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Abstract
Subshifts are sets of colorings of Zd defined by families of forbidden patterns. Given a subshift
and a finite pattern, its extender set is the set of admissible completions of this pattern. It has
been conjectured that the behavior of extender sets, and in particular their growth called extender
entropy [10], could provide a way to separate the classes of sofic and effective subshifts. We prove
here that both classes have the same possible extender entropies: exactly the Π3 real numbers of
[0, +∞).
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1 Introduction

In dimension d ∈ N, subshifts are sets of colorings of Zd where a family of patterns,
i.e. colorings of finite portions of Zd, have been forbidden. They were originally introduced
to discretize continuous dynamical systems [19]. One of the main families of subshifts that
has been studied is the class of subshifts of finite type (SFTs), which can be defined with a
finite family of forbidden patterns. This class has independently been introduced under the
formalism of Wang tiles [25] in dimension 2 in order to study fragments of second order logic.

In dimension 1, sofic subshifts [26], which are obtained as letter-to-letter projections of
SFTs, are studied mainly through their defining graphs. In dimension 2 and higher, SFTs (and
thus sofic subshifts) can embed arbitrary Turing machine computations; as such, the main
tool in the study of subshifts becomes computability theory. This led to the introduction of a
new class of subshifts, the effective subshifts, which can be defined by computably enumerable
families of forbidden patterns [13].

An important question in symbolic dynamics is thus to find criteria separating sofic from
effective subshifts [15, 22, 12, 3]. In dimension 1, a subshift is sofic if it can be defined by a
regular language of forbidden patterns: the Myhill–Nerode theorem states that these are
exactly the languages that have finitely many Nerode congruence classes. In dimension 2
and higher, no such clear characterization exists. Indeed, many effective subshifts have been
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21:2 Computability of Extender Sets in Multidimensional Subshifts

proved to be sofic, such as substitutive subshifts [20], or effective subshifts on {0, 1} whose
densities of symbols 1 are sublinear [6]; it even turns out that sofic subshifts of dimension
d + 1 capture all the behaviors of effective shifts of dimension d [13, 8, 2].

All the methods used to prove some cases of non-soficity that are known by the authors
revolve around a counting argument: only a linear amount of information may cross the
border of an n × n square pattern (see for example [1, Proposition 9.4.5]). The most recent
argument in this vein uses resource-bounded Kolmogorov complexity [7].

One formalization of this counting argument relies on extender sets of patterns [15],
which can be considered as a higher-dimensional generalization of Nerode congruence classes:
the extender set of a pattern p is the set of all configurations with a p-shaped hole that
may extend p. For SFTs, the extender set of a given pattern is entirely determined by its
boundary, which implies that the number of extender sets of an SFT cannot grow too quickly.
For subshifts in dimension 1, [21, Lemma 3.4] proves the analog of Myhill-Nerode theorem:
a subshift is sofic if and only if its number of extender sets of every size is bounded. In
dimension 2 and higher, only sufficient conditions are known: for example, a subshift whose
number of extender sets for patterns of size nd is bounded by n must be sofic [21].

The study of the growth rate of the number of extender sets can be done asymptotically
through the notion of the extender entropy, which is defined in a similar way to the classical
notion of topological entropy [17]. Extender entropies in fact relate to the to notion of follower
entropies [4], but are more robust in the sense that, despite it not being decreasing under
factor map applications, the extender entropy of a subshift is still a conjugacy invariant.

In this paper, we achieve characterizations of the possible extender entropies in terms of
computability, in the same vein as recent results on conjugacy invariants of subshifts [14, 18].

▶ Theorem A. The set of extender entropies of Z effective subshifts is exactly Π3 ∩ [0, +∞).

▶ Theorem B. The set of extender entropies of Z2 sofic subshifts is exactly Π3 ∩ [0, +∞).

These results generalize to dimension d ≥ 2 by Claim 8 and Corollary 12. While sofic
subshifts were conjectured in [15] to have extender entropy zero, this was later disproved
(see for example [7]); in fact, our characterization shows that the possible values are dense in
[0, +∞). This also proves that extender entropies do not separate sofic from effective shifts.

Z Zd, d ≥ 2

SFT {0} (Folklore: see Proposition 6)

Sofic {0} ([9, Theorem 1.1]) Π3 (Theorem B)

Effective Π3 (Theorem A)

Computable (Z effective, Zd sofic) Π2 (Theorem 27)

Sofic and minimal {0} (Corollary 29)

Effective and minimal Π1 (Corollary 30)

Effective and 1-Mixing/Block-Gluing Π3 (Proposition 32) Π3 (Proposition 34)

Figure 1 Sets of possible extender entropies for various classes of subshifts.

Finally, we also study extender entropies of subshifts constrained by some dynamical
assumptions, such as minimality or mixingness. What is known by the authors at this stage
can be summed up by the table Figure 1.



A. Callard, L. Paviet Salomon, and P. Vanier 21:3

2 Definitions

2.1 Subshifts
Let A denote a finite set of symbols and d ∈ N the dimension. A configuration is a coloring
x ∈ AZd , and the color of x at position p ∈ Zd is denoted by xp. A (d-dimensional) pattern
over A is a coloring w ∈ AP for some set P ⊆ Zd called its support1. For any pattern w over
A of support P , we say that w appears in a configuration x (and we denote w ⊑ x) if there
exists p0 ∈ Zd such that wp = xp+p0 for all p ∈ P .

The shift functions (σt)t∈Zd act on configurations as (σt(x))p = xp+t. For t ∈ Zd, a
configuration x is t-periodic if σt(x) = x. We sometimes consider patterns or configuration
by their restriction: for S ⊆ Zd either finite or infinite, and x ∈ AZd a configuration (resp. w

a pattern), we denote by x|S (resp. w|S) the coloring of AS it induces on S.

▶ Definition 1 (Subshift). For any family of finite patterns F , we define

XF =
{

x ∈ AZd

| ∀w ∈ F , w ̸⊑ x
}

A set X ⊆ AZd is called a subshift if it is equal to some XF .

Given a subshift X and a finite support P ⊆ Zd, we define LP (X) as the set of patterns
w of support P that appear in the configurations of X. Such patterns are said to be globally
admissible in X. We define the language of X as L(X) =

⋃
P ⊆Zd finite

LP (X). Slightly abusing
notations, we denote Ln(X) = LJ0,n−1Kd(X) for n ∈ N.

For X ⊆ AZd and Y ⊆ BZd two subshifts, φ : X → Y is a factor map if there exists some
N ⊆ Zd and f : AN → B such that φ(x)p = f(x|p+N ): then Y is a factor of X. X and Y

are conjugate if there exists a bijective factor map φ : X → Y (called a conjugacy). Any
object associated with subshifts that is preserved by conjugacy is a conjugacy invariant.

Subshifts can be classified as follows: a subshift is of finite type (SFT) if it is equal to
XF for some finite family F of forbidden patterns; a subshift X is effective if it is equal to
XF for some computably enumerable family F of forbidden patterns; and a subshift is sofic
if it is a factor of some SFT, called its SFT cover. SFTs are sofic by definition, and sofic
subshifts are effective.

