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Abstract
For the vertex selection problem (σ, ρ)-DomSet one is given two fixed sets σ and ρ of integers and
the task is to decide whether we can select vertices of the input graph such that, for every selected
vertex, the number of selected neighbors is in σ and, for every unselected vertex, the number of
selected neighbors is in ρ [Telle, Nord. J. Comp. 1994]. This framework covers many fundamental
graph problems such as Independent Set and Dominating Set.

We significantly extend the recent result by Focke et al. [SODA 2023] to investigate the case
when σ and ρ are two (potentially different) residue classes modulo m ≥ 2. We study the problem
parameterized by treewidth and present an algorithm that solves in time mtw · nO(1) the decision,
minimization and maximization version of the problem. This significantly improves upon the known
algorithms where for the case m ≥ 3 not even an explicit running time is known. We complement
our algorithm by providing matching lower bounds which state that there is no (m − ε)pw · nO(1)-time
algorithm parameterized by pathwidth pw, unless SETH fails. For m = 2, we extend these bounds
to the minimization version as the decision version is efficiently solvable.
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1 Introduction

Classical graph problems such as Dominating Set or Independent Set are ubiquitous in
computer science. These problems are not only of theoretical interest but also have many
practical applications; including facility location, coding theory, modeling communication
networks, map labeling, or even similarity measures on molecules [3, 4, 16, 31, 38, 39].
Therefore, these problems are extensively studied on plenty of graph classes and several
generalizations and variations have been formulated and considered [7, 12, 22, 30, 32, 41, 50,
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52, 54, 59]. Moreover, the problems seem to come with a significant complexity but also
sufficient structural properties to serve as a testing point for new techniques which frequently
result in faster algorithms for the problems [20, 28, 61].

In 1993, Telle and Proskurowski introduced the general class of (σ, ρ)-DomSet problems
which capture several well-known vertex selection problems for appropriately chosen sets
σ, ρ ⊆ Z≥0 [57, 58]. In this problem the input is an undirected graph and the task is to
decide if we can select vertices such that (1), for every selected vertex, the number of selected
neighbors is contained in the set σ and (2), for every unselected vertex, the number of selected
neighbors is contained in the set ρ. Formally, for a graph G, decide if there exists a vertex
set S ⊆ V (G) such that, for all v ∈ S, we have |N(v) ∩ S| ∈ σ, and, for all v /∈ S, we have
|N(v) ∩ S| ∈ ρ. Such a set S is called a (σ, ρ)-set.

It is easy to see that (σ, ρ)-DomSet captures classical Dominating Set when we set σ =
Z≥0 and ρ = Z≥0 \ {0} and ask for a selection of bounded size. Moreover, with different
requirements imposed on the size of the selection, we can also reformulate other problems
such as Independent Set (σ = {0} and ρ = Z≥0), Perfect Code (σ = {0} and ρ = {1}),
Induced q-regular Subgraph (σ = {q} and ρ = Z≥0), Odd Domination (σ = {0, 2, . . . } and
ρ = {1, 3, . . . }), and many more. We refer to [8, 57] for a longer list of problems that can be
described as (σ, ρ)-DomSet.

Since (σ, ρ)-DomSet generalizes many fundamental graph problems, the ultimate goal is
to settle the complexity of (σ, ρ)-DomSet for all (decidable) sets σ and ρ. We know that
for many choices of σ and ρ the problem is NP-hard. Hence, we frequently either restrict the
input to special graph classes or parameterize by some (structural) measure of the input (for
example, the solution size).

One of the best explored structural parameters is treewidth [6, 18, 20, 26, 42, 45, 46, 51, 61]
which measures how similar a graph is to a tree (see [19, Chapter 7] for a more thorough
introduction). Many problems admit efficient algorithms on trees with a simple dynamic
program. With treewidth as parameter, we can lift these programs to more general graphs
and obtain fast algorithms especially compared to the running time obtained from Courcelle’s
Theorem [17]. For most of these problems the goal is to find the smallest constant c such
that the respective problem can be solved in time ctw · nO(1).

For problems parameterized by treewidth a perpetual improvement of the algorithm seems
unlikely. After a few iterations, frequently conceptually new ideas seems to be necessary to
obtain further improvements. Lokshtanov, Marx, and Saurabh initiated a line of research
that proves that such limitations are often not a shortcoming of the techniques at hand, but
rather an inherent property of the problem itself [45]. For example, they prove that the
known algorithm for Dominating Set [61] which takes time 3tw · nO(1) cannot be improved
further unless the Strong Exponential-Time Hypothesis (SETH) [9, 40] fails.

Hence, the ultimate goal for (σ, ρ)-DomSet is to show the following result (or to prove
that no such constant exists in the respective setting):

For all sets σ and ρ, determine the constant cσ,ρ such that (σ, ρ)-DomSet
can be solved in time ctw

σ,ρ · nO(1)

but not in time (cσ,ρ − ε)tw · nO(1) for any ε > 0, unless SETH fails.

For certain choices of the sets σ and ρ, some (partial) results of this form are already
known [49]. A broad class of algorithms was given by van Rooij, Bodlaender, and Ross-
manith [61] for the case of finite and cofinite sets. These algorithms were later improved
by van Rooij [60]. Focke et al. [26, 24] recently introduced highly non-trivial techniques to
improve these algorithms further for an infinite class of choices for σ and ρ. Moreover, Focke
et al. additionally provide matching lower bounds for these new algorithms that rule out
additional improvements [26, 25].



J. Greilhuber, P. Schepper, and P. Wellnitz 41:3

Beyond Finite and Cofinite Sets. Although the known results already capture large classes
of problems, they are limited to finite and cofinite sets. This leaves open the entire range of
infinite sets (with infinite complements), which contains not only “unstructured” sets like
the set of prime numbers, for example, but also easy to describe and frequently used sets like
the even or odd numbers, and arithmetic progressions in general.

