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Abstract
The Krohn-Rhodes decomposition theorem is a pivotal result in automata theory. It introduces the
concept of cascade product, where two semiautomata, that is, automata devoid of initial and final
states, are combined in a feed-forward fashion. The theorem states that any semiautomaton can
be decomposed into a sequence of permutation-reset semiautomata. For the counter-free case, this
decomposition consists entirely of reset components with two states each. This decomposition has
significantly impacted recent research in various areas of computer science, including the identification
of a class of transformer encoders equivalent to star-free languages and the conversion of Linear
Temporal Logic formulas into past-only expressions (pastification).

The paper revisits the cascade product in the context of reset automata, thus considering each
component of the cascade as a language acceptor. First, we give regular expression counterparts of
cascades of reset automata. We then establish several expressiveness results, identifying hierarchies
of languages based on the restriction of the height (number of components) of the cascade or of the
number of states in each level. We also show that any cascade of reset automata can be transformed,
with a quadratic increase in height, into a cascade that only includes two-state components. Finally,
we show that some fundamental operations on cascades, like intersection, union, negation, and
concatenation with a symbol to the left, can be directly and efficiently computed by adding a
two-state component.
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1 Introduction

The Krohn-Rhodes decomposition theorem is a fundamental result both in automata theory
and in semigroup algebra [12]. It relies on the concept of cascade product of two semiautomata,
i.e., automata devoid of initial and final states, and thus, ultimately, edge-labeled graphs.
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20:2 On Cascades of Reset Automata

In this setup, the first semiautomaton operates on an alphabet Σ, while the second one
reads symbols belonging to the Cartesian product of Σ and the set of states of the first
semiautomaton. The key feature of the cascade product, which extends the notion of direct
product, is that the second semiautomaton transitions from state s to state s′ by reading
the pair (σ, q) if and only if the input symbol is σ and the first semiautomaton is in state q.

The Krohn-Rhodes theorem states that any semiautomaton can be decomposed into
a cascade (i.e., a sequence of cascade products) of permutation-reset semiautomata.1 In
such semiautomata, each symbol of the alphabet induces a function on the set of states
that is either a permutation, i.e., a bijective function, or a reset, that is, there is a specific
state to which all other states are mapped into when reading that symbol. Crucially, if
the semiautomaton is counter-free, that is, it does not contain non-trivial cycles [18], the
Krohn-Rhodes theorem guarantees the existence of a decomposition that consists of reset
automata only, i.e., automata where all symbols induce reset functions (as described above)
or the identity function.

The Krohn-Rhodes theorem, in particular the decomposition of counter-free automata
into reset automata, had a significant impact on some meaningful problems of current
research in computer science. A notable example comes from Angluin et al. [1], who employ
the Krohn-Rhodes decomposition theorem to prove that Linear Temporal Logic (LTL [19])
is equivalent to transformer encoders with hard attention and strict future masking (see
also [13]). Specifically, they show how reset semiautomata can be encoded in B-RASP, a
minimal programming language that compiles into transformers. Similarly, studies such
as [21, 10, 11] utilized this theorem to analyze the sample complexity of cascades and the
expressiveness of Recurrent Neural Networks without circular dependencies. Another example
is provided by Maler [14, 15], who used the decomposition theorem to transform any formula
of LTL, interpreted over finite words, into an equivalent formula using only past operators
(see also [20]), a problem now known as pastification [2].

In this paper, we revisit the cascade product in the reset automata setting, i.e., language
acceptors whose underlying semiautomaton is a reset. We address various expressiveness
issues for cascade products by themselves and in relation to regular expressions. These
results represent a necessary step towards a more efficient exploitation of Krohn-Rhodes
decomposition in pastification, with the ultimate goal of lowering its current, triply exponential
upper bound, which is far away from the know, singly exponential lower bound.

The paper consists of three main parts. In the first part, we address the question:
given a cascade of reset automata, which is its corresponding regular expression? We begin
by focusing on cascades of height 1, proving that the language corresponding to a reset
automaton over the alphabet Σ is always of the form J ∪ (Σ∗ · R · I∗), for some I, R ⊆ Σ,
such that I ∩ R = ∅ and either J = I∗ or J = ∅. Then, we extend the analysis to cascades
of reset automata of arbitrary height. As a first step, we show that the last level can always
be transformed into a two-state automaton, and then, by exploiting such a result, we derive
the regular expression corresponding to a generic cascade of reset automata.

In the second part, we build on the previously obtained results and establish several
expressiveness results about cascades of reset automata. We structure the analysis into three
types of cascades:

(i) short cascades (whose height is bounded by 2),
(ii) narrow cascades (where each component has two states, but there is not a height

limitation), and
(iii) general cascades (with no limitations on the height or on the number of states per

level).

1 Formally, the decomposition is guaranteed to preserve a homomorphism from the cascade to the initial
semiautomaton.
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As for short cascades, we prove that any language L over an alphabet Σ of cardinality k

that is definable by a reset cascade of height 2 can also be defined by one where the first
component has at most k + 1 states. Additionally, we show that increasing the number of
states in the first component results in a strict increase in expressiveness: there exists a
family of languages which are definable by a two-reset cascade whose first component has n

states, but are not definable if the first component is restricted to n − 1 states. Similarly, for
narrow cascades, we show that increasing the height results in an increase in expressiveness.
These two results – the increase in the number of states in the first component for short
cascades and the increase in height for narrow cascades – lead to two hierarchies (with
infinitely many levels) of languages that are not definable at previous levels. Finally, we show
that any general cascade can be transformed into one whose components have all 2 states,
with an increase in height of at most a quadratic factor (relative to the height of the original
cascade).

In the last part, we deal with closure properties of the languages recognized by reset
cascades, and show that some fundamental operations can be computed in an efficient
way. More precisely, we prove that the operations of intersection, union, negation, and
concatenation with Σ to the left (“next operation”) all require the addition of one component
with 2 states only.

The paper is structured as follows. Related work is discussed in Section 2. In Section 3,
we provide some background knowledge. In Section 4, we introduce the cascades of reset
automata, we state some basic results about them, and we provide a characterization of the
languages that they recognize in terms of regular expressions. In Section 5, we present some
expressiveness results for short, narrow, and general cascades of reset automata. Section 6
focus on closure properties and the efficient computation of some basic operations. Finally,
Section 7 provides an assessment of the work done, and it outlines some directions for future
research.

2 Related Work

The Krohn-Rhodes theorem and the cascade product turn out be quite useful in understanding
the structure and the expressiveness of finite-state systems, in particular in the context of
automata and neural networks, and their connection to logic. Various recent contributions
have leveraged this foundational theory to explore the expressiveness, modularity, and
learning potential of automata in such a context.

A pivotal contribution in this area is the work by Maler on the cascade decomposition of
semiautomata [14, 15]. It revisits the Eilenberg’s variant of the Krohn-Rhodes theorem [6]
and offers a constructive proof that any semiautomaton can be decomposed into a cascade
of elementary (permutation and reset) semiautomata. The paper introduces the holonomy
tree as a data structure to represent cascade decompositions and an algorithm to build such
a tree. Crucially, the algorithm carefully maps the permutations of the obtained cascade
product to non-trivial cycles of the starting semiautomaton: this guarantees that, whenever
the starting semiautomaton is counter-free, that is, devoid of non-trivial cycles, the generated
cascade decomposition only consists of reset components. An exponential bound on the size
of the cascade decomposition in terms of the size of the starting semiautomaton is given.
This algorithm can be used to actually translate counter-free automata to temporal logic.
More precisely, Maler shows how to translate any cascade product of reset semiautomata
into a pure past LTL formula, that is, a formula featuring only past temporal modalities.

