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Abstract
This paper investigates ∃R(ξZ), that is the extension of the existential theory of the reals by an
additional unary predicate ξZ for the integer powers of a fixed computable real number ξ > 0. If all
we have access to is a Turing machine computing ξ, it is not possible to decide whether an input
formula from this theory is satisfiable. However, we show an algorithm to decide this problem when

ξ is known to be transcendental, or
ξ is a root of some given integer polynomial (that is, ξ is algebraic).

In other words, knowing the algebraicity of ξ suffices to circumvent undecidability. Furthermore, we
establish complexity results under the proviso that ξ enjoys what we call a polynomial root barrier.
Using this notion, we show that the satisfiability problem of ∃R(ξZ) is

in ExpSpace if ξ is an algebraic number, and
in 3Exp if ξ is a logarithm of an algebraic number, Euler’s e, or the number π, among others.

To establish our results, we first observe that the satisfiability problem of ∃R(ξZ) reduces in
exponential time to the problem of solving quantifier-free instances of the theory of the reals where
variables range over ξZ. We then prove that these instances have a small witness property: only finitely
many integer powers of ξ must be considered to find whether a formula is satisfiable. Our complexity
results are shown by relying on well-established machinery from Diophantine approximation and
transcendental number theory, such as bounds for the transcendence measure of numbers.

As a by-product of our results, we are able to remove the appeal to Schanuel’s conjecture from
the proof of decidability of the entropic risk threshold problem for stochastic games with rational
probabilities, rewards and threshold [Baier et al., MFCS, 2023]: when the base of the entropic risk is
e and the aversion factor is a fixed algebraic number, the problem is (unconditionally) in Exp.
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1 Introduction

Tarski’s exponential function problem asks to determine the decidability of the validity
problem from the first-order (FO) theory of the structure (R; 0, 1,+, ·, ex, <,=). This theory,
hereinafter denoted R(ex), extends the FO theory of the reals (a.k.a. Tarski arithmetic) with
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the exponential function x 7→ ex. A celebrated result by Macintyre and Wilkie establishes an
affirmative answer to Tarski’s problem conditionally to the truth of Schanuel’s conjecture, a
profound conjecture from transcendental number theory [24]. Recent years have seen this
result being used as a black-box to establish conditional decidability results for numerous
problems stemming from dynamical systems [14, 2] automata theory [15, 13], neural networks
verification [19, 21], the theory of stochastic games [5], and differential privacy [7].

As it is often the case when appealing to a result as a black-box, some of the computa-
tional tasks resolved by relying on the work in [24] do not require the full power of R(ex).
Consequently, it is natural to ask whether some of these tasks can be tackled without relying
on unproven conjectures, perhaps by reduction to tame fragments or variants of R(ex).
A few results align with this question:

In the papers [3, 1, 28], Achatz, Anai, McCallum and Weispfenning introduce a procedure
to decide sentences of the form ∃x∃y : y = trans(x) ∧ φ(x, y), where φ is a formula from
Tarski arithmetic, and x 7→ trans(x) is any analytic and strongly transcendental function
(see [28, Section 2] for the precise definition). Since x 7→ ex enjoys such properties,
this result shows a non-trivial fragment of R(ex) that is unconditionally decidable. The
procedure is implemented in the tool Redlog [16]. No complexity bound is known.
In [17], van den Dries proves decidability of the extension of Tarski arithmetic with
the unary predicate 2Z interpreted as the set {2i : i ∈ Z}, i.e., the set of all integer
powers of 2. While this result is achieved by model-theoretic arguments, an effective
quantifier elimination procedure was later given by Avigad and Yin [4]. Their procedure
runs in Tower, and in fact it requires non-elementary time already for the elimination
of a single quantified variable. The choice of the base 2 for the integer powers is
somewhat arbitrary: in [18], the decidability is extended to any fixed algebraic number
(i.e., a number that is root of some polynomial equation; see Section 3 for background
knowledge on computable, algebraic and transcendental numbers), and in fact Avigad
and Yin’s procedure is also effective for any such number. Considering any two α, β ∈ R
satisfying αZ ∩ βZ = {1} yields undecidability, as shown by Hieronymi in [20].

When comparing the two lines of work discussed above, it becomes apparent that there is
a balance to be struck between reasoning about transcendental numbers, the path followed
by the first set of works, and developing algorithms that are well-behaved from a complexity
standpoint, the path taken in particular in [4]. Our aim with this paper is to somewhat
bridge this gap: we add to the second line of work by studying predicates for integer powers
of bases that may be transcendental, all the while maintaining complexity upper bounds.

From now on, we write ∃R(ξZ) to denote the existential fragment of the FO theory of
the structure (R; 0, 1, ξ,+, ·, ξZ, <,=), where ξ > 0 is a fixed real number. In this paper, we
examine the complexity of deciding the satisfiability problem of ∃R(ξZ) for different choices
of the number ξ. The following theorem summarises our results.

▶ Theorem 1. Fix a real number ξ > 0. The satisfiability problem for ∃R(ξZ) is
1. in ExpSpace whenever ξ is an algebraic number;
2. in 3Exp if ξ ∈ {π, eπ, eη, αη, ln(α), ln(α)

ln(β) : α, β, η algebraic with α > 0 and 1 ̸= β > 0};
3. decidable whenever ξ is a computable transcendental number.

Theorem 1 has a catch, however. To be effective, the algorithm for deciding ∃R(ξZ) requires:
For Theorem 1.1, to have access to a canonical representation (see Section 3) of ξ.
In the cases covered by Theorem 1.2, to have access to representations of α, β, and η.
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In the case of ξ computable transcendental number (Theorem 1.3), to have access to a
Turing machine T that computes ξ (that is, given an input n ∈ N written in unary, T
returns a rational number Tn such that |ξ − Tn| ≤ 2−n).

In summary, Theorem 1 shows that ∃R(ξZ) is decidable for every fixed computable number
ξ > 0, as long as it is known whether ξ is algebraic or transcendental, and in the former case
having access to a canonical representation of ξ.

The results in Theorem 1 are obtained by (i) reducing the satisfiability problem for ∃R(ξZ)
to the problem of solving instances of ∃R(ξZ) where all variables range over ξZ, and (ii) show-
ing that a solution over ξZ can be found by only looking at a “small” set of integer powers
of ξ (a small witness property). In proving Step (ii), we also obtain a quantifier elimination
procedure for sentences of ∃R(ξZ), that is formulae where no variable occurs free. This
procedure provides a partial answer to the question raised in [4] regarding the complexity of
removing a single existential variable in Tarski arithmetic extended with 2Z: within sentences
of the existential fragment, such an elimination step can be performed in elementary time.

Coming back to our initial question on identifying computational tasks that might not
need the full power of R(ex), as a by-product of our results we show that the entropic risk
threshold problem for stochastic games studied by Baier, Chatterjee, Meggendorfer and
Piribauer [5] is unconditionally decidable in Exp even when the base of the entropic risk is e
(or algebraic) and the aversion factor is any (fixed) algebraic number.

2 Approaching complexity bounds with root barriers

Theorems 1.1 and 1.2 are instances of a more general result concerning classes of computable
real numbers. To properly introduce this result, it is beneficial to go back to Macintyre and
Wilkie’s work on R(ex). The exact statement made in [24] is that R(ex) is decidable as soon
as the following computational problem, implied by Schanuel’s conjecture, is established:

▶ Conjecture 2. There is a procedure that for input f1, . . . , fn, g ∈ Z[x1, . . . , xn, e
x1 , . . . , exn ],

with n ≥ 1, returns a positive integer t with the following property: for every non-singular1

solution α ∈ Rn of the system of equalities
∧n
i=1 fi(x) = 0, either g(α) = 0 or |g(α)| > t−1.

