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Abstract
Twenty years after its introduction by Ehrhard and Regnier, differentiation in λ-calculus and in linear
logic is now a celebrated tool. In particular, it allows to write the Taylor formula in various λ-calculi,
hence providing a theory of linear approximations for these calculi. In the standard λ-calculus, this
linear approximation is expressed by results stating that the (possibly) infinitary β-reduction of
λ-terms is simulated by the reduction of their Taylor expansion: in terms of rewriting systems, the
resource reduction (operating on Taylor approximants) is an extension of the β-reduction.

In this paper, we address the converse property, conservativity: are there reductions of the Taylor
approximants that do not arise from an actual β-reduction of the approximated term? We show that
if we restrict the setting to finite terms and β-reduction sequences, then the linear approximation is
conservative. However, as soon as one allows infinitary reduction sequences this property is broken.
We design a counter-example, the Accordion. Then we show how restricting the reduction of the
Taylor approximants allows to build a conservative extension of the β-reduction preserving good
simulation properties. This restriction relies on uniformity, a property that was already at the core
of Ehrhard and Regnier’s pioneering work.
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1 Introduction

The traditional approach to program approximation in a functional setting consists in
describing the total information that a (potentially non-terminating) program can produce
by the supremum of the finite pieces of information it can produce in finite time. This
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23:2 How to Play the Accordion

continuous approximation is tightly related to the Scott semantics of λ-calculi [29]: the Böhm
tree of a term (or equivalently its semantics) is the limit of the approximants produced by
hereditary head reduction [21, 32, 3].

More recently, Ehrhard and Regnier introduced the differential λ-calculus and differential
linear logic [16, 17], following ideas rooted in the semantics of linear logic [20, 13, 14].
This suggested the renewed approach of linear approximation of functional programs. In
this setting, a program (i.e. a λ-term) is approximated by multilinear (or “polynomial”)
programs, obtained by iterated differentiation at zero. Using this differential formalism, the
Taylor formula yields a weighted sum T (M) of all multilinear approximants of a λ-term M ,
producing the same total information as M , via normalization. More precisely, Ehrhard
and Regnier’s “commutation” theorem [19, 18] ensure that the normal form of the Taylor
expansion of M is the Taylor expansion of the Böhm tree of M :

nf(T (M)) = T (BT(M)) (1)

(and a Böhm tree is uniquely determined by its Taylor expansion). This approach subsumes
the previous one [2]. In addition, it allows for characterising quantitative properties of
programs (e.g. complexity [11]), which is a key benefit of linearity. This approximation
technique has been fruitfully applied to many languages, richer than the plain λ-calculus:
nondeterministic [31], probabilistic [10], extensional [5], call-by-value [23], and call-by-push-
value [15, 9] calculi, as well as for Parigot’s λμ-calculus [1]. The interplay of the operational
and Taylor approximations also suggests a broader notion of a approximation of a computation
process [26, 12].

Another benefit of linear approximation is that it can approximate not only β-normal-
isation (the information ultimately produced by a program) but β-reduction (the “information
flow” along program execution). In particular, Equation (1) can be refined into

M −→∗
β N ⇒ T (M) −↠r T (N), (2)

where −↠r denotes the so-called “resource” reduction acting linearly on approximants. As
highlighted by our previous work [8, 7], this can even be extended to

M −→∞
β N ⇒ T (M) −↠r T (N) (3)

if one extends the λ-calculus with infinite λ-terms and an infinitary closure of the β-reduction,
which is a way to encompass infinite computations and their limits [22].

This paper is interested in the converse of Equations (2) and (3): is the linear approxima-
tion of the λ-calculus conservative? In other terms, we ask whether every resource reduction
from T (M) to T (N) corresponds to a β-reduction sequence from M to N .

We show that the finite β-reduction of finite λ-terms is conservatively approximated
(Section 3), but we are able to design a counter-example to conservativity (the Accordion A)
as soon as we want to approximate infinitary β-reductions (Section 4). However, we introduce
a uniform linear approximation allowing for the same good properties as the standard one,
while enjoying conservativity (Section 5).

2 Preliminaries

In this section, we briefly recall the linear approximation of the λ-calculus, following its
refined presentation in [7]. We first recall the definition of the λ-calculus, as well as its “001”
infinitary extension: this is the version of the infinitary λ-calculus that fits the formalism
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of both continuous and linear approximations as they are usually presented (Section 2.1).
Then we present the resource λ-calculus, i.e. a linear variant of the λ-calculus (there are no
duplications or erasures of subterms during the reduction) enjoying strong confluence and
normalisation properties (Section 2.2). Finally, the linear approximation relies on the Taylor
expansion, that maps a λ-term to a sum of resource terms, in a way such that the reduction
of λ-terms is simulated by the reduction of the resource approximants (Section 2.3).

2.1 Finite and infinitary λ-calculi
We give a brief presentation of the 001-infinitary λ-calculus. A more detailed exposition
and a general account of infinitary λ-calculi can be found in [7, 4]. From now on, we fix a
countable set V of variables.

▶ Definition 1. The set Λ of (finite) λ-terms is the set X defined by the inductive rules:

x ∈ V (V)
x ∈ X

x ∈ V M ∈ X (λ)
λx.M ∈ X

M ∈ X N ∈ X (@)
(M)N ∈ X .

The set Λ001 of 001-infinitary λ-terms is the set X defined by the rules (V), (λ), and:

M ∈ X ▷ N ∈ X (@001)
(M)N ∈ X

N ∈ X
(▷)

▷ N ∈ X

where the rule (▷) is treated coinductively: infinite derivations are allowed provided each
infinite branch crosses infinitely often this coinductive rule.

This means that Λ001 contains the infinitary λ-terms whose syntax tree contains only
infinite branches entering infinitely often the argument side of an application.

Notice that we use Krivine’s notation for applications [25], i.e. we parenthesise functions
instead of arguments. We abbreviate the application of a term to successive arguments
(· · · ((M)N1) · · · )Nk as (M)N1 · · ·Nk, which is obtained by nesting applications on the left:
this allows to use parentheses more sparingly, which will be a great relief later on. By contrast,
(M1)(M2) · · · (Mk)N is obtained by nesting applications on the right. A typical example of
a term in Λ001 is (x)ω := (x)(x)(x) . . . . Observe also that there is an immediate inclusion
Λ ⊆ Λ001. On the contrary, neither λx0.λx1.λx2. . . . nor (((. . . )x2)x1)x0 are allowed in Λ001.

In practice we only consider infinitary terms having finitely many free variables, which
allows us to consider them up to α-equivalence (i.e. renaming of bound variables) – as one
usually does when dealing with λ-terms, and as we will do implicitely in all this paper.
This enables us to define capture-avoiding substitution in the usual way, and we denote by
M [N/x] the term obtained by substituting N to x in M . We refer to [6] for a more careful
and detailed presentation. These sets come equipped with the following dynamics.

▶ Definition 2. The relation −→β ⊂ Λ001 × Λ001 of β-reduction is defined by the rules:

(β)
(λx.M)N −→β M [N/x]

P −→β P
′

(λβ)
λx.P −→β λx.P

′

P −→β P
′

(@lβ)
(P )Q −→β (P ′)Q

Q −→β Q
′

(@rβ)
(P )Q −→β (P )Q′.

STACS 2025



23:4 How to Play the Accordion

▶ Definition 3. The relation −→001
β ⊂ Λ001 ×Λ001 of 001-infinitary β-reduction is defined

by the rules:

M −→∗
β x

(V001
β )

M −→001
β x

M −→∗
β λx.P P −→001

β P ′

(λ001
β )

M −→001
β λx.P ′

M −→∗
β (P )Q P −→001

β P ′ ▷ Q −→001
β Q′

(@001
β )

M −→001
β (P ′)Q′

Q −→001
β Q′

(▷)
▷ Q −→001

β Q′

where −→∗
β denotes the reflexive-transitive closure of −→β.

