
Being Efficient in Time, Space, and Workload:
a Self-Stabilizing Unison and Its Consequences
Stéphane Devismes #

Laboratoire MIS, Université de Picardie, 33 rue Saint Leu – 80039 Amiens cedex 1, France

David Ilcinkas #

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France

Colette Johnen #

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France

Frédéric Mazoit #

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France

Abstract
We present a self-stabilizing algorithm for the unison problem which is efficient in time, workload,
and space in a weak model. Precisely, our algorithm is defined in the atomic-state model and works
in anonymous asynchronous connected networks in which even local ports are unlabeled. It makes
no assumption on the daemon and thus stabilizes under the weakest one: the distributed unfair
daemon.

In an n-node network of diameter D and assuming the knowledge B ≥ 2D + 2, our algorithm
only requires Θ(log(B)) bits per node and is fully polynomial as it stabilizes in at most 2D + 2
rounds and O(min(n2B, n3)) moves. In particular, it is the first self-stabilizing unison for arbitrary
asynchronous anonymous networks achieving an asymptotically optimal stabilization time in rounds
using a bounded memory at each node.

Furthermore, we show that our solution can be used to efficiently simulate synchronous self-
stabilizing algorithms in asynchronous environments. For example, this simulation allows us to
design a new state-of-the-art algorithm solving both the leader election and the BFS (Breadth-First
Search) spanning tree construction in any identified connected network which, to the best of our
knowledge, beats all existing solutions in the literature.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory
of computation → Distributed algorithms; Theory of computation → Design and analysis of
algorithms

Keywords and phrases Self-stabilization, unison, time complexity, synchronizer

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.30

Funding David Ilcinkas, Colette Johnen, and Frédéric Mazoit: This work was supported by the
ANR project ENEDISC (ANR-24-CE48-7768). Colette Johnen and Stéphane Devismes: This work
was supported by the ANR project SkyData (ANR-22-CE25-0008).

1 Introduction

1.1 Context
Self-stabilization is a general non-masking and lightweight fault tolerance paradigm [25, 3].
Precisely, a distributed system achieving this property inherently tolerates any finite number
of transient faults.1 Indeed, starting from an arbitrary configuration, which may be the result
of such faults, a self-stabilizing system recovers within finite time, and without any external
intervention, a so-called legitimate configuration from which it satisfies its specification.

1 A transient fault occurs at an unpredictable time, but does not result in a permanent hardware damage.
Moreover, as opposed to intermittent faults, the frequency of transient faults is considered to be low.

© Stéphane Devismes, David Ilcinkas, Colette Johnen, and Frédéric Mazoit;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 30; pp. 30:1–30:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stephane.devismes@u-picardie.fr
https://orcid.org/0000-0002-8032-9732
mailto:david.ilcinkas@labri.fr
https://orcid.org/0000-0002-0094-4330
mailto:johnen@labri.fr
https://orcid.org/0000-0001-7170-4521
mailto:frederic.mazoit@labri.fr
https://orcid.org/0009-0000-7660-9275
https://doi.org/10.4230/LIPIcs.STACS.2025.30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Being Efficient in Time, Space, and Workload: A Self-Stabilizing Unison

In this paper, we consider the most commonly used model in the self-stabilizing area: the
atomic-state model [25, 3]. In this model, the state of each node is stored into registers and
these registers can be directly read by neighboring nodes. Furthermore, in one atomic step,
a node can read its state and that of its neighbors, perform some local computation, and
update its state accordingly. In the atomic-state model, asynchrony is materialized by an
adversary called daemon that can restrict the set of possible executions. We consider here
the weakest (i.e., the most general) daemon: the distributed unfair daemon.

Self-stabilizing algorithms are mainly compared according to their stabilization time, i.e.,
the worst-case time to reach a legitimate configuration starting from an arbitrary one. In
the atomic-state model, stabilization time can be evaluated in terms of rounds and moves.
Rounds [13] capture the execution time according to the speed of the slowest nodes. Moves
count the number of local state updates. So, the move complexity is rather a measure
of work than a measure of time. It turns out that obtaining efficient stabilization times
both in rounds and moves is a difficult task. Usually, techniques to design an algorithm
achieving a stabilization time polynomial in moves make its round complexity inherently
linear in n, the number of nodes (see, e.g., [2, 23, 19]). Conversely, achieving the asymptotic
optimality in rounds, usually O(D) where D is the network diameter, commonly makes the
stabilization time exponential in moves (see, e.g., [22, 31]). Surprisingly, Cournier, Rovedakis,
and Villain [14] manage to prove the first fully polynomial (i.e., with Poly(n) move and
Poly(D) round complexities) silent2 self-stabilizing algorithm. Their algorithm builds a BFS
(Breadth-First Search) spanning tree in any rooted connected network and they prove that it
stabilizes in O(n6) moves and O(D2) rounds using Θ(log B + log ∆) bits per node, where B

is an upper bound on D and ∆ is the maximum degree of the network.

Up to now, fully polynomial self-stabilizing algorithms have only been proposed (see [14,
21]) for so called static problems [34], such as spanning tree constructions and leader election,
which compute a fixed object in finite time. In this paper, we propose an algorithm for
a fundamental dynamic (i.e., non static) problem: the asynchronous unison (unison for
short). It consists in maintaining a local clock at each node. The domain of clocks can be
bounded (like everyday clocks) or infinite. The liveness property of the problem requests
each node to increment its own clock infinitely often. Furthermore, the safety property of
the unison requires the difference between the clocks of any two neighbors to always be at
most one increment. The usefulness of the unison comes from the fact that asynchrony often
makes fault tolerance very difficult in distributed systems. The impossibility of achieving
consensus in an asynchronous system in spite of at most one process crash [30] is a famous
example illustrating this fact. Thus, fault tolerance, and in particular self-stabilization, often
requires some kind of barrier synchronization, which the unison provides, to control the
asynchronism of the system by making processes progress roughly at the same speed. Unison
is thus a fundamental algorithmic tool that has numerous applications. Among others, it
can be used to simulate synchronous systems in asynchronous environments [17], to free an
asynchronous system from its fairness assumption (e.g., using the cross-over composition) [8],
to facilitate the termination detection [9], to locally share resources [11], or to achieve
infimum computations [10]. Thus, as expected, we also derive from our unison algorithm a
synchronizer allowing us to obtain several new state-of-the-art self-stabilizing algorithms for
various problems, including spanning tree problems and leader election.

2 In the atomic-state model, a self-stabilizing algorithm is silent if all its executions terminate.

S. Devismes, D. Ilcinkas, C. Johnen, and F. Mazoit 30:3

1.2 Related Work
Related Work on the Self-stabilizing Unison

The first self-stabilizing asynchronous unison for general graphs was proposed by Couvreur,
Francez, and Gouda [15] in the link-register model (a locally-shared memory model without
composite atomicity [27, 26]). However, no complexity analysis was given. Another solution,
which stabilizes in O(n) rounds, is proposed by Boulinier, Petit, and Villain [11] in the
atomic-state model assuming a distributed unfair daemon. Its move complexity is shown
in [24] to be in O(Dn3 + αn2), where α is a parameter of the algorithm that should satisfy
α ≥ L − 2, where L is the length of the longest hole in the network. In his PhD thesis,
Boulinier proposes a parametric solution that generalizes the solutions of both [15] and [11].
In particular, the time complexity analysis of this latter algorithm reveals an upper bound in
O(D · n) rounds on the stabilization time of the atomic-state model version of the algorithm
in [15]. Awerbuch, Kutten, Mansour, Patt-Shamir, and Varghese [4] propose a self-stabilizing
unison that stabilizes in O(D) rounds using an infinite state space. The move complexity of
their solution is not analyzed. An asynchronous self-stabilizing unison algorithm is given
in [23]. It stabilizes in O(n) rounds and O(∆ · n2) moves using unbounded local memories.
Emek and Keren [28] present in the stone age model a self-stabilizing unison that stabilizes
in O(B3) rounds, where B is an upper bound on D known by all nodes. Their solution
requires Θ(log B) bits per node. Moreover, since node activations are required to be fair, the
move complexity of their solution is unknown and may be unbounded.

