
Noisy (Binary) Searching: Simple, Fast and Correct
Dariusz Dereniowski #

Faculty of Electronics, Telecommunications and Informatics,
Gdańsk University of Technology, Poland

Aleksander Łukasiewicz #

Institute of Computer Science, University of Wrocław, Poland
Computer Science Institute of Charles University, Prague, Czech Republic

Przemysław Uznański #

Institute of Computer Science, University of Wrocław, Poland

Abstract
This work considers the problem of the noisy binary search in a sorted array. The noise is modeled
by a parameter p that dictates that a comparison can be incorrect with probability p, independently
of other queries. We state two types of upper bounds on the number of queries: the worst-case
and expected query complexity scenarios. The bounds improve the ones known to date, i.e., our
algorithms require fewer queries. Additionally, they have simpler statements, and work for the full
range of parameters. All query complexities for the expected query scenarios are tight up to lower
order terms. For the problem where the target prior is uniform over all possible inputs, we provide
an algorithm with expected complexity upperbounded by (log2 n + log2 δ−1 + 3)/I(p), where n is
the domain size, 0 ≤ p < 1/2 is the noise ratio, and δ > 0 is the failure probability, and I(p) is
the information gain function. As a side-effect, we close some correctness issues regarding previous
work. Also, en route, we obtain new and improved query complexities for the search generalized to
arbitrary graphs. This paper continues and improves the lines of research of Burnashev–Zigangirov
[Prob. Per. Informatsii, 1974], Ben-Or and Hassidim [FOCS 2008], Gu and Xu [STOC 2023], and
Emamjomeh-Zadeh et al. [STOC 2016], Dereniowski et al. [SOSA@SODA 2019].

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Graph Algorithms, Noisy Binary Search, Query Complexity, Reliability

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.29

Related Version Full Version: https://arxiv.org/abs/2107.05753

Funding Dariusz Dereniowski: Partially supported by National Science Centre (Poland) grant
number 2018/31/B/ST6/00820.
Aleksander Łukasiewicz: Partially supported by the ERC-CZ project LL2406 of the Ministry of
Education of Czech Republic.
Przemysław Uznański: Partially supported by National Science Centre (Poland) grant number
2018/31/B/ST6/00820.

1 Introduction

1.1 Problem statement
An adaptive search problem for a general search domain S and an arbitrary adversary can
be formulated as follows. The goal is to design an adaptive algorithm, also referred to as a
strategy, that finds a target initially unknown to the algorithm. Adaptivity means that the
subsequent actions of the algorithm depend on the answers already received. The process
is divided into steps: in each step the algorithm performs a query and receives an answer.
Each query-reply pair provides new information to the algorithm: it learns that some part of
the search space S ⊆ S does not contain the target while its complement does. From both

© Dariusz Dereniowski, Aleksander Łukasiewicz, and Przemysław Uznański;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 29; pp. 29:1–29:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:deren@eti.pg.edu.pl
https://orcid.org/0000-0003-4000-4818
mailto:aleksander.lukasiewicz@cs.uni.wroc.pl
https://orcid.org/0000-0003-1808-8330
mailto:puznanski@cs.uni.wroc.pl
https://orcid.org/0000-0002-8652-0490
https://doi.org/10.4230/LIPIcs.STACS.2025.29
https://arxiv.org/abs/2107.05753
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Noisy (Binary) Searching: Simple, Fast and Correct

theoretical and practical viewpoints, it is of interest to develop error-resilient algorithms for
such a search process. This can be modeled, for example, by the presence of a probabilistic
noise: each reply can be erroneous with some fixed probability 0 < p < 1

2 , independently.
The performance of a strategy is measured by the number of performed queries.

In this work, we focus on searching with probabilistic noise in two particular types of
search domains. The first is a sorted array (which, in the absence of noise, would lead to the
classical binary search problem). Formally, for a linear order v1 < · · · < vn with an unknown
position of the target v∗ = vj , each query selects an element vi, and the algorithm learns
from the reply whether v∗ < vi or v∗ ≥ vi.

The second search domain we consider is a simple, undirected graph. More precisely, for
an input graph G and an unknown target vertex v∗, each query selects some vertex v. The
answer either states that v is the target or provides a neighbor u of v, that lies on a shortest
path from v to v∗.

Searching through a graph can be viewed as a certain generalization of the former setting,
as searching a linear order resembles searching a graph that is a path. However, it is important
to note that the two models are not directly comparable, as in a graph search on a path
there are three possible replies to a query, whereas in a search through an array, the answers
are binary.

1.2 Overview of our results
To complete the search process, we need to learn roughly log2 n bits of information (the
identifier of the target). We can extract approximately I(p) = 1−H(p) bits of information
from each reply, where H(p) = −p log2 p− (1− p) log2(1− p) is the binary entropy function.
Therefore we expect the optimal algorithm to use around log2 n

I(p) queries. In an idealized
scenario where there always exists a query that perfectly bisects the search space, regardless
of the answer, one could achieve this bound. However, perfect bisection is typically not
possible due to the discrete nature of the search space, which causes algorithms to lose some
lower-order terms.

Our results are summarized in Table 1. We use the following naming convention: if we
are interested in the worst-case analysis of the query complexity, we refer to it as the worst
case setting throughout the paper. Conversely, if we analyze the expected number of queries
made by an algorithm, we call this the expected query complexity setting. We note that in
each setting the process is randomized due to answers of the adversary. Additionally, some
of our algorithms use random bits as well.

The binary search algorithms referenced in the theorems below are detailed in Section 3:
Algorithms 16 and 13 correspond to Theorems 1 and 3, respectively. Interestingly, both
algorithms are essentially the same and differ only by the stopping condition.

▶ Theorem 1. For any noise parameter 0 < p < 1
2 and a confidence threshold 0 < δ < 1,

there exists a binary search algorithm that after the expected number of
1

I(p)
(
log2 n + log2 δ−1 + 3

)
queries finds the target in any linear order correctly with probability at least 1− δ, given that
the target position is chosen uniformly at random.

Using a previously known reduction from adversarial target placement to the uniformly
random choice of a target ([3], see Lemma 10), we automatically obtain the following result
for the adversarial version of the problem.

D. Dereniowski, A. Łukasiewicz, and P. Uznański 29:3

▶ Corollary 2. For any noise parameter 0 < p < 1
2 and a confidence threshold 0 < δ < 1,

there exists a binary search algorithm that after the expected number of

1
I(p)

(
log2 n +O(log δ−1)

)
queries finds the target in any linear order correctly with probability at least 1− δ.

▶ Theorem 3. For any noise parameter 0 < p < 1
2 and a confidence threshold 0 < δ < 1,

there exists a binary search algorithm for any linear order that after

1
I(p)

(
log2 n +O(

√
log n log δ−1) +O(log δ−1)

)
queries returns the target correctly with probability at least 1− δ.

For graph searching we obtain two analogous results (detailed in Section 4): Algorithms 23
and 25 correspond to Theorems 5 and 4, respectively.

▶ Theorem 4. For an arbitrary connected graph G, a noise parameter 0 < p < 1
2 and a

confidence threshold 0 < δ < 1, there exists an graph searching algorithm that after the
expected number of at most

1
I(p)

(
log2 n +O(log log n) +O(log δ−1)

)
queries returns the target correctly with probability at least 1− δ.

▶ Theorem 5. For an arbitrary connected graph G, a noise parameter 0 < p < 1
2 and a

confidence threshold 0 < δ < 1, there exists an graph searching algorithm that after

1
I(p)

(
log2 n +O(

√
log n log δ−1) +O(log δ−1)

)
queries returns the target correctly with probability at least 1− δ.

Table 1 The summary of the results.

