
The Complexity of Learning LTL, CTL and ATL
Formulas
Benjamin Bordais
TU Dortmund University, Center for Trustworthy Data Science and Security,
University Alliance Ruhr, Dortmund, Germany

Daniel Neider
TU Dortmund University, Center for Trustworthy Data Science and Security,
University Alliance Ruhr, Dortmund, Germany

Rajarshi Roy
Department of Computer Science, University of Oxford, UK

Abstract
We consider the problem of learning temporal logic formulas from examples of system behavior.
Learning temporal properties has crystallized as an effective means to explain complex temporal
behaviors. Several efficient algorithms have been designed for learning temporal formulas. However,
the theoretical understanding of the complexity of the learning decision problems remains largely
unexplored. To address this, we study the complexity of the passive learning problems of three
prominent temporal logics, Linear Temporal Logic (LTL), Computation Tree Logic (CTL) and
Alternating-time Temporal Logic (ATL) and several of their fragments. We show that learning
formulas with unbounded occurrences of binary operators is NP-complete for all of these logics. On
the other hand, when investigating the complexity of learning formulas with bounded occurrences of
binary operators, we exhibit discrepancies between the complexity of learning LTL, CTL and ATL
formulas (with a varying number of agents).

2012 ACM Subject Classification Theory of computation

Keywords and phrases Temporal logic, passive learning, complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.19

Related Version Full Version: https://arxiv.org/abs/2408.04486 [8]

Funding Rajarshi Roy acknowledges partial funding by the ERC under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No.834115, FUN2MODEL).

1 Introduction

Temporal logics are the de-facto standard for expressing temporal properties for software
and cyber-physical systems. Originally introduced in the context of program verification [33,
15], temporal logics are now well-established in numerous areas, including reinforcement
learning [40, 25, 10], motion planning [17, 12], process mining [13], and countless others. The
popularity of temporal logics can be attributed to their unique blend of mathematical rigor
and resemblance to natural language.

Until recently, formulating properties in temporal logics has been a manual task, requiring
human intuition and expertise [6, 39]. To circumvent this step, in the past ten years, there
have been numerous works to automatically learn (i.e., generate) properties in temporal logic.
Among them, a substantial number of works [29, 11, 35, 26, 41] target Linear Temporal Logic
(LTL) [33]. There is now a growing interest in learning formulas [16, 34, 9] in Computation
Tree Logic (CTL) [15] and Alternating-time Temporal Logic (ATL) [1] due to their ability to
express branching-time properties, including for multi-agent systems.

© Benjamin Bordais, Daniel Neider, and Rajarshi Roy;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 19; pp. 19:1–19:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0009-0000-4143-6298
https://orcid.org/0000-0001-9276-6342
https://orcid.org/0000-0002-0202-1169
https://doi.org/10.4230/LIPIcs.STACS.2025.19
https://arxiv.org/abs/2408.04486
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Learning LTL, CTL and ATL Formulas

Table 1 The complexity results for learning LTL, CTL and ATL formulas. The notation ATLk

refers to ATL-formulas with k agents. Ut ⊆ {¬, X, F, G} refers to the set of unary temporal operators.

Unbounded Bounded use of binary operators
use of binary

X ∈ Ut X /∈ Ut

operators {F, G} ⊆ Ut Ut = {F}, {G}
LTL

NP-c

L
CTL NP-c NL-c
ATL2 NP-c P-c
ATLk NP-c

While existing approaches for learning temporal properties demonstrate impressive
empirical performance, detailed comparisons of computational complexity across different
temporal logics remain underexplored. Most related works focus on LTL, either in the
verification domain [18, 27] or the database domain [19, 24]. These studies primarily report
complexity results, often highlighting NP-completeness for learning LTL-formulas and their
fragments. In contrast, the computational complexity of learning CTL- and ATL-formulas
has not yet been thoroughly examined.

In this work, we extend the study of learning temporal properties to include CTL-
and ATL-formulas. Additionally, we broaden existing results for LTL to cover a more
comprehensive set of operators, specifically addressing all binary operators (temporal or not).

To elaborate on our contributions, let us precisely describe the problem that we consider,
the passive learning problem for temporal logic [29, 11]. Its decision version asks the following
question: given two sets P, N of positive and negative examples of a system’s behavior and
a size bound B, does there exist a “separating” formula of size at most B, which is satisfied
by the positive examples and violated by the negative ones.

Our instantiation of the above problem depends on the considered logic, following related
literature [29, 34, 9]: LTL-formulas express linear-time properties, CTL-formulas express
branching-time properties, and ATL-formulas express properties on multi-agent systems.
Accordingly, the input examples for learning LTL, CTL and ATL are linear structures (or
equivalently infinite words), Kripke structures and concurrent game structures, respectively.
We refer to Section 2 for formal definitions and other prerequisites.

We summarize our contributions in Table 1. Our first result, illustrated in the left column,
shows that allowing formulas with unrestricted use of at least one binary operator makes
the corresponding learning decision problem NP-complete for all considered logics. Some
of these NP-hardness results are (closely) inspired by [27], involving reductions from the
hitting set problem – one of Karp’s 21 NP-complete problem; some others require novel proof
techniques, e.g. one involves a reduction from an NP-complete modulo-2 calculus problem.
We describe the outline of the proofs in Section 3.

All of the above NP-hardness proofs rely on separating formulas with linearly many (in
the size of the input) occurrences of binary operators. Thus, in the search of expressive
temporal logic fragments with lower complexities, we focus on formulas with a bounded
occurrences of binary logical operators such as ∧ (and), ∨ (or), etc. and no binary temporal
operators such as U (until), R (release), etc. This choice of formulas is motivated by the
fact that such formulas can still express interesting properties (e.g., GR(1) [32] formulas,
mode-target formulas [4], etc.) and are used in several practical applications (see Section 4.1
for details). We explore several fragments with different unary temporal operators, X (next),

B. Bordais, D. Neider, and R. Roy 19:3

F (eventually) and G (globally), and present the results in the rightmost column of Table 1.
We notice that, in this case, the complexity of the learning problems varies considerably
between different logics and unary operators. Importantly, we exhibit fragments where the
learning problem is below NP. We prove the three NP-hardness results using a reduction
from the hitting set problem; we give key insights on all of these results in Section 4.

All details can be found in the extended version [8].

Related Works. The most closely related works are [18] and [27], which operate within a
similar framework to ours. Both works consider learning problems in several fragments of
LTL, especially involving boolean operators such as ∨ and ∧, and temporal operators such as
X, F and G and prove their NP-completeness. We extend part of their work by categorizing
fragments based on the arity of the operators and studying which type of operators contribute
to the hardness. Moreover, there are several differences in the parameters considered for
the learning problem. The most important one is the following: the above works consider
the size upper bound B to be in binary, while we assume B given in unary. Although, in
complexity problems, integers are most often assumed to be written in binary, we believe
that considering size bound in unary is justified since one may want to not only decide the
existence of a formula but also effectively output one, which will require to explicitly write it.
The other differences with the setting of the above works are mostly due to the fact that we
do not only consider LTL learning, but CTL and ATL learning as well. A thorough discussion
of these differences can be found in the extended version of this paper [8].

In the past, complexity analysis of passive learning has been studied for formalisms
other than temporal logics. For instance, [21] and [2] proved NP-completeness of the passive
learning problems of deterministic finite automata (DFAs) and regular expressions (REs).

When it comes to temporal logics, most related works focus on developing efficient al-
gorithms for learning temporal logic formulas. Among these, the emphasis has predominantly
been on learning LTL (or its significant fragments), which has been discussed in detail in
a recent survey summarizing various learning techniques [30]. Broadly, the techniques can
be categorized into three main types: constraint solving [29, 11, 37, 20, 22], enumerative
search [35, 41], and neuro-symbolic techniques [26, 42].

For learning CTL, some approaches rely on handcrafted templates [14, 43] for simple
enumerative search, while others employ constraint-solving methods to learn formulas with
arbitrary structures [34]. The constraint-solving methods are extended to learn ATL-formulas
as well [9]. There are also works on learning other logics such as Signal Temporal Logic [7, 28],
Metric Temporal Logic [36], Past LTL [3], Property Specification Language [38], etc.

2 Preliminaries and Definitions

We let N denote the set of all integers and N1 denote the set of all positive integers. For all
i ≤ j ∈ N, we let [i, . . . , j] ⊆ N denote the set of integers {i, i+ 1, . . . , j}.

Given any non-empty set Q, we let Q∗, Q+ and Qω denote the sets of finite, non-empty
finite and infinite sequences of elements in Q, respectively. For all ρ ∈ Q+, we denote by
|ρ| ∈ N the number of elements of ρ. For all • ∈ {+, ω}, ρ ∈ Q• and i ∈ N1, if ρ has at least
i elements, we let: ρ[i] ∈ Q denote the i-th element in ρ, in particular ρ[1] ∈ Q is the first
element of ρ; ρ[: i] ∈ Q+ denotes the non-empty finite sequence ρ1 · · · ρi ∈ Q+; ρ[i :] ∈ Q•

denotes the non-empty sequence ρi · ρi+1 · · · ∈ Q•, in particular we have ρ[1 :] = ρ.
For the remainder of this section, we fix a non-empty set of propositions Prop.

STACS 2025

19:4 Learning LTL, CTL and ATL Formulas

2.1 Structures
Usually, ATL-formulas are interpreted on concurrent game structures, i..e. games where, at
each state, the concurrent actions of several agents have an impact on the next state reached.
A special kind of concurrent game structures are turn-based game structures, where each
state belongs to a specific agent who decides what the next state is. Here, we introduce only
this special kind of games mainly due to a lack of space, but also because all of our hardness
results, presented in Table 1, hold even when only considering turn-based game structures.

