
Sampling Unlabeled Chordal Graphs in
Expected Polynomial Time
Úrsula Hébert-Johnson #

University of California, Santa Barbara, CA, USA

Daniel Lokshtanov #

University of California, Santa Barbara, CA, USA

Abstract
We design an algorithm that generates an n-vertex unlabeled chordal graph uniformly at random in
expected polynomial time. Along the way, we develop the following two results: (1) an FPT algorithm
for counting and sampling labeled chordal graphs with a given automorphism π, parameterized
by the number of moved points of π, and (2) a proof that the probability that a random n-vertex
labeled chordal graph has a given automorphism π ∈ Sn is at most 1/2c max{µ2,n}, where µ is the
number of moved points of π and c is a constant. Our algorithm for sampling unlabeled chordal
graphs calls the aforementioned FPT algorithm as a black box with potentially large values of the
parameter µ, but the probability of calling this algorithm with a large value of µ is exponentially
small.
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1 Introduction

A graph is chordal if it has no induced cycles of length at least 4. The term was coined
by Gavril in 1972 [12], more than fifty years ago, but the notion of chordal graphs in fact
goes as far back as 1958 [13]. In the early papers, chordal graphs were referred to by other
names, such as triangulated graphs. By now, many structural results have been proved about
chordal graphs, and there are many algorithms that take a chordal graph as input. Thus it
would be useful to have an efficient algorithm for generating random chordal graphs, both
for the practical purpose of software testing, as well as the more mathematical purpose of
testing conjectures.

In [14], Hébert-Johnson et al. designed an algorithm that generates n-vertex labeled
chordal graphs uniformly at random. This algorithm runs in polynomial time, using at most
O(n7) arithmetic operations for the first sample and O(n4) arithmetic operations for each
subsequent sample. However, when discussing the performance of an algorithm that is being
tested, the correct output typically does not depend on the labeling of the vertices. If we
use a labeled-graph sampling algorithm to generate random test cases, then asymmetric
graphs will be given too much weight/probability compared to those that happen to have
many automorphisms. This naturally leads to the question of efficiently generating unlabeled
chordal graphs uniformly at random. In this paper, we present an algorithm that solves this
problem and runs in expected polynomial time.
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46:2 Sampling Unlabeled Chordal Graphs in Expected Polynomial Time

▶ Theorem 1. There is a randomized algorithm that given n ∈ N, generates a graph uniformly
at random from the set of all unlabeled chordal graphs on n vertices. This algorithm uses
O(n7) arithmetic operations in expectation.

It is worth mentioning the difference between the running times for labeled vs. unlabeled
chordal graph sampling. The sampling algorithm of Hébert-Johnson et al. generates a
random n-vertex labeled chordal graph in polynomial time, even in the worst case. However,
obtaining a worst-case polynomial-time algorithm for sampling unlabeled chordal graphs –
or an expected-polynomial-time counting algorithm for such graphs – appears to be very
difficult since these questions remain open even for general graphs. This is relevant because
the class of chordal graphs is known to be GI-complete. While there exist classes of graphs
(which we discuss below) for which efficient unlabeled sampling algorithms are known, we
are not aware of any GI-complete graph class with such an algorithm.

Our algorithm for sampling unlabeled chordal graphs builds upon an algorithm of Wormald
that generates n-vertex unlabeled graphs uniformly at random in expected time O(n2) [20].
This in turn builds upon a related algorithm by Dixon and Wilf [7] that solves the same
problem but assumes that the exact number of n-vertex unlabeled graphs has already been
computed. In [20], the algorithm of Wormald follows a somewhat similar structure but
removes that assumption. As mentioned above, the question of computing the exact number
of n-vertex unlabeled graphs in expected polynomial time remains open to this day.

It often happens that we wish to sample from a particular graph class (e.g., chordal
graphs). For unlabeled trees, there is a uniform sampling algorithm that runs in polynomial
time [19]. One can also count the exact number of unlabeled trees on n vertices in polynomial
time [17, A000055]. On the topic of counting, an algorithm for counting unlabeled k-trees is
presented in [9], but the running time is not stated. An expected-polynomial-time algorithm
for uniform sampling of 2-connected unlabeled planar graphs was presented by Bodirsky
et al. in 2005 [4], followed by the same result for connected unlabeled cubic planar graphs
in 2008 [6]. For the class of connected unlabeled bipartite permutation graphs, a uniform
sampling algorithm was designed by Saitoh et al. that runs in O(n) time [18].

Although extensive research has been done on the topic of labeled graph sampling
[5, 8, 10, 11], to the best of our knowledge, the literature on sampling unlabeled graphs from
a given graph class is relatively sparse. As is the case for chordal graphs, the corresponding
labeled sampling problem tends to be solved first for a given graph class, and then perhaps
one can address the problem of efficiently sampling unlabeled graphs from the same graph
class.

1.1 Methods
The sampling algorithm of Wormald [20] is based on the fact that unlabeled graphs correspond
to orbits of the following group action: the symmetric group Sn acts on the set of labeled
graphs by permuting the vertex labels. This correspondence follows from the Frobenius-
Burnside lemma. Therefore, to sample a random unlabeled graph, it is enough to sample a
random orbit of this group action.

To make this approach work for chordal graphs, we need two ingredients: (1) an algorithm
for counting and sampling labeled chordal graphs with a given automorphism π, and (2)
a proof that the probability that a random n-vertex labeled chordal graph has a given
automorphism π ∈ Sn is at most 1/2c max{µ2,n}, where µ is the number of moved points of π

and c is a constant.
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For (1), we design an FPT (fixed-parameter tractable) counting algorithm that is param-
eterized by µ, the number of moved points of π. This algorithm uses O(27µn9) arithmetic
operations. Using the standard sampling-to-counting reduction of [15], we also obtain a
corresponding sampling algorithm with the same running time. Our main algorithm (for
sampling unlabeled chordal graphs) calls each of these FPT algorithms as a black box with
potentially large values of the parameter µ. Nevertheless, using the bound from (2), we are
able to show that the probability of using a large value of µ is exponentially small, so the
expected running time is not significantly affected.

To design the counting algorithm for (1), we rewrite each of the recurrences from the
algorithm of Hébert-Johnson et al., now carrying around information about the automorphism
π and its moved points. The original algorithm is a dynamic-programming algorithm in
which there is a constant number of types of vertices (X, L, etc.) in each graph that we
wish to count. In our updated version, we now keep track of the type of each vertex that is
moved by π.

To prove the bound for (2), we distinguish between the cases when µ is small and µ is
large (µ is either less than or greater than n

d log n , where d is a constant). When µ is small,
we use the fact that almost every chordal graph is a split graph [1], and we strengthen this
by showing that in fact, almost every chordal graph is a balanced split graph. For the case
of balanced split graphs, the argument is easy and is similar to the proof of the bound for
general graphs [16]. When µ is large, the argument is more complicated. We observe that
the vast majority of n-vertex labeled chordal graphs have maximum clique size close to n/2.
Along the way, we also use the fact that for every chordal graph G, there exists a PEO
(perfect elimination ordering) of G such that some maximum clique appears at the tail end
of that PEO.

2 Preliminaries

Let N be the set of natural numbers, not including 0. For n ∈ N, we use the notation
[n] := {1, 2, . . . , n}. For a graph G and vertex subsets S, T ⊆ V (G), we say S sees all of T if
T ⊆ N(S).

▶ Definition 2. Let A = {a1, . . . , ar} and B = {b1, . . . , br} be finite subsets of N such
that |A| = |B|, where the elements ai and bi are listed in increasing order. We define
ϕ(A, B) : A→ B as the bijection that maps ai to bi for all i ∈ [r].

2.1 Permutations and labeled graphs

For n ∈ N, let Sn denote the group of all permutations of [n]. For a permutation π ∈ Sn,
we define Mπ := {i ∈ [n] : π(i) ̸= i} to be the set of points moved by π. For n ∈ N,
[n]0 := {0, 2, 3, . . . , n} denotes the set of all possible values of |Mπ| for π ∈ Sn.