Infinitary β-reduction can be understood as allowing an infinite number of β-reduction
steps, as long as the β-redexes are fired inside increasingly nested arguments of applications.
This is formalised in the following result:

▶ Theorem 4 (stratification). Given M,N ∈ Λ001, there is a reduction M −→001
β N iff there

exists a sequence of terms (Md) ∈ (Λ001)N such that for all d ∈ N,

M = M0 −→∗
β≥0 M1 −→∗

β≥1 M2 −→∗
β≥2 . . . −→∗

β≥d−1 Md −→001
β≥d N,

where −→∗
β≥d and −→001

β≥d denote β-reductions occurring inside (at least) d nested arguments
of applications. Formally, β-reduction at minimum depth d is defined by:

M −→β M
′

(Vβ≥0)
M −→β≥0 M

′

P −→β≥d+1 P
′

(λβ≥d+1)
λx.P −→β≥d+1 λx.P

′

P −→β≥d+1 P
′

(@lβ≥d+1)
(P )Q −→β≥d+1 (P ′)Q

Q −→β≥d Q
′

(@rβ≥d+1)
(P )Q −→β≥d+1 (P )Q′

and 001-infinitary β-reduction at minimum depth d is defined by:

M −→001
β M ′

(V001
β≥0)

M −→001
β≥0 M

′
(V001

β≥d+1)
x −→001

β≥d+1 x

P −→001
β≥d+1 P

′

(λ001
β≥d+1)

λx.P −→001
β≥d+1 λx.P

′

P −→001
β≥d+1 P

′ Q −→001
β≥d Q

′

(@001
β≥d+1)

(P )Q −→001
β≥d+1 (P ′)Q

.

A typical (and even motivating) example of an infinitary β-reduction involves the fix-point
combinator Y := λf.(λx.(f)(x)x)λx.(f)(x)x. It consists in the reduction (Y)M −→001

β (M)ω

corresponding to the sequence (Y)M −→∗
β≥0 (M)(Y)M −→∗

β≥1 (M)(M)(Y)M −→∗
β≥2 . . .

On the contrary, the infinite reduction sequence Ω −→β Ω −→β Ω −→β . . ., where Ω :=
(λx.(x)x)λx.(x)x, does not give rise to a 001-infinitary reduction because the redexes are
fired at top-level all the way. On the other hand, each finite reduction sequence Ω −→∗

β Ω

induces a reduction Ω −→001
β Ω, but only because −→001

β contains −→∗
β (see [8], Lemma 2.13).

2.2 The resource λ-calculus
The resource λ-calculus is the target language of the linear approximation of the λ-calculus.
We recall its construction, and we refer to [31, 7] for more details. The main intuition behind
this calculus is that arguments become finite multisets, and that (λx.s)[t1, . . . , tn] will reduce
to a term obtained by substituting linearly one ti for each occurrence of x in s. The different
matchings of the ti’s and the occurrences of x are superposed by a sum operator; if a wrong
number of ti’s is provided, the term collapses to the empty sum.
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Given a set X , we denote by !X the set of finite multisets of elements of X . A multiset
is denoted by x̄ = [x1, . . . , xn], with its elements in an arbitrary order. Multiset union is
denoted multiplicatively, by x̄ · ȳ. Accordingly, the empty multiset is denoted by 1. We may
also write [xk1

1 , . . . , xkm
m ] to indicate multiplicities: this is the same as [x1]k1 · . . . · [xm]km .

▶ Definition 5. The set Λr of resource terms is defined by the rules:

x ∈ V (V)
x ∈ Λr

x ∈ V s ∈ Λr (λ)
λx.s ∈ Λr

s ∈ Λr t̄ ∈ !Λr (@!)
(s)t̄ ∈ Λr

and is implicitely quotiented by α-equivalence. Multisets in !Λr are called resource mono-
mials. To denote indistinctly Λr or !Λr, we write (!)Λr.

Given a semiring S and a set X , we denote by SX the set of possibly infinite linear
combinations of elements of X with coefficients in S, considered as formal weighted sums.
Given a sum S ∈ SX , its support |S| is the set of all elements of X bearing a non-null
coefficient. We also denote by S(X ) the sub-semimodule of SX of all sums having a finite
support.

We use the following syntactic sugar. The empty sum
∑

x∈X 0 · x is denoted by 0. The
one-element sum

∑
x∈X δx,y · x is assimilated to y, yielding an inclusion X ⊆ SX . Sums can

be summed, i.e.
∑

x∈X ax · x +
∑

x∈X bx · x =
∑

x∈X (ax + bx) · x. It is also convenient to
extend by linearity all the constructors of the calculus to sums of resource terms, i.e.

λx.

(∑
i∈I

ai · si

)
:=

∑
i∈I

ai · λx.si,(∑
i∈I

ai · si

) ∑
j∈J

bj · t̄j :=
∑
i∈I

∑
j∈J

aibj · (si)t̄j ,[∑
i∈I

ai · si

]
·

∑
j∈J

bj · t̄ :=
∑
i∈I

∑
j∈J

aibj · [si] · t̄j .

(4)

▶ Definition 6. For all u ∈ (!)Λr, t̄ = [t1, . . . , tn] ∈ !Λr and x ∈ V, the multilinear
substitution of x by t̄ in u is the finite sum s⟨t̄/x⟩ ∈ N((!)Λr) defined by

s⟨t̄/x⟩ :=


∑

σ∈S(n)

u[tσ(1)/x1, . . . , tσ(n)/xn] if x occurs n times in u

0 otherwise

where x1, . . . , xn is an arbitrary enumeration of the occurrences of x in u, and u[tσ(1)/x1, . . . ]
denotes the result of the (capture-avoiding) substitution of each xi by the corresponding tσ(i).

▶ Definition 7. The relation −→r ⊂ N((!)Λr) × N((!)Λr) of resource β-reduction is defined
using the auxiliary relation −⇀r ⊂ (!)Λr × N((!)Λr) generated by the rules

(βr)
(λx.s) t̄ −⇀r s⟨t̄/x⟩

s −⇀r S
′

(λr)
λx.s −⇀r λx.S

′

s −⇀r S
′

(@lr)
(s) t̄ −⇀r (S′) t̄

t̄ −⇀r T̄
′

(@rr)
(s) t̄ −⇀r (s) T̄ ′

s −⇀r S
′

(!r)
[s] · t̄ −⇀r [S′] · t̄

as well as the lifting rule

u1 −⇀r U
′
1 ∀i ≥ 2, ui −⇀?

r U
′
i (Σr)∑n

i=1 ui −→r
∑n

i=1 U
′
i

where −⇀?
r is the reflexive closure of −⇀r.

STACS 2025
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From now on, we fix a semiring S. We consider N as a subset of S through the map
n 7→ 1 + . . .+ 1 (notice however that it might not be an injection), and we suppose that S
“has fractions”, i.e. for all non-null n ∈ N there is some 1

n ∈ S such that n× 1
n = 1. This is

the case of the semirings Q+ and R+ of non-negative rational (resp. real) numbers, but also
of the semiring B of boolean values (equipped with the logical “or” and “and” operations).

▶ Definition 8. Given a set X and a semiring S, a family of sums (Si)i∈I ∈ (SX )I is
summable when each x ∈ X bears a non-null coefficient in finitely many of the Si. If this is
the case then

∑
i∈I Si is a well-defined sum.

▶ Definition 9. The relation −↠r ⊂ S(!)Λr × S(!)Λr of pointwise resource reduction is
defined by saying that there is a reduction U −↠r V whenever there are summable families
(ui)i∈I ∈ ((!)Λr)I and (Vi)i∈I ∈ (N((!)Λr))I such that

U =
∑
i∈I

ai · ui, V =
∑
i∈I

ai · Vi and ∀i ∈ I, ui −→∗
r Vi.