One important example for families that are neither finite nor cofinite are residue classes.
We say that a set τ ⊆ Z≥0 is a residue class modulo m if there are two integers a and m
such that τ = {n ∈ Z≥0 | n ≡m a}; we usually require that 0 ≤ a < m for the canonical
representation. Again, the two most natural residue classes are the even and odd numbers.

Surprisingly, for such infinite sets the complexity of (σ, ρ)-DomSet is significantly
underexplored and heavily fragmented even in the classical, non-parameterized, setting. This
is especially surprising as this variant of the problem has direct applications in other fields
like coding theory [13, 38].

Halldórsson, Kratochvíl, and Telle consider a variation of Independent Set where the
unselected vertices have parity constraints [37]. They provide a complete dichotomy between
polynomial-time solvable cases and NP-hard cases. Later the same group of authors considered
the case where each of the sets comprises either the even or odd integers and proved similar
hardness results [38]. Caro, Klostermeyer, and Goldwasser consider a variant of (σ, ρ)-Dom-
Set with residue classes as sets where they restrict the closed neighborhood of a vertex [11]. In
this setting they prove new upper bounds for specific graphs classes including complements of
powers of cycles and grid graphs. Fomin, Golovach, Kratochvíl, Kratsch, and Liedloff consider
general graphs and provide exponential-time algorithms for general residue classes [27].

Although for the case of general sets some more results are known in the parameterized
setting [1, 8, 30, 35], surprisingly few involve sets that are neither finite nor cofinite and the
parameter treewidth. Gassner and Hatzl [33] consider the problem of residue domination
where the sets are either all even or all odd numbers. They provide an algorithm for the
problem with running time 23tw ·nO(1). Gassner and Hatzl also conjecture that their algorithm
works when the sets have a larger modulus but unfortunately do not state the expected
running time or the actual algorithm.

Chapelle in contrast provides a general algorithm for (σ, ρ)-DomSet which covers all
ultimately periodic sets1 but, unfortunately, does not provide an explicit running time of the
algorithm [14, 15].

In this work, we answer the main question from above and settle the complexity of
(σ, ρ)-DomSet for another large class of sets, namely for the residue classes.

▶ Main Theorem 1. Write σ, ρ ⊆ Z≥0 for two residue classes modulo m ≥ 2.
Then, in time mtw · |G|O(1) we can decide simultaneously for all s if the given graph G

has a (σ, ρ)-set of size s when a tree decomposition of width tw is given with the input.

We remark that our algorithm does not only solve the decision version but also the
maximization, minimization and exact version of (σ, ρ)-DomSet.

Despite the fact that there are some pairs for which the decision version of (σ, ρ)-DomSet
is efficiently solvable (for example, the empty set is a trivial minimum solution if 0 ∈ ρ), we
prove that for all other “difficult” cases our algorithm is optimal even for the decision version
and cannot be improved unless SETH fails. We refer to Definition 2.6 for a complete list of
the “easy” pairs for which the decision version can be solved in polynomial time; to all other
pairs we refer as “difficult”.

1 A set τ is ultimately periodic if there is a finite automaton (over a unary alphabet) such that the length
of the accepted words is precisely described by the set τ .
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▶ Main Theorem 2. Write σ, ρ ⊆ Z≥0 for difficult residue classes modulo m ≥ 2.
Unless SETH fails, for all ε > 0, there is no algorithm that can decide in time (m − ε)pw ·

|G|O(1) whether the input graph G has a (σ, ρ)-set, when a path decomposition of width pw is
given with the input.

Observe that our lower bound is for the larger parameter pathwidth, which immediately
implies the result for the smaller parameter treewidth.

Our Contribution. Before we outline the formal ideas behind our results, we first highlight
why these bounds are more surprising than they seem to be at the first glance.

To that end, let us take a deeper look at the algorithms of [24, 60]. Typically, the limiting
factor for faster algorithms parameterized by treewidth is the number of states that have to
be considered for each bag of the tree decomposition. For vertex selection problems, the state
of a vertex is defined by two values: (1) whether it is selected and (2) how many selected
neighbors it gets in some (partial) solution. To bound this latter number, we identify the
largest “reasonable” state a vertex can have when it is selected and when it is unselected.

For finite sets σ and ρ this largest reasonable state is simply determined by the maximum
of the respective sets, that is, we set stop = max σ and rtop = max ρ as the largest reasonable
number of neighbors, respectively.

Then, for a selected vertex, the allowed number of selected neighbors ranges from 0 to stop,
yielding stop + 1 states for selected vertices. Similarly, we need to consider rtop + 1 states
for unselected vertices. Combining the two cases, for each bag of the tree decomposition
there are at most (stop + rtop + 2)tw+1 states to consider. Surprisingly, Focke et al. proved
that, for an infinite number of finite sets, even at most (ttop + 1)tw+1 of said states suffice,
where ttop = max(stop, rtop) [26].2 When stop = rtop this improves the algorithm by a factor
of 2tw+1.

Similarly, for the case of residue classes with modulus m, the number of selected neighbors
effectively ranges from 0 to m − 1 as for all larger values the behavior is equivalent to some
smaller value. This gives us m states if a vertex is unselected and m states if a vertex is
selected. Hence, the straight-forward bound for the number of states is (2m)tw+1 which is a
factor of 2tw+1 worse than the bound from the running time of our algorithm.

We remark that the most naive approach, for which we remove all integers from the sets σ

and ρ that are larger than the number of vertices of the input graph and then apply the
improved result by Focke et al. for finite sets, fails miserably. This approach would merely
give an XP-algorithm as the size of the sets now depends on the size of the input graph.

Hence, it is far from trivial to obtain the claimed running time since the classical approach
would not give something better than (2m)tw · nO(1).

Our Techniques. Although we use the algorithmic result by Focke et al. as a basis for our
upper bounds, our algorithm does not follow as an immediate corollary. There are two main
challenges that we need to overcome to obtain the fast running time.

First, all previous results with tight bounds considered finite or cofinite sets. In this
setting all integers (starting from some threshold) are somewhat equivalent in the sense that
they are either all contained in the set or all not contained in the set. This makes defining a
largest reasonable state quite convenient. For the residue classes this is not as easily possible
as the integers change between membership and non-membership. Hence, we need an even
more careful construction and analysis when improving upon the naive bound for the number
of states.

