
Local Enumeration: The Not-All-Equal Case
Mohit Gurumukhani #Ñ

Cornell University, Ithaca, NY, USA

Ramamohan Paturi #

Department of Computer Science and Engineering,
University of California San Diego, La Jolla, CA, USA

Michael Saks #

Department of Mathematics, Rutgers University, Piscataway, NJ, USA

Navid Talebanfard # Ñ

University of Sheffield, UK

Abstract
Gurumukhani et al. (CCC’24) proposed the local enumeration problem Enum(k, t) as an approach
to break the Super Strong Exponential Time Hypothesis (SSETH): for a natural number k and a
parameter t, given an n-variate k-CNF with no satisfying assignment of Hamming weight less than
t(n), enumerate all satisfying assignments of Hamming weight exactly t(n). Furthermore, they gave
a randomized algorithm for Enum(k, t) and employed new ideas to analyze the first non-trivial
case, namely k = 3. In particular, they solved Enum(3, n

2) in expected 1.598n time. A simple
construction shows a lower bound of 6 n

4 ≈ 1.565n.
In this paper, we show that to break SSETH, it is sufficient to consider a simpler local enumeration

problem NAE-Enum(k, t): for a natural number k and a parameter t, given an n-variate k-CNF
with no satisfying assignment of Hamming weight less than t(n), enumerate all Not-All-Equal
(NAE) solutions of Hamming weight exactly t(n), i.e., those that satisfy and falsify some literal
in every clause. We refine the algorithm of Gurumukhani et al. and show that it optimally solves
NAE-Enum(3, n

2), namely, in expected time poly(n) · 6 n
4 .

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases Depth 3 circuits, k-CNF satisfiability, Circuit lower bounds, Majority function

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.42

Related Version Full Version: https://arxiv.org/abs/2501.02886

Funding Mohit Gurumukhani: Supported by NSF CAREER Award 2045576 and a Sloan Research
Fellowship.
Ramamohan Paturi: Partially supported by NSF grant 2212136.

Acknowledgements We want to thank Pavel Pudlák for helpful discussions.

1 Introduction

Four decades of research on the exact complexity of k-SAT has given rise to a handful
of non-trivial exponential time algorithms, i.e., algorithms running in time 2(1−ϵ)n with
non-trivial savings ϵ > 0 [10, 12, 15, 2, 11, 8, 6, 13]. Despite extensive effort, PPSZ [11]
remains essentially the fastest known k-SAT algorithm. It is also known that its analysis
cannot be substantially improved [14]. The Super Strong Exponential Time Hypothesis
(SSETH) formalizes the lack of progress in improving the exact complexity of k-SAT, and
states that it cannot be solved in time 2(1−ω(1/k))n [16]. Gurumukhani et al. [5] recently
proposed the local enumeration problem as a new approach to refute SSETH. More precisely,
Enum(k, t) is defined as follows: for natural number k and a parameter t, given an n-variate
k-CNF F with no satisfying assignment of Hamming weight less than t(n), enumerate

© Mohit Gurumukhani, Ramamohan Paturi, Michael Saks, and Navid Talebanfard;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 42; pp. 42:1–42:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mgurumuk@cs.cornell.edu
https://www.mohitgurumukhani.com/
https://orcid.org/0009-0007-8808-2846
mailto:rpaturi@ucsd.edu
mailto:saks@math.rutgers.edu
mailto:n.talebanfard@sheffield.ac.uk
https://staffwww.dcs.shef.ac.uk/people/n.talebanfard/
https://orcid.org/0000-0002-3524-9282
https://doi.org/10.4230/LIPIcs.STACS.2025.42
https://arxiv.org/abs/2501.02886
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Local Enumeration: The Not-All-Equal Case

all satisfying assignments of Hamming weight exactly t(n). They provided a randomized
branching algorithm and presented novel ideas to analyze it for the first non-trivial case,
k = 3.

In this paper, we argue that fast algorithms for an easier local enumeration problem
would also refute SSETH. To be precise, we consider the NAE-Enum(k, t) problem which
is formally defined as follows: for a natural number k and a parameter t, given an n-variate
k-CNF F with no satisfying assignment of Hamming weight less than t(n), enumerate all
Not-All-Equal (NAE) solutions of Hamming weight exactly t(n) 1. Recall that a NAE
solution to a CNF is one which satisfies and falsifies a literal in every clause. We will show
that a refinement of the algorithm of [5] can optimally solve NAE-Enum(k, n

2) for k = 3.
For this algorithm t = n

2 is the hardest case, and we therefore have an algorithm for all
t ≤ n

2 . Our proof utilizes a new technique for analyzing a transversal tree (a tree of satisfying
solutions with Hamming weight exactly t(n) constructed using the clauses of the k-CNF).

It is easy to see that k-SAT can be reduced to (k+ 1)-NAE-SAT by the following folklore
reduction: Given a k-CNF F , define a (k + 1)-CNF F ′ as follows. Let z be a new variable.
For each clause C ∈ F we include the clause C ∨ z in F ′. It is clear that F is satisfiable iff
F ′ has a NAE solution2. Furthermore, if we can solve k-NAE-SAT in time 2(1−µk)n, then
we can solve k-SAT in time O(2(1−µk−1)n). In the other direction, the k-NAE-SAT problem
has a trivial reduction to k-SAT: Given a k-CNF F , construct the formula F ′ by adding, for
each clause of F the clause consisting of the negations of its literals, then F has an NAE
solution if and only if F ′ is satisfiable. Therefore, for large k, k-SAT can be solved with
asymptotically the same savings as that of k-NAE-SAT.

It is noted in [5] that upper bounds on Enum(k, t) for all t ≤ n
2 imply k-SAT upper

bounds. It is easy to see that the same holds for NAE-Enum(k, t) and k-NAE-SAT.
Therefore, by the discussion above, as far as k-SAT savings are concerned, we may only focus
on NAE-Enum(k, t) for all t ≤ n

2 .

Lower bounds for local enumeration

Define k-CNF Majn,k as follows. Divide the n variables into blocks of size 2k − 2, and
for each block include all positive clauses of size k. Every satisfying assignment of Majn,k

sets at least k − 1 variables in each block to 1, and thus has Hamming weight at least n
2 .

Notably, all minimum-weight satisfying assignments are NAE. Furthermore, the number of
minimum-weight satisfying assignments of Majn,k is 2(1−O(log(k)/k))n. This, in particular, is a
lower bound on the complexity of both Enum(k, n

2) and NAE-Enum(k, n
2), and thus if we

can show that any of these bounds is tight for all t ≤ n
2 , we break SSETH. We reiterate that

it is wide open to obtain even a combinatorial (non-algorithmic) upper bound of this kind;
while this is not good enough to break SSETH, it is necessary and will be very interesting to
obtain such a bound.

1.1 Our Contributions
Gurumukhani et al. [5] showed that their algorithm solves Enum(k, t) for all t ≤ n

2 , and in
particular, it solves Enum(3, n

2) in expected 1.598n time. Compare this with the lower bound
of 6 n

4 ≈ 1.565n which follows from Majn,3. With respect to this algorithm, the complexity of

1 we emphasize that we require F to have no satisfying assignment, not only no NAE-satisfying assignment
of weight less than t(n)

2 A satisfying assignment of F can be extended to a NAE solution of F ′ by setting z = 0. Conversely, a
NAE solution of F ′ is a satisfying assignment of F projected on the first n variables if z = 0, and if
z = 1, the negation of the remaining variables is a satisfying assignment of F .

M. Gurumukhani, R. Paturi, M. Saks, and N. Talebanfard 42:3

Enum(k, t) increases as t grows. Therefore t = n
2 is the hardest instance for this algorithm.

Here we refine their algorithm, and show that it optimally solves NAE-Enum(3, n
2), which

is also the hardest instance for this algorithm.