Related Work on Simulations

Simulation is a useful tool to simplify the design of algorithms. In self-stabilization, simulation
has been mainly investigated to emulate schedulers or to port solutions from a strong
computational model to a weaker one. Awerbuch [7] introduced the concept of synchronizer
in a non-self-stabilizing context. A synchronizer simulates a synchronous execution of an input
algorithm into an asynchronous environment. The first two self-stabilizing synchronizers have
been proposed in [4] for message-passing systems. Both solutions achieve a stabilization time
in O(D) rounds. The first solution is based on the previously mentioned unison, also proposed
in the paper, that uses an infinite state space. To solve this latter issue, they then propose
to mix it with the reset algorithm of [5] applied on links of a BFS spanning tree computed
in O(D) rounds. This reset algorithm is devoted, and so limits the approach, to locally
checkable and locally correctable problems, and the BFS spanning tree construction uses a
finite yet unbounded number of states per node and requires the presence of a distinguished
node (a root). Again, the move complexity of their solutions is not analyzed. Awerbuch
and Varghese [6] propose, still in the message-passing model, two synchronizers: the rollback
compiler and the resynchronizer. The resynchronizer additionally requires the input algorithm
to be locally checkable and assumes the knowledge of a common upper bound D on the
network diameter. Using the rollback, resp. the resynchronizer, method, a synchronous
non-self-stabilizing algorithm can be turned into an asynchronous self-stabilizing algorithm
that stabilizes in O(T) rounds, resp. O(T + D) rounds, using Ω(T × S) space, resp. Θ(S)
space, per node where T , resp. S, is the execution time, resp. the space complexity, of the
input algorithm. Again, the move complexity of these synchronizers is not analyzed. Now,
the straightforward atomic-state model version of the rollback compiler is shown to achieve
exponential move complexities in [21]. Finally, the synchronizer proposed in [21] works in the
atomic-state model and achieves round and space complexities similar to those of the rollback

STACS 2025

30:4 Being Efficient in Time, Space, and Workload: A Self-Stabilizing Unison

compiler, but additionally offers polynomial move complexity. Hence, it allows to design
fully polynomial self-stabilizing solutions for static problems, but still with an important
memory requirement (using Ω(T × S) space).

Simulation has been also investigated in self-stabilization to emulate other schedulers. For
example, the conflict manager proposed in [32] allows to emulate an unfair locally central
scheduler in fully asynchronous settings. Another example is fairness that can be enforced
using a unison algorithm together with the cross-over composition [8].

Concerning now model simulations, Turau proposes in [35] a general procedure allowing
to simulate any algorithm for the distance-two atomic-state model in the (classical) distance-
one atomic-state model assuming that nodes have unique identifiers. Finally, simulation
from the atomic-state model to the link-register one and from the link-register model to the
message-passing one are discussed in [26].

1.3 Contributions
Fully Polynomial Self-stabilizing Unison

We propose a fully polynomial self-stabilizing bounded-memory unison in the atomic-state
model assuming a distributed unfair daemon. It works in any anonymous network of arbitrary
connected topology, and stabilizes in O(D) rounds and O(n3) moves using Θ(log B) bits per
node, where B ≥ 2D + 2 (see Table 1 below). To the best of our knowledge, our algorithm
vastly improves on the literature as other self-stabilizing algorithms have at least one of the
following drawbacks: an unbounded memory, an Ω(n) round complexity, a restriction on the
daemon (synchronous, fair, . . .). Note also that the computational model we use is at least
as general as the stone age model of Emek and Wattenhofer [29]: it does not require any
local port labeling at nodes, or knowing how many neighbors a node has.

Overall, our unison achieves outstanding performance in terms of time, workload, and
space, which also makes it the first fully polynomial self-stabilizing algorithm for a dynamic
problem.

Self-stabilizing Synchronizer

From our unison algorithm, we straightforwardly derive a self-stabilizing synchronizer that
efficiently simulates synchronous executions of an input self-stabilizing algorithm in an
asynchronous environment. More precisely, if the input algorithm AlgI is silent, then the
output algorithm Sync(AlgI) is silent as well and satisfies the same specification as AlgI .
The specification preservation property also holds for any algorithm, silent or not, solving
a static problem. We analyze the complexity of this synchronizer and show that it mostly
preserves the round and space complexities of the simulated algorithm (see Table 1 for
details). This synchronizer is thus a powerful tool to ease the design of efficient asynchronous
self-stabilizing algorithms. Indeed, for many tasks, the usual lower bound on the stabilization
time in rounds is Ω(D). Now, thanks to our unison, one just has to focus on the design
of a synchronous O(D)-round self-stabilizing algorithm to finally obtain an asynchronous
self-stabilizing solution asymptotically optimal in rounds, with a low overhead in space
(Θ(log B) bits per node) and a polynomial move complexity (i.e., a fully polynomial solution).

The transformer of [21] has similar round and move complexities. But this algorithm and
ours are incomparable as they make different trade-offs. This paper prioritizes memory over
generality, while the transformer of [21] makes the opposite choice by prioritizing generality
over memory. More precisely, the transformer of [21] can simulate any synchronous algorithm
(not necessarily self-stabilizing), by storing its whole execution. It thus has a much larger

S. Devismes, D. Ilcinkas, C. Johnen, and F. Mazoit 30:5

space complexity than ours, which only stores two states of the simulated input algorithm. It
turns out that the connections between our algorithm and the transformer of [21] are deeper
than their move and round complexities. We further explain their similarities as well as their
differences in Sections 3 and 4.5.

Implications of our Results

Using our synchronizer, one can easily obtain state-of-the-art (silent) self-stabilizing solutions
for several fundamental distributed computing problems, e.g., BFS tree constructions, leader
election, and clustering (see Table 1).

Table 1 Complexities of the Unison, the Synchronizer, and some consequences.

Moves Rounds Space

Unison O
(
min(n2B, n3)

)
2D + 2 ⌈log B⌉ + 2

Synchronizer O
(
min(n2B, n3) + nT

)
5D + 3T 2M + ⌈log B⌉ + 2

Problem Moves Rounds Space

BFS tree in rooted networks O(n3) O(D) Θ(log B + log ∆)

BFS tree in identified networks O(n3) O(D) Θ(log N)

Leader election O(n3) O(D) Θ(log N)

O(n
k

)-clustering O(n3) O(D) Θ(log k + log N)

T and M are the synchronous time and space complexities of the input algorithm,
and B and N are input parameters satisfying B ≥ 2D + 2 and N ≥ n.

First, we obtain a new state-of-the-art asynchronous self-stabilizing algorithm for the BFS
spanning tree construction in rooted and connected networks, by synchronizing the algorithm
in [22] (which is a bounded-memory variant of the algorithm in [27]). This new algorithm
converges in O(n3) moves and O(D) rounds with Θ(log B + log ∆) bits per node (the same
round and space complexities as in [22]), where B is an upper bound on D and ∆ is the
maximum node degree. It improves both on the algorithm in [14], which only converges in
O(n6) moves and O(D2) rounds, and on the algorithm in [21], which has similar complexities
but uses Θ(B · log ∆) bits per node.

In the following, we consider identified connected networks. In this setting, when nodes
store identifiers, they usually know a bound k on the size of these identifiers. They thus
know a bound N = 2k on n, and since N is a bound on D, we set B = 2N + 2.

In identified networks, a strategy to compute a BFS spanning tree is to compute a leader
together with a BFS tree rooted at this leader. This is what the self-stabilizing algorithm
in [33] actually does in a synchronous setting. Therefore, by synchronizing it, we obtain
a new state-of-the-art asynchronous self-stabilizing algorithm for both the leader election
and the BFS spanning tree construction in identified and connected networks. This new
algorithm converges in O(n3) moves and O(D) rounds with Θ(log N) bits per node (i.e.,
the same round and space complexities as in [33]). To the best of our knowledge, no such
efficient solutions exist until now in the literature. There are two incomparable asynchronous
self-stabilizing algorithms that achieve an O(D) round complexity [12, 1]. They operate in
weaker models (resp. message-passing and link-register). However, their move complexity is
not analyzed and the first one has a Θ(log B · log N) space requirement (B being a known
upper bound on D) while the second one uses an unbounded space.