Reciprocally, for a Zd subshift X ⊆ AZd , define the following lifts:
the periodic lift X↑ = {x↑ ∈ AZd+1 | x ∈ X}, where (x↑)|Zd×{i} = x for all i ∈ Z;
the free lift X⇑ = {y ∈ AZd+1 | ∀i ∈ Z, yZd×{i} ∈ X}.

If X is sofic (resp. effective), then both X↑ and X⇑ are also sofic (resp. effective) since they
can be defined by the same forbidden patterns. On the other hand:

▶ Theorem 2 ([13], [2, Theorem 3.1], [8, Theorem 10]). If X is an effective Zd subshift, then
X↑ is a sofic Zd+1 subshift.

Finally, most of our constructions will involve the notion of layers: for a subshift of a
cartesian product X ⊆

∏
i∈I Li, the layers of X are the projections of X onto each of the Li,

which are often named for convenience. For J ⊆ I, we will denote by πLj1 ×Lj2 ×... :
∏

i∈I Li 7→∏
j∈J Lj the cartesian projection.

1 It is sometimes convenient to consider patterns up to the translation of their support. Usually, context
will make it clear whether patterns are truly equal, or only up to a Zd translation.

STACS 2025



21:4 Computability of Extender Sets in Multidimensional Subshifts

2.2 Pattern Complexity and Extender Sets
The traditional notion of complexity is called pattern complexity and is defined by NX(n) =
Ln(X). The exponential growth rate of |NX(n)| is the topological entropy:

h(X) = lim
n7→+∞

log |NX(n)|
nd

.

In this article, we focus on another notion of complexity based on extender sets:

▶ Definition 3 (Extender set). For X ⊆ AZd a d-dimensional subshift, P ⊆ Zd and w ∈ AP

a pattern of support P , the extender set of w is the set

EX(w) = {x ∈ AZd\P | x ⊔ w ∈ X},

where (x ⊔ w)p = wp if p ∈ P and (x ⊔ w)p = xp otherwise.

In other words, EX(w) is the set of all possible valid “completions” of the pattern w in X.
For example, for two patterns with the same support w, w′, we have EX(w) ⊆ EX(w′) if and
only if the pattern w can be replaced by w′ every time it appears in any configuration of X.

In the case of Z subshifts, extender sets are similar to the more classical notions of
follower (resp. predecessor) sets, which are the set of right-infinite (resp. left-infinite) words
that complete a finite given pattern (see for example [9]). Parallels can also be drawn with
Nerode congruence classes.

For X a Zd subshift, denote EX(n) = {EX(w) | w ∈ Ln(X)} its set of extender sets. The
extender set sequence (|EX(n)|)n∈N and its growth rate2 are defined in [9]:

▶ Definition 4 ([10, Definition 2.17]). For a Zd subshift X, its extender entropy is

hE(X) = lim
n→+∞

log |EX(n)|
nd

.

This limit is well-defined by the multivariate subadditive lemma (see [5, Theorem 1]). In
particular, hE(X) = inf

n→+∞
log |EX (n)|

nd , and hE(X) could actually be computed along any

sequence of hyperrectangles that eventually fills Zd.

Examples

1. Let us consider X = AZd some full-shift in dimension d. Then X has maximal topological
entropy, but hE(X) = 0: indeed, for any two patterns w, w′ ∈ Ln(X), we have EX(w) =
EX(w′) = {AZd\J0,n−1Kd}; which implies that |EX(n)| = 1 for every n ∈ N.

2. Let us consider X a (strongly) periodic subshift: there exist p1, . . . , pd ∈ N such that, for
every x ∈ X and i ≤ d, we have σpi·ei(x) = x. Then X has zero topological entropy, and
we also have hE(X) = 0. Indeed, for n ≥ max pi and w ∈ Ln(X), w is the only pattern
w′ such that EX(w′) = EX(w); so that |EX(n)| = |Ln(X)| ≤ pAp for p =

∏
i pi.

Some Properties

▶ Theorem 5 (From [10] on Z subshifts). On Zd subshifts:
hE is a conjugacy invariant.
hE is not necessarily decreasing under factor map.

2 The authors define it for Z subshifts, but the definition makes sense for higher dimensional shifts.
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hE is additive under product (i.e. for X, Y two subshifts, hE(X × Y ) = hE(X) + hE(Y )).
hE is upper bounded by h (i.e. for X a subshift, hE(X) ≤ h(X)).
For SFTs, the following proposition is folklore:

▶ Proposition 6 ([15, Section 2]). Let X be a d-dimensional SFT. Then hE(X) = 0.
Sketch of proof. In an SFT defined by adjacency constraints, the extender set of a pattern
w ∈ AJ0,n−1Kd is determined by its border; and there are at most 2O(nd−1) such borders. ◀

By an analog of the Myhill-Nerode theorem, Z sofic subshifts have extender entropy zero:
▶ Proposition 7 ([21, Lemma 3.4]). Let X be a 1-dimensional subshift. Then X is sofic if
and only if (|En(X)|)n∈N is uniformly bounded.

2.3 Computability Notions
2.3.1 Arithmetical Hierarchy
The arithmetical hierarchy [24, Chapter 4] stratifies formulas of first-order arithmetic over N
by the number of their alternating unbounded quantifiers: for n ∈ N, define

Π0
n = {∀k1, ∃k2, ∀k3, . . . ϕ(k1, . . . , kn) | ϕ only contains bounded quantifiers}

Σ0
n = {∃k1, ∀k2, ∃k3, . . . ϕ(k1, . . . , kn) | ϕ only contains bounded quantifiers}.

A decision problem is said to be in Π0
n (resp. Σ0

n) if its set of solutions S ⊆ N is described
by a Π0

n (resp. Σ0
n) formula: in other words, Π0

0 = Σ0
0 corresponds to the set of computable

decision problems; Σ0
1 is the set of computably enumerable decision problems, etc. . .

2.3.2 Arithmetical Hierarchy of Real Numbers
The arithmetical hierarchy of real numbers [27] stratifies real numbers depending on the
difficulty of computably approximating them: for n ≥ 0, define

Σn = {x ∈ R | {r ∈ Q | r ≤ x} is a Σ0
n set}

Πn = {x ∈ R | {r ∈ Q | r ≥ x} is a Σ0
n set} = {x ∈ R | {r ∈ Q | r ≤ x} is a Π0

n set}.

In particular, Σ0 = Π0 is the set of computable real numbers, i.e. numbers that can
be computably approximated up to arbitrary precision; Π1 real numbers are also called
right-computable, since they can be computably approximated from above; etc. . .

