
Minimizing the Number of Tardy Jobs with
Uniform Processing Times on Parallel Machines
Klaus Heeger #

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Hendrik Molter #

Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract
In this work, we study the computational (parameterized) complexity of P | rj , pj = p |

∑
wjUj .

Here, we are given m identical parallel machines and n jobs with equal processing time, each
characterized by a release date, a due date, and a weight. The task is to find a feasible schedule,
that is, an assignment of the jobs to starting times on machines, such that no job starts before its
release date and no machine processes several jobs at the same time, that minimizes the weighted
number of tardy jobs. A job is considered tardy if it finishes after its due date.

Our main contribution is showing that P | rj , pj = p |
∑

Uj (the unweighted version of the
problem) is NP-hard and W[2]-hard when parameterized by the number of machines. The former
resolves an open problem in Note 2.1.19 by Kravchenko and Werner [Journal of Scheduling, 2011]
and Open Problem 2 by Sgall [ESA, 2012], and the latter resolves Open Problem 7 by Mnich and
van Bevern [Computers & Operations Research, 2018]. Furthermore, our result shows that the
known XP-algorithm by Baptiste et al. [4OR, 2004] for P | rj , pj = p |

∑
wjUj parameterized by

the number of machines is optimal from a classification standpoint.
On the algorithmic side, we provide alternative running time bounds for the above-mentioned

known XP-algorithm. Our analysis shows that P | rj , pj = p |
∑

wjUj is contained in XP when
parameterized by the processing time, and that it is contained in FPT when parameterized by the
combination of the number of machines and the processing time. Finally, we give an FPT-algorithm
for P | rj , pj = p |

∑
wjUj parameterized by the number of release dates or the number of due dates.

With this work, we lay out the foundation for a systematic study of the parameterized complexity
of P | rj , pj = p |

∑
wjUj .

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Mathematics of computing → Discrete mathematics; Computing methodologies →
Planning and scheduling

Keywords and phrases Scheduling, Identical Parallel Machines, Weighted Number of Tardy Jobs,
Uniform Processing Times, Release Dates, NP-hard Problems, Parameterized Complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.47

Funding Klaus Heeger : Supported by the ISF, grant No. 1070/20.
Hendrik Molter : Supported by the ISF, grant nr. 1470/24 and by the European Union’s Horizon
Europe research and innovation program under grant agreement 949707.

1 Introduction

Machine scheduling is one of the most fundamental application areas of combinatorial
optimization [34]. In a typical scheduling problem, the task is to assign jobs to machines
with the goal of maximizing a certain optimization objective while complying with certain
constraints. Jobs are usually characterized by a processing time, a release date, a due date,
and a weight (or a subset thereof). We consider the setting where we have access to several

© Klaus Heeger and Hendrik Molter;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 47; pp. 47:1–47:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:heeger@post.bgu.ac.il
https://orcid.org/0000-0001-8779-0890
mailto:molterh@post.bgu.ac.il
https://orcid.org/0000-0002-4590-798X
https://doi.org/10.4230/LIPIcs.STACS.2025.47
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Minimizing the Number of Tardy Jobs with Uniform Processing Times

identical parallel machines that can each process one job (non-preemptively) at a time. One
of the most fundamental optimization objectives is to minimize the weighted number of tardy
jobs, where a job is considered tardy if it is completed after its due date.

The arguably simplest scheduling problem aims to minimize the (unweighted) number
of tardy jobs on a single machine, where all jobs are released at time zero. In the standard
three-field notation for scheduling problems by Graham et al. [15], this problem is called
1 ||

∑
Uj . It can be solved in polynomial time by a classic algorithm of Moore [33]. However,

this problem becomes NP-hard when weights are introduced, the number of machines is
increased, or release dates are added.