2 To keep notation simple, we omit the special case where the bound is (ttop + 2)tw+1.
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Second, it does not suffice to bound the number of states which the dynamic program
considers, but we also need to be able to combine these states efficiently at the join nodes.
Although this is a general issue when parameterizing by treewidth, until today there does
not seem to be one solution which works in a black-box manner in all settings. Instead, we
need to carefully design a new approach that takes care of the particular setting we consider
which is based on but differs from the existing results for finite and cofinite sets.

For the lower bound result we are at a similar situation as for the upper bound; the
setting is similar to what is known but still different. There are several known lower bounds
for Dominating Set and its related problems, but these reductions are usually quite tailored
to the specific problem and lack a modular construction – it is difficult to reuse existing
results. The proofs are usually based on a direct reduction from k-SAT which introduces an
additional overhead that obfuscates the high-level idea by technicalities (SAT has a running
time bound of the form 2n but we want a bound of the form cpw).

We avoid this overhead by reducing from an appropriate Constraint Satisfaction Problem
introduced by Lampis for precisely such settings [44]. Our results can be seen as one of the
first applications of this new approach (outside the original setting) that can potentially also
serve as a blue-print to simplify many other reductions and lower bound proofs or to directly
obtain simpler results from scratch.

The Special Case of Parity Domination. When taking a closer look at the precise statement
of our lower bound (and Definition 2.6), we are reminded that both results do not apply for
the same set of pairs. Especially for the case of residue classes with modulus m = 2, our
algorithm solves the minimization version, but Main Theorem 2 provides no matching lower
bound. As we may solve the decision problem for these cases in polynomial-time via Gaussian
elimination (see, for example, [2, 21, 34, 38, 56]), our lower bound explicitly excludes these
cases by referring to them as “easy”.

Surprisingly, exactly these easy cases can be related to a single-player game called
Lights Out that was published 1995. In this game the unassuming player is presented with a
5 × 5 grid of switches and lamps, some or all of them initially turned on, and the task is to
turn off all lamps by pressing the switches. The catch is that every switch flips not only the
state of its corresponding lamp (from “on” to “off” or vice-versa), but also the states of the
neighboring lamps in the grid [5, 23].3

Since the order in which the buttons are pressed does not matter and every button has
to be pressed at most once as a second press would undo the first operation, we can describe
a solution to an initial configuration as a set of switches that need to be flipped to turn all
lights off.

When we assume that initially all lights are turned on, then we can directly treat Lights Out
as a variant of (σ, ρ)-DomSet with σ = {x ∈ Z≥0 | x ≡2 0} and ρ = {x ∈ Z≥0 | x ≡2 1}.
We also refer to this problem, where the input is an arbitrary graph, as Reflexive-AllOff
since we assume that each switch triggers the corresponding lamp. When this is not the case
but still all lights are initially turned on, we have σ = {x ∈ Z≥0 | x ≡2 1} = ρ and refer to
the problem as AllOff as the corresponding switch does not trigger the associated lamp.

Despite the fact that it is easy to find some solution for these two problems if one
exists, the minimization versions do not have such a trivial answer and are known to be
NP-complete [11, 38, 55]. Hence, we investigate the minimization versions for these two
problems and complement the algorithmic result from Main Theorem 1 as follows.

3 Similar games have also been released under the names Merlin and Orbix [23].
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▶ Main Theorem 3. Unless SETH fails, for all ε > 0, there is no algorithm for each of
the problems Reflexive-AllOff and AllOff that can decide in time (2 − ε)pw · |G|O(1)

whether there exists a solution of arbitrary size (the size is given as input) for a graph G

that is given with a path decomposition of width pw.

Together with the lower bound for the general case, we conclude that our algorithm is the
best possible, unless a major breakthrough for solving SAT happens.

Further Directions. When taking a step back, the results of this work serve two purposes
which can be seen as starting points for further investigations and improvements.

First, we settle the complexity of (σ, ρ)-DomSet conclusively for the case of residue
classes by providing matching upper and lower bounds.
We later list some candidates that might allow similar improvements. Such improvements
would, similar to our results, extend the list of problems started by Focke et al. [26] where
significant improvements for the supposedly optimal algorithms are possible.
Second, in comparison to the fairly complicated results for the case of finite sets in [26],
this work can be seen as a significantly simpler introduction to those techniques that are
relevant to obtain faster algorithms by exploiting the structural properties of the sets.
We believe that for many other (parameterized) problems – including but not limited
to (σ, ρ)-DomSet – the algorithms can be improved exponentially by using these new
techniques.

In the following we list several possible directions that could serve as a next step on the
route to a complete picture of the complexity of (σ, ρ)-DomSet.