STACS 2025



20:4 On Cascades of Reset Automata

Together with the transformation of the future fragment of LTL, interpreted over finite words,
into counter-free automata, this leads to a triply exponential upper bound to the problem of
transforming pure-future LTL over finite words into pure-past LTL (pastification problem).
Equivalently, in the case of LTL interpreted over infinite words, Maler shows how to use the
proposed algorithm to normalize every LTL formula by mapping it into one belonging to the
Reactivity class [16], at a cost of a triply exponential blowup. For both problems, that is,
pastification and normalization, the best known lower bounds are singly exponential [3, 17].

The Krohn-Rhodes theorem has also been applied to analyze the complexity of semigroups,
as shown in [9]. This study examines semigroups of upper triangular matrices over finite
fields and establishes that the Krohn-Rhodes complexity of these semigroups corresponds to
n − 1, where n is the matrix dimension. These results underline the deep connection between
the algebraic structure of semigroups and their matrix representations, providing a measure
of how intricate the cascade product representation needs to be for such semigroups.

In [8], the Krohn-Rhodes theorem is used to characterize piecewise testable and commutat-
ive languages. The authors define biased reset semiautomata, where the current state changes
at most once, and characterize cascades A ◦ B, where B is a biased reset semiautomaton.
Theorem 4.12 in Section 4 can be seen as a simplification and a generalization (to cascades
of unbounded height) of such a characterization. Finally, the authors propose the notion of
scope of a cascade, which is used to analyze the dot-depth of star-free languages.

In [21], Ronca builds on the Krohn-Rhodes theorem, proposing automata cascades as a
structured and modular framework to describe complex systems. The resulting framework
allows automata to be decomposed into components with specific functionalities, enabling
fine-grained control of their expressiveness. By focusing on component-based decomposition,
the study demonstrates that the sample complexity of learning automata cascades is linear in
the number of components and their individual complexities, up to logarithmic factors. This
contrasts with traditional state-centric perspectives, where sample complexity scales with the
number of states, often limiting the feasibility of learning large systems. The relationships
between the cascade product and neural networks are investigated in [10]. Recurrent Neural
Cascades (RNCs) are a class of networks with acyclic connections, which naturally align with
the cascade product of automata. By exploiting the Krohn-Rhodes theorem, the authors
prove that RNCs capture star-free regular languages.

The Krohn-Rhodes theorem also underpins the exploration of transformer models in [13].
While transformers lack recurrence, the paper demonstrates that their layered architecture
can simulate the cascade decomposition of finite automata. Leveraging Krohn-Rhodes
theory, the authors show that shallow transformers can hierarchically approximate automata
computations, enabling polynomial-sized and constant-depth shortcuts for specific automata.

In [1], Angluin et al. draws direct parallels between the expressive power of masked
hard-attention transformers and star-free regular languages. These models, constrained
by strict future masking, are shown to be equivalent to LTL and counter-free automata –
both closely tied to the Krohn-Rhodes cascade framework. The study underscores how the
structured limitations of these transformers, akin to a cascade decomposition, yield expressive
yet computationally efficient models.

Together, these contributions extend the applicability of the Krohn-Rhodes theory to
neural networks, transformers, and beyond, demonstrating the versatiliy of the cascade
framework as a powerful principle in computation.
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3 Background

A semiautomaton A is a tuple (Σ, Q, δ) such that:
(i) Σ is a (finite) alphabet;
(ii) Q is a set of states;
(iii) δ : Q × Σ → Q is a transition function.

An automaton A = (Σ, Q, δ, q0, F ) is a semiautomaton extended with an initial state q0 ∈ Q

and a set F ⊆ Q of final states. With δ∗ we denote the Kleene’s closure of δ. We say that A
is two-state iff |Q| = 2.

Given an automaton A = (Σ, Q, δ, q0, F ) and a (finite) word σ := ⟨σ0, . . . , σn⟩ ∈ Σ∗, the
run τ ∈ Q+ induced by σ is a sequence ⟨q0, q1, . . . , qn+1⟩ such that δ(qi, σi) = qi+1, for all
0 ≤ i ≤ n. We say that τ is accepting iff qn+1 ∈ F . A word σ ∈ Σ∗ is accepted by A iff
the run induced by σ is accepting. We define the language of A, denoted by L(A), as the
set of accepted words. Given a state q ∈ Q, let Lq(A) be the set of words inducing a run
τ := ⟨q0, . . . , qm⟩ with qm = q. The classic direct product of automata is defined as follows.

▶ Definition 3.1 (Direct product of automata). Let A = (Σ, Q, δ, q0, F ) and A′ = (Σ, Q′, δ′, q′
0,

F ′) be two automata. The direct product of A and A′, denoted by A × A′, is the automaton
(Σ, Q × Q′, δ′′, (q0, q′

0), F × F ′) such that, for all (q, q′) ∈ Q × Q′ and for all a ∈ Σ, it holds
that δ′′((q, q′), a) = (δ(q, a), δ′(q′, a)).

The cascade product of semiautomata is defined as follows.

▶ Definition 3.2 (Cascade Product of semiautomata [15, 22]). Let Σ be a finite alphabet and
let A = (Σ, Q, δ) and A′ = (Σ × Q, Q′, δ′) be two semiautomata over the alphabets Σ and
Σ × Q, respectively. We define the cascade product between A and A′, denoted with A ◦ A′,
as the semiautomaton (Σ, Q × Q′, δ′′) such that, for all (q, q′) ∈ Q × Q′ and for all a ∈ Σ:

δ′′((q, q′), a) = (δ(q, a), δ′(q′, (a, q)))

We will often simply use “cascade” for “cascade product”.
It is worth noticing that the cascade product of semiautomata is a generalization of the

classic direct product: the latter can be recovered by imposing the alphabet of the second
semiautomaton to be Σ (i.e., the alphabet of the first one) instead of Σ × Q.

The cascade product is an associative operation, meaning that (A ◦ A′) ◦ A′′ is the same
semiautomaton as A ◦(A′ ◦ A′′). We define the height of the product A1 ◦ · · · ◦ An as n.

We now introduce two classes of semiautomata, reset and permutation, depending on the
form of their transitions. We first define the notion of function induced by a symbol.

▶ Definition 3.3 (Function induced by a symbol). Let A = (Σ, Q, δ) be a semiautomaton. For
each symbol a ∈ Σ, we define the function induced by a in A, denoted by τA

a (or simply τa

when A is clear from the context), as the transformation τa : Q → Q such that, for all q ∈ Q,
it holds τa(q) = q′ iff δ(q, a) = q′.

Reset and permutation functions are defined as follows.

▶ Definition 3.4 (Reset and permutation functions). Let τ : Q → Q. We say that τ is a reset
function iff there exists q′ ∈ Q such that τ(q) = q′, for all q ∈ Q. In this case, we say that τ

is a reset on q′. If τ : Q → Q is a bijection, then it is called a permutation.

On the basis of the functions induced by the symbols of their alphabet, we define the
following classes of semiautomata.

STACS 2025



20:6 On Cascades of Reset Automata

▶ Definition 3.5 (Classes of semiautomata). Let A = (Σ, Q, δ) be a semiautomaton. We say
that A is:

a permutation-reset semiautomaton iff, for each a ∈ Σ, τa is either a permutation or a
reset.
a permutation semiautomaton iff, for each a ∈ Σ, τa is a permutation;
a reset semiautomaton iff, for each a ∈ Σ, τa is either the identity function or a reset
function;
a pure-reset semiautomaton iff, for each a ∈ Σ, τa is a reset function.