Suppose π ∈ Sn, C ⊆ [n]. We write π(C) := {π(i) : i ∈ C} to denote the image of C

under π. We say C is invariant under π if π(i) ∈ C for all i ∈ C. For a set C that is invariant
under π, we write π|C to denote the permutation π restricted to the domain C.

A labeled graph is a pair G = (V, E), where the vertex set V is a finite subset of N and
the edge set E is a set of two-element subsets of V . For a permutation π ∈ Sn and a labeled
graph G such that V (G) ⊆ [n] is invariant under π, we say π|V (G) is an automorphism of G

if for all u, v ∈ V (G), u and v are adjacent if and only if π(u) and π(v) are adjacent.

STACS 2025
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2.2 Chordal graphs and related notions
A vertex v in a graph G is simplicial if its neighborhood N(v) is a clique. A perfect elimination
ordering (PEO) of a graph G is an ordering v1, . . . , vn of the vertices of G such that for
all i ∈ [n], vi is simplicial in the subgraph induced by the vertices vi, . . . , vn. A graph is
chordal if and only if it has a perfect elimination ordering [3]. The following two lemmas are
well-known facts about chordal graphs. The proof of the first can be found in [3].

▶ Lemma 3. Every chordal graph G contains a simplicial vertex. If G is not a complete
graph, then G contains two non-adjacent simplicial vertices.

▶ Lemma 4. A chordal graph G on n vertices has at most n maximal cliques.

Proof. Let C be a maximal clique in G, and let vi be the leftmost vertex of C in a
given perfect elimination ordering v1, . . . , vn of G. We claim that C is equal to the closed
neighborhood to the right of vi, i.e., C = N [vi] ∩ {vi, . . . , vn}. It is clear that C is contained
in N [vi] ∩ {vi, . . . , vn} since vi has no other neighbors to its right, so we indeed have
C = N [vi] ∩ {vi, . . . , vn} by maximality of C. Therefore, there are at most n maximal
cliques. ◀

▶ Definition 5. Let G1, G2 be two graphs, and suppose C := V (G1) ∩ V (G2) is a clique in
both G1 and G2. When we say we glue G1 and G2 together at C to obtain G, this means
G is the union of G1 and G2: the vertex set is V (G) = V (G1) ∪ V (G2), and the edge set is
E(G) = E(G1) ∪ E(G2).

As is shown in [14], if G1 and G2 are both chordal, then the resulting graph G is chordal.

2.3 Evaporation sequences
Our algorithm for counting the number of labeled chordal graphs with a given automorphism
will use the notion of evaporation sequences from [14].

Suppose we are given a chordal graph G and a clique X ⊆ V (G). The evaporation
sequence of G with exception set X is defined as follows: If X = V (G), then the evaporation
sequence of G is the empty sequence. If X ⊊ V (G), then let L̃1 be the set of all simplicial
vertices in G, and let L1 = L̃1 \X. Suppose L2, . . . , Lt is the evaporation sequence of G \L1
(with exception set X). Then L1, L2, . . . , Lt is the evaporation sequence of G. As is shown
in [14], the fact that X is a clique implies that all vertices outside of X eventually evaporate,
so this is well-defined.

If the evaporation sequence L1, L2, . . . , Lt of G has length t, then we say G evaporates at
time t with exception set X, and t is called the evaporation time. We define LG(X) := Lt

to be the last set in the evaporation sequence of G, and we let LG(X) = ∅ if the sequence
is empty. Similarly, we define the evaporation time of a vertex subset. Suppose G has
evaporation sequence L1, L2, . . . , Lt with exception set X, and suppose S ⊆ V (G) \ X is
a nonempty vertex subset. Let tS be the largest index i such that Li ∩ S ̸= ∅. We say S

evaporates at time tS in G with exception set X.

3 Sampling unlabeled chordal graphs

In [20], Wormald presented an algorithm that generates an n-vertex unlabeled graph uniformly
at random in expected time O(n2). In this paper, we achieve a similar result for chordal
graphs:
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▶ Theorem 1. There is a randomized algorithm that given n ∈ N, generates a graph uniformly
at random from the set of all unlabeled chordal graphs on n vertices. This algorithm uses
O(n7) arithmetic operations in expectation.

The sampling algorithm of Wormald makes use of the fact that unlabeled graphs corre-
spond to orbits of a particular group action. Since our algorithm will follow a similar outline,
we begin by discussing some of the ideas behind the algorithm of Wormald.

Suppose we have been given n ∈ N as input, and let Ω be the set of all labeled graphs
with vertex set [n]. The symmetric group Sn acts on Ω in the following way: For each π ∈ Sn

and G ∈ Ω, π ·G is the graph that results from permuting the vertex labels of G according
to π. The orbits of Ω under the action of Sn are the isomorphism classes of labeled graphs,
each of which corresponds to an unlabeled graph. Let

Γ = {(π, G) ∈ Sn × Ω : π is an automorphism of G}.

Suppose we fix an n-vertex unlabeled graph H, and let the corresponding isomorphism class
of labeled graphs be H. As is shown in [20], the number of pairs (π, G) ∈ Γ such that G ∈ H
is equal to |Sn| = n!. This follows from the Frobenius-Burnside lemma. Therefore, if we
sample a random pair (π, G) ∈ Γ uniformly at random, and then we forget the labels on the
graph G, this amounts to sampling an n-vertex unlabeled graph uniformly at random.

In the case of chordal graphs, the same statements hold true. Let Ωchord be the set of all
labeled chordal graphs with vertex set [n]. The symmetric group Sn acts on Ωchord in the
same way as above, by permuting the vertex labels. The set of orbits of this group action
corresponds to the set of unlabeled chordal graphs. Let

Γchord = {(π, G) ∈ Sn × Ωchord : π is an automorphism of G}.

Let Hc be an unlabeled chordal graph, and let Hc be the corresponding isomorphism class of
labeled graphs. Applying the Frobenius-Burnside lemma to the orbit corresponding to Hc

shows that the number of pairs (π, G) ∈ Γchord such that G ∈ Hc is equal to n!.
In [20], Wormald describes an algorithm for sampling a random pair (π, G) ∈ Γ in order

to sample a random unlabeled graph. The same outline can be used to sample a random
pair (π, G) ∈ Γchord. However, there are two key points where some difficulty arises. First
of all, in one of the steps of the algorithm that samples from Γ, it is necessary to count
the number of n-vertex labeled graphs with a given automorphism (and sample from the
set of such graphs). This is easy to do for general graphs but becomes more complicated
for chordal graphs (see Section 4). Second, the algorithm of Wormald uses the fact that
the number of labeled graphs with a given automorphism π is at most 2(n

2)−µn/2+µ(µ+2)/4,
where µ = |Mπ| is the number of moved points of π. To transform this into an algorithm for
sampling unlabeled chordal graphs, it is necessary to prove similar bounds on the number
of labeled chordal graphs with a given automorphism. These will be the bounds Bµ in our
algorithm.

3.1 Algorithm for sampling unlabeled chordal graphs
Let Count_Chordal_Lab(n) stand for the counting algorithm in [14] that computes the
number of n-vertex labeled chordal graphs. In the full version of the paper, we prove the
following two theorems.

▶ Theorem 6. There is a deterministic algorithm that given n ∈ N and π ∈ Sn, computes
the number of labeled chordal graphs with vertex set [n] for which π is an automorphism.
This algorithm uses O(27µn9) arithmetic operations, where µ = |Mπ|.

STACS 2025
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▶ Theorem 7. There is a randomized algorithm that given n ∈ N and π ∈ Sn, generates a
graph uniformly at random from the set of all labeled chordal graphs with vertex set [n] for
which π is an automorphism. This algorithm uses O(27µn9) arithmetic operations, where
µ = |Mπ|.