Above, Z[x1, . . . , xn, e
x1 , . . . , exn ] is the set of all n-variate exponential-polynomials with

integer coefficients. As remarked in [24], t is guaranteed to exist by Khovanskii’s theorem [22],
hence the crux of the problem concerns how to effectively compute such a number starting
from f1, . . . , fn and g. The purpose of the dichotomy “either g(α) = 0 or |g(α)| > t−1”
is in part to resolve what is a fundamental problem when working with computable real
numbers. Let α to be a vector of computable numbers. Consider the problem of establishing,
given in input a polynomial p with integer coefficients, whether p(α) is positive, negative, or
zero. This polynomial sign evaluation task is a well-known undecidable problem. Intuitively,
the undecidability arises from the possibility that any approximation α∗ of α might yield
p(α∗) ̸= 0, even though p(α) = 0. However, when working under the hypothesis that
either p(α) = 0 or |p(α)| > t−1, the problem becomes decidable: it suffices to compute an
approximation α∗ enjoying |p(α)−p(α∗)| < (2t)−1, and then check whether |p(α∗)| ≤ (2t)−1.
If the answer is positive, then p(α) = 0, otherwise p(α) and p(α∗) have the same sign.

1 A solution α of
∧n

i=1 fi(x) = 0 is said to be non-singular whenever the determinant of the n×n Jacobian
matrix ∂(f1,...,fn)

∂(x1,...,xn) is, once evaluated at α, non-zero. We give this definition only for completeness of
the discussion on Conjecture 2. It is not used in this paper.
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The same issue occurs in ∃R(ξZ): under the sole hypothesis that ξ is computable, we
cannot even check if ξ = 2 holds. However, what we can do is to draw some inspiration
from Conjecture 2, and introduce as a further assumption the existence of what we call a
root barrier of ξ. Below, N≥1 = {1, 2, 3, . . . }, and given a polynomial p we write deg(p) for
its degree and h(p) for its height (i.e., the maximum absolute value of a coefficient of p).

▶ Definition 3. A function σ : (N≥1)2 → N is a root barrier of ξ ∈ R if for every non-constant
polynomial p(x) with integer coefficients, either p(ξ) = 0 or ln |p(ξ)| ≥ −σ(deg(p),h(p)).

To avoid non-elementary bounds on the runtime of our algorithms, we focus on com-
putable numbers having root barriers σ(d, h) that are polynomial expressions of the form
c · (d+ ⌈ln h⌉)k, where c, k ∈ N are some positive constants and ⌈·⌉ is the ceiling function.
We call such functions polynomial root barriers, highlighting the fact that then σ(deg(p),h(p))
in Definition 3 is bounded by a polynomial in the bit size of p. The aforestated Theorem 1.2
is obtained by instantiating the following Theorem 4.2 to natural choices of ξ.

▶ Theorem 4. Let ξ > 0 be a real number computable by a polynomial-time Turing machine,
and let σ(d, h) := c · (d+ ⌈ln h⌉)k be a root barrier of ξ, for some c, k ∈ N≥1.
1. If k = 1, then the satisfiability problem for ∃R(ξZ) is in 2Exp.
2. If k > 1, then the satisfiability problem for ∃R(ξZ) is in 3Exp.

As we will see in Section 6, whenever algebraic, the base ξ has a root barrier with expo-
nent k = 1, and the related satisfiability problem for ∃(ξZ) thus lie in 2Exp. However, a small
trick will allow us to further improve this result to ExpSpace, establishing Theorem 1.1.

3 Preliminaries

In this section, we fix our notation, introduce background knowledge on computable, algebraic
and transcendental numbers, and define the existential theory ∃R(ξZ).

Sets, vectors, and basic functions. Given a finite set S, we write |S| for its cardinality.
Given a, b ∈ R, we write [a, b] for the closed interval {c ∈ R : a ≤ c ≤ b}. We use parenthesis
( and ) for open intervals, hence writing, e.g., [a, b) for the set {c ∈ R : a ≤ c < b}. We write
[a..b] for the set of integers [a, b] ∩ Z. Given A ⊆ R, c ∈ R, and a binary relation ∼ (e.g., ≥),
we define A∼c := {a ∈ A : a ∼ c}. The endpoints of A are its supremum and infimum, if they
exist. For instance, the endpoints of the interval [a, b) are the numbers a and b, while the
endpoints of [a..b] are the numbers ⌈a⌉ and ⌊b⌋, where ⌊·⌋ stands for the floor function.

Given a positive real number b with b ̸= 1, we write logb(·) for the logarithm function of
base b. We abbreviate log2(·) and loge(·) as log(·) and ln(·), respectively.

Unless stated explicitly, all integers encountered by our algorithms are encoded in binary;
note that n ∈ Z can be represented using 1 + ⌈log(n+ 1)⌉ bits. Similarly, each rational is
encoded as a ratio n

d of two coprime integers n and d encoded in binary, with d ≥ 1.

Integer polynomials. An integer polynomial in variables x = (x1, . . . , xn) is an expression
p(x) :=

∑m
j=1(aj ·

∏n
i=1 x

dj,i

i ), where aj ∈ Z and dj,i ∈ N for every j ∈ [1..m] and i ∈ [1..n].
In the context of algorithms, we assume the coefficients aj to be given in binary encoding,
and the exponents di,j to be given in unary encoding. We rely on the following notions:

The height of p, denoted h(p), is defined as max{|aj | : j ∈ [1..m]}.
The degree of p, denoted deg(p), is defined as max{

∑n
i=1 dj,i : j ∈ [1..m]}.

Given i ∈ [1..n], the partial degree of p in xi, denoted deg(xi, p), is max{dj,i : j ∈ [1..m]}.
The bit size of p, denoted size(p), is defined as m · (⌈log(h(p) + 1)⌉+ n · deg(p)).
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Computable numbers, and algebraic and transcendental numbers. A real number ξ ∈ R
is said to be computable whenever there is a (deterministic) Turing machine T : N → Q
that given in input n ∈ N written in unary (e.g., over the alphabet {1}∗) returns a rational
number Tn (represented as described above) such that |ξ − Tn| ≤ 2−n. We thus have
ξ = limn→∞ Tn, and for this reason ξ is said to be computed by T (or T computes ξ).
The computable numbers form a field [31]; we will later need the following two statements
regarding their closure under product and reciprocal.

▶ Lemma 5. Given Turing machines T and T ′ computing reals a and b, one can construct
a Turing machine T ′′ computing a · b. If T and T ′ run in polynomial time, then so does T ′′.

▶ Lemma 6. Given a Turing machine T computing a non-zero real number r, one can
construct a Turing machine T ′ computing 1

r . If T runs in polynomial time, then so does T ′.

A real number ξ is algebraic if it is a root of some univariate non-zero integer polynomial.
Otherwise, ξ is transcendental. We often denote algebraic numbers by α, β, η, . . . . Throughout
the paper, we consider the following canonical representation: an algebraic number α
is represented by a triple (q, ℓ, u) where q is a non-zero integer polynomial and ℓ, u are
(representations of) rational numbers such that α is the only root of q belonging to [ℓ, u].