Alternatively, this hierarchy is also defined by the number of alternating limit operations
needed to obtain a real number from the computable ones [27]. In other words, for n ≥ 1:

Σn =
{

sup
k1∈N

inf
k2∈N

sup
k3∈N

. . . βk1,...,kn | (βk1,...,kn)k1,...,kn∈N ∈ QNn

is computable
}

Πn =
{

inf
k1∈N

sup
k2∈N

inf
k3∈N

. . . βk1,...,kn | (βk1,...,kn)k1,...,kn∈N ∈ QNn

is computable
}

3 Elementary Constructions on Extender Sets

The free lift

We use this construction to generalize results on Z or Z2 subshifts to higher dimensions:
▷ Claim 8. For a subshift X ⊆ AZd , hE(X) = hE(X⇑).
Proof. Consider X⇑ ⊆ AZd+1 . Since each d-dimensional hyperplane of Zd+1 contains an
independent configuration, we have |EX⇑(n)| = |EX(n)|n and hE(X⇑) = hE(X). ◁

STACS 2025
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The (semi)-mirror construction

▷ Claim 9. Let Y be any Z2 sofic subshift over an alphabet A. There exists a Z2 sofic
subshift Ymirror such that hE(Ymirror) = h(Y ) (= h(Ymirror)).

A first idea to create one extender set per pattern of Y is the mirror construction: add a
line of some special symbol ∗ to separate two half-planes; the upper half-plane contains a
half-configuration of Y , while the lower half-plane contains its reflection by the line of ∗. As
any two patterns of Y have distinct reflections, they generate different extender sets: this
results in a subshift Y ′ verifying hE(Y ′) = h(Y ). Unfortunately, Y ′ is not always sofic, see
for example [1, Proposition 57].

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

(a) The (classical) mirror shift.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

(b) The semi-mirror shift.

Figure 2 Example configurations of the mirror and semi-mirror subshifts.

To solve this non-soficness issue, the semi-mirror with large discrepancy from [7, Ex-
ample 5′′] reflects a single symbol instead of the whole upper-plane:

Sketch of proof. For A′ = A ∪ {□, ∗}, define Ymirror over the alphabet A′ as follows:
Symbols ∗ must be aligned in a row, and there is at most one such row per configuration.
If a row of ∗ appears in a configuration x, then the lower half-plane contains at most one
non-□ position; and the upper half-plane must appear in a configuration of Y .
If xi,j = ∗ and xi,j−k ∈ A for some i ∈ Z, j ∈ Z, k ∈ N, then xi,j+k = xi,j−k. In other
words, the only symbol of A in the lower half-plane must be the mirror of the same
symbol in the upper half-plane, as reflected by the horizontal row of ∗ symbols.

Then Ymirror is sofic and hE(Ymirror) = h(Y ). Indeed, any two distinct patterns of Y must
appear in Ymirror and have distinct extender sets, since they can have different reflections. ◀

This construction shows that there exist subshifts with arbitrarily large extender entropy;
and since every Π1 real number is the topological entropy of some (SFT, thus) sofic sub-
shift [14], every Π1 number can be realized as the extender entropy of some sofic subshift. In
particular, this further disproves the conjecture from [15] mentioned in the introduction.

4 Decision Problems on Extender Sets

4.1 Inclusion of Extender Sets
Let us consider the following decision problem:

Extender-inclusion
Input: An effective subshift X ⊆ AZd

, and u, v ∈ L(X),
Output: Whether EX(u) ⊆ EX(v).
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▶ Proposition 10. Extender-inclusion is a Π0
2-complete problem.

Proof of inclusion. As EX(u) ⊆ EX(v) if and only if ∀B ∈ A∗, u ⊑ B =⇒ (B ̸∈ L(X) ∨
((B \ u) ⊔ v) ∈ L(X)), we obtain inclusions: indeed, for X effective, deciding whether a
pattern w belongs in L(X) is a Π0

1 problem. ◀

Proof of Π0
2-hardness for Z subshifts. We reduce the following known Π0

2 problem3:
Det-Rec-state
Input: A deterministic Turing Machine M , and a state q,
Output: Is q visited infinitely often by M during its run on the empty input?

Let (M, q) be an instance of this Det-Rec-state. We construct an effective subshift X

over the alphabet {0, 1,□} as follows:
Symbols 0 and 1 cannot appear together in a configuration. The symbol 1 can only
appear at most once in a configuration.
If two symbols 0 appear in a configuration at distance, say, n > 0, then the whole
configuration is n-periodic; and if M enters q at least n′ times, then we impose n > n′.

As the rules above forbid an enumerable set of patterns, X is an effective subshift.
Finally, EX(0) ⊆ EX(1) if and only if M enters q infinitely many times. Indeed, the

symbol 0 can be extended either by semi-infinite lines of symbols □, which also extend the
symbol 1 ; or by configurations containing n-periodic symbols 0, which do not extend the
symbol 1 because of the first rule. However, by the second rule, this n-periodic configuration
exists if and only if M visits q less than n times. ◀

4.2 Computing the Number of Extender Sets
Let us determine the computational complexity of the problem “k ≤ |EX(n)|”, when given a
subshift X, some size n and some k. It is equivalent to the following:∨

v1,...,vk∈Ln(X)

∧
1≤i<j≤k

EX(vi) ̸= EX(vj).

Since vi ∈ Ln(X) is a Π0
1 ⊆ Σ0

2 problem and that the class of Σ0
2 problems is stable by

finite disjunctions and conjunctions, we conclude from Proposition 10 that:

▶ Lemma 11. For an effective subshift X, “ k ≤ |EX(n)|” is a Σ0
2 problem.

4.3 Upper Computational Bounds on Extender Entropies
▶ Corollary 12. For X an effective subshift, hE(X) ∈ Π3.

Proof. Given X and n, the set {k ≤ |EX(n)|} is a Σ0
2 set if X is effective by Lemma 11.

This implies that log |EX (n)|
nd is Σ2; and since hE(X) = infn

log |EX (n)|
nd , we obtain hE(X) ∈ Π3

as the infimum of Σ2 real numbers. ◀

5 Π3 Extender Entropies for Z Effective Subshifts

Let us focus on one-dimensional subshifts for the time being.

▶ Theorem A. The set of extender entropies of Z effective subshifts is exactly Π3 ∩ [0, +∞).

3 It is equivalent to Inf (does a given machine halt on infinitely many inputs?). See [24, Theorem 4.3.2].

STACS 2025
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In order to construct a subshift Zα with hE(Zα) = α, we would like to have |EZα(n)| ≃ 2αn.
To do so, we could create one extender set per pattern, and 2αn patterns of size n (as the
semi-mirror in Section 3); however, since effective subshifts have Π1 entropies, this would
not realize the whole class of Π3 numbers.

Yet, realizing the right number of patterns is the main idea behind the proof that follows:
we just do not blindly create one extender set per pattern, but only separate extender sets
when some conditions are met.

5.1 Preliminary: Encoding Integers With Configurations ⟨i⟩k

Before we begin our construction, we fix a way to encode integers in configurations: to encode
the integer i ∈ N, we use configurations where a symbol ∗ is i-periodic, and the rest is blank.