A first natural case could be pairs of two residue classes with different moduli mσ and
mρ. Then, the natural structural parameter m (which is the modulus in our case) is the
greatest common divisor of mσ and mρ. In this setting the case m = 1 is also relevant as
this does not directly imply that the sets contain all natural numbers.
A different direction considers the combination of a residue class with a finite or cofinite
set. Focke et al. show that representative sets [29, 43, 48, 53] can be used to speed up
the algorithm even further for the case of cofinite sets [24]. Independently of finding the
optimal algorithm to handle the join operation for representative sets, it is not even clear
what the optimal running time should be in such a case.
Caro and Jacobson [10] introduced the problem Non-z(mod k) Dominating Set which
can also be described as a (σ, ρ)-DomSet problem where the sets are complements of
residue classes, which is equivalent to a finite union of residue classes. For example,
for z = 0 and k = 3, we set σ = {0, 1, 3, 4, . . . } = {0, 3, 6, . . . } ∪ {1, 4, 7, . . . } and
ρ = {1, 2, 4, 5, 7, 8, . . . } = {1, 4, 7, . . . } ∪ {2, 5, 8, . . . }. What is the optimal running time
in this case?
The general algorithm by Chapelle for the case when both sets are ultimately periodic has
a running time single-exponential in treewidth despite being stated implicitly only [14, 15].
What is the best running time for an algorithm solving all cases of (σ, ρ)-DomSet that
are currently known to be fixed-parameter tractable?
Are there more classes of sets for which there is an fpt algorithm parameterized by
treewidth? Chapelle showed that once there are large gaps in the set, the problem
becomes significantly harder [14, 15].
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▶ Theorem 1.1 ([14, Theorem 1] and [15, Théorème 3.3.1]). Write σ for a set with
arbitrarily large gaps between two consecutive elements (such that a gap of length t is at
distance poly(t) in σ), and write ρ for a cofinite set with min σ ≥ 1 and min ρ ≥ 2. Then,
the problem (σ, ρ)-DomSet is W[1]-hard when parameterized by the treewidth of the input
graph.
Examples are the two natural sets where σ = {2i | i ∈ Z≥0} or when σ is the set of all
Fibonacci numbers [14]. We observe that this is one of the rare cases where a problem is
W[1]-hard even when parameterizing by treewidth.
The classification by Chapelle is not a dichotomy result in the sense that it provides a
full classification between the fpt cases and the ones that are W[1]-hard. For instance,
what is the complexity for sets like σ = Z≥0 \ {2i | i ∈ Z≥0} which have gaps of constant
size only but are not ultimately periodic?
With our results, there are improved algorithms for the case when the sets are finite,
cofinite or residue classes. Nevertheless, the description of the exact running time is
highly non-uniform, that is, the exact complexity explicitly depends on the underlying
set. Can we describe the complexity of optimal algorithms in a compact form as, for
example, done by Chapelle for the general algorithm via finite automata [14, 15]? This
notation suffices to describe the state of a single vertex, but the representation of the
structural insights leading to fewer states and faster algorithms remains open.
Lastly, for which other problems besides (σ, ρ)-DomSet can the techniques from our
upper bounds (sparse languages and compression of vectors) be used to obtain faster
algorithms? As the high-level idea of our lower bounds is quite modular, it should also
be possible to use these concepts as blue-prints to achieve matching bounds for other
problems as well.

2 Technical Overview

In this section we give a high-level overview of the results in this paper and outline the main
technical contributions we use. We start by rigorously defining the main problem considered
in this work and the property of a set being m-structured.

▶ Definition 2.1 ((σ, ρ)-sets, (σ, ρ)-DomSet). Fix two non-empty sets σ and ρ of non-
negative integers.

For a graph G, a set S ⊆ V (G) is a (σ, ρ)-set for G if and only if (1) for all v ∈ S, we
have |N(v) ∩ S| ∈ σ, and (2), for all v ∈ V (G) \ S, we have |N(v) ∩ S| ∈ ρ.

The problem (σ, ρ)-DomSet asks for a given graph G, whether there is a (σ, ρ)-set S or
not.

We also refer to the problem above as the decision version. The problem naturally also
admits related problems such as asking for a solution of a specific size, or for the smallest or
largest solution, that is, the minimization and maximization version.

For the case of finite and cofinite sets, Focke et al. [24, 25] realized that the complexity
of (σ, ρ)-DomSet significantly changes (and allows faster algorithms) when σ and ρ exhibit
a specific structure, which they refer to as m-structured.

▶ Definition 2.2 (m-structured sets [24, Definition 3.2]). Fix an integer m ≥ 1. A set τ ⊆ Z≥0
is m-structured if all numbers in τ are in the same residue class modulo m, that is, if there
is an integer c∗ such that c ≡m c∗ for all c ∈ τ .

STACS 2025
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Observe that every set τ is m-structured for m = 1. Therefore, one is usually interested
in the largest m such that a set is m-structured. When considering two sets σ and ρ, we say
that this pair is m-structured if each of the two sets is m-structured. More formally, assume
that σ is mσ-structured and ρ is mρ-structured. In this case the pair (σ, ρ) is m-structured
where m is the greatest common divisor of mσ and mρ. As in our case the sets σ and ρ are
residue classes modulo m ≥ 2, the sets are always m-structured.

In the following we first present the algorithmic result, which outlines the proof of Main
Theorem 1. Afterward we move to the lower bounds where we consider Main Theorem 2 and
finally we focus on the special case of Lights Out from Main Theorem 3.

2.1 Upper Bounds
The basic idea to prove the upper bound is to provide a dynamic programming algorithm that
operates on a tree decomposition of the given graph. For each node of this decomposition we
store all valid states, where each such state describes how a possible solution, i.e., a set of
selected vertices, interacts with the bags of the corresponding node. We formalize this by
the notion of a partial solution.

For a node t with associated bag Xt, we denote by Vt the set of vertices introduced in
the subtree rooted at t and by Gt the graph induced by these vertices. We say that a set
S ⊆ Vt is a partial solution (for Gt) if

for each vertex v ∈ S \ Xt, we have |N(v) ∩ S| ∈ σ, and
for each vertex v ∈ Vt \ (S ∪ Xt), we have |N(v) ∩ S| ∈ ρ.

The solution is partial in the sense that there are no constraints imposed on the number of
neighbors of the vertices in Xt, that is, only the vertices in Vt \ Xt must have a valid number
of neighbors.

We characterize the partial solutions by the states of the vertices in the bag. When σ

and ρ are finite or cofinite sets, the largest reasonable state is included in the respective set,
which is not necessarily the case for residue classes. Consider two fixed, residue classes σ and
ρ modulo m ≥ 2. Every selected vertex can have up to m different states and similarly, every
unselected vertex can have m different states. Hence, for each bag, the number of relevant
different partial solutions is bounded by (2m)|Xt|.

High-level Idea. The crucial step to fast and efficient algorithms is to provide a better
bound on the number of states for each bag when the sets σ and ρ are residue classes modulo
m ≥ 2. We denote by A the set of all possible states a vertex might have in a valid solution.
Then, let L ⊆ AXt be the set of all possible state-vectors corresponding to partial solutions
for Gt. Our first goal is to show that |L| ≤ m|Xt|, which means that not all theoretically
possible combinations of states can actually have a corresponding partial solution in the
graph.