▶ Theorem 1. For n ≥ 0, t ≤ n/2, let F be an arbitrary n-variate 3-CNF where every
satisfying assignment has Hamming weight at least t. Then, the number of NAE satisfying
assignments of F of Hamming weight exactly t is at most 6 n

4 . Furthermore, we can enumerate
these solutions in expected poly(n) · 6 n

4 time.

Theorem 1 will follow from Theorem 21 and Theorem 38. The algorithm of [5] is a
randomized variant of the seminal method of Monien and Speckenmeyer [10]: take a positive
clause C = x1 ∨ . . . ∨ xk and for a random ordering π of its variables, recursively solve the
problem under the restriction xπ(1) = . . . = xπ(i−1) = 0, xπ(i) = 1, for every i ∈ [k]. While
the analysis in [5] is essentially local (only depends on the information along root-leaf paths),
we had to develop a global technique to get the optimal bound where we use information
from one subtree to analyze the performance in an entirely different subtree. We believe that
the elements of our analysis have the potential to generalize for k > 3.

Depth-3 complexity of Majority function

Majority is a natural candidate function for beating the state-of-the-art depth-3 circuit lower
bounds [7, 9, 1]. The local enumeration paradigm of [5] gives a promising paradigm to
establish this, and their result yields new lower bounds for Σ3

3 circuits, i.e., OR-AND-OR
circuits with bottom fan-in at most 3. Our result can also be interpreted as an optimal lower
bound Majority for Σ3

3 circuits in which every Hamming weigh n
2 input is a NAE solution of

some depth-2 subcircuit.

Hypergraph Turán problems

Following [3, 5, 4], by restricting ourselves to monotone formulas, our result has a natural
interpretation for hypergraphs. Let H = (V,E) be a 3-uniform n-vertex hypergraph with
no transversal of size less than n

2 , i.e., any set of vertices that intersects every hyperedge
has size at least n

2 . We show that the number of 2-colorings of H with no monochromatic
hyperedge is at most 6 n

4 and give a randomized algorithm that in expected poly(n) · 6 n
4 time

enumerates them. This bound is tight, by considering the disjoint union of n
4 cliques of size

4 (this hypergraph corresponds to the formula Majn,3).

Combinatorial interpretation

Our result can also be interpreted in a purely combinatorial manner. For instance, let
S(n, t, k) be the maximum number of weight t satisfying assignments of a k-CNF that has
no solutions of weight less than t. By construction, we can show S(n, n/2, 3) ≥ 6n/4. It
was conjectured in [5] that S(n, n/2, 3) ≤ 6n/4. We here prove S(n, n/2, 3) ≤ 6n/4 under
an additional assumption that the 3-CNF formula F is negation closed: If α satisfies F ,
then negation of α also satisfies F . As pointed out in [5, 4], proving strong upper bounds
for S(n, n/2, k) for k > 3 is a major open problem and doing so for large k would lead
to breakthrough circuit lower bounds for depth 3 circuits. The current best bounds were
first obtained by [7] who showed S(n, n/2, k) ≤ 2n−O(n/k). We also note that to refute
SSETH, one not only needs to show strong upper bounds for S(n, n/2, k) but also needs an
enumeration algorithm.

STACS 2025

42:4 Local Enumeration: The Not-All-Equal Case

1.2 Proof Strategy
As mentioned earlier, our enumeration algorithm is similar to [5] where we select an unsatisfied
monotone clause C, randomly order the variables in C and for 1 ≤ i ≤ 3, set the first i− 1
variables to 0, set variable i to 1 and recurse. This gives rise to a recursion tree (henceforth
called transversal tree) where each leaf may correspond to a transversal (it could be a leaf
corresponds to a falsified formula). We bound the expected number of leaves that our
algorithm visits by carefully ensuring we do not double count leaves that correspond to the
same transversal. This is also what [5] did. The key difference here is that in our algorithm,
we very carefully choose which clause to develop next: we divide the transversal tree into
stages and for each stage, carefully argue certain kinds of clauses must exist and carefully
pick those clauses to develop the transversal tree. This is also where we use the not-all-equals
assumption to show certain kinds of favorable clauses must exist. With careful accounting,
we are able to obtain the tight bound.

2 Transversal trees and the TreeSearch algorithm

In this section we review the TreeSearch algorithm from [5] which enumerates the solu-
tions of a k-CNF solutions of minimum Hamming weight. We also make some additional
observations that allow us to get a tight analysis of the algorithm for NAE-3-SAT.

The TreeSearch algorithm is for k-SAT and we want algorithms for NAE-k-SAT. Define
the negation-clause for clause C to be the clause C ′ whose literals are the negations of the
literals of C. The negation-closure of a formula F is the formula F̂ obtained from F by
adding the negation-clause of every clause of F (if it is not already in F). We say that F is
negation-closed if F̂ = F . It is easy to see that the set of NAE solutions for a formula F is
exactly the same as the set of SAT-solutions for its negation-closure F̂ . So any algorithm
that enumerates the minimum-weight satisfying assignments for k-CNF formulas can be
used to find the minimum weight NAE-assignments of a k-CNF formula F by applying the
algorithm to F̂ .

2.1 Transversals and Transversal trees

2.1.1 Important definitions
▶ Definition 2 (Transversals). A set S ⊆ X is a transversal of F if the assignment that sets
the variables in S to 1 and the variables in X \ S to 0 is a satisfying assignment of F .

We say S is a minimal transversal of F if no subset of S is a transversal. We say that S
is a minimum-size transversal of F if it has the smallest size over all transversals.

The definition of transversal of a formula can be seen as a natural generalization of the
standard notion of transversal of a hypergraph, which is a set that has nonempty intersection
with every edge. Indeed, if F is a monotone formula (where every clause consists of positive
literals) then a transversal of F is exactly a transversal of the hypergraph H consisting of
the set of clauses of F .

▶ Definition 3 (Transversal number). For a satisfiable k-CNF F , the transversal number
τ(F) is the cardinality of the minimum-size transversal of F . The set of all minimum-size
transversals of F is denoted by Γ(F) and the cardinality of Γ(F) is denoted by #Γ(F).

M. Gurumukhani, R. Paturi, M. Saks, and N. Talebanfard 42:5

We focus on two related problems: (1) Give an algorithm that enumerates Γ(F) and
analyze its complexity, and (2) Determine the maximum cardinality of Γ(F) among all
k-CNF (or NAE-k-CNF) with τ(F) = n/2. Our main technical tool will be transversal trees,
introduced in [5], and defined below. The definition applies to k-CNF with τ(F) = t for any
k, t.

We need some preliminary definitions. We associate a subset Y of variables to the partial
assignment that sets all variables of Y to 1. A clause C is said to be satisfied by Y if C
contains a positive literal corresponding to a variable from Y .

▶ Definition 4 (Simplification of clause / formula). For a clause C that is not satisfied by
Y , the simplification of C by Y , C/Y is the clause obtained by removing occurrences of
negations of variables of Y . Similarly, the simplification of F by Y , denoted F/Y , is the
formula on X − Y obtained by deleting clauses satisfied by Y , and replacing each remaining
clauses C by C/Y .

Note that the underlying set of variables of both F and F/Y is the same - X. Furthermore,
the set of satisfying assignments of F with variables in Y set to 1 is in 1-1 correspondence
with the set of satisfying assignments of F/Y . We say that F is falsified by Y if F/Y contains
an empty clause.

We will be considering rooted trees with root r where each edge e is assigned a label
Q(e) ∈ X.

▶ Definition 5. For a node u and descendant node v we have the following definitions:
P (u, v) denotes the path from u to v.
The shoot from u to v, S(u, v), consists of the edges of P (u, v) together with all child
edges of nodes on the path other than v.
Q(u, v) = {Q(e) : e ∈ P (u, v)}. We write Q(v) for Q(r, v).
A clause C is live at v provided that C contains no variable in Q(v) (but it may contain
the negation of variables in Q(v)). For such a clause we write C/v for C/Q(v) and for a
formula F , we write F/v for F/Q(v).