More formally, consider the alphabet A∗ = {∗, ␣}. Denote by ⟨i⟩k1
the i-periodic

configuration ⟨i⟩k1
= σk1(. . . ␣ ∗ ␣ . . . ␣ ∗︸ ︷︷ ︸

i+1 symbols

␣ . . . ␣∗␣ . . . ) properly defined as (⟨i⟩k1
)p = ∗ if and

only if p = k1 mod i. A configuration ⟨i⟩k1
is said to encode the integer i ∈ N. Considering

the subshift all the configurations ⟨i⟩k1
for i ∈ N and k1 ≤ i generate, we denote:

X∗ =
⋃
i∈N

{⟨i⟩k1
∈ AZ

∗ | k1 ≤ i} ∪ ⟨∞⟩

where ⟨∞⟩ = {x ∈ AZ
∗ | |x|∗ ≤ 1} is the set of configurations having at most one symbol ∗.

The configurations of ⟨∞⟩ are said to be degenerate, and they appear when taking the closure
of all ⟨i⟩k1

.

5.2 Preliminary: Toeplitz Density in Periodic Configurations
Our construction will also need to build configurations with a controlled density of symbols,
i.e. configurations on {0, 1} where the number of symbols 1 in large patterns converges
to some value: for some fixed α, we want to build configurations x ∈ {0, 1}Z such that
limn→+∞

1
n · |x|J0,n−1K|1 = α. Several explicit constructions of such configurations and

subshifts exist. We choose to work with Toeplitz sequences.

Toeplitz density words

Consider the ruler sequence T = 12131214 . . . defined by Tn = max{m ∈ N : 2m | 2n}
(see Oeis A001511). For a given binary sequence u = (un)n∈N ∈ {0, 1}N, we consider its
Toeplitzification T (u) ∈ {0, 1}N defined as T (u)n = uTn

for n ∈ N.
In particular, for β ∈ [0, 1] a real number and (βn)n∈N its proper binary expansion, we

consider the word T (β) = (βTn)n∈N = β1 β2 β1 β3 β1 β2 . . . . Denoting by |w|1 the numbers of
letters 1 in a binary word w ∈ {0, 1}∗ and by |w| its length, we have:

▷ Claim 13. For β ∈ [0, 1] and w ⊑ T (β) a factor of T (β), we have |w|1 = β · |w| + O(1).

Toeplitz density in periodic configurations

For our specific construction, let α ∈ [0, 1] and i ∈ N, and consider the subshift T≤α,i

composed of i-periodic configurations made of truncated Toeplitz words:

T≤α,i = {x ∈ {0, 1}Z | ∃β ≤ α, ∃k1 ∈ J0, i − 1K, ∀p ∈ Z, xp = T (β)(p+k1 mod i)}

https://oeis.org/A001511
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We denote T (β, i)k1 ∈ {0, 1}Z the configuration defined by (T (β, i)k1)p = T (β)(p+k1 mod i)
for p ∈ Z. Notice that, for any α ∈ [0, 1], i ∈ N and n ∈ N, there are |Ln(T≤α,i)| =
2log(min(i,n))+O(1) · O(min(i, n)) factors of length n in T≤α,i.

▷ Claim 14. Let α ∈ [0, 1] ∩ Π1. Then T≤α,i is an SFT, and a family of forbidden patterns
realizing T≤α,i can be computably enumerated from α.

Proof. Consider α ∈ Π1: the set {r ∈ Q | r > α} is computably enumerable. Thus, the
following family F of forbidden patterns that realizes T≤α,i is recursively enumerable: forbid
finite pattern that are either not i-periodic, or do not respect the structure of the ruler
sequence in an i-period; and inside an i-period, forbid patterns rT1 rT2 rT1 . . . ∈ {0, 1}i that
encode the finite expansion of a rational r =

∑log i
k=1 rk2−k if r is such that r > α. ◁

5.3 Construction: the Effective Z Subshift Zα

Let us now begin the construction to prove Theorem A. Let α ∈ Π3 be a positive real number,
α = infi supj αi,j for some computable sequence (αi,j) of Π1 real numbers. We can assume
α ≤ 1 since extender entropy is additive under cartesian products, and using [27, Lemma 3.1]
we can assume that (αi,j)i,j∈N2 satisfies some monotonicity properties: for all i, (αi,j)j∈N is
weakly increasing towards some αi; and the sequence (αi)i∈N is weakly decreasing towards α.

Auxiliary subshift Z′
α

We create an auxiliary subshift Z ′
α on the following three layers:

1. First layer L1: We take L1 = X∗ to encode integers i ∈ N. Intuitively, i will denote
which Σ2 number αi is approximated in the configuration.

2. Second layer L2: We also set L2 = X∗ to encode integers j ∈ N, j ≥ i. Intuitively, j will
denote which Π1 number αi,j is approximated in the configuration.

3. Density layer Ld: We define the density layer as Ld = {0, 1}Z. Whenever the first two
layers are non-degenerate, this layer will be restricted to densities ≲ αi,j . Since the real
numbers αi,j are Π1, the subshifts T≤αi,j ,i are effective from the numbers αi,j .

such that Z ′
α is defined as:

Z ′
α =

{
(z(1), z(2), z(d)) ∈ L1 × L2 × Ld | z(2) ∈ ⟨∞⟩

}
∪

⋃
i∈N

⋃
j≥i

{
(z(1), z(2), z(d)) ∈ L1 × L2 × Ld | ∃k1, k2 ∈ N,

z(1) = ⟨i⟩k1
, z(2) = ⟨j⟩k2

and ∃β ≤ αi,j , z(d) = T (β, i)k1

}
∗ ∗ ∗ ∗∗ ∗ ∗
1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1

Figure 3 A proper configuration: Ld contains a Toeplitz encoding of .10102 = 5
8 . z =

(⟨15⟩11 , ⟨18⟩1 , T ( 5
8 , 15)10). The vertical red line indicates the origin.

▷ Claim 15. The Z subshift Z ′
α is an effective subshift.

Proof. Since the subshift X∗ is effective, the conditions on the first two layers L1 and L2 are
straightforward to enforce. Furthermore, since the αi,j are Π1 real numbers enumerated by a
single machine, by Claim 14 we can obtain Z ′

α as follows: a pattern w = (w(1), w(2), w(d)) ∈
L(X∗) × L(X∗) × {0, 1}n is forbidden whenever both w(1) and w(2) contain at least two
symbols ∗ (so that w(1) encodes an integer i ∈ N, w(2) encodes an integer j ≥ i) and w(d)

contains a pattern forbidden in T≤αi,j ,i. ◁
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A configuration z = (⟨i⟩k1
, ⟨j⟩k2

, T (β, i)k1) ∈ Z ′
α is said to be proper. A configuration

z = (z(1), z(2), · ) ∈ Z ′
α with z(2) ∈ ⟨∞⟩ is said to be degenerate. Thus, we separate patterns

into two categories: whenever w ∈ L(Z ′
α) only appears in degenerate configurations, we call

it a degenerate pattern; if w can appear in a proper configuration, we call it a proper pattern.