Setting Binary search Graph search

Worst case query
complexity:

1
I(p)

(
log2 n + O(

√
log n log δ−1) + O(log δ−1)

)
(Thm. 3) (Thm. 5)

Expected query
complexity:

1
I(p) (log2 n + O(log δ−1))

1
I(p) (log2 n + O(log log n) +

O(log δ−1))

(Cor. 2) (Thm. 4)

1.3 Comparison with previous works
1.3.1 Upper bounds for noisy binary search
Table 2 provides an overview of the known algorithms for noisy binary search that have
complexity close to the optimal log2 n

I(p) . We provide a detailed comparison with our results
below.

STACS 2025

29:4 Noisy (Binary) Searching: Simple, Fast and Correct

Burnashev and Zigangirov [7] studied this problem from an information-theoretic per-
spective as early as 19741, in a setting where the location of the target element is chosen
uniformly at random. We highlight that their query complexity is worse than ours by an
additive term of log2

1−p
p , which tends to infinity when p→ 0. This behavior is rather

unnatural, since when p = 0, the noise disappears, and the problem reduces to standard
binary search.
Feige et al. [15], in their seminal work, considered several problems in the noisy setting and,
in particular, developed an asymptotically optimal algorithm for noisy binary search (with
an adversarially placed target). However, their method intrinsically incurs a non-optimal
constant in front of log2 n

I(p) .
Later, Ben-Or and Hassidim [3], likely unaware of [7], developed algorithms with an
expected query complexity of 1

I(p) (O(log n) +O(log log n) +O(log δ−1)). However, we
claim that their proofs contain two serious issues.
Firstly, in the proof of Lemma 2.6 in [3], they consider all the queries made by the
algorithm throughout its execution and sort them by their positions. Then, the number
of ’<’ answers in a fixed interval of positions is claimed to follow a binomial distribution.
Notice, however, that while the answers to the particular queries are independent random
variables, the positions of the queries depend on the answers to the previous queries, and
the act of forgetting the order introduces correlation. To further illustrate this point, we
note the rightmost query in their algorithm is guaranteed to have a ’<’ answer, because
a ’≥’ answer would have changed the weights maintained by the algorithm, causing the
next query to be asked further to the right, which contradicts the assumption that this
query is the rightmost.
Secondly, the final expected number of steps is bounded by the ratio of total information
needed to identify the target and the expected information gain per step (without any
additional comments). However, the expected value does not work in this manner directly
– to make this approach effective, one needs to employ additional probabilistic tools.
Our paper uses Wald’s identity for this purpose, see [19] for an example of the usage of
martingales and the Optional Stopping Theorem. Moreover, the choice of a particular
probabilistic theorem and the way this tool is handled may incur additional lower-order
terms, making it unclear what the final complexity would be.

1.3.2 Reductions in complexity for expected length setting
Ben-Or and Hassidim in their work [3] showed a general technique that can transform any of
the aforementioned algorithms (regardless if they are in the worst case or expected complexity
setting) into an algorithm with the expected query complexity that is better by roughly a
multiplicative factor of (1− δ) at the cost of additive lower order term of order O(log log n)

I(p) .
Very recently Gu and Xu [19] showed how to improve that reduction in order to obtain a better
constant in front of log δ−1. They plug in our algorithm for noisy binary search (Corollary
2) as a black-box in order to get the (1 + o(1))((1− δ)(log2 n

I(p) + O(log log n)
I(p)) + log2 1/δ

(1−2p) log 1−p
p

)
expected query complexity.

1 Curiously, it appears that until recently, this work has been largely unknown to the algorithmic
community, despite the fact that the paper in question has over 100 citations. There is no mention of [7]
in the well-known survey by Pelc [27], nor in the subsequent works that we reference. We suspect that
the main reason for this oversight is that, until very recently, the work was only available in Russian.
For the English translation of the algorithm and the proof, see [34].

D. Dereniowski, A. Łukasiewicz, and P. Uznański 29:5

Table 2 Upper bounds for noisy binary search.

Setting Query complexity References and Notes

Expected,
uniform
prior

1
I(p) (log2 n + log2 δ−1 + log2

1−p
p) Burnashev and Zigangirov [7]

1
I(p) (log2 n +O(log log n) +O(log δ−1))

Ben-Or and Hassidim [3]
(Correctness issues, see

Sec.1.3.1).
1

I(p)
(
log2 n + log2 δ−1 + 3

)
This work, Thm. 1.

Expected,
adversarial
target

1
I(p) (O(log n) +O(log δ−1)) Feige et al. [15]

1
I(p) (log2 n +O(log log n) +O(log δ−1))

Ben-Or and Hassidim [3]
(Correctness issues, see

Sec.1.3.1).
1

I(p) (log2 n +O(log2 δ−1)) This work, Cor. 2.

Worst case
1

I(p) (log2 n +O(
√

log n log δ−1) +
O(log δ−1))

This work, Thm. 3.

1.3.3 Upper bounds for noisy graph search
Known algorithms for noisy graph search are summarized in Table 3. The problem for
arbitrary graphs was first considered by Emamjomeh-Zadeh et al.[14]. Later on Dereniowski
et al. [11] simplified that algorithm and obtained an improved dependence on log δ−1. We
make another progress in that direction: we further simplify the algorithms and the analysis
while simultaneously improving the dependence on log δ−1 even further.

Table 3 Upper bounds for noisy graph search.

Setting Query complexity References and Notes

Expected 1
I(p) (log2 n +O(log log n) +O(log δ−1)) This work, Thm. 4.

Worst case

1
I(p) (log2 n + o(log n) +O(log2 δ−1)) Emamjomeh-Zadeh et al., 2016

[14]
1

I(p) (log2 n +O(
√

log n log δ−1 ·
log log n

log δ−1) +O(log δ−1))
Dereniowski et al., 2019 [11]

1
I(p) (log2 n +O(

√
log n log δ−1) +

O(log δ−1))
This work, Thm. 5.

1.3.4 Lower bounds
For the expected complexity of noisy binary search, Ben-Or and Hassidim [3] established the
first lower bound of (1− δ) log2 n−10

I(p) . Recently Gu and Xu [19] improved the lower bound to
(1− o(1))((1− δ) log2 n

I(p) + log2 1/δ

(1−2p) log 1−p
p

). However it works only for constant noise parameter p.
They leave the question of improving the lower bound for an arbitrary p as an open problem.

STACS 2025

29:6 Noisy (Binary) Searching: Simple, Fast and Correct

Very recently, Gretta and Price [18] obtained a lower bound for the worst case setting of
a more general problem (known as Noisy Binary Search with Monotonic Probabilities, which
was introduced for the first time by [22]). For the worst case noisy binary search, their work
implies a lower bound of the natural log2 n

I(p) . We note that we are not aware of any lower
bounds for the lower order terms dependent on n in any of the considered settings.

1.4 Overview of the techniques
The core building block of our algorithms is Multiplicative Weights Update technique (MWU).
This method has been employed in the past for noisy binary search and related problems
[3, 5, 11, 22, 28]. The general outline of the method is as follows: we maintain weights that
denote the ”likelihood” of particular elements being the target and multiplicatively update
them according to the answers to subsequent queries. After a certain number of steps, the
algorithm returns the element with the highest weight, as it is the element we deem most
likely to be the target.

The typical problem with this approach is that, at some point, we may encounter a
situation where there is no good element to query, meaning that no query divides the search
space close to the bisection. This usually occurs when a particular element becomes heavy,
and subsequently querying this element yields less and less information. Previous works tried
to different ways to resolve this issue, e.g. by ensuring that a good approximation of the
target has been found and calling the algorithm recursively [3], introducing a phase with
majority voting [14], etc.