The existential theory ∃R(ξZ). Let ξ > 0 be a computable real number. We consider
the structure (R; 0, 1, ξ,+, ·, ξZ, <,=) extending the signature of the FO theory of the reals
with the constant ξ and the unary integer power predicate ξZ interpreted as {ξi : i ∈ Z}.
Formulae from the existential theory of this structure, denoted ∃R(ξZ), are built from the
grammar

φ,ψ ::= p(ξ,x) ∼ 0 | ξZ(x) | ⊤ | ⊥ | φ ∨ ψ | φ ∧ ψ | ∃xφ ,

where ∼ belongs to {<,=}, the argument x of the predicate ξZ(x) is a variable, and p is
an integer polynomial involving ξ and variables x. For convenience of notation, ξ is in this
context seen as a variable of the polynomial p, so that we can rely on the previously defined
notions of height, degree and bit size. We remark that, then, h(p) is independent of ξ whereas
deg(p) depends on the integers occurring as powers of ξ. The bit size of a formula φ, denoted
as size(φ), is the number of bits required to write down φ (where ξ is stored symbolically,
using a constant number of symbols). Similarly, we write deg(φ) and h(φ) for the maximum
degree and height of polynomials occurring in φ, respectively.

The semantics of formulae from ∃R(ξZ) is standard; it is the one of the FO theory of the
reals, plus a rule stating that ξZ(x) is true whenever x evaluates to a number in ξZ. The
grammar above features disjunctions (∨), conjunctions (∧), true (⊤) and false (⊥), but it
does not feature negation (¬) on top of atomic formulae. This restriction is w.l.o.g.: ¬ξZ(x)
is equivalent to the formula x ≤ 0 ∨ ∃y : ξZ(y) ∧ y < x ∧ x < ξ · y stating that x is either
non-positive or strictly between two successive integer powers of ξ, whereas ¬(p(ξ,x) < 0)
and ¬(p(ξ,x) = 0) are equivalent to p(ξ,x) = 0∨−p(ξ,x) < 0, and p(ξ,x) < 0∨−p(ξ,x) < 0,
respectively. We still sometimes write negations in formulae, but these occurrences should
be seen as shortcuts. The grammar also avoids polynomials in the scope of ξZ(·), since
ξZ(p(ξ,x)) is equivalent to ∃y : y = p(ξ,x) ∧ ξZ(y). We write φ |= ψ whenever φ entails ψ.

4 An algorithm for deciding ∃R(ξZ)

Fix a computable number ξ > 0 that is either transcendental or has a polynomial root barrier.
In this section, we discuss our procedure for deciding the satisfiability of formulae in ∃R(ξZ).
For simplicity, we assume for now ξ > 1. The general case of ξ > 0 is handled in Section 4.5.

STACS 2025
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Algorithm 1 A procedure deciding the satisfiability problem for ∃R(ξZ).

Fixed: ξ > 1 computable number that is transcendental or has a polynomial root barrier.
Input: φ(x1, . . . , xn) : quantifier-free formula from ∃R(ξZ).
Output: True (⊤) if φ is satisfiable, and otherwise False (⊥).

1: for i ∈ [1..n] do
2: let ui and vi be two fresh variables
3: update φ: replace every occurrence of ξZ(xi) with vi = 1
4: update φ: replace every occurrence of xi with ui · vi
5: φ← φ ∧ (vi = 0 ∨ 1 ≤ |vi| < ξ)
6: ψ(u1, . . . , un)← RealQE(∃v1 . . . ∃vn : φ ) ▷ eliminate v1, . . . , vn (see Theorem 7)
7: for i ∈ [1..n] do ▷ gi below is encoded in unary
8: guess gi ← an element of Pψ ▷ Pψ ⊆ Z is the set from in Proposition 8
9: return evaluate whether the assignment (u1 = ξg1 , . . . , un = ξgn) is a solution to ψ

Algorithm 2 Algorithm for solving Signξ when ξ has a root barrier.

Fixed: A number ξ ∈ R computed by a Turing machine T and having a root barrier σ.
Input: A univariate integer polynomial p(x) of degree d and height h.
Output: The symbol ∼ from {<,>,=} such that p(ξ) ∼ 0.

1: n← 1 + 2σ(d, h) + 3d ⌈log(h+ 4)⌉
2: if |p(Tn)| ≤ 2−2σ(d,h)−1 and |Tn| < h+ 2 then return the symbol =
3: else return the sign of p(Tn)

The pseudocode of the procedure is given in Algorithm 1. To keep it as simple as possible,
we use nondeterminism in line 8 instead of implementing, e.g., a routine backtracking
algorithm. The procedure assumes the input formula φ(x1, . . . , xn) to be quantifier-free (this
is without loss of generality, since ∃R(ξZ) is an existential theory), and it is split into three
steps, which we discuss in the forthcoming three subsections.

4.1 Step I (lines 1–6): reducing the variables to integer powers of ξ

The first step reduces the problem of finding a solution over R to the problem of find-
ing a solution over ξZ. Below, we denote by ∃ξZ the existential theory of the structure
(ξZ; 0, 1, ξ,+, ·, <,=). Formulae from this theory are built from the grammar of ∃R(ξZ),
except they do not feature predicates ξZ(x), as they are now trivially true.

For reducing ∃R(ξZ) to ∃ξZ, we observe that every x ∈ R can be factored as u · v where u
belongs to ξZ and v is either 0 (if x = 0) or it belongs, in absolute value, to the interval [1, ξ).
In the case of x ≠ 0, this factorisation is unique, and u corresponds to the largest element of
ξZ that is less or equal to the absolute value of x, i.e., u ≤ |x| < ξ ·u. The procedure uses this
fact to replace every occurrence of a variable xi in the input formula φ(x1, . . . , xn) with two
fresh variables ui and vi (see the for loop of line 1), where vi is set to satisfy either vi = 0 or
1 ≤ |vi| < ξ (the latter is short for the formula (1 ≤ vi < ξ) ∨ (−ξ < vi ≤ −1)), and ui is
(implicitly) assumed to belong to ξZ. This allows to replace all occurrences of the predicate
ξZ(xi) with vi = 1 (line 3). We obtain in this way an equivalent formula from the existential
theory of the reals, but where the variables u1, . . . , un are assumed to range over ξZ.
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After the updates performed by the for loop, the procedure eliminates the variables
v1, . . . , vn by appealing to a quantifier elimination procedure for the FO theory of the reals,
named RealQE in the pseudocode. We remind the reader that a quantifier elimination
procedure is an algorithm that, from an input (quantified) formula, produces an equivalent
quantifier-free formula. Since such a procedure preserves formula equivalence, we can use it to
eliminate v1, . . . , vn even if u1, . . . , un are assumed to range over ξZ. The constant ξ appearing
in the formula is treated as an additional free variable by RealQE. The output formula
ψ(u1, . . . , un) belongs to ∃ξZ, as required. This concludes the first step of the algorithm.

To perform the quantifier elimination step, we rely on the quantifier elimination procedure
for the (full) FO theory of the reals developed by Basu, Pollack and Roy [8]. This procedure
achieves the theoretically best-known bounds for the output formula, not only for arbitrary
quantifier alternation but also for the existential fragment (i.e., when taking ω = 1 below).

▶ Theorem 7 ([8, Theorem 1.3.1]). There is an algorithm with the following specification:

Input: A formula φ(y) from the first-order theory of (R; 0, 1,+, ·, <,=).
Output: A quantifier-free formula γ(y) =

∨I
i=1

∧J
j=1 pi,j(y) ∼i,j 0 equivalent to φ,

where every ∼i,j is from {<,=}.