The weighted version, 1 ||
∑

wjUj , is one of the first scheduling problems shown to
be (weakly) NP-hard. It remains hard even if all jobs have the same due date, as in
this case, it is equivalent to the well-known Knapsack problem, which was already
included in Karp’s famous list of 21 NP-hard problems [21]. The problem can be solved
in pseudopolynomial time with a classic algorithm by Lawler and Moore [28].
Adding a second machine leads to the problem 2 ||

∑
j Uj , which is (weakly) NP-hard even

if all jobs have the same due date, as it is a generalization of the well-known Partition
problem, which was also already included in Karp’s list of 21 NP-hard problems [21]. If
the number of machines is unbounded, the problem is called P ||

∑
j Uj and it is strongly

NP-hard even if all jobs have the same due date, as it generalizes the well-known Bin
Packing problem [14].
Introducing release times leads to the problem 1 | rj |

∑
j Uj , which is weakly NP-

hard [30], even if there are only two different release dates and two different due dates.
The reduction of Lenstra et al. [30] can be extended in a straightforward way to show
that 1 | rj |

∑
Uj is strongly NP-hard.

Problem Setting and Motivation. We consider the case where release dates and weights
are present and we have multiple identical parallel machines. However, we add the restriction
that all processing times are the same. This problem is called P | rj , pj = p |

∑
wjUj , we

give a formal definition in Section 2. This problem arises naturally in manufacturing systems,
where

exact specifications by the customers for the product have negligible influence on the
production time, but
the specifications only become available at certain times and customers request the
product to meet certain due dates.

As an illustrative example, consider the problem of scheduling burn-in operations in
integrated circuit manufacturing. The specification of the layout of the circuit may only
become available at a certain time, as it takes time to optimize it. At the same time, the
specific layout has little to no influence on the processing time of the burn-in operation [31].
Furthermore, the customer may wish to have the circuit delivered at a certain due date.

To the best of our knowledge, the only known algorithmic result for P | rj , pj = p |
∑

wjUj

is a polynomial-time algorithm by Baptiste et al. [2, 3] for the case where the number of
machines is a constant. However, two special cases are known to be polynomial-time solvable.
It is folklore that the case without release dates, P | pj = p |

∑
j wjUj , and the case where

the processing times equal one, P | rj , pj = 1 |
∑

j wjUj , can both be reduced to the Linear
Assignment problem in a straightforward manner. The Linear Assignment problem
is known to be solvable in polynomial time [27]. Furthermore, it is known that, given an
instance of P | rj , pj = p |

∑
wjUj , we can check in polynomial time whether all jobs can be

scheduled such that no job is tardy [5, 37, 38].

K. Heeger and H. Molter 47:3

Our Contribution. The complexity status of P | rj , pj = p |
∑

wjUj and its unweighted
version P | rj , pj = p |

∑
Uj was a longstanding open problem. Kravchenko and Werner [25]

pointed out that this question remains unanswered in Note 2.1.19 and Sgall [36] listed this
issue as Open Problem 2. Our main contribution is to resolve the complexity status of
P | rj , pj = p |

∑
Uj (and hence also P | rj , pj = p |

∑
wjUj) by showing the following.

P | rj , pj = p |
∑

Uj is NP-hard.

Having established NP-hardness, we focus on studying the parameterized complexity of
P | rj , pj = p |

∑
wjUj . As mentioned before, Baptiste et al. [2, 3] showed that the problem

is in XP when parameterized by the number of machines. Mnich and van Bevern [32, Open
Problem 7] asked whether this result can be improved to an FPT algorithm. We answer this
question negatively by showing the following.

P | rj , pj = p |
∑

Uj is W[2]-hard when parameterized by the number of machines.

On the positive side, we give several new parameterized tractability results. By providing
an alternative running time analysis of the algorithm for P | rj , pj = p |

∑
wjUj by Baptiste

et al. [2, 3], we show the following.
P | rj , pj = p |

∑
wjUj is in XP when parameterized by the processing time.