We take a different approach by using a specifically tailored measure of progress of our
algorithms, which differs from those used in previous works. For binary search, we define this
measure as the total weight minus the weight of the target element. In the context of graph
searching, the measure is slightly different – we use the total weight minus the weight of
the heaviest vertex. This contrasts with the approach taken in prior studies, such as in [11],
where the total weight itself was utilized. It is important to note that, in the case of graph
search, the identity of the heaviest vertex may change throughout the search process, and at
times, it may not even be the target vertex. However, our analysis guarantees the target will
become the heaviest vertex by the end of the search, within the desired probability threshold.

This subtle change proves to be powerful and plays a vital role in all our proofs. We
believe this is the key idea that enabled us to overcome the obstacles that the authors of the
previous works might have faced.

Furthermore, in the case of binary search, when selecting which vertex to query, we
employ a technique similar to that of [7]. Specifically, whenever we identify two elements that
are closest to bisecting the search space, we randomly choose one of them with appropriate
probability. Our analysis demonstrates that this effectively simulates the ideal subdivision of
the search space and ensures the desired progress of our algorithm.

1.5 Other related work
There are many variants of the interactive query games, depending on the structure of
queries and the way erroneous replies occur. The study of such games was initiated by
Rényi [29] and Ulam [31]. A substantial amount of literature deals with a fixed number of
errors for arbitrary membership queries or comparison queries; here we refer the reader to
surveys [10, 27]. Among the most successful tools for tackling binary search with errors, is the
idea of a volume [4, 28], which exploits the combinatorial structure of a possible distribution
of errors. A natural approach of analyzing decision trees has been also successfully applied,

D. Dereniowski, A. Łukasiewicz, and P. Uznański 29:7

see e.g. [15]. See [5, 14] for examples of partitioning strategies into stages, where in each
stage the majority of elements is eliminated and only few “problematic” ones remain. For a
different reformulation (and asymptotically optimal results) of the noisy search see [22].

Although the adversarial and noisy models are most widely studied, some other ones are
also considered. As an example, we mention the (linearly) bounded error model in which it
is guaranteed that the number of errors is a r-fraction, r < 1

2 , of (any initial prefix of) the
number of queries, see e.g. [1, 5, 12]. Interestingly, it might be the case that different models
are so strongly related that a good bound for one of them provides also tight bounds for
the other ones, see e.g. [11]. We refer the reader to distributional search where an arbitrary
target distribution is known to the algorithm a priori [8, 9, 30]. A closely related theory of
coding schemes for noisy communication is out of scope of this paper and we only point to
some recent works [6, 16, 17, 20, 25].

The first steps towards generalizing binary search to graph-theoretic setting are works
on searching in partially ordered data [2, 23, 24]. Specifically for the node search that we
consider in this work, the first results are due to Onak and Parys for trees [26], where an
optimal linear-time algorithm for error-less case was given.

2 Preliminaries

Whenever we refer to a search space, we mean either an (undirected and unweighted) graph
or a linear order. Consequently, by an element of a search space, we refer to a vertex or an
integer, respectively. In the following, let n denote the size of the search space, i.e., either
the number of vertices in a graph or the number of integers in a linear order.

Throughout the search process, the strategies will maintain the weights ω(v) for the
elements v of a search space V . For any 0 ≤ c ≤ 1, v is c-heavy if ω(v)/ω(V) ≥ c, where for
any subset U ⊆ V we write ω(U) =

∑
u∈U ω(u). 1

2 -heavy elements play a special role and
we call them heavy for brevity. The weight of an element v at the end of step t is denoted
by ωt(v), with ω0(v) being the initial value. The initial values are set uniformly by putting
ω0(v) = 1 for each v in our algorithms.

Noisy binary search definition and model specifics

In the noisy binary search problem, we operate on a linear order v1 < · · · < vn. We are
given an element v∗ and the values p ∈ [0, 1

2), δ ∈ (0, 1) as input. We are promised that there
exists some i ∈ [n] such that v∗ = vi. We call v∗ the target element. We can learn about
the search space by asking if v∗ < vj for any j ∈ [n], and receiving an answer that is correct
with probability 1− p, independently for each query. The goal is to design an algorithm that
finds the i ∈ [n] such that v∗ = vi, and returns this index correctly with probability at least
1− δ. We strive to minimize the number of queries performed in the process.

We adopt the following naming convention for query results. When we ask if v∗ ?
< vi and

receive an affirmative answer (i.e., v∗ is less than vi), we call it a yes-answer. If the reply
indicates v∗ is greater than or equal to vi (i.e., a negative answer), we call it a no-answer.
An element vj of a search space is considered compatible with the reply to a query v∗ ?

< vi if
and only if:

For a yes-answer (indicating v∗ < vi), j < i.
For a no-answer (indicating v∗ ≥ vi), j ≥ i.

STACS 2025

29:8 Noisy (Binary) Searching: Simple, Fast and Correct

Noisy graph searching definition and model specifics

In the noisy graph searching problem we are given an unweighted, undirected, simple graph
G and the values p ∈ [0, 1

2), δ ∈ (0, 1). We know that one vertex v∗ of G is marked as the
target, but we don’t know which one is it.

We can query the vertices of G, upon querying a vertex q we get one of two possible
answers:

v∗ = q, i.e. the queried vertex is the target. We call it a yes-answer.
v∗ ̸= q, but some neighbor u of q lies on a shortest path from q to v∗. We call it a
no-answer. If there are multiple such neighbors (and hence shortest paths), then we can
get an arbitrary one as an answer.

In fact, we assume for simplicity that each reply is given as a single vertex u. If u = q,
then we interpret it as a yes-answer. If u ̸= q, then u is a neighbor of q that lies on a shortest
path from q to v∗. Again, we are interested in the noisy setting, therefore every reply is
correct independently with probability 1− p. Observe that if the answer is incorrect then it
can come in different flavors:

if q = v∗, then an incorrect answer is any neighbor u of q,
if q ≠ v∗, then an incorrect answer may be either q or any neighbor of q that does not lie
on a shortest path from q to v∗.

Clearly, in both cases there might be several possible vertices that constitute an incorrect
answer. Here we assume the strongest possible model where every time the choice among
possible incorrect replies is made adversarially and independently for each query. The goal
is, similarly as in noisy binary search, to design an algorithm that finds a target correctly
with probability at least 1− δ and minimizes the number of queries. In fact, in this work we
operate in a slightly weaker model of replies (as compared to [11, 13, 14, 26]) in which an
algorithm receives less information in some cases. This is done in somewhat artificial way
for purely technical reasons, i.e., to simplify several arguments during analysis. The only
change to the model we have just described happens when we query a vertex that is heavy
at the moment and a no-answer has been received. More specifically, if a heavy q is queried
and a no-answer is given, the algorithm reads this reply as: the target is not q (ignoring the
direction the target might be). Observe that this only makes our algorithms stronger, since
they operate in a weaker replies model and any algorithmic guarantees for the above model
carry over to the generic noisy graph search model.

Similarly to the case of noisy binary search, we say that a vertex v is compatible with the
reply to the query q if and only if:

v = q in case of a yes-answer.
The neighbor u given as a no-answer lies on a shortest path from q to v and q was not
heavy.
v ̸= q in case of a no-answer when q was heavy.

Common mathematical tools and definitions

We adopt the notation from [11] and denote ε = 1
2 − p and Γ = 1−p

p . These quantities appear
frequently throughout the proofs, and this notation helps to make the presentation more
concise.

The information function, denoted by I(p), appears in all our running times. It is defined
as follows I(p) = 1−H(p) = 1+p log2 p+(1−p) log2(1−p). In the analysis of our algorithms
we frequently use the following quantitative fact about I(p) and log2 Γ.

