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Abstract
We study three two-stage optimization problems with a similar structure and different objectives.
In the first stage of each problem, the goal is to assign input jobs of positive sizes to unsplittable
bags. After this assignment is decided, the realization of the number of identical machines that
will be available is revealed. Then, in the second stage, the bags are assigned to machines. The
probability vector of the number of machines in the second stage is known to the algorithm as part
of the input before making the decisions of the first stage. Thus, the vector of machine completion
times is a random variable. The goal of the first problem is to minimize the expected value of the
makespan of the second stage schedule, while the goal of the second problem is to maximize the
expected value of the minimum completion time of the machines in the second stage solution. The
goal of the third problem is to minimize the ℓp norm for a fixed p > 1, where the norm is applied on
machines’ completion times vectors. Each one of the first two problems admits a PTAS as Buchem
et al. showed recently. Here we significantly improve all their results by designing an EPTAS for
each one of these problems. We also design an EPTAS for ℓp norm minimization for any p > 1.
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1 Introduction

We consider scheduling problems where the goal is to assign jobs non-preemptively to a set
of identical machines. Unlike traditional scheduling problems [22], the number of identical
machines available to the scheduler, denoted as k, is not a part of the input, but it is drawn
from a known probability distribution on the set of integers {1, 2, . . . , m} for an integer
m ≥ 2 that is a part of the input, and it is given together with the probabilities. As a first
stage, the decision maker completes an initial set of decisions, namely it assigns the jobs to
m bags, forming a partition of all input jobs. Later, once the realization of the number of
machines becomes known, it packs the bags to the machines, where the packing of a bag to a
machine means that all its jobs are scheduled together to this machine. That is, in this later
step, every pair of jobs that were assigned to a common bag will be assigned to a common
machine, and the decision of the first stage (that is, the partition of input jobs into m bags)
is irrecoverable. This two-stage stochastic scheduling problem was recently introduced by
Buchem et al. [9].

Formally, the input consists of a set of jobs J = {1, 2, . . . , n} where each job j ∈ J
has a positive rational size pj associated with it. We are given an integer m ≥ 2 and let
B = {1, 2, . . . , m} denote the set of bags. We are also given a probability measure q over
B, where qk is a rational non-negative number denoting the probability that the number of
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31:2 EPTAS’s for Scheduling on a Stochastic Number of Machines

identical machines in the resulting second stage instance is k. Here, we will use the property
that

∑m
k=1 qk = 1. In the first stage of our problem, the jobs are split into m bags by an

algorithm. Namely, a feasible solution of the first stage is a function σ1 : J → B. In the
second stage, after the value of k has been revealed, the bags are assigned to machines,
such that all jobs of each bag are assigned together. Namely, the algorithm also computes
assignment functions σk

2 defined for every realization k in the support of q of the bags to the
set of integers {1, 2, . . . , k} denoting the indexes of machines in the instance of the second
stage problem (corresponding to the realization of q that is equal to k). So if the realization
of q is k, a job j ∈ J will be assigned to the machine of index σ

(k)
2 (σ1(j)). The first function

σ1 maps jobs to bags, and the second function which is based on the value of k, σk
2 , maps

bags to machines. The number of bags is m (and σ1 is independent of k, so the partition
into bags does not depend on k which is not known yet at the time of assignment into bags),
and the number of machines is k, so for every realization of k the schedule of the jobs to the
k machines is a feasible (non-preemptive) schedule for k identical machines.

We use the terminology of such scheduling problems and let Wi be the work (also called
load) of machine i which is the total size of jobs assigned to machine i in a schedule. This
is also the completion time of a unit speed machine processing continuously the set of jobs
assigned to machine i starting at time 0 (in some order). The makespan of the schedule in
realization k is the maximum work of a machine in the second stage solution in the realization
k of q, and the Santa Claus value of the schedule of realization k is the minimum work of a
machine (among the k machines) in the second stage solution in the realization k of q.

The expected value of the makespan is the expected value of the random variable of the
makespan of the schedule in realization k. The expectation is computed based on all possible
values of k. The first problem that we consider is the problem of minimizing the expected
value of this random variable. We denote it as Pr-makespan and refer to it as the makespan
minimization problem. The expected value of the Santa Claus value is the expected value of
the random variable of the Santa Claus value of the schedule in realization k. The second
problem we consider is the problem of maximizing the expected value of this random variable.
We denote it as Pr-SantaClaus and refer to it as the Santa Claus maximization problem.
While the term makespan is used in the scheduling literature in this meaning the term Santa
Claus is not traditional, and it is usually referred to as the minimum work of a machine in
the schedule. Given the length of the resulting terminology for our settings, we prefer to use
the non-traditional terminology of Santa Claus value. The expected value of the random
variable is called cost or value for minimization problems, and it is called profit or value for
maximization problems. In the ℓp norm minimization problem, the objective for k machines
is (

∑k
i=1 W

p
i )1/p. The cost of a solution of the third problem is the expected cost based on

the random variable. This last problem is denoted by Pr-norm.
Since the stochastic nature of the problem results only from the different options for k

(and once k is known, the problem is deterministic), we say that if the realization of q is k,
then this is the scenario of index k or simply scenario k. We let optk denote the objective
function value of the second stage problem in scenario k for an optimal solution for the
studied problem, and let opt =

∑m
k=1 qk · optk denote the value of an optimal solution to

our problem. An optimal solution needs to balance all scenarios, and we denote this optimal
solution by opt as well (that is, we use the same notation as the cost or the value). We
stress that optk is not necessarily the optimal objective function value for the input jobs
and k machines, since the solution with a fixed set of bags may be inferior. We will assume
that 1

ε
is a positive integer such that 1

ε
> 100 (this can be done without loss of generality

as one can first decrease ε to the minimum between its original value and 1
100 , and then it
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is always possible to decrease the value of ε by a factor below 2 to satisfy the integrality
condition on 1

ε
). The assumptions on ε will be used for all schemes (and in particular we

will use ε < 1
100 ). Let pmax = maxj∈J pj .

An overview of our results. Here, we study both minimization problems and a maximization
problem. All types of algorithms defined here are required to have polynomial running times
(and our algorithms will in fact have strongly polynomial running times). For a minimization
problem, an R-approximation algorithm is an algorithm that always finds a solution that is
feasible and has a cost at most R times the cost of an optimal solution. For a maximization
problem, an R-approximation algorithm is an algorithm that always finds a feasible solution
of value at least 1

R times the value of an optimal solution. The approximation ratio of a
given algorithm is the infimum value of the parameter R such that this algorithm is an
R-approximation algorithm.

A PTAS is a class of approximation algorithms such that for any ε > 0 the class has a
(1+ε)-approximation algorithm. An efficient polynomial time approximation scheme (EPTAS)
is a stronger concept. This is a PTAS whose running time is of the form h(ε) · poly(N)
where h is some (computable but not necessarily polynomial) function and poly(N) is a
polynomial function of the length N of the (binary) encoding of the input. We will justify the
assumption m ≤ n later, and therefore the running time can be rewritten in this form when
the polynomial is on m and n. A fully polynomial time approximation scheme (FPTAS) is
an even stronger concept, defined like an EPTAS, but the function h must be a polynomial
in 1

ε
. In this paper, we are interested in EPTAS’s.