2.1.2 Constructing the tree
We now define a process for growing a tree with node and edge labels Q(e) starting from a
root r. The leaves of the current tree are referred to as frontier nodes. Each frontier node v
is examined and is either designated as a leaf (of the final tree) or a non-leaf as follows:

If v is a node at depth at most t − 1 such that F/v contains no empty clause, then v

is a non-leaf. It is labeled by a clause C for which C/v is a positive clause3. Node v is
expanded to have |C/v| children with the edges labeled by distinct variables in C/v. We
denote the label of an edge e by Q(e).
If F/v contains an empty clause then v is a leaf of the final tree called a falsified leaf.
For the parent u of such a leaf v, F/u has no empty clause. Since F/v is obtained from
F/u by setting Q(uv) to 1, the single literal clause ¬Q(uv) is in F/u. We refer uv as a
falsifying edge.
If v is a node at depth t then v is a leaf. If it is not a falsified leaf then v is a viable leaf.

A tree constructed according to the above process is a transversal tree. The following
easy fact (noted in [5]) justifies the name:

3 F/v must contain a positive clause, otherwise Q(v) is a transversal of size less than t, contradicting
τ(F) = t.

STACS 2025

42:6 Local Enumeration: The Not-All-Equal Case

▶ Proposition 6. Let F be a formula with τ(F) = t and let T be a transversal tree for F .
For every minimum-size transversal S of F , there is a depth t leaf v of T such that S = Q(v).

The depth-t leaves can be divided into three types: falsified leaves, viable leaves ℓ for
which Q(ℓ) is a transversal, and viable leaves ℓ for which Q(ℓ) is not a transversal. For a leaf
of the third type, Q(ℓ) might be a subset of one or more transversals of size larger than t.

▶ Remark 7. Notice that if a leaf u appears before depth t, then u must be a falsified
leaf. Unless arising from “effective width 2 clauses”, for our analysis sake, we will continue
expanding the tree below u. Since u is already falsified, we assume, without loss of generality,
that all possible clauses of width at most 3 are live at u (including the empty clause). We
then choose a monotone clause and recursively develop the tree underneath u until we reach
depth t. Similarly, at all nodes v underneath u, we pretend this is the case, that all clauses
are live at v. We do this since our algorithm will dictate for various nodes which kind of
clause must be chosen and developed next. We will argue that certain kinds of clauses exist
for such nodes. Hence, to simplify analysis, we will assume all clauses needed are already
present.

Note that it is possible that many leaves correspond to the same transversal.

2.2 The TreeSearch algorithm for enumerating minimum-size
transversals

From Proposition 6, we can enumerate all minimum-sized transversals of F by constructing
a transversal tree for F , traversing the tree, and for each leaf ℓ computing Q(ℓ) and testing
whether Q(ℓ) is a transversal. To make this procedure fully algorithmic we need to specify
two things.

The first is a clause selection strategy which determines, for each node v, the clause of F
that labels v. In general, the clause selection strategy may be randomized, but in this paper
we consider only deterministic strategies.

The second thing to be specified is the order of traversal of the tree, which is specified
a family π = {π(v) : internal nodes v of T} where π(v) is a left-to-right ordering of the
variables of C/v and thus of the child edges of v. We use the ordering to determine a depth
first search traversal of the tree which upon arrival at each leaf ℓ, outputs Q(ℓ) if Q(ℓ) is a
transversal. We will say that u is to the left of v if it is visited before v in the traversal. The
running time of the algorithm is dominated by the size of the tree, which may be as large as
kτ(F).

To speed up the search, [5] described a simple criterion on edges such that in the pruned
tree obtained by removing all edges meeting this criterion and the subtrees below, every
minimum-size transversal corresponds to a unique leaf,

To formulate this criterion note that if u is an ancestor of v, the edges of shoot S(u, v)
are situated in one of three ways with respect to the path P (u, v): to the left of the tree
path, to the right of the tree path, or along the tree path.

▶ Definition 8 (Superfluous edge). An edge (uv) is superfluous if there is an ancestor w of v
that has a child edge wz to the left of P (r, v) such that Q(wz) = Q(uv).

We define the algorithm TreeSearch on the ordered tree (T, π) to be the depth first
search procedure with the following modification: before traversing any edge check whether
it is superfluous; if it is then skip that edge (thereby pruning the edge and the subtree below
it). This indeed corresponds to setting the corresponding variable to 0.

M. Gurumukhani, R. Paturi, M. Saks, and N. Talebanfard 42:7

▶ Proposition 9 (Implicit in [5]). For any transversal tree T of F and any ordering of T ,
the tree obtained by removing all superfluous edges and the subtrees below them satisfies:
every minimum-size transversal S of F has a unique leaf ℓ of the pruned tree for which
Q(ℓ) = S, and this leaf is the leftmost leaf of the original tree for which Q(ℓ) = S. Therefore
TreeSearch outputs each minimum-size transversals exactly once.

The time complexity of TreeSearch is bounded (up to poly(n) factors) by the number
of leaf nodes in the pruned tree. The number of leaves depends on the clause selection
strategy and the order π. Our goal is to choose the strategy and the order so that we can
prove a good upper bound on the number of leaves.

In [5], the algorithm for 3-SAT was analyzed under a specific clause selection rule by
considering a randomly chosen ordering π, in which the children of each node in the transversal
tree are ordered independently and uniformly at random. This enabled them to get an upper
bound that is non-trivial, though probably not optimal.

In this paper, we use a similar approach to analyze NAE-3-SAT. As in [5] we choose
π at random. We combine this with a carefully chosen clause selection strategy, described
in Section 3, which leads to an optimal upper bound for enumeration of minimum-sized
transversals.

2.3 Pruning under random edge ordering
Let F = (X, C) be a k-CNF. Let t = τ(F) be the transversal number of F . Let T be a
transversal tree for F . As indicated above we consider a random ordering π in which the
child edges of each node are randomly ordered from left-right independent of other nodes.
Under this distribution, whether or not a particular edge is superfluous is a random event.

▶ Definition 10 (Survival and survival probability).
An edge uv is said to survive provided that v is not a falsified leaf v and uv is not
superfluous. We say that path P (u, v) survives if every edge of the path survives, and
node v survives if path P (r, v) survives.
The conditional survival probability of an edge uv, σ(uv) is defined to be
P[v survives |u survives]. More generally the conditional survival probability σ(u, v) of
path P (u, v) is defined to be P[P (u, v) survives |u survives]. It follows that σ(u, v) =∏

e∈P (u,v) σ(e).
For a node u, let L(u) be the number of leaves of the subtree T (u) that survive, and define
the survival value of u, ψ(u), to be the conditional expectation E[L(u)|u survives]. It
follows from linearity of expectation that ψ(u) =

∑
v is leaf of T (u) σ(u, v).

▶ Proposition 11. Let F be a 3-CNF with n variables and τ(F) = n/2. Fix a clause
selection rule for building transversal trees. Then the expected running time of TreeSearch
on a randomly selected order is ψ(r)poly(n) and the number of transversals of F satisfies
#Γ(F) ≤ ψ(r).

Proof. For the first statement, the running time of TreeSearch for a given π is at most
L(r)poly(n) and so the expected running time on a random order is at most ψ(r)poly(n).
For the second statement, for any order π, Proposition 9 implies that #Γ(F) ≤ L(r), and so
#Γ(F) ≤ ψ(r). ◀

In the sections that follow, we will describe a clause specification strategy and analyze
ψ(r) for the case of negation-closed 3-CNF formula (which as noted earlier, corresponds to
the case of NAE-3-SAT). For the analysis we will need some additional observations.