On the one hand, degenerate patterns of Z ′
α do not contribute much to the number of

extender sets, despite being exponentially many:

▷ Claim 16. Let n ∈ N, and consider DE(n) = {EZ′
α

(w) | w ∈ Ln(Z ′
α) degenerate}, the set

of extender sets of degenerate patterns of size n. Then |DE(n)| = O(n3).

Proof. Let u, v ∈ Ln(Z ′
α) be two degenerate patterns. Whenever u(1) = v(1) and u(2) = v(2),

we have EZ′
α

(u) = EZ′
α

(v) because the density layer of such patterns can be anything. Since
at most a single symbol ∗ can appear on the second layer of degenerate patterns, by counting
possibilities for their first layers we obtain |DE(n)| = O(n3). ◁

On the other hand, all proper patterns of Z ′
α belong to distinct extender sets:

▷ Claim 17. Let u, v ∈ Ln(Z ′
α) be two distinct proper patterns. Then EZ′

α
(u) ̸= EZ′

α
(v).

Proof. Let u ∈ Ln(Z ′
α) be a proper pattern. It can be extended into a whole proper

configuration z = (⟨i⟩k1
, ⟨j⟩k2

, z(d)) ∈ Z ′
α such that z|J0,n−1K = u. By definition, z is

periodic of period i · j: thus, z|J0,n−1K is entirely determined by z|Jn,i·j+n−1K, and z|Z\J0,n−1K

can only extend the pattern u itself. ◁

However, there are only polynomially many distinct proper patterns of a given size in Z ′
α.

The next section will neverthelesss create a subshift Zα with the correct (exponential) amount
of proper patterns, thanks to the following remark:

▷ Claim 18.
For an integer i ∈ N and a proper configuration z ∈ Z ′

α such that z(1) = ⟨i⟩k1
, an i-period

of the density layer z(d) contains at most αi · i + O(1) symbols 1.
For integers n ∈ N and i ≥ n, and a proper configuration z ∈ Z ′

α such that z(1) = ⟨i⟩k1
, a

factor of length n of the density layer z(d) contains at most αn · n + O(1) symbols 1.

Proof. This follows from Claim 13 and the monotonicity of the sequence (αi,j)i,j∈N2 . ◁

Free bits in the subshift Zα

To create the desired exponential number of extender sets, we create the subshift Zα by
adding free bits on top of the symbols 1 of the density layer. Informally, if there were
β · i + O(1) symbols 1 in an i-period of the density layer in Z ′

α, adding free bits on top of the
symbols 1 creates 2β·i+O(1) patterns in Zα. Thus, we add a fourth layer to Z ′

α:

4. Free layer Lf : We define the free layer as Lf = {␣, 0, 1}Z. Given the synchronizing map
πsync : {␣, 0, 1} → {0, 1} defined as πsync(0) = πsync(1) = 1 and πsync(␣) = 0, we say that
two configurations z(d) ∈ Ld and z(f) ∈ Lf are synchronized if πsync(z(f)) = z(d).

and we define Zα as:

Zα =
{

(z(1), z(2), z(d), z(f)) ∈ L1 × L2 × Ld × Lf | z(1) ∈ ⟨∞⟩ or z(2) ⟨∞⟩
}

∪
⋃
i∈N

⋃
j≥i

{
(z(1), z(2), z(d), z(f)) ∈ L1 × L2 × Ld × Lf | ∃k1, k2 ∈ N,

z(1) = ⟨i⟩k1
, z(2) = ⟨j⟩k2

πsync(z(f)) = z(d),

∃β ≤ αi,j , z(d) = T (β, i)k1 and z(f) is i-periodic
}

.
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▷ Claim 19. The Z subshift Zα is effective.

Proof. In addition to the forbidden patterns of Z ′
α, forbid patterns w = (w(1), w(2), w(d), w(f))

for which w(1) and w(2) both contain two symbols ∗ (in which case, denote by i the distance
between two symbols ∗ in w(1)), but w(f) is either not synchronized with w(d) or not i-periodic.

◁

We extend the terminology from Z ′
α to Zα and call proper the configurations of Zα that

encode integers i ∈ N and j ≥ i on their first two layers, and degenerate those who do not.
Similarly, a pattern is proper if it can be extended into a proper configuration, and degenerate
if it only extends into degenerate configurations.

Since the free layer is required to be i-periodic only in proper configurations, Claims 16
and 17 both extend from Z ′

α to Zα by the very same arguments:

▷ Claim 20.
For n ∈ N, consider DE(n) = {EZα(w) | w ∈ Ln(Zα) degenerate}. Then DE(n) = O(n2).
Let u, v ∈ Ln(Zα) be two distinct proper patterns. Then EZα

(u) ̸= EZα
(v).

▶ Lemma 21. Let P (n) = {w ∈ Ln(Zα) | w is proper}. Then

2n·αn+O(1) ≤ P (n) ≤ poly(n) ·
n∑

i=1
2αi·i+O(1).

Proof: lower bound. Consider the patterns w′ = (⟨n⟩0 , ⟨j⟩0 , T (αn,j , n)0)|J0,n−1K in Z ′
α for

j ≥ n : the number of symbols 1 in the density layer w′(d) of such w′ is αn,j · n + O(1)
by Claim 13. Since αn,j → αn, by taking j ≥ n large enough we obtain a proper pattern
w′ ∈ Ln(Z ′

α) such that its density layer w′(d) contains αn · n + O(1) symbols 1.
Thus, we obtain 2αn·n+O(1) proper patterns w ∈ Ln(Zα) such that πL1×L2×Ld

(w) = w′

(since each symbol 1 in w(d) leads to two distinct patterns in the free layer Lf ). ◀

Proof: upper bound. To overestimate the number of proper patterns |P (n)|, we consider
the restrictions w′ = z′

J0,n−1K for z′ ranging in the proper configurations of Z ′
α (consider all

values of ⟨i⟩k1
, ⟨j⟩k2

and of n-factors in y(d)), and bound the number of symbols 1 in each
case: by Claim 18,

If i ≤ n, an i-period of the density layer w′(d) contains less than αi · i + O(1) symbols 1.
For i > n, w′(d) contains less than αn · n + O(1) symbols 1.

Since each symbol 1 in an i-period of the density layer results in two distinct patterns in the
free layer, and there are less than O(i2) possibilities for such periods, we obtain:

P (n) ≤
n∑

i=1

i−1∑
k1=0

n∑
j=1

j−1∑
k2=0

O(i2) · 2αi·i+O(1) +
n∑

k1=0

n∑
k2=0

O(n2) · 2αn·n+O(1)

≤ poly(n) ·
n∑

i=1
2αi·i+O(1). ◀

Combining Lemma 21 with Claim 20, we obtain by taking the limit over αn → α that
hE(Zα) = α, which concludes the proof.
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6 Π3 Extender Entropies for Z2 Sofic Subshifts

We now want to extend Theorem A to multidimensional sofic shifts: an idea could be to
replace i-periodic words on Z in the previous construction with (i, i)-periodic squares on Z2.
Unfortunately, such a subshift cannot be sofic4.