▶ Definition 1. A turn-based game structure (TGS for short) T = ⟨Q, I, Succ,Ag, α,Prop, π⟩
is a tuple where: Q is a finite set of states; I ⊆ Q is the set of initial states; Succ : Q → 2Q \∅
maps each state to its set of successors; Ag ⊆ N denotes the set of agents; α : Q → Ag maps
each state to the agent owning it; and π : Q 7→ 2Prop maps each state q ∈ Q to the set of
propositions that hold in q. A state q is said to be self-looping if q ∈ Succ(q). A structure is
self-looping if all of its states are self-looping.

For all coalitions of agents A ⊆ Ag, a strategy sA for the coalition A is a function
sA : Q+ → Q such that, for all ρ = ρ1 · · · ρn ∈ Q+, if α(ρn) ∈ A, then sA(ρ) ∈ Succ(ρn). We
denote by SA the set of strategies for the coalition A. Then, from any state q ∈ Q, we define
the set Out(q, sA) of infinite paths compatible with the strategy sA from q: Out(q, sA) := {ρ ∈
q ·Qω | ∀i ∈ N1 : α(ρ[i]) ∈ A =⇒ ρ[i+ 1] = sA(ρ[: i])}.

Finally, the size |T | of the turn-based structure T is equal to: |T | = |Q| + |Ag| + |Prop|.

Unless otherwise stated, a turn-based structure T will always refer to the tuple T =
⟨Q, I, Succ, A, α,Prop, π⟩.

There are also special kinds of turn-based structures of interest for us, introduced below.

▶ Definition 2. A Kripke structure is a turn-based structure with only one agent. A linear
structure is a Kripke structure such that: |I| = 1, and for all q ∈ Q, we have |Succ(q)| = 1.
Finally, a turn-based structure is size-1 if |Q| = 1.

Unless otherwise stated, a Kripke structure K will always refer to a tuple ⟨Q, I,Succ,Prop, π⟩1.
We have introduced the notion of linear structures as we are going to interpret LTL-

formulas on them. In the literature, they are usually interpreted on ultimately periodic words.
However, both models are equivalent and can be encoded into each other straightforwardly.

2.2 ATL, CTL and LTL formulas
The LTL, CTL and ATL-formulas that we consider throughout this paper use the following
temporal operators: X (neXt), F (Future), G (Globally), U (Until), R (Release), W (Weak
until), M (Mighty release). We group these operators into the sets of unary and binary
operators: OpUn := {¬,X,F,G} and Optp

Bin := {U,R,W,M}. We also let Oplg
Bin be the set

of all logical binary operators, i.e. classical logical operators, along with their negations:
Oplg

Bin := {∨,∧,⇒,⇐,⇔, ¬∨, ¬∧, ¬⇒, ¬⇐, ¬⇔} (we have |Oplg
Bin| = 10).

To define ATL-formulas, we consider two types of formulas: state formulas – where
strategic operators occur, denoted with the Greek letter ϕ – and path formulas – where
temporal operators occur, denoted with the Greek letter ψ. Consider some Ut ⊆ OpUn,
Bt ⊆ Optp

Bin, and Bl ⊆ Oplg
Bin. For all k ∈ N1, we denote by ATLk(Prop,Ut,Bt,Bl) the set of

ATLk-state formulas defined by the grammar:

ϕ ::= p | ¬ϕ | ϕ ∗ ϕ | ⟨⟨A⟩⟩ψ ψ ::= ∗1ϕ | ϕ ∗2 ϕ

1 In Kripke structures, there is only one agent, thus Ag and α are irrelevant.

B. Bordais, D. Neider, and R. Roy 19:5

where ϕ is a state-formula, ψ is a path formula, p ∈ Prop, ∗ ∈ Bl, A ⊆ [1, . . . , k] is a subset
of agents, ∗1 ∈ Ut \ {¬}, and ∗2 ∈ Bt. We denote by ATLk the set of all ATLk-state formulas
ϕ. Note that CTL-formulas are ATL1(Prop,Ut,Bt,Bl)-formulas. Hence, there are only two
possible strategic operator: ⟨⟨∅⟩⟩, usually denoted ∀, and ⟨⟨{1}⟩⟩ usually denoted ∃. We
define LTL-formulas as ATL1-formulas using only the quantifier ∃. Since LTL-formulas are
interpreted on linear structures, where each state has exactly one successor, the strategic
operators used have no impact on the satisfaction of the formula. For readability, we will
depict LTL-formulas without the ∃ quantifier.

The set of sub-formulas SubF(ϕ) of a formula ϕ is then defined inductively as follows:
SubF(ϕ) := {ϕ} ∪ S where S := ∅ if ϕ = p ∈ Prop, S := SubF(ϕ′) if ϕ ∈ {¬ϕ′, ⟨⟨A⟩⟩ ∗1 ϕ

′}
and S := SubF(ϕ1) ∪ SubF(ϕ2) if ϕ ∈ {ϕ1 ∗ ϕ2, ⟨⟨A⟩⟩(ϕ1 ∗2 ϕ2)}. The size |ϕ| of a formula is
then defined as its number of sub-formulas: |ϕ| := |SubF(ϕ)|. We also denote by |ϕ|bin the
number of sub-formulas of ϕ using a binary operator, |ϕ|bin := |SubBin(ϕ)| with: SubBin(ϕ) :=
{ϕ1 ∗ ϕ2 ∈ SubF(ϕ) | ϕ1, ϕ2 ∈ SubF(ϕ), ∗ ∈ Optp

Bin ∪ Oplg
Bin}.

We interpret ATL-formulas over TGS using the standard definitions [1]. That is, given a
state q and a state formula ϕ, the fact q satisfies ϕ, denoted q |= ϕ, is defined inductively:

q |= p iff p ∈ π(q)
q |= ¬ϕ iff q ̸|= ϕ

q |= ϕ1 ∗ ϕ2 iff (q |= ϕ1) ∗ (q |= ϕ2) = True
q |= ⟨⟨A⟩⟩ψ iff ∃sA ∈ SA, ∀π ∈ Out(q, s), π |= ψ

where ∗ ∈ Oplg
Bin is a binary operator seen as a boolean function ∗ : B × B → B with

B := {True,False}. Furthermore, given a path π ∈ Qω and a path formula ψ, the fact that ψ
holds for the path π, also denoted π |= ϕ, is defined inductively as follows:

π |= X ϕ iff π[2 :] |= ϕ;
π |= F ϕ iff ∃i ∈ N1, π[i :] |= ϕ;
π |= G ϕ iff ∀i ∈ N1, π[i :] |= ϕ

π |= ϕ1 W ϕ2 iff π |= (ϕ1 U ϕ2) ∨ G ϕ1

π |= ϕ1 U ϕ2 iff ∃i ∈ N1, π[i :] |= ϕ2 and
∀1 ≤ j ≤ i − 1, π[j :] |= ϕ1

π |= ϕ1 R ϕ2 iff π |= ¬(¬ϕ1 U ¬ϕ2)
π |= ϕ1 M ϕ2 iff π |= (ϕ1 R ϕ2) ∧ F ϕ1

An ATL-formula ϕ accepts a TGS T , denoted by T |= ϕ, if q |= ϕ for all initial states
q ∈ I, otherwise it rejects it. Given two formulas ϕ, ϕ′, we write ϕ =⇒ ϕ′ if, for all TGS T ,
if T |= ϕ, then T |= ϕ′. We write ϕ ≡ ϕ′ when ϕ =⇒ ϕ′ and ϕ′ =⇒ ϕ.

2.3 Learning decision problem
We define the LTL, CTL and ATL learning problems below, where models for LTL, CTL, and
ATL are linear structures, Kripke structures and turn-based game structures, respectively.

▶ Definition 3. Let TL ∈ {LTL,CTL,ATLk | k ∈ N1} and consider some sets of operators Ut ⊆
OpUn, Bt ⊆ Optp

Bin and Bl ⊆ Oplg
Bin. For all n ∈ N ∪ {∞}, we denote by TLLearn(Ut,Bt,Bl, n)

the decision problem:
Input: (Prop,P,N , B) where Prop is a set of propositions, P,N are two finite sets of
models for TL, and B ∈ N.
Output: yes if and only if there exists a TL-formula φ ∈ TL(Prop,Ut,Bt,Bl) such that
|φ| ≤ B, |φ|bin ≤ n, and φ is separating, i.e. such that : for all X ∈ P (resp. X ∈ N),
we have X |= φ (resp. X ̸|= φ).

The size of the input is equal to |Prop| + |P| + |N | +B (i.e. B is written in unary).

As the model checking problems for LTL, CTL, ATL are in P [1], it follows that the learning
problems for all these logics are in NP, with a straightforward guess-and-check subroutine.

STACS 2025

19:6 Learning LTL, CTL and ATL Formulas

▶ Proposition 4. For all Ut ⊆ OpUn, Bt ⊆ Optp
Bin, Bl ⊆ Oplg

Bin, n ∈ N ∪ {∞}, and TL ∈
{LTL,CTL,ATLk | k ∈ N1}, the decision problem TLLearn(Ut,Bt,Bl, n) is in NP.

2.4 Hitting set problem
We recall below the NP-complete problem from which we will establish almost all of our
(NP-hardness) reductions.

▶ Definition 5 (Hitting set problem). We denote by Hit the following decision problem:
Input: a triple (l, C, k) where l ∈ N1, C = C1, . . . , Cn are non-empty subsets of [1, . . . , l]
Output: yes iff there is a subset H ⊆ [1, . . . , l] of size at most k such that, we have
H ∩ Ci ̸= ∅ for all 1 ≤ i ≤ n. In such a case, the set H is called a hitting set.

In the following, if (l, C, k) is an instance of the hitting set problem, then C refers to
C1, . . . , Cn for some n ∈ N1.

3 Learning with unbounded use of binary operators

First, we consider the case of learning a formula with arbitrarily many occurrences of binary
operators. The main result of this section is stated in Theorem 6 below.

▶ Theorem 6. Let Bt ⊆ Optp
Bin and Bl ⊆ Oplg

Bin such that Bt ∪Bl ̸= ∅. Then, for all Ut ⊆ OpUn,
the decision problem LTLLearn(Ut,Bt,Bl,∞) is NP-hard.