Notice that whereas −→r reduces finite sums with integer coefficients, −↠r reduces
arbitrary sums with arbitrary coefficients.

2.3 Linear approximation and the conservativity problems
We recall the definition of the Taylor expansion of λ-terms, and the approximation theorems
it enjoys. Again, a detailed presentation can be found in [31], and in [7] for the adaption to
infinitary λ-calculi. In the latter setting, we shall start with the following unusual definition.

▶ Definition 10. The Taylor expansion is the map T : Λ001 → SΛr defined by

T (M) :=
∑
s∈Λr

T (M, s) · s,

where the coefficient T (M, s) is defined by induction on s ∈ Λr as follows:

T (x, x) := 1
T (λx.P, λx.s) := T (P, s)

T
(

(P )Q, (s)[tk1
1 , . . . , tkm

m ]
)

:= T (P, s) ×
m∏

i=1

T (Q,ti)ki

ki! , the ti’s being pairwise distinct

T (M, s) := 0 in all other cases.

Let us stress a crucial observation: whenever s ∈ |T (M)|, the value of T (M, s) does not
depend on M , hence T (M) is uniquely determined by its support [19].

Using the notation from Equation (4), we obtain the following description of the Taylor
expansion. This is usually how the definition is presented for finite λ-terms, but since it is
not a valid coinductive definition we had to provide Definition 10 in the infinitary setting.

▶ Lemma 11 ([7], Corollary 4.7). For all variables x ∈ V and terms P,Q ∈ Λ001,

T (x) = x T (λx.P ) = λx.T (P ) T ((P )Q) = (T (P ))T (Q)!,

where the operation of promotion is defined for all S ∈ SΛr by S! :=
∑

n∈N

1
n! · [S]n.

We defined a map T taking λ-terms to weighted sums of approximants. This induces an
approximation of the λ-calculus, thanks to the following theorems expressing the fact that
the reduction of the approximants can simulate the reduction of the approximated term.

▶ Theorem 12 ([31], Lemma 7.6). For M,N ∈ Λ, if M −→∗
β N then T (M) −↠r T (N).

▶ Theorem 13 ([7], Theorem 4.56). For M,N ∈ Λ001, if M −→001
β N then T (M) −↠r T (N).
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In particular, the latter theorem encompasses the “Commutation theorem” [19, 18], which
is usually presented as the cornerstone of the linear approximation of the λ-calculus: the
normal form of T (M) is equal to the Taylor expansion of the Böhm tree of M (which is a
notion of infinitary β-normal form of M), i.e. normalisation commutes with approximation1.

▶ Definition 14. Let (A,−→A) and (B,−→B) be two reduction systems. The latter is an
extension of the former if:
1. there is an injection i : A ↪→ B,
2. −→A simulates −→B through i, i.e. ∀a, a′ ∈ A, if a −→A a′ then i(a) −→B i(a′).

This extension is said to be conservative2 if ∀a, a′ ∈ A, if i(a) −→B i(a′) then a −→A a′.

Theorems 12 and 13 can be reformulated using this definition, thanks to the fact that
T : Λ001 → SΛr is injective [8, Lemma 5.18]:

Theorem 12 tells that (SΛr ,−↠r) simulates (Λ,−→∗
β),

Theorem 13 tells that (SΛr ,−↠r) simulates (Λ001,−→001
β ),

which leads us to the problems we tackle in this paper.

▷ Problem 15. Is (SΛr ,−↠r) conservative wrt. (Λ,−→∗
β)?

▷ Problem 16. Is (SΛr ,−↠r) conservative wrt. (Λ001,−→001
β )?

3 Conservativity wrt. the finite λ-calculus

In this first section, we give a positive answer to Problem 15:

▶ Theorem 17 (conservativity). For all M,N ∈ Λ, if T (M) −↠r T (N) then M −→∗
β N .

We adapt a proof technique by Kerinec and the second author [24], who used it to prove
that the algebraic λ-calculus is a conservative extension of the usual λ-calculus. Their proof
relies on a relation ⊢, called “mashup” of β-reductions, relating λ-terms (from the “small
world”) to their algebraic reducts (in the “big world”). In our setting, M ⊢ s when s is an
approximant of a reduct of M .

▶ Definition 18. The mashup relation ⊢ ⊂ Λ × Λr is defined by the following rules:

M −→∗
β x

M ⊢ x

M −→∗
β λx.P P ⊢ s

M ⊢ λx.s

M −→∗
β (P )Q P ⊢ s Q ⊢ t̄

M ⊢ (s) t̄
M ⊢ t1 . . . M ⊢ tn

M ⊢ [t1, . . . , tn]

It is extended to Λ × SΛr by the following rule:

∀i ∈ I, M ⊢ si

M ⊢
∑

i∈I ai · si

for any index set I and coefficients ai ∈ S such that the sum exists.

1 To be rigorous, Theorem 13 must first be extended to a variant of the β-reduction called β⊥-reduction.
We remain allusive here, and refer to [8, 7] for more details.

2 Notice that our definition varies from the one chosen by the Terese [30, § 1.3.21], where the conservativity
of −→B wrt. −→A is defined as a property of the conversions =A and =B they generate. We prefer
to distinguish between a conservative extension of a reduction (“in the small world, the big reduction
reduces the same people to the same people”) and a conservative extension of the corresponding
conversion.

STACS 2025
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▶ Lemma 19. For all M ∈ Λ, M ⊢ T (M).

Proof. Take any s ∈ |T (M)|. By an immediate induction on s, M ⊢ s follows from the rules
of Definition 18 (where all the assumptions −→∗

β are just taken to be equalities). ◀

▶ Lemma 20. For all M,N ∈ Λ and S ∈ SΛr , if M −→∗
β N and N ⊢ S then M ⊢ S.

Proof. Take any s ∈ |S|, then N ⊢ s. By an immediate induction on s, M ⊢ s follows from
the rules of Definition 18 (where the assumptions M −→∗

β . . . follow from the corresponding
M −→∗

β N −→∗
β . . . ). ◀

▶ Lemma 21. For all M,N ∈ Λ, x ∈ V, s ∈ Λr and t̄ ∈ !Λr, if M ⊢ s and N ⊢ t̄ then
∀s′ ∈

∣∣s⟨t̄/x⟩
∣∣ , M [N/x] ⊢ s′.

Proof. Assume M and N are given and show the following equivalent result by induction on
s: if M ⊢ s then for all t̄ such that N ⊢ t̄ and for all s′ ∈

∣∣s⟨t̄/x⟩
∣∣, M [N/x] ⊢ s′. ◀

▶ Lemma 22. For all M ∈ Λ and S,T ∈ SΛr , if M ⊢ S and S −↠r T then M ⊢ T.

Proof. Let us first show that for all M ∈ Λ and s ∈ Λr and T ∈ N(Λr), if M ⊢ s −⇀r T then
∀t ∈ |T |, M ⊢ t. We do so by induction on s −⇀r T . When s = (λx.u) v̄ is a redex, there
exists a derivation:

M −→∗
β (P )Q

P −→∗
β λx.P

′ P ′ ⊢ u

P ⊢ λx.u Q ⊢ v̄

M ⊢ (λx.u) v̄

By Lemma 21 with P ′ ⊢ u, Q ⊢ v̄, for all t ∈ |u⟨v̄/x⟩|, we obtain P ′[Q/x] ⊢ t. Finally, since
M −→∗

β (λx.P ′)Q −→β P
′[Q/x], we concude by Lemma 20. The other cases of the induction

follow immediately by lifting to the context.
As a consequence, we can easily deduce the following steps:
if M ⊢ s −⇀r T then M ⊢ T , for all M ∈ Λ, s ∈ Λr and T ∈ N(Λr),
if M ⊢ S −→r T then M ⊢ T , for all M ∈ Λ and S, T ∈ N(Λr),
if M ⊢ S −→∗

r T then M ⊢ T , for all M ∈ Λ and S, T ∈ N(Λr),
which leads to the result. ◀

Before we state the last lemma of the proof, recall that there is a canonical injection
⌊−⌋r : Λ → Λr defined by:

⌊x⌋r := x ⌊λx.P ⌋r := λx.⌊P ⌋r ⌊(P )Q⌋r := (⌊P ⌋r) [⌊Q⌋r]

and such that for all N ∈ Λ, ⌊N⌋r ∈ |T (N)|.