STACS 2025

42:8 Local Enumeration: The Not-All-Equal Case

First, we determine a condition under which we can exactly determine σ(uv) for an
edge uv. It follows from the definition of survival probability if uv is a falsifying edge then
σ(uv) = 0. So we consider the case that uv is not falsifying. None of the edges on the path
P (r, u) are falsified (since the child node of a falsifying edge is always a leaf).

If uv is not falsifying then it survives if and only if is not superfluous. The condition for
being superfluous depends on the label of uv appearing as the label of a child edge of an
ancestor of u. To account for this we use a system of marking of edges and vertices:

▶ Definition 12 (Marking of edges and vertices).
The marking set M(e) of a tree edge e = (u, v) is the set of nodes w ̸= u in the path
P (r, u) which have a child edge e′ such that Q(e) = Q(e′). For w ∈ M(e) we say that w
marks the edge e and w marks the label Q(e).
An edge e is marked provided that M(e) ̸= ∅.
A node u is i-marked (for i ∈ {0, 1, 2, 3}) if exactly i child edges of u are marked.

Marked edges are edges that have a non-zero probability of being superfluous. The
analysis in [5] uses this to obtain upper bounds on the survival probability of nodes. We
now show that under favorable conditions we can calculate the survival probability of nodes
exactly.

The event that edge uv survives is exactly the event that for every node w ∈ M(uv),
the child edge of w with the same label as uv is to the right of the path edge that comes
from w, which happens with probability 1/2. Thus whether uv survives is determined by the
orderings π(w) of the child edges of w for all w ∈ M(uv), and P[uv survives] = 2−|M(e)|.

The above computation gives the unconditioned probability that uv survives, but σ(uv) =
P[uv survives |u survives] is a conditional probabilty. We now identify a condition under
which the conditioning event is independent of the event that uv survives. Say that an
edge uv is disjointly marked if its marking set M(uv) is disjoint from M(e) for every edge
e ∈ P (r, u). For a disjointly marked edge, the event that uv survives is independent of
the event that u survives, i.e., that all edges on P (r, u) survive, because the latter event
is determined by the order π(w) for nodes that mark some edge of P (r, u) and since uv is
disjointly marked, this set of nodes is disjoint from M(uv). Since the order of child edges of
nodes are chosen independently, the event that uv survives is independent of the event that
all edges on P (r, u) survive. From this we conclude:

▶ Proposition 13. Let T be a transversal tree for the k-CNF F .
1. Let uv be an edge that is not a falsifying edge and is disjointly marked.Then σ(uv) =

2−|M(e)|.
2. If v is a leaf that is not falsifying and each edge on P (r, v) is disjointly marked then

σ(v) = 2−
∑

e∈P (r,v)
|M(e)|.

For the case of negation-closed 3-CNF (which corresponds to NAE 3-SAT) we note the
following:

▶ Proposition 14. If F is a negation-closed 3-CNF formula then in any transversal tree T ,
every edge that is not a falsifying edge is disjointly marked. Therefore Proposition 13 applies
to every edge and every leaf of T .

Proof. Let uv be an edge with ancestor edge wz and y is a node that marks both uv and
wz. We claim that uv is a falsifying edge. y is necessarily an ancestor of w. Let y′ be the
child of y on the path to w. Then the clause labeling y is Q(yy′) ∨Q(wz) ∨Q(uv). Since F
is negation closed, F also contains the clause (¬Q(yy′)) ∨ (¬Q(wz)) ∨ (¬Q(uv)). This clause
is falsified at the node v since Q(yy′), Q(wz), Q(uv) ∈ Q(v), and therefore v is a falsifying
leaf. ◀

M. Gurumukhani, R. Paturi, M. Saks, and N. Talebanfard 42:9

We need a few additional definitions.

▶ Definition 15 (Mass of a node). For a non-leaf node u in a transversal tree, the mass of u
is the conditional expectation of the number of surviving children of u given that u survives.
By linearity of expectation this is the same as

∑
v: child node of u σ(u, v). We also refer to this

as the mass of the clause at u.

▶ Definition 16 (Defect). For node u, with e child edges, let defect of u to be 3 − e. We
similarly define defect of path / shoot as the sum of the defects of all nodes on the path /
shoot.

▶ Definition 17 (Weight). Let S(u, v) be a shoot in T . The weight of S(u, v) is defined as
W (u, v) def= |{e ∈ S : M(e) ̸= ∅}| + defect of S(u, v), i.e., the number of marked edges along
S(u, v) plus the defect of S(u, v).

The following fact provides a lower bound on the weight of each root to leaf shoot in T .

▶ Fact 18. Every root to leaf shoot S(r, u) in T has a weight of at least 3t− n.

Proof. Let f be the defect of S(r, u). Since the depth of T is t, a root to leaf shoot has
3t− f edges. Partition the edges of the shoot into classes according to the label of the edge,
and note that all edges in a class are at different depths. For each class, the edge of minimum
depth is unmarked and all other edges in the class are marked, so the number of unmarked
edges is at most n and the number of marked edges is at least 3t− f − n. Hence, the weight
of S(r, u) is at least (3t− f − n) + f = 3t− n. ◀

3 Clause Selection Criterion

We here provide a clause selection criterion for transversal trees for 3-CNFs that will provide us
with a tight analysis for the number of NAE-solutions and for the complexity of enumerating
them. The clause selection is divided into three stages. Each node will be associated with a
stage and a corresponding clause will be selected from that stage. The three stages are:
1. Disjoint stage
2. Controlled stage
3. Arbitrary stage

We begin the disjoint stage by selecting a pseudomaximum collection C0 of disjoint
monotone clauses of width 3 from F (See Remark 20 for what we mean by pseudomaximum
collection; on first reading, the readers should pretend as if we selected maximum such
collection). Let t0 = |C0|. Our further clause selection criterion depends on the value of t0:

If t0 ≥ n
4 , then we skip the controlled stage and directly enter the arbitrary stage where

we select arbitrary monotone clauses for the rest of the TreeSearch process.
If t0 ≤ n

4 , then we enter the controlled stage where we carefully control which clauses to
select, argue about existence of certain clauses and our analysis leverages this control.
This controlled stage also helps us get a handle on the kinds of clauses we can encounter
in the arbitrary stage.

We here describe the disjoint stage further. The arbitrary stage needs no further explana-
tion. We analyze the t0 ≥ n

4 case in Section 4. We will explain the controlled stage further
in Section 5 and will analyze the t0 ≤ n

4 case depending upon it in Section 6.

STACS 2025

42:10 Local Enumeration: The Not-All-Equal Case

3.1 The disjoint stage
Let the clauses in C0 be arbitrarily ordered as C0

0 , C
0
1 , . . . , C

0
t0−1. We will develop the

transversal tree so that for all 0 ≤ i ≤ t0 − 1, all nodes at level i will be expanded using
clause C0

i . We can do this because the disjointness of the clauses ensures that C0
i is a live

clause at every node at level i. We record the useful observation that any clause used to
develop a node appearing at level ℓ ≥ t0 will have at least one marking:

▶ Fact 19. Let u be a node at level ℓ ≥ t0 and let C be a width 3 clause used to expand at
u. Then, u will not be 0-marked, i.e., u will be j-marked for 1 ≤ j ≤ 3.

Proof. For u to be 0-marked, C must be a width 3 monotone clause and C must be disjoint
from all clauses from C0. However, that contradicts the fact that C0 is a maximal collection
of disjoint width 3 monotone clauses. ◀

▶ Remark 20 (Algorithmic aspect of maximum matching - pseudomaximum matching). Finding
a collection C0 of maximum size is NP-hard, and may require large exponential overhead. To
mitigate this, we implement an auxiliary data structure that maintains a pseudomaximum
collection of disjoint clauses. Initially, the data structure will greedily pick a maximal such
collection of clauses. Later in the algorithm, we might encounter scenarios where we can find
a larger collection of disjoint clauses. In these cases, we will “reset” the algorithm with that
larger collection of disjoint clauses. Such a reset can take place at most n times and hence,
the overhead is poly(n). In our analysis, we will make claims that take this for granted and
allow them to use the fact that C0 has maximum size ; for any claim where we use this, if
the claim does not hold because C0 is not necessarily of maximum size, the proof of the
claim actually will supply us with clauses that will help us form a larger disjoint collection of
clauses and we will “reset” our algorithm.