Yet, making configurations periodic is not necessary to ensure that two proper patterns u

and v have distinct extender sets: it is enough to have a configuration that witnesses the
difference between u and v (by extending one but not the other). This was already illustrated
in the semi-mirror shift (see Section 3): instead of mirroring the whole half-plane (which is
not sofic), non-deterministically reflecting a single bit from the upper to the lower half-plane
is actually enough, since each bit can be reflected individually in some configuration. In this
section, we use this idea to prove (see Figure 4):
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(a) Whole (i, i)-periodic squares of free bits.
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(b) A single (i, i)-periodic free bit.

Figure 4 The periodized area is highlighted in color ■ and hatched. To make the figure readable,
symbols for free bits are {■,■} instead of {b, b′}.

▶ Theorem B. The set of extender entropies of Z2 sofic subshifts is exactly Π3 ∩ [0, +∞).

6.1 Preliminary: Marking Offsets With Configurations [2i]m1,m2

In our construction, we will need to mark some positions (m1 + iZ, m2 + iZ). To do so, we
consider the alphabet Am = {□,■}. Denote by [2i]m1,m2 the (2i, 2i)-periodic configuration
formally defined as ([2i]m1,m2

)p = ■ if and only if p = (m1, m2) mod (2i, 2i). We say that a
symbol ■ is a marker.

For a configuration x = [2i]m1,m2
with (m1, m2) ∈ J0, 2i − 1K2, we say that a position

p ∈ Z2 is marked if p ∈ (m1 + iZ, m2 + iZ). This lattice has unit cells of size i × i instead of
2i × 2i: this is voluntary. In particular, some marked positions p ∈ Z2 satisfy xp = □.

Considering the subshift generated by all the configurations [i]m1,m2
, we define:

G =
⋃
i∈N

{[i]m1,m2
| (m1, m2) ∈ J0, i − 1K2} ∪ [∞]

where [∞] = {x ∈ AZ2

m | |x|■ ≤ 1} is the set of configurations having at most one marker
symbol ■: these are the configurations that appear when taking the closure of all [i]m1,m2

.

4 The argument proving that the classical mirror subshift cannot be sofic still applies here: there would
be 2O(i2) distinct i × i patterns, but only 2O(i) borders in the SFT cover.
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6.2 Construction: the Sofic Z2 Subshift Yα

Let us now begin a construction to prove Theorem B. We use the notations introduced in the
proof of Theorem A: we fix α ∈ [0, 1] ∩ Π3 such that α = infi supj αi,j for αi,j a computable
sequence of Π1 real numbers (we assume the same monotonicity properties). We define a
subshift Yα on the following five layers:

Lifted layers: We define the first three layers of Yα as L↑
1 × L↑

2 × L↑
d, where L1, L2 and

Ld are the three layers of the subshift Z ′
α defined in the proof of Theorem A.

Marker layer Lm: We define Lm = G to mark positions p ∈ (m1 + iZ, m2 + iZ).
Free layer Lf : We also define the free layer by Lf = {␣, 0, 1}Z2 .

and we define Yα as (see Figure 5 for an illustration):

Yα =
{

(y(1)↑, y(2)↑, y(d)↑, y(m), y(f)) ∈ L↑
1 × ⟨∞⟩↑ × L↑

d × Lm × Lf |

∀i ∈ N, (∃k1 ∈ N, y(1) = ⟨i⟩k1
⇐⇒ ∃m1, m2 ∈ N, y(m) = [2i]m1,m2

)
}

∪
⋃
i∈N

⋃
j≥i

{
(y(1)↑, y(2)↑, y(d)↑, y(m), y(f)) ∈ L↑

1 × L↑
2 × L↑

d × Lm × Lf | ∃k1, m1, m2, k2 ∈ N,

y(1) = ⟨i⟩k1
, y(m) = [2i]m1,m2

, y(2) = ⟨j⟩k2
, πsync(y(f)) = y(d)↑,

∃β ≤ αi,j , y(d) = T (β, i)k1 and y(f)|(m1+iZ)×(m2+iZ) is constant
}

.
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Figure 5 Projection of a proper configuration on L↑
1 × Lm × Lf . The symbols ∗ are on L↑

1, the
symbols ■ on Lm the symbols 1 on Lf . All the other bits of Lf (not drawn here) are free.

Extending the terminology from Zα to Yα, we call proper the configurations of Yα that
encode integers i ∈ N and j ≥ i on their first two layers, and degenerate those which do not.
Additionally we say that a pattern is proper if it can be extended into a proper configuration,
and degenerate otherwise. We say that two proper patterns u, v ∈ Ln(Yα) are similar if they
are equal on their first four layers (i.e. πL↑

1×L↑
2×L↑

d
×Lm

(u) = πL↑
1×L↑

2×L↑
d

×Lm
(v)).

▷ Claim 22. Two similar proper patterns u, v ∈ Ln(Yα) have distinct extender sets if
and only if there exists a proper configuration y that extends u and that marks a position
p ∈ J0, n − 1K2 such that u

(f)
p ̸= v

(f)
p .

We would very much like an analog of Claim 20: unfortunately, not all proper patterns
generate distinct extender sets. Indeed, by the previous claim, similar proper patterns
generate distinct extender sets only when the positions at which they differ can be marked by
an extending configuration (this depends on the relative position of an n×n window covering
the four quadrants of a 2i × 2i square, etc. . . ). Yet, we do not need precise considerations to
count the number of extender sets, and simply prove the following bounds:
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▶ Lemma 23. Let PE(n) = {EYα
(w) ∈ Ln(Yα) | w is proper}. Then

2αn·n2+O(n) ≤ PE(n) ≤ poly(n) ·
n∑

i=0
2αi·i2+O(i).

Proof: lower bound. For j ≥ n, consider the set Jj = {(y ∈ Yα | y(1) = ⟨n⟩0 , y(2) =
⟨j⟩0 , y(d) = T (αn,j , n)}. The number of symbols 1 in an (n × n)-period in the density layer
of such configurations is αn,j · n2 + O(n) by Claim 13. Since αn,j → αn, by taking j ≥ n

large enough we obtain a set J = Jj of proper configurations y whose density layer y(d)

contains αn · n2 + O(n) symbols 1 in an (n × n)-period.
Considering the free layer of such patterns, there are at least 2αn·n2+O(n) distinct patterns

in the finite set W = {y|J0,n−1K2 | y ∈ Jj and y(m)|J0,n−1K2 = □J0,n−1K2}, and we claim that
they all generate distinct extender sets. Indeed, for any two distinct patterns u, v ∈ W , there
exists a position p ∈ J0, n − 1K2 such that u

(f)
p ̸= v

(f)
p ; and there exists a configuration y ∈ Jj

that extends u with y(m) = [2n]p+(n,n): in particular, y marks the position p.5 By Claim 22,
we obtain EYα(u) ̸= EYα(v). This proves that PE(n) ≥ 2αn·n2+O(n). ◀

Proof: upper bound. We proceed as with the Z effective subshift Zα: to bound the car-
dinality of PE(n), we consider the restrictions w = y|J0,n−1K2 for y ranging in the proper
configurations of Yα (for all values of ⟨i⟩k1

, ⟨j⟩k2
, T (β, i) and [2i]m1,m2

), and count free layers
by Claim 18:

If i ≤ n, an i× i square of the density layer w(d) contains less than αi · i2 +O(i) symbols 1.
If i > n, the density layer w(d) contains less than αn · n2 + O(n) symbols 1.