▶ Lemma 23. For all M,N ∈ Λ, if M ⊢ T (N) then M −→∗
β N .

Proof. If M ⊢ T (N), then in particular M ⊢ ⌊N⌋r. We proceed by induction on N :

If N = x, then M ⊢ x so M −→∗
β x by definition.

If N = λx.P ′, then M ⊢ λx.⌊P ′⌋r, i.e. there is a P ∈ Λ such that M −→∗
β λx.P and

P ⊢ ⌊P ′⌋r. By induction, P −→∗
β P

′, thus M −→∗
β λx.P

′ = N .
If N = (P ′)Q′, then M ⊢ (⌊P ′⌋r) [⌊Q′⌋r] i.e. there are P,Q ∈ Λ such that M −→∗

β (P )Q,
P ⊢ ⌊P ′⌋r and Q ⊢ [⌊Q′⌋r]. By induction, P −→∗

β P ′ and Q −→∗
β Q′, thus M −→∗

β

(P ′)Q′ = N . ◀

Proof of Theorem 17. Suppose that T (M) −↠r T (N). By Lemma 19 we obtain M ⊢
T (M), hence by Lemma 22 M ⊢ T (N). We can conlude with Lemma 23. ◀
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4 Non-conservativity wrt. the infinitary λ-calculus

The previous theorem relied on the excellent properties of the Taylor expansion of finite
λ-terms: a single (well-chosen) term ⌊M⌋r ∈ |T (M)| is enough to characterise M , and a single
(again, well-chosen) sequence of resource reducts of some s ∈ |T (M)| suffices to characterise
any sequence M −→∗

β N . These properties are not true any more when considering more
complicated settings, like the 001-infinitary λ-calculus. This does not only make the “mashup”
proof technique fail, but also enables us to give a negative answer to Problem 16.

4.1 Failure of the “mashup” technique
Let us first describe where we hit an obstacle if we try to reproduce the proof we have given
in the finite setting, which will make clearer the way we later build a counterexample.

First, it is not obvious what the mashup relation should be: we could just use the relation
⊢ defined on Λ001 × Λr by the same set of rules as in Definition 18, or define an infinitary
mashup ⊢001 by the rules

M −→001
β x

M ⊢001 x

M −→001
β λx.P P ⊢001 s

M ⊢001 λx.s

M −→001
β (P )Q P ⊢001 s Q ⊢001 t̄

M ⊢001 (s) t̄
M ⊢001 t1 . . . M ⊢001 tn

M ⊢001 [t1, . . . , tn]

and extend it to SΛr accordingly. In fact, this happens to define the same relation.

▶ Lemma 24. For all M ∈ Λ001 and s ∈ Λr, M ⊢001 s iff M ⊢ s.

Proof. The inclusion ⊢ ⊆ ⊢001 is immediate. Let us show the converse. First, observe that
the proof of Lemma 20 can be easily extended in order to show that for all M,N ∈ Λ001 and
s ∈ Λr, if M −→001

β N ⊢001 s then M ⊢001 s. Then we proceed by induction on s.
If M ⊢001 x, then M −→001

β x, i.e. M −→∗
β x, and finally M ⊢ x.

If M ⊢001 λx.u, then there is a derivation:

M −→∗
β λx.P P −→001

β P ′

M −→001
β λx.P ′ P ′ ⊢001 u

M ⊢001 λx.u

Since P −→001
β P ′ ⊢001 u, we have P ⊢001 u, and by induction on u we obtain P ⊢ u.

With M −→∗
β λx.P , this yields M ⊢ λx.u.

The case of M ⊢001 (u) v̄ is similar. ◀

As a consequence, Lemmas 19–22 can be easily extended to −→001
β and ⊢001. We have

already explained how the proof of this can be done for Lemma 20; for the other ones, one
just needs to observe that the proofs are all by induction on resource terms or on some
inductively defined relation, hence replacing −→∗

β with −→001
β does not change anything

(and neither does replacing ⊢ with ⊢001, thanks to Lemma 24).
The failure of the infinitary “mashup” proof occurs in the extension of Lemma 23. Indeed,

this proof crucially relies on the existence of an injection ⌊−⌋r : Λ → Λr, whereas for Λ001

there is only the counterpart ⌊−⌋r,− : Λ001 × N → Λr defined by
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⌊x⌋r,d := x ⌊(P )Q⌋r,0 := (⌊P ⌋r,0) 1
⌊λx.P ⌋r,d := λx.⌊P ⌋r,d ⌊(P )Q⌋r,d+1 := (⌊P ⌋r,d+1) [⌊Q⌋r,d] .

Now, if we suppose that M ⊢ T (N) and we want to show that M −→001
β N , we cannot rely

any more on the fact that M ⊢ ⌊N⌋r, but only on the fact that ∀d ∈ N, M ⊢ ⌊N⌋r,d. This
makes the induction fail. For instance, for the case where N is an abstraction λx.P ′, we
obtain a d-indexed sequence of derivations

M −→∗
β λx.Pd Pd ⊢ ⌊P ′⌋r,d

M ⊢ ⌊N⌋r,d = ⌊λx.P ′⌋r,d

but nothing tells us that the terms Pd and reductions M −→∗
β λx.Pd are coherent! This

failure is what enables us to design a counterexample.

4.2 The Accordion
In this section, we define 001-infinitary λ-terms A and Ā and show that they form a counterex-
ample not only to the 001-infinitary counterpart of Lemma 23, but also to the conservativity
property in the infinitary setting.

▶ Notation 25. We denote as follows the usual representation of booleans, an “applicator”
⟨−⟩, and the Church encodings of integers and of the successor function:

T := λx.λy.x F := λx.λy.y ⟨M⟩ := λb.(b)M
n := λf.λx.(f)nx Succ := λn.λf.λx.(n) f (f)x

▶ Definition 26. The Accordion λ-term is defined as A := (P)0, where:

P := (Y)λϕ.λn. (⟨T⟩) ((n)⟨F⟩) Qϕ,n Qϕ,n := (Y)λψ.λb. ((b)(ϕ)(Succ)n)ψ.

We also define Ā := (⟨T⟩)(⟨F⟩)ω.

Let us show how this term behaves (and why we named it the Accordion). There exist
terms P′′ (which is nothing but the first head reduct of P) and Qn (for all n ∈ N) such that
the following reductions hold:

A −→∗
β @

P′′ 0

−→∗
β @

⟨T⟩ Q0

−→∗
β @

P′′ 1

−→∗
β @

⟨T⟩ @

⟨F⟩ Q1

−→∗
β @

P′′ n

−→∗
β @

⟨T⟩ @

⟨F⟩ @

⟨F⟩
@

⟨F⟩ Qn.

This means that:
1. for any d ∈ N, A reduces to terms Ad that are similar to Ā up to depth d (and, as a

consequence, any finite approximant of Ā is a reduct of approximants of A);
2. but this is not a valid infinitary reduction because we need to reduce a redex at depth 0

to obtain Ad −→∗
β Ad+1, thus the stratification property (Theorem 4) is violated: the

depth of the reduced redexes does not tend to the infinity.
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Our definition of A and Ā was entirely guided by this specification. More concretely:
when fed with a Church integer argument n, the term P′′ produces a term mimicking Ā
up to the n-th copy of ⟨F⟩, the latter being applied to Qn = QP′′,n;
the applicator ⟨−⟩ enforces a kind of call-by-value discipline, giving control to the argument
(observe that (⟨M⟩)N −→β (N)M);
QP′′,n eats up boolean arguments F, until it is fed with a boolean T (marking the root of
the tree), at which point it restores P′′, applied to the next Church integer.