A PTAS may have time complexity of the form ng(ε), where g can be any function of 1
ε

and even a power tower function. However, an EPTAS cannot have such a running time,
which makes it more efficient. The concept of an EPTAS is related to fixed parameter
tractable (FPT) algorithms [16].

In this paper, we focus on finding EPTAS’s for the three objectives. We develop an
EPTAS for the makespan minimization problem in Section 2. Then, in Section 3 we establish
an EPTAS for the Santa Claus maximization problem Pr-SantaClaus. Last, in the full
version of this work we modify our scheme for Pr-makespan in order to obtain an EPTAS
for Pr-norm. Due to space limitations, some of the proofs of the first two results are given
in the full version, and the last EPTAS for Pr-norm is presented in the full version as
well. In the recent work [9], a PTAS was designed for Pr-makespan, and another PTAS
was designed for Pr-SantaClaus. Those PTAS’s are of forms that do not allow a simple
modification of the PTAS into an EPTAS, and in particular for Pr-SantaClaus a dynamic
program over a state space whose size is exponential is used (a function of ε appears in the
exponent of the input size), and for both schemes enumeration steps of such sizes are applied.

For all objectives, we assume that n > m holds. If n ≤ m, this means that every job
can be assigned to its own bag. For each scenario, it is possible to apply an EPTAS for
the corresponding problem (see for example [2], the details for previous work are discussed
further below) and thereby get an EPTAS for the required problem.

The problems studied here generalize strongly NP-hard problems, and therefore one
cannot expect to obtain an FPTAS (unless P = NP ), and thus our results are the best
possible. Specifically, the special case of each one of the three problems where the number of
machines is known, i.e., the probability function has a single value qm that is equal to 1, and
other probabilities are equal to zero, is known to be NP-hard in the strong sense. The three
objectives studied here are the three main objectives previously studied for scheduling on
identical machines.

STACS 2025



31:4 EPTAS’s for Scheduling on a Stochastic Number of Machines

Related work. Stein and Zhong [33] introduced the scheduling problem with an unknown
number of machines but in their model the number of machines is selected later by an
adversary. The problem was mostly studied with respect to makespan minimization. In
the deterministic variant [33], the goal is to assign a set of jobs with known properties to
identical machines. However, only an upper bound m on the number of machines is given.
Jobs have to be partitioned into m subsets, such that every subset will act as an inseparable
bag. Then, the number of machines k (where 2 ≤ k ≤ m) becomes known, and the schedule
is created using the bags, without unpacking them, as in the problem that we study here,
and after the number of machines is revealed, the bags are assigned to the machines, as in
the problem that we study. Thus, this problem also has two steps or levels of computation,
but the worst case out of all possible values of k is analyzed, where the comparison for each
value of m is to an optimal offline solution for k identical machines and arbitrary bags. It is
not hard to see that a constant approximation ratio (of at most 2) can be obtained using a
round-robin approach even for jobs of arbitrary sizes (via pre-sorting). An improved upper
bound of 5

3 + ε was shown using a much more careful assignment to bags [33].
A variant where machines have speeds (similar to uniformly related machines) was defined

and studied by [18] with respect to makespan. In that version, the number of machines
m is known, but not their speeds. The number of required bags is equal to the number of
machines, but some machines may have speed zero, so the case of identical machines and the
makespan objective is seen as binary speeds in this work. There are several input types of
interest, which are arbitrary jobs, unit size jobs, sand (one large job that can be cut into any
required parts), and pebbles (jobs that have arbitrary sizes, but they are relatively small)
[18, 30]. Tight bounds were proved for the case of sand and makespan with and without
speeds [33, 18], and for the Santa Claus objective without speeds [33]. All these values are
strictly smaller than 1.6. For sand, since any partition of the input jobs is allowed, linear
programming can be used to find the best partition. In the case with speeds for arbitrary
sizes of jobs the algorithm of [18] has an approximation ratio of at most 2 − 1

m , while special
cases allow smaller ratios [18, 30].

In [5], Balkanski et al. relate the problem of scheduling with an unknown number of
machines and an unknown set of speeds to online algorithms with predictions. In online
problems with predictions [31], the algorithm receives information on the input, where such
information could have been computed via machine learning. This model takes into account
both the situation where the input matches the prediction exactly and the case where it
does not. It is required for the algorithm to have a relatively good performance for every
input, but the performance has to be better if the input was predicted correctly. In many
algorithms the performance improves as the input gets closer to the predicted input. The
work of [5] provides results of this flavor.

Optimizing the worst scenario is pessimistic and does not allow one to take information
learned from previous data into account, while the study of the expected value as in our
stochastic problem allows us to prefer the typical scenarios in the bag assignment algorithm.
See also [4, 8, 32, 17] for related work.

As we mentioned, the most relevant work to our work on the stochastic problem is [9],
where two PTAS’s are provided. It is also mentioned in that work that FPTAS’s for the
case where m is seen as a constant can be designed using standard methods. The problem
is called stochastic due to the probability distribution on scenarios. However, since this
distribution is simply a convex combination of the costs for different scenarios, the methods
are related to those often used for deterministic algorithms and worst case analysis. The
convex combination complicates the problem and it requires carefully tailored methods for
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the algorithmic design. We follow the standard worst case studies of two-stage stochastic
optimization problems, and we study the optimization problems of optimizing the expected
value of the random variable.

All three objectives were studied initially for known numbers of identical machines, for
which simple greedy approximation algorithms were presented first. Some time later PTAS’s
were designed. Finally EPTAS’s were designed or it was observed that one of the known
PTAS’s is an EPTAS or can be converted into an EPTAS, which is the best possible result
for each one of the three cases unless P = NP . We provide additional details for each
one of the objectives. The makespan objective was introduced by Graham [22, 23], where
greedy algorithms were studied (see also [13, 20]). Twenty years later a PTAS was designed
[25]. Hochbaum [24] mentions that one of the approaches of assigning large jobs of rounded
sizes (namely, solving an integer linear program in fixed dimension) gives an EPTAS, and
attributes this approach to D. Shmoys (see [26, 11] for recent results). The Santa Claus
objective (where the name was introduced much later [7]) was studied with respect to greedy
heuristics [21, 15, 14]. A PTAS which is actually an EPTAS was designed by Woeginger [34].
The ℓp norm objective function was studied with respect to greedy heuristics [10, 12, 29],
and a PTAS and an EPTAS were designed [1]. The same authors generalized their results
for other objectives that satisfy natural conditions [2]. The ℓp norm of a vector is seen as a
more suitable measure of fairness of a schedule compared to bottleneck measures [3, 6], and
therefore we study this objective additionally to those studied in [9].

Our methods. We develop new techniques to address the uncertainty in the problems. We
expect these techniques to be used in later work on approximating related variants.