See Section 4 for the details of the counting algorithm of Theorem 6 along with
some intuition behind the proof of correctness. In our algorithm for sampling unlabeled
chordal graphs, Count_Chordal_Lab(n, π) stands for the algorithm of Theorem 6 and
Sample_Chordal_Lab(n, π) stands for the algorithm of Theorem 7.

Recall that [n]0 = {0, 2, 3, . . . , n}. For µ ∈ [n]0, let Rµ := {π ∈ Sn : |Mπ| = µ} be the
set of permutations with exactly µ moved points. For π ∈ Sn, let Fix(π) denote the set of
n-vertex labeled chordal graphs G such that π is an automorphism of G. To follow the same
approach as the algorithm of Wormald, for each µ ∈ [n]0, we need an upper bound Bµ that
satisfies Bµ ≥ |Rµ||Fix(π)| for all π ∈ Rµ. Let B0 be the number of n-vertex labeled chordal
graphs, which is exactly equal to |R0||Fix(id)|. For 2 ≤ µ ≤ n

200 log n , let

Bµ =
(

B0(9/10)n + 2n22n2/9 + n · 2n2/4+n/2
)

nµµ!, (1)

and for n
200 log n < µ ≤ n, let

Bµ = n2n+12n2/4−f(µ)nµµ!, (2)

where f(µ) = µ2

900 −
µ
10 . In Section 3.2, we will prove that we indeed have Bµ ≥ |Rµ||Fix(π)|

for all π ∈ Rµ, when n is sufficiently large. Let B =
∑

µ∈[n]0
Bµ.

Our algorithm for sampling a random n-vertex unlabeled chordal graph is given in
Algorithm 1. The general idea is as follows. For µ ∈ [n]0, let Γµ = {(π, G) ∈ Γchord : |Mπ| =
µ}. We choose µ such that the probability of each value of µ is Bµ/B, which is approximately
equal to Γµ/Γchord. (We do not know how to efficiently compute the exact value of Γµ/Γchord
since we do not know the exact number of unlabeled chordal graphs.) Since Bµ/B is not
exactly equal to Γµ/Γchord, we adjust for this by restarting with a certain probability in
Step 11. We then proceed to select a random pair (π, G) ∈ Γµ, and we output the graph G

without labels.

Algorithm 1 Unlabeled chordal graph sampler.

1: procedure Sample_Chordal_Unlabeled(n)
2: ▷ Setup
3: B0 ← Count_Chordal_Lab(n)
4: Let Bµ be given by Equation (1) for 2 ≤ µ ≤ n

200 log n

5: Let Bµ be given by Equation (2) for n
200 log n < µ ≤ n

6: B ←
∑

µ∈[n]0
Bµ

7:
8: ▷ Main algorithm
9: Choose µ ∈ [n]0 at random such that µ = i with probability Bi/B for each i ∈ [n]0

10: Choose π ∈ Rµ uniformly at random
11: Restart (go back to Step 9) with probability

1− |Rµ| ·Count_Chordal_Lab(n, π)/Bµ

12: G← Sample_Chordal_Lab(n, π)
13: Forget the labels on the vertices of G

14: return G

15: end procedure
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Step 10 can easily be implemented in O(n) time in the following way. If µ = 0, let
π = id. For µ ≥ 2, we can repeatedly choose a random permutation of [µ] until we obtain a
derangement. The expected number of trials for this is a constant (see [20]).

In Step 11, to compute |Rµ|, we observe that |R0| = 1 and |Rµ| = !µ
(

n
µ

)
for µ ≥ 2. Here !µ

is the number of derangements of µ. We compute !µ using the formula !m = m!
∑m

i=0(−1)i/i!
for m ∈ N, which can be derived using the inclusion-exclusion principle.

3.2 Correctness of Algorithm 1
The correctness of Count_Chordal_Lab(n, π) and Sample_Chordal_Lab(n, π) is
proved in the full version of the paper.

We need to show that the output graph is chosen uniformly at random. One “iteration”
refers to one run of Steps 9 to 11 or 9 to 14. In a given iteration, we say the pair (π, G) was
“chosen” if π was chosen from Rµ and G was chosen by Sample_Chordal_Lab(n, π). We
claim that for all (π, G) ∈ Γchord, in any given iteration, the probability that (π, G) is chosen
is 1/B. Indeed, this probability is equal to

Bµ

B

1
|Rµ|

|Rµ||Fix(π)|
Bµ

1
|Fix(π)| = 1

B
,

where µ = |Mπ|, since the probability of choosing G in Step 12 is 1/|Fix(π)|. Therefore, we
output all n-vertex unlabeled chordal graphs with equal probability.

Next, we need to show that Bµ ≥ |Rµ||Fix(π)| for all π ∈ Rµ to verify that the probability
|Rµ||Fix(π)|/Bµ in Step 11 is at most 1. When µ = 0 this is an equality, so suppose µ ≥ 2.
Clearly |Rµ| ≤ nµµ!, so we just need to prove that the number of n-vertex labeled chordal
graphs with automorphism π is at most Bµ/(nµµ!) for all π ∈ Sn with µ moved points.

In the case when Bµ is defined according to Equation (2), this follows from Theorem 8.
The proof this theorem can be found in the full version of the paper. (The bound in Theorem 8
is in fact true for all values of µ – the reason why we define Bµ differently for smaller values
of µ will become clear when we discuss the running time in Section 3.3.)

▶ Theorem 8. Let n ∈ N, π ∈ Sn, and let µ = |Mπ|. The number of labeled chordal graphs
with vertex set [n] for which π is an automorphism is at most

n2n+12n2/4−f(µ),

where f(µ) = µ2

900 −
µ
10 .

For the other case, suppose 2 ≤ µ ≤ n
200 log n , and suppose π ∈ Sn is a permutation with

µ moved points. We need to show that the number of n-vertex labeled chordal graphs with
automorphism π is at most Bµ/(nµµ!). We begin by reducing to the case of split graphs. A
split graph is a graph whose vertex set can be partitioned into a clique and an independent
set, with arbitrary edges between the two parts. It is easy to see that every split graph is
chordal. Furthermore, the following result by Bender et al. [1] shows that a random n-vertex
labeled chordal graph is a split graph with probability 1− o(1).

▶ Proposition 9 (Bender et al. [1]). If α >
√

3/2, n is sufficiently large, and G is a random
n-vertex labeled chordal graph, then

Pr(G is a split graph) > 1− αn.

STACS 2025
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Applying this proposition with α = 9
10 tells us that the number of n-vertex labeled chordal

graphs that are not split is at most B0
( 9

10
)n. To bound the number of n-vertex labeled split

graphs with automorphism π, we consider two cases: balanced split graphs and unbalanced
split graphs. We say a partition of the vertex set of a split graph G is a split partition if it
partitions G into a clique and an independent set; i.e., a split partition is a partition that
demonstrates that G is split. We denote a split partition that consists of the clique C and
the independent set I by the ordered pair (C, I). We say an n-vertex split graph is balanced
if |C| ≥ n

3 and |I| ≥ n
3 for every split partition (C, I) of G. It is easy to bound the number

of unbalanced split graph as follows.

▶ Lemma 10. The number of labeled split graphs on n vertices that are not balanced is at
most 2n22n2/9.

Proof. Suppose (C, I) is a partition of [n] into two parts such that |C| < n
3 or |I| < n

3 . The
number of labeled split graphs with this particular split partition is at most 2|I||C| ≤ 2 n

3 · 2n
3 =

22n2/9. Therefore, the number of unbalanced labeled split graphs on n vertices is at most
2n22n2/9 since there are at most 2n possible partitions. ◀

The following lemma will be useful for bounding the number of balanced split graphs.

▶ Lemma 11. Let π ∈ Sn, and let G be an n-vertex labeled split graph. If π is an automor-
phism of G, then there exists a split partition (C, I) of G such that C and I are invariant
under π.