Suppose the input formula φ to be of the form Q1x1 ∈ Rn1 . . . Qωxω ∈ Rnω : ψ(y,x1, . . . ,xω),
where y = (y1, . . . , yk), every Qi is ∃ or ∀, and ψ is a quantifier-free formula with m atomic
formulae gi ∼ 0 satisfying deg(gi) ≤ d and h(gi) ≤ h. Then, the output formula γ satisfies

I ≤ (m · d+ 1)(k+1)Πω
i=1O(ni) , deg(pi,j) ≤ dΠω

i=1O(ni) ,

J ≤ (m · d+ 1)Πω
i=1O(ni) , h(pi,j) ≤ (h+ 1)d

(k+1)Πω
i=1O(ni)

,

and the algorithm runs in time size(φ)O(1)(m · d+ 1)(k+1)Πω
i=1O(ni).

4.2 Step II (lines 7 and 8): solving ∃ξZ

The second step of the procedure searches for a solution to the quantifier-free formula ψ in
line 6. For every variable ui in ψ, the algorithm guesses an integer gi, encoded in unary,
from a finite set Pψ. Implicitly, this guess is setting ui = ξgi . The next proposition shows
that Pψ can be computed from ψ and the base ξ, i.e., ∃ξZ has a small witness property.

▶ Proposition 8. Fix ξ > 1. There is an algorithm with the following specification:

Input: A quantifier-free formula ψ(u1, . . . , un) from ∃ξZ.
Output: A finite set Pψ ⊆ Z such that ψ is satisfiable if and only if

ψ has a solution in the set {(ξj1 , . . . , ξjn) : j1, . . . , jn ∈ Pψ}.

To be effective, the algorithm requires knowing either that ξ is a computable transcendental
number, or two integers c, k ∈ N≥1 for which σ(d, h) := c · (d+ ⌈ln(h)⌉)k is a root barrier of ξ.
In the latter case, the elements in Pψ are bounded in absolute value by (2c ⌈ln(H)⌉)D25n2

kD8n

,
where H := max(8,h(ψ)) and D := deg(ψ) + 2.

We defer a sketch of the proof of Proposition 8 (perhaps the main technical contribution of the
paper) to Section 5. Note that the bound on Pψ given in the final statement of Proposition 8
is in general triply exponential in size(ψ), but it becomes doubly exponential if the root
barrier σ is such that k = 1. The two statements in Theorem 4 stem from this distinction.

STACS 2025
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4.3 Step III (line 9): polynomial sign evaluation
The last step of the procedure checks if the assignment u1 = ξg1 , . . . , un = ξgn is a solution
to ψ(u1, . . . , un). Observe that ψ(ξg1 , . . . , ξgn) is a Boolean combination of polynomial
(in)equalities p(ξ) ∼ 0, where ξ may occur with negative powers (as some gi may be negative).
This is unproblematic, as one can make all powers non-negative by rewriting each (in)equality
p(ξ) ∼ 0 as ξ−d · p ∼ 0, where d is the smallest negative integer occurring as a power of ξ
in p (or 0 if such an integer does not exist). After this small update, line 9 boils down to
determining the sign that each polynomial in the formula has when evaluated at ξ. This
enables us to simplify all inequalities to either ⊤ or ⊥, to then return ⊤ or ⊥ depending on
the Boolean structure of ψ. Let us thus focus on the required sign evaluation problem, which
we denote by Signξ. Its specification is the following:

Input: A univariate integer polynomial p(x).
Output: The symbol ∼ from {<,>,=} such that p(ξ) ∼ 0.

Solving Signξ when ξ ∈ R is transcendental. It is a standard fact that Signξ becomes
solvable whenever ξ is any computable transcendental number. Indeed, in this case p(ξ)
must be different from 0, and one can rely on the fast-convergence sequence of rational
numbers T0, T1, . . . to find n ∈ N such that |p(ξ) − p(Tn)| is guaranteed to be less than
|p(Tn)|. The sign of p(ξ) then agrees with the sign of p(Tn), and the latter can be easily
computed. In general, the asymptotic running time of this algorithm cannot be bounded.

Solving Signξ when ξ ∈ R has a (polynomial) root barrier. A similar algorithm as the
one given for transcendental numbers can be defined for numbers with a polynomial root
barrier; and in this case its running time can be properly analysed. The pseudocode of such a
procedure is given in Algorithm 2, and it should be self-explanatory. We stress that running
this algorithm requires access to the root barrier σ and the Turing machine T .

▶ Lemma 9. Algorithm 2 respects its specification.

Proof sketch. If |Tn| ≥ h+ 2, then p(ξ) and p(Tn) have the same sign, because h+ 1 is an
upper bound to the absolute value of every root of p(x) [30, Chapter 8]. If |Tn| < h + 2
instead, by studying the derivative of p in the interval [−(h+ 3), h+ 3] containing ξ, one finds
|p(ξ)− p(Tn)| ≤ 2−2σ(d,h)−1, with n defined as in line 1. Then, either |p(Tn)| ≤ 2−2·σ(d,h)−1

and p(ξ) = 0, or |p(Tn)| > 2−2·σ(d,h)−1 and p(ξ) and p(Tn) have the same sign. ◀

When σ is a polynomial root barrier, the integer n from line 1 can be written in unary
using polynomially many digits with respect to size(p). This yields the following lemma.

▶ Lemma 10. Let ξ ∈ R be a number computed by a Turing machine T and having a
polynomial root barrier σ. If T runs in polynomial time, then so does Algorithm 2.

4.4 Correctness and running time of Algorithm 1
Since lines 1–5 preserve the satisfiability the input formula, by chaining Theorem 7, Proposi-
tion 8, and Lemma 9, we conclude that Algorithm 1 is correct.

▶ Lemma 11. Algorithm 1 respects its specification.
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This establishes Theorem 1.3 restricted to bases ξ > 1. Analogously, when ξ is a number
with a polynomial root barrier σ(d, h) := c · (d+ ⌈loge h⌉)k, by pairing Lemma 11 with a
complexity analysis of Algorithm 1, one shows Theorem 4 restricted to bases ξ > 1. In
performing this analysis, we observe that the bottleneck of the procedure is given by the
guesses of the integers gi performed lines 7 and 8. The absolute value of these integers
is either doubly or triply exponential in the size of the input formula φ, depending on
whether k = 1. A deterministic implementation of the procedure can iterate through all their
values in doubly or triply exponential time.

4.5 Handling small bases
We now extend our algorithm so that it works assuming ξ > 0 instead of just ξ > 1, hence
completing the proofs of Theorem 1.3 and Theorem 4. Let ξ be computable and either
transcendental or with a polynomial root barrier. First, observe that we can call the procedure
for Signξ on input x− 1 in order to check if ξ ∈ (0, 1), ξ = 1 or ξ > 1.

If ξ = 1, we replace in the input formula φ every occurrence of ξZ(x) with x = 1, obtaining
a formula from the existential theory of the reals, which we can solve by Theorem 7. If ξ > 1,
we call Algorithm 1. Suppose then ξ ∈ (0, 1). In this case, we replace every occurrence of ξZ(x)
with

( 1
ξ

)Z(x), and opportunely multiply by integer powers of 1
ξ both sides of polynomials

inequalities in order to eliminate the constant ξ. In this way, we obtain from φ an equivalent
formula in ∃R(

( 1
ξ

)Z). Since 1
ξ > 1, we can now call Algorithm 1; provided we first establish

the properties of 1
ξ required to run this algorithm. These properties indeed hold:

1. If ξ is transcendental, then so is 1
ξ . This is because the algebraic numbers form a field.

2. If ξ has a polynomial root barrier σ, then σ is also a root barrier of 1
ξ . Indeed, consider

an integer polynomial p(x) =
∑d
i=0 ai · xi with height h, and assume p( 1

ξ ) ̸= 0. Since
σ is a root barrier of ξ, we have ξd · |p( 1

ξ )| = |
∑d
i=0 ai · ξd−i| ≥ e−σ(h,d), which in turns

implies that |p( 1
ξ )| ≥ e−σ(h,d) · ξ−d ≥ e−σ(h,d), where the last inequality uses 1

ξ ≥ 1.
3. From a Turing machine T computing ξ, we can construct a Turing machine T ′ computing 1

ξ .
Lemma 6 gives this construction, and shows that T ′ runs in polynomial time if so does T .