We use rounding and discretization as in other work on scheduling, though we apply it
not only on job sizes but also on bag sizes. The difficulty in relating new sizes to optimal
solutions lies in the difference in objectives, since here the optimal value is not defined by a
single schedule. However, we are still able to find such a relation using enumeration of sets
of values, that is, via guessing. Since jobs are assigned to bags, we introduce configuration
integer programs (IP’s) on collections of bags, which can be seen as a generalization of
previously known approaches. Our configuration IP’s are based on the use of templates,
where a template defines the contents of a bag, and configurations, where a configuration is
an allocation of bags to one machine in a given scenario. We solve this IP using an algorithm
for solving an IP in fixed dimension. All earlier steps of our schemes are highly motivated
given the goal of creating such an IP and ensuring that it has a fixed dimension.

Machine numbers are split to intervals such that the most difficult interval for each guessed
information is solved using an IP, while the others are solved using greedy approaches. The
number of intervals for scenarios differs based on the specific problem.

While the sketched approach allows us to design an EPTAS for makespan minimization,
the other objectives are harder to approximate. In order to tackle them, we develop an
important tool called approximated histograms. Those are histograms of solution costs or
values, and we use them in order to reduce the number of relevant scenarios to a constant.
The condition for using the approximated histogram is a monotonicity assumption regarding
the feasibility of solutions for different scenarios and the monotonicity of the costs for a given
solution among scenarios in which it is feasible.

2 An EPTAS for the makespan minimization problem

We start with the makespan minimization problem, and continue to the other objectives in
other sections. The first step will be to apply a discretization on bag sizes, and bound (from
above) the set of relevant bag sizes as a function of opt, where we enumerate possible values

STACS 2025



31:6 EPTAS’s for Scheduling on a Stochastic Number of Machines

of opt and use rounding for this value as well. Our second step is to round the instance of
jobs (which will be assigned to bags). We use standard guessing steps and rounding methods
for these steps. Then, we are going to approximate the rounded instance by using templates
of the assignment of jobs to bags, and configurations of assigning templates to machines in
every realization of q. This will allow us to formulate an integer linear program that has a
special structure, namely, it is a two-stage stochastic integer linear program. This special
structure, as well as trivial bounds on the parameters of this formulation, provides us with
an FPT algorithm to solve the problem. This algorithm has a running time dominated by a
function of 1

ε
times a polynomial in n, and therefore it is an EPTAS.

We will be able to reduce the number of variables such that we can apply Lenstra’s
algorithm [28, 27] on the integer linear program, and the running time for solving this
program will be smaller than that of solving a two-stage stochastic integer linear program.
This is the case also for the other two EPTAS’s that we show, that is, we will apply Lenstra’s
algorithm for all objectives. The most difficult step in the current section is to reduce
the number of different values of makespan for different scenarios. Without this step, the
running time will not satisfy the requirements of an EPTAS. The reduction is based on linear
grouping, which is typically used for bin packing [19] and not for scheduling. The other
EPTAS’s that we design require additional non-trivial steps, and we will discuss them later.

The optimal solution of this integer program is transformed into a set of decisions defining
the functions σ1 and σ

(k)
2 ∀k. Next, we present the details of the scheme together with its

analysis. In what follows we will present steps where in each of those steps the resulting
approximation ratio of the scheme increases by at most a multiplicative factor of 1 + Θ(ε).
By scaling ε prior to applying the scheme, we get that the approximation ratio of the entire
scheme will be at most 1 + ε. We will use the next lemma for our proof.

▶ Lemma 1. It holds that optk ∈ [pmax, n·pmax] for any k ≤ m. Thus, opt ∈ [pmax, n·pmax].

Guessing opt. Our first step is to guess the value of opt within a multiplicative factor of
1 + ε. That is, we would like to enumerate a polynomial number of candidate values, where
the enumerated set will contain (at least one) value that is in the interval [opt, (1 + ε) · opt).
We will show that for a guess in this interval we indeed find a solution of cost (1 + Θ(ε)) · opt.
The next lemma shows that it is possible to enumerate such a set of candidate values since
log1+ε n ≤ n

ε
. Our algorithm performs this enumeration.

▶ Lemma 2. There is a set consisting of O(log1+ε n) values such that this set of values has
at least one value in the interval [opt, (1 + ε)opt).

In what follows, with a slight abuse of notation, we let opt be the value of this guessed
candidate value (which is not smaller than opt and it is larger by at most a factor of 1 + ε

if the guess is correct). We will show that if there is a feasible solution to Pr-makespan
whose expected value of the cost is at most opt, then we will construct a feasible solution
with expected value of the cost being at most (1 + Θ(ε)) · opt. By the above lemma, this
means that the problem admits an EPTAS as desired.

Rounding bag sizes. Now, we provide a method to gain structure on the set of feasible
solutions that we need to consider for finding a near optimal solution. Given a feasible
solution, the size of bag i denoted as P (i) is the total size of jobs assigned to this bag, that
is, P (i) =

∑
j:σ1(j)=i pj .

▶ Lemma 3. There exists a solution of cost at most (1 + 3ε) · opt in which the size of every
non-empty bag is in the interval [ε · opt, (1 + ε) · opt].
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In what follows, we will increase the size of a bag to be the next value of the form
(ε + rε2) · opt for a non-negative integer r (except for empty bags for which the allowed size
remains zero). Thus, we will not use precise sizes for bags but upper bounds on sizes, and
we call them allowed sizes. We let P ′(i) be this increased (allowed) size of bag i, that is,
P ′(i) = minr:(ε+rε2)opt≥P (i)(ε + rε2)opt. Since for every subset of bags, the total allowed
size of the bags in the set is at most 1 + ε times the total size of the bags in the subset,
we conclude that this rounding of the bag sizes will increase the cost of any solution by a
multiplicative factor of at most 1 + ε (and therefore the expected value also increases by at
most this factor). Thus, in what follows, we will consider only bag sizes that belong to the
set B = {(ε + rε2)opt : r = 0, 1, . . . , 1

ε2 } ∪ {0}. We use this set by Lemma 3. We conclude
that the following holds.

▶ Corollary 4. If the guessed value (opt) is at least the optimal expected value of the makespan,
then there is a solution of expected value of the makespan of at most (1 + ε)(1 + 3ε) · opt
that uses only bags with allowed sizes in B.

Note that the allowed size of a bag may be slightly larger than the actual total size of
jobs assigned to the bag. Later, the allowed size acts as an upper bound (without a lower
bound), and we take the allowed size into account in the calculation of machine completion
times in some cases (instead of the size).