STACS 2025

30:6 Being Efficient in Time, Space, and Workload: A Self-Stabilizing Unison

Other memory-efficient fully polynomial self-stabilizing solutions can be easily obtained
with our synchronizer, e.g., to compute the median or centers in anonymous trees by simulating
algorithms proposed in [18]. Another application of our synchronizer is to remove fairness
assumptions along with obtaining good complexities. For example, the silent self-stabilizing
algorithm proposed in [16] computes a clustering of O(n

k) clusters in any rooted identified
connected network. It assumes a distributed weakly fair daemon and its move complexity
is unknown. With our synchronizer,3 we achieve a fully polynomial silent solution that
stabilizes under the distributed unfair daemon and without the rooted network assumption,
in O(D) rounds, O(n3) moves, and using Θ(log k + log N) bits per node.

Note that, by using the compiler in [21], one can obtain similar time complexities for all
the previous problems, but with a drastically higher space usage.

1.4 Roadmap
The rest of the paper is organized as follows. Section 2 is dedicated to the computational
model and the basic definitions. We develop the links between the present paper and [21]
in Section 3, and we present our algorithm in Section 4. We sketch its correctness and its
time complexity in Section 5. In Section 6, the self-stabilizing synchronizer derived from our
unison algorithm is presented and its complexity is also sketched. We conclude in Section 7.

2 Preliminaries

2.1 Networks
We model distributed systems as simple graphs, that is, pairs G = (V, E) where V is a
set of nodes and E is a set of edges representing communication links. We assume that
communications are bidirectional. The set N(p) = {q | {p, q} ∈ E} is the set of neighbors
of p, with which p can communicate, and N [p] = N(p) ∪ {p} is the closed neighborhood of p.
A path (from p0 to pl) of length l is a sequence P = p0p1 · · · pl of nodes such that consecutive
nodes in P are neighbors. We assume that G is connected, meaning that any two nodes are
connected by a path. We can thus define the distance d(p, q) between two nodes p and q to
be the minimum length of a path from p to q. The diameter D of G is then the maximum
distance between nodes of G.

2.2 Computational Model: the Atomic-state Model
Our unison algorithm works in a variant of the atomic-state model in which each node holds
locally shared registers, called variables, whose values constitute its state. The vector of all
node states defines a configuration of the system.

An algorithm consists of a finite set of rules of the form label : guard → action. In
the variant that we consider, a guard is a boolean predicate on the state of the node and
on the set of states of its neighbors. The action changes the state of the node. To shorten
guards and increase readability, priorities between rules may be set. A rule whose guard is
true is enabled, and can be executed. By extension, a node with at least one enabled rule
is also enabled, and Enabled(γ) contains the enabled nodes in a configuration γ. Note that

3 Also replacing the spanning tree construction used in [16] by the new BFS tree construction of the
previous paragraph.

S. Devismes, D. Ilcinkas, C. Johnen, and F. Mazoit 30:7

this model is quite weak. Indeed, in other variants, nodes may have, for example, distinct
identifiers. In our case, the network is anonymous and since a node only accesses a set of
states, it cannot even count how many neighbors it has.

An execution in this model is a maximal sequence of configurations e = γ0γ1 · · · γi · · ·
such that for each transition (called step) γi 7→ γi+1, there is a nonempty subset X i of
Enabled(γi) whose nodes simultaneously and atomically execute one of their enabled rules,
leading from γi to γi+1. We say that each node of X i executes a move during γi 7→ γi+1.
Note that e is either infinite, or ends at a terminal configuration γf where Enabled(γf) = ∅.
An algorithm with no infinite executions is terminating or silent.

A daemon D is a predicate over executions. An execution which satisfies D is said to be
an execution under D. We consider the synchronous daemon, which is true if, at all steps,
X i := Enabled(γi), and the fully asynchronous daemon, also called distributed unfair daemon
in the literature, which is always true. Note that under the distributed unfair daemon, a
node may starve and may never be activated, unless it is the only enabled node.

In an execution, all the information in the states is not necessarily relevant for a problem.
We thus use a projection to extract information (e.g., just an output boolean for the boolean
consensus) from a node’s state, and we canonically extend this projection to configurations
and executions. A specification of a distributed problem is then a predicate over projected
executions. A problem is static if its specification requires the projected executions to be
constant, and it is dynamic otherwise.

An algorithm is self-stabilizing under a daemon D if, for every network and input
parameters, there exists a set of legitimate configurations such that (1) the algorithm
converges, i.e., every execution under D (starting from an arbitrary configuration) contains a
legitimate configuration, and (2) the algorithm is correct, i.e., every execution under D that
starts from a legitimate configuration satisfies the specification.

We consider three complexity measures: space, moves which model the total workload,
and rounds which model an analogous of the synchronous time by taking the speed of the
slowest nodes into account. As done in the literature on the atomic-state model, the space
complexity is the maximum space used by one node to store its own variables. As explained
before, a move is the execution of a rule by a node. To define the round complexity of an
execution e = γ0γ1 · · · , we first need to define the notion of neutralization: a node p is
neutralized in γi 7→ γi+1, if p is enabled in γi and not in γi+1, but it does not apply any rule
in γi 7→ γi+1. Then, the rounds are inductively defined as follows. The first round of an
execution e = γ0γ1 · · · is the minimal prefix e′ such that every node that is enabled in γ0

either executes a move or is neutralized during a step of e′. If e′ is finite, then let e′′ be
the suffix of e that starts from the last configuration of e′; the second round of e is the first
round of e′′, and so on. For every i > 0, we denote by γri the last configuration of the i-th
round of e, if it exists and is finite; we also conventionally let γr0 = γ0. Consequently, γri−1

is also the first configuration of the i-th round of e. The stabilization time of a self-stabilizing
algorithm is the maximum time (in moves or rounds) over every execution possible under
the considered daemon (starting from any initial configuration) to reach (for the first time) a
legitimate configuration.

3 A Glimpse of our Research Process

3.1 An Unbounded Unison Algorithm
We started this work on the bounded unison problem when we observed that an unbounded
solution can easily be derived from [21]. This can be seen as follows. The algorithm
given in [21] simulates a synchronous non self-stabilizing algorithm in an asynchronous

STACS 2025

30:8 Being Efficient in Time, Space, and Workload: A Self-Stabilizing Unison

self-stabilizing setting. To do so, it uses a very natural idea. It stores, at each node, the
whole execution of the algorithm so far as a list of states. Given its list and the lists of its
neighbors, a given node can check for inconsistencies in the simulation and correct them.

Now if we implement this idea in an asynchronous algorithm which is not self-stabilizing,
then the length of the lists satisfy the unison property. Indeed, to compute its (i + 1)-th
value, a node must wait for all its neighbors to have computed at least their i-th value.

Obviously, in a self-stabilizing setting, we cannot expect the length of the lists of the
nodes to initially satisfy the unison property. It turns out that the error recovery mechanism
in [21] not only solves the initial inconsistencies of the simulation, but also recovers the
unison property.

If we simulate an algorithm “that does nothing”, we can compress the lists by only storing
their lengths. We thus obtain a first (unbounded) unison algorithm, given below. Note that
although we describe the whole algorithm, the reader does not need to fully understand it.