5 Finding solutions over integer powers of ξ

In this section we give a sketch of the proof of Proposition 8, i.e., we show that ∃ξZ has
a small witness property. The proof is split into two parts:
1. We first give a quantifier-elimination-like procedure for ∃ξZ. Instead of targeting formula

equivalence, we only focus on equisatisfiability: given a formula ∃y φ(y,x), with φ

quantifier-free, the procedure derives an equisatisfiable quantifier-free formula ψ(x).
Preserving equisatisfiability, instead of equivalence, is advantageous complexity-wise.
(Our procedure preserves equivalence for sentences, as these are equivalent to ⊤ or ⊥.)

2. By analysing our quantifier elimination procedure, we derive the bounds on the set Pψ
from Proposition 8 that are required to complete the proof. This step is similar to the
quantifier relativisation technique for Presburger arithmetic (see, e.g., [34, Theorem 2.2]).

Some of the core mechanisms of our quantifier-elimination-like procedure follow observations
done by Avigad and Yin for their (equivalence-preserving) quantifier elimination procedure [4].
Apart from targeting equisatisfiability, a key property of our procedure is that it does not
require appealing to a quantifier elimination procedure for the theory of the reals. The
procedure in [4] calls such a procedure once for each eliminated variable instead.
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5.1 Quantifier elimination
Fix a real number ξ > 1. In this section, we rely on some auxiliary notation and definitions:

We often see an integer polynomial p(ξ,x) as a polynomial in variables x = (x1, . . . , xm)
having as coefficients univariate integer polynomials on ξ, i.e., p(ξ,x) =

∑n
i=1 qi(ξ) · xdi ,

where the notation xdi is short for the monomial
∏m
j=1 x

di,j

j , with di = (di,1, . . . , di,m).
We sometimes write polynomial (in)equalities using Laurent polynomials, i.e., polynomials
with negative powers. For instance, Lemma 12 below features equalities with monomials
ξg · xdi where g may be a negative integer. Laurent polynomials are just a shortcut for
us, as one can opportunely manipulate the (in)equalities to make all powers non-negative
(as we did in Section 4.3): a polynomial (in)equality p(ξ, x1, . . . , xm) ∼ 0 is rewritten as
p(ξ, x1, . . . , xm) · ξ−d · x−d1

1 · . . . · x−dm
m ∼ 0, where di (resp. d) is the smallest negative

integer occurring as a power of xi (resp. ξ) in p (or 0 if such a negative integer does not
exist). Observe that this transformation does not change the number of monomials nor
the height of the polynomial p, but it may double the degree of each variable and of ξ.
Given a formula φ, a variable x and a Laurent polynomial q(y), we write φ[q(y) / x]
for the formula obtained from φ by replacing every occurrence of x by q(y), and then
updating all polynomial (in)equalities with negative degrees in the way described above.
We write λ : R>0 → ξZ for the function mapping a ∈ R>0 to the largest integer power of ξ
that is less or equal than a, i.e., λ(a) is the only element of ξZ satisfying λ(a) ≤ a < ξ ·λ(a).

The relation λ(p(ξ,x)) = y, where p is an integer polynomial, is definable in ∃ξZ as
p(ξ,x) > 0 ∧ y ≤ p(ξ,x) < ξ · y. To obtain a quantifier elimination procedure, we must first
understand what values can y take given p(ξ,x). The next lemma answers this question.

▶ Lemma 12. Let p(ξ,x) :=
∑n
i=1(qi(ξ)·xdi), where each qi is a univariate integer polynomial.

In the theory ∃ξZ, the formula p(ξ,x) > 0 entails the formula
∨n
i=1

∨
g∈G λ(p(ξ,x)) = ξg ·xdi ,

for some finite set G ⊆ Z. Moreover:
I. If ξ is a computable transcendental number, there is an algorithm computing G from p.

II. If ξ has a root barrier σ(d, h) := c · (d+ ⌈ln(h)⌉)k, for some c, k ∈ N≥1, then

G := [−L..L] , where L :=
(
23cD ⌈ln(H)⌉

)6nk3n

,

with H := max{8,h(qi) : i ∈ [1, n]}, and D := max{deg(qi) + 2 : i ∈ [1, n]}.

Proof sketch. A suitable set G can be found as follows. Let Q be the set of all univariate
integer polynomials Q(z) for which there are j ≤ ℓ ∈ [1..n], numbers gj , . . . , gℓ−1 ∈ N, and
integer polynomials Qj(z), . . . , Qℓ(z) such that Qℓ = Q and
1. the polynomials Qj , . . . , Qℓ are recursively defined as

Qj(z) := qj(z),
Qr(z) := Qr−1(z) · zgr−1 + qr(z), for every r ∈ [j + 1, ℓ],

2. the real numbers Qj(ξ), . . . , Qℓ−1(ξ) are all non-zero, and Qℓ(ξ) is (strictly) positive,
3. for every r ∈ [j..ℓ− 1], the number ξgr belongs to the interval

[
1 , |qr+1(ξ)|+···+|qn(ξ)|

|Qr(ξ)|
]
.

Items 1–3 ensure the set Q to be finite. We define the (finite) set

B :=
{
β ∈ Z : there is Q ∈ Q such that ξβ ∈

{
λ(Q(ξ)), λ(Q(ξ)·(ξ−1))

ξ , λ(Q(ξ)·(ξ+1))
ξ

}}
.

By induction on n, one can prove that any finite set G that includes [minB..maxB] respects
the property in the first statement of the lemma. To prove the remaining statements of the
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q(u∗) = 0 p(w∗) = 0

λ(u∗) ξ · λ(w∗)

Figure 1 High-level idea of the quantifier elimination procedure. Dashed rectangles are intervals
corresponding to the set of solutions over R of a (univariate) formula φ. To search for a solution
over ξZ, it suffices to look for elements of ξZ that are close to the endpoints of these intervals. At
each endpoint, a polynomial in φ must evaluate to zero (since around endpoints the truth of φ

changes), so it suffices to look for integer powers of ξ that are close to roots or polynomials in φ.

lemma (Items (I) and (II)) one shows how to effectively compute an overapproximation of the
set B. In the case of ξ having a polynomial root barrier, this overapproximation is obtained
by bounding the values of λ(Q(ξ)), λ(Q(ξ)·(ξ−1))

ξ , and λ(Q(ξ)·(ξ+1))
ξ , for every Q ∈ Q. ◀

We now give the high-level idea of the quantifier elimination procedure, which is also
depicted in Figure 1. Let ψ(u,y) be a quantifier-free formula of ∃ξZ, and u be the variable we
want to eliminate. Suppose to evaluate the variables y with elements in ξZ, hence obtaining
a univariate formula φ(u). The set of all solutions over the reals of φ(u) can be decomposed
into a finite set of disjoint intervals. (This follows from the o-minimality of the FO theory of
the reals [26, Chapter 3.3].) Figure 1 shows these intervals as dashed rectangles. Around the
endpoints of these intervals the truth of φ changes, and therefore for each such endpoint u∗

there must be a non-constant polynomial in φ such that q(u∗) = 0. If an interval with
endpoint u∗ ∈ R>0 contains an element of ξZ, then it contains one that is “close” to u∗:

If u∗ ∈ R>0 is the right endpoint of an interval, at least one among λ(u∗) and ξ−1 · λ(u∗)
belongs to the interval. The first case is depicted in Figure 1. The latter case occurs
when u∗ belongs to ξZ but not to the interval.
If u∗ is the left endpoint of an interval, then ξ · λ(u∗) of λ(u∗) belongs to the interval.
The latter case occurs when u∗ belongs to ξZ and also to the interval.