4 Bounding ψ when t0 ≥ n/4

In this section, we will show that if in a transversal tree, the number of maximally disjoint
clauses chosen in the disjoint stage is at least n/4, then ψ(r) ≤ 6n/4 where r is the root of
the tree. Formally:

▶ Theorem 21. Let T be a transversal tree developed using the clause selection criterion as
laid out in Section 3 with t0(T) ≥ n

4 . Then, ψ(r) ≤ 6 n
4 where r is the root of T .

We will use the following lemma to prove the theorem:

▶ Lemma 22. Let 0 ≤ d ≤ n
2 − t0, w ≥ 0 and let u be a node at level n

2 − d such that every
u to leaf shoot in T (u) has weight at least w. Then, ψ(u) ≤ F (w, d) where F (w, d) is defined
as follows:

F (w, d) =
{

(5
2)2d−w2w−d if w ≤ 2d

23d−w(3
2)w−2d if 2d ≤ w.

Assuming this lemma, our main theorem easily follows:

Proof of Theorem 21. Let t0 = n
4 + ∆ for some ∆ ≥ 0. Let u be an arbitrary node at

depth t0. Let T (u) be the sub-tree rooted at u. The tree T (u) has remaining depth n
4 − ∆,

and minimum weight of every root to leaf shoot is at least n
2 since all edges in the disjoint

M. Gurumukhani, R. Paturi, M. Saks, and N. Talebanfard 42:11

stage are unmarked. Thus, T (u) satisfies the requirements of Lemma 22, and we infer that
ψ(u) ≤ F (n/2, n/4 − ∆). Summing over all 3n/4+∆ nodes at the end of the disjoint stage,
we infer that

ψ(r) ≤ 3n/4+∆F (n/2, n/4 − ∆)

= 3n/4+∆2n/4−3∆
(

3
2

)2∆

= 6n/4
(

27
32

)∆

≤ 6n/4

where the last inequality follows because ∆ ≥ 0. ◀

5 Clause Selection Criterion: the Controlled Stage

Recall that this stage appears after the disjoint stage and applies to nodes u at level t0 or
larger provided t0 ≤ n

4 . To analyze this stage we will need to construct the transversal tree
more carefully, using an involved clause selection criterion which is described in this section.

We use the structural properties of the tree to obtain our lower bound in Section 6.
In the controlled stage, we will carefully select clauses in a way that imposes useful

restrictions on the structure of the tree. After that, we enter the arbitrary stage during which
we expand the tree using monotone clauses in an arbitrary order. We will show that the
structure of the clauses in the controlled stage imposes useful restrictions on the structure of
the clauses that arises in the arbitrary stage which will help us bound the survival probability.
Nodes with same number of markings will appear consecutively in the controlled stage.

We will need the following definition:

▶ Definition 23. A node u with clause C of width w has effective width w′ if it has w − w′

falsifying edges (as defined in Section 2.1.2) arising out of it.

Recall from Section 2.1.2 that a falsifying edge leads to a falsifying leaf, i.e. a node v for
which F/v contains an empty clause. Therefore the effective width of a node corresponds to
the number of children whose subtrees need to be explored.

Our controlled stage is divided into two substages:
κ1. 1-marked nodes.
κ2. 2-marked nodes corresponding to clauses of effective width 2.

▶ Remark 24. In stage κ2, an effective width 2 (monotone) clause C corresponds to a width
3 (monotone) clause where one of the variables, say x, in C will cause a falsifying edge. We
will show that there exists a monotone clause C ′ s.t. x ∈ C ′ and remaining two literals in C ′

are set to 1. Since F is negation-closed, the negation of C ′ will have both its literals set to 0,
simplifying it to the clause ¬x. So, any node expanded using C will have the edge labelled
with x as a falsifying edge.

We first introduce useful notation regarding the disjoint stage. We then provide a detailed
construction of each of the substages in the controlled stage followed by the impact of the
controlled stage on the arbitrary stage.

STACS 2025

42:12 Local Enumeration: The Not-All-Equal Case

5.1 Additional notation for the disjoint stage
As described in Section 3.1, we select a pseudomaximum size disjoint collection of clauses
C0

0 , C
0
1 , . . . , C

0
t0−1 in this stage. Our analysis in Section 6 will focus on obtaining an upper

bound on ψ(u0) where u0 is an arbitrary node at level t0. We will fix such a node u0 for
the rest of the section. Write C0

i = {pi, xi, x
′
i} where the variable pi is the label of the edge

along the path P (r, u0). Let V0 = {0, 1, . . . , t0 − 1}. For i ∈ [t0], let Xi = {xi, x
′
i} and let

X = ∪i∈[t0]Xi. We will also need the following useful fact:

▶ Fact 25. Let u be a node at level ℓ ≥ t0 and let C be a width 3 monotone clause used to
expand at u. Then, there must exist i ∈ V0 such that Xi ∩ C ̸= ∅.

Proof. Indeed, assume such C existed. Then, C must be disjoint from all clauses in C0.
However, this contradicts the fact C0 is a pseudomaximum collection of clauses. ◀

5.2 Stage κ1: 1-marked nodes
Let F1 be the set of width 3 monotone clauses that are live at u0 and have exactly one
marked variable at u0. We select a pseudomaximum size disjoint collection C1 of clauses
from F1 and expand u0 to a sub-tree of uniform depth t1 = |C1|.

▶ Remark 26. Similar to Remark 20, in the algorithmic implementation we will maintain an
auxiliary data structure that will maintain the pseudomaximum collection C1. Initially, the
collection will be a maximal set of disjoint clauses from F1 and whenever we come across a
claim that uses maximum size property of C1 and is violated, we will reset C1 to the disjoint
clauses supplied by the proof and “reset” this phase of the algorithm. Again, since a reset
can happen at most n times per u0, this will increase the total runtime of the algorithm by
factor of n.

Clauses in F1 satisfy the following property:

▶ Fact 27. If C = {xi, a, b} and C ′ = {x′
i, c, d} are in F1 where i ∈ V0, then {a, b}∩{c, d} ≠ ∅.

Proof. If C and C ′ are disjoint, we can replace the clause C0
i in C0 with C and C ′ to obtain

a larger size collection violating the pseudomaximum size condition on C0. ◀

Let V1 = {i | a variable from Xi appears in a clause from C1}. Note that |V1| = |C1| =
t1. By Fact 25, for every C ∈ F1, there is a unique i ∈ V0 such that C contains exactly one
of xi or x′

i with a single marking, and the remaining two variables in C do not appear in
any clause from C0. Furthermore, by Fact 27, for each i ∈ V0, at most one variable from Xi

can appear in some clause of C1; that is, if xi (x′
i) appears in some clause of C1, then x′

i (xi)
does not appear in any other clause of C1. These two indeed imply that |V1| = |C1| = t1.

We index the clauses in C1 using V1. So, for i ∈ V1, we write clause C1
i as {x̃i, yi, y

′
i}

where x̃i ∈ Xi. For i ∈ V1, let Yi = {yi, y
′
i}. Let VB = V0 − V1 and mB = |VB | = t0 − t1.

Before we describe stage κ2, we make some careful observations to prepare for it.

5.3 Preparation for Stage κ2

For a node u at the end of the stage κ1, define F2(u) to be the set of monotone width 3
clauses C that are live at u and have exactly two singly marked variables (so that C has
mass 2).

