψ and
a width-k tree decomposition of Gφ, outputs in time O∗(2k) a qbf φ′ = Q1S1 . . . ∃ℓ−1S

′
ℓ−1 �ψ

′

and a width-(12 · 2k) tree decomposition of Gφ′ such that φ is valid iff φ′ is valid.

▶ Lemma 9 (▼). There is an algorithm that, given a qbf φ = Q1S1 . . . ∀ℓ−1Sℓ−1∃ℓSℓ �ψ and
a width-k tree decomposition of Gφ, outputs in time O∗(2k) a qbf φ′ = Q1S1 . . . ∀ℓ−1S

′
ℓ−1 �ψ

′

and a width-(12 · 2k) tree decomposition of Gφ′ such that φ is valid iff φ′ is valid.

Sketch of Proof. The case Qℓ = ∃ (in which ψ is a cnf) works similarly: The result follows
by negating the inverse, where the roles of cnf and dnf are switched, and universal and
existential quantification are switched as well. ◀

Proof of Theorem 1. The theorem follows by exhaustively applying Lemma 8 and Lemma 9
until a cnf is reached. The price for removing one alternation are O(2k|φ|) new variables and
an increase of the treewidth by a factor of 12 · 2k. Hence, after removing one quantifier block
we have a treewidth of 12 · 2k ≤ 2k+log 12, after two we have 12 · 22k+log 12 ≤ 22k+log 12+log 12,
after three we then have 222k+log 12+log 12+log 12; and so on. We can bound all the intermediate
“+ log 12” by adding a “+1” on top of the tower, leading to a bound on the treewidth of
tower(qa(φ), k + log 12 + 1) ≤ tower(qa(φ), k + 4.59). In fact, we can bound the top of the
tower even tighter by observing log 12 ≤ 3.59 and guessing 3.92 as a fix point. Inserting
yields 3.59 + 23.59+k ≤ 23.92+k and 23.92+23.59+k ≤ 223.92+k . Consequently, we can bound the
treeewidth of the encoding by tower(qa(φ), k+3.92) and the size by tower*(qa(φ), k+3.92). ◀

3.2 Treewidth-Aware Encodings from PMC to #SAT
Recall that the input for pmc is a cnf ψ and a set X ⊆ vars(ψ). The task is to count the
assignments α⊑X that can be extended to models α∗ ⊑ vars(ψ) of ψ. We can also think of
a formula ψ(X) = ∃Y �ψ′(X,Y ) with free variables X and existential quantified variables Y
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(ψ′ is quantifier-free), for which we want to count the assignments to X that make the
formula satisfiable. The idea is to rewrite ψ(X) = ∃Y �ψ′(X,Y ) ≡ ∃X∃Y �ψ′(X,Y ), and to
use a similar encoding as in the proof of Lemma 9 to remove the second quantifier.

In detail, we add a variable satαc for every clause c ∈ clauses(ψ) and every assignment of
the corresponding bag α⊑χ(λ−1(c)) ∩ Y . The semantic of this variable is that the clause c
is satisfiable under the partial assignment α. We further add the propagation variables satα≤t
and satα<t,t′ for all t ∈ V (T ), t′ ∈ children(t), and α⊑χ(λ−1(c)) ∩ Y . The former indicates
that the assignment α can be extended to a satisfying assignment of the subtree rooted at t;
the later propagates partial solutions from children to parents within the tree decomposition:

// α may satisfy c:∧
c∈clauses(ψ)

∧
α⊑χ(λ−1(c))∩Y

{c}|α̸=∅

[
satαc ↔

∨
ℓ∈lits({c}|α)

ℓ
]
, (1)

// α satisfies c:∧
c∈clauses(ψ)

∧
α⊑χ(λ−1(c))∩Y

{c}|α=∅

[
satαc

]
. (2)

// Either there is a clause satisfying the bag or we can propagate:∧
t∈V (T )

∧
α⊑χ(t)∩Y

[
satα≤t ↔

∧
c∈λ(t)

satαc ∧
∧

t′∈children(t)

satα<t,t′
]
, (3)

// Propagate satisfiability:∧
t∈V (T )

∧
α⊑χ(t)∩Y

∧
t′∈children(t)

[
satα<t,t′ ↔

∧
β⊑χ(t′)∩Y

β∩lits(χ(t))=α∩lits(χ(t′))

satβ≤t′
]
. (4)