We now introduce counter-free semiautomata [18]. Let σ ∈ Σ∗. From now on, we denote
by (σ)i the word generated by concatenating i times the word σ to itself. A word σ ∈ Σ∗,
with σ ̸= ε, defines a nontrivial cycle in a semiautomaton A = (Σ, Q, δ) if there exists a state
q ∈ Q such that:

(i) δ∗(q, σ) ̸= q

(ii) δ∗(q, (σ)i) = q, for some i > 1.
We say that a semiautomaton A is counter-free if there are no words that define a nontrivial
cycle. Counter-free automata recognize exactly the set of languages definable by star-free
regular expressions, i.e., expressions devoid of Kleene’star. We denote this set by SF .

A fundamental result in the field is the Krohn-Rhodes Cascade Decomposition Theorem.
The theorem’s initial formulation was expressed in the context of semigroups [12], and its
automata-theoretic counterpart [14] can be articulated as follows.

▶ Theorem 3.6 (The Krohn-Rhodes Cascade Decomposition Theorem [12, 14]). For each
semiautomaton A = (Σ, Q, δ), there exists a cascade product of semiautomata C :=
A1 ◦ A2 ◦ · · · ◦ An such that:

(i) Ai is a permutation-reset semiautomaton, for each 1 ≤ i ≤ n;
(ii) there is an homomorphism2 from C to A;
(iii) if A is counter-free, then Ai is a two-state reset semiautomaton, for each 1 ≤ i ≤ n.

4 Cascades of automata

In this section, we begin our study of the languages recognized by cascades of automata.
We start by formally defining them and stating some basic properties. Then, we focus on
cascades of reset automata, and provide a characterization of the languages they recognize
in terms of regular expressions.

4.1 Definitions and basic properties
To begin with, we generalize the notion of cascade product of semiautomata (Definition 3.2)
to automata.

▶ Definition 4.1 (Cascade product of automata). Let Σ be a finite alphabet and let A =
(Σ, Q, δ, q0, F ) and A′ = (Σ × Q, Q′, δ′, q′

0, F ′) be two automata over the alphabets Σ and
Σ × Q, respectively. We define the cascade product of A and A′, denoted by A ◦ A′, as the
automaton (Σ, Q × Q′, δ′′, (q0, q′

0), F × F ′) where δ′′ is defined as in Definition 3.2.

We say that a language L is definable by a cascade C iff L = L(C). Figure 1 shows the
cascade product of two reset automata defining the language a · Σ∗.

2 We refer to [12, 14] for a formal definition of homomorphism between semiautomata.
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q0 q1
*

*

s0 s1

(b, q0)
(∗, q1)

(a, q0)

(∗, ∗)

q0, s0 q0, s1

q1, s0 q1, s1

b
a ∗

∗∗

Figure 1 The reset automaton A1 with set of states Q = {q0, q1} over the alphabet Σ = {a, b}
(left). The reset automaton A2 over the alphabet Σ × Q (middle). The cascade product A1 ◦ A2

over the alphabet Σ that recognizes the languages a · Σ∗ (right).

In the following, we will use the term cascade to refer both to the component automata
and to the resulting automaton.

We now show how to compute the language recognized by a cascade of automata on the
basis of the languages recognized by its components. Let Σ1 and Σ2 be two alphabets. Let
σ1 = σ1

1 . . . σ1
n ∈ (Σ1)n and σ2 = σ2

1 . . . σ2
n ∈ (Σ2)n be two words of length n. We define

aug(σ1, σ2) ∈ (Σ1 × Σ2)n as the word (σ1
1 , σ2

1) . . . (σ1
n, σ2

n).

▶ Definition 4.2 (Language of B at a state s over A). Let A = ⟨Σ, Q, δA, q0, FA⟩ and
B = ⟨Σ × Q, S, δB , s0, FB⟩ be two automata. The language of B at state s ∈ S over A,
denoted by Ls(B)[A], is defined as follows: the empty word only belongs to Ls0(B)[A]; a word
σ = σ1 . . . σk, with k ≥ 1, belongs to Ls(B)[A] if

(i) σ1 . . . σk−1 induces a run τ = ⟨q0, q1 . . . , qk−1⟩ on A; and
(ii) aug(σ, τ) ∈ Ls(B).

The language of a cascade can be computed from those of its components as follows. Let
C = A ◦ B be a cascade. The words forcing C to reach a state (q, s) are exactly those words
such that:

(i) they force A to reach state q; and
(ii) they force B to reach state s, when augmented with the run of A.

▶ Proposition 4.3 (Language of a cascade in terms of its components). Let A = ⟨Σ, Q, δA, q0,

FA⟩ and B = ⟨Σ × Q, S, δB , s0, FB⟩ be two automata. It holds that:
1. L(q,s)(A ◦ B) = Lq(A) ∩ Ls(B)[A], for all states q ∈ Q and s ∈ S;
2. L(A ◦ B) =

⋃
(q,s)∈F

L(q,s)(A ◦ B).

We now show that, as it happens with semiautomata, the direct product of automata
is just a special case of the cascade product. To this end, we first define the notion of
augmentation of an automaton.

▶ Definition 4.4 (Augmentation). Let A = ⟨Σ, Q, δ, q0, F ⟩ and A′ = (Σ′, Q′, δ′, q′
0, F ′) be two

automata such that either Σ′ = Σ or Σ′ = Σ × S, for an arbitrary finite set S. We define the
augmentation of A′ relative to A, denoted by aug(A, A′), as the automaton (Σ′′, Q′, δ′′, q′

0, F ′)
such that:

if Σ′ = Σ, then Σ′′ := Σ × Q and for all q ∈ Q′ and all a ∈ Σ, δ′′(q, (a, ∗)) = δ′(q, a);
if Σ′ = Σ × S, then Σ′′ := Σ × Q × S and, for all q ∈ Q′ and for all (a, s) ∈ Σ × S, it
holds that δ′′(q, (a, ∗, s)) = δ′(q, (a, s)).

Given a cascade C = A′
1 ◦ · · · ◦ A′

n over Σ, we define the augmentation of C relative to A,
denoted by aug(A, C), as the cascade aug(A, A′

1) ◦ · · · ◦ aug(A, A′
n).

STACS 2025



20:8 On Cascades of Reset Automata

The notion of augmentation can be generalized to a pair of cascades C and C′ by treating
C as a single automaton: from now on, when we will refer to the cascade product of C and
C′, we will interpret it as the cascade product of the automaton A generated by C and C′.

The next proposition shows that direct product can be simulated by means of augmentation
and cascade product.

▶ Proposition 4.5 (Direct product by means of cascade product). Let A = ⟨Σ, Q, δ, q0, F ⟩ be
an automaton and let C be a cascade over Σ. It holds that A ◦ aug(A, C) = A × C.

Furthermore, augmenting an automaton does not affect its property of being reset (or
permutation), as stated by the following Proposition 4.6.

▶ Proposition 4.6. Let Σ be a finite alphabet and let A be an automaton over Σ or Σ × S,
for an arbitrary finite set S. If A is a reset (resp., permutation) automaton, then, for any
automaton A′ over Σ, aug(A′, A) is a reset (resp., permutation) automaton.