Each node p has a status p.s ∈ {E, C} (Error/Correct) and a time p.t ∈ N. Given these
predicates,

root(p) :=
(
p.s = E ∧ ¬(∃q ∈ N(p), q.s = E ∧ q.t < p.t)

)
∨(

p.s = C ∧ ∃q ∈ N(p), (q.t ≥ p.t + 2)
)

activeRoot(p) := root(p) ∧ (p.t > 0 ∨ p.s = C)

errProp(p, i) := ∃q ∈ N(p), q.s = E ∧ q.t < i < p.t

canClearE(p) := p.s = E ∧ ∀q ∈ N(p),
(
|q.t − p.t| ≤ 1 ∧ (q.t ≤ p.t ∨ q.s = C)

)
updatable(p) := p.s = C ∧

(
∀q ∈ N(p), p.t ≤ q.t ≤ p.t + 1

)
the algorithm is defined by the following four rules

RR : activeRoot(p) −→ p.t := 0 ; p.s := E

RP (i) : errP rop(p, i) −→ p.t := i ; p.s := E

RC : canClearE(p) −→ p.s := C

RU : updatable(p) −→ p.t := p.t + 1

in which RR has the highest priority, and RP (i) has a higher priority than RP (i′) for i < i′.
The rules RR, RP (i) and RC are “error management” rules. Thus, once the algorithm has
stabilized, the status of all nodes is C and only RU is applicable.

This unbounded self-stabilizing unison algorithm is not really interesting by itself. Indeed,
it converges in 2D + 2 rounds in an asynchronous setting, but in this regard, the algorithm
in [4] converges twice as fast, is simpler and operates in the message-passing model, which is
more realistic. However, whereas nobody has been able to derive a bounded version of the
algorithm in [4], we hoped that this could be done with this new algorithm.

In the following subsections, we present a first very natural attempt, which ultimately
failed, and a more complex version, which we detail and prove in the next sections of the
paper.

3.2 A Failed Bounded Unison Algorithm

The most natural strategy to turn an unbounded unison into a bounded one is simply to
count modulo a large enough fixed bound B. To outline this change of paradigm from an
ever-increasing time to a circular clock, we rename the variable p.t into p.c for any node p.

S. Devismes, D. Ilcinkas, C. Johnen, and F. Mazoit 30:9

We thus modify the rule RU as follows:

updatable(p) := p.s = C ∧
(
∀q ∈ N(p), q.c ∈ {p.c, p.c + 1 mod B}

)
RU : updatable(p) −→ p.c := p.c + 1 mod B

At first glance, we do not need to modify the other rules as their purpose is only to
correct errors, but this intuition is wrong. Indeed, when two neighboring nodes p and q are
such that p.s = q.s = C, p.c = 0 and q.c = B − 1, they satisfy the unison property, but p

can apply the rule RR, although there are no errors to correct. The problem comes from
the term ∃q ∈ N(p), (q.c ≥ p.c + 2) in the root predicate which should detect out-of-sync
neighbors. Hence, we must at least modify this predicate as follows:

root(p) :=
(
p.s = E ∧ ¬(∃q ∈ N(p), q.s = E ∧ q.c < p.c)

)
∨(

p.s = C ∧ ∃q ∈ N(p), (q.c ≥ p.c + 2)∧¬(p.c = 0 ∧ q.c = B − 1). .
)
.

Therefore, transforming the algorithm to implement this simple modulo-B idea is already
not as straightforward as it may seem.

Moreover, even small modifications generally introduce new unforeseen behaviors, and
the modified algorithm has no particular reasons to be efficient, or even correct. As a matter
of fact, we failed to prove its correctness. To understand why, we must delve a bit into the
proof scheme of [21].

An important observation is that rootless configurations (i.e., those without nodes
satisfying the root predicate) satisfy the safety property of the unison. In [21], the correctness
and the move complexity then follow from the key property that roots cannot be created,
and that, in a “small” number of steps, at least one root disappears.

Sadly, this first attempt algorithm does not satisfy the “no root creations” property. To
see this, consider a path p − q − r and a configuration γa in which p.c = q.c = B − 1, r.c = 3,
p.s = q.s = C and r.s = E. In one step γa 7→ γb,

p applies the rule RU and thus, in γb, p.c = 0 and p.s = C

q applies the rule RP (4), and thus, in γb, q.c = 4.
Therefore, in γb, p.s = C and p has a neighbor q such that q.c ≥ p.c + 2 and q.c ̸= B − 1.
Thus, p is a root in γb, although it is not one in γa.

Note that the fact that roots can be created is not necessarily a problem. Indeed, if only
a finite number of them appears, we recover the correctness of the algorithm. We actually
believe that, for B large enough, any node can become a root only once per execution, and
this would most likely imply that the move complexity remains polynomial. But n roots may
appear sequentially, which would lead to an Ω(n) round complexity.

At this point, we cannot rule out that this algorithm is correct and has good properties.
However, because of these problems, we took another approach.

3.3 Our Solution
In the end, our solution is obtained by a rather limited modification of the previous algorithm:
we extend the range of the counters p.c to the interval [−B, B), but we restrict their range
to [−B, 0) when p.s = E.

Actually, this modification prevents all root creations. But, as with the previous attempt,
we must be extra careful even with the smallest change, as proofs can easily break. We thus
present the whole algorithm and its proofs in more details in the next sections, and further
highlight the differences with [21] in Section 4.5.

STACS 2025

30:10 Being Efficient in Time, Space, and Workload: A Self-Stabilizing Unison

4 A Unison Algorithm

4.1 Data Structures
Let B ≥ 2D + 2 be an integer. Each node p maintains a single variable p.v ∈ {(C, x) | x ∈
[−B, B)} ∪ {(E, x) | x ∈ [−B, 0)}. In the algorithm, p.s and p.c, the status and the clock
of p, respectively denote the left and right part of p.v. An assignment to p.s or p.c modifies
the corresponding field of p.v.

We define the unison increment a ⊕B 1 as (B − 1) ⊕B 1 = 0 and a ⊕B 1 = a + 1 if
a ∈ [−B, B − 2]. Two clocks are synchronized if they are at most one increment apart.
We then define a ⊕B b as the result of b iterations of ⊕B 1 over a. Note that, as hinted in
Section 3.2, we also use the usual addition and subtraction.

4.2 Some Predicates
Apart from its state, a node p has only access to the set {q.v | q ∈ N(p)} of its neighbors’
variables. A guard should thus not contain a direct reference to a neighbor q of p. This may
look like a problem for we have already used such references. Nevertheless, these uses are
legitimate as, for any predicate Pred, the semantics of ∃(s, c) ∈ {q.v | q ∈ N(p)}, Pred(s, c)
is precisely ∃q ∈ N(p), Pred(q.s, q.c). We can similarly encode universal statements.

As a matter of fact, we use the following shortcuts to increase readability:

Shortcut1 ∃q ∈ N(p), Pred(q.s, q.c) := ∃(s, c) ∈ {q.v | q ∈ N(p)}, Pred(s, c)
Shortcut2 ∀q ∈ N(p), Pred(q.s, q.c) := ∀(s, c) ∈ {q.v | q ∈ N(p)}, Pred(s, c)

Below, we define the predicates used by our algorithm.

root(p) :=
(
p.s = E ∧ ¬(∃q ∈ N(p), q.s = E ∧ q.c < p.c)

)
∨(

p.s = C ∧ ∃q ∈ N(p), (q.c ≥ p.c + 2) ∧ ¬(p.c = 0 ∧ q.c = B − 1)
)

activeRoot(p) := root(p) ∧ (p.c ̸= −B ∨ p.s = C)

errorPropag(p, i) := i < 0 ∧ ∃q ∈ N(p), q.s = E ∧ q.c < i < p.c

canClearE(p) := p.s = E ∧ ∀q ∈ N(p),
(
|q.c − p.c| ≤ 1 ∧ (q.c ≤ p.c ∨ q.s = C)

)
updatable(p) := p.s = C ∧ ∀q ∈ N(p), q.c ∈ {p.c, p.c ⊕B 1}

A node p is a root if root(p). An error rule is either the rule RR or a rule RP (i).

4.3 The Algorithm
A unison algorithm is rarely used alone. It is merely a tool to drive another algorithm. It
thus makes sense that our algorithm depends on some properties which are external to the
unison algorithm and its variables. Our algorithm uses a predicate Paux which is not yet
defined. As a matter of fact, its influence on the complexity analysis of the algorithm is very
limited. To prove the correctness of the unison, we set Paux = true, and we specialize Paux
differently in Section 6 when using our algorithm as a synchronizer.