Note that we have restricted the endpoint u∗ to be positive, so that λ(u∗) is well-defined. The
only case were we may not find such an endpoint is when φ(u) is true for every u > 0. But
finding an element of ξZ is in this case simple: we can just pick 1 ∈ ξZ. Since u∗ is positive,
we can split it into x∗ · v∗ with x∗ ∈ ξZ and 1 ≤ v∗ < ξ (so, λ(u∗) = x∗). To obtain quantifier
elimination, our goal is then to characterise, symbolically as a finite set of polynomials τ(y),
the set of all possible values for x∗. In this way, we will be able to eliminate the variable u by
considering the polynomials ξ−1 · τ(y), τ(y) and ξ · τ(y) representing the integer powers of ξ
that are “close” to endpoints. The following lemma provides the required characterisation.

▶ Lemma 13. Let r(x, v,y) :=
∑n
i=0 pi(ξ,y) · (x · v)i, where each pi is an integer polynomial,

M be the set of monomials yℓ occurring in some pi, and N := {yℓ1−ℓ2 : yℓ1 ,yℓ2 ∈M}. Then,

ξZ(x) ∧ 1 ≤ v < ξ ∧ r(x, v,y) = 0 ∧
( n∨
i=0

pi(ξ,y) ̸= 0
)
∧

∧
y from y

ξZ(y) |=
∨

(j,g,yℓ)∈F

xj = ξg · yℓ

holds (in the theory ∃R(ξZ)) for some finite set F ⊆ [1..n]× Z×N . Moreover:
I. If ξ is a computable transcendental number, there is an algorithm computing F from r.

II. If ξ has a root barrier σ(d, h) := c · (d+ ⌈ln(h)⌉)k, for some c, k ∈ N≥1, then,

F := [1..n]× [−L..L]×N, where L := n
(
24cD ⌈ln(H)⌉

)6|M |·k3|M|

,

with H := max{8,h(pi) : i ∈ [1, n]}, and D := max{deg(ξ, pi) + 2 : i ∈ [0, n]}.
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Proof sketch. By following the arguments in [4, Lemma 3.9], one shows that the premise of
the entailment in the statement entails a disjunction over formulae of the form

xk−j = ξs·λ(±pj(ξ,y))
λ(∓pk(ξ,y)) ∧ ±pj(ξ,y) > 0 ∧ ∓pk(ξ,y) > 0,

where 0 ≤ j < k ≤ n, s ∈ [−g..g] with g := 1 +
⌈
logξ(n)

⌉
, and m ≤ n2 ·

(
2 ·

⌈
logξ(n)

⌉
+ 3

)
.

Afterwards, we rely on Lemma 12 to remove the occurrences of λ from the above formulae,
establishing in this way the first statement of the lemma. Items (I) and (II) follow from the
analogous items in Lemma 12. To achieve the bounds in Item (II) we also rely on the fact
that

⌈
logξ(n)

⌉
≤ 22c ⌈ln(n)⌉. This follows from a simple computation, noticing that since ξ

is not a root of the polynomial x− 1, by the definition of root barrier we have ξ > 1 + 1
ec . ◀

By relying on the characterisation, given in Lemma 13, of the values that λ(u∗) can take,
where u∗ > 0 is the root of some polynomial, and by applying our previous observation
that satisfiability can be witnessed by picking elements of ξZ that are “close” to u∗ (i.e., the
numbers ξ−1 · λ(u∗), λ(u∗) or ξ · λ(u∗)), we obtain the following key lemma.

▶ Lemma 14. Let φ(u,y) be a quantifier-free formula from ∃ξZ. Then, ∃uφ is equivalent to∨
ℓ∈[−1..1]

∨
q∈Q

∨
(j,g,yℓ)∈Fq

∃u : uj = ξj·ℓ+g · yℓ ∧ φ (†)

where Q is the set of all polynomials in φ featuring u, plus the polynomial u−1, and each Fq is
the set obtained by applying Lemma 13 to r(x, v,y) := q[x ·v / u], with x and v fresh variables.

To eliminate the variable u, we now consider each disjunct ∃u
(
uj = ξk · yℓ ∧ φ

)
from

Formula (†) and, roughly speaking, substitute u with j
√
ξk · yℓ. We do not need however to

introduce jth roots, as shown in the following lemma.

▶ Lemma 15. Let φ(u,y) be a quantifier-free formula from ∃ξZ, with y = (y1, . . . , yn). Let
j ∈ N≥1, k ∈ Z and ℓ := (ℓ1, . . . , ℓn) ∈ Z. Then, ∃y∃u : uj = ξk · yℓ ∧ φ is equivalent to

∨
r:=(r1,...,rn)∈R ∃z : φ[zji · ξri / yi : i ∈ [1..n]][ξ

k+ℓ·r
j · zℓ / u],

where R :=
{

(r1, . . . , rn) ∈ [0..j − 1]n : j divides k +
∑n
i=1 ri · ℓi

}
, ℓ · r :=

∑n
i=1 ri · ℓi, and

z := (z1, . . . , zn) is a vector of fresh variables.

Proof sketch. Consider a solution to the equality uj = ξk ·yℓ. Each yi evaluates to a number
of the form ξqi·j+ri , with qi ∈ Z and ri ∈ [0..j−1]. Since uj is of the form ξj·q for some q ∈ Z,
we must have that k+

∑n
i=1 ri · ℓi is divisible by j. Observe that the set R in the statement of

the lemma contains all possible vectors r = (r1, . . . , rn) satisfying this divisibility condition.
At the formula level, consider a vector r = (r1, . . . , rn) ∈ R, and replace in uj = ξk · yℓ ∧ φ

every variable yi with the term zji · ξri . After this replacement, the equality uj = ξk · yℓ can
be rewritten as u = ξ

k+ℓ·r
j · zℓ, where the division is without remainder. We can therefore

substitute u with ξ
k+ℓ·r

j · zℓ in φ, eliminating it. ◀

By chaining Lemmas 14 and 15, one can eliminate all variables from a quantifier-free
formula φ(x), obtaining an equisatisfiable formula with no variables.



J. Gallego-Hernández and A. Mansutti 37:13

5.2 Quantifier relativisation
Looking closely at how a quantifier-free formula φ(u1, . . . , un) of ∃ξZ evolves as we chain Lem-
mas 14 and 15 to eliminate all variables, we see that the resulting variable-free formula is a
finite disjunction

∨
i ψi of formulae ψi that are obtained from φ via a sequence of substitutions

stemming from Lemma 15. As an example, for a formula in three variables φ(u1, u2, u3),
each ψi is obtained by applying a sequence of substitutions of the form:

elimination of u1 elimination of z1 elimination of z3


u1 = ξk1 · zℓ1

1 · z
ℓ2
2

u2 = zj1
1 · ξr1

u3 = zj1
2 · ξr2

{
z1 = ξk2 · zℓ3

3

z2 = zj2
3 · ξr3

{
z3 = ξk3

We can “backpropagate” these substitutions to the initial variables u1, . . . , un, associating to
each one of them an integer power of ξ. In the above example, we obtain the system

u1 = ξk1 · (ξk2 · (ξk3)ℓ3)ℓ1 · ((ξk3)j2 · ξr3)ℓ2

u2 = (ξk2 · (ξk3)ℓ3)j1 · ξr1

u3 = ((ξk3)j2 · ξr3)j1 · ξr2

By Lemmas 13–15, we can restrict the integers occurring as powers of ξ in the resulting
system of substitutions to a finite set. Since the disjunction

∨
i ψi is finite, this implies

that, under the hypothesis that ξ is a computable number that is either transcendental or
has a polynomial root barrier, it is possible to compute a finite set Pφ ⊆ Z witnessing the
satisfiability of φ. That is, the sentence ∃u1 . . . ∃un φ is equivalent to

∃u1 . . . ∃un
∨

(g1,...,gn)∈(Pφ)n (φ ∧
∧n
i=1 ui = ξgi) .