Rounding job sizes. We apply a similar rounding method for job sizes. Recall that by
our guess, every job j has size at most opt (see Lemma 1). Next, we apply the following
modification to the jobs of sizes at most ε2opt. Whenever there is a pair of jobs, each of
which has size at most ε2opt, we unite the two jobs (i.e., we delete the two jobs, adding a
new job whose size is the sum of the two sizes of the two deleted jobs). This is equivalent to
restricting our attention to solutions of the first stage where we add the constraint that the
two (deleted) jobs must be assigned to a common bag. We repeat this process as long as
there is such a pair. If there is an additional job of size at most ε2opt, we delete it from
the instance, and in the resulting solution (after applying the steps below on the resulting
instance) we add the deleted job to bag 1. This is done after the entire algorithm completes
running, so it may increase the makespan of every scenario and therefore the expected value
of the makespan, but we do not take it into account in the algorithm or in calculating allowed
sizes of bags. This addition of the deleted job increases the makespan of every scenario
by at most ε2opt, so the resulting expected value of the makespan will be increased by a
multiplicative factor of at most 1 + ε2. We consider the instance without this possible deleted
job, and we prove the following.

▶ Lemma 5. The optimal expected value of the makespan of the instance resulting from the
above modification of the job sizes among all solutions with allowed bag sizes in the following
modified set B′ = {(ε + rε2)opt : r = 0, 1, . . . , 1

ε2 + 2} ∪ {0} is at most (1 + 2ε)(1 + ε)(1 +
3ε) · opt.

We next round up the size of every job j to be the next value that is of the form
(1 + ε)r · opt for an integer r. The size of every job cannot decrease and it may increase by
a multiplicative factor of at most 1 + ε. Job sizes are still larger ε2 · opt and the sizes do
not exceed (1 + ε) · opt. Thus, the number of different job sizes is O(log1+ε

1+ε
ε2 ) ≤ 2

ε3 − 1.
We increase the allowed size of each non-empty bag by another multiplicative factor of 1 + ε,
and round it up again to the next value of the form ε + rε2. Thus, the expected value of the
makespan of a feasible solution increases by a multiplicative factor of at most (1 + ε)2, where
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31:8 EPTAS’s for Scheduling on a Stochastic Number of Machines

one factor of 1 + ε is due to the rounding of jobs, and the second one is due to bringing
allowed sizes back to the form ε + rε2. So by our guessing step, there is a feasible solution
with expected value of the makespan of at most (1 + ε)3(1 + 2ε)(1 + 3ε)opt that uses only
bags with allowed size in B′′ = {(ε + rε2)opt : r = 0, 1, . . . , 1+2ε

ε2 + 2} ∪ {0}.
A bag is called tight if the set of jobs of this bag cannot use a bag of a smaller allowed

size. Note that any solution where some bags are not tight can be converted into one where
all bags are tight without increasing the cost. Note that the allowed size of a non-zero bag of
allowed size (ε+ rε2)opt can be written in the form (r + 1

ε
) · ε2 · opt, and since 1

ε
is integral,

the allowed size of each bag is an integer multiple of ε2 · opt.

▶ Lemma 6. For any tight bag it holds that the allowed size of the bag is at most 1
ε

times its
actual size (the total size of jobs assigned to the bag, where their rounded sizes are considered).

Computing the maximum number of machines for which the assignment to bags does
not matter. In our algorithm, we would like to focus on values of k for which the structure
of bags is crucial. Now, we will detect values of k for which there always exists a good
assignment of bags to machines (for reasonable sets of bags). Let P be the total size of all
jobs (after the transformation applied on jobs for a fixed value of opt). The total size (not
the allowed size) of all bags is P , and we can compute the makespan based on the actual
sizes of bags which are total sizes of jobs (after merging and rounding) assigned to the bags.
The motivation is that for very small values of k the maximum bag size is so small compared
to P

k that bags can be seen as very small jobs, and one can apply a greedy algorithm [22] for
assigning the bags, and still obtain a solution with a small makespan (based on bag sizes).

▶ Lemma 7. If k ≤ ε·P
2·opt , then any set of bags (such that every job is assigned to a bag)

where every bag has an allowed size (and size) not exceeding 2opt, leads to at least one
schedule for k machines with makespan in [ P

k , (1+ε) · P
k ). For other values of k, the makespan

of an optimal schedule using tight bags (based on their allowed sizes) is at most (3/ε2) · opt.

We use the property that no bag has an allowed size above 2 · opt. Our algorithm
computes the maximum value of k for which 2opt ≤ ε · P

k holds, and afterwards it excludes
values of k for which 2opt ≤ ε · P

k holds. We will have that the cost of the solution obtained
for the scenario is at most (1 + ε) · P

k , since bag sizes satisfy the condition for bags in the
statement of Lemma 7, and therefore we can use the first part of this lemma. This is a valid
approach as adding a scenario where 2opt ≤ ε · P

k to the calculation of the approximation
ratio will not increase the approximation ratio beyond the value 1 + ε, and the running time
for computing a good solution for such a value of k is polynomial in m, n. Thus, we assume
that 2opt > ε · P

k holds for every k.
We consider the remaining scenarios. In what follows, we consider the assignment of

jobs to bags and the assignment of the bags to machines in each scenario k subject to the
condition that 2opt > ε · P

k and the optimal makespan of the scenario is at most (3/ε2) · opt.
In particular, it means that the number of bags of positive allowed sizes assigned to a machine
in such a scenario is at most 3/ε3, since we consider allowed bag sizes not smaller than ε ·opt
(if we exclude bags of allowed size zero).

Guessing an approximated histogram of the optimal makespan on all scenarios. Our
next guessing step is motivated by linear grouping of the optk values. To illustrate this step,
consider a histogram corresponding to the costs of a fixed optimal solution satisfying all
above structural claims, where the width of the bar corresponding to scenario k is qk and its
height is the value of the makespan in this scenario (that is, optk). Observe that when k
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is increased, the optimal makespan does not increase (without loss of generality, since the
same assignment of bags can be used), so by plotting the bars in increasing order of k we
get a monotone non-decreasing histogram, where the total area of the bars is the expected
value of the makespan of the optimal solution and the total width of all the bars is 1 (since
we assume that all scenarios are included in the histogram and every scenario κ satisfies
the condition 2opt > ε · P

κ by scaling the probabilities of the remaining scenarios such that
the total probability becomes 1). We sort the indexes of scenarios with (strictly) positive
probabilities (qk values) and we denote by K the resulting sorted list. For every k ∈ K,
we compute the total width of the bars with indexes at most k (using the ordering in K,
i.e., in increasing indexes), and denote this sum by Qk. We also let Q′

k = Qk − qk. Thus,
Qk is the total probability of scenarios in {1, 2, . . . , k}, and Q′

k is the total probability of
scenarios in {1, 2, . . . , k − 1}. The set K does not contain scenarios with probability zero,
but if qk−1, qk > 0, it holds that Qk−1 = Q′

k. According to the definitions, it holds that
Qk − Q′

k = qk for k ∈ K, and the interval [Q′
k, Qk) on the horizontal axis corresponds to

scenario k.
The idea of the next parts is to get an overestimator for the histogram by extending the

value of k to the right, and an underestimator by extending it to the left. The two areas
below them will differ only by at most O(ε · opt), so the overestimator can also differ from
the original histogram area by at most this amount.