M. Gurumukhani, R. Paturi, M. Saks, and N. Talebanfard 42:13

▶ Lemma 28. Let u be an arbitrary node at the end of stage κ1. Let C ∈ F2(u) be arbitrary.
Then, C must be of one of the following forms:
1. C = {x̃i, ỹi, z} for some i ∈ V1, x̃i ∈ Xi \ C0

i , ỹi ∈ Yi and where z does not appear in the
shoot S(r, u).

2. C = {x̃i, x̃j , z} for some i ∈ V1, j ∈ VB , x̃i ∈ Xi \ C0
i , x̃j ∈ Xj and z does not appear in

the shoot S(r, u).
3. {x̃i, x̃j , z} where i, j ∈ VB , x̃i ∈ Xi, x̃j ∈ Xj and z does not appear in the shoot S(r, u).
4. {x̃i, ỹj , z} where i ∈ VB , j ∈ V1, x̃i ∈ Xi, ỹj ∈ Yj, and z does not appear in the shoot

S(r, u).

Proof. Since C has mass 2, there must be z ∈ C that does not appear in the shoot S(r, u).
By Fact 25, there exists i ∈ V0 such that Xi ∩ C ≠ ∅. We take cases on whether i ∈ V1 or
not and whether there exist two variables in C from X.
Case 1. i ∈ V1. Since C ∈ F2(u) and x̃i is singly marked, x̃i ̸∈ C1

i ∩Xi.
Assume that the second marked variable in C is from X. By Fact 27, the second marked
variable must be from Xj where j ∈ V0 and j ̸= i. We claim that j ∈ VB. Assume for
contradiction that j ∈ V1. Since x̃j is singly marked, x̃j ̸∈ C1

j . Then C1
i , C

1
j and C are

disjoint clauses that we can use to replace clauses C0
i , C

0
j from C0 and obtain a larger

set of disjoint clauses, contradicting the fact that C0 is a pseudomaximum collection of
clauses. Hence, the claim follows.
If the second marked variable in C is not from X, then it must be from Y . Let ỹj ∈ C

where j ∈ V1, ỹj ∈ Yj . We claim that i = j in this case. Indeed, if not then the clauses
C1

i and C will be disjoint clauses containing distinct variables from Xi, violating Fact 27.
Hence, the claim follows.

Case 2. i ̸∈ V1. As VB = V0 \ V1, we infer that i ∈ VB. In this case, if the second marked
variable in C is from X, it must be from Xj where j ∈ VB (if j ∈ V1, then we are in the
previous case) and the claim follows. Otherwise, the second marked variable in C is from
Y and the claim follows as well. ◀

Let u∗ denote the unique node at the end of stage κ1 where the path P (u0, u
∗) consists

of only marked edges, each of which is labeled by a variable from Xi for i ∈ V1. We note a
useful relationship between the live clauses at an arbitrary node u at the end of κ1 and the
live clauses at u∗:

▶ Fact 29. For every node u at the end of stage κ1, F2(u) ⊆ F2(u∗).

Proof. Let C ∈ F2(u) be arbitrary. If C is live at u∗, then C must have exactly 2 markings
since S(r, u) = S(r, u∗) and the markings only depend on the shoot. Hence, we show that all
such C are live at u∗. Since C is live at u, it is also live at u0. Hence, if C is not live at u∗,
then it must be that C contains one of the variables from P (u0, u

∗). Equivalently, C must
have to contain x̃i where i ∈ V1 and x̃i ∈ C0

i . This cannot happen since by Lemma 28, it
must be that x̃i ∈ Xi \ C0

i . ◀

For simplicity we write F2 := F2(u∗). Let F2R = {C ∈ F2 : x̃i ∈ C where i ∈ V1}. Let
F2B = F2 \ F2R.

▶ Fact 30. Any maximally disjoint set of clauses from F2B has size at most mB .

STACS 2025

42:14 Local Enumeration: The Not-All-Equal Case

Proof. By choice of F2B , it only contains clauses of type 3 or type 4 as laid out in Lemma 28.
Assume that there exists a collection S of more than mB disjoint clauses from F2B. Let
T = {C0

i : i ∈ V1}. We see that clauses in S are disjoint from T , and S and T have no
clauses in common. However then, S ∪ T is a disjoint collection of clauses of size

|S| + |T | ≥ (mB + 1) + |V1| = |V0| + 1 = t0 + 1

violating the fact that C0 is a pseudomaximum collection of clauses. ◀

▶ Remark 31. We use this fact later in Lemma 37. So even though this fact does not
algorithmically provide us with clauses to replace C0 with, for algorithm’s sake, we only
care about the maximal collection we encounter from Lemma 37 and there indeed, we can
constructively find such a collection if pseudomaximum property is violated.

▶ Fact 32. Let C ∈ F2R be arbitrary. Let i ∈ V1 be such that x̃i ∈ C. Let u be arbitrary
node at the end of stage κ1 where a variable from Xi appears along the path P (u0, u). Then
C is live at u.

Proof. By Lemma 28, C can only take one of two forms: If C is of the form (x̃i, x̃j , z) where
j ∈ VB and z does not appear along the shoot S(u0, u), then this follows. Otherwise, C
must be of the form (x̃i, ỹi, z) where z is not along the shoot S(u0, u) and ỹi ∈ Yi. By
assumption, a variable from Xi is in the path P (u0, u). This can only happen at the node
corresponding to the clause C1

i . As ỹi appears exactly once along the shoot S(u0, u) - at the
node corresponding to the clause C1

i - we infer that ỹi is not along the path P (u0, u). Hence,
the clause C is still live at u. ◀

Let VR = {i ∈ V1 | ∃C ∈ F2R such that Xi ∩C ̸= ∅}. Let mR = |VR|. Let mI = |V1 \VR|.
We have mB +mR +mI = t0 = n

4 − ∆. Fix a pseudomaximum size collection C′
R of disjoint

clauses from F2R. Let V ′
R = {i ∈ VR | x′

i appears in a clause in C′
R} and m′

R = |V ′
R| = |C′

R|.
Observe that m′

R ≤ mR.
▶ Remark 33. Similar to Remark 20 and Remark 26, in the algorithmic implementation, we
will maintain an auxiliary data structure that will maintain C′

R to be a pseudomaximum set
of disjoint clauses from F2R and whenever we come across a claim that uses this property
but is violated, we will reset C′

R to be the disjoint clauses supplied by the proof and will
reset stage κ1. Such reset can happen at most n times per u0 and hence, the runtime of the
algorithm can be increased by at most n. We will allow remaining claims in this section to
use that C′

R is a maximum sized collection.

5.4 Stage κ2: 2-marked nodes with effective width 2 clauses
Consider a node u at the end of the stage κ1. Let V marked(u) denote the set of marked variables
along the root to u path P (r, u). Let C′

R(u) = {C ∈ C′
R | ∃i ∈ V marked(u) such that C∩Xi ≠

∅}. Let ℓ(u) = |C′
R(u)| = |V marked(u) ∩ V ′

R|.
In stage κ2, we expand using the clauses in C′

R(u). By Fact 32, these clauses are live at u
and disjoint from each other, the expansion will be carried out for exactly ℓ(u) levels where
each clause in C′

R(u) will be used to expand one level. We record this fact here:

▶ Fact 34. Let u be a node at the end of stage κ1. Then, stage κ2 underneath u has length
ℓ(u) = |C′

R(u)| = |V marked(u) ∩ V ′
R|

After this expansion, we finish the controlled stage and enter the arbitrary stage. We
record the following useful property of nodes in this stage:

M. Gurumukhani, R. Paturi, M. Saks, and N. Talebanfard 42:15

▶ Lemma 35. All nodes in stage κ2 will have effective width 2 and mass at most 3
2 .