Finally, when summing over all these cases, we overestimate the number of extender
sets generated by the free layer by assuming that each position p ∈ J0, i − 1K2 containing
a symbol 1 on the density layer can be marked by a proper configuration y extending the
pattern (while only a subset of such positions can be marked):

PE(n) ≤
n∑

i=1

i−1∑
k1=0

n∑
j=1

j−1∑
k2=0

O(i4) · 2αi·i2+O(i) +
n∑

k1=0

n∑
k2=0

O(n4) · 2αn·n2+O(n)

≤ poly(n) ·
n∑

i=1
2αi·i2+O(i). ◀

By taking the limit α = limn αn, we obtain that hE(Yα) = α. Thus, we are left to prove:

▷ Claim 24. The subshift Yα is a sofic subshift.

This proof is very standard and unsurprising, yet is included for the sake of exhaustiveness.

Sketch of proof. First, we introduce a grid subshift. Let us denote by Ygrid the subshift
on the alphabet { , , } defined as the closure of all the square grid configurations
(see Figure 6a). It is a sofic subshift: by enforcing the continuity of black lines between
adjacent positions, we obtain an irregular grid; to obtain a regular square grid, we make each
cross send diagonals in the SFT cover (since diagonals can only go through a cross, the
grid becomes regular).

Let us now synchronize Ygrid with L↑
1: we define Ygrid∗ ⊆ L↑

1×Ygrid the set of configurations
(x(1)↑, x(g)) such that x(g) has mesh i×i if and only if x(1) encodes some i ∈ N (see Figure 6b).

5 Markers were chosen to be (2i, 2i)-periodic for this reason: we need to be able to mark a position
p ∈ J0, i − 1K2 in a configuration without seeing a marker in the square J0, i − 1K2.
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(a) A square grid configuration of mesh i × i.
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(b) Vertical blue columns of symbols ∗ are i-periodic,
the square grid has mesh i × i.

Figure 6 Two configurations using grids.

▷ Claim 25. Ygrid∗ is a Z2 sofic subshift.

Sketch of proof. Using areas of colors in the SFT cover, ensure that exactly one black vertical
line in Ygrid can appear between two vertical lines of symbols ∗ in L↑

1. ◁

Let us now prove that Yα is a Z2 sofic subshift. Intuitively, it follows from Theorem 2:
Yα is a “decorated version” of Z ′↑

α . The most tricky step is in the periodicity condition:
periodicity of a free bit in L(f) should only be enforced whenever both layers y(1) and y(2) do
not belong in ⟨∞⟩↑, i.e. whenever they both actually encode some integers i ∈ N and j ∈ N.

To proceed, we slightly alter the Z subshift Z ′
α to define a new subshift Z ′′

α: it contains
an additional layer Lp (the proper layer) that can take two values (either pZ or dZ), and is
forced to be pZ whenever both the first and second layer do encode integers:

Z ′′
α =

{
(z(1), z(2), z(d), z(p)) ∈ L1 × L2 × Ld × {pZ, dZ} | z(2) ∈ ⟨∞⟩

}
∪

⋃
i∈N

⋃
j≥i

{
(z(1), z(2), z(d), z(p)) ∈ L1 × L2 × Ld × {pZ} | ∃k1, k2 ∈ N,

z(1) = ⟨i⟩k1
, z(2) = ⟨j⟩k2

and ∃β ≤ αi,j , z(d) = T (β, i)k1

}
.

By a slight alteration of Claim 15, the subshift Z ′′
α is effective whenever α is a Π3 real

number. By Theorem 2, the Z2 subshift Z ′′↑
α is thus sofic. Then, we use the proper layer to

enforce periodicity of a free bit in L(f) only whenever y(p) = pZ2 , and define Y ′
α as:

Y ′
α =

{
(y(1)↑, y(2)↑, y(d)↑, y(p)↑, y(g), y(f)) ∈ Z ′′↑

α × Ygrid × {␣, 0, 1}Z
2

|

(y(1)↑, y(g)) ∈ Ygrid∗, πsync(y(f)) = y(d)↑,

∃b ∈ {␣, 0, 1}, ∀p ∈ Z2, y(p) = pZ ∧ y(g)
p = =⇒ y(f)

p = b
}

▷ Claim 26. Y ′
α is a Z2 sofic subshift.

Sketch of proof. By the previous paragraph, the first four layers are sofic; and by Claim 25,
the synchronization Ygrid∗ of L↑

1 and Ygrid is sofic. To make a free bit periodic, one can carry
a unique symbol bgrid ∈ {␣, 0, 1} along the black lines of Ygrid in an SFT cover, and enforce
the following: on positions at which a cross symbol appears on the grid layer y(g), and a
symbol p appears on the proper layer y(p)↑, the free bit in y(f) is then made equal to the
symbol bgrid. ◁
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We can now prove that Yα is sofic. Indeed, fix an SFT cover of Y ′
α in which we color

cross symbols into two colors alternatingly: let us say, red and blue. On each horizontal
and vertical line of the grid layer Ygrid, crosses are now alternating between red and blue.
We claim that we obtain the subshift Yα by projecting this SFT cover as follows:

Erase the proper layer.
Projection of the grid layer: red crosses become ■, and all other symbols become □.

Indeed, projecting the grid layer as mentioned creates the marker layer Lm. The only
condition that remains to be checked is the (i, i)-periodicity condition on a free bit.

Notice that in Y ′
α, both cases y(p)↑ = pZ2 and y(p)↑ = dZ2 are possible whenever y(1) ∈ ⟨∞⟩

or y(2) ∈ ⟨∞⟩, so that erasing the proper layer in the projection merges the two cases together
and removes the periodicity enforced a free bit of y(f); while whenever y(1) = ⟨i⟩k1

and
y(2) = ⟨j⟩k2

, only the case y(p) = pZ2 is allowed: so that, when projecting, the periodicity
condition is still enforced. ◁

7 Realizing Extender Entropies: Computable Subshifts

A subshift X is said to be computable if its language L(X) is decidable. Following the
proofs from Section 4, one proves that extender entropies of computable subshifts are Π2
real numbers. We prove the converse inclusion and obtain:

▶ Theorem 27. The set of extender entropies of computable Z effective subshifts (resp.
computable Z2 sofic subshifts) is exactly Π2 ∩ [0, +∞).

Sketch of proof. We slightly alter our previous constructions. The subshift Z ′
α constructed

in Theorem A might not be computable whenever α ∈ Π3, since, given some i, j ∈ N and
some factor of T (β, i), it might be undecidable to know whether β ≤ αi,j when αi,j ∈ Π1.