Proof. Let Ĉ be the set of vertices that belong to the clique in every split partition of G, let
Î be the set of vertices that belong to the independent set in every split partition of G, and
let Q̂ = V (G) \ (Ĉ ∪ Î). By Observation 7.3 in [14], every vertex in Q̂ is adjacent to every
vertex in Ĉ and is non-adjacent to every vertex in Î. By Lemma 7.4 in [14], Q̂ is either a
clique or an independent set. Suppose π is an automorphism of G. If Q̂ is a clique, then the
split partition (Ĉ ∪ Q̂, Î) has the desired property. If Q̂ is an independent set, then the split
partition (Ĉ, Î ∪ Q̂) has the desired property. ◀

▶ Lemma 12. Let π ∈ Sn, and suppose |Mπ| ≥ 2. The number of balanced labeled split
graphs G on n vertices such that π is an automorphism of G is at most

n · 2n2/4+n/2.

Proof. Suppose (C, I) is a partition of [n] into two parts. Let i = |I| and c = |C|. The
number of labeled split graphs with this particular split partition is 2ic. Therefore, the
number of labeled split graphs with automorphism π for which (C, I) has the property from
Lemma 11 is at most 2ic. Let Z(C,I) be the number of such graphs. Whenever two vertices
u, v ∈ I (resp. C) belong to the same cycle in the cycle decomposition of π, u and v must
have the same relationship as each other to each of the vertices in C (resp. I). Therefore,
we in fact have an upper bound of max{2(i−1)c, 2i(c−1)} on Z(C,I), since π has at least two
moved points. If i ≥ n

3 and c ≥ n
3 , then we have max{2(i−1)c, 2i(c−1)} ≤ 2n2/4−n/2.

By Lemma 11, every balanced labeled split graph on n vertices with automorphism π

has a split partition (C, I) such that C and I are invariant under π. Furthermore, this split
partition is balanced (i.e., both parts have size at least n

3 ). Therefore, the number of balanced
labeled split graphs on n vertices with automorphism π is at most∑

⌈ n
3 ⌉≤i≤⌊ 2n

3 ⌋

2n · 2n2/4−n/2 ≤ n · 2n2/4+n/2

since the number of partitions (C, I) with |I| = i is certainly at most 2n. ◀
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Putting together Proposition 9 and Lemmas 10 and 12, we can see that(
B0(9/10)n + 2n22n2/9 + n · 2n2/4+n/2

)
nµµ!

is an upper bound on |Rµ||Fix(π)| when n is sufficiently large.
Let N0 be the cutoff such that this works for n ≥ N0. To be precise, when implementing

this algorithm, we would solve the problem by brute force if n < N0 (by generating all
possible n-vertex chordal graphs and then selecting one at random), and we would run
Algorithm 1 as written if n ≥ N0.

3.3 Running time of Algorithm 1
The running time of Steps 1-6 is O(n7) arithmetic operations since that is the running time
of Count_Chordal_Lab(n). In this section, we will show that the rest of the algorithm
uses only O(n7) arithmetic operations in expectation.

If we choose µ = 0 in Step 9 of Algorithm 1, then the algorithm is guaranteed to terminate
in that iteration. Thus the expected number of iterations is at most B/B0. Let T be the
expected running time of Algorithm 1 after completing Step 6 (this is where we choose µ at
random and the loop begins). In Lemma 13, we show that E[T ] is at most the product of
B/B0 and the expected running time of one iteration.

Let N be the number of iterations of Algorithm 1, and let Tj be the time spent in
iteration j for each j ∈ [N ]. We have T =

∑N
j=1 Tj .

▶ Lemma 13. We have E[T ] ≤ B
B0

E[T1].

Proof. Clearly E[T ] is finite since the expected number of iterations is finite and the
procedures Count_Chordal_Lab(n, π) and Sample_Chordal_Lab(n, π) have worst-
case running time bounds. Therefore, we can solve for E[T ] in the following way.

The steps that we run in one iteration (Steps 9-14) do not depend on j – they are
always the same, regardless of how many iterations have happened so far. Thus we have
E
[∑N

j=2 Tj

∣∣N > 1
]

= E[T ], which implies E[T | N > 1] = E[T1 | N > 1] + E[T ]. Therefore,
we have

E[T ] = E[T | N = 1] Pr(N = 1) + E[T | N > 1] Pr(N > 1)
= E[T1 | N = 1] Pr(N = 1) +

(
E[T1 | N > 1] + E[T ]

)
· Pr(N > 1)

=⇒ E[T ](1− Pr(N > 1)) = E[T1 | N = 1] Pr(N = 1) + E[T1 | N > 1] Pr(N > 1)
= E[T1]

=⇒ E[T ] = E[T1]
Pr(N = 1) ≤

B

B0
E[T1]. ◀

For µ ∈ [n]0, let T (n, µ) be an upper bound on the time it takes to run one iter-
ation, assuming we have chosen this particular value of µ in Step 9. By the running
time of Count_Chordal_Lab(n, π) and Sample_Chordal_Lab(n, π), we can assume
T (n, µ) = O(27µn9). We have

E[T1] =
∑

µ∈[n]0

Bµ

B
T (n, µ).
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To prove a bound on E[T1], we will start by proving a bound on Bµ/B for all µ ∈ [n]0. Since
B0 ≤ B, it is sufficient to prove a bound on Bµ/B0 for all µ ∈ [n]0. The following lemma
gives us a lower bound on B0.

▶ Lemma 14. For n ≥ 2, the number of n-vertex labeled chordal graphs is at least

2n2n2/4

n2 .

Proof. It is enough to just consider n-vertex labeled split graphs with a split partition (C, I)
such that |C| = ⌊n

2 ⌋. Since
(

n
⌊ n

2 ⌋
)
≥ 2n/n for n ≥ 2, the number of such graphs is at least

(
n

⌊n
2 ⌋

)
2n2/4

n
≥ 2n2n2/4

n2 .

We divide by n in the first expression since each split graph can have up to n distinct split
partitions in which C is of a given size [2]. ◀

▶ Lemma 15. Suppose n ≥ 13. If 2 ≤ µ ≤ n
200 log n , then

Bµ

B0
≤ 3

n16µ
.

Proof. Let B
(1)
µ , B

(2)
µ , and B

(3)
µ be the three terms that are added together in Equation (1),

in order, so that Bµ =
(

B
(1)
µ + B

(2)
µ + B

(3)
µ

)
nµµ!. We have

B
(1)
µ nµµ!

B0
=
(

9
10

)n

nµµ!,

and we claim that this is at most 1/n16µ. Since µ! ≤ nµ, it is sufficient to show n18µ ≤ (10/9)n,
which is true when µ ≤ n

200 log n .
For the next term, by Lemma 14 we have

B
(2)
µ nµµ!

B0
≤ n22−n2/36nµµ!.

To see that this is at most 1/n16µ, it is sufficient to show n19/200 ≤ 2n/36 since µ ≤ n
200 . This

is indeed true for n ≥ 13.
For the third term, by Lemma 14 we have

B
(3)
µ nµµ!

B0
≤ n32−n/2nµµ!.

To see that this is at most 1/n16µ, it is sufficient to show n20µ ≤ 2n/2, which is true when
µ ≤ n

40 log n . Adding together these three terms, we obtain Bµ/B0 ≤ 3/n16µ. ◀

▶ Lemma 16. For sufficiently large n, if n
200 log n < µ ≤ n, then

Bµ

B0
≤ 1

n16µ
.
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Proof. Lemma 14 implies B0 ≥ 2n2/4 for n ≥ 4, so we have

Bµ

B0
≤ n2n+12−f(µ)nµµ!,

where f(µ) = µ2

900 −
µ
10 . We claim that this expression is at most 1/n16µ. Since µ! ≤ nµ,

it is sufficient to show n2n+1n18µ ≤ 2f(µ). When n is sufficiently large,1 we have log3 n ≤
1

2002·1800
n2

2n+1 . Since µ ≥ n
200 log n , this implies

n2n+1 ≤ 2µ2/1800. (3)

When n is sufficiently large,2 we also have n ≥ 18 · 900 · 200 log2 n + 90 · 200 log n. Since
µ ≥ n

200 log n , this implies

n18µ ≤ 2µ2/1800−µ/10. (4)

Multiplying Equations (3) and (4) gives us the desired bound of n2n+1n18µ ≤ 2f(µ).
◀

By Lemmas 15 and 16, the above summation for E[T1] is at most T (n, 0) + O(1) since
T (n, µ) is certainly at most O(n16µ). For an iteration in which we have chosen µ = 0, when
counting and sampling n-vertex labeled chordal graphs with automorphism π = id, we can
simply run the counting and sampling algorithms of [14], rather than passing in π = id as an
input. Thus the expected running time E[T1] of one iteration is at most O(n7) arithmetic
operations. Lemmas 15 and 16 also immediately give us a bound on B/B0, since we have

B

B0
= B0

B0
+ B2

B0
+ . . . + Bn

B0
= O(1).