Next, we compute an upper bound histogram W as follows. We start with selecting a
sublist K ′ of K. The motivation is that schedules will be computed later only for scenarios
in K ′, and they will be copied to scenarios of some of the larger indexes. The set K ′ acts as
a representative set, and we show that it is possible to restrict ourselves to such a set. Since
we increase upper bounds on the makespan for some scenarios, the feasibility is not harmed.

An index k ∈ K belongs to K ′ if there exists an integer ℓ such that Q′
k ≤ ε3ℓ < Qk. The

motivation is that we would like to consider points which are integral multiples of ε3 and
the set K ′ contains all values of k ∈ K for which such special values belong to the interval
[Q′

k, Qk). Values of makespan will be increased such that the makespan function will still be
piecewise linear, but it will have a smaller number of image values.

For every k ∈ K ′, the new upper bound histogram is defined as optk for all points with
horizontal value between Q′

k and up to Q′
k′ where k′ > k is the index just after k in the

sublist K ′ or up to the last point where the histogram is defined (Qt for the maximum
value t ∈ K) if k is the largest element of K ′. Since the original histogram was monotone
non-increasing, the new histogram is pointwise not smaller than the original histogram. The
possible modification is in the interval [Qk, Q′

k′) if k is not the maximum value of K ′, and in
this case there may be a change for k + 1, . . . , k′ − 1 (that is, if k′ ≥ k + 2). If k is the largest
element of K ′ but not of K, there may be a change for all t ∈ K such that t ≥ k + 1. Thus,
an upper bound on the total area below the histogram W is not smaller than the expected
value of the makespan of the optimal solution.

We use the modified histogram W to obtain another bound. For that we see W as a step
function whose values are the corresponding points in the upper edge of the histogram. We
define a new histogram by letting it be W (x + ε3) for all x ∈ [0, 1] (and zero for cases that
W is undefined due to an argument above 1). In this way we delete a segment of length
ε3 from W and we shift the resulting histogram to the left. Since the makespan for every
scenario never exceeds (3/ε2) · opt, every point in W has a height of at most 3opt

ε2 and
we deleted a segment of width of ε3, the total area that we delete is at most 3εopt. The
resulting histogram is pointwise at most the original histogram (and thus also not larger than
W ). This property holds since every value optk was extended to the right for an interval
not longer than ε3. Thus, if we consider W instead of the original histogram, we increase
the cost of the solution by a multiplicative factor not larger than (1 + 3ε).
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The guessing step that we use is motivated by this function W . We let Wk be the height
of the histogram W in the bar corresponding to the scenario k. The relevant values of k are
those in K ′, and the histogram W only has values of the form optk for k ∈ K ′. We guess
the histogram W . This means to guess the optimal makespan of O( 1

ε3 ) scenarios, where
makespans can be one of at most 3

ε4 different values. This holds since all allowed bag sizes
are integer multiples of ε2 · opt, so makespans are also integer multiples of ε2 · opt, and
the makespan of each scenario is at most 3opt

ε2 . Thus, the number of possibilities of this
guessing step is upper bounded by a function of 1

ε
which is O(( 1

ε
)O(1/ε3)).

In what follows, we consider the iteration of the algorithm defined below when we use
the value of the guess corresponding to the optimal solution. Algorithmically, we will try
all possibilities, check the subset of those for which we can provide a feasible solution, and
output the best feasible solution obtained in this exhaustive enumeration. The running time
of the next algorithm is multiplied by the number of possibilities.

The template-configuration integer program. A template of a bag is a multiset of job sizes
assigned to a common bag. We consider only multisets for which the total size of jobs is at
most (1 + 6ε) · opt since the largest allowed size of any bag is smaller. Since the number of
distinct job sizes (in the rounded instance) is upper bounded by 2

ε3 − 1 and there are at most
2
ε2 jobs assigned to a common bag (since the rounded size of each job is above ε2 · opt), we
conclude that the number of templates is at most ( 2

ε3 )(2/ε2), which is a constant depending
only on 1

ε
. The reason is that each bag has 2

ε2 slots for jobs, such that each one may be
empty or contain a job of one of the sizes. This calculation proves an upper bound on the
number of possible templates, and we use a single template for every multiset of job sizes
even when one multiset can be found in more than one way in the last calculation.

We are going to have a non-negative counter decision variable yt for every template t,
where this variable stands for the number of bags with template t. Let τ be the set of
templates, and assume that a template is represented by a vector. The length of such a vector
is the number of different (rounded) job sizes, and for every index ℓ, the ℓ-th component of
the vector of the template (denoted by tℓ) is the number of jobs with size equal to the ℓ-th
job size that are packed into a bag with this template. In order for such an assignment of
the first stage to be feasible, we have the following constraints where nℓ denotes the number
of jobs in the rounded instance whose size is the ℓ-th job size of the (rounded) instance.∑

t∈τ

yt ≤ m ,
∑
t∈τ

tℓ · yt = nℓ , ∀ℓ.

The first constraint states that the number of bags is at most m. If this number is
strictly smaller than m, then the remaining bags have allowed sizes of zero and they will not
contain jobs. The second constraint, which is a family of constraints, states that the correct
numbers of jobs of each size are assigned to templates, according to the number of copies
of each template. Observe that the number of constraints in this family of constraints is a
constant depending on ε (it is at most 2

ε3 ), and all coefficients in the constraint matrix are
(non-negative) integers not larger than 2

ε2 .
We augment K ′ with the minimum index in K if this index does not already belong to

K ′, in order to satisfy the condition that for every index of K there is some index of K ′ that
is not larger. Consider a scenario κ ∈ K ′ (satisfying the condition that 2opt > ε · P

κ ), and
the optimal makespan of scenario κ, which is at most 3opt

ε2 . Recall that in scenario κ the
number of non-empty bags assigned to each machine is at most 3

ε3 . Define a configuration of
a machine in scenario κ to be a multiset of templates such that the multiset has at most 3

ε3



L. Epstein and A. Levin 31:11

templates (counting multiple copies of templates according to their multiplicities) and the
total size of the templates encoded in the multiset is at most Wκ, which is the guess of a
value of the histogram W . The number of configurations is at most (( 2

ε3 )(2/ε2))
3
ε3 , and this

is also an upper bound on the number of suitable configurations (whose total allowed size of
bags does not exceed Wκ). Since our mathematical program will not limit the makespan
of any scenario, we use an upper bound for it by not allowing configurations whose total
allowed sizes exceed the planned makespan for the scenario. We let C(κ) denote the set of
configurations for scenario κ, where c ∈ C(κ) is a vector of |τ | components where component
ct for t ∈ τ is the number of copies of template t assigned to configuration c. Components
are non-negative integers not larger than 3

ε3 . For scenario κ ∈ K ′, we will have a family of
non-negative decision variables xc,κ (for all c ∈ C(κ)) counting the number of machines with
this configuration.

For each such scenario κ, we have a set of constraints each of which involves only the
template counters (acting as a family of global decision variables) and the family of the κ-th
local family of decision variables, namely the ones corresponding to this scenario. The family
of constraints for the scenario κ ∈ K ′ are as follows.∑

c∈C(κ)

xc,κ = κ ,
∑

c∈C(κ)

ct · xc,κ − yt = 0 , ∀t ∈ τ .