It follows that, in particular, if C is a cascade of reset (resp., permutation) automata,
then aug(A, C) is a cascade of reset (resp., permutation) automata. From Propositions 4.5
and 4.6, it follows directly that, given two cascades C and C′ of height m and n of reset (resp.,
permutation) automata, there exists a cascade of height m + n of reset (resp., permutation)
automata for L(C) ∩ L(C′). In Section 6, we will show how to compute other basic operations
on cascades of resets.

4.2 Languages of cascades of resets
In this part, we characterize the language recognized by a cascade of reset automata in terms
of regular expressions. We begin with the case of cascades of height 1 and then we move to
cascades of unbounded height.

4.2.1 Cascades of height 1
The study of which regular expressions characterize height-1 cascades of resets coincides
with the study of the languages recognized by reset automata. The following theorem gives a
characterization of reset automata in terms of regular expressions.

▶ Theorem 4.7 (The languages of reset automata). Let Σ be a finite alphabet. A language
L ⊆ Σ∗ is recognized by a reset automaton if and only if L = J ∪ (Σ∗ · R · I∗) for some
I, R ⊆ Σ such that I ∩ R = ∅ and either J = I∗ or J = ∅.

Intuitively, an automaton reading a symbol that induces a reset function on a final state
is forced to end up in that state, regardless of which state it was in before. Furthermore, it
remains in that state if all subsequent symbols induce identity functions. In the case of words
containing multiple resets on a final state, only the last of these symbols matters, resulting in
words of the form Σ∗ · R · I∗. The case of J = I∗ arises when the initial state is also final. In
this scenario, to accept a word, the automaton does not need to read a symbol that induces
a reset on a final state (since it is already there), but only needs to stay in the initial state.

A by-product of Theorem 4.7 is that any reset automaton is equivalent to one with two
states, only one of which is final. The rationale is as follows:

(i) the symbols in R induce a reset on the single final state;
(ii) the symbols in I act as identities; and
(iii) the symbols neither in R nor in I induce resets on the single non-final state.
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q0 q1

I

Σ \ (R ∪ I) R

Σ \ (R ∪ I)

I, R

q0 q1

I, R

R

Σ \ (R ∪ I)
I

Σ \ (R ∪ I)

Figure 2 The reset automaton corresponding to a language of the form J ∪ (Σ∗ · R · I∗) in the
case J = ∅ (on the left) and in the case J = I∗ (on the right).

Moreover, the initial state is also the final state if and only if J = I∗. A graphical account is
given in Figure 2.

▶ Proposition 4.8. For every reset automaton, there exists an equivalent one with two states,
exactly one of which is final.

Theorem 4.7 allows us to establish a first connection between Linear Temporal Logic
on finite traces (LTLf [5]) formulas and equivalent reset cascades. As highlighted in the
introduction, the languages expressible in LTLf are exactly the star-free languages, that
is, those languages that can be represented by regular expressions that do not use the
Kleene star, or equivalently, by languages whose minimal automaton is counter-free [18]. By
Krohn-Rhodes’ theorem (Theorem 3.6), it follows that the languages definable in LTLf are
precisely those expressible through cascades of resets. Given the relevance of reset cascade
decomposition in problems such as pastification [2, 4] and normalization [7] of temporal logic
formulas, it is crucial to understand which LTLf formulas can be expressed with cascades of a
specific height. The following result shows that even simple formulas like p (the proposition
letter “p” holds at the initial time point) or p U q (there is a future point where “q” holds,
and until then, “p” remains true) cannot be expressed with cascades of resets of height 1. In
fact, the languages they recognize3 are respectively p⃗ · Σ∗ and (p⃗)∗ · q⃗ · Σ∗, which are not
of the form J ∪ (Σ∗ · R · I∗), for any choice of R, I, and J . However, the formula Fp (there
exists a point in the future where “p” holds) can be expressed with reset cascades of height
1, as its language is of the form J ∪ (Σ∗ · R · I∗), choosing R := p⃗, I := Σ \ p⃗, and J = ∅.

▶ Corollary 4.9. The languages defined by the LTLf formulas p and p U q are not definable
with height-1 cascades of resets.

4.2.2 Cascades of unbounded-height
In this section we derive regular expressions for cascades of arbitrary height. As a first step,
we show that a cascade of height h of reset automata, say A1 ◦ · · · ◦ Ah, can be transformed
into an equivalent cascade of the same height, still consisting of reset automata, where the
last automaton (Ah) has exactly two states, one of which is the only accepting state. This
result forms the basis for Theorem 4.12, which provides the characterization of cascades of
arbitrary height.

▶ Lemma 4.10. Let A be an automaton with set of states Q over the alphabet Σ, and let B
be a reset automaton over the alphabet Σ × Q. There exists a 2-states reset automaton B′,
with exactly one final state, such that L(A ◦ B) = L(A ◦ B′).

3 Here, assuming a set of atomic propositions AP := {p, q, r, . . .}, the languages of formulas over AP are
defined over the alphabet Σ := 2AP . Moreover, given any p ∈ AP, we indicate with p⃗ all the letters
a ∈ Σ such that p ∈ a.
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The proof of Lemma 4.10 heavily relies on the characterization of cascades of height 1.
More precisely, since B is a reset automaton over the alphabet Σ × Q, by Proposition 4.8,
there exists an equivalent reset automaton with two states (one of which is the only accepting
state) over the same alphabet. Since B is at the bottom of the cascade, the language of
the cascade A ◦ B′ is the same as the language of A ◦ B. This is because there are no other
automata below B in the cascade that can exploit information about B’s current state. As a
matter of fact, in Section 5, we will prove that this no longer true when applying the same
procedure to A: there exist languages definable by a cascade A ◦ B, where A has 3 states
and B has 2 states, that cannot be expressed if the number of states of A is limited to 2.

Let us now introduce the notion of filtered automaton, which is obtained from a given
automaton by removing (filtering) certain outgoing transitions and possibly changing its
initial state.

▶ Definition 4.11 (Filtered Automaton). Let A = ⟨Q, Σ, q0, δ, F ⟩ be an automaton. A filter
is pair (q, H), where q ∈ Q and H ⊆ Σ × Q. The partial automaton A, filtered by (q, H),
denoted as A ↓q

H , is the automaton (Q, Σ, q, δ′, F ) where δ′(q′, σ) := δ(q′, σ) if (σ, q′) ∈ H,
or is undefined otherwise.

Before formally stating Theorem 4.12, that characterizes the languages of cascades of
unbounded-height, we give an intuitive account of it. Let A ◦ B be a cascade, with A an
automaton and B a reset automaton, where, w.l.o.g. (Lemma 4.10), B has only two states
and exactly one final state. Any word accepted by A ◦ B must drive both A and B to an
accepting state. Its language can be captured by analyzing the symbols inducing a reset
function that leads to a final state of B, and the symbols inducing identities in B. The words
in the language of A ◦ B are precisely those consisting of

(i) a prefix that, for any symbol (σ, q) inducing a reset on a final state of B, drives
automaton A to state q;

(ii) followed by the symbol σ ∈ Σ (let qσ be the state reached by A after reading it);
(iii) a suffix that forces B to remain in its accepting state through its identity functions IB ,

and forces A to reach a final state starting from qσ.
In addition, A cannot transition from state q′ when reading a symbol σ′ if the pair (σ′, q′)
does not belong to B’s identity functions, as this would cause B to leave its accepting state.
Therefore, the suffix corresponds to the language of automaton A, filtered by (δA(q, σ), IB).
This is formally expressed by the following theorem.