RR : activeRoot(p) −→ p.c := −B ; p.s = E

RP (i) : errorP ropag(p, i) −→ p.c := i ; p.s = E

RC : canClearE(p) −→ p.s := C

RU : updatable(p) ∧ Paux(p) −→ p.c := p.c ⊕B 1
The rule RR has the highest priority, and RP (i) has a higher priority than RP (i′) for i < i′.

S. Devismes, D. Ilcinkas, C. Johnen, and F. Mazoit 30:11

4.4 An Overview of the Algorithm
Contrary to [4] which proceeds by only locally synchronizing out-of-sync clocks, i.e., the
clocks of two neighboring nodes that differ by at least two increments, we organize the
synchronizations in error broadcasts. Every node p involved in such a broadcast is in error
and its status is p.s = E. Otherwise, it is correct and p.s = C.

If p is correct, in sync with its neighbors, and if its clock p.c is a local minimum, then p

can apply the rule RU to increment its clock.
There is a cliff between r and one of its neighbors p if their clocks are out-of-sync and

p.c > r.c. If r is correct and has a cliff with a neighbor, then r is said to be a root and should
initiate an error broadcast by applying the rule RR, which respectively sets r.c to −B and
r.s to E.

If there is a cliff between r and p, r is in error, and r.c < −1, then p should propagate
the broadcast by applying the rule RP which sets p.c to r.c + 1 and p.s to E. If p has several
such neighbors r, it applies RP according to the one with the minimum clock.

As a consequence, any node p in error with p.c > −B should have at least one neighbor
in error with a smaller clock. This way, the structure of an error broadcast is a dag (directed
acyclic graph). We therefore extend the definition of root to include nodes in error with no
“parents” in the broadcast dag.

Note that a node may decrease its clock multiple times using RP , and in doing so may
consecutively join several error dags or several parts of them. This way, nodes reduce the
height of the error dags, which is a key element to achieve the O(D)-round complexity.
Furthermore, any node in error eventually has a clock smaller than −B + D and all cliffs are
eventually destroyed.

Finally, if p is in error, is not involved in any cliff (in which case an error must be
propagated), and if all its neighbors with larger clocks are correct, then the broadcast from p

is finished, and p can apply the rule RC to switch back p.s to C.
A key element to bound the move complexity is that a dag built during an error broadcast

is cleaned from the larger clocks to the smaller, but nodes previously in the dag resume the
“normal” increments (using the rule RU) in the reverse order (i.e., from the smaller clocks
to the larger). Indeed, a non-root node in an error broadcast is one increment ahead of its
parents in the dag and so has to wait for their increment before being able to perform one
itself. Hence, the first node in the dag that makes a RU move after an error broadcast is its
root.

4.5 Some Subtleties
Some statements and the corresponding proof arguments are very similar to the ones of [21]
(rather its arXiv version [20]). However, the fact that the algorithm and its data structures
are different imply that proofs are indeed different. As a matter of fact, we have tried but
failed to unify both algorithms into a natural more general one.

Below, we outline subtleties which are specific to our algorithm.
Since nodes in error are restricted to negative clocks, it is natural to expect that legitimate
configurations require all clocks to be non-negative. This would suggest a Θ(B) round
complexity, which is weaker than what we claim. But this intuition is false. For example,
the configuration where all nodes are correct and all clocks are set to −B is legitimate.
This is one of the reasons for our O(D) round complexity.
In the unbounded unison algorithm above which we derive from [21], whenever two
neighboring nodes p and q are such that q.s = E and p.c ≥ q.c + 2, the node p can always
apply a rule RP (i). In our algorithm, this is not the case when q.c = −1. This could

STACS 2025

30:12 Being Efficient in Time, Space, and Workload: A Self-Stabilizing Unison

introduce unexpected behaviors which could impact the complexities of our algorithm, or
in the worst case, lead to deadlocks. We thus have to deal with this slight difference in
the proofs.
In [21], the proofs heavily rely on the fact that the counters increase when applying the
rule RU while they decrease when applying the rules RR and RP (i). This monotony
property is however not true in our setting. More generally, having two addition operators
+ and ⊕B requires special care throughout the proofs.
Finally, to bound the memory, the maximum clock is B − 1, after which clocks go back
to 0. Notice that to ensure the liveness property of the unison, we must have B ≥ 2D + 2
(an example of deadlock is presented for B = 2D + 1 in Subsection 5.2).

5 Self-Stabilization and Complexity of the Unison Algorithm

As already mentioned, the unison algorithm corresponds to Paux = true. However, since
most proofs are valid regardless of the definition of Paux, we only specify it when needed.
We define the legitimate configurations as the configurations without roots. Let e = γ0γ1 · · ·
be an execution. We respectively denote by p.si and p.ci the value of p.s and p.c in γi.

5.1 Convergence and Move Complexity of the Unison Algorithm
Although it is tedious, it is straightforward to prove, by case analysis, that roots cannot be
created. Since roots are obstructions to legitimate configurations, it is natural to partition
the steps of e into segments such that each step in which at least one root disappears is the
last step of a segment. There are thus at most n segments with roots, which constitute the
stabilization phase, and at most one root-less segment. We now show that the stabilization
phase is finite by providing a (finite) bound on its move complexity.

In the following, s is any segment of the stabilization phase. The key fact is that in s, a
node p in error cannot apply the rule RU until the end of s. We prove this by induction on
p.c. If p.c = −B, then p is a root, and the only rule that p can apply is RC , which removes
its root status. The base case thus follows. Now let p be in error with p.c > −B. If p does
not move in s, then our claim holds. Otherwise let γa 7→ γb be the first step in which p

moves. If p applies the rule RR, then p.cb = −B, and for the remainder of s, the claim holds
by induction. Otherwise, p has a neighbor q such that q.sa = E and q.ca < p.ca < 0. By
induction, q.c cannot increase until the end of s. As long as p.c > q.c, p cannot apply the rule
RU and if, at some point, p.c ≤ q.c, then p must have applied an error rule, thus decreasing
its clock, at which point the claim holds by induction.

Since roots cannot be created, the number of RR-moves is at most n. Moreover, since
between two RC -moves, there has to be at least one error move (RR- or RP -move), we have
#RC-moves ≤ n + #RR-moves + #RP -moves ≤ 2n + #RP -moves. We thus only need to
bound the number of RU -moves and RP -moves.

We now bound the number of RU moves by a node in s. If a node q does not move
between γa and γb in s with a < b, then a neighbor p can apply the rule RU at most twice,
to go from q.ca − 1 to q.ca + 1. More generally, if p.cb ≥ p.ca + 2 + i (we really mean the
+ operator and not the ⊕B operator), then every neighbor q of p must increase its clock by
at least i between γa and γb. By induction on d, if p.cb = p.ca + 2d + i, then every node q

at distance d from p increases its clock by at least i between γa and γb. Since roots cannot
increase their clocks, this implies that p.cb ≤ p.ca + 2D.

From this “linear” bound, we now derive a “circular” bound which takes into account the
fact that the clock of a node may decrease while applying the rule RU (from B − 1 to 0).
In the worst case, p could apply the rule RU 2D times to reach p.c = B − 1, then apply

S. Devismes, D. Ilcinkas, C. Johnen, and F. Mazoit 30:13

RU once so that p.c = 0, then reapply RU 2D more times (recall that B ≥ 2D + 2). To
summarize, p may apply RU at most 4D + 1 times in s. This gives an O(n2D) bound on the
number of RU -moves done during the stabilization phase.

We now focus on the rule RP in s. If a node p0 applies a rule RP in a step γj1 7→ γj1+1 of
s, it does so to “connect” to a neighbor p1 which is already in error. Now p1 may be in error
in γj1 because it has applied a rule RP in another step γj2 7→ γj2+1 of s with j2 < j1, to
connect to a neighbor p2, and so on. This defines a causality chain p0 · · · pl for some l. Since,
according to the key fact, rules RP and RU do not alternate in s, a node cannot appear
twice in the causality chain, thus l < n. Moreover, when considering a maximal causality
chain, pl.c

jl is either the value of pl.c at the beginning of s, or −B if pl has applied the
rule RR. The clock p0.c can thus take at most n(n + 1) distinct values in s, which implies
that the rule RP is applied at most O(n2) times in s by a given node. This gives an overall
O(n4)-bound on the number of rules RP . Note that a more careful analysis gives an overall
bound of O(n3) on the total number of RP -moves.