Proof. Let v be arbitrary node in stage κ2 developed using clause C where C ∈ C′
R(u). Let

i ∈ V marked(u) be such that x̃i ∈ C. As C0
i = (pi ∨ xi ∨ x′

i) is a clause in C0, and F is
negation-closed, the negation-clause of C0

i is also in F . At v, the negation-clause of C0
i

simplifies to the unit clause ¬x̃i. So, at v, the edge with label x̃i will be a falsifying edge,
making its effective width equal to 2. Moreover, since v is 2-marked, some other edge from
C is also marked. This implies the mass of v will indeed be at most 3

2 as desired. ◀

5.5 Arbitrary Stage
Let u be arbitrary node at the end of the controlled stage. In the controlled stage, we expand
using any monotone clause that is available and put no restrictions. However, we will still be
able to argue regarding the kinds of clauses that one could encounter in this stage.

We begin by showing that every 1-marked vertex in this stage will have mass at most 9
4 :

▶ Lemma 36. Every 1-marked node in arbitrary stage has mass at most 9
4 .

Proof. Indeed, if a 1-marked vertex v with clause C in arbitrary stage has a larger mass,
then it must have mass 5

2 . In that case, there exists a unique i ∈ V0 such that C contains
exactly one element from Xi. Since mass of v is 5

2 and i ̸∈ V1, the remaining two variables
do not appear in the shoot S(r, u). However, this implies C is disjoint from C1, contradicting
the fact that C1 is a pseudomaximum disjoint set of clauses with single marking. ◀

▶ Lemma 37. For any root to leaf shoot S in T (u), the number of nodes with 2 marked
edges and mass 2 is at most m′

R +mB − ℓ(u).

Proof. Call such clauses as heavy clauses. By Fact 29, heavy clauses along any shoot during
arbitrary stage are all in F2. Observe that these heavy clauses must be disjoint from C′

R(u).
We first claim that there can be at most m′

R − ℓ(u) heavy clauses from F2R during arbitrary
stage along S. Indeed, if there were more, then these heavy clauses combined with C′

R(u)
would form a collection of disjoint clauses of size at least (m′

R − ℓ(u) + 1) + ℓ(u) = m′
R + 1,

violating the fact that C′
R is a pseudomaximum collection of disjoint clauses.

The only other heavy clauses that can occur in arbitrary stage are from the set F2B . By
Fact 30, there are at most mB disjoint clauses in F2B. Since heavy clauses along a shoot
must be disjoint from each other, there can be at most m′

R +mB − ℓ(u) heavy clauses in
S. ◀

6 Bounding ψ when t0 ≤ n
4

In this section, we show that if in a transversal tree T , the number of maximally disjoint
clauses chosen in the disjoint stage is at most n/4, then ψ(r) ≤ 6n/4 where r is the root of T .
Formally, our main theorem is:

▶ Theorem 38. Let T be a transversal tree developed using the clause selection criteria as
laid out in Section 3 and Section 5 with t0 ≤ n

4 . Then, ψ(r) ≤ 6 n
4 where r is the root of T .

To bound ψ(r), we will carefully count and sum up the survival values of all nodes that
appear at the end of the disjoint stage. To facilitate that, we need a handle on the survival
value of a subtree that is developed in arbitrary stage. We introduce the following quantity
to help us with that:

STACS 2025

42:16 Local Enumeration: The Not-All-Equal Case

Let M(w, d, h) = maxu ψ(u) where u is a node at depth n
2 − d in arbitrary stage, every

root to leaf shoot in T (u) has weight at least w, and for every root to leaf shoot, the number
of 2-marked nodes with mass 2 is bounded by h.

As u is a node at level n
2 − d, the depth of T (u) is d. Moreover, as u is in arbitrary stage,

every node in T has at least one marked edge coming out of it, and by Lemma 36, every
1-marked node has that marked edge with survival probability at most 1/4.

We will define the following useful function:

F (w, d, h) =


(

9
4

)d if w ≤ d(
9
4

)2d−w 2w−d if d ≤ w ≤ d + h(
9
4

)2d−w 2h
(

27
8

)(w−d−h)/2 = 2h
(

27
8

)(3d−w−h)/2 (
3
2

)w−2d if d + h ≤ w ≤ 3d − h

23d−w
(

3
2

)w−2d if 3d − h ≤ w

We will use the following bound on M(w, d, h) that we prove in the appendix of the full
version.

▶ Lemma 39. For all w, d, h: M(w, d, h) ≤ F (w, d, h).

With this, we are ready to prove Theorem 38:

Proof of Theorem 38. Let u0 ∈ T be an arbitrary node at depth t0. Then, we can associate
quantities mB(u0),m′

R(u0), t1(u0) with the subtree T (u0). We bound ψ(u0) in terms of these
quantities and function F from Lemma 39. We will sum over ψ(u) where u is a node at
the end of controlled stage and then use F to bound ψ(u) as u will be at the beginning of
arbitrary stage. We will also need to precisely compute σ(u0, u), for such u and for that, we
keep track of how many marked edges (say i) from stage κ1 corresponding to m′

R(u0) are on
the path from u0 to u. This i will also be the length of stage κ2, which will further help us
in bounding σ(u0, u).

To do that, we first introduce the following quantities that we will use in the upper bound:
Let w(u0, i) = n

2 − 2i− t1(u0), d(u0, i) = n
2 − t0 − t1(u0) − i, h(u0, i) = m′

R(u0) +mB(u0) − i.
Using these quantities, we will upper bound ψ(u0) using the following expression: Define

N(u0) =
(

5
2

)t1(u0) (
4
5

)m′
R(u0) m′

R(u0)∑
i=0

(
m′

R(u0)
i

) (
3
8

)i

· F (w(u0, i), d(u0, i), h(u0, i))

Using this function, we will obtain the following as our main lemma:

▶ Lemma 40. ψ(u0) ≤ N(u0).

We assume this bound holds and continue our proof of Theorem 38. We will prove the
lemma in the appendix of the full version of the paper.

As N(u0) depends on F , we want to figure out what case for the function of F applies.
Recall that this depends on the relationship between w(u0, i), d(u0, i), h(u0, i). To help with
this, we introduce the following function:

I(u0) = 3t0 + 2t1(u0) +m′
R(u0) +mB(u0)

We show that the values of I and n govern which of the 4 functions will F equal. This
is surprising since I is a function of u0 and not a function of i. We first show that only 2
function choices of F can arise. We do this by showing:

▷ Claim 41. d(u0, i) + h(u0, i) ≤ w(u0, i).

M. Gurumukhani, R. Paturi, M. Saks, and N. Talebanfard 42:17

Proof of Claim 41. Indeed we compute:

d(u0, i) + h(u0, i) = n

2 − t0 − t1(u0) +m′
R(u0) +mB(u0) − 2i

= w(u0, i) + (m′
R(u0) +mB(u0) − t0)

≤ w(u0, i)

where the last inequality follows because m′
R(u0) +mB(u0) ≤ t1(u0) +mB(u0) = t0. ◁

We next show that the value of I decides the choice function for F :

▷ Claim 42. w(u0, i) ≤ 3d(u0, i) − h(u0, i) if and only if I(u0) ≤ n.

Proof of Claim 42. We compute the following:

3d(u0, i) − h(u0, i) = 3n
2 − 3t0 − 3t1(u0) −m′

R(u0) −mB(u0) − 2i

= w(u0, i) + n− 3t0 − 2t1(u0) −m′
R(u0) −mB(u0)

and hence,

w(u0, i) ≤ 3d(u0, i) − h(u0, i) ⇐⇒ 3t0 + 2t1(u0) +m′
R(u0) +mB(u0) = I(u0) ≤ n ◁

With this, we bound ψ(r) as follows:

ψ(r) =
∑

u0:u0 at depth t0

ψ(u0)

≤
∑

u0:u0 at depth t0

N(u0)

=
∑

u0:u0 at depth t0,I(u0)≤n

N(u0) +
∑

u0:u0 at depth t0,I(u0)>n

N(u0)

≤ 3t0 max
(

max
u0:I(u0)≤n

N(u0), max
u0:I(u0)>n

N(u0)
)

= max
(

max
u0:I(u0)≤n

3t0 ·N(u0), max
u0:I(u0)≥n

3t0 ·N(u0)
)

We show that the inner quantities are maximized when I(u0) = n by the following two
claims. These claims just rely on the inequalities listed in the claim, proving that some
expression is bounded. We see these claims as solving an optimization problem and do not
rely on any properties of the transversal tree.