▶ Theorem 4.12 (Languages of cascades of unbounded-height). Let A = ⟨Σ, Q =
{q0, . . . , qn}, δA, q0, FA⟩ be an automaton and let B = ⟨Σ × Q, {s0, s1}, δ, s0, {sf }⟩, with
sf ∈ {s0, s1}, be a two-state reset automaton with one final state. It holds that:

L(A ◦ B) = M ∪
⋃

(σ,q)∈Rsf

Lq(A) · σ · L
(

A ↓δA(q,σ)
IB

)
where Rsf

is the set of symbols in Σ × Q that induce a reset function on state sf , and
M := L(A ↓q0

IB
) if s0 = sf or M := ∅ otherwise.

Figure 3 gives an example of application of Theorem 4.12 to a cascade over the alphabet
Σ := {a, b} of two reset automata, A (on the left) and B (on the center), with two states
each, recognizing the language b∗ · a+. Using Theorem 4.12, we have that L(A ◦ B) =
Lq0(A) ·a ·L(A ↓q1

IB
), where A ↓q1

IB
is the automaton obtained from A filtered by the identities

IB = {(a, q1), (b, q0)} of automaton B. Since Lq0(A) = b∗ and L(A ↓q1
IB

) = a∗, we obtain
L(A ◦ B) = b∗ · a+. The following is a corollary of Theorem 4.12 in the case in which B is a
pure-reset automaton.
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q0 q1
a

b a, b

s0 s1

(a, q1)
(b, ∗)

(a, q0)

(b, q1)

(b, q0)
(a, ∗)

q0 q1

b a

Figure 3 On the left and on the center, the reset automata A and B, respectively, for the
cascade A ◦ B recognizing the language b∗ · a+. On the right, the automaton A ↓s1

IB
, where IB =

{(a, q1), (b, q0)} are the identities of automaton B.

▶ Corollary 4.13. Let A = ⟨Σ, {q0, . . . , qn}, δA, q0, FA⟩ be an automaton and let B = ⟨Σ ×
Q, {s0, s1}, δ, s0, {sf }⟩ be a two-state pure-reset automaton with one final state. It holds that

L(A ◦ B) = M ∪
⋃

(σ,q)∈Rsf

δA(q,σ)∈FA

Lq(A) · σ

where M := ϵ if s0 = sf and q0 ∈ FA, or M := ∅ otherwise.

It is worth noticing that the regular expressions in Theorem 4.12 and Corollary 4.13 refer to
states of the cascade under consideration. This is a major difference with the characterization
of reset cascades of height 1 (Theorem 4.7). In order to prove some undefinability results
in the next section, we provide a characterization of the languages recognized by cascades
of two-states resets of height 2 where the second component is pure-reset, based on regular
expressions that do not refer to states of the cascade.

▶ Lemma 4.14. Let L ⊆ Σ∗ be a language. L is definable by a cascade of height 2 in which
the second component is pure-reset if and only if L = M ∪

⋃n
i=1 Ki · σi for some M , n, σi

and Ki such that:
(i) M is either ϕ or ϵ;
(ii) 0 ≤ n ≤ 2 · |Σ|;
(iii) for all i = 1 . . . n it holds σi ∈ Σ;
(iv) there exists a language L recognizable by a two-state reset automaton such that for all

i = 1 . . . n, either Ki is L or Ki is L = Σ∗ \ L.

Notice that the Lemma above can be easily extended to the case in which the first
automaton in the cascade has k states, for some k ≥ 2. This is done by relaxing (iv) and
imposing that Ki can be chosen between k languages K1, . . . , Kk such that {K1, . . . , Kk} is
a partition of Σ∗ and each Ki is definable by a cascade of resets of height 1. Constraint (ii)
is also relaxed to 0 ≤ n ≤ k · |Σ|.

We will use Theorem 4.12, Corollary 4.13, and Lemma 4.14 in the next section to prove
undefinability results of certain languages by cascades of a given height and with a specified
number of states at each level.

5 Expressiveness results

In this section, we analyze the expressive power of various types of reset automaton cascades.
We begin by defining several language classes, and subsequently structure our analysis into
short cascades (where the height is constrained to at most two), narrow cascades (where the
height is unbounded but each component contains two states), and general cascades (with
no restrictions on either the height or the number of states).
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Figure 4 Summary of (some of) the results in Section 5.

▶ Definition 5.1 (Classes R and RPR). Let h ∈ N>0 and let k1, . . . , kh ∈ N>1. We denote
by R(k1, . . . , kh) the class of languages definable by a cascade A1 ◦ · · · ◦ Ah of reset automata
such that Ai has ki states, for each 1 ≤ i ≤ h. We denote by RPR(k1, . . . , kh) the subclass
of R(k1, . . . , kh) where the last automaton (Ah) is required to be pure-reset. For h > 0 and
k > 1, we define Rh

k :=
⋃

2≤k1,...,kh≤k R(k1, . . . , kh) as the set of languages definable by a
cascade of height h, where each component has at most k states. We define R :=

⋃
h>0,k>1 Rh

k

as the set of languages definable by any cascade of reset automata. The classes RPRh
k and

RPR are defined analogously.

Figure 4 provides an overview of (some of) the results presented in this section. Specifically,
it illustrates that increasing the cascade height and increasing the number of states at the
first level lead to two distinct language hierarchies.

5.1 Short Cascades
We begin by considering short cascades, i.e. cascades of reset automata of height 2. As a
first step, we start by comparing the classes R(2), RPR(2, 2) and R(2, 2), and then we focus
on RPR(k, 2) and R(k, 2) for every k > 2.

We already know that with a single pure-reset automaton we can recognize the set of
all words ending with a certain symbol of the alphabet (this follows from Theorem 4.7 in
the special case in which I = ∅). As an example, it holds that Σ∗a ∈ RPR(2). Now, if we
introduce an additional pure-reset layer, we can effectively recognize the set of words ending
with a two-character suffix. However, we also demonstrate that this is impossible using a
single reset automaton.

▶ Lemma 5.2. Let L = Σ∗aa. It holds that:
(i) L ∈ RPR(2, 2);
(ii) L ̸∈ R(2).

Lemma 5.2 shows that increasing the height of a cascade, even of height 1 and even with
a pure-reset automaton, results into a gain of expressive power.

In the upcoming lemma, we demonstrate that, at the same height, prohibiting identities
in the final layer results in a loss of expressive power. To illustrate this, let us consider the
language a·Σ∗. As shown in Figure 1, this language can be defined using a cascade of two reset



R. Borelli, L. Geatti, M. Montali, and A. Montanari 20:13

q0

q1
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s0 s1

(a, q0)
(b, q1)
(c, q2)

(Σ \ a, q0)
(Σ \ b, q1)
(Σ \ c, q2)

(a, q0)
(b, q1)
(c, q2)

(Σ \ a, q0)
(Σ \ b, q1)
(Σ \ c, q2)

Figure 5 On the left, the reset automaton A and on the right the reset automaton B such
that, for Σ = {a, b, c}, the cascade C := A ◦ B accepts the language Σ∗ (

Σ2 \ {aa, bb, cc}
)

∪ {b, c},
which precisely corresponds to the language L3 described in Lemma 5.4. When viewed as a single
automaton, C is also the minimal automaton for the language L3.

automata, with the last one specifically containing identities. Building upon Lemma 4.14,
we further demonstrate that achieving the same language recognition is not possible when
prohibiting identities in the final layer, no matter of the number of states of the first
automaton.

▶ Lemma 5.3. Let Σ be an alphabet with at least two symbols, let L = aΣ∗. It holds that:
(i) L ∈ R(2, 2);
(ii) L ̸∈ RPR(k, 2), for every k ≥ 2.