In the passive learning setting that we consider, the size of the formulas is crucial due
to the upper bound B. Therefore, although it is possible to express e.g. disjunctions with
conjunctions and negations, since doing so affects the size of the formulas involved, if we have
proved that a learning problem is NP-hard with the operators ∨,¬, it does not imply a priori
that it is also NP-hard with the operator ∧. Hence, for the sake of completeness, we consider
all those fourteen binary operators (ten logical, four temporal), although it seems that some
of these binary operators (like ∨ or ∧) make much more sense to consider than others (like
⇔ or ¬⇔). Since these operators behave differently, we cannot do a single reduction working
for all these operators at once. However, we do partition these operators in different groups
and exhibit a reduction per group of operators.

Most of the reductions use only size-1 structures, that are (almost) entirely defined by the
subset of propositions labeling their only state. In addition, most of the reductions are done
from the hitting set problem. In that case, how we extract a hitting set from a (small enough)
separating formula relies only on the variables that need to occur in a formula separating
the positive and negative structures, regardless of the operators involved.

We start with the operators ∨,⇒,⇐, i.e. we assume that Bl ∩ {∨,⇒,⇐} ̸= ∅. The
reduction for this case is actually a straightforward adaptation of the proof of [27, Theorem
2]. We describe it here. Given an instance (l, C, k) of the hitting set problem, we let
Prop := {aj , bj | 1 ≤ j ≤ l}. Furthermore, for all subsets T ⊆ [1, . . . , l], we let L(T) denote
a size-1 (linear) structure whose only state is labeled by the set {aj , bj′ | j ∈ T, j′ /∈ T}.
Then, we let In∨,⇒,⇐ := (Prop,P,N , B) for P := {L(Ci) | 1 ≤ i ≤ n}, N := {L(∅)}, and
B := 2k − 1. Let us illustrate this reduction on a simple example. Assume that l = 4,
C = ({1, 2, 3}, {2, 4}, {1, 4}), and k = 2. Then, the sets labeling the only state of the positive
structures are {a1, a2, a3, b4}, {b1, a2, b3, a4}, and {a1, b2, b3, a4} while the set labeling the
only state of the negative structure is {b1, b2, b3, b4}. Furthermore, B = 3. Then, H := {1, 4}
is the a hitting set with |H| ≤ 2, while φ∨ := a1 ∨ a4, φ⇒ := b1 ⇒ a4, and φ⇐ := a1 ⇐ b4
are all separating formulas with |φ∨| = |φ⇒| = |φ⇐| ≤ 3.

B. Bordais, D. Neider, and R. Roy 19:7

We claim that (l, C, k) is a positive instance of Hit iff In∨,⇒,⇐ is a positive instance of
LTLLearn(Ut,Bt,Bl,∞). Indeed, given a hitting set H = {i1, . . . , ir} with r ≤ k, one can check
that the LTL-formula φ∨ := ∨1≤x≤r aix

of size 2r−1 ≤ B accepts P and rejects N . Note that,
the LTL-formulas φ⇒ := bj1 ⇒ (bj2 ⇒ (. . . ⇒ ajr)) and φ⇐ := ((aj1 ⇐ bj2) ⇐ . . .) ⇐ bjr of
size 2r+1 ≤ B also accept P and reject N . On the other hand, consider an LTL-formula φ of
size at most B that accepts P and rejects N . We let H := {1 ≤ j ≤ l | aj or bj occurs in φ}.
Since |φ| ≤ B, we have |H| ≤ k. Furthermore, consider any 1 ≤ i ≤ n. Let us consider
the set Si (resp. S) labeling the only state of the structure L(Ci) (resp. L(∅)). We have
∆(Si, S) := Si \ S ∪ S \ Si = {aj , bj | j ∈ Ci}. One can then show (rather straightforwardly,
by induction on LTL-formulas) that, since φ accepts L(Ci) and rejects L(∅), at least one
variable in ∆(Si, S) occurs in φ. That is, Ci ∩H ≠ ∅ and H is a hitting set of size at most k.

In fact, the reduction for the operators ∧, ¬⇒, ¬⇐ is obtained from the above one by
reversing the positive and negative sets (the arguments are almost identical).

We then handle the operators ¬∨, ¬∧. The above reductions cannot be used since,
when the operator ¬∧ (or the operator ¬∨) is used successively, the formula obtained is
semantically equivalent to an alternation of conjunctions and disjunctions. For instance,
consider six variables r1, r2, r3, r4, x1, x2 to use in a single LTL-formula using only the ¬∧
operator, e.g.: φ := r1

¬∧ (x1
¬∧ (r2

¬∧ (x2
¬∧ (r3

¬∧ r4)))). It is semantically equivalent
to: φ ≡ ¬r1 ∨ (x1 ∧ (¬r2 ∨ (x2 ∧ (¬r3 ∨ ¬r4))). This is in sharp contrast with the above-
formulas φ∨, φ⇐ and φ⇒. To circumvent this difficulty, we change the reduction by adding
propositions labeling the only state of all the positive size-1 linear structures (but not the
only state of all the negative ones). We can then place these propositions where x2 and
x4 were in the above formula. That way, we semantically obtain a disjunction on relevant
variables r1, r2, r3, r4. The obtained reduction is slightly more subtle than the previous ones.

Before considering the last two logical operators ⇔, ¬⇔, we handle the temporal operators
W,M. The two previous reductions only use size-1 structures. On such structures, the
temporal operators W,M are actually equivalent to ∨ and ∧ respectively. Hence, the
reductions for ∨ and ∧ can also be used as is for the operators W and M respectively.

We then handle the final two logical operators ⇔, ¬⇔. These operators are unlike the
other operators. Let us give an intuition of how the learning problems with these operators
behave. Consider an LTL-formula φ using only the operators ¬,⇒ and ¬⇔ and a size-1
structure L. Let S denote the set of propositions labeling the only state of L. We let Neg(φ)
denote the number of occurrences of the operators ¬, ¬⇔ in φ. We also let NbOcS̄(φ) denote
the number of occurrences of the propositions not in S in φ. Then, one can realize that
L |= φ if and only if Neg(φ) and NbOcS̄(φ) have the same parity. This simple observation
suggests that the learning problem with the operators ⇔, ¬⇔ is linked to modulo-2 calculus.
The reduction for these operators is established from an NP-complete problem dealing with
modulo-2 calculus, known as the Coset Weight problem [5].

Finally, we handle the temporal operators U and R. On size-1 structures, for all LTL-
formulas φ1, φ2, we have the following equivalences: φ1 Uφ2 ≡ φ1 Rφ2 ≡ φ2. That is,
contrary to the temporal operators W and M, on size-1 structures, U and R are equivalent
to unary operators. Hence, the reduction that we consider does not involve only size-1
structures. It is once again established from the hitting set problem, though the construction
and the correctness proof are more involved than for the above cases.

On top of that, for all sets of operators, ATL learning is at least as hard as CTL learning,
which is itself at least as hard as LTL learning. Thus, from Theorem 6, we obtain that CTL
and ATL learning with unbounded use of binary operators are NP-hard. This justifies the
leftmost column of Table 1.

STACS 2025

19:8 Learning LTL, CTL and ATL Formulas

4 Learning with a bounded amount of binary operators

Since, with unbounded use of binary operators, all the learning problems are NP-hard, we
focus on learning formulas where the number of occurrences of binary operators is bounded.
Note that the bound n parameterizes the decision problem itself, and therefore is independent
of the input. For simplicity, we restrict ourselves to formulas that do not use at all binary
temporal operators. Before we dive into the details of our results as summarized in the
rightmost column of Table 1, let us first argue why this fragment is interesting to focus on.

4.1 Expressivity
The passive learning problem that we consider in this paper bounds the size of the formulas
considered. This is because we want a separating formula not to overfit the input (i.e. not
to simply describe the positive and negative models). However, another benefit is that the
smaller the formulas, the more understandable they are for users. Similarly, using too many
binary operators could make the formulas hard to grasp, regardless of their size.

In addition, there are examples of interesting specifications that can be expressed with a
bounded amount of binary operators. We give three examples below with LTL-formulas.

Consider first so-called “mode-target” formulas of the shape
∧

j (F GMj ⇒
∨

i F GTi,j),
where all Mj , Ti,j are propositions. These types of formulas were introduced in [4] and exhibit
two interesting features: the corresponding LTL-synthesis problem is tractable, and these
formulas express an interesting property, which can be summarized as follows: if a model
eventually settles in a mode Mj , then it should eventually settle in one of the target Ti,j .
Interestingly, when the number of different modes and targets that a system can have is fixed,
then the number of binary operators sufficient to express such specification is also bounded.

Similarly, there are also interesting specifications related to “generalized reactivity” (from
[32] for LTL-formulas). Such specifications are of the shape

∧
i G Fψi ⇒

∧
i G Fψ′

i, where
all formulas ψi and ψ′

i do not feature at all temporal operators. As such, up to introducing
additional propositions, these could be expressible with few binary operators. These formulas
can be read as an implication between assumptions and guarantees. As above, when the
number of assumptions and guarantees is bounded, then the number of binary operators
sufficient to express such formulas also is.

Finally, one of the popular LTL learning tools, Scarlet [35], relies on a fragment of LTL,
directed LTL and its dual, which uses unary temporal operators and binary logical operators
only. In these fragments, formulas of a fixed length (a search parameter they define) can use
several of F G and X operators while using only bounded occurrences of ∧ and ∨ operators.

4.2 Abstract recipes
The six decision problems captured in the rightmost column of Table 1 are of two kinds:
three are NP-complete, while three others are below NP. In fact, the proofs of all three
results of the same kind will follow the same abstract recipes. We present them below.

Recipe for the membership-below-NP proofs. Let TL denote either LTL formulas, or CTL
formulas without the operator X, or ATL2 formulas with only one unary operator F or G
(i.e. one of the three logical fragment for which the corresponding decision problem is below
NP). Then, we follow the two steps below:
A) First, we show that given the set of propositions Prop and the bound B, there is a set of

relevant TL-formulas RelForm(Prop, B) such that: 1) For all TL(Prop)-formulas ϕ of size
at most B, there is a formula ϕ′ ∈ RelForm(Prop, B) such that ϕ ≡ ϕ′; and 2) the size of
RelForm(Prop, B) is polynomial in |Prop| and B.