▷ Claim 43. Let u0 be such that mB(u0) + t1(u0) ≤ t0,m
′
R(u0) ≤ t1(u0), I(u0) ≤ n. Then,

3t0 ·N(u0) is maximised when I(u0) = n.

▷ Claim 44. Let u0 be such that mB(u0) + t1(u0) ≤ t0,m
′
R(u0) ≤ t1(u0), I(u0) ≥ n. Then,

3t0 ·N(u0) is maximised when I(u0) = n.

Lastly, we show that when I(u0) = n, then the inner quantity is bounded by 6n/4:

▷ Claim 45. Let u0 be such that mB(u0) + t1(u0) ≤ t0,m
′
R(u0) ≤ t1(u0), I(u0) = n. Then,

3t0 ·N(u0) ≤ 6n/4.

These 3 claims together indeed show that ψ(r) ≤ 6n/4 as desired. We defer the proofs of
all these claims to the appendix of the full version of the paper. ◀

STACS 2025

42:18 Local Enumeration: The Not-All-Equal Case

7 Conclusion

We gave an optimal algorithm for the Not-All-Equal variant of Enum(k, n
2) for k = 3.

Extending the analysis of our algorithm to large k would break SSETH. However, extending
this to even k = 4 poses a great challenge.

References
1 Kazuyuki Amano. Depth-three circuits for inner product and majority functions. In Satoru

Iwata and Naonori Kakimura, editors, 34th International Symposium on Algorithms and
Computation, ISAAC 2023, December 3-6, 2023, Kyoto, Japan, volume 283 of LIPIcs, pages
7:1–7:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.
ISAAC.2023.7.

2 Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan, Jon M. Kleinberg,
Christos H. Papadimitriou, Prabhakar Raghavan, and Uwe Schöning. A deterministic (2 −
2/(k + 1))n algorithm for k-SAT based on local search. Theor. Comput. Sci., 289(1):69–83,
2002. doi:10.1016/S0304-3975(01)00174-8.

3 Peter Frankl, Svyatoslav Gryaznov, and Navid Talebanfard. A variant of the VC-dimension with
applications to depth-3 circuits. In Mark Braverman, editor, 13th Innovations in Theoretical
Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA,
volume 215 of LIPIcs, pages 72:1–72:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.ITCS.2022.72.

4 Mohit Gurumukhani, Marvin Künnemann, and Ramamohan Paturi. On extremal properties
of k-cnf: Capturing threshold functions. CoRR, abs/2412.20493, 2024. arXiv:2412.20493.

5 Mohit Gurumukhani, Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Navid Tale-
banfard. Local enumeration and majority lower bounds. In Rahul Santhanam, editor, 39th
Computational Complexity Conference, CCC 2024, July 22-25, 2024, Ann Arbor, MI, USA,
volume 300 of LIPIcs, pages 17:1–17:25. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2024. doi:10.4230/LIPICS.CCC.2024.17.

6 Thomas Dueholm Hansen, Haim Kaplan, Or Zamir, and Uri Zwick. Faster k-SAT algorithms
using biased-PPSZ. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA,
June 23-26, 2019, pages 578–589. ACM, 2019. doi:10.1145/3313276.3316359.

7 Johan Håstad, Stasys Jukna, and Pavel Pudlák. Top-down lower bounds for depth-three
circuits. Comput. Complex., 5(2):99–112, 1995. doi:10.1007/BF01268140.

8 Timon Hertli. Breaking the PPSZ barrier for unique 3-SAT. In Javier Esparza, Pierre
Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and
Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11,
2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science, pages 600–611.
Springer, 2014. doi:10.1007/978-3-662-43948-7_50.

9 Victor Lecomte, Prasanna Ramakrishnan, and Li-Yang Tan. The composition complexity of
majority. In Shachar Lovett, editor, 37th Computational Complexity Conference, CCC 2022,
July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 19:1–19:26. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CCC.2022.19.

10 Burkhard Monien and Ewald Speckenmeyer. Solving satisfiability in less than 2n steps. Discret.
Appl. Math., 10(3):287–295, 1985. doi:10.1016/0166-218X(85)90050-2.

11 Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved
exponential-time algorithm for k-SAT. J. ACM, 52(3):337–364, 2005. doi:10.1145/1066100.
1066101.

12 Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. Chic. J.
Theor. Comput. Sci., 1999, 1999. URL: http://cjtcs.cs.uchicago.edu/articles/1999/11/
contents.html.

https://doi.org/10.4230/LIPICS.ISAAC.2023.7
https://doi.org/10.4230/LIPICS.ISAAC.2023.7
https://doi.org/10.1016/S0304-3975(01)00174-8
https://doi.org/10.4230/LIPIcs.ITCS.2022.72
https://arxiv.org/abs/2412.20493
https://doi.org/10.4230/LIPICS.CCC.2024.17
https://doi.org/10.1145/3313276.3316359
https://doi.org/10.1007/BF01268140
https://doi.org/10.1007/978-3-662-43948-7_50
https://doi.org/10.4230/LIPIcs.CCC.2022.19
https://doi.org/10.1016/0166-218X(85)90050-2
https://doi.org/10.1145/1066100.1066101
https://doi.org/10.1145/1066100.1066101
http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html
http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html

M. Gurumukhani, R. Paturi, M. Saks, and N. Talebanfard 42:19

13 Dominik Scheder. PPSZ is better than you think. In 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages
205–216. IEEE, 2021. doi:10.1109/FOCS52979.2021.00028.

14 Dominik Scheder and Navid Talebanfard. Super strong ETH is true for PPSZ with small
resolution width. In Shubhangi Saraf, editor, 35th Computational Complexity Conference,
CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of
LIPIcs, pages 3:1–3:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.CCC.2020.3.

15 Uwe Schöning. A probabilistic algorithm for k-SAT based on limited local search and restart.
Algorithmica, 32(4):615–623, 2002. doi:10.1007/s00453-001-0094-7.

16 Nikhil Vyas and R. Ryan Williams. On super strong ETH. J. Artif. Intell. Res., 70:473–495,
2021. doi:10.1613/JAIR.1.11859.

STACS 2025

https://doi.org/10.1109/FOCS52979.2021.00028
https://doi.org/10.4230/LIPIcs.CCC.2020.3
https://doi.org/10.4230/LIPIcs.CCC.2020.3
https://doi.org/10.1007/s00453-001-0094-7
https://doi.org/10.1613/JAIR.1.11859

	1 Introduction
	1.1 Our Contributions
	1.2 Proof Strategy

	2 Transversal trees and the TreeSearch algorithm
	2.1 Transversals and Transversal trees
	2.1.1 Important definitions
	2.1.2 Constructing the tree

	2.2 The TreeSearch algorithm for enumerating minimum-size transversals
	2.3 Pruning under random edge ordering

	3 Clause Selection Criterion
	3.1 The disjoint stage

	4 Bounding psi when t0 >= n/4
	5 Clause Selection Criterion: the Controlled Stage
	5.1 Additional notation for the disjoint stage
	5.2 Stage 1: 1-marked nodes
	5.3 Preparation for Stage 2
	5.4 Stage 2: 2-marked nodes with effective width 2 clauses
	5.5 Arbitrary Stage

	6 Bounding psi when t0 <= n/4
	7 Conclusion