Moreover, we also need to be able to combine two partial solutions at the join nodes of
the tree decomposition. For a fast join operation, it does not suffice to bound the size of L.
This follows from the observation that the convolution algorithm used to handle the join
operation does not depend on L but on the space where the states come from. In our case,
the size of the space where L comes from is still (2m)|Xt|, which is too large. To decrease
this size, we observe that a significant amount of information about the states of the vertices
can be inferred from other positions, that is, we can compress the vectors.

As a last step it remains to combine the states significantly faster than a naive algorithm.
To efficiently compute the join, we use an approach based on the fast convolution techniques
by van Rooij which was already used for the finite case [60]. However, we have to ensure
that the compression of the vectors is actually compatible with the join operation, that
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is, while designing the compression we already have to take in mind that we later join
two (compressed) partial solutions together. Since the compressed vectors are significantly
simpler, these states can now be combined much faster.

Bounding the Size of a Single Language. Recall that every partial solution S can be
described by a state-vector x ∈ An where we abuse notation and set n := |Xt|. When x

describes the partial solution S, we also say that S is a witness for x. We denote the set
of the state-vectors of all partial solutions for Gt as L. We later refer to the set L as the
realized language of (Gt, Xt). To provide the improved bound on the size of L, we decompose
each state-vector x into two vectors: The selection-vector of x, also called the σ-vector and
denoted by −→σ (x), indicates whether each vertex in Xt is selected or not. The weight-vector
of x, denoted by −→w (x), contains the number of selected neighbors of the vertices in Xt.

The key insight into the improved bound is that for two partial solutions of similar size
(with regard to modulo m), the σ-vectors and the weight-vectors of these two solutions are
orthogonal. This observation was already used to prove the improved bound when σ and ρ

are finite [24]. We extend this result to the case of residue classes.
To formally state the key insight, we define the notion of a graph with portals.

▶ Definition 2.3 (Graph with Portals; compare [24, Section 3]). A graph with portals G is a
pair (G′, U), where G′ is a graph and U ⊆ V (G′). If U = {u1, . . . , uk}, then we also write
(G′, u1, . . . , uk) instead of (G′, U).

If it is clear from the context, we also refer to a graph with portals simply as a graph.

Intuitively, one can think of G′ being the graph Gt, and U the set Xt for a node t of a tree
decomposition.

▶ Lemma 2.4 (Compare [24, Lemma 4.3]). Let σ and ρ denote two residue classes modulo
m ≥ 2. Let (G, U) be a graph with portals and let L := L(G, U) ⊆ AU denote its realized
language. Consider two strings x, y ∈ L with witnesses Sx, Sy ⊆ V (G) such that |Sx \ U | ≡m
|Sy \ U |. Then, −→σ (x) · −→w (y) ≡m

−→σ (y) · −→w (x).

To prove this result, we count edges between the vertices in Sx and the vertices in Sy in
two different ways. We first count the edges based on their endpoint in Sx. These vertices
can be partitioned into three groups: (1) the vertices contained in U , (2) the vertices outside
U which are not in Sy, and (3) the vertices outside U which are in Sy. Then, the number of
edges |E(Sx → Sy)| from Sx to Sy satisfies

|E(Sx → Sy)| ≡m min ρ · |Sx \ (Sy ∪ U)| + min σ · |(Sx ∩ Sy) \ U | + −→σ (x) · −→w (y)

because the sets σ and ρ are residue classes modulo m. When counting the edges based on
their endpoint in Sy, the positions of x and y flip and the result follows. As this property
enables us to prove that the size of L is small, we refer to this property as sparse.

Even though intuitively this orthogonality provides a reason why the size of the language
is not too large, this does not result in a formal proof. However, when fixing which vertices
are selected, that is, when fixing a σ-vector s⃗, then there is an even stronger restriction on
the values of the weight-vectors. Instead of restricting the entire vector, it actually suffices to
fix the vector on a certain number of positions which are described by some set S to which
we refer as σ-defining set. If two σ-vectors of strings of the language agree on these positions
from S, then all remaining positions of the two σ-vectors must be identical as well.
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With the sparseness property we then show that it suffices to fix the σ-vectors on the
positions from S (which then determines the values on S), and the weight-vector on the
positions from S (which then determines the weight-vector on the positions from S). Formally,
we prove Lemma 2.5 which mirrors [24, Lemma 4.9] in the case of residue classes.

▶ Lemma 2.5 (Compare [24, Lemma 4.9]). Let σ and ρ denote two residue classes modulo
m ≥ 2. Let L ⊆ An be a sparse language with a σ-defining set S for {−→σ (x) | x ∈ L}. Then,
for any two strings x, y ∈ L with −→σ (x) = −→σ (y), the positions S uniquely characterize the
weight vectors of x and y, that is, we have

−→w (x)[ S ] = −→w (y)[ S ] implies −→w (x) = −→w (y).

With this result it is straight-forward to bound the size of a sparse language of dimension n.
Our goal is to bound the number of weight-vectors that can be combined with a fixed σ-vector
to form a valid type. Assume we fixed a σ-vector s⃗ on the positions from S. Since this
already determines the remaining positions of the σ-vector (even if we do not know the values
a priori), the number of possible σ-vectors is at most 2|S|. For the weight-vector there are
m choices for each of the positions from S. Then, the values for the positions from S are
uniquely determined by those on S because of the previous result. Using m ≥ 2 this allows
us to bound the size of a sparse language by

m|S| · 2|S| ≤ mn.

Compressing Weight-Vectors. Based on the previous observations and results, we focus
on the analysis for a fixed σ-vector s⃗. Though we could iterate over all at most 2|Xt|

possible σ-vectors without dominating the running time, the final algorithm only considers
the σ-vectors resulting from the underlying set L. Hence, we assume that all vectors in L

share the same σ-vector s⃗.
When looking again at the bound for the size of L, it already becomes apparent how

we can compress the weight-vectors. Recall that once we have fixed the entries of a weight-
vector of some vector x ∈ L at the positions of S, the entries of the weight-vector on S are
predetermined by Lemma 2.5. Hence, for the compressed vector we simply omit the entries
on the positions in S, that is, the compressed weight-vector is the projection of the original
weight-vector to the dimensions from S.