B. Bordais, D. Neider, and R. Roy 19:9

B) Second, we show that for all TL-formulas ϕ ∈ RelForm(Prop, B), deciding if ϕ satisfies a
TL-model M can be done, depending on |Prop|, B, |M |, within the resources allowed, i.e.
logarithmic space for the LTL case, non-deterministic logarithmic space for the CTL case,
and polynomial time for the ATL2 case.

Due to a lack of space, in this paper we will only present these two steps in the context of
formulas that do not use any binary operator. Since the occurrences of binary operators
is bounded in any case, the arguments are essentially the same for the general case. For
instance, for the first step, from the result established for formulas without binary operators,
we can straightforwardly deduce the result for all formulas, by induction on the bound n.
That way, we obtain that |RelForm(Prop, B)| could be exponential in the bound n, but this
does not have an impact complexity-wise, since n is fixed.

Recipe for the NP-hardness proofs. The formulas that we consider only use a bounded
amount of binary operators. Thus, contrary to the NP-hardness reductions of Section 3,
here, our NP-hardness proofs do not rely on binary operators. In fact, these binary operators
make it harder to argue about how the permitted unary operators interact. For this reason,
our proof of NP-hardness is decomposed into two steps. We first exhibit reductions for
the learning problems without binary operators. Then, from these reductions, we devise
reductions for the learning problems with bounded occurrences of binary operators. We
present in details the former reductions in this paper and give intuition behind the later
reductions below.

Let n ∈ N and ∗ ∈ Oplg
Bin be a binary (non-temporal) operator. We consider n propositions

{p1, . . . , pn} and we define multiple size-1 structures using the propositions {p1, . . . , pn}
forming two sets An,∗ and Bn,∗. The idea is that to distinguish these two sets, a separating
formula will necessarily feature all the propositions {p1, . . . , pn}. In fact, from a positive
and a negative sets of structures P and N on the set of proposition {p}2 (which is the only
proposition that unary formulas can use in our reductions), we can show the following: if a
formula of size at most B+2n, with at most n occurrences of binary operators, separates both
P and N , and An,∗ and Bn,∗, then there is a unary formula of size at most B that separates
P and N .3 That way, a reduction for the learning problem without binary operators can be
translated (in logspace) into a reduction for the learning with bounded occurrences of binary
operators. Note that the arguments presented in this paragraph are not straightforward to
formally state and prove (this is handled in Theorem “Proving NP-hardness without binary
operators is sufficient” in the extended version [8]).

Let us now consider how we handle the reduction without binary operators. From an
instance (l, C, k) of the hitting problem, we proceed as follows. We define a sample of
structures (and a bound B) such that all separating formulas have a specific shape, and there
is a bijection between subsets H ⊆ [1, . . . , l] and formulas φ(l,H) of that specific shape. This
correspondence allows us to extract a hitting set. More specifically, we follow the abstract
recipe below:
(a) We define the bound B and positive and negative structures that “eliminate” certain

operators or pattern of operators from any potential separating formula. This way we
ensure that any separating formula will be of the form φ(l,H), for some H ⊆ [1, . . . , l].

(b) We define a negative structure satisfied by a formula φ(l,H) if and only if |H| ≥ k + 1.
(c) For all 1 ≤ i ≤ n, we define a positive structure that a formula φ(l,H) accepts if and

only if H ∩ Ci ̸= ∅.

2 In fact, for technical reason, in [8], we use two propositions {p, p̄}.
3 Actually, we can also show the converse (which is important for us to prove that the reduction is correct).

STACS 2025

19:10 Learning LTL, CTL and ATL Formulas

By construction, the instance of the learning decision problem that we obtain is a positive
instance if and only if the hitting set instance (l, C, k) also is. Furthermore, note that in all
three cases, this reduction can be computed in logspace.

4.3 LTL learning
We start with LTL learning. We have the proposition below.

▶ Proposition 7. For all sets of unary operators Ut ⊆ OpUn, sets of binary (non-temporal)
operators Bl ⊆ Oplg

Bin, and n ∈ N, the decision problem LTLLearn(Ut, ∅,Bl, n) is in L.

We present Steps A and B of Section 4.2 in the case n = 0. Toward Step A, we have the
equivalences below (see e.g. [27, Prop. 8]), which imply the corollary that follows.

▶ Observation 8. For all LTL-formulas φ and k ∈ N, we have: 1) F Xk φ ≡ Xk Fφ,
G Xk φ ≡ Xk Gφ; 2) F Fφ ≡ Fφ, G Gφ ≡ Gφ; 3) F G Fφ ≡ G Fφ, G F Gφ ≡ F Gφ.

▶ Corollary 9. Consider a set of propositions Prop. We let Lit(Prop) := {x,¬x | x ∈ Prop}
and LTLUn(Prop) := {Xk x,Xk Fx,Xk Gx,Xk F Gx,Xk G Fx | k ∈ N, x ∈ Lit(Prop)}.

Then, for any LTL-formula φ ∈ LTL(Prop,OpUn, ∅,Bl, 0), there is an LTL-formula φ′ ∈
LTLUn(Prop) ∩ LTL(Prop,OpUn, ∅,Bl, 0) such that φ ≡ φ′ and |φ′| ≤ |φ|.

Proof sketch. With the equivalences 1) from Observation 8, we can push the X operators
in φ at the beginning of the formula. The equivalences 2) and 3) from Observation 8 ensure
that it is possible to have at most two nested F,G operators in the resulting formula φ′. ◀

The set of relevant formulas RelForm(Prop, B) is then obtained directly from the set
of formulas LTLUn(Prop). Note that however, how it is obtained depends on the exact
operators in Ut. For instance, if G /∈ Ut while ¬,F ∈ Ut, we should replace the occurrences
of G in formulas in RelForm(Prop, B) by ¬ F ¬. Nonetheless, in any case, we obtain a set
RelForm(Prop, B) of relevant formulas whose number of elements is linear in |Prop| ·B. This
concludes the arguments for Step A. As for Step B, one can realize that since there are at
most two nested F,G operators in formulas in RelForm(Prop, B), then checking that they
hold on a linear structure can be done in logarithmic space (because it suffices to have a
constant number of pointers browsing the structure).

4.4 CTL learning
Consider now the more involved case of CTL learning. As can be seen in Table 1, we
distinguish two cases: with and without the operator X.

Assume that X ∈ Ut. The goal is to show the theorem below.

▶ Theorem 10. For all sets Ut ⊆ OpUn, Bl ⊆ Oplg
Bin, and bound n ∈ N, if X ∈ Ut, then the

decision problem CTLLearn(Ut, ∅,Bl, n) is NP-hard.

As stated in Section 4.2, we argue the theorem in the case n = 0. Recall that in that case
we consider a single proposition {p}. Consider an instance (l, C, k) of the hitting set problem
Hit. We follow the three Steps a, b, and c. Toward Step a, we define Kripke structures
that prevent the use of the operators F,G,¬. To do so, we let B := l + 1 and for two sets
S1, S2 ⊆ {p}, we consider the Kripke structure Kl,S1,S2 that is depicted in Figure 1. These
structures satisfy the lemma below.

B. Bordais, D. Neider, and R. Roy 19:11

q1

∅
. . . ql

∅
ql+1

S1

ql+2

S2

Figure 1 The structure Kl,S1,S2 where S1 ⊆ {p} (resp. S2 ⊆ {p}) labels ql+1 (resp. ql+2).

q0,1

∅
q0,2

∅
q0,3

∅
q0,4

∅
q0,5

∅
q0,6

∅

q1,2

∅
q1,3

∅
q1,4

∅
q1,5

∅
q1,6

∅

q2,3

∅
q2,4

∅
q2,5

∅
q2,6

∅

qwin
{p}

Figure 2 The Kripke structure K5
∃>2.

▶ Lemma 11. A formula ϕ ∈ CTL({p},Ut, ∅,Bl, 0) of size at most l + 1 accepting Kl,{p},∅
and rejecting Kl,∅,{p} and Kl,∅,∅ cannot use the operators F,G,¬.

Proof sketch. Consider an equivalent CTL-formula ϕ′ with |ϕ′| ≤ |ϕ| where negations, if any,
occur right before the proposition p. Then, if ϕ′ uses the operator G, it cannot distinguish
the structures Kl,{p},∅ and Kl,∅,∅. Otherwise, if it uses the operator F, it cannot distinguish
the structures Kl,{p},∅ and Kl,∅,{p}. Otherwise, since Kl,{p},∅,Kl,∅,{p}, and Kl,∅,∅ coincide
on the first l states, ϕ′ has to use at least l operators X. Since |ϕ′| ≤ l + 1, it cannot use a
negation. Thus ϕ′ does not use F,G,¬, and neither does ϕ. ◀

In fact, a CTL-formula ϕ ∈ CTL({p},Ut, ∅,Bl, 0) of size at most l + 1 accepting Kl,{p},∅
and rejecting Kl,∅,{p},Kl,∅,∅ necessarily uses exactly l operators X followed by the proposition
p. Such a formula is therefore entirely defined by the X operators before which it uses the
∃ quantifier. This suggests the definition below of the CTL-formula ϕ(l,H) induced by a
subset H ⊆ [1, . . . , l].

▶ Definition 12. For all H ⊆ [1, . . . , l], we let ϕ(l,H) ∈ CTL({p},Ut, ∅,Bl, 0) denote the CTL-
formula defined by ϕ(l,H) := Q1 X · · ·Ql X p where, for all 1 ≤ i ≤ l, we have Qi ∈ {∃,∀}
and Qi = ∃ if and only if i ∈ H.

For 1 ≤ i ≤ l + 1, we let ϕi(l,H) := Qi X . . . Ql X p (with ϕl+1(l,H) := p).