In Lemma 4.10, we have shown that the final component of a cascade can always be
restricted to two states. A natural question arises: Can the first component also be limited to
just two states? The answer is negative, as illustrated by the following example. Consider
an alphabet of three symbols and the language L consisting of all words that end with two
distinct symbols (e.g. cb ∈ L but aa /∈ L). As demonstrated in Figure 5, this language can
be recognized by a cascade of two reset automata where the first component has three states.
However, we will prove that it cannot be recognized if the first component has only two
states. Intuitively, the first component’s role is to remember the second-to-last symbol, but
with an alphabet of three symbols and only two states, this task becomes impossible. The
following Width-Hierarchy Lemma formalizes this intuition, demonstrating the existence of
an infinite hierarchy of languages that can be defined using cascades of two resets where
the first component contains k states, but cannot be defined when the first component is
restricted to k − 1 states.

▶ Lemma 5.4 (Width-Hierarchy Lemma). For each k > 2, let Σ = {σ0, . . . , σk−1}. Let
Lk = Σ∗

(
Σ2 \

⋃
0≤i<k σiσi

)
∪ (Σ \ σ0), it holds that:

(i) Lk ∈ RPR(k, 2);
(ii) Lk ̸∈ R(k − 1, 2).

The following corollary (depicted in Figure 4) follows from Lemmas 5.2–5.4.

▶ Corollary 5.5. It holds that:
∅ ⊊ R(2) ⊊ RPR(2, 2) ⊊ R(2, 2);
RPR(3, 2) ̸⊆ R(2, 2) and R(2, 2) ̸⊆ RPR(3, 2).

Additionally, we prove that for a fixed alphabet Σ of cardinality k, any language over Σ
expressible by a cascade of height 2 can also be expressed by a cascade of height 2 where
the first component has at most k + 1 states. The intuition behind this is that, due to
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Figure 6 The cascade C := A ◦ B accepts the language L′
3 := Σ∗ (

Σ2 \ {aa, bb, cc}
)
. When treated

as a single automaton, C consists of 8 states, in contrast to the minimal automaton for L′
3, which

has only 7 states.

the restriction of transitions to resets or identities, only a finite number of states can be
reached from the initial state. This is formalized in the next lemma, which also establishes
the optimality of the bound on the number of states of the first component.

▶ Lemma 5.6. Let Σ be a finite alphabet with size |Σ| = k. Let L be a language such that
L ⊆ Σ∗. For every m ∈ N>0, if L ∈ R(m, 2), then L ∈ R(k + 1, 2). Furthermore, there
exists a language L′

k ⊆ Σ∗ such that L′
k ∈ R(k + 1, 2) but L′

k ̸∈ R(k, 2).

The language L′
k used to prove the optimality of the bound in Lemma 5.6 is defined as

Σ∗
(

Σ2 \
⋃

0≤i<k σiσi

)
. As an example, Figure 6 shows the case of L′

3.

5.2 Narrow Cascades

Thus far, our discussion has centered around cascades composed of one or two components.
Now, we shift our focus to narrow cascades, i.e. cascades of greater height but in which
each components is restricted to have two states (i.e. Rh

2 ). Just as we have seen that some
languages cannot be expressed by cascades of height 1, we will demonstrate that for any
given height, there exists a language that cannot be captured at that height, provided the
components of the cascade are restricted to two states. We call this the Height-Hierarchy
Lemma, and is a counterpart of the Width-Hierarchy Lemma (Lemma 5.4) focused on the
height of cascades. It is based on the following family of languages: for each h ≥ 2, we
consider the language Lh = Σh−2aΣ∗, that is all words that contain symbol “a” precisely at
position h − 1. The Height-Hierarchy Lemma below proves that, for any h ≥ 2, the language
Lh is not definable by cascades of two states reset automata of height less than h.

▶ Lemma 5.7 (Height-Hierarchy Lemma). For each h ≥ 2, let Lh = Σh−2aΣ∗. It holds that:

(i) Lh ∈ Rh
2 ;

(ii) Lh ̸∈ Rh−1
2 .
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off on∗

∗

Figure 7 Switch automaton.

We briefly explain the intuition behind Lemma 5.7. Regarding point (i) Lh ∈ Rh
2 , the

construction of the two-state reset cascade proceeds as follows. The base case corresponds
to Figure 1, while the inductive step for height h involves the use of the two-state reset
automaton Aswitch (illustrated in Figure 7) in cascade with the augmentation of the cascade
for the case h − 1. Intuitively, Aswitch recognizes all words containing at least one symbol.
Using in cascade h − 2 copies of Aswitch together with the cascade in Figure 1, corresponds
exactly to the language Σh−2aΣ∗. In Figure 8, we provide an example of the construction
for the case h = 3.

The proof that Lh ̸∈ Rh−1
2 is more involved and proceeds by induction on h. For the

base case (h = 2), we have L2 = aΣ∗. This case is verified by Lemma 5.3. For the inductive
step, assume that the statement holds for every i ≤ h. We need to prove that it also
holds for i = h + 1. Suppose, by contradiction, that Lh+1 ∈ Rh

2 . By definition, this would
imply the existence of a cascade C = A1 ◦ · · · ◦ Ah of two-state reset automata such that
L(C) = Lh+1 = Σh−1aΣ∗. However, starting from C, the proof shows how to construct a new
cascade C ′ = B1 ◦ · · · ◦ Bh−1 of two-state reset automata such that L(C ′) = Σh−2aΣ∗ = Lh.
The existence of C ′ contradicts the inductive hypothesis, which states that Lh /∈ Rh−1

2 .
Therefore, the assumption that Lh+1 ∈ Rh

2 must be false, and the cascade C cannot exist.

5.3 General Cascades
In this subsection, we examine cascades of reset automata without imposing restrictions
on the number of states in each component or on the total number of components. In the
previous part, Lemma 5.6 demonstrates that, for cascade of two resets over the alphabet Σ,
the maximum expressiveness is achieved when the first component has |Σ| + 1 states. Here,
we extend this result to cascades of unbounded height in the Width-Collapse Lemma, that
provides lower bounds on the number of states in each component, for which adding states
at certain levels does not affect expressiveness.

▶ Lemma 5.8 (Width-Collapse Lemma). Let Σ be a finite alphabet with |Σ| = k ≥ 2. Let
L ⊆ Σ∗ be a language. For any positive integers h and k1, . . . , kh, if L ∈ R(k1, . . . , kh, 2),
then L ∈ R(f(1), . . . , f(h), 2), where f(i) = ki+1−1

k−1 .

We now demonstrate how to transform general cascades into narrow cascades. Specifically,
we show how any cascade of reset automata (of height h and with ki states at level i, for each
i ∈ {1, . . . , h}) can be transformed into an equivalent narrow cascade (i.e. made of two-state
resets), at the cost of increasing its height at most by a factor of 2 +

∑h−1
i=1 ⌈log2(ki)⌉. This

result is based on two key points:
1. Given a general cascade, we can always append a pure-reset automaton at the end without

altering its language;
2. the Narrowing Lemma, which we prove below, demonstrates that any cascade of reset

automata, whose final component is pure-reset and containing a component Aj with kj

states (and kj > 2), can be transformed into a new cascade where Aj is replaced by two
new automata, with 2 and ⌈ kj

2 ⌉ states each.