Observe that the constraints (1)–(4) contain no variable from Y (we removed them by locally
speaking about α) and, furthermore, constraints (1), (3), and (4) are pure propagations,
which leave no degree of freedom on the auxiliary variables. Hence, models of these constraint
only have freedom in the variables in X within constraint (2). We are left with the task to
count only models that actually satisfy the input formula, which we achieve with:∨

α⊑χ(root(T ))∩Y

satα≤root(T ). (5)

▶ Lemma 10 (▼). There is an algorithm that, given a cnf ψ, a set X ⊆ vars(ψ), and a
width-k tree decomposition of Gψ, outputs in time O∗(2k) a cnf ψ′ and a width-(12 · 2k) tree
decomposition of Gψ′ such that the projected model count of ψ on X equals #(ψ′).

Proof of Theorem 2. By applying Fact 1 to the formula generated by Lemma 10 we obtain
an algorithm for pmc with running time tower*(2, k + 3.59). ◀

4 A SAT Version of Courcelle’s Theorem

We demonstrate the power of treewidth-aware encodings by providing an alternative proof of
Courcelle’s theorem. We prove the main part of Theorem 3 in the following form:

https://arxiv.org/pdf/2312.14620
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▶ Lemma 11. There is an algorithm that, given a relational structure S, a width-k tree
decomposition of S, and an mso sentence φ in prenex normal form, produces in time
tower*(qa(φ), (k + 9)|φ| + 3.92) a propositional formula ψ and tree decomposition of Gψ of
width tower(qa(φ), (k + 9)|φ| + 3.92) such that S |= φ ⇔ ψ ∈ sat.

The lemma assumes that the sentence is in prenex normal form with a quantifier-free
part ψ in cnf, i.e., φ ≡ Q1S1 . . . Qq−1Sq−1Qqsq . . . Qℓsℓ �

∧p
i=1 ψi with Qi ∈ {∃,∀} and

Si (si) being second-order (first-order) variables. The requirement that the second-order
quantifers appear before the first-order ones is for sake of presentation, the encoding works
as is if the quantifiers are mixed. The main part of the proof is a treewidth-aware encoding
from mc(mso) into qsat; which is then translated to sat using Theorem 1.

4.1 Auxiliary Encodings
Let ψ be a propositional formula and X ⊆ lits(ψ) be an arbitrary set of literals. A cardinality
constraint card▷◁c(X) with ▷◁ ∈ {≤,=,≥} ensures that { at most, exactly, at least } c literals
of X get assigned to true. Classic encodings of cardinality constraints increase the treewidth
of ψ by quite a lot. For instance, the naive encoding for card≤1(X) ≡

∧
u,v∈X;u̸=v(¬u ∨ ¬v)

completes X into a clique. We encode a cardinality constraint without increasing the
treewidth by distributing a sequential unary counter:

▶ Lemma 12 (▼). For every c ≥ 0 we can, given a cnf ψ, a set X ⊆ lits(ψ), and a width-k
tree decomposition of ψ, encode card▷◁c(X) such that tw(ψ ∧ card▷◁c(X)) ≤ k + 3c+ 3.

Sketch of Proof. We add c + 1 variables to every bag t of the tree decomposition, which
count the number of literals set to true in the subtree rooted at t. The semantics of the
sequential counter encoding [31] is then implemented along the edges of the decomposition.
To cover the new constraints, we can add the auxiliary variables of the (at most two) children
of t to the bag of t as well, resulting in an overall increase of the treewidth by 3c+ 3. ◀

The second auxiliary encoding is a treewidth-preserving conversion from cnfs to dnfs.

▶ Lemma 13. There is a polynomial-time algorithm that, given a cnf ψ and a width-k tree
decomposition of Gψ, produce a dnf ψ′ and a width-(k + 4) tree decomposition of Gψ′ such
that for any α ⊑ vars(ψ), ψ|α = ∅ iff ψ′|α is a tautology (¬(ψ′|α) is unsatisfiable).