D. Dereniowski, A. Łukasiewicz, and P. Uznański 29:9

▶ Proposition 6. We have I(p) = Ω(ε2) and (log2 Γ)2p(1− p) = O(ε2).

Proof. We first observe that by Taylor’s series expansion (which can be derived using
elementary calculus, see e.g. [32]):

I(p) = 1
2 ln 2

∞∑
n=1

(2ε)2n

n(2n− 1) ≥
4ε2

2 ln 2 .

To show the second bound we compute

p(1− p)(log2 Γ) = (1/2− ε)(1/2 + ε)
(

log2
1 + 2ε

1− 2ε

)2

= (1− 4ε2)
(
tanh−1 2ε

)2 1
(ln 2)2 ≤

4
(ln 2)2 ε2

where the last step follows by observing that under the substitution ε = 1/2 · tanh γ it
reduces to γ2 ≤ sinh2 γ and that inequality follows immediately from the Taylor expansion
of sinh2 γ. ◀

Let (Xm)m∈N be a sequence of i.i.d random variables. We say that a random variable T

is a stopping time (with respect to (Xm)m∈N) if 1{T ≤m} is a function of X1, X2, . . . , Xm for
every m.

We will use the following version of the Wald’s identity.

▶ Proposition 7 (Wald’s Identity [33]). Let (Xm)m∈N be i.i.d with finite mean, and T be a
stopping time with E[T] <∞. Then E[X1 + · · ·+ XT] = E[X1]E[T].

Let us also recall a basic version of a Hoeffding bound, which we use in our calculations
of query complexities in the worst case setting.

Multiplicative Weights Update Method

The core building block of our strategies for both binary and graph search is a standard
Multiplicative Weights Update (MWU) technique. Below we formally define the version of
MWU that we use in our algorithms (Algorithm 8).

▶ Algorithm 8. (MWU updates.)

In a step t + 1, for each element v of the search space do:
if v is compatible with the answer, then ωt+1(v)← ωt(v) · 2(1− p),
if v is not compatible with the answer, then ωt+1(v)← ωt(v) · 2p.

Directly from the statement of our MWU method we obtain the following bound on the
weight of the target. This bound applies to both binary and graph search, as the analysis
is based solely on the number of erroneous replies and the fact that the target is always
compatible with a correct answer.

▶ Lemma 9. If v∗ is the target, then after τ queries, with probability at least 1− δ it holds

ωτ (v∗) ≥ Γ−
√

2p(1−p)τ ln δ−12I(p)τ .

Proof. After τ queries with at most ℓ erroneous replies, the weight of the target satisfies:

ωτ (v∗) ≥ (2p)ℓ(2(1− p))τ−ℓ = Γpτ−ℓ2I(p)τ .

Denote a =
√

2p(1− p)τ ln δ−1. Then by Chernoff-Hoeffding bound [21], with probability at
most δ there is ℓ− pτ ≥ a. Thus, after τ queries, with probability at least 1− δ the weight
of the target satisfies ωτ (v∗) ≥ Γ−a2I(p)τ . ◀

STACS 2025

29:10 Noisy (Binary) Searching: Simple, Fast and Correct

Uniform prior for binary search

One can assume that the distribution of the target element in noisy binary search is a priori
uniform by using a shifting trick described by Ben-Or and Hassidim [3]. We formally state it
as a lemma below.

▶ Lemma 10 (c.f. [3]). Assume that the target element in noisy binary search problem was
chosen adversarially. One can reduce that problem to the setting where the target element is
chosen uniformly at random using O(log δ−1

I(p)) queries.

3 Binary Search Algorithm

Each query performs the MWU updates using Algorithm 8. The element to be queried
is selected as follows: let k be such that

∑k−1
i=1 ω(vi) ≤ ω(V)/2 and

∑k
i=1 ω(vi) ≥ ω(V)/2.

Since the queries vk and vk+1 are the closest possible to equi-division of the total weight, the
algorithm chooses one of those with appropriate probability (cf. Algorithm 11.)

▶ Algorithm 11. (Query selection procedure.)

In step τ : let k be such that
∑k−1

i=1 ωτ (vi) ≤ ωτ (V)
2 ≤

∑k
i=1 ωτ (vi).

Then, query vk with probability 1
2ωτ (vk) (

∑k
i=1 ωτ (vi) −

∑n
i=k+1 ωτ (vi)), and otherwise

query vk+1.

In order to turn Algorithm 11 into a particular strategy, we will provide a stopping condition
for each model. We start by determining the expected weight preservation during the search.

▶ Lemma 12. E[ωτ+1(V \ {v∗}) | ωτ (V \ {v∗})] ≤ ωτ (V \ {v∗}).

Proof. We consider three cases, and show that this bound holds in each of those independently.
Denote A =

∑k−1
i=1 ωτ (vi), B = ωτ (vk) and C =

∑n
i=k+1 ωτ (vi). Denote the probability of

querying vk as α = A+B−C
2B , and the probability of querying vk+1 as β = C+B−A

2B .
Case 1: v∗ = vk.

E[ωτ+1(V \{v∗}) | ωτ (V \ {v∗})] = α[2p2C + 2(1 − p)2C + 2p(1 − p)A + 2p(1 − p)A]
+β[2p2A + 2(1 − p)2A + 2p(1 − p)C + 2p(1 − p)C]

= α[(1 + 4ε2)C + (1 − 4ε2)A] + β[(1 + 4ε2)A + (1 − 4ε2)C].

Using the definition of α and β, we obtain

E[ωτ+1(V \ {v∗}) | ωτ (V \ {v∗})] = −4ε2 (A − C)2

B
+ (A + C)

= −4ε2 (A − C)2

B
+ ωτ (V \ {v∗}).

Case 2: v∗ < vk. In this case,
E[ωτ+1(V \ {v∗}) | ωτ (V \ {v∗})] = (2p2 + 2(1 − p)2)(A − ωτ (v∗))

+[α4p(1 − p) + β(2p2 + 2(1 − p)2)]B + 4p(1 − p)C.

Denote p1 = p2 + (1− p)2 and p2 = 2p(1− p). Observe p1 + p2 = 1 and p1 ≥ 1
2 ≥ p2. Then,

E[ωτ+1(V \ {v∗}) | ωτ (V \ {v∗})] = 2p1A + (C + B − A)p1 + (A + B − C)p2 + 2p2C − 2p1ωτ (v∗)
= A + B + C − 2p1ωτ (v∗)
≤ ωτ (V \ {v∗}).

Case 3: v∗ > vk+1 is symmetric to case 2. ◀

D. Dereniowski, A. Łukasiewicz, and P. Uznański 29:11

3.1 Proof of Theorem 1 (The expected strategy length)

▶ Algorithm 13. (The expected strategy length for binary search.)

Initialization: ω0(vi)← 1 for each vi ∈ V .
Execute Algorithm 11 until in some step τ it holds ωτ (vj)

ωτ (V) ≥ 1− δ for some vj.
Return vj.

To show correctness of Algorithm 13, we need to observe that in the case of binary search,
our MWU updates are, in fact Bayesian updates, that is, the normalized weights follow a
posterior distribution conditioned on the replies seen so far. We state this as a lemma below.

▶ Lemma 14. After any step τ of Algorithm 13 we have for every vi ∈ V

Pr[v∗ = vi | τ observed replies] = ωτ (vi)
ω(V) .

Proof. The proof is by induction on τ . The base case is trivial, because we assign the
weights uniformly in the initialization step. The inductive step follows immediately from our
definition of MWU updates (Algorithm 8) and the Bayes’ rule. ◀

The correctness of Algorithm 13 follows directly from Lemma 14 and the stopping
condition. To prove Theorem 1 it remains to analyze the expected length of the strategy.