Observe that the number of constraints in such a family of constraints is upper bounded
by a constant depending only on ε (which is the number of possible templates plus 1) and
the coefficients in the constraint matrix are again all integers of absolute value at most a
constant depending only on ε (at most 3

ε3 .).
All decision variables are forced to be non-negative integers and we would like to solve

the feasibility integer program defined above (with all constraints and decision variables).
The right hand side vector consists of integers that are at most n (using m ≤ n). Such an
integer linear program is a two-stage stochastic IP. Using the property that the number of
scenarios in K ′ is upper bounded by a function of 1

ε
, we conclude that the integer linear

program has a fixed dimension. Thus, we use Lenstra’s algorithm to solve it instead of an
algorithm for two-stage stochastic IP.

We obtain a feasible solution (x, y) if such a solution exists. Based on such a feasible
solution, we assign jobs to bags using the y variables. That is, for every t ∈ τ , we schedule
yt bags using template t. By the constraint

∑
t∈τ yt ≤ m there are at most m bags, and

the other bags will be empty. Next, for every bag and every size p of jobs in the rounded
instance, if the template assigned to the bag has α jobs of this size, we will assign α jobs
of this size to this bag. Doing this for all sizes and all bags is possible by the constraints∑

t∈τ tℓ · yt = nℓ , ∀ℓ, and these constraints ensure that all jobs are assigned to bags. Note
that the modification for jobs consisted of merging small jobs. When such a merged job is
assigned, this means that a subset of jobs is assigned. Reverting jobs to their original sizes
does not increase any of the costs, since no rounding steps decreased any sizes. Next consider
the assignment of bags to machines in each scenario. Consider a scenario κ′ ∈ K, and let κ

be the largest index in K ′ such that κ ≤ κ′. Assign xc,κ machines to configuration c (for all
c ∈ C(κ)). It is possible by the constraint

∑
c∈C(κ) xc,κ = κ ≤ κ′. If a configuration c assigned

to machine i is supposed to pack ct copies of template t, we pick a subset of ct bags whose
assigned template is t and assign these bags to machine i. We do this for all templates and all
machines. In this way we assign all bags by the constraints

∑
c∈C(κ) ct · xc,κ − yt = 0 , ∀t ∈ τ .

If κ′ > κ, at least one machine will not receive any configuration and therefore it will not
receive any bags or jobs, and we refer to such a machine as empty. Since the configurations
we used in scenario κ have a total size of jobs of at most Wκ, we conclude the following.
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▶ Corollary 8. For every value of the guessed information for which the integer program has
a feasible solution, there is a linear time algorithm that transform the feasible solution to the
integer program into a solution to the rounded instance of Pr-makespan of cost at most∑

κ qκ · Wκ.

Our scheme is established by noting that an optimal solution satisfying the assumptions
of the guessed information provides us a multiset of templates all of which are considered in
τ and a multiset of configurations (and all of them have total size of templates not larger
than W ) for which the corresponding counters satisfy the constraints of the integer program.
Thus, we conclude our first main result.

▶ Theorem 9. Problem Pr-makespan admits an EPTAS.

3 An EPTAS for the Santa Claus problem

In this section we apply additional ideas to obtain an EPTAS for the second problem. We
present the details of the scheme together with its analysis. In what follows, and similarly to
the scheme to Pr-makespan, we will present steps, and in each of those steps the resulting
approximation ratio of the scheme increases by at most a multiplicative factor of 1 + Θ(ε).

Preprocessing steps. We consider an optimal solution opt, and analyze the information
that one can guess in order to be able to approximate it. We assume without loss of generality
that optk ≤ optk′ for all k > k′, since a solution for scenario k can be used for scenario k′

(by assigning the bags of k − k′ machines in an arbitrary way). Recall that we can assume
that for every value of k in the support of q the instance has at least k non-zero sized jobs,
since we assume n > m. We will use the next lemma for our proof.

▶ Lemma 10. For any scenario k (such that 1 ≤ k ≤ m) and an assignment of jobs to bags
according to the solution opt, there exists a job jk for which it holds that pjk ≤ optk ≤ n·pjk .

We would like to split the sequence of scenarios into four parts (where some of the parts
may be empty). The suffix (with the largest numbers of machines) will contain scenarios
for which the assignment of bags is unimportant since the gain from them in the objective
function value opt is small either because the probability is zero or because the number of
machines is large. This suffix may be empty. There will also be a prefix (which could be
empty) of machines for which the specific assignment to bags is unimportant because the
number of machines is small and any reasonable assignment into bags allows a good schedule.
For this prefix we will use different arguments from the ones we used for Pr-makespan. For
the remaining scenarios, the prefix will consist of scenarios for which the gain is also small,
and a suffix of the most important scenarios.

The first step is to guess the maximum scenario kmax for which optkmax ≥ ε · opt holds,
out of scenarios with strictly positive probabilities, that is, such that qkmax > 0 holds. This
index is well-defined since there exists an index k for which qk > 0 and optk ≥ opt. There
are at most m possible values for this guess. While opt still denotes an optimal solution,
we do not guess or use its value as a part of the algorithm. Let LB be equal to optkmax

rounded down to the next integer power of 1 + ε. For a fixed job jkmax (see Lemma 10),
the number of possible values for LB is O( n

ε
). Since the index jkmax is also not known, the

number of possible values for LB is O( n2

ε
).

The proof of the next lemma is obtained by selecting a set of consecutive scenarios
minimizing the total weighted profit out of 1

ε
disjoint sequences of scenarios of similar forms.

The proof of the lemma requires the knowledge not only of opt but of all values of the form
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opti. However, we use the lemma to obtain the information that given the correct value LB

(this is a rounded value, so we will be able to guess it), there is a pair of values k, k′ and a
value ρ that specify the only properties of opt that we use for our algorithm.

▶ Lemma 11. There is a value of ρ which is an integer power of 1
ε

that satisfies 1
ε2 ≤

ρ ≤ ( 1
ε
)1/ε+1 and there exist two indexes k, k′ such that 0 ≤ k′ < k ≤ kmax, where every

non-zero index has to be a scenario in the support of q, such that the following conditions
hold. optk ≤ ρ · LB, if k′ ≥ 1, then optk′ ≥ ρ

ε
· LB,

∑k−1
κ=k′+1 qκ · optκ ≤ ε · opt.

The next guessing step. In this step we guess several additional values. As mentioned
above, we guess the value of LB (which is a power of 1 + ε and it is equal to optkmax

within a multiplicative factor of 1 + ε since optkmax ∈ [LB, LB · (1 + ε))), the value of ρ (by
guessing r′ from the proof of Lemma 11, that is, we guess the power of 1

ε
), and two indexes

k′ < k ≤ kmax. That is, we would like to enumerate a set of polynomial number of candidate
values of four components vectors that contains at least one vector with first component
value that is LB, with a second component whose value is ρ, and the two indexes k′ < k in
the third and fourth components of that vector. The next lemma shows that it is possible to
enumerate such a set of candidate values. Our algorithm performs this enumeration.