STACS 2025



20:16 On Cascades of Reset Automata

off on*

*
q0 q1

(∗, off) (∗, on)
(∗, on)

(∗, off)

s0 s1

(∗, on, q1)
(b, on, q0)
(∗, off, ∗)

(a, on, q0)

(∗, off, ∗)

(∗, on, q1)
(b, on, q0)
(a, on, q0)

Figure 8 A cascade C3 = A1 ◦ A2 ◦ A3 that recognizes the language ΣaΣ∗. The first two
components enforce that any accepted word contains at least two symbols, as L(A1 ◦ A2) = ΣΣΣ∗.

Instrumental to the Narrowing Lemma, the following result demonstrates that, given a
general cascade whose last component is a pure-reset automaton, we can modify this last
component to make all the states of the preceding components final, without altering the
recognized language.

▶ Lemma 5.9. Consider a cascade A ◦ B of automata, where B is a two-state pure-reset
automaton. Let A′ be the automaton obtained from A by making all states final. Then, there
exists a two-state pure-reset automaton B′ such that L(A ◦ B) = L(A′ ◦ B′).

The Narrowing Lemma is stated as follows.

▶ Lemma 5.10 (Narrowing Lemma). Let C = A1 ◦ · · · ◦ Ah be a cascade where Ai is a reset
automaton with ki states for each 1 ≤ i ≤ h − 1, and Ah is a pure-reset automaton. Let j be
an index such that 1 ≤ j ≤ h − 1. Then, there exists a cascade C ′ of reset automata

C ′ = A′
1 ◦ · · · ◦ A′

j−1 ◦ B1 ◦ B2 ◦ A′
j+1 ◦ · · · ◦ A′

h

such that:
(i) each A′

i has ki states for i ̸= j;
(ii) if Ai is pure-reset (resp., reset), then also A′

i is pure-reset (resp., reset), for i ̸= j;
(iii) B1 has 2 states and B2 has ⌈ kj

2 ⌉ states; and
(iv) L(C) = L(C ′).

By iteratively applying the Narrowing Lemma to every component with more than two
states, we obtain a procedure that, given a cascade of reset automata, produces an equivalent
cascade where all components are two-state reset automata. Moreover, it is worth noticing
that:

(i) by Lemma 4.10, w.l.o.g. the last component of any cascades of reset (or pure-resets)
has two states, and therefore the Narrowing Lemma does not need to be applied at the
last level;

(ii) if the final component of a cascade is not a pure-reset, a new pure-reset level can always
be added without affecting the language of the cascade.

This leads to the following inclusions.

▶ Corollary 5.11. For each positive h, k1, . . . , kh it holds that
1. RPR(k1, . . . , kh) ⊆ RPRH+1

2
2. R(k1, . . . , kh) ⊆ RH+2

2
where H = ⌈log2 k1⌉ + · · · + ⌈log2 kh−1⌉.

Combining Lemma 5.8 and Corollary 5.11, we conclude that if a language L is recognized
by a cascade of resets of height h, it can also be recognized by a cascade of height Θ(h2)
composed entirely of two-state resets.
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▶ Corollary 5.12. Let Σ be an alphabet such that |Σ| = k ≥ 2 and let L ⊆ Σ∗ be a language.
If L admits a cascade of reset automata of height h, then L ∈ RH

2 where H ∈ Θ(h2). If
k = 2, then H = h2+h+2

2 .

Exploiting the bound for the case |Σ| = 2, we can prove undefinability of certain languages
by general cascades, i.e. without any bound on their height nor on the number of states
of its component. As an example, by Lemma 5.7, we know that the language L = Σ6aΣ∗

over the alphabet Σ = {a, b} does not belong to the class R7
2. If L could be recognized by a

cascade of height h = 3, then it would also be recognized by a two-state cascade of height
H = h2+h+2

2 = 7, leading to the following conclusion: with Σ = {a, b}, the language Σ6aΣ∗

does not admit any cascade of resets of height 3.
Building upon this reasoning, we can formulate the Generalized Height-Hierarchy Lemma.

Unlike the original Height-Hierarchy Lemma, which focuses solely on two-state cascades, the
generalized version addresses the undefinability of cascades in a broader context, encompassing
general cascades.

▶ Lemma 5.13 (Generalized Height-Hierarchy Lemma). Let h be a positive integer, and define
H = h2+h+2

2 + 1. Consider the language LH ⊆ Σ∗, where LH = ΣH−2aΣ∗ and Σ is a
two-symbol alphabet. The language LH cannot be recognized by any cascade of reset automata
of height h, but it holds that LH ∈ RH

2 .

6 Efficient closure properties of cascades of reset automata

In this section, we present an efficient method for computing specific closure properties of
reset cascades. For instance, for the case in which the operation ⊗ is binary, given two
cascades of resets C and C′ (made of only two-states components), we show how it is possible
to compute a cascade of two-states resets that recognizes L(C) ⊗ L(C′) by adding at most
one two-state reset automaton (that, in this context, we call brick). We show this for the
following operations:

(i) intersection;
(ii) complementation;
(iii) union; and
(iv) left-concatenation of Σ, i.e. given a language L to compute Σ · L.4

Proposition 4.5 already shows that intersection can be implemented efficiently for cas-
cades of resets: given two reset cascades C and C′ (with m and n two-states components,
respectively), there exists a cascade for L(C) ∩ L(C′) with m + n two-state resets.

Before showing the construction for the remaining operations, we give the following key
definitions. We define the finalized version of an automaton A, denoted with finv(A), as the
automaton obtained from A by setting all its states as final. The definition naturally extends to
cascades: the finalized version of C, denoted with finv(C), is defined as finv(A1)◦· · ·◦ finv(An).
Clearly, if C is a cascade of reset automata, finv(C) is still a cascade of reset automata. We
define the reachability set of an automaton relative to a set of states as follows.

▶ Definition 6.1 (Reachability Set). Let A = ⟨Σ, Q, δ, q0, F ⟩ be an automaton. Let P ⊆ Q be
a set of states. The reachability set of A with respect to P , denoted with RS(A, P ), is the
set {(σ, q) ∈ (Σ × Q) : δ(q, σ) ∈ P}. We denote with RS(A, P ) the set (Σ × Q) \ RS(A, P ).
We write RS(A) to refer to RS(A, F ).

4 It is worth noticing that this operation corresponds to compute the closure under the LTL next modality.
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n0 n1

RS(A) RS(A)

RS(A)

RS(A)

n0 n1

RS(A)

RS(A)

RS(A) RS(A)

Figure 9 The negation brick negb(A) in the two cases: (a) ϵ ∈ L(A) (b) ϵ ̸∈ L(A).

We now show how to efficiently compute the remaining closure properties.

Complementation

To compute complementation, we introduce the negation brick, whose structure is illustrated
in Figure 9 and is formally defined here below.

▶ Definition 6.2 (Negation brick). Let A = ⟨Σ, Q, δ, q0, F ⟩ be an automaton. The neg-
ation brick for A, denoted with negb(A), is the two-state pure-reset automaton ⟨Σ ×
Q, {n0, n1}, δ, n0, {nf }⟩ such that:

(i) the final state nf is n1 if and only if ϵ ∈ L(A);
(ii) the function τ induced by symbols in RS(A) maps all states in the non-final state, i.e.

τ : {n0, n1} 7→ {n0, n1} \ {nf };
(iii) the function τ ′ induced by symbols in RS(A) maps all states in the final one, i.e.

τ : {n0, n1} 7→ {nf }.

The intuition is that the negation brick, when appended to the end of a cascade C, reaches
its final state if and only if the underlying cascade C is not in a final state. Consequently, by
setting all the states of C as final, we obtain a cascade that recognizes the complement of
L(C), as proved by the following lemma.