In particular, this dynamics (A is “stretched” and “compressed” over and over) justifies the
name “Accordion”.

To be a counterexample to conservativity, A actually has to satisfy a stronger property:
all reduction paths starting from A should have this “accordion” behaviour. A thorough
analysis of the dynamics will allow us to establish this, and obtain:

▶ Theorem 27. (i) T (A) −↠r T (Ā), but (ii) there is no reduction A −→001
β Ā.

This theorem improves on the results from the first author’s PhD thesis [7, Theorem 5.12],
where only the qualitative setting was treated (i.e. when S = B). Non-conservativity in the
general case was presented as Conjecture 5.15, which is thereby solved.

4.3 Proof of the counterexample
In this (highly technical) section, we prove Theorem 27: a reader already satisfied with the
above intuitions might prefer to skip it, and jump to Section 5. The key ingredient in the
proof are the following well-known notions as well as the associated factorization property,
due to Mitschke [28, cor. 5].

▶ Definition 28. A λ-term M ∈ Λ001 has two possible head forms:
either the form λx1 . . . λxm.(y)M1 . . .Mn, called head normal form (hnf),
or the form λx1 . . . λxm.(λx.P )QM1 . . .Mn, where (λx.P )Q is called the head redex.

As a consequence, a β-reduction M −→β N reduces:
either a head redex: it is a head reduction, denoted by M −→h N ,
or any other redex: it is an internal reduction, denoted by M −→i N .

▶ Lemma 29 (head-internal decomposition). For all M,N ∈ Λ such that M −→∗
β N , there

exists an M ′ ∈ Λ such that M −→∗
h M

′ −→∗
i N .

Let us also introduce some abbreviations3:

P′ := λϕ.λn. (⟨T⟩) ((n)⟨F⟩) Qϕ,n P′′ := (λx. (P′)(x)x) λx.(P′)(x)x Qn := QP′′,(Succ)n0

Q′
n := λψ.λb. ((b)(P′′)(Succ)n+10)ψ Q′′

n := (λx.(Q′
n)(x)x)λx.(Q′

n)(x)x.

Using these definitions, Figure 1 describes the head reduction path starting from A.

Proof of Theorem 27, item (i). For all d ∈ N, we define:
Ād := (⟨T⟩)(⟨F⟩)dQn. As a consequence of the reduction described in Figure 1, in particular
its step 7, there are reductions A −→∗

β Ā0 −→∗
β Ā1 −→∗

β Ā2 −→∗
β . . . By Theorem 12, we

obtain

T (A) −↠r T (Ā0) −↠r T (Ā1) −↠r T (Ā2) −↠r . . . (29)

3 Notice that the Qn we define here are slightly different from those in the example reduction described
above, but they play the same role.
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The first step is:

A = ( (Y)P′ )0 −→h (P′′)0

Then, for each n ∈ N, we do the following head
reduction steps:

( P′′ )(Succ)n0

−→h

(
(P′)P′′

)
(Succ)n0 (5)

−→h

(
λn. (⟨T⟩) ((n)⟨F⟩) QP′′,n

)
(Succ)n0 (6)

−→h (⟨T⟩) (((Succ)n0) ⟨F⟩) Qn (7)

−→h (Succ)n0 ⟨F⟩ Qn T (8)

−→h

(
λf.λx.(((Succ)n−10)f)(f)x

)
⟨F⟩ Qn T (9)

−→h

(
λx.(((Succ)n−10)⟨F⟩)(⟨F⟩)x

)
Qn T (10)

−→h

(
(Succ)n−10 ⟨F⟩ (⟨F⟩)Qn

)
T (11)

and by repeating steps (9) to (11):

−→∗
h

(
(0)⟨F⟩ (⟨F⟩)nQn

)
T (12)

−→h

(
(λx.x) (⟨F⟩)nQn

)
T (13)

−→h

(
(λb.(b)F) (⟨F⟩)n−1Qn

)
T (14)

−→h

(
(⟨F⟩)n−1Qn

)
F T (15)

and by repeating step (15):

−→∗
h

(
(Y)Q′

n

)
F . . . F︸︷︷︸
n times

T (16)

−→h ( Q′′
n ) F . . . F T (17)

−→h

(
(Q′

n)Q′′
n

)
F . . . F T (18)

−→h

(
λb. ((b)(P′′)(Succ)n+10) Q′′

n

)
F . . . F T (19)

−→h

((
(λx.λy.y)(P′′)(Succ)n+10

)
Q′′

n

)
F . . . F︸︷︷︸

n−1
times

T (20)

−→h

(
(λy.y)Q′′

n

)
F . . . F T (21)

−→h ( Q′′
n ) F . . . F T (22)

and by repeating steps (18) to (22):

−→∗
h ( Q′′

n ) T (23)

−→h

(
(Q′

n)Q′′
n

)
T (24)

−→h

(
λb. ((b)(P′′)(Succ)n+10) Q′′

n

)
T (25)

−→h

(
(λx.λy.x)(P′′)(Succ)n+10

)
Q′′

n (26)

−→h

(
λy.(P′′) (Succ)n+10

)
Q′′

n (27)

−→h (P′′) (Succ)n+10 (28)

which brings us back to step (5).

Figure 1 Exhaustive head reduction of the Accordion. We highlight the fired head redexes.

T ′
d (Ā) := T ((⟨T⟩)(⟨F⟩)d⊥), where ⊥ is a constant such that T (⊥) := 0 (this is just a trick

to “cut” the Taylor expansion at some point), as well as T0(Ā) := T ′
0 (Ā)

Td+1(Ā) := T ′
d+1(Ā) − T ′

d (Ā) =
∑

s∈|T ′
d+1(Ā)|\|T ′

d
(Ā)| T (s, Ā) · s.

By construction (using the observation that the coefficient of s ∈ |T (M)| does not depend
on M), we obtain:

T (Ād) = Td(Ā) + Sd, for some Sd such that |Td(Ā)| ∩ |Sd| = ∅ (30)

T (Ā) =
∑
n∈N

Td(Ā) (31)

Before we use this material to prove the theorem, we need to make the following crucial
observation:

∀s ∈ Td(Ā), ∀k > 0, ∄t ∈ Td+k(Ā), s −→∗
r t+ T (32)

for some T ∈ N(Λr). This is due to the fact that terms in T (Ā) cannot see their (applicative)
depth increase through resource reduction.

Now we start with Equation (29), having T (A) −↠r T (Ā0) −↠r T (Ā1). Thanks to
Equation (30), this can be rewritten as T (A) −↠r T0(Ā) + S0 −↠r T1(Ā) + S1. Equation (32)
allows to say that only S0 contributes to T1(Ā) in the second reduction. If we leave T0(Ā)
untouched and only reduce S0, we obtain T0(Ā) + S0 −↠r T0(Ā) + T1(Ā) + S′

1 for some S′
1

that is part of S1. If we keep applying Equations (30) and (32) and we iterate the process,
we obtain:
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T (A) −↠r T0(Ā) + S0 −↠r T0(Ā) + T1(Ā) + S′
1 −↠r . . . −↠r

N∑
d=0

Td(Ā) + S′
N (33)

for all N ∈ N. For each s ∈ |T (A)|, this can be turned into4:

s −→∗
r Ts,0 + Ss,0 −→∗

r Ts,0 + Ts,1 + Ss,1 −→∗
r . . . −→∗

r

N∑
d=0

Ts,d + Ss,N (34)

for some Ts,d, Ss,d ∈ N(Λr) satisfying Td(Ā) =
∑

s∈Λr
T (s, A) · Ts,d. In fact:

There are only finitely many d’s such that Ts,d ̸= 0 (this is due to the fact that a resource
terms has only finitely many reducts [31, Lemma 3.13]).
A has no head normal form as demonstrated in Figure 1, which entails that T (A) −↠r 0
[8, Theorem 5.6]. Since S′

d only contains reducts of terms in T (A), this means that we
can reduce S′

N −→∗
r 0.