It remains to recover the original vectors from their compression. As the implication from
Lemma 2.5 actually does not provide the values for the positions on S, it seems tempting
to store a single representative, which we refer to as origin-vector o to recover the omitted
values for all compressed vectors. Unfortunately, this is not (yet) sufficient.

Observe that Lemma 2.5, which serves as basis for the compression, requires that the
weight-vector u and the origin-vector o agree on the coordinates from S. Therefore, it would
be necessary to store one origin-vector for each possible choice of values on S, which would
not yield any improvement in the end.

In order to recover the values of the compressed weight-vector, we use our structural
property from Lemma 2.4 once more. Intuitively, we use that changing the weight-vector
at one position (from S, in our case), has an effect on the value at some other position
(from S, in our case). Based on this idea we define an auxiliary vector, which we refer
to as remainder-vector. Intuitively, the entries of this vector capture the difference of the
weight-vector u and the origin-vector o on the positions in S. By the previous observation
this also encodes how much these two vectors u and o differ on the positions from S. This
remainder-vector then allows us to efficiently decompress the compressed weight-vectors again.
In consequence, the final compression reduces the size of the space where the weight-vectors
are chosen from, which is a prerequisite for the last part of the algorithm.
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Faster Join Operations. To obtain the fast join operation, we apply the known convolution
techniques by van Rooij [60]. As the convolution requires that all operations are done modulo
some small number, we can directly apply it as every coordinate of the compressed vector is
computed modulo m. As the convolution operates in the time of the space where the vectors
are from, we obtain an overall running time of m|Xt| for the join operation.

The final algorithm is then a dynamic program where the procedures for all nodes except
the join node follow the standard procedure. For the join node, we iterate over all potential
σ-vectors of the combined language, then join the compressed weight-vectors, and finally
output the union of their decompressions.

By designing the algorithm such that we consider solutions of a certain size, we achieve
that the considered languages are sparse and thus, the established machinery provides the
optimal bound for the running time. In total, we obtain Main Theorem 1.

▶ Main Theorem 1. Write σ, ρ ⊆ Z≥0 for two residue classes modulo m ≥ 2.
Then, in time mtw · |G|O(1) we can decide simultaneously for all s if the given graph G

has a (σ, ρ)-set of size s when a tree decomposition of width tw is given with the input.

2.2 Lower Bounds
After establishing the upper bounds, we focus on proving matching lower bounds, that is, we
prove the previous algorithm to be optimal under SETH. For all difficult cases, we provide
a general lower bound and for the easy cases that are solvable in polynomial time but are
non-trivial, we prove a lower bound for the minimization version by a separate reduction. In
the following we first focus on the difficult cases.

▶ Definition 2.6 (Easy and Difficult Cases). Let σ and ρ be two residue classes. We say that
this pair is easy if 0 ∈ ρ or

σ = {x ∈ Z≥0 | x ≡2 0} and ρ = {x ∈ Z≥0 | x ≡2 1}, or
σ = {x ∈ Z≥0 | x ≡2 1} and ρ = {x ∈ Z≥0 | x ≡2 1}.

Otherwise, we say that the pair is difficult.

Clearly the case 0 ∈ ρ is trivial since the empty set is a valid solution. For the other two
cases we can formulate the problem as a system of linear equations over F2: for each vertex
we create a variable indicating the selection status and introduce one appropriately chosen
constraint involving the neighboring vertices. Then, Gaussian elimination provides a solution
in polynomial time. We refer to [2, 34, 38, 56] for a formal proof. Thus, unless mentioned
otherwise, we henceforth focus on the difficult cases.

Starting from the first SETH-based lower bounds when parameterizing by treewidth by
Lokshtanov, Marx and Saurabh [45] (see also references in [44] for other applications) many
reductions suffered from the following obstacle: SETH provides a lower bound of the form
(2 − ε)n whereas for most problems a lower bound of the form (c − ε)tw is needed for some
integer c > 2. To bridge this gap, several technicalities are needed to obtain the bound
with the correct base. Lampis introduced the problem (family) q-CSP-B, which hides these
technicalities and allows for cleaner reductions. This problem generalizes q-SAT such that
every variable can now take B different values, that is, for B = 2 this is the classical q-SAT
problem. Formally q-CSP-B is defined as follows.

▶ Definition 2.7 (q-CSP-B [44]). Fix two numbers q, B ≥ 2. An instance of q-CSP-B is a
tuple (X, C) that consists of a set X of n variables having the domain D = [ 1 . . B ] each, and
a set C of constraints on X. A constraint C is a pair (scp(C), acc(C)) where scp(C) ∈ Xq is
the scope of C and acc(C) ⊆ Dq is the set of accepted states.
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The task of the problem is to decide if (X, C) is satisfiable, that is, decide if there exists
an assignment π : X → D such that, for all constraints C with scp(C) = (vλ1 , . . . , vλq

) it
holds that (π(vλ1), . . . , π(vλq

)) ∈ acc(C).

In other words, the constraints specify valid assignments for the variables, and we are looking
for a variable assignment that satisfies all constraints.

Apart from introducing this problem, Lampis also proved a conditional lower bound
based on SETH which allows us to base our reduction on this special type of CSP.

▶ Theorem 2.8 ([44, Theorem 3.1]). For any B ≥ 2, ε > 0 we have the following: assuming
SETH, there is a q such that n-variable q-CSP-B with ℓ constraints cannot be solved in time
(B − ε)n · (n + ℓ)O(1).

To obtain the correct lower bound the most suitable version of q-CSP-B can be used, which
then hides the unwanted technicalities.