▶ Lemma 12. There is a set consisting of O((m·n
ε

)2) vectors such that this set of vectors
contains at least one vector with the required properties. Thus, the number of guesses including
the guess of kmax is at most O(( n

ε
)2 · m3).

In what follows, we let LB be the first component value of the guessed information, ρ

be the second component value of the guessed information, and k, k′ be the two guessed
scenarios (where it is possible that k′ = 0 is not an actual scenario). We will show that if
there is a feasible solution to Pr-SantaClaus for which the guessed information describes
the solution and its expected value of the objective is opt, then we will construct a feasible
solution with expected value of the objective being at least (1 − Θ(ε)) · opt. This means
that the problem admits an EPTAS as desired.

We let UB = LB · ρ. Furthermore, for every scenario κ with k′ < κ < k, we set qκ = 0.
From now on we drop the assumption that the sum of all q values is 1 and instead of that
we use the assumption that these are non-negative numbers with sum at most 1. This
modification of the vector (q) decreases the expected value of the Santa Claus value of the
optimal solution by at most ε · opt (and it does not increase the objective function value of
any feasible solution to our problem). The justification for this is as follows. From Lemma
11 it follows that there is a quadruple of integers k, k′, ρ, log1+ε LB (where each integer
belongs to the set that we test for this integer) for which there is a solution of profit at least
opt
1+ε

− ε · opt ≥ (1 − ε)3 · opt with the first two properties stated in the lemma, and for
every scenario κ such that k′ < κ < k the profit is at least zero.

Partitioning the input into two independent problems. Next, we use the above guessing
step in order to partition the input into two independent inputs. First, a job j ∈ J is called
huge if its size is strictly larger than UB, that is, if pj > UB (and otherwise it is non-huge).

We pack every huge job into its own bag and we let h denote the number of huge jobs
(where we will show that h ≤ m − 1 holds). Every huge job can cover one machine in every
scenario κ ≥ k regardless of its exact size (because for all these scenarios we consider solutions
for which optκ is not larger than ρ · LB = UB). On the other hand, the non-huge jobs (i.e.,
jobs of sizes at most UB) will be packed into bags of size at most 3 · UB. The packing of
the non-huge jobs into bags will be optimized according to the scenarios of indexes at least k
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(and at most kmax), and we will ignore the scenarios of indexes smaller than k when we pack
the non-huge jobs into bags. The resulting bags of the non-huge jobs together with the set of
the huge jobs (which are bags consisting of a single job) will be packed into κ ≤ k′ machines
(in the corresponding scenario κ) based on existing EPTAS for the Santa Claus problem on
identical machines (seeing bags as jobs). We will show that if indeed we use bags of sizes at
most 3 · UB when we pack the non-huge jobs into bags, then the scenarios of indexes at most
k′ can be ignored. We show that this holds for any collection of bags of this form, that is,
where every huge job has its own bag and other bags have total sizes of jobs not exceeding
3 · UB. Thus, even though the bags are defined based on scenarios where the number of
machines is at least k, still the scenarios with at most k′ machines have good solutions. We
will also show that it is possible to restrict ourselves to these types of collections of bags.

▶ Lemma 13. If all guesses are correct, any partition into bags has at least one bag with a
total size of jobs no larger than UB. In particular, there are at most m − 1 huge jobs.

▶ Lemma 14. An EPTAS for κ machines where κ ≤ k′ which is applied on bags (instead of
jobs) such that every huge job has its own bag and any additional bag has total size of jobs
not exceeding 3 · UB finds a solution of profit at least optκ

(1−3ε)·(1−ε) .

Proof. Consider an optimal solution for κ machines and the original jobs. We show that
this schedule can be modified into a schedule of the bags, such that the profit of the schedule
is smaller by a factor not exceeding 1 − 3ε. Thus, an optimal schedule of the bags is not
worse, and by using an EPTAS the profit may decrease by another factor of 1 − ε. The
adaptation of the schedule is as follows. The huge jobs are assigned as before, since each of
them has its own bag. All non-huge jobs are removed, and each machine receives bags until
it is not possible to add another bag without exceeding the previous load or no unassigned
bags remain. Given the property that the total size of bags is equal to the total size of jobs,
it is either the case that the loads are equal to previous loads (in which case the value is
unchanged) or there is at least one unassigned bag. In the latter case, no machine load
decreased by more than an additive term of 3 · UB, and therefore the value is at least the
previous one minus 3 · UB. To complete the assignment, all remaining bags are assigned
arbitrarily. Since optκ ≥ ρ·LB

ε
= UB

ε
and the resulting value is at least optκ − 3 · UB, we

find by 3 · UB ≤ 3ε · optκ that optκ − 3 · UB ≥ (1 − 3ε) · optκ. ◀

▶ Lemma 15. Consider the instance of our problem when we let qκ = 0 for all κ < k and
for κ > kmax. There exists a partition into bags where a profit at least optκ can be obtained
for any κ ∈ [k, kmax], the set of bags satisfies that every huge job is packed into its own bag,
and each other bag consists of non-huge jobs of total size at most 2 · UB.

Proof. The number of partitions into bags is finite for fixed m, n (it does not exceed mn).
Consider the set of partitions for which a solution of profit at least optκ can be obtained
for any κ ∈ [k, kmax]. There is at least one such partition for the correct guess. For every
partition it is possible to define a vector of m components, such that total sizes of bags
appear in a non-increasing order. Consider the partition among the considered partitions
for which the number of huge jobs that have their own bags is maximum, and out such
partitions, one where the vector is lexicographically minimal. We claim that this partition
satisfies the requirements.

Assume by contradiction that the number of huge jobs that do not have their own bags is
not h. Consider a bag with a huge job that contains at least one additional job. This will be
named the first bag. Consider a bag whose total size is at most UB, which must exist due
to Lemma 13. This last bag does not have a huge job since the size of a huge job is above
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UB, and we call it the second bag. Move all contents of the first bag into the second bag
excluding one huge job. For any κ ∈ [k, kmax], since optκ ≤ UB, the assignment of bags to
machines does not reduce the objective function value below optκ. This holds because there
is at most one machine whose total size was reduced (for every κ ∈ [k, kmax]), but if such a
machine exists, it still has a huge job whose size is above UB. Thus, the new partition is
also one of the considered partitions. The new partition has a larger number of huge jobs
assigned into their own bags, because the second bag was not such a bag and the first bag
became such a bag. This contradicts the choice of assignment to bags. Thus, the partition
into bags consists of h bags with huge jobs and m − h ≥ 1 bags with non-huge jobs.