Therefore, by Lemma 13, the overall running time is at most O(n7) arithmetic operations in
expectation.

4 Counting labeled chordal graphs with a given automorphism

In this section, we describe the algorithm for Count_Chordal_Lab(n, π), which counts
the number of labeled chordal graphs with a given automorphism. In the full version of
the paper, we prove correctness, analyze the running time, and derive the corresponding
sampling algorithm (Theorem 7).

▶ Theorem 6. There is a deterministic algorithm that given n ∈ N and π ∈ Sn, computes
the number of labeled chordal graphs with vertex set [n] for which π is an automorphism.
This algorithm uses O(27µn9) arithmetic operations, where µ = |Mπ|.

There is a known dynamic-programming algorithm for computing the number n-vertex
labeled chordal graphs that uses O(n7) arithmetic operations, if we do not require the graphs
to have a particular automorphism [14]. Our algorithm is closely based on that one, but
we add more arguments and more details to each of the recurrences to keep track of the
behavior of the automorphism. As was done in [14], we evaluate the recurrences top-down
using memoization.

1 This holds for n ≥ 2.6 · 105.
2 This holds for n ≥ 3.3 · 109.
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4.1 Reducing from counting chordal graphs to counting connected
chordal graphs

For k ∈ N, let a(k) denote the number of labeled chordal graphs with vertex set [k], and
let c(k) denote the number of connected labeled chordal graphs with vertex set [k]. The
algorithm of [14] begins by reducing from counting chordal graphs to counting connected
chordal graphs via the following recurrence, which appears as Lemma 3.13 in [14]. (We omit
the “ω-colorable” requirement since we will not need that here.)

▶ Lemma 17 ([14]). The number of labeled chordal graphs with vertex set [k] is given by

a(k) =
k∑

k′=1

(
k − 1
k′ − 1

)
c(k′)a(k − k′)

for all k ∈ N.

Here k′ stands for the number of vertices in the connected component that contains
the label 1. The remaining connected components have a total of k − k′ vertices. Since
this recurrence is relatively simple, most of the difficulty in the algorithm of [14] lies in the
recurrences for counting connected chordal graphs. However, when counting graphs with a
given automorphism, the step of reducing to connected graphs is already quite a bit more
involved.

Suppose we are given n ∈ N and π ∈ Sn as input. From now on, whenever we refer to n

or π, we mean these particular values from the input.
We will first define a(k, p, M) and c(k, p, M), which are variations of a(k) and c(k) that

only count graphs for which πp|V (G) is an automorphism (see Definition 18). Here πp stands
for π to the power p, i.e., the permutation that arises from applying π a total of p times.
The reason for raising π to a power will be apparent in the recurrence for a(k, p, M). In the
initial, highest-level recursive call, we will have p = 1 and thus πp = π.

In [14], when counting the number of possibilities for a subgraph of size k′ (for example,
a connected component), the authors essentially relabel that subgraph to have vertex set [k′],
so that one can count the number of possibilities using, for example, c(k′). In our algorithm,
we want to relabel the vertices of each subgraph in a similar way. However, this time, we do
not relabel the vertices that are moved by π. This ensures that the automorphism in each
later recursive call will still be π, or a permutation closely related to π.

As a consequence, the vertex sets of the subgraphs that we wish to count become slightly
more complicated. For example, suppose we wish to count the number of possibilities for
a 5-vertex subgraph that originally contains the moved vertices 2, 8, 9 ∈ Mπ. Since we do
not relabel the moved vertices, the resulting vertex set after relabeling is {1, 2, 3, 8, 9} rather
than {1, 2, 3, 4, 5}. More formally, suppose we have been given k ∈ N and M ⊆Mπ, where
|M | ≤ k. Let V be the set of the first k − |M | natural numbers in N \Mπ. We define
Vk,M := V ∪M . For example, if k = 5 and M = Mπ = {2, 8, 9}, then Vk,M = {1, 2, 3, 8, 9}.
Intuitively, Vk,m is the label set of size k whose intersection with Mπ is M and that otherwise
contains labels that are as small as possible.

For π̂ ∈ Sn and M ⊆ [n], recall that M is invariant under π̂ if π̂(i) ∈ M for all i ∈ M .
For M ′, M ⊆ [n], we write M ′ ⊆π̂ M to indicate that M ′ ⊆M and M ′ is invariant under π̂.
Intuitively, M ′ is a subset of M that respects the cycles of π̂ by taking all or nothing of each
cycle.

▶ Definition 18. Suppose k, p ∈ [n] and suppose M ⊆πp Mπ, where |M | ≤ k. Let a(k, p, M)
(resp. c(k, p, M)) denote the number of labeled chordal graphs (resp. connected labeled chordal
graphs) with vertex set Vk,M for which πp|V (G) is an automorphism.
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Our algorithm returns a(n, 1, Mπ). This is precisely the number of labeled chordal graphs
with vertex set [n] and automorphism π since Vn,Mπ

= [n].
Suppose we have been given fixed values of the arguments k, p, M of a(k, p, M). Let

s be the smallest label in the vertex set Vk,M . For k′ ∈ [k], let Pk′ be the family of sets
M ′ ⊆πp M such that |M | − k + k′ ≤ |M ′| ≤ k′ and such that the following condition holds:
if s ∈M , then s ∈M ′, and otherwise, |M ′| ≤ k′ − 1. This last condition will ensure that s

belongs to the connected component of size k′ in the recurrence for a(k, p, M).
Suppose C ⊆ [n], σ ∈ Sn. For an element i ∈ C, we say the period of i with respect to

(C, σ) is the smallest positive integer j such that σj(i) ∈ C. Let Q be the family of sets
C ⊆M such that all elements of C have the same period j ≥ 2 with respect to (C, πp), and
such that s ∈ C. For a set C ∈ Q, we write pC to denote the period of the elements of C

(with respect to (C, πp)), and we let Cσ := C ∪ σ(C) ∪ · · · ∪ σpC−1(C) denote the union of
the sets that C is mapped to by powers of σ, where σ = πp.

To compute a(k, p, M), we use the following recurrence. The dot in front of the curly
braces denotes multiplication. Note that we have |M ′| ≤ k′ and |M \M ′| ≤ k − k′ by the
definition of Pk′ .

▶ Lemma 19. Let k, p ∈ [n] and suppose M ⊆πp Mπ, where |M | ≤ k. We have

a(k, p, M) =
∑

1≤k′≤k
M ′∈Pk′

c(k′, p, M ′)a(k − k′, p, M \M ′) ·
{(

k−|M |
k′−|M ′|

)
if s ∈M(

k−1−|M |
k′−1−|M ′|

)
otherwise

+
∑
C∈Q

c(|C|, p · pC , C)a(k − pC |C|, p, M \ Cπp).