▶ Lemma 15. Algorithm 13 terminates after the expected number of at most 1
I(p) (log2 n +

log2
1
δ + 3) steps.

Proof. We measure the progress at any given step by a random variable ζt = log2 ωt(v∗).
If the answer in step t + 1 is erroneous, then ζt+1 = ζt + 1 + log2 p and otherwise ζt+1 =
ζt + 1 + log2(1− p).

For the sake of bounding the number of steps of the algorithm, we consider it running
indefinitely. Let Q be the smallest integer such that ωQ(v∗)

ωQ(V \{v∗}) ≥
1−δ

δ , that is v∗ is (1− δ)-
heavy in round Q. Obviously Q upper bounds the strategy length. By the definition, Q is a
stopping time.

First, let us show that E[Q] is finite. To this end, let ξt = log2
ωt(v∗)

ωt(V \{v∗}) and Xt = ξt−ξt−1
for t ≥ 1. Observe that Xt’s are i.i.d and E[Xt] = p(− log2 Γ) + (1 − p) log2 Γ = (1 −
2p) log2 Γ > 0. Therefore, using Lemma 29 for sequence Xt, with ℓ = − log Γ, r = log Γ and
T = log2

1−δ
δ − log2

ω0(v∗)
ω0(V \{v∗}) , we indeed obtain E[Q] <∞.

Let Qi for any positive integer i be smallest value such that ωQi(v∗) ≥ n
δ · 2

i (for
completeness of notation, we define Q0 = 0). Consider an event {Q > Qi}. It means that
in round Qi the target v∗ is not yet (1− δ)-heavy. Hence, ωQi(V \ {v∗}) > δ

1−δ ωQi(v∗) ≥
δωQi

(v∗) ≥ n ·2i. But we know from Lemma 12 that E[ωQi
(V \{v∗})] ≤ E[ω0(V \{v∗})] ≤ n.

Using Markov’s inequality we conclude that Pr[Q > Qi] ≤ Pr[ωQi
(V \ {v∗}) > n · 2i] ≤ 2−i.

Additionally, since ωQi−1(v∗) < n
δ · 2

i, there is ωQi(v∗) < 2 n
δ · 2

i. We can then bound

E[ζQ] <

∞∑
i=1

Pr[Qi−1 < Q ≤ Qi] log2(2 · n

δ
2i)

= log2(2 · n

δ
) +

∞∑
i=1

Pr[Qi−1 < Q ≤ Qi] · i

= log2(2n

δ
) +

∞∑
i=1

Pr[Q > Qi−1]

STACS 2025

29:12 Noisy (Binary) Searching: Simple, Fast and Correct

≤ 1 + log2 n + log2
1
δ

+
∞∑

i=0
2−i

≤ log2 n + log2
1
δ

+ 3.

Let Yt = ζt − ζt−1. Obviously, Yi’s are independent. We have already established that
Q is a stopping time and that E[Q] < ∞. This means we can employ the Wald’s identity
(Proposition 7) to obtain (using ζ0 = 0) E[ζQ] = E[Y1 + · · ·+ YQ] = E[Q]I(p). Therefore,

log2 n + log2
1
δ

+ 3 ≥ E[ζQ] = E[Q]I(p). ◀

3.2 Proof of Theorem 3 (Worst-case strategy length)
Take Q to be the smallest positive integer for which

I(p)Q > log2 n + log2
2
δ

+
√

2p(1− p)Q ln 2
δ

log2 Γ. (1)

The Q gives our strategy length (see Algorithm 16). To prove Theorem 3 we bound the
strategy length and the failure probability (see Lemma 17 below). The algorithm essentially
remains the same except for the stop condition (cf. Algorithm 16).

▶ Algorithm 16. (Worst-case strategy length for binary search.)

Initialization: ω0(vi)← 1 for each element vi.
Execute Algorithm 11 for exactly Q steps with Q as in (1).
Return the heaviest element.

▶ Lemma 17. For any 0 < δ < 1, Algorithm 16 finds the target correctly with probability at
least 1− δ in 1

I(p)

(
log2 n +O(log δ−1) +O(

√
log n log δ−1)

)
steps.

Proof. Firstly, observe that solving (1) for Q using Lemma 28 with parameters a = I(p),
b = log2 n + log2

2
δ and c = 2p(1− p)(log2 Γ)2 ln 2

δ yields

Q = 1
I(p)

(
log2 n + log2

2
δ

+O
(

ln 2
δ

+
√

log2 n + log2
2
δ

√
ln 2

δ

))

where we have used, by Proposition 6, that p(1−p)(log2 Γ)2

I(p) = O(1). The above equation can
be simplified to

Q = 1
I(p)

(
log2 n +O(log δ−1) +O(

√
log δ−1 log n)

)
.

It remains to prove correctness. By Lemma 9, with probability at least 1− δ/2 we have

ωQ(v∗) ≥ Γ−
√

2p(1−p)Q ln 2/δ2I(p)Q. (2)

From Lemma 12 we also get E[ωQ(V \ {v∗})] ≤ E[ω0(V \ {v∗})] ≤ n. Therefore, by
Markov’s inequality with probability 1− δ/2 we have

ωQ(V \ {v∗}) ≤ 2n

δ
. (3)

D. Dereniowski, A. Łukasiewicz, and P. Uznański 29:13

It remains to observe that our definition of Q (Equation (1)) is equivalent to

Γ−
√

2p(1−p)Q ln 2/δ2I(p)Q >
2n

δ
.

Thus, by the union bound applied to (2) and (3), with probability at least 1− δ we get
ωQ(v∗) > ωQ(V \ {v∗}). Then, v∗ is the heaviest element and Algorithm 16 returns it. ◀

4 Graph Searching Algorithm

Denoting by d(u, v) the graph distance between u and v, i.e., the length of the shortest path
between these vertices, a median of the graph is a vertex

q = arg min
v∈V

∑
u∈V

d(u, v) · ω(u).

For a query v and a reply u, let C(v, u) = {x ∈ V |u lies on some shortest path from v to x}
for v ̸= u, and C(v, v) = {v}. We note a fundamental bisection property of a median:

▶ Lemma 18 (cf. [14] Lemma 4). If q is a median, then maxu∈N(q) ω(C(q, u)) ≤ ω(V)/2.

Proof. Denote for brevity Φ(x) =
∑

v∈V d(x, v) · ω(v) for any x ∈ V . Suppose towards
the contradiction that C(q, u) > ω(V)/2 for some u ∈ N(q). Observe that Φ(u) ≤ Φ(q)−
ω(C(q, u)) + ω(V \ C(q, u)) since by moving from q to u we get closer to all vertices in
C(q, u). But Φ(q)− ω(C(q, u)) + ω(V \C(q, u)) = Φ(q) + ω(V)− 2ω(C(q, u)) < Φ(q) by our
assumption, hence Φ(u) < Φ(v), which yields a contradiction. ◀

We now analyze how the weights behave when in each step a median is queried and the
MWU updates are made. This analysis is common for both graph searching algorithms
given later. Essentially we prove that, in an amortized way, the total weight (with the
heaviest vertex excluded) remains the same in each step. In absence of heavy vertices we use
Lemma 19. Lemmas 20 and 21 refer to an interval of queries to the same heavy vertex x. If
the interval ends (cf. Lemma 20), then the desired weight drop can be claimed at its end.
For this, informally speaking, the crucial fact is that x received many no-answers during this
interval. If a strategy is at a step that is within such interval, then Lemma 21 is used to
bound the total weight with the weight of x excluded. Hence, at any point of the strategy
the weight behaves appropriately, as summarized in Lemma 22.