We can also easily obtain a bound that involves B. Indeed, a node p has at most B

RP -moves and 4D + 1 = O(B) RU -moves in s. This gives an O(n2B)-bound on the number
of moves. To summarize, the stabilization phase terminates after at most O(min(n3, n2B))
moves.

Note that any configuration γ with at least one root contains at least one enabled node.
Indeed, if any two neighboring clocks are at most one increment apart, then any root is in
error, and the rule RC is enabled at any node p in error with p.c maximum. Otherwise, there
exist two neighbors p and q such that p.c and q.c are more than one increment apart. We
choose them with q.c < p.c and q.c minimum. q.c being minimum, we can show that either q

is a root that is enabled for RR, or p can apply the rule RP because q is in error and satisfies
q.c ≤ −B + D < −1. Thus, the last configuration of the stabilization phase is legitimate.

Also, note that since roots cannot be created, being legitimate is a closed property,
meaning that in a step γa 7→ γb, if γa is legitimate, then so is γb.

5.2 Correctness of the Unison Algorithm

We now show that any legitimate configuration γ satisfies the safety property of the unison.
First, γ cannot contain nodes in error, because any such node p with p.c minimum would be
a root. Moreover, if the clocks of two correct neighbors differ by more than one increment,
then the node with the smaller clock is a root.

To prove the liveness property of the unison, we set Paux = true in this paragraph. In
legitimate configurations, since neighboring clocks differ by at most one increment, any two
clocks differ by at most D increments. And since B ≥ 2D + 2, there exists c ∈ [0, B) which
is not the clock of any node. This implies that there exists at least one node p whose clock is
not the increment of any other clock. Thus, p satisfies updatable and can apply RU . This
proves that at least one node applies RU infinitely often, and thus so do all nodes. Observe
that B ≥ 2D + 2 is tight. Indeed, when B = 2D + 1, the configuration of the cycle p0,
p1, . . . p2D in which all nodes are correct and pi.c = i, is legitimate but is terminal.

5.3 Round Complexity of the Unison Algorithm

We claim that γr2D+2 contains no roots and so is legitimate. Recall that for all i ≥ 1, Round i

is γri−1 · · · γri . We suppose that all γri with i ≤ 2D + 1 contain roots otherwise our claim
directly holds.

STACS 2025

30:14 Being Efficient in Time, Space, and Workload: A Self-Stabilizing Unison

We now study the first D + 1 rounds. Let r be any root in γrD+1 . Since there are no
root creations, r is already a root in γ0. By the end of the first round (using the rule RR if
needed), r.c = −B and r.s = E. Now, since r is still a root in γrD+1 , it cannot make a move
in the meantime, and its state does not change until γrD+1 . Furthermore, every neighbor
p of r such that p.c > −B + 1 can apply the rule RP . So, by the end of Round 2, and as
long as r does not increment its clock, p.c ≤ −B + 1. By induction on the distance d(p, r)
between p and r, we can prove that p.crD+1 ≤ −B + d(p, r) for every node p and every root
r in γrD+1 .

We claim that γrD+1 does not contain any cliff, i.e., a pair (q, p) of neighboring nodes
whose clocks are out-of-sync and such that q.c < p.c. Suppose that (q, p) is a cliff in γrD+1 .
The node q is in error as otherwise it would be a root not in error, which, as already mentioned,
is impossible from γr1 . Moreover, we can prove by induction on q.c that there is a root r in
γrD+1 such that q.c ≥ −B + d(q, r). Since p.c ≥ q.c + 2, we have p.c > −B + d(p, r), which
contradicts the result of the previous paragraph.

We now consider the next D + 1 rounds. Since γrD+1 contains no nodes which can apply
RR, and no cliffs, nodes can only apply the rules RU or RC . Furthermore, among nodes in
error, those with the largest clock can apply the rule RC , which implies that roots no longer
exist by the end of Round 2D + 2, and thus γr2D+2 is legitimate.

6 A Synchronizer

Let us consider a variant of the atomic-state model which is at least as expressive as the
model of our unison algorithm. This means that, in this model, we should be able to encode
the shortcuts Shortcut1 and Shortcut2 (defined page 10).

In this model, let AlgI be any silent algorithm which is self-stabilizing with a projection
proj for a static specification SP under the synchronous daemon. Using folklore ideas (see,
e.g., [4] and [28]), we define in this section a synchronizer which uses our unison to transform
AlgI into an algorithm Sync(AlgI) which “simulates” synchronous executions of AlgI in an
asynchronous environment under a distributed unfair daemon.

6.1 The Synchronized Algorithm
On top of its unison variables, each node p stores two states of AlgI , in the variables p.old

and p.curr. These variables ought to contain the last two states of p in a synchronous
execution of AlgI . When p applies the rule RU , it also computes a next state of AlgI . It
does so by applying the function ÂlgI which selects p.curr and, for each neighbor q, the
variable q.curr if p.c = q.c, and q.old if q.c = p.c ⊕B 1, and applies AlgI on these values. We
thus modify the rule RU in the following way:

RU : updatable(p) ∧ Paux(p) −→ p.old := p.curr; p.curr := ÂlgI(p); p.c := p.c ⊕B 1.

The folklore algorithm corresponds to the case when Paux(p) is always true. In this case,
the clocks of the unison constantly change. Thus, even if AlgI is silent, its simulation is not.
To obtain a silent simulation, we devise another strategy by defining Paux(p) as follows.

Paux(p) = (ÂlgI(p) ̸= p.curr) ∨ (∃q ∈ N(p), q.c = p.c ⊕B 1).

We define the legitimate configurations of Sync(AlgI) to be its terminal configurations.
In the next sections, we sketch the proof that Sync(AlgI) is self-stabilizing for the same
specification as AlgI . As a matter of fact, our result is more general as the silent assumption
is not necessary (we need a different definition for the legitimate configurations though).

S. Devismes, D. Ilcinkas, C. Johnen, and F. Mazoit 30:15

6.2 Convergence and Move Complexity of the Synchronized Algorithm
In everyday life, we have a distinction between the value of a clock (modulo 24 hours) and
the time. Both are obviously linked. We would like to make a similar distinction here. Let
e = γ0γ1 · · · be an execution of legitimate configurations. Since γ0 is legitimate, every two
neighboring clocks differ by at most one increment.

Since B ≥ 2D + 2, as already mentioned, at least one element of [0, B) is the clock of no
nodes in γ0. This implies that there is a node x such that x.c0 ⊕B 1 is not the clock of any
node. We extend this local synchronization property by uniquely defining time(p)0 ∈ [−D, 0]
by (1) time(x)0 = 0, (2) if p.c0 = q.c0, then time(p)0 = time(q)0, and (3) if p.c ⊕B 1 = q.c,
then time(p)0 = time(q)0 −1. Moreover, we also define time(p)i+1 = time(p)i +1 if p applies
RU in γi 7→ γi+1, and time(p)i+1 = time(p)i otherwise.

For any i, j ≥ 0 such that time(p)j = i, we set sti
p := p.currj . When sti

p is defined for
all p, let λi be the configuration in which the state of each node p is sti

p. A careful analysis
shows that, by definition of Paux, λi exists as soon as some sti

p does, and Λ = λ0λ1 · · · is
precisely the synchronous execution of AlgI from λ0.

Suppose that T is a bound on the number of rounds that AlgI needs to reach silence.
Thus, Λ = λ0 · · · λH for some H ≤ T . In the simulation phase, a node makes at most D

moves to have a non-negative time, and then at most T moves to finish the simulation.
Together with the stabilization time of the unison, our simulated algorithm is also silent with
an O(min(n3, n2B) + nD + nT) = O(min(n3, n2B) + nT) move complexity.