Sketch of Proof. For every clause C we add a variable fC that is true iff C is satisfied.
Satisfiability is encoded along the tree by variables f≤t indicating that ψ is satisfied in the
subtree rooted at t via

∨
t∈V (T ) ¬

[
f≤t ↔

∧
C∈λ(t) fC ∧

∧
t′∈children(t) f≤t′

]
. ◀

4.2 Indicator Variables for the Quantifiers
To prove Lemma 11 we construct a qbf for a given mso sentence φ, structure S, and tree
decomposition of S. We first define the primary variables of ψ, i.e., the prefix of ψ (primary
here refers to the fact that we will also need some auxiliary variables later). For every
second-order quantifier ∃X or ∀X we introduce, as we did in the introduction, an indicator
variable Xu for every element u ∈ U(S) with the semantic that Xu is true iff u ∈ X. These
variables are either existentially or universally quantified, depending on the second-order
quantifier. If there are multiple quantifiers (say ∃X∀Y ), the order in which the variables are
quantified is the same as the order of the second-order quantifiers. For first-order quantifiers
∃x or ∀x we do the same construction, i.e., we add variables xu for all u ∈ U(S) with the
semantics that xu is true iff x was assigned to u. Of course, of these variables we have to set
exactly one to true, which we enforce by adding card=1({xu | u ∈ U(S)}) using Lemma 12.

STACS 2025

https://arxiv.org/pdf/2312.14620


15:12 Structure-Guided Automated Reasoning

4.3 Evaluation of Atoms
The last ingredient of our qbf encoding is the evaluation of the atoms in the mso sentence φ.
An atom is Rx1, . . . , xa for a relational symbol R from the vocabulary of arity a, containment
in a second-order variable Xu, equality x = y, and the negation of the aforementioned. For
every atom ι that appears in φ we introduce variables pιt and pι≤t for all t ∈ V (T ) that
indicate that ι is true in bag t or somewhere in the subtree rooted at t, respectively. Note
that the same atom can occur multiple times in φ, for instance in

∀x∀y∃z �(x = y → x = z) ∨ (x = y → y = z)

there are two atoms x = y. However, since φ is in prenex normal form (and, thus, variables
cannot be rebound), these always evaluate in exactly the same way. Hence, it is sufficient
to consider the set of atoms, which we denote by atoms(φ). We can propagate information
about the atoms along the tree decomposition with:∧

t∈V (T )

∧
ι∈atoms(φ)

[
pι≤t ↔ (pιt ∨

∨
t′∈children(t)

pι≤t′)
]
.

This encoding introduces two variables per atom ι per bag t (namely pιt and pι≤t), which
increases the treewidth by at most 2 · | atoms(φ)|. To synchronize with the two children t′

and t′′, we add pι≤t′ and pι≤t′′ to χ(t), yielding a total treewidth of at most 4 · | atoms(φ)|.
An easy atom to evaluate is x = y, since if x and y are equal (i.e., they both got assigned

to the same element u ∈ U(S)), we can conclude this fact within a bag that contains u:∧
t∈V (T )

[
px=y
t ↔

∨
u∈χ(t)

(xu ∧ yu)
]
.

For every u ∈ U(S) and every quantifier ∃x (or ∀x), we add the propositional variable xu
to all bags containing u. We increase the treewidth by at most the quantifier rank and, in
return, cover constraints as the above trivially. Similarly, if there is a second-order variable X
and a first-order variable x, the atom Xx can be evaluated locally in every bag:∧

t∈V (T )

[
pXx
t ↔

∨
u∈χ(t)

(Xu ∧ xu)
]
.

We have to evaluate atoms corresponding to relational symbols R of the vocabulary. For
each such symbol of arity a we encode:∧

t∈V (T )

[
p
R(x1,x2,...,xa)
t ↔

∨
u1,...,ua∈χ(t)
(u1,...,ua)∈RS

(
(x1)u1 ∧ (x2)u2 ∧ · · · ∧ (xa)ua

) ]
.