For some intuition, suppose G is a graph counted by a(k, p, M), and let C be the connected
component of G that contains s. The first line of the recurrence for a(k, p, M) covers the case
when C is invariant under πp. This case is analogous to Lemma 17. In the first summation,
k′ stands for |C| and M ′ stands for the set of vertices in C that can be moved by πp. If
s ∈M , then in addition to the vertices in M ′, we need to choose k′− |M ′| additional vertices
for C so that |C| = k′. For these, we must choose non-moved vertices, so there are k − |M |
possible vertices to choose from. If s /∈M , then we subtract 1 from each of the numbers in
the binomial coefficient since we already know that s is a non-moved vertex in C.

The second line covers the case when C is not invariant under πp, which means all of
C is mapped to some other connected component of G by πp. In this case, we have pC

components of size |C| that are all isomorphic to C, and the rest of the graph has k − pC |C|
vertices. We do not need a binomial coefficient in this case because all of the vertices in
C are moved. There are c(|C|, p · pC , C) possibilities for the edges of C since πp·pC is an
automorphism of C. As an example, suppose p = 1. If we apply πp = π to the vertices of
C a total of pC times, then the image πpC (C) is equal to C, although these two sets might
not match up pointwise. To ensure that the image πpC (C) matches up with the edges of
C, we require that πpC is an automorphism of C. This is why we need the argument p in
a(k, p, M) and c(k, p, M).

Note that for a graph G counted by a(k, p, M), we have Mπp ∩ V (G) ⊆Mπ ∩ V (G) ⊆M

since V (G) = Vk,M . This means no vertex in V (G) \M is moved by πp, so we are free to
relabel these vertices in the proof of Lemma 19 without changing the automorphism. In the
initial recursive call a(n, 1, Mπ), we have p = 1 and M = Mπ, so Mπp ∩ V (G) = M . Later
on in the algorithm, it is possible that some vertices in M are not actually moved by πp. For
example, in the previous paragraph, it could happen that πp·pC is the identity on C (and
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then p · pC becomes the new value of p). However, we always have M ⊆Mπ by the definition
of a(k, p, M), so if |Mπ| = µ, then |M | ≤ µ. This fact will be useful for the running time
analysis.

The proof of Lemma 19, along with the proofs of all of the following recurrences, can be
found in the full version of the paper.

4.2 Recurrences for counting connected chordal graphs
To compute c(k, p, M), we will define various counter functions that are analogous to those
in [14]. First, we recall the counter functions from [14]. We refer to functions 1-4 in
Definition 20 as g-functions, and we refer to the others as f -functions. See Figure 1 in [14]
for an illustration of all of these functions.

▶ Definition 20 ([14]). The following functions count various subclasses of chordal graphs.
The arguments t, x, ℓ, k, z are nonnegative integers, where t ≤ n, z ≤ n, x + k ≤ n for
g-functions, and x + ℓ + k ≤ n for f -functions. These also satisfy the domain requirements
listed below.
1. g(t, x, k, z) is the number of labeled connected chordal graphs G with vertex set [x + k]

that evaporate in time at most t with exception set X := [x], where X is a clique, with the
following property: every connected component of G \X (if any) has at least one neighbor
in X \ [z]. Domain: t ≥ 0, x ≥ 1, z < x.

2. g̃(t, x, k, z) is the same as g(t, x, k, z), except every connected component of G \ X (if
any) evaporates at time exactly t in G. Note: A graph with V (G) = X would be counted
because in that case, g̃ is the same as g. Domain: t ≥ 1, x ≥ 1, z < x.

3. g̃p(t, x, k, z) is the same as g̃(t, x, k, z), except no connected component of G \X sees all
of X. Domain: t ≥ 1, x ≥ 1, z < x.

4. g̃1(t, x, k) and g̃≥2(t, x, k) are the same as g̃(t, x, k, z), except every connected component
of G \X sees all of X (hence we no longer require every component of G \X to have
a neighbor in X \ [z]), and furthermore, for g̃1 we require that G \ X has exactly one
connected component, and for g̃≥2 we require that G \X has at least two components.
Domain for g̃1: t ≥ 1, x ≥ 0. Domain for g̃≥2: t ≥ 1, x ≥ 1.

5. f(t, x, ℓ, k) is the number of labeled connected chordal graphs G with vertex set [x + ℓ + k]
that evaporate at time exactly t with exception set X := [x], such that G \X is connected,
LG(X) = {x + 1, . . . , x + ℓ}, and X ∪ LG(X) is a clique. Domain: t ≥ 1, x ≥ 0, ℓ ≥ 1.

6. f̃(t, x, ℓ, k) is the same as f(t, x, ℓ, k), except every connected component of G\(X∪LG(X))
evaporates at time exactly t− 1 in G, and there exists at least one such component, i.e.,
X ∪ LG(X) ⊊ V (G). Domain: t ≥ 2, x ≥ 0, ℓ ≥ 1.

7. f̃p(t, x, ℓ, k) is the same as f̃(t, x, ℓ, k), except no connected component of G\ (X∪LG(X))
sees all of X ∪ LG(X). Domain: t ≥ 2, x ≥ 0, ℓ ≥ 1.

8. f̃p(t, x, ℓ, k, z) is the same as f̃p(t, x, ℓ, k), except rather than requiring that G \ X is
connected, we require that G \ [z] is connected. Domain: t ≥ 2, x ≥ 0, ℓ ≥ 1, z ≤ x.

The counter functions for our algorithm will be similar to these, except we only want to
count graphs with a particular automorphism. Therefore, we will have several more arguments
in addition to the usual ones t, x, ℓ, k, z from Definition 20. As above, the argument p will
indicate that πp is the current automorphism. We also introduce the arguments MX , ML,
MZ , and MK , each of which is a subset of Mπ. Roughly, these sets specify which vertices –
in X, L := LG(X), Z := [z], and the rest of the graph, respectively – can be moved by the
current permutation (but the sets X, L, and Z will be modified slightly).
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In Definition 20, the g-functions count graphs with vertex set [x + k], and the f -functions
count graphs with vertex set [x + ℓ + k]. For our algorithm, we will make some adjustments
to these vertex sets to ensure that the vertices moved by the current permutation still appear
in the graph. This is similar to how we defined Vk,M above. To do so, we define several
symbols for these vertex sets and vertex subsets (Vargs, etc.). Each of these depends on the
list of arguments of the function in question, which we denote by args. For example, when

defining g, we have args =
(

t x k z

p MX MK MZ

)
(see Definition 21).

First, suppose args comes from one of the g-functions in Definition 21. Let VX be the set
of the first x− |MX | natural numbers in N \Mπ, and let VK be the set of the first k − |MK |
natural numbers in N\(VX∪Mπ). We define Xargs := VX∪MX and Vargs := Xargs∪VK∪MK .
Also, if z is included in args, then let VZ be the set of the first z − |MZ | natural numbers in
N \Mπ. In this case, we define Zargs := VZ ∪MZ .

For the other case, suppose args comes from one of the f -functions. Let VX be the set
of the first x − |MX | natural numbers in N \Mπ, let VL be the set of the first ℓ − |ML|
natural numbers in N \ (VX ∪Mπ), and let VK be the set of the first k − |MK | natural
numbers in N \ (VX ∪ VL ∪Mπ). We define Xargs := VX ∪MX , Largs = VL ∪ML, and
Vargs := Xargs∪Largs∪VK ∪MK . Also, if z is included in args, then let VZ be the set of the
first z − |MZ | natural numbers in N \Mπ. In this case, we again define Zargs := VZ ∪MZ .

These vertex subsets still have the same sizes as they did in the original algorithm: the
size of Vargs is x + k or x + ℓ + k, |Xargs| = x, |Largs| = ℓ, the rest of the graph has
size k, and |Zargs| = z. Just as we had Z ⊆ X in the original algorithm, we now have
Zargs ⊆ Xargs. This is because we require MZ ⊆MX in Definition 21, and we also require
z − |MZ | ≤ x− |MX |, which implies VZ ⊆ VX .

For g-functions, we have Mπp ∩ Vargs ⊆MX ∪MK , and for f -functions, we have Mπp ∩
Vargs ⊆ MX ∪ML ∪MK , by the definition of Vargs. We are now ready to define our new
counter functions.