6.3 Correctness of the Synchronized Algorithm
In Sync(AlgI), we define the restriction rest(s) of the state s of any node p to be p.curr,
and we canonically extend rest to configurations and executions. Let us consider a legitimate
configuration γ of Sync(AlgI). This configuration is terminal, and therefore there exists a
unique execution e of Sync(AlgI) starting at γ (the one restricted to γ alone). Besides, since
γ is terminal, its restriction is terminal too (for AlgI). Therefore rest(γ) is legitimate, and
proj(rest(e)) satisfies the specification SP . Hence, the algorithm Sync(AlgI) also satisfies
SP (for the projection proj ◦ rest).

6.4 Round Complexity of the Synchronized Algorithm
The round complexity is analyzed by considering two stages: a first stage to have all times
non-negative, and a second stage to have all times equal to H.

To give an intuition of our proof, as it is the more complex, we first consider the second
stage. Figure 1 is an illustration of the following explanation. Suppose that all times are 0
in γ0, and only s1 is such that st0

s1
̸= st1

s1
. In the first round of the synchronous execution,

s1 applies RU , and then, after each new round, nodes at distance 1 from s1, then 2, and so
on will increase their time to 1. Now suppose that only s2 ∈ N [s1] is such that st1

s2
̸= st2

s2
.

As soon as all nodes in N [s2] have a time of 1, s2 applies RU . This happens at Round 3 if
s2 = s1 and at Round 4 otherwise. After this, after each new round, nodes at distance 1
from s2, then 2, and so on will increase their time to 2. If we consider some s3 ∈ N [s2], and
so on, then si increases its time to i at Round at most 3i − 2, and all nodes do so at Round
at most 3i + D − 2. If nodes increase their time earlier, this only speed up the process.

Now, by definition of H, there is a node sH whose state changes between λH−1 and λH .
If the states of all nodes in N [p] were the same in λH−2 and λH−1, then sH would not have
changed its state between λH−1 and λH . There thus exists sH−1 ∈ N [sH] that changes its
state between λH−2 and λH−1. By repeating this process, we can prove that, unless H = 0,

STACS 2025

30:16 Being Efficient in Time, Space, and Workload: A Self-Stabilizing Unison

p0 s1 s2 s3 s4 s5 p6 p7 p8

0 0 0 0 0 0 0 0 0

1

round 1

0
1
2
3

ti
m
e(
p
)

p0 s1 s2 s3 s4 s5 p6 p7 p8

0 0 0 0 0 0 0 0 0

12 2 3 41

4

round 4

p0 s1 s2 s3 s4 s5 p6 p7 p8

0 0 0 0 0 0 0 0 0

12 2 3 41

4

5 6 7

6 5 5 6 7

1

4

7

round 7

p0 s1 s2 s3 s4 s5 p6 p7 p8

0 0 0 0 0 0 0 0 0

12 2 3 41

4

5 6 7

6 5 5 6 7

1

4

7

8

8 9 10

10 9 8 8 9 10 11 12

14 13 12 11 11 12 13 13

18 17 16 15 14 14 15 16

1

4

7

10

13

round 18

0
1
2
3
4
5

ti
m
e(
p
)

Figure 1 The intuition of the round complexity for the second stage.

Λ has a starting sequence that is a sequence s1 · · · sH verifying sti−1
si

̸= sti
si

for 1 ≤ i ≤ H,
and si−1 ∈ N [si] for 1 < i ≤ H. We can then prove that, if all nodes have a positive time at
Round X, then the algorithm becomes silent after at most X + 3H + D − 2 rounds.

Using similar ideas, we can prove that all times are non-negative after at most X = 2D

rounds. Taking into account the 3D + 2 rounds of the stabilization phase, we obtain an
overall 5D + 3T round complexity to reach the silence from any configuration.

7 Conclusion

We propose the first fully polynomial self-stabilizing unison algorithm for anonymous asyn-
chronous bidirectional networks of arbitrary connected topology, and use it to obtain new
state-of-the-art algorithms for various problems such as BFS constructions, leader election,
and clustering.

A challenging perspective would be to generalize our approach to weaker models such
as the message passing or the link-register models. We would also be curious to know the
properties of the algorithm proposed in Section 3.2. Thirdly, although we could not do it, it
would be nice to unify our result with that of [21] in a satisfactory manner. Finally, it would
be interesting to know whether or not constant memory can be achieved by an asynchronous
self-stabilizing unison for arbitrary topologies.

References
1 S. Aggarwal and S. Kutten. Time optimal self-stabilizing spanning tree algorithms. In 13th

Foundations of Software Technology and Theoretical Computer Science, (TSTTCS’93), volume
761, pages 400–410, 1993. doi:10.1007/3-540-57529-4_72.

2 K. Altisen, A. Cournier, S. Devismes, A. Durand, and F. Petit. Self-stabilizing leader
election in polynomial steps. Information and Computation, 254(3):330–366, 2017. doi:
10.1016/j.ic.2016.09.002.

3 K. Altisen, S. Devismes, S. Dubois, and F. Petit. Introduction to Distributed Self-Stabilizing
Algorithms. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool, 2019.
doi:10.2200/S00908ED1V01Y201903DCT015.

https://doi.org/10.1007/3-540-57529-4_72
https://doi.org/10.1016/j.ic.2016.09.002
https://doi.org/10.1016/j.ic.2016.09.002
https://doi.org/10.2200/S00908ED1V01Y201903DCT015

S. Devismes, D. Ilcinkas, C. Johnen, and F. Mazoit 30:17

4 B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and G. Varghese. Time optimal self-
stabilizing synchronization. In 25th Annual Symposium on Theory of Computing, (STOC’93),
pages 652–661, 1993. doi:10.1145/167088.167256.

5 B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking and
correction. In 32nd Annual Symposium of Foundations of Computer, Science (FOCS’91),
pages 268–277, 1991. doi:10.1109/SFCS.1991.185378.

6 B. Awerbuch and G. Varghese. Distributed program checking: a paradigm for building self-
stabilizing distributed protocols. In 32nd Annual Symposium on Foundations of Computer
Science, (FOCS’91), pages 258–267, 1991. doi:10.1109/SFCS.1991.185377.

7 Baruch Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804–823, 1985.
doi:10.1145/4221.4227.

8 J. Beauquier, M. Gradinariu, and C. Johnen. Cross-over composition - enforcement of fairness
under unfair adversary. In 5th International Workshop on Self-Stabilizing Systems, (WSS’01),
pages 19–34, 2001. doi:10.1007/3-540-45438-1_2.

9 L. Blin, C. Johnen, G. Le Bouder, and F. Petit. Silent anonymous snap-stabilizing termination
detection. In 41st International Symposium on Reliable Distributed Systems, (SRDS’22), pages
156–165, 2022. doi:10.1109/SRDS55811.2022.00023.

10 C. Boulinier and F. Petit. Self-stabilizing wavelets and rho-hops coordination. In 22nd IEEE
International Symposium on Parallel and Distributed Processing, (IPDPS’08), pages 1–8, 2008.
doi:10.1109/IPDPS.2008.4536130.

11 C. Boulinier, F. Petit, and V. Villain. When graph theory helps self-stabilization. In 23rd
Annual Symposium on Principles of Distributed Computing, (PODC’04), pages 150–159, 2004.
doi:10.1145/1011767.1011790.

12 J. Burman and S. Kutten. Time optimal asynchronous self-stabilizing spanning tree. In 21st
International Symposium on Distributed Computing, (DISC’07), volume 4731, pages 92–107,
2007. doi:10.1007/978-3-540-75142-7_10.

13 A. Cournier, A. K. Datta, F. Petit, and V. Villain. Snap-stabilizing PIF algorithm in arbitrary
networks. In 22nd International Conference on Distributed Computing Systems (ICDCS’02),
pages 199–206, 2002. doi:10.1109/ICDCS.2002.1022257.

14 A. Cournier, S. Rovedakis, and V. Villain. The first fully polynomial stabilizing algorithm for
BFS tree construction. Information and Computation, 265:26–56, 2019. doi:10.1016/j.ic.
2019.01.005.

15 J.-M. Couvreur, N. Francez, and M. G. Gouda. Asynchronous unison (extended abstract). In
12th International Conference on Distributed Computing Systems, (ICDCS’92), pages 486–493,
1992. doi:10.1109/ICDCS.1992.235005.