Let us now turn toward Step b. We define a structure Kl
∃>k with k + 2 different levels,

where: the single starting state q0,1 is at the bottommost level; the proposition p only labels
the state qwin at the topmost level; and every state of the bottom k+ 1 levels has a successor
at the same level and one level higher. That way, going from q0,1 to qwin is equivalent to
leveling up k + 1 times. Furthermore, the top most level can be reached in at most l. An
example is depicted in Figure 2. This structure satisfies the lemma below.

▶ Lemma 13. For all H ⊆ [1, . . . , l], we have Kl
∃>k |= ϕ(l,H) if and only if |H| > k.

STACS 2025

19:12 Learning LTL, CTL and ATL Formulas

q1

∅
q2

∅
q3

∅
q4

∅
q5

∅
q6

∅

qwin
{p}

Figure 3 The Kripke structure K5,{2,5}.

Consider now Step c. For C ⊆ [1, . . . , l], we define the Kripke structure K(l, C) with
{q1, . . . , ql, ql+1, q

win} as set of states where qwin is the only state labeled with p; and for
all 1 ≤ j ≤ l, qj branches to qj+1 and, if (and only if) j ∈ C, qj also branches to qwin, as
exemplified in Figure 3. Such structures satisfy the lemma below.

▶ Lemma 14. For all C,H ⊆ [1, . . . , l], we have K(l,C) |= ϕ(l,H) if and only if C ∩H ̸= ∅.

Proof sketch. We can show by induction on l + 1 ≥ j ≥ 1 the property P(j): qj |= ϕj(l,H)
if and only if H ∩ [j, . . . , l] ∩ C ̸= ∅. The lemma is then given by P(1). ◀

We can finally define the reduction that we consider. We let InCTL := ({p},P,N , B), with
B := l + 1, P := {Kl,{p},∅,Ki | 1 ≤ i ≤ n} and N := {Kl,∅,∅,Kl,∅,{p},K

l
∃>k}, be an input of

the decision problem CTLLearn(Ut, ∅,Bl, 0). By Lemmas 11, 13, 14, InCTL is a positive instance
of the decision problem CTLLearn(Ut, ∅,Bl, 0) if and only if (l, C, k) is a positive instance of
the decision problem Hit. Theorem 10 follows (in the case n = 0).

Assume that X /∈ Ut. In that case, the CTL learning problem is now in NL.

▶ Theorem 15. For all sets of operators Ut ⊆ {F,G,¬}, Bl ⊆ Oplg
Bin, and bounds n ∈ N, the

decision problem CTLLearn(Ut, ∅,Bl, n) is in NL.

Toward Step A, a crucial observation is that using the operators F or G twice in a row is
useless. This is stated in the lemma below in the context of ATL-formula because this lemma
will be used again in the next subsection.

▶ Lemma 16. Let I ⊆ J ⊆ N, and ϕ be an ATL-formula. We have:

⟨⟨J⟩⟩ F ϕ ≡ ⟨⟨I⟩⟩ F⟨⟨J⟩⟩ F ϕ ≡ ⟨⟨J⟩⟩ F⟨⟨I⟩⟩ F ϕ ⟨⟨I⟩⟩ G ϕ ≡ ⟨⟨I⟩⟩ G⟨⟨J⟩⟩ G ϕ ≡ ⟨⟨J⟩⟩ G⟨⟨I⟩⟩ G ϕ

Proof sketch. We argue the result for F, the case of G is dual. We have ⟨⟨J⟩⟩ Fϕ =⇒
⟨⟨I⟩⟩ F⟨⟨J⟩⟩ F by definition of F. Furthermore, if a state q satisfies ⟨⟨I⟩⟩ F⟨⟨J⟩⟩ Fϕ then there
is a strategy sI for the coalition I such that eventually a state satisfying ⟨⟨J⟩⟩ Fϕ is surely
reached. For all such states q, we consider a strategy sq

J for the coalition J ensuring to
eventually visit a state satisfying ϕ. Then, consider a strategy s′

J for the coalition J that:
mimics sI (which is possible since I ⊆ J) until a state q satisfying ⟨⟨J⟩⟩ Fϕ is reached, and
then switches to the strategy sq

J . That strategy ensures eventually reaching a state satisfying
ϕ. Therefore, ⟨⟨I⟩⟩ F⟨⟨J⟩⟩ Fϕ =⇒ ⟨⟨J⟩⟩ Fϕ. This is similar for ⟨⟨J⟩⟩ F⟨⟨I⟩⟩ Fϕ. ◀

From this, we can actually deduce (this is not direct) that there is a bound M ∈
N such that, for any set of propositions Prop and for all Ut ⊆ {F,G,¬}, given any
CTL(Prop,Ut, ∅,Bl, 0)-formula ϕ, there is an equivalent CTL(Prop,Ut, ∅,Bl, 0)-formula ϕ′,
with |ϕ′| ≤ M . Thus, the number of CTL-formulas to consider is linear in |Prop|. As for
Step B, consider any such formula ϕ. Since the number of quantifiers it uses is bounded by
M and NL = coNL, we deduce that checking that it satisfies a Kripke structure can be done
in NL.

B. Bordais, D. Neider, and R. Roy 19:13

q1,24

∅
q1,23

∅
q1,22

∅
q1,21

∅
qwin

{p}

Figure 4 The turn-based structure T4:1,2.

qwin
{p}

q
{p}

qlose

∅

Figure 5 On the left Tp, on the right Tno 2 G.

Proof of NL-hardness. In Table 1, we do not state only that CTL learning without the
operator X is in NL, but also that it is NL-hard. Proving this result is actually straightforward.
We exhibit a reduction from the problem of reachability in a graph (which is NL-complete [23]).
Given an input (G, s, t) of that problem, with G a graph, s the source state and t the target
state, we define a positive Kripke structure K that is obtained from G by making s its only
initial state, and t the only state labeled by the proposition p. Additionally, we consider
B := 2 as the bound, and with an additional structure, we ensure that if there is a separating
formula, then the formula ϕ := ∃ F p is separating.

4.5 ATL learning
We have seen that CTL learning with the operator X is NP-hard, which implies that it is
also the case for ATL learning. Here, we consider the case of ATL learning without the
operator X. First, let us informally explain why the NP-hardness reduction that we have
described above for CTL cannot possibly work without the operator X. A central aspect
of the proof of Lemma 14 is to be able to associate a specific operator in a prospective
formula with a specific state in a Kripke structure. That is intrinsically not possible with the
operator F since this operator looks at arbitrarily distant horizons. At least, this is true with
CTL-formulas interpreted on Kripke structures. However, with ATL-formulas interpreted on
turn-based structures, it is possible to “block the horizon” of F operators. Indeed, consider
the structure of Figure 4, where blue lozenge-shaped states are Agent-1 states, and red
square-shaped states are Agent-2’s. Here, one can see that q1,2

2 ̸|= ⟨⟨1⟩⟩ F p because Agent 2
can enforce to loop on the Agent-2 state q1,2

1 and not see the state qwin, labeled by p.
These kinds of turn-based games will be extensively used in the following. In all generality,

there are defined as follows: given a pair of agents i ̸= j and l ∈ N, in the turn-based structure
Tl:i,j , there are l + 1 self-looping states, alternatively belonging to Agents i and j, that can
get closer and closer to the self-looping sink qwin, the only state labeled by p. In fact, such
structures are linked to alternating-formulas, defined below.

▶ Definition 17. An ATL-formula is positive if it does not use any negation. For a pair of
agents i ̸= j and l ∈ N, a positive ATL-formula ϕ is (i, j)-free if it does not use an operator
⟨⟨A⟩⟩ F with i, j ∈ A. It is (i, j, l)-alternating if it is (i, j)-free and if there are at least l
alternating occurrences of operators ⟨⟨Ai⟩⟩ F with i ∈ Ai and ⟨⟨Aj⟩⟩ F with j ∈ Aj.

▶ Lemma 18. Consider two agents i ̸= j, l ∈ N, and a positive ATL-formula ϕ that is
(i, j)-free. The formula ϕ accepts the structure Tl:i,j if and only if it is (i, j, l)-alternating.

ATL2 learning with {F, G} ⊆ Ut. Here, all the turn-based structures that we consider
use the set of agents Ag = {1, 2}. The goal is to show the theorem below.

▶ Theorem 19. For all sets Ut ⊆ OpUn, Bl ⊆ Oplg
Bin, and bound n ∈ N, if {F,G} ⊆ Ut and

X /∈ Ut, then the decision problem ATL2
Learn(Ut, ∅,Bl, n) is NP-hard.

STACS 2025

19:14 Learning LTL, CTL and ATL Formulas

qG4

∅
qG3

∅

qG2

∅
qG1

∅

qwin
{p}

qlose
∅

Figure 6 The structure Tno 1 G≥2.

q11
∅

q21
∅

q12
∅

q22
∅

qlose

∅

q1,22

∅
q1,21

∅
qwin

{p}
qlose

∅
qTest1

∅

Figure 7 The structure T2,{1},2.

In the following, to ease the notations, the strategic operators ⟨⟨∅⟩⟩, ⟨⟨{1}⟩⟩, ⟨⟨{2}⟩⟩, ⟨⟨{1, 2}⟩⟩
will simply be denoted ∅, 1, 2 and 1, 2 respectively. Consider an instance (l, C, k) of the
hitting set problem. We follow the recipe of Subsection 4.2. Here, we want separating
formulas to be promising, i.e. to only use the operators 1 F, 2 F and 1 G. To this end, all the
structures we use are self-looping, thus making the operators ∅ F and 1, 2 G useless.

▶ Lemma 20. For all ATL-formulas ϕ and self-looping states q, we have: q |=
ϕ if and only if q |= ∅ Fϕ if and only if q |= 1, 2 Gϕ

Proof. Since q is self-looping the coalition of agents {1, 2} has a strategy s such that
Out(q, s) = {qω}. The lemma follows from the definition of the operators F and G. ◀

We also consider the two structures Tp, Tno 2 G, of Figure 5 satisfying the lemma below.