▶ Lemma 19 (see also [11, 14]). If in a step t there is no heavy vertex, then ωt+1(V) ≤ ωt(V).

Proof. Let q be a query and u an answer in step t. Note that if there is no heavy vertex, then
C(q, u) is the set of vertices compatible with the reply. If q ̸= u then ωt(C(q, u)) ≤ ωt(V)/2
by Lemma 18 and in case q = u we have C(q, u) = {q} and thus the same bound holds. Then
in both cases, ωt+1(V) = 2(1− p) · ωt(C(q, u)) + 2p · ωt(V \ C(q, u)) ≤ ωt(V). ◀

▶ Lemma 20 (see also [11]). Consider an interval I = {τ, τ + 1, . . . , τ + k − 1} of k queries
such that some x is heavy in each query in I and is not heavy after the last query in the
sequence. Then ωτ+k(V) ≤ ωτ (V).

Proof. First note that in each query in the interval I the queried vertex is x. Consider any
two queries i and j in I such that they receive different replies. The contribution of these two
queries is that together they scale down each weight multiplicatively by 2p ·2(1−p) ≤ 1. Also,
for a single no-answer in a query i ∈ I we get ωi+1(V) = 2pωi(x)+2(1−p)ωi(V \{x}) ≤ ωi(V)

STACS 2025

29:14 Noisy (Binary) Searching: Simple, Fast and Correct

because ωi(x) ≥ ωi(V \{x}) for the heavy vertex x. By assumption, the number of no-answers
is at least the number of yes-answers in I. Thus, the overall weight drop is as claimed in the
lemma. ◀

▶ Lemma 21. Consider an interval I = {τ, τ + 1, . . . , τ + k− 1} of k queries such that some
x is heavy in each query in I, and x remains heavy after the last query in I. Then

ωτ+k(V \ {x}) ≤ ωτ (V).

Proof. Recall that in each query in the interval I, the queried vertex is x. Assume that there
were a yes-answers in I and b no-answers, with a + b = k. If a ≥ b, then ωτ+k(V \ {x}) =
(2p)a(2(1 − p))bωτ (V \ {x}) ≤ ωτ (V \ {x}) ≤ ωτ (V). If a < b, then we bound as follows:
ωτ+k(V \ {x}) ≤ ωτ+k(x) = (2p)b(2(1− p))aωτ (x) ≤ ωτ (x) ≤ ωτ (V). ◀

The bound in the next lemma immediately follows from Lemmas 19, 20 and 21. We say
that an element v is heaviest if ω(v) ≥ ω(u) for each u ∈ V . For each step i, we denote by xi

a heaviest vertex at this step, breaking ties arbitrarily.

▶ Lemma 22. ωτ (V \ {xτ}) ≤ ω0(V) = n.

Proof. We consider the first τ queries and observe that they can be partitioned into a disjoint
union of maximal intervals in which either there is a heavy vertex present (in the whole
interval) or there is no heavy vertex (in the whole interval). We apply Lemma 19 for intervals
with no heavy vertex and Lemmas 20, 21 otherwise (note that Lemma 21 can be applied
only to the last interval. The latter happens only when there exists a heavy vertex after we
perform all τ queries). ◀

4.1 Proof of Theorem 5 (Worst-case strategy length)
In this section we prove Theorem 5. Take Q to be the smallest positive integer for which

I(p)Q ≥ log2 n +
√

2p(1− p)Q ln δ−1 log2 Γ. (4)

The Q gives our strategy length (see Algorithm 23). To prove Theorem 5 we bound the
strategy length and the failure probability (see Lemma 24 below).

▶ Algorithm 23. (Worst-case strategy length for graph search.)

Initialization: ω0(v) = 1 for each v ∈ V .
In each step: query the median and perform the MWU updates (Algorithm 8).
Stop condition: do exactly Q queries with Q defined by (4) and return the heaviest
vertex.

▶ Lemma 24. For any 0 < δ < 1, Algorithm 23 finds the target correctly with probability at
least 1− δ in 1

I(p)

(
log2 n +O(log δ−1) +O(

√
log n log δ−1)

)
steps.

Proof. The proof is very similar to that of Lemma 17 (worst-case noisy binary search).
It is actually simpler, thanks to the fact that Lemma 22 gives even stronger bound than
Lemma 12.

Using Lemma 28 we solve (4) for Q. We bound the result further with Proposition 6:

Q = log2 n +O(
√

log n log δ−1) +O(log δ−1)
I(p) . (5)

D. Dereniowski, A. Łukasiewicz, and P. Uznański 29:15

By Lemma 9 and the definition of Q in (4) it holds with probability 1− δ

log2 ωQ(v∗) ≥ −
√

2p(1− p)Q ln δ−1 log2 Γ + I(p)Q ≥ log2 n ≥ log2 ωQ(V \ {xQ}),

where the last inequality is due to Lemma 22. Since the weights are non-negative at all
times, the only way for this to happen is to have v∗ = xQ, that is the target being found
correctly. ◀

4.2 Proof of Theorem 4 (The expected strategy length)

The solution for this case (given in Algorithm 25) paraphrases Algorithm 11 except for the
proper adjustement of the confidence threshold.

▶ Algorithm 25. (The expected strategy length for graph search.)

Let δ′ = c(δ2 · (log n + log 1/δ)−2) for small enough constant c > 0.
Initialization: ω0(v) = 1 for each v ∈ V .
In each step: query the median and perform the MWU updates (Algorithm 8).
Stop condition: if for any v in some step τ it holds ωτ (v)

ωτ (V) ≥ 1− δ′, then return v.

▶ Lemma 26. Algorithm 25 stops after the expected number of at most 1
I(p) (log2 n+log2

1
δ′ +1)

steps.

Proof. We argue that within the promised expected number of steps, target v∗ reaches the
threshold weight. This clearly upperbounds the runtime. We measure the progress at any
given moment by a random variable ζt = log2 ωt(v∗). Observe that if the reply is erroneous
in a step t + 1, then ζt+1 = ζt + 1 + log2 p, and if it is correct, then ζt+1 = ζt + 1 + log2(1− p).

For the sake of bounding the number of steps of the algorithm, we assume it is simulated
indefinitely. Let Q be the smallest integer such that ζQ ≥ log2 n + log2

1−δ′

δ′ .
By Lemma 22 we have that ζQ = log2 ωQ(v∗) ≤ log2

ωQ(v∗)
ω(V \{xQ})/n , thus ωQ(v∗)

ω(V \{xQ}) ≥
1−δ′

δ′ > 1 since w.l.o.g. δ′ < 1/2. But if for any t there is ωt(v∗)
ωt(V \{xt}) > 1, then xt = v∗, since

ωt(v∗) > ωt(V \ {xt}) implies v∗ ̸∈ V \ {xt}. Thus we deduce that xQ = v∗. Additionally,
from ωQ(v∗)

ω(V \{v∗}) ≥
1−δ′

δ′ we get that v∗ is (1− δ′)-heavy, hence Q bounds the strategy length.
From ζt+1 ∈ {ζt + 1 + log2 p, ζt + 1 + log2(1 − p)} and the minimality of Q we deduce

ζQ ≤ log2 n + log2
1−δ′

δ′ + 1 + log2(1− p) ≤ log2 n + log2
1
δ′ + 1. In particular

E[ζQ] ≤ log2 n + log2
1
δ′ + 1. (6)

Let Xt = ζt−ζt−1 and observe that E[Xt] = p(1+log2 p)+(1−p)(1+log2(1−p)) = I(p) > 0.
Also, Xi’s are independent and Q is a stopping time. Finally, we have E[Q] < ∞ from
Lemma 29 2. Therefore, we meet all conditions of the Wald’s identity (Proposition 7)
and we get (since ζ0 = 0) E[ζQ] = E[X1 + · · · + XQ] = E[Q]I(p). Thus, by (6) we have
1 + log2

1
δ′ + log2 n ≥ E[ζQ] = E[Q]I(p), from which the claim follows. ◀

▶ Lemma 27. Algorithm 25 finds the target correctly with probability at least 1− δ.