Yet, when taking α = infi αi = infi supj αi,j ∈ Π2 for (αi,j) a computable sequence, the
previous problem becomes decidable; thus, the subshift Z ′

α is computable. Both proofs, on Z
and Z2, then go through without any other modification. ◀

8 Extender Sets of Minimal Subshifts

Minimality is a general dynamical notion; in our context, a subshift is minimal if it contains
no nonempty proper subshift. Extender sets are much easier in minimal subshifts and do not
even depend on the computability of the language:

▶ Proposition 28. Let X be a minimal subshift over Zd. Then for any n > 0 and any
patterns u, v ∈ Ln(X), EX(u) ⊆ EX(v) ⇐⇒ u = v.

Proof. Let u, v ∈ Ln(X) and suppose that EX(u) ⊆ EX(v). Then any appearance of u

in a configuration can be replaced by v: by iterating the process while ordering patterns
lexicographically (see [23, Lemma 2.2] for the complete argument), we obtain by compactness
a configuration of X is which u does not appear, which contradicts minimality. ◀

This implies that hE(X) = h(X) if X is minimal. Since minimal sofic subshifts have zero
entropy (folklore, see [11, Proposition 6.1]), and minimal effective subshifts have arbitrary
Π1 entropy (consider [16, Theorem 4.77] with computable sequences (kn)n∈N), we obtain:

▶ Corollary 29. The extender entropy of a minimal Zd sofic subshift is always 0.
▶ Corollary 30. The set of extender entropies of minimal Zd effective subshifts is exactly
Π1 ∩ [0, +∞).
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9 Extender Sets of Subshifts With Mixing Properties

9.1 Mixing Z Subshifts
Mixingness is another dynamical notion. In the context of Z subshifts, mixingness intuitively
implies that for any pair of admissible words, there exists a configuration containing both of
them at arbitrary positions, provided they are sufficiently far apart:

▶ Definition 31 (Mixing subshift). A Z subshift X is mixing if

∀n > 0, ∃N > 0, ∀u, v ∈ Ln(X), ∀k ≥ N, ∃w ∈ Lk(X), uwv ∈ L(X).

We say that X is f(n)-mixing for some function f if N can be taken equal to f(n) in the
previous definition. When f is constant f(n) = N , we simply write that X is N -mixing.

One could expect that strong mixing conditions would restrict the behaviors of extender
sets: indeed, all the examples we mentioned so far either have strong mixing properties (the
full shift, Z SFTs. . . ) and zero extender entropy, or have positive extender entropy but are
far from mixing (periodicity, reflected positions, . . . ). However, we show in this section that
even very restrictive mixing properties do not imply anything on extender entropies.

▶ Proposition 32. Let X be a one-dimensional subshift. There exists a 1-mixing subshift X#
with hE(X) = hE(X#). (Furthermore, if X was effective, then X# can be taken effective.)

Proof. Let X ⊆ AZ be a subshift, and α = hE(X). Denote F = A∗ \ L(X). Let us define
a subshift X# over the alphabet A ⊔ {#} (assuming that # is a free symbol not in A) by
the same family of forbidden patterns F : configurations of X# are composed of (possibly
infinite) words of L(X) separated by the safe symbol #. Then X# is 1-mixing, as for any
u, v ∈ L(Y ), we have u#v ∈ L(Y ).

We are left with proving that hE(X#) = hE(X). First, we need to introduce the notion
of follower and predecessor sets: in X, the follower and predecessor sets are respectively
defined as FX(w) = {x ∈ AN | wx ⊑ X} and PX(w) = {x ∈ A−N | xw ⊑ X}. In other words,
the follower set (resp. predecessor set) of some word w correspond to the set of right-infinite
(resp. left-infinite) sequences x such that ux (resp. xu) appears in some configuration of X.

Let n ≥ 0. We prove that:

|EX(n)| ≤ |EX#(n)| ≤ |EX(n)| +
∑

i+j<n

|PX(i)||FX(j)|

Lower bound. The lower bound holds simply because if x extends a pattern w ∈ L(X) but
not w′ ∈ L(X), then x also belongs in X# and still extends w but not w′ in X#, so that
EX#(w) ̸= EX#(w′). ◁

Upper bound. For the rightmost inequality, we need to distinguish some cases according to
whether a pattern contains a # or not.

Let w ∈ Ln(X#) that does not contain a symbol #. Then

EX#(w) = EX(w) ∪
⋃

l,r∈A∗|lwr∈L(X)

{(x # l, r # x′) | x, x′ admissible in X#}

So, for w, w′ ∈ Ln(X#). So, for w, w′ ∈ Ln(X#) that do not contain a symbol #, we
have EX#(w) = EX#(w′) if and only if EX(w) = EX(w′).
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Let w ∈ Ln(X#) containing at least a symbol #, and let i ≤ j be the first and last
positions in w at which a symbol # appear. Let l, r ∈ A∗ be respectively wJ0,i−1K and
wJj+1,n−1K). Since # is a safe symbol, EX#(w) is entirely determined by (PX(l), FX(r)):

EX#(w) = (PX(l) × FX(r)) ∪
⋃

l′,r′∈A∗|
l′·l, r·r′∈L(X)

{(y # l′, r′# y′) | y, y′ admissible in X#}.

Doing a disjunction on these two cases, and over the pairs i + j < n in the second case (and
abusing notations again by denoting PX(i) = {PX(w) | w ∈ Li(X)} and FX(j) = {FX(w) |
w ∈ Lj(X)) we obtain:

|EX#(n)| ≤ |EX(n)| +
∑

i+j<n

|PX(i)||FX(j)| ◁

As |PX(n)| ≤ |EX(n)| and |FX(n)| ≤ |EX(n)|, and that |EX(n)| = 2αn+o(n), we obtain
2αnn+o(n) ≤ |EX#(n)| ≤ poly(n) · 2αnn+o(n), and conclude that hE(X#) = α. ◀

9.2 Block-gluing Zd Subshifts
There exists various mixing notions in higher dimension. We formulate our results for
block-gluing subshifts:

▶ Definition 33. Let X ⊆ AZd be a subshift, and f : N → N be a (weakly) increasing function.
We say that X is f -block-gluing if

∀p, q ∈ Ln(X), ∀k ≥ n + f(n), ∀u ∈ Zd, ∥u∥∞ ≥ k =⇒ (p ∪ σu(q) ∈ L(X))

Said differently, X is f -block-gluing if any two square patterns of size n can appear at any
position as long as they are placed with a gap of size at least f(n) between them. As with
Definition 31, we will simply write N -block-gluing for constant gluing distance (f : n → N).

▶ Proposition 34. For any α ∈ Π3 ∩ [0, +∞), there exists an effective and 1-block-gluing Zd

subshift Zα,# such that hE(Zα,#) = α.

Proof. Notice that the free lift of a 1-block-gluing Zd subshift to Zd+1 is also 1-block-gluing.
By Claim 8, the free lift preserves the extender entropy: thus, we reduce to the one-dimensional
case. We conclude by combining the previous Proposition 32 with Theorem A. ◀
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