Here “R(x1, x2, . . . , xa)” is an atom in which R is a relational symbol and x1, x2, . . . , xa
are quantified first-order variables. In the inner “big-or” we consider all u1, . . . , ua in χ(t),
i.e., elements u1, . . . , ua ∈ U(S) that are in the relation (u1, . . . , ua) ∈ RS . Then “(xi)ui

”
is a variable that describes that xi gets assigned to ui. Note that all tuples in RS appear
together in at least one bag of the tree decomposition and, hence, there is at least one bag t
for which p

R(x1,x2,...,xa)
t can be evaluated to true. The propagation ensures that, for every

ι ∈ atoms(φ), the variable pι≤root(T ) will be true iff ι is true. Since the quantifier-free part of
φ is a cnf

∧p
j=1 ψj , we can encode it by replacing every occurrence of ι in ψj with pι≤root(T ).
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4.4 The Full Encoding in one Figure
For the readers convenience, we compiled the encoding into Figure 1. Combining the insights
of the last sections proves Lemma 11, but if the inner-most quantifier is universal, existentially
projecting the encoding variables would produce a qbf with one more block. This can,
however, be circumvent using Lemma 13. We formally prove that “combining the insights”
indeed leads to a sound proof of Lemma 11 in the technical report.

Cardinality Propagation

cx≤t ↔
∨

u∈χ(t)\χ(parent(t))

xu ∨
∨

t′∈children(t)

cx≤t′ for every t in T, x ∈ {sq, . . . , sℓ} (1)

At-Least-One Constraint
cx≤root(T ) for every x ∈ {sq, . . . , sℓ} (2)

At-Most-One Constraint
¬xu ∨ ¬xu′ for every t in T, u, u′ ∈ χ(t), u ̸= u′, x ∈ {sq, . . . , sℓ} (3)
¬xu ∨ ¬cx≤t′ for every t in T, t′ ∈ children(t), u ∈ χ(t)\χ(parent(t)), x∈{sq, . . . , sℓ} (4)
¬cx≤t′ ∨ ¬cx≤t′′ for every t in T, t′, t′′ ∈ children(t), t′ ̸= t′′, x ∈ {sq, . . . , sℓ} (5)
Proofs of MSO Atoms

px=y
t ↔

∨
u∈χ(t)

(xu ∧ yu) for every t in T, x, y ∈ {sq, . . . , sℓ}, (x=y)∈ atoms(φ) (6)

p
X(x)
t ↔

∨
u∈χ(t)

(Xu ∧ xu) for every t in T,X∈{S1, . . . , Sq−1}, x∈{sq, . . . , sℓ}, X(x)∈ atoms(φ) (7)

p
R(x1,...,xa)
t ↔

∨
u1,...,ua∈χ(t)
(u1,...,ua)∈RS

((x1)u1
∧ · · · ∧ (xa)ua

) for every t in T, {x1, . . . , xa} ⊆ {sq, . . . , sℓ},

R ∈ S, R(x1, . . . , xr) ∈ atoms(φ) (8)

pι≤t ↔ pιt ∨
∨

t′∈children(t)

pι≤t′ for every t in T, ι ∈ atoms(φ) (9)

Deriving MSO Atoms requires Proof
ι ↔ pι≤root(T ) for every t in T, ι ∈ atoms(φ)(10)

Verify MSO Formula
ψ (11)

Figure 1 The reduction Rmso→qsat(φ,S, T ) that takes as input an mso formula in prenex normal
form φ = Q1S1 . . . Qq−1Sq−1Qqsq . . . Qℓsℓ �ψ and a structure S with a TD T =(T, χ) of S of width k.
It obtains a QBF φ′ = Q1S

′
1 . . . QℓS

′
ℓ∃E′ �ψ′, where ψ′ is the conjunction of Equations (1)–(11),

S′
i = {(Si)u | u ∈ U(S)} and E′ = vars(ψ′) \ (

⋃ℓ

i=1 S
′
i). Formula ψ′ can be easily converted into

cnf of width linear in k (for constant-size mso formulas φ).

5 Fagin Definability via Automated Reasoning

In this section we prove the remaining two items of Theorem 3, i.e., a treewidth-aware encoding
of the optimization version of Courcelle’s Theorem to maxsat; and a #sat encoding of the
counting version of the theorem. The general approach is as follows: We obtain a mso formula
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φ(X) with a free set variable X as input (rather than a mso sentence as in Lemma 11). The
objective of the model-checking problems adds requirements to this variable (for fd(mso) we
seek a S ⊆ U(S) of minimum size such that S |= φ(S); for #fd(mso) we want to count the
number of sets S ⊆ U(S) with S |= φ(S)). The “trick” is to rewrite φ(X) = ξ as φ′ = ∃Xξ
and apply Lemma 11 to φ′ in order to obtain a propositional formula ψ. Observe that the
quantifier alternation of φ′ may be one larger than the one of φ.