2 By plugging in ℓ = 1 + log2 p, r = 1 + log2(1 − p) and T = log2
1−δ′

δ′ + log2 n.

STACS 2025

29:16 Noisy (Binary) Searching: Simple, Fast and Correct

Proof. We first show correctness. Denote by A ≤ log 1−δ′
δ′

log 1−p
p

+ 1 the number of yes-answers
required to go from a vertex being 1/2-heavy to being (1− δ′)-heavy. For now assume that
A ≥ 2, we will deal with the other case later. For a non-target vertex u to be declared by
the algorithm as the target, it has to observe a suffix of the strategy being a random walk on
a 1-dimensional discrete grid [0, . . . , A] and transition probabilities p for i→ i + 1 and 1− p

for i→ i− 1. We consider a random walk starting at position A/2 and ending when reaching
either 0 or A and call it a subphase (w.l.o.g. assume that A is even). Any execution of the
algorithm can be partitioned into maximal in terms of containment, disjoint subphases. Each
subphase starts when one particular heavy vertex v receives A/2 more yes-answers than
no-answers within the interval in which v is heavy. Then, a subphase ends when either the
algorithm declares v to be the target or v stops being heavy. By the standard analysis of the
gamblers ruin problem, each subphase (where the heavy vertex is not the target) has failure
probability δ′′ = 1

1+(1−p
p)A/2 ≤ 1

1+
√

1−δ′
δ′

= O(
√

δ′). Let us denote by a random variable D

the number of subphases in the execution of the algorithm. Let Fi be the length of i-th
subphase. By the standard analysis of the gamblers ruin problem,

E[Fi] = A/2
1− 2p

− A

1− 2p

1
1 + (1−p

p)A/2
≥ A/2

1− 2p

1− 2

1 +
√

1−δ′

δ′

 = Ω
(

1
ε2

)
,

where the asymptotic holds since w.l.o.g. δ′ < 1/3, and also since if ε < 1/3, then A = Ω(1/ε),
and otherwise A ≥ 2 = Ω(1/ε). Let F = F1 + · · ·+ FD be the total length of all subphases.
Observe that D is a stopping time, hence we have E[F] = E[D] · Ω(1

ε2) by Proposition 7. By
Lemma 26, E[Q] = O(ε−2(log n + log δ′−1)) holds for the strategy length Q. Since F ≤ Q,
E[D] = O(log n + log 1/δ′) = O(log n + log 1/δ).

By application of the union bound, the error probability for the whole procedure is
bounded by δ′′E[D] ≤ δ for appropriately chosen constant in the definition of δ′.

We now deal with case of A ≤ 1. This requires p < δ′, and ε > 1/3 (since if ε < 1/3,
appropriate choice of constant in δ′ enforces A ≥ 2) and so the expected strategy length
is E[Q] = O(log n + log 1/δ). By the union bound, algorithm receives a single erroneous
response with probability at most pE[Q] ≤ δ′E[Q] = O(δ2/(log n + log 1/δ)) ≤ δ. ◀

References
1 Javed A. Aslam and Aditi Dhagat. Searching in the presence of linearly bounded errors

(extended abstract). In STOC, pages 486–493, 1991. doi:10.1145/103418.103469.
2 Yosi Ben-Asher, Eitan Farchi, and Ilan Newman. Optimal search in trees. SIAM J. Comput.,

28(6):2090–2102, 1999. doi:10.1137/S009753979731858X.
3 Michael Ben-Or and Avinatan Hassidim. The bayesian learner is optimal for noisy binary

search (and pretty good for quantum as well). In FOCS, pages 221–230, 2008. doi:10.1109/
FOCS.2008.58.

4 Elvyn R. Berlekamp. Block Coding For The Binary Symmetric Channel With Noiseless,
Delayless Feedback, pages 61–88. Wiley & Sons, New York, 1968.

5 Ryan S. Borgstrom and S. Rao Kosaraju. Comparison-based search in the presence of errors.
In STOC, pages 130–136, 1993. doi:10.1145/167088.167129.

6 Mark Braverman, Klim Efremenko, Ran Gelles, and Bernhard Haeupler. Constant-rate coding
for multiparty interactive communication is impossible. In STOC, pages 999–1010, 2016.
doi:10.1145/2897518.2897563.

7 Marat Valievich Burnashev and Kamil’Shamil’evich Zigangirov. An interval estimation problem
for controlled observations. Problemy Peredachi Informatsii, 10(3):51–61, 1974.

https://doi.org/10.1145/103418.103469
https://doi.org/10.1137/S009753979731858X
https://doi.org/10.1109/FOCS.2008.58
https://doi.org/10.1109/FOCS.2008.58
https://doi.org/10.1145/167088.167129
https://doi.org/10.1145/2897518.2897563

D. Dereniowski, A. Łukasiewicz, and P. Uznański 29:17

8 Yuval Dagan, Yuval Filmus, Ariel Gabizon, and Shay Moran. Twenty (simple) questions. In
STOC, pages 9–21, 2017. doi:10.1145/3055399.3055422.

9 Yuval Dagan, Yuval Filmus, Daniel Kane, and Shay Moran. The entropy of lies: Playing
twenty questions with a liar. In James R. Lee, editor, 12th Innovations in Theoretical
Computer Science Conference, ITCS 2021, volume 185 of LIPIcs, pages 1:1–1:16, 2021.
doi:10.4230/LIPICS.ITCS.2021.1.

10 Christian Deppe. Coding with Feedback and Searching with Lies, pages 27–70. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007. doi:10.1007/978-3-540-32777-6_2.

11 Dariusz Dereniowski, Stefan Tiegel, Przemysław Uznański, and Daniel Wolleb-Graf. A
framework for searching in graphs in the presence of errors. In SOSA@SODA, pages 4:1–4:17,
2019. doi:10.4230/OASIcs.SOSA.2019.4.

12 Aditi Dhagat, Péter Gács, and Peter Winkler. On playing “twenty questions” with a liar. In
SODA, pages 16–22, 1992. URL: http://dl.acm.org/citation.cfm?id=139404.139409.

13 Ehsan Emamjomeh-Zadeh and David Kempe. A general framework for robust interactive
learning. In NIPS, pages 7085–7094, 2017.

14 Ehsan Emamjomeh-Zadeh, David Kempe, and Vikrant Singhal. Deterministic and probabilistic
binary search in graphs. In STOC, pages 519–532, 2016. doi:10.1145/2897518.2897656.

15 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy informa-
tion. SIAM J. Comput., 23(5):1001–1018, 1994. doi:10.1137/S0097539791195877.

16 Ran Gelles, Bernhard Haeupler, Gillat Kol, Noga Ron-Zewi, and Avi Wigderson. Towards
optimal deterministic coding for interactive communication. In SODA, pages 1922–1936, 2016.
doi:10.1137/1.9781611974331.ch135.

17 Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient coding for interactive communication.
IEEE Trans. Information Theory, 60(3):1899–1913, 2014. doi:10.1109/TIT.2013.2294186.

18 Lucas Gretta and Eric Price. Sharp Noisy Binary Search with Monotonic Probabilities. In
ICALP 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPIcs.
ICALP.2024.75.