Next, consider only the components of the vector which do not correspond to bags of
huge jobs. This vector is also minimal lexicographically out of vectors for partitions of the
non-huge jobs into m − h bags. Assume by contradiction that the first component is above
2 · UB. Consider the bag of the first component (called the first bag now) and a bag with a
total size at most UB (called the second bag now). Move one job from the first bag to the
second bag. The second bag now has a total size of at most 2 · UB (since a non-huge job was
moved). The first bag now has a smaller total size, but still larger than UB. The sorted
vector is now smaller lexicographically, and it is still possible to obtain a solution of profit at
least optκ for any κ ∈ [k, kmax], similarly to the proof given here for huge jobs, which is a
contradiction. ◀

In summary, we can focus on the scenarios interval [k, kmax], assume that huge jobs have
their own bags, and remaining bags have total sizes not exceeding 2 · UB.

Modifying the input of scenarios with indexes at least k and at most kmax. Motivated
by the last partitioning of the original input into four parts, and the fact that only scenarios
with indexes at least k and at most kmax need to be considered, we apply the following
transformation. First, for every κ < k we let qκ = 0, in the sense we can augment every
solution to the remaining instance (with only a subset of scenarios) into an EPTAS for the
original instance before this change to q. Furthermore, for every κ > kmax we let qκ = 0
in the sense we can ignore the profit of such scenarios. Then, every huge job is packed
into a separate bag. Such a bag suffices to cover one machine in every remaining scenario.
Therefore, our second step in the transformation is the following one. We delete the huge
jobs from J , we decrease the index of each remaining scenario by h (in particular the new
indexes in the support of q will be in the interval [k − h, kmax − h]), and we enforce the
condition that every bag size is at most 2 · UB.

As one can see, the transformations here are more complicated compared to those used
in the previous section, and they have to be carefully designed and analyzed. However,
now we are ready to apply methods that resemble the previous section. Using the fact that
for every remaining scenario we have that optκ is between LB and UB, and the fact that
UB
LB = ρ ≤ ( 1

ε
)1/ε+1 we are able to apply the methods we have developed for the makespan

minimization problem to obtain an EPTAS for Pr-SantaClaus, as we do next.

Rounding bag sizes. We next provide a method to gain structure on the set of feasible
solutions that we need to consider for finding a near optimal solution. Given a feasible
solution, the size of bag i denoted as P (i) is the total size of jobs assigned to this bag, that
is, P (i) =

∑
j:σ1(j)=i pj .

▶ Lemma 16. There exists a solution of value at least (1 − 3ε) · opt in which the size of
every non-empty bag is in the interval [ε · LB, 2.5 · UB].
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In what follows, we will decrease the size of a bag to be the next value of the form
(ε + rε2) · LB for an integer r ≥ 0 (except for empty bags for which the allowed size remains
zero). Thus, we will not use precise sizes for bags but lower bounds on sizes, and we call
them “allowed sizes” in what follows. For bags of allowed size zero the meaning remains
that such a bag is empty. We let P ′(i) be this decreased (allowed) size of bag i, that is,
P ′(i) = maxr:(ε+rε2)·LB≤P (i)(ε + rε2) · LB. The allowed size is not smaller than ε · LB and
it is smaller than the size by an additive term of at most ε2 · LB. Thus, for every subset
of bags, the total allowed size of the bags in the set is at least 1

1+ε
times the total size of

the bags in the subset, we conclude that this rounding of the bag sizes will decrease the
value of any solution by a multiplicative factor of at most 1 + ε (and therefore the expected
value also decreases by at most this factor), and it will not increase the value of a solution
for any scenario. Thus, in what follows, we will consider only bag sizes that belong to the
set B = {(ε + rε2) · LB : r ∈ Z, r ≥ 0, (ε + rε2) · LB ≤ 2.5 · UB} ∪ {0}. We use this set by
Lemma 16. We conclude that the following holds.

▶ Corollary 17. If the guessed information vector is satisfied by an optimal solution, then
there is a solution of expected value of the Santa Claus value of at least 1−3ε

1+ε
· opt that uses

only bags with allowed sizes in B.

Note that the allowed size of a bag may be slightly smaller than the actual total size of
jobs assigned to the bag. Later, the allowed size acts as a lower bound (without an upper
bound), and we sometimes take the allowed size into account in the calculation of machine
completion times.

Rounding job sizes. We apply a similar rounding method for job sizes. Recall that by our
transformation, every job j has size at most UB (since huge jobs were removed from the
input). Next, we apply the following modification to the jobs of sizes at most ε2 · LB. While
there is a pair of jobs of sizes at most ε2 · LB, we unite such a pair of jobs. If there is an
additional job of size at most ε2 · LB, we delete it from the instance, and in the resulting
solution (after applying the algorithm below on the resulting instance) we add the deleted
job to an arbitrary bag. This deletion of the deleted job decreases the Santa Claus value of
every scenario by at most ε2 · LB, so the resulting expected value of the Santa Claus value
will be decreased by at most ε2 · LB. Adding the job back does not decrease the value. We
consider the instance without this possibly deleted job, and we prove the following.

▶ Lemma 18. The optimal expected value of the Santa Claus value of the instance resulting
from the above modification of the job sizes among all solutions with allowed bag sizes in the
following modified set B′ = {(ε + rε2) · LB : r ∈ Z, r ≥ −2, (ε + rε2) · LB ≤ 3 · UB} ∪ {0} is
at least (1 − 2ε) · 1−3ε

1+ε
· opt.

Next, we round down the size of every job j to be the next value that is of the form
(1 + ε)r for an integer r. The size of every job cannot increase and it may decrease by a
multiplicative factor of at most 1 + ε. Job sizes are still larger than ε3 · LB and not larger
than UB ≤ ( 1

ε
)1/ε+1 · LB. Thus, the number of different job sizes is O(log1+ε( 1

ε
)1/ε+4) ≤

2
ε3 − 1. We decrease the allowed size of each bag by another multiplicative factor of 1 + ε.
Bags sizes are rounded down again to the next value of the form ε + rε2, and since the
smallest allowed size was (ε − 2ε2) · LB and ε−2ε2

1+ε
≥ ε − 3ε2, the allowed bag sizes become

B′′ = {(ε + rε2) · LB : r ∈ Z, r ≥ −3, (ε + rε2) · LB ≤ 3 · UB} ∪ {0}, and the expected value
of the Santa Claus value of a feasible solution decreases by a multiplicative factor of at most
1−2ε
1−3ε . By our guessing step and our transformation, there is a feasible solution with expected
value of the Santa Claus value of at least (1 − ε)(1 − 3ε)2 · opt.
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A bag is called tight if the set of jobs of this bag cannot use a bag of a larger allowed size.
Note that any solution where some bags are not tight can be converted into one where all
bags are tight without decreasing the expected value of the objective.

▶ Lemma 19. For any tight bag it holds that the allowed size of the bag is at least ε2 times
its actual size (the total size of jobs assigned to the bag, such that their rounded sizes are
considered).

The final steps of the EPTAS for Pr-SantaClaus. Our next step is to guess an approximated
histogram of the optimal Santa Claus value in all scenarios. This step and the next step
of formulating a template-configuration integer program of fixed dimension are similar to
the ones we have established for Pr-makespan. Using these additional steps we manage to
prove our second main result.

▶ Theorem 20. Problem Pr-SantaClaus admits an EPTAS.
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