▶ Definition 21. The following functions count various subclasses of chordal graphs. The
arguments t, x, ℓ, k, z are nonnegative integers with the same domains as in Definition 20. We
have p ∈ [n], and the arguments MX , ML, MK , MZ are subsets of Mπ. All other requirements
for their domains are specified below.

1. g

(
t x k z

p MX MK MZ

)
, g̃

(
t x k z

p MX MK MZ

)
, g̃p

(
t x k z

p MX MK MZ

)
,

g̃1

(
t x k

p MX MK

)
, and g̃≥2

(
t x k

p MX MK

)
are the same as g(t, x, k, z), g̃(t, x, k, z),

g̃p(t, x, k, z), g̃1(t, x, k), and g̃≥2(t, x, k), respectively, except we only count graphs for
which πp|V (G) is an automorphism, and we make the following changes to the vertices of
the graph: the vertex set is Vargs rather than [x + k], the exception set is Xargs rather
than [x], and [z] is replaced by Zargs.
Domain: MX ⊆πp Mπ, MK ⊆πp Mπ \ MX , MZ ⊆πp MX , |MX | ≤ x, |MK | ≤ k,
|MZ | ≤ z, and z − |MZ | ≤ x− |MX |.

2. f

(
t x ℓ k

p MX ML MK

)
, f̃

(
t x ℓ k

p MX ML MK

)
, f̃p

(
t x ℓ k

p MX ML MK

)
, and

f̃p

(
t x ℓ k z

p MX ML MK MZ

)
are the same as f(t, x, ℓ, k), f̃(t, x, ℓ, k), f̃p(t, x, ℓ, k), and

f̃p(t, x, ℓ, k, z), respectively, except we only count graphs for which πp|V (G) is an automor-
phism, and we make the following changes to the vertices of the graph: the vertex set is
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Vargs rather than [x + ℓ + k], the exception set is Xargs rather than [x], the last set to
evaporate is Largs rather than {x + 1, . . . , x + ℓ}, and [z] is replaced by Zargs.
Domain: MX ⊆πp Mπ, ML ⊆πp Mπ \MX , MK ⊆πp Mπ \ (MX ∪ML), MZ ⊆πp MX ,
|MX | ≤ x, |ML| ≤ ℓ, |MK | ≤ k, |MZ | ≤ z, and z − |MZ | ≤ x− |MX |.

For a graph G counted by one of these functions, πp|V (G) is indeed a permutation of
V (G) since MX and MK (and ML if needed) are invariant under πp.

To compute c(k, p, M), we consider all possibilities for the evaporation time. In the
following recurrence, g̃1 (with those particular arguments) counts the number of labeled
connected chordal graphs with vertex set Vargs = Vk,M and automorphism πp|V (G) that
evaporate at time exactly t with empty exception set.

▶ Lemma 22. Let k, p ∈ [n] and suppose M ⊆πp Mπ, where |M | ≤ k. We have

c(k, p, M) =
k∑

t=1
g̃1

(
t 0 k

p ∅ M

)
.

To compute g̃1, we consider all possibilities for the size ℓ of Largs. The set M in the
inner sum stands for the set of vertices in Largs that can be moved by πp. Note that we
have |M | ≤ ℓ and |MK \M | ≤ k − ℓ by the definition of Iℓ. For g̃1 and all of the following
functions, we recommend reading the analogous recurrences in [14] for further insight into
what is happening with the arguments t, x, ℓ, k, z in each recursive call.

▶ Lemma 23. For g̃1, we have

g̃1

(
t x k

p MX MK

)
=

k∑
ℓ=1

∑
M∈Iℓ

(
k − |MK |
ℓ− |M |

)
f

(
t x ℓ k − ℓ

p MX M MK \M

)
,

where Iℓ = {M ⊆πp MK : |MK | − k + ℓ ≤ |M | ≤ ℓ}.

To compute f , we consider all possibilities for the set of labels that appear in connected
components of G \ (Xargs ∪ Largs) that evaporate at time exactly t− 1. These components
correspond to the recursive call to f̃ . The set M stands for the set of vertices in components
that evaporate at time exactly t− 1 that can be moved by πp. Note that we have |M | ≤ k′

and |MK \M | ≤ k − k′ by the definition of Ik′ . Since |ML| ≤ ℓ, we also have x− |MX | ≤
x + ℓ− |MX ∪ML|, which is required by the domain of g.

▶ Lemma 24. For f , we have

f

(
t x ℓ k

p MX ML MK

)
=

k∑
k′=1

∑
M∈Ik′

(
k − |MK |
k′ − |M |

)
f̃

(
t x ℓ k′

p MX ML M

)
g

(
t− 2 x + ℓ k − k′ x

p MX ∪ML MK \M MX

)
,

where Ik′ = {M ⊆πp MK : |MK | − k + k′ ≤ |M | ≤ k′}.

To compute g, we consider all possibilities for the set of labels that appear in connected
components of G \Xargs that evaporate at time exactly t. These components correspond to
the recursive call to g̃. The set M stands for the set of vertices in components that evaporate
at time exactly t that can be moved by πp.
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▶ Lemma 25. For g, we have

g

(
t x k z

p MX MK MZ

)
=

k∑
k′=0

∑
M∈Ik′

(
k − |MK |
k′ − |M |

)
g̃

(
t x k′ z

p MX M MZ

)
g

(
t− 1 x k − k′ z

p MX MK \M MZ

)
,

where Ik′ = {M ⊆πp MK : |MK | − k + k′ ≤ |M | ≤ k′}.

For the next recurrence, we will need a few more definitions. Suppose we have been given
fixed values of the arguments of g̃. Let s be the smallest label in Vargs \Xargs. For k′ ∈ [k],
let Pk′ be the family of sets M ⊆πp MK such that |MK | − k + k′ ≤ |M | ≤ k′ and such that
the following condition holds: if s ∈ MK , then s ∈ M , and otherwise, |M | ≤ k′ − 1. For
x′ ∈ [x], let Ix′ = {M ′ ⊆πp MX : |M ′| ≤ x′}.

LetQ be the family of pairs (C, M ′), where C ⊆MK and M ′ ⊆MX , such that all elements
of C have the same period pC ≥ 2 with respect to (C, πp), such that s ∈ C, and such that M ′

is invariant under πp·pC . For a set C from such a pair, we let Cσ := C∪σ(C)∪· · ·∪σpC −1(C),
where σ = πp.

To compute g̃, we consider all possibilities for the label set of the connected component C

of G \Xargs that contains s. In the definition of g̃, the components of G \Xargs are similar
enough (since they all evaporate at time t) that they can potentially be mapped to one
another by πp. Thus we consider two cases: either C is invariant under πp, or C is mapped
to some other component of G \Xargs by πp. We add together the summations from these
two cases, in a similar way to the recurrence for a(k, p, M). In the recurrence for g̃, k′ stands
for |C|, and x′ stands for |N(C)|. The set M stands for the set of vertices in C that can be
moved by πp, and M ′ stands for the set of vertices in N(C) that can be moved by πp.

▶ Lemma 26. For g̃, we have

g̃

(
t x k z

p MX MK MZ

)
=

∑
1≤k′≤k
1≤x′≤x
M∈Pk′
M ′∈Ix′

g̃1

(
t x′ k′

p M ′ M

)
g̃

(
t x k − k′ z

p MX MK \M MZ

)

·

{(
k−|MK |
k′−|M |

)
if s ∈MK(

k−1−|MK |
k′−1−|M |

)
otherwise

·

{(
x−|MX |
x′−|M ′|

)
if M ′ ̸⊆MZ(

x−|MX |
x′−|M ′|

)
−
(

z−|MZ |
x′−|M ′|

)
otherwise

+
∑

1≤x′≤x
(C,M ′)∈Q

g̃1

(
t x′ |C|

p · pC M ′ C

)
g̃

(
t x k − pC |C| z

p MX MK \ Cπp MZ

)

·

{(
x−|MX |
x′−|M ′|

)
if M ′ ̸⊆MZ(

x−|MX |
x′−|M ′|

)
−
(

z−|MZ |
x′−|M ′|

)
otherwise.