▶ Lemma 6.3. Let C be a cascade of automata. The cascade C′ := finv(C)◦negb(C) recognizes
the language L(C). Moreover, if C is a cascade of reset automata, then so is C′.

Interestingly, if the cascade terminates with a pure-reset layer A, this automaton can
itself serve the function of the negation brick, without the need of an additional component.

▶ Lemma 6.4. Let C = A1 ◦ · · · ◦ An be a cascade of automata such that An is a pure-reset
automaton. There exists a cascade C′ = A′

1 ◦ · · · ◦ A′
n such that:

(i) L(C′) = L(C);
(ii) each automaton A′

i has the same number of states as Ai;
(iii) if Ai is a reset (resp., pure-reset), then A′

i is also a reset (resp., pure-reset).

Union

Given two cascades C and C′ of height m and n, respectively, since L(C)∪L(C′) = L(C) ∩ L(C′),
it is possible to build cascade for L(C) ∪ L(C′) of height m + n + 3, using the previously
discussed constructions. In this section, we present a more efficient construction that
introduces only one additional component, referred to as the union brick, resulting in a
cascade for L(C) ∪ L(C′) of height n + m + 1.

▶ Definition 6.5 (Union brick). Let A = ⟨Σ, QA, δA, q0A, FA⟩ and B = ⟨Σ, QB , δB , q0B , FB⟩
be two automata. Let U ⊆ QA × QB the set of states {(qA, qB) : qA ∈ FA ∨ qB ∈ FB}. Let
C = A ◦ aug(A, B). The union brick of A and B, denoted with unionb(A, B), is the two-state
pure-reset automaton ⟨Σ × Q, {u0, u1}, δ, u0, {uf }⟩ such that:
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(i) the final state uf is u0 if and only if ϵ ∈ L(A) ∪ L(B);
(ii) the function τ induced by symbols in RS(C, U) maps all states in the final one, i.e.

τ : {n0, n1} 7→ {nf };
(iii) the function τ ′ induced by symbols in RS(C, U) maps all states in the non-final state,

i.e. τ : {n0, n1} 7→ {n0, n1} \ {nf }.

Similarly to the case of complementation, when appended to the end of a cascade
C ◦ aug(C, C′), the union brick reaches its final state if and only if either C is in a final state
or aug(C, C′) is in a final state. This leads to the following lemma.

▶ Lemma 6.6. Let C and C′ be two cascade of automata. The cascade C′′ :=
finv(C ◦ aug(C, C′)) ◦ unionb(C, C′) recognizes the language L(C) ∪ L(C′). Moreover, if C and
C′ are cascades of reset automata, then so is C′′.

Also in this case, if one of the two automata corresponds to a cascade terminating with a
pure-reset component A, the union can be performed without the need for additional layers:
the automaton A effectively serves as the union brick.

Left-concatenation of Σ

Given a cascade C, we demonstrate how to construct a cascade that recognizes the language
Σ · L(C), adding only one brick and guaranteeing that the property of being a reset cascade
is preserved. As a by-product of this construction, we obtain that, given a cascade of resets
of height h equivalent to an LTL formula ϕ (interpreted over finite words), it is possible to
construct a cascades of resets for X(ϕ) of height h + 1, where X is the next modality of LTL.

We first define the next version of an automaton. The next version of an automaton A,
denoted as nextv(A), is defined considering the Cartesian product between the alphabet of
A and the set {off, on}. Intuitively, if A transitions from q to q′ with a symbols σ, so does
nextv(A) with the symbol (σ, on). On the contrary, all symbols (σ, off) force nextv(A) to
transition to the initial state. The formal definition of nextv(A) is given here below.

▶ Definition 6.7 (Next version of an automaton). Let A = ⟨Σ′, Q, δ, q0, F ⟩ be an automaton
such that either Σ′ = Σ or Σ′ = Σ × S, for an arbitrary finite set S. We define the next
version of A, denoted as nextv(A), as the automaton (Σ′′, Q, δ′, q0, F ) such that:

if Σ′ = Σ, then Σ′′ := Σ × {off, on} and, for all q ∈ Q and for all a ∈ Σ, it holds:
δ′(q, (a, on)) = δ(q, a) and δ′(q, (∗, off)) = q0.
if Σ′ = Σ × S, then Σ′′ := Σ × {off, on} × S and, for all q ∈ Q and for all (a, s) ∈ Σ × S,
it holds that: δ′(q, (a, on, s)) = δ(q, (a, s)) and δ′(q, (∗, off, ∗)) = q0.

Given a cascade C = A1 ◦ · · · ◦ An over Σ, we define the next version of C, denoted with
nextv(C), as the cascade nextv(A1) ◦ · · · ◦ nextv(An) over Σ × {off, on}.

Figure 10 shows the next versions of the automata in Figure 1. Crucially, computing the
next version of an automaton does not alter its property of being a reset automaton.

▶ Lemma 6.8. Let Σ be a finite alphabet and let A be an automaton over Σ or over Σ×S for
an arbitrary finite set S. If A is reset automaton, then also nextv(A) is a reset automaton.

Now, given any cascade C, to capture the language Σ · L(C), it suffices to consider the
automaton Aswitch (depicted in Figure 7) with the next version of C. In fact, considering
that initially both Aswitch and nextv(C) are in their initial states (which, for Aswitch , is state
off), reading the first input symbol σ forces:
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s0 s1

(*,on)
(*,on)(*,off)

(*,off)

t0 t1

(b, on, s0)
(∗, on, s1)
(∗, off, ∗)

(a, on, s0)
(∗, on, ∗)

(∗, off, ∗)

Figure 10 The next version of the two automata in the cascade of Figure 1.

(i) Aswitch to transition to state on; and
(ii) nextv(C) to remain in its initial state, because the symbol it reads is (σ, off).

After the first symbol and for all the rest of the input word, Aswitch remains in state on,
while nextv(C) operates like C because it reads symbols of the form (σ′, on). As shown by
the following lemma, this captures exactly Σ · L(C).

▶ Lemma 6.9. Let C be a cascade of automata. The cascade C′ := Aswitch ◦ nextv(C)
recognizes the language Σ · L(C). Moreover, if C is a cascade of reset automata, then so is C′.

From Lemma 5.7, it follows the optimality of the construction outlined in Lemma 6.9.

7 Conclusions and Future Work

In this paper, we investigated some fundamental properties of cascades of reset automata.
Unlike the approach commonly followed in the literature, where the cascade product is
restricted to semi-automata, we focused on the case of automata. This allowed us to study
the properties of the recognized languages. As an initial step, we showed how to compute
regular expressions equivalent to a cascade. Then, on the basis of such a transformation, we
established some meaningful expressiveness results, in particular lower bounds to the height
and to the minimum number of states per level of a cascade of resets for specific families of
languages. Finally, we showed how to compute the closure of reset cascades under certain
basic operations by adding at most one brick to the end of the cascade.

As for the future developments of the work, finding an efficient construction for the closure
of reset cascades under the concatenation operation is undoubtedly a crucial direction. This
would enable the design of an efficient approach to handling the eventually and until operators
of LTL, providing, together with the results given in the last section of the paper, an efficient
decomposition into reset cascades for full LTL. This would improve the triply-exponential
upper bound to such a decomposition achieved by Maler’s algorithm [4, 15]. Last but not
least, giving analogous expressiveness and closure results for permutation automata appears
to be another promising avenue for further investigation.
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