In our case we cover numerous (actually infinitely many) problems. This creates many
positions in the potential proof where (unwanted) properties of the sets σ and ρ have to be
circumvented or exploited. In order to minimize these places and to make use of the special
starting problem, we split the proof in two parts. This concept of splitting the reduction has
already proven to be successful for several other problems [18, 24, 47, 48].

As synchronizing point, we generalize the known (σ, ρ)-DomSet problem where we
additionally allow that relations are added to the graph. Therefore, we refer to this problem
as (σ, ρ)-DomSetRel. Intuitively one can think of these relations as constraints that observe
a predefined set of vertices, which we refer to as scope, and enforce that only certain ways of
selecting these vertices are allowed in a valid solution. To formally state this intermediate
problem, we first define the notion of a graph with relations.

▶ Definition 2.9 (Graph with Relations [25, Definition 4.1]). We define a graph with relations
as a tuple G = (V, E, C), where V is a set of vertices, E is a set of edges on V , and C is a
set of relational constraints, that is, each C ∈ C is in itself a tuple (scp(C), acc(C)). Here the
scope scp(C) of C is an unordered tuple of |scp(C)| vertices from V . Then, acc(C) ⊆ 2scp(C)

is a |scp(C)|-ary relation specifying possible selections within scp(C). We also say that C

observes scp(C).
The size of G is |G| := |V | +

∑
C∈C |acc(C)|. Slightly abusing notation, we usually do

not distinguish between G and its underlying graph (V, E). We use G to refer to both objects
depending on the context.

We define the treewidth and pathwidth of a graph with relations as the corresponding
measure of the modified graph that is obtained by replacing all relations by a clique on the
vertices from the scope.

We lift the notion of (σ, ρ)-set from Definition 2.1 to graphs with relations by requiring
that every relation has to be satisfied as well. Hence, the definition of (σ, ρ)-DomSetRel

follows naturally. These definitions are a reformulation of [25, Definition 4.3 and 4.8].

▶ Definition 2.10 ((σ, ρ)-Sets of a Graph with Relations, (σ, ρ)-DomSetRel). Fix two non-
empty sets σ and ρ of non-negative integers.

For a graph with relations G = (V, E, C), a set S ⊆ V is a (σ, ρ)-set of G if and only
if (1) S is a (σ, ρ)-set of the underlying graph (V, E) and (2) for every C ∈ C, the set S

satisfies S ∩ scp(C) ∈ acc(C). We use |G| as the size of the graph and say that the arity of
G is the maximum arity of a relation of G.
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The problem (σ, ρ)-DomSetRel asks for a given graph with relations G = (V, C, C),
whether there is such a (σ, ρ)-set or not.

With this intermediate problem, we can now formally state the two parts of our lower
bound proof. The first step embeds the q-CSP-B problem (for appropriately chosen B)
into the graph problem (σ, ρ)-DomSetRel. We design the reduction in such a way that the
resulting instance has a small pathwidth (namely, roughly equal to the number of variables).
Combined with the conditional lower bound for q-CSP-B based on SETH from Theorem 2.8,
we prove the following intermediate lower bound.

▶ Lemma 2.11. Let σ and ρ be two residue classes modulo m ≥ 2.
Then, for all ε > 0, there is a constant d such that (σ, ρ)-DomSetRel on instances of

arity at most d cannot be solved in time (m − ε)pw · |G|O(1), where pw is the width of a path
decomposition provided with the input instance G, unless SETH fails.

For the second step, we then remove the relations from the constructed (σ, ρ)-DomSetRel

instance, to obtain a reduction to the (σ, ρ)-DomSet problem. Observe that the construction
from Lemma 2.11 works for the general case (even when 0 ∈ ρ is allowed). Hence, our second
step now exploits that the sets are difficult.

▶ Lemma 2.12. Let σ and ρ be two difficult residue classes modulo m. For all constants
d, there is a polynomial-time reduction from (σ, ρ)-DomSetRel on instances with arity d

given with a path decomposition of width pw to (σ, ρ)-DomSet on instances given with a
path decomposition of width pw + O(2d).

Combining these two intermediate results directly leads to the proof of Main Theorem 2.

▶ Main Theorem 2. Write σ, ρ ⊆ Z≥0 for difficult residue classes modulo m ≥ 2.
Unless SETH fails, for all ε > 0, there is no algorithm that can decide in time (m − ε)pw ·

|G|O(1) whether the input graph G has a (σ, ρ)-set, when a path decomposition of width pw is
given with the input.

Proof. Assume we are given a faster algorithm for (σ, ρ)-DomSet for some ε > 0. Let d be
the constant from Lemma 2.11 such that there is no algorithm solving (σ, ρ)-DomSetRel in
time (m − ε)pw · |G|O(1) when the input instance G is given with a path decomposition of
width pw.

Consider an instance G of (σ, ρ)-DomSetRel with arity d along with a path decomposition
of width pw(G). We use Lemma 2.12 to transform this instance into an instance G′ of
(σ, ρ)-DomSet with a path decomposition of width pw(G′) = pw(G) + O(2d).

We apply the fast algorithm for (σ, ρ)-DomSet to the instance G′ which correctly outputs
the answer for the original instance G of (σ, ρ)-DomSetRel. The running time of this entire
procedure is

|G|O(1) + (m − ε)pw(G′) · |G′|O(1) = (m − ε)pw(G)+O(2d) · |G|O(1) = (m − ε)pw(G) · |G|O(1)

since d is a constant only depending on ε. This contradicts SETH and concludes the proof. ◀

The following highlights the main technical contributions leading to the results from
Lemmas 2.11 and 2.12.
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Figure 1 A depiction of the construction from the lower bound where m = 5, n = 4, and ℓ = 3.

Step 1: Encoding the CSP as a Graph Problem

Focke et al. already established the corresponding intermediate result when σ and ρ are
finite [25]. Hence, we could try to reuse their lower bound for (σ̂, ρ̂)-DomSetRel for two
finite sets σ̂ ⊆ σ and ρ̂ ⊆ ρ. However, since σ and ρ are residue classes, several solutions
could be indistinguishable from each other (not globally but locally from the perspective of a
single vertex) which would result in unpredictable behavior of the construction. Thus, we
need to come up with a new intermediate lower bound.