16 A. K. Datta, S. Devismes, K. Heurtefeux, L. L. Larmore, and Y. Rivierre. Competitive
self-stabilizing k-clustering. Theoretical Computer Science, 626:110–133, 2016. doi:10.1016/
j.tcs.2016.02.010.

17 A. K. Datta, S. Devismes, and L. L. Larmore. A silent self-stabilizing algorithm for the
generalized minimal k-dominating set problem. Theoretical Computer Science, 753:35–63,
2019. doi:10.1016/j.tcs.2018.06.040.

18 A. K. Datta and L. L. Larmore. Leader election and centers and medians in tree networks. In
15th International Symposium on Stabilization, Safety, and Security of Distributed Systems,
(SSS’13), pages 113–132, 2013. doi:10.1007/978-3-319-03089-0_9.

19 S. Devismes, D. Ilcinkas, and C. Johnen. Optimized silent self-stabilizing scheme for tree-based
constructions. Algorithmica, 84(1):85–123, 2022. doi:10.1007/s00453-021-00878-9.

20 S. Devismes, D. Ilcinkas, C. Johnen, and F. Mazoit. Making local algorithms efficiently
self-stabilizing in arbitrary asynchronous environments. CoRR, abs/2307.06635, 2023. doi:
10.48550/arXiv.2307.06635.

21 S. Devismes, D Ilcinkas, C. Johnen, and F. Mazoit. Asynchronous self-stabilization made
fast, simple, and energy-efficient. In 43rd Symposium on Principles of Distributed Computing,
(PODC’24), pages 538–548, 2024. doi:10.1145/3662158.3662803.

STACS 2025

https://doi.org/10.1145/167088.167256
https://doi.org/10.1109/SFCS.1991.185378
https://doi.org/10.1109/SFCS.1991.185377
https://doi.org/10.1145/4221.4227
https://doi.org/10.1007/3-540-45438-1_2
https://doi.org/10.1109/SRDS55811.2022.00023
https://doi.org/10.1109/IPDPS.2008.4536130
https://doi.org/10.1145/1011767.1011790
https://doi.org/10.1007/978-3-540-75142-7_10
https://doi.org/10.1109/ICDCS.2002.1022257
https://doi.org/10.1016/j.ic.2019.01.005
https://doi.org/10.1016/j.ic.2019.01.005
https://doi.org/10.1109/ICDCS.1992.235005
https://doi.org/10.1016/j.tcs.2016.02.010
https://doi.org/10.1016/j.tcs.2016.02.010
https://doi.org/10.1016/j.tcs.2018.06.040
https://doi.org/10.1007/978-3-319-03089-0_9
https://doi.org/10.1007/s00453-021-00878-9
https://doi.org/10.48550/arXiv.2307.06635
https://doi.org/10.48550/arXiv.2307.06635
https://doi.org/10.1145/3662158.3662803

30:18 Being Efficient in Time, Space, and Workload: A Self-Stabilizing Unison

22 S. Devismes and C. Johnen. Silent self-stabilizing BFS tree algorithms revisited. Journal on
Parallel Distributed Computing, 97:11–23, 2016. doi:10.1016/j.jpdc.2016.06.003.

23 S. Devismes and C. Johnen. Self-stabilizing distributed cooperative reset. In 39th International
Conference on Distributed Computing Systems, (ICDCS’19), pages 379–389, 2019. doi:
10.1109/ICDCS.2019.00045.

24 S. Devismes and F. Petit. On efficiency of unison. In 4th Workshop on Theoretical Aspects
of Dynamic Distributed Systems, (TADDS’12), pages 20–25, 2012. doi:10.1145/2414815.
2414820.

25 E. W. Dijkstra. Self-stabilization in spite of distributed control. Communications of the ACM,
17(11):643–644, 1974. doi:10.1145/361179.361202.

26 S. Dolev. Self-Stabilization. MIT Press, 2000.
27 S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming only

read/write atomicity. Distributed Computing, 7(1):3–16, 1993. doi:10.1007/BF02278851.
28 Y. Emek and E. Keren. A thin self-stabilizing asynchronous unison algorithm with applica-

tions to fault tolerant biological networks. In 40nd Symposium on Principles of Distributed
Computing, (PODC’21), pages 93–102, 2021. doi:10.1145/3465084.3467922.

29 Y. Emek and R. Wattenhofer. Stone age distributed computing. In 32nd Symposium on
Principles of Distributed Computing, (PODC’13), pages 137–146, 2013. doi:10.1145/2484239.
2484244.

30 M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–382, 1985. doi:10.1145/3149.214121.

31 C. Glacet, N. Hanusse, D. Ilcinkas, and C. Johnen. Disconnected components detection
and rooted shortest-path tree maintenance in networks. Journal of Parallel and Distributed
Computing, 132:299–309, 2019. doi:10.1016/j.jpdc.2019.05.006.

32 Maria Gradinariu and Sébastien Tixeuil. Conflict managers for self-stabilization without
fairness assumption. In 27th IEEE International Conference on Distributed Computing Systems
(ICDCS 2007), June 25-29, 2007, Toronto, Ontario, Canada, page 46. IEEE Computer Society,
2007. doi:10.1109/ICDCS.2007.95.

33 A. Kravchik and S. Kutten. Time optimal synchronous self stabilizing spanning tree. In
27th International Symposium on Distributed Computing, (DISC’13), pages 91–105, 2013.
doi:10.1007/978-3-642-41527-2_7.

34 S. Tixeuil. Vers l’auto-stabilisation des systèmes à grande échelle. Habilitation à diriger des
recherches, Université Paris Sud - Paris XI, 2006. URL: https://tel.archives-ouvertes.
fr/tel-00124848/file/hdr_final.pdf.

35 V. Turau. Efficient transformation of distance-2 self-stabilizing algorithms. Journal of Parallel
and Distributed Computing, 72(4):603–612, 2012. doi:10.1016/j.jpdc.2011.12.008.

https://doi.org/10.1016/j.jpdc.2016.06.003
https://doi.org/10.1109/ICDCS.2019.00045
https://doi.org/10.1109/ICDCS.2019.00045
https://doi.org/10.1145/2414815.2414820
https://doi.org/10.1145/2414815.2414820
https://doi.org/10.1145/361179.361202
https://doi.org/10.1007/BF02278851
https://doi.org/10.1145/3465084.3467922
https://doi.org/10.1145/2484239.2484244
https://doi.org/10.1145/2484239.2484244
https://doi.org/10.1145/3149.214121
https://doi.org/10.1016/j.jpdc.2019.05.006
https://doi.org/10.1109/ICDCS.2007.95
https://doi.org/10.1007/978-3-642-41527-2_7
https://tel.archives-ouvertes.fr/tel-00124848/file/hdr_final.pdf
https://tel.archives-ouvertes.fr/tel-00124848/file/hdr_final.pdf
https://doi.org/10.1016/j.jpdc.2011.12.008

	1 Introduction
	1.1 Context
	1.2 Related Work
	1.3 Contributions
	1.4 Roadmap

	2 Preliminaries
	2.1 Networks
	2.2 Computational Model: the Atomic-state Model

	3 A Glimpse of our Research Process
	3.1 An Unbounded Unison Algorithm
	3.2 A Failed Bounded Unison Algorithm
	3.3 Our Solution

	4 A Unison Algorithm
	4.1 Data Structures
	4.2 Some Predicates
	4.3 The Algorithm
	4.4 An Overview of the Algorithm
	4.5 Some Subtleties

	5 Self-Stabilization and Complexity of the Unison Algorithm
	5.1 Convergence and Move Complexity of the Unison Algorithm
	5.2 Correctness of the Unison Algorithm
	5.3 Round Complexity of the Unison Algorithm

	6 A Synchronizer
	6.1 The Synchronized Algorithm
	6.2 Convergence and Move Complexity of the Synchronized Algorithm
	6.3 Correctness of the Synchronized Algorithm
	6.4 Round Complexity of the Synchronized Algorithm

	7 Conclusion