▶ Lemma 14 (▼). There is an algorithm that, given a structure S with weights wi : U(S) → Q
for i ∈ {1, . . . , ℓ}, a width-k tree decomposition of S, and an mso formula φ(X1, . . . , Xℓ)
in prenex normal form, produces in time tower*(qa(φ) + 1, (k + 9)|φ| + 3.92) a wcnf ψ

and a tree decomposition of width tower(qa(φ) + 1, (k + 9)|φ| + 3.92) of Gψ such that the
maximum weight of any model of ψ equals the maximum value of

∑ℓ
i=1

∑
s∈Si

wi(s) under
S1, . . . , Sℓ ⊆ U(S) with S |= φ(S1, . . . , Sℓ).

Sketch of Proof. Consider ψ ∧
∧
u∈U(S)(¬Xu) such that the clauses in ψ are hard and the

added clauses are soft. A model maximizing the soft clauses will minimize the number of Xu

variables set to true, i.e., corresponds to a minimum-size set S with S |= φ(S). ◀

▶ Lemma 15 (▼). There is an algorithm that, given a relational structure S, a width-k tree
decomposition of S, and an mso formula φ(X1, . . . , Xℓ) in prenex normal form, produces
in time tower*(qa(φ) + 1, (k + 9)|φ| + 3.92) a cnf ψ and a tree decomposition of width
tower(qa(φ) + 1, (k + 9)|φ| + 3.92) of Gψ such that the number of models of ψ equals the
number of sets S1, . . . , Sℓ ⊆ U(S) with S |= φ(S1, . . . , Sℓ).

Sketch of Proof. We need to compute the number of models of ψ projected to the Xu

variables. In other words, it is sufficient to solve the projected model counting problem on the
instance generated with Lemma 11 using Lemma 10. ◀

6 Lower Bounds for the Encoding Size of Model Checking Problems

We companion our sat encodings for mc(mso) with lower bounds on the achievable encoding
size under ETH. The first lower bound (Theorem 5) is obtained by an encoding from qsat
into mc(mso) that implies that sat encodings of mc(mso) lead to faster qsat algorithms.

▶ Lemma 16 (▼). There is a polynomial-time algorithm that, given a qsat sentence ψ,
outputs a structure S and an mso sentence φ with tw(S) ≤ tw(ψ) + 1 and qa(φ) ≤ qa(ψ) + 2
such that S |= φ iff ψ evaluates to true.

Sketch of Proof. The structure S is the incidence graph of ψ (the graph containing a node
for every variable and every clause that connects variables to the clauses containing them)
with some additional labels. The sentence φ uses qa(ψ) second-order quantifier to guess the
assignment of ψ, and one additional ∀x∃y-block to evaluate it. ◀

Proof of Theorem 5. Combine Lemma 16 with Fact 5. ◀

6.1 An Encoding for Compressing Treewidth
For qsat one can “move” complexity from the quantifier rank of the formula to its treewidth
and vice versa [16]. By Lemma 16, this means that any reduction from qsat to mc(mso)
may produce an instance with small treewidth or quantifier alternation while increasing the
other. We show that one can also decrease the treewidth by increasing the block size.
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▶ Lemma 17 (▼). For every c > 0 there is a polynomial-time algorithm that, on input of a
cnf ψ and a width-k tree decomposition of Gψ, outputs a constant-size mso sentence φ with
qa(φ) = 2 and bs(φ) = c, and a structure S with tw(S) ≤ ⌈k+1

c ⌉ such that ψ ∈ sat ⇔ S |= φ.

Sketch of Proof. The idea of the proof is to (i) encode the input’s formula as an incidence
graph over which we reason with an mso sentence; we then (ii) replace this structure by its
tree decomposition with additional “sync edges”; and finally we (iii) contract vertices in the
tree decomposition to lower the treewidth, while we encode statements like x ∈ S (for a set
variable S) by defining new set variables S1, . . . , Sc and by interpreting y ∈ Si as “the ith
vertex contracted to y is in S”. ◀

Proof of Theorem 6. We obtain the Trade-off Theorem by combining the proof strategy
of Lemma 17 with the reduction from qsat to mc(mso) of Lemma 16. The result is a
polynomial-time algorithm for every c > 0 that, on input of a qbf ψ and a width-k tree
decomposition of Gψ, outputs a constant-size mso sentence φ with qa(φ) ≤ qa(ψ) + 2 and
bs(φ) = c, and a structure S with tw(S) ≤ ⌈k+1

c ⌉ such that ψ is valid iff S |= φ. ◀

It is out of the scope of this article, but worth mentioning, that the proofs of Lemma 17
and Theorem 6 can be generalized to the following finite-model theoretic result:

▶ Proposition 18. For every c > 0 there is a polynomial-time algorithm that, given a
relational structure S, a width-k tree decomposition of S, and an mso sentence φ, outputs a
structure S ′ and a sentence φ′ such that:
1. S |= φ ⇐⇒ S ′ |= φ′;
2. tw(S ′) ≤ ⌈k+1

c ⌉;
3. bs(φ′) ≤ c · bs(φ).

7 Conclusion and Further Research

We studied structure-guided automated reasoning, where we utilize the input’s structure in
propositional encodings. The scientific question we asked was whether we can encode every
mso definable problem on structures of bounded treewidth into sat formulas of bounded
treewidth. We proved this in the affirmative, implying an alternative proof of Courcelle’s
Theorem. The most valuable aspects are, in our opinion, the simplicity of the proof (it
is “just” an encoding into propositional logic) and the potential advantages in practice for
formulas of small quantifier alternation (sat solvers are known to perform well on instances of
small treewidth, even if they do not actively apply techniques such as dynamic programming).
Another advantage is the surprisingly simple generalization to the optimization and counting
version of Courcelle’s Theorem – we can directly “plug in” maxsat or #sat and obtain
the corresponding results. As a byproduct, we also obtain new proofs showing (purely as
encodings into propositional logic) that qsat parameterized by the input’s treewidth plus
quantifier alternation is fixed-parameter tractable (improving a complex dynamic program
with nested tables) and that pmc parameterized by treewidth is fixed-parameter tractable
(improving a multi-pass dynamic program). Table 1 provides an overview of the encodings
presented within this article.

Our encodings are exponentially smaller than the best known running time for mc(mso),
i.e., when we solve the instances using Fact 1, we obtain the same runtime. We complemented
this finding with new ETH-based lower bounds. Further research will be concerned with
closing the remaining gap in the height of the tower between the lower and upper bounds.
We show in an upcoming paper that the terms “qa(φ)” in Theorem 3 and “qa(φ) − 2” in
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Table 1 We summarize the encodings presented within this article. An encoding maps from one
problem to another. The third and fourth columns define the treewidth and size of the encoding,
whereby we assume that c > 0 is a constant, a width-k tree decomposition is given, ψ is a propositional
formula, and φ is a fixed mso formula.

Encoding. . .
From To Treewidth Size Reference

qsat sat tower(qa(ψ), k + 3.92) tower*(qa(ψ), k + 3.92) Theorem 1
pmc #sat tower(1, k + 3.59) tower*(1, k + 3.59) Theorem 2

card▷◁c(X) sat k + 3c+ 3 O(c|ψ|) Lemma 12
cnf dnf k + 4 O(|ψ|) Lemma 13

mc(mso) sat tower(qa(φ), (9k + 9)|φ| + 3.92) tower*(qa(φ), (9k + 9)|φ| + 3.92) Lemma 11
fd(mso) maxsat tower(qa(φ) + 1, (9k + 9)|φ| + 3.92) tower*(qa(φ) + 1, (9k + 9)|φ| + 3.92) Lemma 14
#fd(mso) #sat tower(qa(φ) + 1, (9k + 9)|φ| + 3.92) tower*(qa(φ) + 1, (9k + 9)|φ| + 3.92) Lemma 15

sat mc(mso) ⌈ k+1
c

⌉ O(k|ψ|) Lemma 17
qsat mc(mso) ⌈ k+1

c
⌉ O(k|ψ|) Theorem 6

Theorem 5 can be replaced by “qa2(φ)” on guarded formulas, i.e., formulas in which there are
only two first-order quantifers that are only allowed to quantify edges. Here, qa2(φ) refers
to the quantifier alternation of the second-order quantifers only. Hence, on such guarded
formulas (e.g., on all examples in the introduction), the bounds are tight. Another task that
remains for further research is to evaluate the encodings in practice. This would also be
interesting for the auxiliary encodings, e.g., can a treewidth-aware cardinality constraint
compete with classical cardinality constraint?
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