▶ Lemma 21. For all ATL-formulas ϕ ∈ ATL({p},Ut, ∅,Bl, 0) accepting Tp, Tno 2 G and
rejecting T2l+1:1,2, there is a promising formula ϕ′ ∈ ATL({p},Ut, ∅,Bl, 0) with |ϕ′| ≤ |ϕ| that
is equivalent to ϕ on self-looping structures.

Proof sketch. Consider an ATL-formula ϕ′ equivalent to ϕ with |ϕ′| ≤ |ϕ| and with at most
one negation occurring before the proposition p. Since ϕ′ accepts Tp, it follows that it is
positive. By Lemma 20, we can remove the operators 1, 2 G and ∅ F from ϕ′. Furthermore: ϕ′

cannot use ∅ G, 2 G, since it accepts Tno 2 G, and it cannot use 1, 2 F since it rejects T2l+1:1,2.
It is therefore promising. ◀

We will also consider T2l:1,2 as a positive structure, thus allowing us to focus on (1, 2, 2l)-
alternating formulas (recall Lemma 18). Then, we want to associate to a subset H ⊆ [1, . . . , l]
a promising (1, 2, 2l)-alternating ATL-formula. To get an intuition, let us consider the turn-
based structure Tno 1 G≥t for t = 2 of Figure 6. This structure Tno 1 G≥t is analogous to the
structure T2t:1,2 except that all Agent-2 states have an additional successor: the state qlose

that does not satisfy any positive formula. Back to the structure of Figure 6, because Agent 2
owns the states qG

3 , q
G
1 , these states do not accept any positive ATL-formula of the shape

1 Gϕ. Therefore, for all q ∈ {qG
4 , q

G
2 } and positive ATL-formulas ϕ, we have q |= 1 F 1 G 2 Fϕ

if and only if q |= ϕ. This actually implies that a (1, 2, 2l)-alternating formula ϕ accepts

B. Bordais, D. Neider, and R. Roy 19:15

Tno 1 G≥2 if and only if the sequence of operators 1 F 2 F (without 1 G in between) occurs at
least twice in ϕ (to go from qG

4 to qG
2 and then from qG

2 to qwin). In fact, we consider formulas
that only use 1 G operators after 1 F and before 2 F, as defined below. Such formulas satisfy
the lemma that follows.

▶ Definition 22. For all H ⊆ [1, . . . , l], we let ϕ(l,H, 2) ∈ ATL2({p},Ut, ∅,Bl, 0) denote the
ATL-formula defined by: ϕ(l,H, 2) := 1 FQ12 F · · · 1 FQl2 F p where, for all 1 ≤ i ≤ l, we
have Qi ∈ {ϵ, 1 G} and Qi = 1 G iff i /∈ H.

For all 1 ≤ i ≤ l+1, we let ϕi(l,H, 2) := 1 FQi2 F · · · 1 FQl2 F p (with ϕl+1(l,H, 2) := p).

▶ Lemma 23. A promising (1, 2, 2l)-alternating formula ϕ with |ϕ| ≤ 3l + 1 − k rejects
Tno 1 G≥k+1 if and only if ϕ = ϕ(l,H, 2) for some H ⊆ [1, . . . , l] such that |H| = k.

Proof sketch. Since ϕ is (1, 2, 2l)-alternating, it uses at least l operators 1 F and 2 F. Thus,
it can use at most l−k operators 1 G. In addition, ϕ accepts Tno 1 G≥k+1 iff there are at least
k + 1 occurrences of the sequence 1 F 2 F in ϕ. Thus, ϕ uses each l − k remaining operators
1 G between a different pair of successive 1 F, 2 F iff it rejects Tno 1 G≥k+1. ◀

With Tp, Tno 2 G, T2l:1,2 as positive structures and T2l+1:1,2, Tno 1 G≥k+1 as negative struc-
tures, we have achieved both Steps a and b. Let us turn to Step c. For all C ⊆ [1, . . . , l],
we define a turn-based structure Tl,C,2. An example is depicted in Figure 7 for l = 2. The
structure Tl,C,2 features a sequence of states q1

1 , q
2
1 , . . . , q

1
l , q

2
l alternating between Agent-1

and Agent-2 states ending in a self-looping sink qlose not labeled by p. However, the Agent-1
states q1

i for which i ∈ C have a “testing state” qTest
i as successor. That state is self-looping,

and may branch to the self-looping sink qlose or to the structure T2(l−i):1,2. That state is such
that qTest

i |= Qi2 Fϕi+1(l,H, 2) iff Qi = ϵ (iff i ∈ H). Furthermore, note that it is useless
to “wait” at the state q1

i before branching to qTest
i . Indeed, if for instance Qi = 1 G but

Qi+1 = ϵ, then it may seem that qTest
1 |= φ′, for φ′ := Qi+12 Fϕi+2(l,H, 2) and therefore

q1
i |= ϕi(l,H, 2) = 1 FQi2 F 1 Fφ′. However, it is not the case because we do not have
qTest

i |= φ′, since ϕi+2(l,H, 2) is not (1, 2, 2(l − i))-alternating, and thus it does not satisfy
the structure T2(l−i):1,2. Overall, we have the lemma below.

▶ Lemma 24. For all C,H ⊆ [1, . . . , l], we have T(l,C) |= ϕ(l,H, 2) if and only if C ∩H ̸= ∅.

We have achieved Step c. Then, we let InATL(2) := ({p},P,N , B) be an input of the
decision problem ATL2

Learn(Ut, ∅,Bl, 0) where P := {Tp, Tno 2 G, T2l:1,2, T(l,Ci,2) | 1 ≤ i ≤ n},
N := {T2l+1:1,2, Tno 1 G≥k+1}, and B := 3l + 1 − k. By Lemmas 21, 23 and 24, InATL(2) is a
positive instance of ATL2

Learn(Ut, ∅,Bl, 0) iff (l, C, k) is a positive instance of Hit.

ATL2 learning with Ut = {F} or Ut = {G}. The ATL2 learning problem is now in P.

▶ Theorem 25. For all sets of operators Ut ∈ {{F}, {G}}, Bl ⊆ Oplg
Bin, and bounds n ∈ N,

the decision problem ATL2
Learn(Ut, ∅,Bl, n) is in P.

We focus on the case Ut = {F}, the other is analogous. Towards Step A, consider a formula
ϕ ∈ ATL2(Prop, {F}, ∅,Bl, 0) and the only proposition p ∈ Prop occurring in ϕ. By Lemma 16,
we can make the following observations: 1) If the operator 1, 2 F occurs in ϕ, then ϕ ≡ 1, 2 F p;
2) Otherwise, if the only operator occurring in ϕ is ∅ F then ϕ ≡ ∅ F p; 3) Otherwise, ϕ is
equivalent to a formula ϕ′ alternating between the operators 1 F and 2 F, with |ϕ′| ≤ |ϕ|.
These observations suggest the definition below, which satisfies the lemma that follows.

STACS 2025

19:16 Learning LTL, CTL and ATL Formulas

▶ Definition 26. For a set of propositions Prop, we define the set ATL2
F(Prop) := {Qt ·

p | p ∈ Prop, Qt ∈ QuantF
Alt} where QuantF

Alt := {ϵ, ∅ F, 1, 2 F, (1 F ·2 F)∗, (1 F ·2 F)∗ ·
1 F, (2 F ·1 F)∗, (2 F ·1 F)∗ · 2 F}.

▶ Lemma 27. For a set of propositions Prop, and ϕ ∈ ATL2(Prop, {F}, ∅,Bl, 0), there is an
ATL-formula ϕ′ ∈ ATL2

F(Prop) such that ϕ ≡ ϕ′ and |ϕ′| ≤ |ϕ|.

This concludes Step A since the number of formulas of size at most B in ATL2
F(Prop) is

polynomial in B and |Prop|. As for Step B, in this case it is trivial since checking that an
ATL-formula satisfies a structure can always be done in polynomial time.

Proof of P-hardness. In Table 1, we additionally state only that ATL2 learning with
Ut ∈ {{F}, {G}} is P-hard. The proof of this fact is actually very similar to the proof that
CTL learning without the operator X is NL-hard, except that the reduction is made from
the problem of reachability in a turn-based game (which is P-complete [31]).

ATL3 learning with Ut ∈ {{F}, {G}}. Let us consider ATL learning with one more agent,
i.e. ATL3 learning, still with Ut ∈ {{F}, {G}}. The turn-based structures that we consider
now use the set of agents Ag = {1, 2, 3}. The goal is to show the theorem below.

▶ Theorem 28. For all sets Ut ∈ {{F}, {G}}, Bl ⊆ Oplg
Bin, and bound n ∈ N, the decision

problem ATL3
Learn(Ut, ∅,Bl, n) is NP-hard.

We focus on the case Ut = {F} (the case Ut = {G} is analogous since the operators F and
G have a dual behavior). Once again, let us consider an instance (l, C, k) of the problem Hit.
We start right away by defining the ATL3-formula associated to a subset H ⊆ [1, . . . , l].

▶ Definition 29. For H ⊆ [1, . . . , l], we let ϕ(l,H, 3) denote the ATL3-formula defined by
ϕ(l,H, 3) := 1 F⟨⟨A1⟩⟩ F · · · 1 F⟨⟨Al⟩⟩ F p where, for all 1 ≤ i ≤ l, we have Ai ∈ {{2}, {2, 3}}
and Ai = {2, 3} F if and only if i ∈ H.

For 1 ≤ i ≤ l+ 1, we let ϕi(l,H, 3) := 1 F⟨⟨Ai⟩⟩ F · · · 1 F⟨⟨Al⟩⟩ F p (with ϕl+1(l,H, 3) = p).

Toward Step a, we define T2l+1:1,2, T2(k+1):1,3 as negative structures, thus ensuring that a
separating formula does not use an operator ⟨⟨A⟩⟩ F with 1, 2 ∈ A, or 1, 3 ∈ A. We also define
T2l:1,2 as a positive structure with the bound B := 2l + 1. That way, a separating formula is
necessarily (1, 2, 2l)-alternating and only uses the operators 1 F, 2 F, and 2, 3 F.