To prove this lower bound for (σ, ρ)-DomSetRel, we provide a reduction from q-CSP-B
where B = m but reuse some ideas from the known lower bounds in [18, 25, 47, 48]. This
allows for a much cleaner reduction (especially compared to the one from [25]) that focuses
on the conversion of a constraint satisfaction problem into a vertex selection problem without
having to deal with technicalities. Consult Figure 1 for an illustration of the high-level idea
of the construction.

Consider a q-CSP-m instance I with n variables and ℓ constraints. To achieve a low
treewidth (or actually pathwidth), we construct a graph with n · ℓ vertices, which we refer
to as information vertices, that are arranged as an n times ℓ grid; rows corresponding to
variables and columns corresponding to constraints. We refer to the information vertex from
row i and column j as wj

i . We encode the m different values of each variable by the states of
the information vertices in the graph.

To provide sufficiently many neighbors to these information vertices, we introduce man-
agers. In our case a manager consists of 2n blocks, n left blocks and n right blocks, and each
block can provide up to m − 1 neighbors to a single vertex. We create one manager for each
column (i.e., constraint) and assign one left block and one right block to each information
vertex. Then, we make each information vertex adjacent to the two associated blocks by
m − 1 edges each.

We use the number of selected neighbors from the left block to determine the state of an
information vertex (though the vertex might have selected neighbors in the right block too).
This directly relates the states of the information vertices to the variable assignments.

Recall that we create a separate manager for each column and that the managers are
not connected to each other. Thus, despite the mentioned correspondence, even for a single
row the information vertices can have different states. Phrased differently, the encoded
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assignment is not necessarily consistent. To keep treewidth low, we cannot simply add a
single big relation for each row enforcing the intended behavior. Instead, for each row i, we
add a small consistency relation Rj

i between every two consecutive columns j and j + 1.
The relation Rj

i ensures the consistency between the information vertices wj
i and wj+1

i ,
and thus, additionally observes the right block of wj

i and the left block of wj+1
i . First,

Rj
i ensures that information vertex wj

i is unselected. Now assume that wj
i has b1 selected

neighbors in its right block and wj+1
i has b2 selected neighbors in its left block. Then,

relation Rj
i ensures that b2 complements b1 in the sense that b2 = min ρ − b1 mod m, that

is, b2 is the smallest number such that b1 + b2 ≡m min ρ.
It remains to analyze the influence of the information vertices themselves on the consistency

of the encoded assignment. By our construction, information vertex wj
i receives b0 neighbors

from its left block of the manager, receives b1 neighbors from its right block of the manager,
and receives no other neighbors. Since we consider a solution, vertex wj

i must have a valid
number of neighbors, that is, the solution must satisfy b0 + b1 ∈ ρ. Since ρ is a residue
class modulo m, we get b0 + b1 ≡m min ρ which implies that b1 = min ρ − b0 mod m. When
combining this with the observation from the previous paragraph, where we consider two
different information vertices, we get b2 = min ρ − (min ρ − b0 mod m) mod m and hence,
b2 = b0 mod m which implies that all information vertices of one row have the same state.

As a last step we encode the constraints of the CSP instance. For each constraint Cj

we add one constraint relation Cj which observes, for each variable appearing in Cj , the
neighbors of the corresponding information vertex in the left block of the manager (they
are needed to infer the state of the information vertices). The relation Cj then accepts a
selection of these vertices if and only if it corresponds to a satisfying assignment.

This concludes the lower bound for the intermediate problem (σ, ρ)-DomSetRel. Next,
we remove the relations and replace them by appropriate gadgets to lift the result to
(σ, ρ)-DomSet.

Step 2: Realizing the Relations

Formally, the second step is a reduction from (σ, ρ)-DomSetRel to (σ, ρ)-DomSet. We
replace each relation by a suitable gadget that precisely mimics the behavior of the original
relation, that is, we realize the relation. The realization gadget accepts a selection of vertices
if and only if the original relation also accepted this selection. Moreover, such a gadget must
not add any selected neighbors to a vertex from the scope, as that could affect the existence
of a solution (in the positive but also in the negative).

Curticapean and Marx [18] show that just two types of relations suffice to realize arbitrary
relations. Focke et al. prove that for (σ, ρ)-DomSet only HW=1 relations are needed [25,
Corollary 8.8], that is, once we can realize such HW=1 relations, then every relation can be
realized. The HW=1 relation accepts if exactly one vertex from the scope of the relation is
selected, that is, if the Hamming weight of the σ-vector is exactly one. We strengthen this
result further by using an observation from [47] such that only realizations of HW=1 with arity
one, two or three are needed.

To realize these relations, we use an auxiliary relation. For some set τ , the relation HW∈τ

accepts, if and only if the number of selected vertices from the scope of the relation, i.e., the
Hamming weight of the σ-vector, is contained in τ . Once we set τ − k := {t − k | t ∈ τ} to
simplify notation, our main results for realizing relations reads as follows.

▶ Lemma 2.13. Let σ and ρ be two difficult residue classes modulo m. Then, the relation
HW∈ρ−min ρ+1 can be realized.
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When σ and ρ are difficult we have m ≥ 3, and hence this gadget directly gives HW=1 when
restricting to arity at most 3 as min ρ + 1, min ρ + 2 /∈ ρ. Thus, together with the previous
intermediate lower bound this concludes the proof of the lower bound.

For m = 2 the decision version is easy, so we cannot expect to realize the HW=1 relation.
So, we consider the minimization version instead and focus on the two non-trivial cases; for
ρ = {x ∈ Z≥0 | x ≡2 1}, we consider σ = {x ∈ Z≥0 | x ≡2 1} and σ = {x ∈ Z≥0 | x ≡2 0}.
For the lower bounds from Main Theorem 3, we modify the known NP-hardness reductions
by Sutner [55] to keep pathwidth low and to obtain the matching bounds.
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