As a consequence, s −→∗
r

∑
d∈N Ts,d and we can conclude:

T (A) =
∑
s∈Λr

T (s, A) · s −↠r
∑
s∈Λr

T (s, A) ·
∑
d∈N

Ts,d =
∑
d∈N

Td(Ā) = T (Ā)

by Equation (31). ◀

Proof of Theorem 27, item (ii). We suppose that there is a reduction A −→001
β Ā and we

show that this leads to a contradiction. By Theorem 4 and Lemma 29, there exists respectively
a sequence of terms Ad ∈ Λ and a term A′

0 ∈ Λ such that there are reductions

A −→∗
h A′

0 −→∗
i A1 −→∗

β≥1 Ad −→001
β≥d Ā.

A′
0 and Ā must have the same head form, i.e. there must be M,N ∈ Λ such that A′

0 = (λb.M)N .
The exhaustive description of the head reducts of A detailed in Figure 1 allows to observe
that this only happens in four cases (corresponding to steps 6, 7, 25 and 27 in Figure 1):

4 This inference might not be possible for an arbitrary reduction sequence, because the obtained reduc-
tions (34) occur in N(Λr) (with integer coefficients only) while the original reductions (33) occur in SΛr

(possibly with rational coefficients): if for some s ∈ S′
d the original reduction S′

d −↠r Td+1(Ā) + S′
d+1

consists in doing s = 1
3 s + 2

3 s −↠r
1
3 S′ + 2

3 S′′, we will not be able to retrieve a reduction s −→∗
r . . . of

the desired shape.
But the reductions in SΛr we consider are not arbitrary: Equation (29) was obtained by simulating a
sequence of β-reductions via Theorem 12, so that we can apply uniformity. With the notations to be
introduced in Section 5, using Corollary 34 we obtain reductions S′

d −→⌢ ∗
r Td+1(Ā) + S′

d+1 instead of
S′

d −↠r Td+1(Ā) + S′
d+1. These reductions can only be derived as follows:

(ss,d,i) s∈Λr
1≤i≤ns,d

−⇀⌢ ∗
r (T ′

s,d,i + S′
s,d,i) s∈Λr

1≤i≤ns,d

∑
s∈Λr

T (s, A) ·
ns,d∑
i=1

ss,d,i︸ ︷︷ ︸
Ss,d︸ ︷︷ ︸

S′
d

−→⌢ ∗
r

∑
s∈Λr

T (s, A) ·


ns,d∑
i=1

Ts,d+1,i︸ ︷︷ ︸
Ts,d+1

+
ns,d∑
i=1

Ss,d+1,i︸ ︷︷ ︸
Ss,d+1


︸ ︷︷ ︸

Td+1(Ā)+S′
d+1

the premise of which allows to build a reduction Ss,d −→∗
r Ts,d+1 + Ss,d+1.
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1. A′
0 = (λn. (⟨T⟩) ((n)⟨F⟩) QP′′,n) (Succ)n0,

2. A′
0 = (⟨T⟩) (((Succ)n0) ⟨F⟩) Qn,

3. A′
0 =

(
λb. ((b)(P′′)(Succ)n+10) Q′′

n

)
T,

4. A′
0 =

(
λy.(P′′) (Succ)n+10

)
Q′′

n,
for some n ∈ N (in the following, n denotes this specific integer appearing in A′

0). In particular,
for one of these possible values of A′

0 there must be a reduction

A′
0 −→∗

i An+4 −→001
β≥n+4 Ā.

Since An+4 and Ā are identical up to applicative depth n + 3, we can write An+4 =
(⟨T⟩)(⟨F⟩)n+1M for some M ∈ Λ such that M −→001

β (⟨F⟩)ω (we need to go up to depth n+ 3
since ⟨T⟩ and ⟨F⟩ are themselves of applicative depth 2). Finally, there must be a reduction

A′
0 −→∗

i (⟨T⟩)(⟨F⟩)n+1M.

For each of the possible cases for A′
0, let us show that this is impossible. The easy cases are:

Case 1, step (6) Such a reduction would imply that (Succ)n0 −→∗
β (⟨F⟩)n+1M . However

(Succ)n0 −→∗
β n, which is in β-normal form, while (⟨F⟩)n+1M has no normal form. We

conclude by confluence of the finite λ-calculus.
Case 3, step (25) Immediate because T is in normal form.
Case 4, step (27) Such a reduction would imply that λy.(P′′)(Succ)n+10 −→∗

β ⟨T⟩ =
λy.(y)T, and therefore that (P′′)(Succ)n+10 has a hnf (y)T. This is impossible, as
detailed in the exhaustive head reduction of A in Figure 1.

The remaining case concerns the reduct (⟨T⟩) (((Succ)n0) ⟨F⟩) Qn. It is the only “non-
degenerate” one, in the sense that it is where the accordion-like behaviour of A is illustrated:
the sub-term ⟨T⟩ here is really “the same” as the one appearing at the root of Ā but we need
to reduce this sub-term at some point (i.e. to “compress” the Accordion). Thus there can be
no 001-infinitary reduction towards Ā. The formal proof of this case, i.e. of the impossibility
of (Succ)n0⟨F⟩Qn −→∗

β (⟨F⟩)n+1M , is given by Lemma 31 below. ◀

▶ Lemma 30. For all k ∈ N, n ∈ N and M ∈ Λ, there is no reduction

(⟨F⟩)k Qn −→∗
β (⟨F⟩)k+1M.

Proof. We proceed by induction on k. First, take k = 0 and suppose there is a reduction
Qn −→∗

β (⟨F⟩)M . By Lemma 29, there are R,R′ ∈ Λ such that

Qn −→∗
h (λb.R)R′ −→∗

i (⟨F⟩)M = (λb.(b)F)M.

An exhaustive head reduction of Qn gives the possible values of R and R′:

Qn = (Y)Q′
n

−→h (λx.(Q′
n)(x)x) λx.(Q′

n)(x)x
−→h

(
λψ.λb. ((b)(P′′)(Succ)n+10)ψ

)
Q′′

n

−→h λb. ((b)(P′′)(Succ)n+10) Q′′
n,

the last reduct being in hnf, which leaves only the first three possibilities. In any of those
three cases, R −→∗

β (b)F (modulo renaming of b by α-conversion) is impossible by immediate
arguments, so that (λb.R)R′ −→∗

i (⟨F⟩)M cannot hold.
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If k ≥ 1, let us again suppose that there is a reduction (⟨F⟩)k Qn −→∗
β (⟨F⟩)k+1M .

Lemma 29 states that there are R,R′ ∈ Λ such that

(⟨F⟩)k Qn −→∗
h (λb.R)R′ −→∗

i (λb.(b)F)(⟨F⟩)kM.

An exhaustive head reduction of (⟨F⟩)k Qn gives the possible values of R and R′ (we write
only the reduction steps corresponding to the well-formed reducts – see the details in the
detailed head reduction of A, steps (15) and following):

(⟨F⟩)k Qn = (λb.(b)F) (⟨F⟩)k−1 Qn

−→∗
h

(
λb.

(
(b)(P′′)(Succ)n+10

)
Q′′

n

)
F

−→∗
h (λy.y)Q′′

n

−→h Q′′
n

In the first case, a reduction (λb.(b)F) (⟨F⟩)k−1 Qn −→∗
i (λb.(b)F)(⟨F⟩)kM is impossible because

it would imply that (⟨F⟩)k−1 Qn −→∗
β (⟨F⟩)kM , which is impossible by induction. The second

and third cases are impossible by immediate arguments; the fourth case has already been
explored (Q′′

n is exactly the term from the second line of the reduction of Qn above). ◀

▶ Lemma 31. For all n ∈ N, k ∈ [0, n] and M ∈ Λ, there is no reduction:

(Succ)n−k 0 ⟨F⟩ (⟨F⟩)kQn −→∗
β (⟨F⟩)n+1M.