▶ Lemma 30. If a formula ϕ ∈ ATL3({{p}, {F}, ∅,Bl, n) with |ϕ| ≤ 2l+ 1 accepts T2l:1,2 and
rejects T2l+1:1,2, T2(k+1):1,3, then there is some H ⊆ [1, . . . , l] such that ϕ = ϕ(l,H, 3).

Note that, if |H| ≥ k + 1, then ϕ(l,H, 3) is (1, 3, 2(k + 1))-alternating. Therefore, since
T2(k+1):1,3 is a negative structure, if ϕ(l,H, 3) is separating, then |H| ≤ k, i.e. we have
also achieved Step b. Let us now turn to Step c. For all C ⊆ [1, . . . , l], we define the
structure Tl,C,3. An example is given in Figure 8 with l = 3. This structure Tl,C,3 features a
sequence of states q1

1 , q
2
1 , . . . , q

1
l , q

2
l alternating between Agent-1 and Agent-2 states ending

in a self-looping sink qlose. However, the Agent-1 states q1
i for which i ∈ C have an Agent-3

“testing state” qTest
i as successor. That state is self-looping and also branches to the structure

T(l−i):1,2. Note that, given r ≥ i+ 1, the sub-formula ϕr(l,H, 3) is (1, 2, l− r+ 1)-alternating,
and therefore satisfies the structure T(l−i):1,2, iff r = i+ 1. Thus, since qTest

i is an Agent-3
state, qTest

i |= ⟨⟨Ai⟩⟩ Fϕi+1(l,H, 3) iff 3 ∈ Ai iff i ∈ H. Thus, we have the following lemma.

▶ Lemma 31. For all C,H ⊆ [1, . . . , l], we have T(l,C,3) |= ϕ(l,H, 3) if and only if C∩H ̸= ∅.

B. Bordais, D. Neider, and R. Roy 19:17

q11
∅

q21
∅

q12
∅

q22
∅

q13
∅

q23
∅

qlose

∅

q1,22

∅

q1,21

∅
qwin

{p}

qTest2

∅

Figure 8 The turn-based structure T3,{2},3.

This concludes Step c. Overall, we let InATL(3),F := ({p},P,N , B) be an input of
the decision problem ATL3

Learn({F}, ∅,Bl, 0) where P := {T2l:1,2, T(l,Ci,3) | 1 ≤ i ≤ n},
N := {T2l+1:1,2, T2(k+1):1,3}, and B := 2l + 1. We have that InATL(3),F is a positive instance
of ATL3

Learn({F}, ∅,Bl, 0) if and only if (l, C, k) is a positive instance of Hit.

5 Future Work

Within our setting, we have covered many cases, as can be seen in Table 1. That is why the
complete version of this work [8] is already quite long. However, there are still some cases that
we have not tackled. First, there is the case of ATL2 learning with Ut ∈ {{F,¬}, {G,¬}}. We
believe that it behaves like the case F,G ∈ Ut, but the proofs would entail many additional
technical details, since replacing F with ¬ G ¬ increases the size of the formulas.

More importantly, when considering a bounded amount of binary operators, we have not
allowed binary temporal operators (U,R,W,M). Doing so would enhance the expressivity
of the fragment that we consider, and we conjecture that we would obtain the same result as
in this paper, with proofs that should be only moderately more involved.

On a more high level perspective, in this paper we have focused solely on solving exactly
the learning problems and although we have found some relevant tractable cases, many are
untractable. A promising research direction would be to look for tractable approximation
algorithms, similarly to what is done in [27].

References
1 Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic.

J. ACM, 49(5):672–713, September 2002. doi:10.1145/585265.585270.
2 Dana Angluin. On the complexity of minimum inference of regular sets. Inf. Control.,

39(3):337–350, 1978. doi:10.1016/S0019-9958(78)90683-6.
3 M. Fareed Arif, Daniel Larraz, Mitziu Echeverria, Andrew Reynolds, Omar Chowdhury, and

Cesare Tinelli. SYSLITE: syntax-guided synthesis of PLTL formulas from finite traces. In
FMCAD, pages 93–103. IEEE, 2020. doi:10.34727/2020/ISBN.978-3-85448-042-6_16.

4 Ayca Balkan, Moshe Y. Vardi, and Paulo Tabuada. Mode-target games: Reactive synthesis
for control applications. IEEE Trans. Autom. Control., 63(1):196–202, 2018. doi:10.1109/
TAC.2017.2722960.

5 Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. On the inherent
intractability of certain coding problems (corresp.). IEEE Trans. Inf. Theory, 24(3):384–386,
1978. doi:10.1109/TIT.1978.1055873.

6 Dines Bjørner and Klaus Havelund. 40 years of formal methods - some obstacles and some
possibilities? In FM, volume 8442 of Lecture Notes in Computer Science, pages 42–61. Springer,
2014. doi:10.1007/978-3-319-06410-9_4.

STACS 2025

https://doi.org/10.1145/585265.585270
https://doi.org/10.1016/S0019-9958(78)90683-6
https://doi.org/10.34727/2020/ISBN.978-3-85448-042-6_16
https://doi.org/10.1109/TAC.2017.2722960
https://doi.org/10.1109/TAC.2017.2722960
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1007/978-3-319-06410-9_4

19:18 Learning LTL, CTL and ATL Formulas

7 Giuseppe Bombara, Cristian-Ioan Vasile, Francisco Penedo, Hirotoshi Yasuoka, and Calin
Belta. A decision tree approach to data classification using signal temporal logic. In Proceedings
of the 19th International Conference on Hybrid Systems: Computation and Control, HSCC
’16, pages 1–10, New York, NY, USA, 2016. Association for Computing Machinery. doi:
10.1145/2883817.2883843.

8 Benjamin Bordais, Daniel Neider, and Rajarshi Roy. The complexity of learning temporal
properties. CoRR, abs/2408.04486, 2024. doi:10.48550/arXiv.2408.04486.

9 Benjamin Bordais, Daniel Neider, and Rajarshi Roy. Learning branching-time properties
in CTL and ATL via constraint solving. In André Platzer, Kristin Yvonne Rozier, Matteo
Pradella, and Matteo Rossi, editors, Formal Methods - 26th International Symposium, FM
2024, Milan, Italy, September 9-13, 2024, Proceedings, Part I, volume 14933 of Lecture Notes
in Computer Science, pages 304–323. Springer, 2024. doi:10.1007/978-3-031-71162-6_16.

10 Alberto Camacho, Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, and
Sheila A. McIlraith. LTL and beyond: Formal languages for reward function specification in
reinforcement learning. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019,
pages 6065–6073. ijcai.org, 2019. doi:10.24963/IJCAI.2019/840.

11 Alberto Camacho and Sheila A. McIlraith. Learning interpretable models expressed in linear
temporal logic. In ICAPS, pages 621–630. AAAI Press, 2019. URL: https://ojs.aaai.org/
index.php/ICAPS/article/view/3529.

12 Alberto Camacho, Eleni Triantafillou, Christian J. Muise, Jorge A. Baier, and Sheila A.
McIlraith. Non-deterministic planning with temporally extended goals: LTL over finite and
infinite traces. In AAAI, pages 3716–3724. AAAI Press, 2017. doi:10.1609/AAAI.V31I1.
11058.

13 Alessio Cecconi, Giuseppe De Giacomo, Claudio Di Ciccio, Fabrizio Maria Maggi, and Jan
Mendling. Measuring the interestingness of temporal logic behavioral specifications in process
mining. Inf. Syst., 107:101920, 2022. doi:10.1016/J.IS.2021.101920.

14 William Chan. Temporal-logic queries. In CAV, volume 1855 of Lecture Notes in Computer
Science, pages 450–463. Springer, 2000.

15 Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Dexter Kozen, editor, Logics of Programs, Workshop,
Yorktown Heights, New York, USA, May 1981, volume 131 of Lecture Notes in Computer
Science, pages 52–71. Springer, 1981. doi:10.1007/BFB0025774.

16 Rüdiger Ehlers, Ivan Gavran, and Daniel Neider. Learning properties in LTL ∩ ACTL from
positive examples only. In 2020 Formal Methods in Computer Aided Design, FMCAD 2020,
Haifa, Israel, September 21-24, 2020, pages 104–112. IEEE, 2020. doi:10.34727/2020/ISBN.
978-3-85448-042-6_17.

17 Georgios E. Fainekos, Hadas Kress-Gazit, and George J. Pappas. Temporal logic motion
planning for mobile robots. In ICRA, pages 2020–2025. IEEE, 2005. doi:10.1109/ROBOT.
2005.1570410.

18 Nathanaël Fijalkow and Guillaume Lagarde. The complexity of learning linear temporal formu-
las from examples. In Jane Chandlee, Rémi Eyraud, Jeff Heinz, Adam Jardine, and Menno van
Zaanen, editors, Proceedings of the 15th International Conference on Grammatical Inference, 23-
27 August 2021, Virtual Event, volume 153 of Proceedings of Machine Learning Research, pages
237–250. PMLR, 2021. URL: https://proceedings.mlr.press/v153/fijalkow21a.html.