To compute f̃ , we consider three cases: either no component of G \ (Xargs ∪ Largs)
sees all of Xargs ∪ Largs, exactly one component sees all of Xargs ∪ Largs, or at least two
components see all of Xargs ∪ Largs. The recursive calls to g̃1 and g̃≥2 correspond to the
component/components that see all of Xargs ∪ Largs. In the second and third cases, the
set M stands for the set of vertices that can be moved by πp in components that see all of
Xargs ∪ Largs.
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▶ Lemma 27. For f̃ , we have

f̃

(
t x ℓ k

p MX ML MK

)
= f̃p

(
t x ℓ k

p MX ML MK

)
+
∑

1≤k′≤k
M∈Ik′

(
k − |MK |
k′ − |M |

)
g̃1

(
t − 1 x + ℓ k′

p MX ∪ ML M

)
f̃p

(
t x ℓ k − k′

p MX ML MK \ M

)

+
∑

1≤k′≤k
M∈Ik′

(
k − |MK |
k′ − |M |

)
g̃≥2

(
t − 1 x + ℓ k′

p MX ∪ ML M

)
g̃p

(
t − 1 x + ℓ k − k′ x

p MX ∪ ML MK \ M MX

)
,

where Ik′ = {M ⊆πp MK : |MK | − k + k′ ≤ |M | ≤ k′}.

For the next recurrence, suppose we have been given fixed values of the arguments of
g̃≥2. Let s be the smallest label in Vargs \ Xargs, and let Pk′ be defined as it was in the
recurrence for g̃. Let Q be the family of sets C ⊆M such that all elements of C have the
same period pC ≥ 2 with respect to (C, πp), and such that s ∈ C. For a set C ∈ Q, we let
Cσ := C ∪ σ(C) ∪ · · · ∪ σpC−1(C), where σ = πp.

▶ Lemma 28. For g̃≥2, we have

g̃≥2

(
t x k

p MX MK

)
=

∑
1≤k′≤k
M∈Pk′

g̃1

(
t x k′

p MX M

)(
g̃1

(
t x k − k′

p MX MK \ M

)
+ g̃≥2

(
t x k − k′

p MX MK \ M

))

·

{(
k−|MK |
k′−|M|

)
if s ∈ MK(

k−1−|MK |
k′−1−|M|

)
otherwise

+
∑
C∈Q

g̃1

(
t x |C|

p · pC MX C

)(
g̃1

(
t x k − pC |C|
p MX MK \ Cπ

)
+ g̃≥2

(
t x k − pC |C|
p MX MK \ Cπ

))
.

To compute g̃p, all we need to do is make a slight adjustment to the recurrence for g̃.

▶ Lemma 29. The recurrence for g̃p is exactly the same as the recurrence for g̃ in Lemma 26,
except for the two sums over x′: In both summations, rather than summing over x′ such that
1 ≤ x′ ≤ x, we sum over x′ such that 1 ≤ x′ ≤ x− 1.

To compute f̃p, we first observe that when z = x, requiring G \ Zargs to be connected is
the same as requiring G \Xargs to be connected.

▶ Lemma 30. We have f̃p

(
t x ℓ k

p MX ML MK

)
= f̃p

(
t x ℓ k x

p MX ML MK MX

)
.

For the next f̃p recurrence, we need one last round of definitions. Suppose we have been
given fixed values of the arguments of f̃p, including z and MZ . Let s be the smallest label
in Vargs \ (Xargs ∪ Largs). For k′ ∈ [k], let Pk′ be the family of sets M ⊆πp MK such that
|MK | − k + k′ ≤ |M | ≤ k′ and such that the following condition holds: if s ∈ MK , then
s ∈ M , and otherwise, |M | ≤ k′ − 1. For 0 ≤ x′ ≤ x, let Ix′ = {M ′ ⊆πp MX : |M ′| ≤ x′}.
Also, for 0 ≤ ℓ′ ≤ ℓ, let Jℓ′ = {M ′ ⊆πp ML : |M ′| ≤ ℓ′}.

Let Q be the family of triples (C, M ′
X , M ′

L), where C ⊆MK , M ′
X ⊆MX , and M ′

L ⊆ML,
such that all elements of C have the same period pC ≥ 2 with respect to (C, πp), such that
s ∈ C, and such that M ′

X ∪M ′
L is invariant under πp·pC . For a set C from such a triple, we

let Cσ := C ∪ σ(C) ∪ · · · ∪ σpC−1(C), where σ = πp.
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▶ Lemma 31. For f̃p with the argument z, we have

f̃p

(
t x ℓ k z

p MX ML MK MZ

)
=

∑
1≤k′≤k
0≤x′≤x
0≤ℓ′≤ℓ

0<x′+ℓ′<x+ℓ

∑
M∈Pk′

M ′
X ∈Ix′

M ′
L∈Jℓ′

g̃1

(
t− 1 x′ + ℓ′ k′

p M ′
X ∪M ′

L M

)

·
(

ℓ− |ML|
ℓ′ − |M ′

L|

)
·

{(
k−|MK |
k′−|M |

)
if s ∈MK(

k−1−|MK |
k′−1−|M |

)
otherwise

·


(

x−|MX |
x′−|M ′

X
|
)

if ℓ′ > 0 or M ′
X ̸⊆MZ(

x−|MX |
x′−|M ′

X
|
)
−
(

z−|MZ |
x′−|M ′

X
|
)

otherwise

·


f̃p

(
t x + ℓ′ ℓ− ℓ′ k − k′ z

p MX ∪M ′
L ML \M ′

L MK \M MZ

)
if ℓ′ < ℓ

g̃p

(
t− 1 x + ℓ k − k′ z

p MX ∪M ′
L MK \M MZ

)
otherwise

+
∑

0≤x′≤x
0≤ℓ′≤ℓ

0<x′+ℓ′<x+ℓ
(C,M ′

X ,M ′
L)∈Q

g̃1

(
t− 1 x′ + ℓ′ |C|
p · pC M ′

X ∪M ′
L C

)
·
(

ℓ− |ML|
ℓ′ − |M ′

L|

)

·


(

x−|MX |
x′−|M ′

X
|
)

if ℓ′ > 0 or M ′
X ̸⊆MZ(

x−|MX |
x′−|M ′

X
|
)
−
(

z−|MZ |
x′−|M ′

X
|
)

otherwise

·


f̃p

(
t x + ℓ′ ℓ− ℓ′ k − pC |C| z

p MX ∪M ′
L ML \M ′

L MK \ Cπ MZ

)
if ℓ′ < ℓ

g̃p

(
t− 1 x + ℓ k − pC |C| z

p MX ∪M ′
L MK \ Cπ MZ

)
otherwise.

See the full version of the paper for more intuition behind the recurrences for g̃≥2 and
f̃p. The base cases for all of these counter functions are the same as in [14] since they only
depend on the arguments t, x, ℓ, k, z.

5 Conclusion

We built upon the algorithm of Wormald for generating random unlabeled graphs to design
an algorithm that, given n, generates a random unlabeled chordal graph on n vertices in
expected polynomial time. This serves as a proof of concept that one can obtain a sampling
algorithm for unlabeled graphs from a GI-complete graph class G using the following two
ingredients: (1) an FPT algorithm for counting labeled graphs in G with a given automorphism
π parameterized by the number of moved points of π and (2) a bound on the probability
that a labeled graph in G has a given automorphism. A few potential candidates for this
are bipartite graphs, strongly chordal graphs, and chordal bipartite graphs, all of which are
GI-complete. An additional open problem would be to design a uniform, or approximately
uniform, sampling algorithm – either for unlabeled chordal graphs or general unlabeled
graphs – that runs in expected polynomial time even when we condition on the output graph.
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