Proof. We proceed by induction on n− k. The base case is k = n: if there is a reduction
(0) ⟨F⟩ (⟨F⟩)nQn −→∗

β (⟨F⟩)n+1M , then by Lemma 29 there are terms R,R′ ∈ Λ such that

(0) ⟨F⟩ (⟨F⟩)nQn −→∗
h (λb.R)R′ −→∗

i (λb.(b)F)(⟨F⟩)nM.

Observe that

(0) ⟨F⟩ (⟨F⟩)nQn −→h (λx.x) (⟨F⟩)nQn −→h (⟨F⟩)nQn

hence, because λx.x is in β-normal form and by Lemma 30, we reach a contradiction.

If k < n and there is a reduction (Succ)n−k 0 ⟨F⟩ (⟨F⟩)kQn −→∗
β (⟨F⟩)n+1M , then again

by Lemma 29 there are terms R,R′ ∈ Λ such that

(Succ)n−k 0 ⟨F⟩ (⟨F⟩)kQn −→∗
h (λb.R)R′ −→∗

i (λb.(b)F)(⟨F⟩)nM.

Observe that

(Succ)n−k 0 ⟨F⟩ (⟨F⟩)kQn −→h

(
λf.λx.(Succ)n−k−1 0 f (f)x

)
⟨F⟩ (⟨F⟩)kQn

−→h

(
λx.(Succ)n−k−1 0 ⟨F⟩ (⟨F⟩)x

)
(⟨F⟩)kQn

−→h (Succ)n−k−1 0 ⟨F⟩ (⟨F⟩)k+1Qn

The first reduct does not have the expected head form. In the second case, (λb.R)R′ −→∗
i

(λb.(b)F)(⟨F⟩)nM would imply that (⟨F⟩)kQn −→∗
β (⟨F⟩)nM , which is impossible by Lemma 30

because k < n. In the third case, apply the induction hypothesis. ◀
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5 The missing ingredient: Uniformity

The fact that the simulation of −→001
β by −↠r via the Taylor expansion is not conservative

confirms that the pointwise reduction −↠r, even if needed in order to express the pointwise
normal form of a sum through the resource reduction, weakens the dynamics of the β-reduction
by allowing to reduce resource approximants along reductions paths that do not correspond
to an actual reduction of the approximated term. As already underlined by Ehrhard and
Regnier in their seminal work [19], uniformity is what gives the linear approximation all its
robustness; this will also be the case for our study.

▶ Definition 32. The relation ⌢⌣ ⊂ (!)Λr × (!)Λr of coherence is defined by the rules:

x ⌢⌣ x

s ⌢⌣ s′

λx.s ⌢⌣ λx.s′
s ⌢⌣ s′ t̄ ⌢⌣ t̄′

(s) t̄ ⌢⌣ (s) t̄′

∀i ∈ {1, . . . ,m}, ∀j ∈ {1, . . . , n}, ti ⌢⌣ t′j
(m, n ∈ N)

[t1, . . . , tm] ⌢⌣ [t′1, . . . , t′n]

For S,T ∈ S(!)Λr , we write S ⌢⌣ T whenever ∀s ∈ |S| , ∀t ∈ |T| , s ⌢⌣ t.

▶ Definition 33. Given an index set I and a depth d ∈ N, we define a relation −⇀⌢ r≥d ⊂
((!)Λr)I × (N((!)Λr))I by the following rules:

∀i, j, si
⌢⌣ sj ∀i, j, t̄i ⌢⌣ t̄j

((λx.si) t̄i)i∈I −⇀⌢ r≥0 (si⟨t̄i/x⟩)i∈I

(si)i∈I −⇀⌢ r≥d (S′
i)i∈I

(λx.si)i∈I −⇀⌢ r≥d (λx.S′
i)i∈I

(si)i∈I −⇀⌢ r≥d (S′
i)i∈I ∀i, j, t̄i ⌢⌣ t̄j

((si) t̄i)i∈I −⇀⌢ r≥d ((S′
i) t̄i)i∈I

(ti,j)i∈I
1≤j≤ki

−⇀⌢ r≥d (T ′
i,j)i∈I

1≤j≤ki

([ti,1, . . . , ti,ki
])i∈I −⇀⌢ r≥d ([T ′

i,1, . . . , T
′
i,ki

])i∈I

∀i, j, si
⌢⌣ sj (t̄i)i∈I −⇀⌢ r≥0 (T̄ ′

i )i∈I

((si) t̄i)i∈I −⇀⌢ r≥0 ((si) T̄ ′
i )i∈I

∀i, j, si
⌢⌣ sj (t̄i)i∈I −⇀⌢ r≥d (T̄ ′

i )i∈I

((si) t̄i)i∈I −⇀⌢ r≥d+1 ((si) T̄ ′
i )i∈I

The relation −→⌢ r≥d ⊂ S(!)Λr × S(!)Λr of uniform resource reduction at minimum
depth d is defined by

(ui)i∈I −⇀⌢ r≥d (U ′
i)i∈I∑

i∈I aiui −→⌢ r≥d

∑
i∈I aiU

′
i .

We denote −⇀⌢ r≥0 and −→⌢ r≥0 simply by −⇀⌢ r and −→⌢ r, and call the latter uniform
resource reduction.

The intuition behind −→⌢ r is that:
it can only reduce “uniform” sums, i.e. sums containing resource terms that all have the
same shape (formally, sums S such that S ⌢⌣ S),
each reduction step of a sum is a “bundle” of resource reduction steps occurring at the
same address in the elements of the sum (−⇀⌢ r is an inductive reformulation of Midez’
Γ-reduction [27]).
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This allows to capture only the reductions of some T (M) that correspond to a β-reduction
of M , as we will formally show. In fact, all the pointwise reductions −↠r occurring in the
proof of Theorem 12 are already instances of the particular case −→⌢ ∗

r , hence the following
reformulation.

▶ Corollary 34 (of Theorem 12; [7], Lemma 4.50). For all M,N ∈ Λ, if M −→β≥d N then
T (M) −→⌢ r≥d T (N).

Let us show how this property can be used to build a conservative simulation of −→001
β .

The simulating reduction needs to be:
a restriction of −↠r, because we want to eliminate the non-uniform reductions that
cannot be turned into actual β-reductions,
an extension of −→⌢ ∗

r , because we want to be able to simulate not only finite, but also
infinitary reductions.

The way we proceed is guided by the stratification property (Theorem 4).

▶ Notation 35. The (applicative) depth of a resource term is the integer defined by

depth(x) := 0 depth((s) t̄) := max
(
depth(s), 1 + depth(t̄)

)
depth(λx.s) := depth(s) depth([t1, . . . , tn]) := max

1≤i≤n
depth(ti).

For all sum
∑
i∈I

ai · si ∈ SΛr and integer d ∈ N, we write
(∑

i∈I

ai · si

)
<d

:=
∑
i∈I

depth(si)<d

ai · si.

▶ Definition 36. The relation −→⌢ ∞
r ⊂ S(!)Λr × S(!)Λr of infinitary uniform resource

reduction is defined by writing U −→⌢ ∞
r V whenever there is a sequence (Ud)d∈N such that

U0 = U ∀d ∈ N, Ud −→⌢ ∗
r≥d Ud+1 ∀d ∈ N, (Ud)<d = (V)<d .

By design, −→⌢ ∞
r simulates the stratification of an infinitary β-reduction, hence the

following property.