19 Marie Fortin, Boris Konev, Vladislav Ryzhikov, Yury Savateev, Frank Wolter, and Michael
Zakharyaschev. Reverse engineering of temporal queries mediated by LTL ontologies. In
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence,
IJCAI 2023, 19th-25th August 2023, Macao, SAR, China, pages 3230–3238. ijcai.org, 2023.
doi:10.24963/IJCAI.2023/360.

https://doi.org/10.1145/2883817.2883843
https://doi.org/10.1145/2883817.2883843
https://doi.org/10.48550/arXiv.2408.04486
https://doi.org/10.1007/978-3-031-71162-6_16
https://doi.org/10.24963/IJCAI.2019/840
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://doi.org/10.1609/AAAI.V31I1.11058
https://doi.org/10.1609/AAAI.V31I1.11058
https://doi.org/10.1016/J.IS.2021.101920
https://doi.org/10.1007/BFB0025774
https://doi.org/10.34727/2020/ISBN.978-3-85448-042-6_17
https://doi.org/10.34727/2020/ISBN.978-3-85448-042-6_17
https://doi.org/10.1109/ROBOT.2005.1570410
https://doi.org/10.1109/ROBOT.2005.1570410
https://proceedings.mlr.press/v153/fijalkow21a.html
https://doi.org/10.24963/IJCAI.2023/360

B. Bordais, D. Neider, and R. Roy 19:19

20 Jean-Raphaël Gaglione, Daniel Neider, Rajarshi Roy, Ufuk Topcu, and Zhe Xu. Maxsat-based
temporal logic inference from noisy data. Innov. Syst. Softw. Eng., 18(3):427–442, 2022.
doi:10.1007/S11334-022-00444-8.

21 E. Mark Gold. Complexity of automaton identification from given data. Inf. Control.,
37(3):302–320, 1978. doi:10.1016/S0019-9958(78)90562-4.

22 Antonio Ielo, Mark Law, Valeria Fionda, Francesco Ricca, Giuseppe De Giacomo, and
Alessandra Russo. Towards ilp-based ltlf passive learning. In Inductive Logic Programming:
32nd International Conference, ILP 2023, Bari, Italy, November 13–15, 2023, Proceedings,
pages 30–45, Berlin, Heidelberg, 2023. Springer-Verlag. doi:10.1007/978-3-031-49299-0_3.

23 Neil Immerman. Number of quantifiers is better than number of tape cells. J. Comput. Syst.
Sci., 22(3):384–406, 1981. doi:10.1016/0022-0000(81)90039-8.

24 Jean Christoph Jung, Vladislav Ryzhikov, Frank Wolter, and Michael Zakharyaschev. Extremal
separation problems for temporal instance queries. In Proceedings of the Thirty-Third Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju, South Korea, August 3-9,
2024, pages 3448–3456. ijcai.org, 2024. URL: https://www.ijcai.org/proceedings/2024/
382.

25 Xiao Li, Cristian Ioan Vasile, and Calin Belta. Reinforcement learning with temporal logic
rewards. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS 2017, Vancouver, BC, Canada, September 24-28, 2017, pages 3834–3839. IEEE, 2017.
doi:10.1109/IROS.2017.8206234.

26 Weilin Luo, Pingjia Liang, Jianfeng Du, Hai Wan, Bo Peng, and Delong Zhang. Bridging ltlf
inference to GNN inference for learning ltlf formulae. In AAAI, pages 9849–9857. AAAI Press,
2022. doi:10.1609/AAAI.V36I9.21221.

27 Corto Mascle, Nathanaël Fijalkow, and Guillaume Lagarde. Learning temporal formulas from
examples is hard. CoRR, abs/2312.16336, 2023. doi:10.48550/arXiv.2312.16336.

28 Sara Mohammadinejad, Jyotirmoy V. Deshmukh, Aniruddh Gopinath Puranic, Marcell
Vazquez-Chanlatte, and Alexandre Donzé. Interpretable classification of time-series data using
efficient enumerative techniques. In HSCC ’20: 23rd ACM International Conference on Hybrid
Systems: Computation and Control, Sydney, New South Wales, Australia, April 21-24, 2020,
pages 9:1–9:10. ACM, 2020. doi:10.1145/3365365.3382218.

29 Daniel Neider and Ivan Gavran. Learning linear temporal properties. In Nikolaj S. Bjørner
and Arie Gurfinkel, editors, 2018 Formal Methods in Computer Aided Design, FMCAD
2018, Austin, TX, USA, October 30 - November 2, 2018, pages 1–10. IEEE, 2018. doi:
10.23919/FMCAD.2018.8603016.

30 Daniel Neider and Rajarshi Roy. What Is Formal Verification Without Specifications? A
Survey on Mining LTL Specifications, pages 109–125. Springer Nature Switzerland, Cham,
2025. doi:10.1007/978-3-031-75778-5_6.

31 C.H. Papadimitriou. Computational Complexity. Theoretical computer science. Addison-Wesley,
1994. URL: https://books.google.de/books?id=JogZAQAAIAAJ.

32 Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. In E. Allen
Emerson and Kedar S. Namjoshi, editors, Verification, Model Checking, and Abstract Interpret-
ation, 7th International Conference, VMCAI 2006, Charleston, SC, USA, January 8-10, 2006,
Proceedings, volume 3855 of Lecture Notes in Computer Science, pages 364–380. Springer,
2006. doi:10.1007/11609773_24.

33 Amir Pnueli. The temporal logic of programs. In Proc. 18th Annu. Symp. Found. Computer
Sci., pages 46–57, 1977. doi:10.1109/SFCS.1977.32.

34 Adrien Pommellet, Daniel Stan, and Simon Scatton. Sat-based learning of computation
tree logic. In Christoph Benzmüller, Marijn J. H. Heule, and Renate A. Schmidt, editors,
Automated Reasoning - 12th International Joint Conference, IJCAR 2024, Nancy, France,
July 3-6, 2024, Proceedings, Part I, volume 14739 of Lecture Notes in Computer Science, pages
366–385. Springer, 2024. doi:10.1007/978-3-031-63498-7_22.

STACS 2025

https://doi.org/10.1007/S11334-022-00444-8
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1007/978-3-031-49299-0_3
https://doi.org/10.1016/0022-0000(81)90039-8
https://www.ijcai.org/proceedings/2024/382
https://www.ijcai.org/proceedings/2024/382
https://doi.org/10.1109/IROS.2017.8206234
https://doi.org/10.1609/AAAI.V36I9.21221
https://doi.org/10.48550/arXiv.2312.16336
https://doi.org/10.1145/3365365.3382218
https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.1007/978-3-031-75778-5_6
https://books.google.de/books?id=JogZAQAAIAAJ
https://doi.org/10.1007/11609773_24
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-031-63498-7_22

19:20 Learning LTL, CTL and ATL Formulas

35 Ritam Raha, Rajarshi Roy, Nathanaël Fijalkow, and Daniel Neider. Scalable anytime algorithms
for learning fragments of linear temporal logic. In Dana Fisman and Grigore Rosu, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 263–280, Cham,
2022. Springer International Publishing. doi:10.1007/978-3-030-99524-9_14.

36 Ritam Raha, Rajarshi Roy, Nathanaël Fijalkow, Daniel Neider, and Guillermo A. Pérez.
Synthesizing efficiently monitorable formulas in metric temporal logic. In VMCAI (2), volume
14500 of Lecture Notes in Computer Science, pages 264–288. Springer, 2024. doi:10.1007/
978-3-031-50521-8_13.

37 Heinz Riener. Exact synthesis of LTL properties from traces. In FDL, pages 1–6. IEEE, 2019.
doi:10.1109/FDL.2019.8876900.

38 Rajarshi Roy, Dana Fisman, and Daniel Neider. Learning interpretable models in the property
specification language. In IJCAI, pages 2213–2219. ijcai.org, 2020. doi:10.24963/IJCAI.
2020/306.

39 Kristin Yvonne Rozier. Specification: The biggest bottleneck in formal methods and autonomy.
In VSTTE, volume 9971 of Lecture Notes in Computer Science, pages 8–26, 2016. doi:
10.1007/978-3-319-48869-1_2.

40 Dorsa Sadigh, Eric S. Kim, Samuel Coogan, S. Shankar Sastry, and Sanjit A. Seshia. A learning
based approach to control synthesis of markov decision processes for linear temporal logic
specifications. In 53rd IEEE Conference on Decision and Control, CDC 2014, Los Angeles, CA,
USA, December 15-17, 2014, pages 1091–1096. IEEE, 2014. doi:10.1109/CDC.2014.7039527.

41 Mojtaba Valizadeh, Nathanaël Fijalkow, and Martin Berger. LTL learning on gpus. In
Arie Gurfinkel and Vijay Ganesh, editors, Computer Aided Verification - 36th International
Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024, Proceedings, Part III,
volume 14683 of Lecture Notes in Computer Science, pages 209–231. Springer, 2024. doi:
10.1007/978-3-031-65633-0_10.

42 Hai Wan, Pingjia Liang, Jianfeng Du, Weilin Luo, Rongzhen Ye, and Bo Peng. End-to-end
learning of ltlf formulae by faithful ltlf encoding. In AAAI, pages 9071–9079. AAAI Press,
2024. doi:10.1609/AAAI.V38I8.28757.

43 Andrzej Wasylkowski and Andreas Zeller. Mining temporal specifications from object usage.
Autom. Softw. Eng., 18(3-4):263–292, 2011. doi:10.1007/S10515-011-0084-1.

https://doi.org/10.1007/978-3-030-99524-9_14
https://doi.org/10.1007/978-3-031-50521-8_13
https://doi.org/10.1007/978-3-031-50521-8_13
https://doi.org/10.1109/FDL.2019.8876900
https://doi.org/10.24963/IJCAI.2020/306
https://doi.org/10.24963/IJCAI.2020/306
https://doi.org/10.1007/978-3-319-48869-1_2
https://doi.org/10.1007/978-3-319-48869-1_2
https://doi.org/10.1109/CDC.2014.7039527
https://doi.org/10.1007/978-3-031-65633-0_10
https://doi.org/10.1007/978-3-031-65633-0_10
https://doi.org/10.1609/AAAI.V38I8.28757
https://doi.org/10.1007/S10515-011-0084-1

	1 Introduction
	2 Preliminaries and Definitions
	2.1 Structures
	2.2 ATL, CTL and LTL formulas
	2.3 Learning decision problem
	2.4 Hitting set problem

	3 Learning with unbounded use of binary operators
	4 Learning with a bounded amount of binary operators
	4.1 Expressivity
	4.2 Abstract recipes
	4.3 LTL learning
	4.4 CTL learning
	4.5 ATL learning

	5 Future Work