Proposition 8 follows (in particular, the bound on Pφ for the case of ξ with a polynomial
root barrier is derived by iteratively applying the bounds in Lemmas 13–15).

6 Proof of Theorem 1: classical numbers with polynomial root barriers

In this section, we complete the proof of Theorem 1 by establishing Theorem 1.1 and The-
orem 1.2. Following Theorem 4, we discuss natural choices for the base ξ > 0 that (i) can be
computed with polynomial-time Turing machines and (ii) have polynomial root barriers.

The case of ξ algebraic. Let ξ be a fixed algebraic number represented by (q, ℓ, u). The
following two results (the first one based on performing a dichotomy search to refine the
interval [ℓ, u]) show that one can construct a polynomial-time Turing machine for ξ, and
that ξ has a polynomial root barrier where the integer k from Theorem 4 equals 1.

▶ Lemma 16. Given an algebraic number α represented by (q, ℓ, u), one can construct a
polynomial-time Turing machine computing α.

▶ Theorem 17 ([10, Theorem A.1]). Let α ∈ R be a zero of a non-zero integer polyno-
mial q(x), and consider a non-constant integer polynomial p(x). Then, either p(α) = 0 or
ln |p(α)| ≥ − deg(q) ·

(
ln(deg(p) + 1) + ln h(p)

)
− deg(p) ·

(
ln(deg(q) + 1) + ln h(q)

)
.
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Table 1 Transcendence measures for some classical real numbers. For convenience only, the table
assumes h ≥ 16 (so that ln ln h ≥ 1; replace h by h + 15 to avoid this assumption). The numbers
α > 0, β > 0 and η are fixed algebraic numbers, with β ̸= 1. The integers cη, cα,η, cα and cα,β are
constants that depend on, and can be computed from, polynomials representing α, β and η. In the
case of αη, η is assumed to be irrational. In the last line of the table, ln α

ln β
is assumed to be irrational.

Number Transcendence measure from [33] Simplified bound (α, β, η fixed)

π 240d(ln h+ d ln d)(1 + ln d) O(d2(ln d)2 ln h)
eπ 260d2(ln h+ ln d)(ln ln h+ ln d)(1 + ln d) O(d2(ln d)3(ln h)(ln ln h))
eη cη · d2(ln h+ ln d)

( ln lnh+ln d
ln lnh+ln max(1,ln d)

)2
O(d2(ln d)3(ln h)(ln ln h)2)

αη cα,η · d3(ln h+ ln d) ln lnh+ln d
(1+ln d)2 O(d3(ln d)2(ln h)(ln ln h))

lnα cα · d2 lnh+d ln d
1+ln d O(d3(ln d) ln h)

lnα
ln β cα,β · d3 lnh+d ln d

(1+ln d)2 O(d4(ln d) ln h)

By applying Theorem 4.1, Lemma 16 and Theorem 17, we deduce that the satisfiability
problem for ∃R(ξZ) is in 2Exp. However, for algebraic numbers it is possible to obtain a
better complexity result (ExpSpace) by slightly modifying Steps II and III of Algorithm 1.

Proof of Theorem 1.1. Let φ be a formula in input of Algorithm 1, and ψ(u1, . . . , un) to
be the formula obtained from φ after executing lines 1–6. In lines 7 and 8, guess the
integers g1, . . . , gn in binary, instead of unary. These numbers have at most m bits where,
by Theorem 7 and Proposition 8, m is exponential in size(φ). Let gi = ±i

∑m−1
j=0 di,j2j , with

di,j ∈ {0, 1} and ±i ∈ {+1,−1}, so that ξgi =
∏m−1
j=0 ξ±idij2j . Note that the formula

γ(x0, . . . , xm−1) := q(x0) = 0 ∧ ℓ ≤ x0 ≤ u ∧
∧m−1
i=1 xi = (xi−1)2

has a unique solution: for every j ∈ [0..m − 1], xj must be equal to ξ2j . The formula ψ

is therefore equisatisfiable with the formula ψ′ := ψ[x0 / ξ] ∧ γ ∧
∧n
i=1 ui =

∏m−1
j=0 x

±idij

j ,
which (after rewriting ui =

∏m−1
j=0 x

±idij

j into ui
∏m−1
j=0 x

dij

j = 1 when ±i = −1) is a formula
from the existential theory of the reals of size exponential in size(φ). Since the satisfiability
problem for the existential theory of the reals is in PSpace [12], we conclude that checking
whether ψ′ is satisfiable can be done in ExpSpace. Accounting for Steps I and II, we thus
obtain a procedure running in non-deterministic exponential space (because of the guesses in
lines 7 and 8), which can be determinised by Savitch’s theorem [32]. ◀

The case of ξ among some classical transcendental numbers (proof sketch of Theorem 1.2).
In the context of transcendental numbers, root barriers are usually called transcendence
measures. Several fundamental results in number theory concern deriving a transcendence
measure for “illustrious” numbers, such as Euler’s e, π, or logarithms of algebraic numbers [29,
25, 33]. A few of these results are summarised in Table 1, which is taken almost verbatim
from [33, Fig. 1 and Corollary 4.2]. All transcendence measures in the table are polynomial
root barriers. Note that in the cases of αη and lnα

ln β , the transcendence measures hold under
further assumptions, which are given in the caption of the table.

Following Theorem 4.2, to prove Theorem 1.2 it suffices to show how to construct a
polynomial-time Turing machine for every number in Table 1, and derive polynomial root
barriers for the cases ξ = αη and ξ = lnα

ln β without relying on the additional assumptions in
the table. The following two results solve the first of these two issues.
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▶ Theorem 18 ([6]). One can construct a polynomial-time Turing machine computing π.

▶ Lemma 19. Given a polynomial-time Turing machine computing r ∈ R,
1. one can construct a polynomial-time Turing machine computing er;
2. if r > 0, one can construct a polynomial-time Turing machine computing ln(r).

Proof idea. The two Turing machines use the power series in the identities ex =
∑∞
j=0

xj

j!

and ln(x) = 2
∑∞
j=0

( 1
2j+1

(
x−1
x+1

)2j+1)
, truncated to obtain the required accuracy. ◀

As an example, to construct the Turing machine for ln(α)
ln(β) we construct machines for the

following sequence of numbers: α and β (applying Lemma 16), ln(α) and ln(β) (Lemma 19.2),
1

ln(β) (Lemma 6) and 1
ln(β) · ln(α) (Lemma 5). For αη, we follow the operations in eη·ln(α).

Let us now discuss how to derive polynomial root barriers when ξ = αη or ξ = ln(α)
ln(β) .