▶ Corollary 37 (of Theorem 4 and Corollary 34). For all M,N ∈ Λ001, if M −→001
β N then

T (M) −→⌢ ∞
r T (N).

Proof. We need to define a sequence (Ud)d∈N as in Definition 36. By stratification (Theo-
rem 4), we obtain a sequence (Md)d∈N and we can define Ud := T (Md). The conclusion follows
by Corollary 34 and by the fact that wheneverM −→001

β≥d N , then (T (M))<d = (T (N))<d. ◀

As announced, this simulation enjoys a converse conservativity property.

▶ Theorem 38 (conservativity). For M,N ∈ Λ001, if T (M) −→⌢ ∞
r T (N) then M −→001

β N .

The proof of the theorem goes as follows.

▶ Lemma 39. For all M,N ∈ Λ001 and d ∈ N, if T (M) −→⌢ r≥d T (N) then M −→β≥d N .

Proof. By an immediate induction on the reduction (s)s∈|T (M)| −⇀⌢ r≥d (Ts)s∈|T (M)| induced
by T (M) −→⌢ r≥d T (N). ◀

▶ Lemma 40. For all M ∈ Λ001 and S ∈ SΛr , if T (M) −→⌢ r S then there exists an M ′ ∈ Λ001

such that S = T (M ′).

STACS 2025
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Proof. By an immediate induction on the reduction (s)s∈|T (M)| −⇀⌢ r≥d (Ts)s∈|T (M)| induced
by T (M) −→⌢ r≥d S. The base case relies on the same substitution lemma (Lemma 4.8 of
[31]) as the proof of Theorem 12. ◀

▶ Lemma 41. Consider families (ui)i∈I ∈ ((!)Λr)I and (Vi)i∈I ∈ (N((!)Λr))I such that
(ui)i∈I −⇀⌢ r (Vi)i∈I . For all i, j ∈ I, if ui = uj then Vi = Vj.

Proof. By induction on (ui)i∈I −⇀⌢ r (Vi)i∈I . ◀

In particular, this lemma allows to change the index set I when writing a reduction
(ui)i∈I −⇀⌢ r (Vi)i∈I , as soon as no ui (and corresponding Vi) is erased or created – but
duplications and erasures of duplicates are allowed.

▶ Lemma 42. For all S,T ∈ SΛr , if S! −→⌢ r T! then S −→⌢ r T.

Proof. Suppose that S! −→⌢ r T!. Thanks to Lemma 41, there is a derivation

(si) n∈N
s1,...,sn∈|S|

1≤i≤n

−⇀⌢ r (Tsi) n∈N
s1,...,sn∈|S|

1≤i≤n

([s1, . . . , sn]) n∈N
s1,...,sn∈|S|

−⇀⌢ r ([Ts1 , . . . , Tsn
]) n∈N

s1,...,sn∈|S|∑
n∈N

∑
s1,...,sn∈|S|

∏n

i=1
asi

n! · [s1, . . . , sn]

︸ ︷︷ ︸
S!

−→⌢ r
∑
n∈N

∑
s1,...,sn∈|S|

∏n

i=1
asi

n! · [Ts1 , . . . , Tsn ]

︸ ︷︷ ︸
T!

with S =
∑

s∈|S| as · s. By Lemma 41 again, the hypothesis of the derivation is equivalent to
(s)s∈|S| −⇀⌢ r (Ts)s∈|S|, hence we can derive:

(s)s∈|S| −⇀⌢ r (Ts)s∈|S|

S −→⌢ r
∑

s∈|S| as · Ts.

To see that T =
∑

s∈|S| as · Ts, observe that

the coefficient of t in T
= the coefficient of [t] in T!

= the coefficient of [t] in
∑
n∈N

∑
s1,...,sn∈|S|

∏n

i=1
asi

n! · [Ts1 , . . . , Tsn
]

=
∑

s∈|S|

as × the coefficient of t in Ts

= the coefficient of t in
∑

s∈|S|

as · Ts,

which concludes the proof. ◀

Proof of theorem 38. Suppose that there is a sequence (Sd)d∈N such that

S0 = T (M) ∀d ∈ N, Sd −→⌢ ∗
r≥d Sd+1 ∀d ∈ N, (Sd)<d = (T (N))<d .

By Lemma 40 there is a sequence of terms (Md)d∈N such that ∀d ∈ N, Sd = T (Md). We can
take M0 = M , and our hypotheses yield

∀d ∈ N, T (Md) −→⌢ ∗
r≥d T (Md+1) (35)

∀d ∈ N, (T (Md))<d = (T (N))<d . (36)
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For any sequence (Md)d∈N such that Equations (35) and (36) hold, we build a reduction
M0 −→001

β N by nested induction and coinduction on N .

Case N = x. (T (M1))<1 = (T (N))<1 = x hence also T (M1) = x. As a consequence,
T (M0) −→⌢ r x so by Lemma 39 M0 −→∗

β x, which leads to the conclusion.
Case N = λx.P ′. For all d ≥ 1, (T (Md))<d = (T (N))<d = λx. (T (P ′))<d hence there is a
term Pd ∈ Λ001 such that Md = λx.Pd. We also define P0 := P1, so that M0 −→∗

β λx.P0
by Equation (35) and Lemma 39.
The sequence (Pd)d∈N satisfies Equations (35) and (36) wrt. P ′, hence by induction we
can build a reduction P0 −→001

β P ′. We conclude with the rule (λ001
β ) from Definition 3.

Case N = (P ′)Q′. For all d ≥ 1, (T (Md))<d = (T (N))<d =
(
(T (P ′))<d

) (
T (Q′)!)

<d−1
hence there are terms Pd, Qd ∈ Λ001 such that Md = (Pd)Qd. We also define P0 := P1,
so that M0 −→∗

β (P0)Q1 by Equation (35) and Lemma 39.
By Equation (35), for all d ≥ 1 there are reductions

T (Pd) −→⌢ ∗
r≥d T (Pd+1) and T (Qd)! −→⌢ ∗

r≥d−1 T (Qd+1)!.

From the first reduction we deduce that the sequence (Pd)d∈N satisfies Equations (35)
and (36) wrt. P ′, hence by induction we can build a reduction P0 −→001

β P ′. From
the second reduction, by Lemma 42 we deduce that the sequence (Qd+1)d∈N satisfies
Equations (35) and (36) wrt. Q′: we apply rule (@001

β ) and proceed coinductively, through
the guard (▷), to establish Q1 −→001

β Q′. ◀

In particular, observe that there is no reduction A −→⌢ ∞
r Ā: in the sequence of reductions

given in Equation (29) in the proof of Theorem 27, item 1, all steps T (Ad) −↠r T (Ad+1) can
be turned into T (Ad) −→⌢ ∗

r T (Ad+1) (as explained in Footnote 4), but not into T (Ad) −→⌢ r≥d

T (Ad+1) because there is always a reduction step occurring at depth 0.

We finally obtained a conservative approximation of the 001-infinitary λ-calculus. As a
conclusive remark, let us mention that we did not take any ⊥-reductions into account, though
they are needed if one wants to simulate the reductions M −→001

β⊥ BT(M) corresponding to
Ehrhard and Regnier’s commutation theorem. These reductions could be taken into account
by adding the following rule:

∀i, j, ui
⌢⌣ uj ∀i, ui −→∗

r 0
(ui)i∈I −⇀⌢ r⊥ (0)i∈I

to Definition 33. One would then be able to provide a conservative simulation of −→001
β⊥ by

−→⌢ ∞
r⊥.
The question naturally arises whether this approach is transferrable to the richer λ-

calculi already endowed with a linear approximation (as listed in the introduction). This
remains unclear, since most of these settings are non-uniform, i.e. it is not true any more
that T (M) ⌢⌣ T (M) in general. Investigating how existing techniques used to tame non-
uniformity, e.g. in [31], can be exploited to address the conservativity problem in richer
settings, remains an open line of research.
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