19 Yuzhou Gu and Yinzhan Xu. Optimal bounds for noisy sorting. In STOC, pages 1502–1515,
2023. doi:10.1145/3564246.3585131.

20 Bernhard Haeupler. Interactive channel capacity revisited. In FOCS, pages 226–235, 2014.
doi:10.1109/FOCS.2014.32.

21 Wassily Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. Journal
of the American Statistical Association, 58(301):13–30, 1963. doi:10.2307/2282952.

22 Richard M. Karp and Robert Kleinberg. Noisy binary search and its applications. In SODA,
pages 881–890, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283478.

23 Eduardo Sany Laber, Ruy Luiz Milidiú, and Artur Alves Pessoa. On binary search-
ing with nonuniform costs. SIAM J. Comput., 31(4):1022–1047, 2002. doi:10.1137/
S0097539700381991.

24 Tak Wah Lam and Fung Ling Yue. Optimal edge ranking of trees in linear time. Algorithmica,
30(1):12–33, 2001. doi:10.1007/s004530010076.

25 Debbie Leung, Ashwin Nayak, Ala Shayeghi, Dave Touchette, Penghui Yao, and Nengkun Yu.
Capacity approaching coding for low noise interactive quantum communication. In STOC,
pages 339–352, 2018. doi:10.1145/3188745.3188908.

26 Krzysztof Onak and Pawel Parys. Generalization of binary search: Searching in trees and
forest-like partial orders. In FOCS, pages 379–388, 2006. doi:10.1109/FOCS.2006.32.

27 Andrzej Pelc. Searching games with errors—fifty years of coping with liars. Theoretical
Computer Science, 270(1):71–109, 2002. doi:10.1016/S0304-3975(01)00303-6.

28 Ronald L. Rivest, Albert R. Meyer, Daniel J. Kleitman, Karl Winklmann, and Joel Spencer.
Coping with errors in binary search procedures. J. Comput. Syst. Sci., 20(3):396–404, 1980.
doi:10.1016/0022-0000(80)90014-8.

29 Alfréd Rényi. On a problem of information theory. MTA Mat. Kut. Int. Kozl., 6B:505–516,
1961.

STACS 2025

https://doi.org/10.1145/3055399.3055422
https://doi.org/10.4230/LIPICS.ITCS.2021.1
https://doi.org/10.1007/978-3-540-32777-6_2
https://doi.org/10.4230/OASIcs.SOSA.2019.4
http://dl.acm.org/citation.cfm?id=139404.139409
https://doi.org/10.1145/2897518.2897656
https://doi.org/10.1137/S0097539791195877
https://doi.org/10.1137/1.9781611974331.ch135
https://doi.org/10.1109/TIT.2013.2294186
https://doi.org/10.4230/LIPIcs.ICALP.2024.75
https://doi.org/10.4230/LIPIcs.ICALP.2024.75
https://doi.org/10.1145/3564246.3585131
https://doi.org/10.1109/FOCS.2014.32
https://doi.org/10.2307/2282952
http://dl.acm.org/citation.cfm?id=1283383.1283478
https://doi.org/10.1137/S0097539700381991
https://doi.org/10.1137/S0097539700381991
https://doi.org/10.1007/s004530010076
https://doi.org/10.1145/3188745.3188908
https://doi.org/10.1109/FOCS.2006.32
https://doi.org/10.1016/S0304-3975(01)00303-6
https://doi.org/10.1016/0022-0000(80)90014-8

29:18 Noisy (Binary) Searching: Simple, Fast and Correct

30 Claude Elwood Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27:379–423, 1948. doi:10.1002/J.1538-7305.1948.TB01338.X.

31 Stanislaw M. Ulam. Adventures of a Mathematician. Scribner, New York, 1976.
32 Claude Leibovici (https://math.stackexchange.com/users/82404/claude-leibovici).

The taylor expansion of the binary entropy. Mathematics Stack Exchange. URL: https://math.
stackexchange.com/q/4502235 (version: 2022-07-29).

33 A. Wald. Sequential Tests of Statistical Hypotheses. The Annals of Mathematical Statistics,
16(2):117–186, 1945. URL: https://www.jstor.org/stable/2235829.

34 Ziao Wang, Nadim Ghaddar, and Lele Wang. Noisy sorting capacity. In IEEE International
Symposium on Information Theory, ISIT 2022, pages 2541–2546. IEEE, 2022. doi:10.1109/
ISIT50566.2022.9834370.

A Delegated Proofs

▶ Lemma 28. The solution to ax = b +
√

cx is of the form x = 1
a

(
b +O

(
c
a +
√

b ·
√

c
a

))
.

Proof. Solving the quadratic equation a2x2 + b2 − 2abx− cx = 0, we get:

∆ = (2ab + c)2 − 4a2b2 = c(c + 4ab)

x = 2ab + c +
√

c2 + 4abc

2a2 = b

a
+O

(
c +
√

abc

a2

)
◀

▶ Lemma 29. Let (Xi)i∈N+ be a sequence of i.i.d random variables with Pr(Xi = ℓ) = p

and Pr(Xi = r) = (1 − p) for some ℓ, r ∈ R and 0 < p < 1
2 . Let us fix T > 0 and let

Q = inf{m :
m∑

i=1
Xi ≥ T}. If E[Xi] > 0, then E[Q] <∞.

Proof. Let ζm =
m∑

i=1
Xi. If Q > m, then in particular ζm ≤ T , hence

Pr(Q > m) ≤ Pr(ζm ≤ T) (7)

for any m ∈ N+.
Let µ = E[Xi]. Obviously, E[ζm] = mE[Xi] = mµ. Now, let us define N = ⌈T

µ ⌉. For any
m > N we have

ζm ≤ T ⇐⇒ ζm −mµ ≤ −(mµ− T) (8)

and mµ− T > 0. Using Hoeffding bound [21] we get

Pr(ζm−mµ ≤ −(mµ−T)) ≤ exp{−2(mµ− T)2

m(ℓ + r)2 } ≤ exp{−2mµ2

(ℓ + r)2 + 4µT

(ℓ + r)2 } = Cβm (9)

with C = e
4µT

(ℓ+r)2 and β = e
−2µ2

(ℓ+r)2 . Observe that 0 < β < 1.
Putting together equations (7), (8) and (9) we get

E[Q] =
∞∑

m=0
Pr(Q > m)

=
∑

m≤N

Pr(Q > m) +
∑

m>N

Pr(Q > m) ≤
∑

m≤N

Pr(Q > m) + C
∑

m>N

βm <∞. ◀

https://doi.org/10.1002/J.1538-7305.1948.TB01338.X
https://math.stackexchange.com/users/82404/claude-leibovici
https://math.stackexchange.com/q/4502235
https://math.stackexchange.com/q/4502235
https://www.jstor.org/stable/2235829
https://doi.org/10.1109/ISIT50566.2022.9834370
https://doi.org/10.1109/ISIT50566.2022.9834370

	1 Introduction
	1.1 Problem statement
	1.2 Overview of our results
	1.3 Comparison with previous works
	1.3.1 Upper bounds for noisy binary search
	1.3.2 Reductions in complexity for expected length setting
	1.3.3 Upper bounds for noisy graph search
	1.3.4 Lower bounds

	1.4 Overview of the techniques
	1.5 Other related work

	2 Preliminaries
	3 Binary Search Algorithm
	3.1 Proof of Theorem 1 (The expected strategy length)
	3.2 Proof of Theorem 3 (Worst-case strategy length)

	4 Graph Searching Algorithm
	4.1 Proof of Theorem 5 (Worst-case strategy length)
	4.2 Proof of Theorem 4 (The expected strategy length)

	A Delegated Proofs