In the case ξ = αη, Table 1 assumes η to be irrational. To check whether an algebraic number
represented by (q, ℓ, u) is rational, it suffices to factor q(x) into a product of irreducible
polynomials with rational coefficients, and test for any degree 1 factor n · x −m whether
the rational number m

n belongs to [ℓ, u]. The factorisation of q can be computed (in fact,
in polynomial time) using LLL [23]. If such a rational number does not exist, then η is
irrational and the polynomial root barrier for αη is given in Table 1. Otherwise, η = m

n

and the number αm
n is algebraic. In this case, rely on the following lemma to construct a

representation of αm
n , and then derive a polynomial root barrier by applying Theorem 17.

▶ Lemma 20. There is an algorithm that given a rational r and an algebraic number α > 0
represented by (q, ℓ, u), computes a representation (q′, ℓ′, u′) of the algebraic number αr.

We move to the case ξ = ln(α)
ln(β) , which Table 1 assumes to be irrational. Since ξ is positive,

α, β ̸∈ {0, 1}. We observe that for every m
n ∈ Q, we have ξ = m

n if and only if αnβ−m = 1.
(In other words, ln(α)

ln(β) ∈ Q if and only if α and β are multiplicatively dependent.) From a
celebrated result of Masser [27], the set {(m,n) ∈ Z2 : αnβ−m = 1} is a finitely-generated
integer lattice for which we can explicitly construct a basis K (see [11] for a polynomial-time
procedure). If K = {(0, 0)}, then ξ is irrational and its polynomial root barrier is given
in Table 1. Otherwise, since α, β ̸∈ {0, 1}, there is (m,n) ∈ K with n ̸= 0, and ξ = m

n . We
can then derive a polynomial root barrier by applying Theorem 17.

7 An application: the entropic risk threshold problem

We now apply some of the machinery developed for ∃R(ξZ) to remove the appeal to Schanuel’s
conjecture from the decidability proof of the entropic risk threshold problem for stochastic
games from [5]. Briefly, a (turn-based) stochastic game is a tuple G = (Smax, Smin, A,∆)
where Smax and Smin are disjoint finite set of states controlled by two players, A is a function
from states to a finite set of actions, and ∆ is a function taking as input a state s and an
action from A(s), and returning a probability distribution on the set of states. Below, we
write ∆(s, a, s′) for the probability associated to s′ in ∆(s, a), and set S := Smax ∪ Smin.

Starting from an initial state ŝ, a play of the game produces an infinite sequence of
states ρ = s1s2s3 . . . (a path), to which we associate the total reward

∑∞
i=1 r(si), where

r : S → R≥0 is a given reward function. A classical problem is to determine the strategy
for one of the players that optimises (minimises or maximises) its expected total reward.
Instead of expectation, the entropic risk yields the normalised logarithm of the average of the
function b−ηX , where the base b > 1 and the risk aversion factor η > 0 are real numbers, and
X is a random variable ranging over total rewards. We refer the reader to [5] for motivations
behind this notion, as well as all formal definitions.

STACS 2025
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Fix a base b > 1 and a risk aversion factor η ∈ R. The entropic risk threshold problem
ERisk[b−η] asks to determine if the entropic risk is above a threshold t. The inputs of this
problem are a stochastic game G having rational probabilities ∆(s, a, s′), an initial state ŝ, a
reward function r : S → Q≥0 and a threshold t ∈ Q. In [5], this problem is proven to be in
PSpace for b and η rationals, and decidable subject to Schanuel’s conjecture if b = e and
η ∈ Q (both results also hold when b and η are not fixed). We improve upon the latter result,
by establishing the following theorem (that assumes having representations of α and η):

▶ Theorem 21. The problems ERisk[e−η] and ERisk[α−η] are in Exp for every fixed algeb-
raic numbers α, η. When α, η are not fixed but part of the input, these problems are decidable.

Proof sketch. Ultimately, in [5] the authors show that the problem ERisk[b−η] is reducible
in polynomial time to the problem of checking the satisfiability of a system of constraints of
the following form (see [5, Equation 7] for an equivalent formula):

v(ŝ) ≤ (b−η)t ∧
∧
s∈T

v(s) = ds ∧
∧
s∈S

v(s) = ⊕a∈A(s)

(
(b−η)r(s)

∑
s′∈S

∆(s, a, s′) · v(s′)
)
, (1)

where T is some subset of the states S of the game, ds ∈ {0, 1}, and in the notation ⊕a∈A(s)
the symbol ⊕ stands for the functions min or max, depending on which of the two players
controls s. The formula has one variable v(s) for every s ∈ S, ranging over R.

Since z = max(x, y) is equivalent to z ≥ x∧ z ≥ y ∧ (z = x∨ z = y), and z = min(x, y) is
equivalent to z ≤ x ∧ z ≤ y ∧ (z = x ∨ z = y), except for the rationality of the exponents t
and r(s) (which we handle below), Formula 1 belongs to ∃R((b−η)Z).

Fix b > 1 to be either e or algebraic, and η > 0 to be algebraic. Assume to have access
to representations for these algebraic numbers, so that if η is represented by (q(x), ℓ, u), then
−η is represented by (q(−x),−u,−ℓ). Consider the problem of checking whether a formula φ
of the form given by Formula 1 is satisfiable. Since φ does not feature predicates (b−η)Z, but
only the constant b−η, instead of Algorithm 1 we can run the following simplified procedure:

I. Update all exponents t and r(s) of φ to be over N and written in unary. (1) Compute
the l.c.m. d ≥ 1 of the denominators of these exponents. (2) Rewrite every term (b−η)

p
q ,

where p
q is one such exponent, into (b

−η
d )

p·d
q . Note that p·d

q ∈ Z. (3) Rewrite φ into
φ[x / b

−η
d ]∧xd = b−η∧x ≥ 0, with x fresh variable. (4) Opportunely multiply both sides

of inequalities by integer powers of x to make all exponents range over N. (5) Change
to a unary encoding for the exponents by adding further variables, as done in the proof
of Theorem 1.1 (Section 6). Overall, this step takes polynomial time in size(φ).

II. Eliminate x and all variables v(s) with s ∈ S. This is done by appealing to Theorem 7,
treating b−η as a free variable. The result is a Boolean combination ψ of polynomial
inequalities over b−η. This step runs in time exponential in size(φ).

III. Evaluate ψ. Call Algorithm 2 on each inequality, to then return ⊤ or ⊥ according to
the Boolean structure of ψ. Since we can construct a polynomial-time Turing machine
for b−η (Section 6), by Lemma 10 this step takes polynomial time in size(ψ). ◀

8 Conclusion and future directions

We have studied the complexity of the theory ∃R(ξZ) for different choices of ξ > 0. Particularly
valuable turned out to be the introduction of root barriers (Definition 3): by relying on this
notion, we have established that ∃R(ξZ) is in ExpSpace if ξ is algebraic, and in 3Exp for
natural choices of ξ among the transcendental numbers, such as e and π.
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A first natural question is how far are we from the exact complexity of these existential
theories, considering that the only known lower bound is inherited from the existential theory
of the reals, which lies in PSpace [12]. While we have no answer to this question, we remark
that strengthening the hypotheses on ξ may lead to better complexity bounds. For example,
we claim that our ExpSpace result for algebraic numbers improves to Exp when ξ is an
integer (we aim at including this result in an extended version of this paper).

We have presented natural examples of bases ξ having polynomial root barriers. More
exotic instances are known: setting ξ = q(π,Γ( 1

4 )), where q is an integer polynomial and Γ is
Euler’s Gamma function, results in one such base. This follows from a theorem by Bruiltet [9,
Theorem B′] on the algebraic independence of π and Γ( 1

4 ). This leads to a second natural
question: are there real numbers a, b satisfying aZ ∩ bZ = {1} for which the existential theory
of the reals enriched with both the predicates aZ and bZ is decidable?
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