P | rj , pj = p |
∑

wjUj is in FPT when parameterized by the combination of the number
of machines and the processing time.

Finally, we give a new algorithm based on a mixed integer linear program (MILP)
formulation for P | rj , pj = p |

∑
wjUj . We show the following.

P | rj , pj = p |
∑

wjUj is in FPT when parameterized by the number of different release
dates.
P | rj , pj = p |

∑
wjUj is in FPT when parameterized by the number of different due

dates.

We conclude by pointing to new future research directions. Most prominently, we leave
open whether P | rj , pj = p |

∑
wjUj is in FPT or W[1]-hard when parameterized by the

processing time.

Related Work. We give an overview of the literature investigating the parameterized
complexity of minimizing the weighted number of tardy jobs in various related settings.

The problem of minimizing the weighted number of tardy jobs on a single machine,
1 ||

∑
j wjUj has been extensively studied in the literature under various aspects and

constraints. Hermelin et al. [20] showed that the classical pseudopolynomial time algorithm
by Lawler and Moore [28] can be improved in several special cases. Hermelin et al. [19] give
an overview of the parameterized complexity of 1 ||

∑
j wjUj with respect to the parameters

“number of processing times”, “number of due dates”, and “number of weights” (and their
combinations). In particular, 1 ||

∑
wjUj is in XP when parameterized by the number of

different processing times [19]. This presumably cannot be improved to an FPT result as
recently, it was shown that 1 ||

∑
wjUj parameterized by the number of different processing

times is W[1]-hard [16]. Faster algorithms are known for the case where the job weights equal
the processing times [4, 12, 23, 35] and the problem has also been studied under fairness
aspects [17]. Kaul et al. [22] extended the results of Hermelin et al [19] to 1 | rj |

∑
wjUj ,

considering the “number of release times” as an additional parameter.
Minimizing the weighted number of tardy jobs on parallel machines has mostly been

studied in the context of interval scheduling (P | dj − rj = pj |
∑

j wjUj) and generalizations
thereof [1, 18, 26, 39].

STACS 2025

47:4 Minimizing the Number of Tardy Jobs with Uniform Processing Times

The setting where processing times are assumed to be uniform has been studied under
various optimization criteria (different from minimizing the weighted number of tardy jobs)
and constraints. For an overview, we refer to Kravchenko and Werner [25] and Baptiste et
al. [3]. The even more special case of unit processing times has also been extensively studied.
Reviewing the related literature in this setting is out of scope for this work.

2 Preliminaries

Scheduling. Using the standard three-field notation for scheduling problems by Graham
et al. [15], the problem considered in this work is called P | rj , pj = p |

∑
wjUj . In this

problem, we have n jobs and m machines. Each machine can process one job at a time.
Generally, we use the variable j to denote jobs and the variable i to denote machines. Each
job j has a processing time pj = p, a release date rj , a due date dj , and a weight wj , where
p, rj , dj , and wj are nonnegative integers. We use r#, d#, and w# to denote the number of
different release dates, due dates, and weights, respectively.

A schedule maps each job j to a combination of a machine i and a starting time t,
indicating that j shall be processed on machine i starting at time t. More formally, a schedule
is a function σ : {1, . . . , n} → {1, . . . , m} × N. If for job j we have σ(j) = (i, t), then job j is
scheduled to be processed on machine i starting at time t until time t + p. A schedule σ is
feasible if there is no job j with σ(j) = (i, t) and t < rj and if there is no pair of jobs j, j′

with σ(j) = (i, t) and σ(j′) = (i, t′) such that |t − t′| < p. We say that a job j is early in
a feasible schedule σ if σ(j) = (i, t) and t + p ≤ dj , otherwise we say that job j is tardy.
We say that machine i is idle at time t in a feasible schedule σ if there is no job j with
σ(j) = (i, t′) and t′ ≤ t ≤ t′ + p. The goal is to find a feasible schedule that minimizes the
weighted number of tardy jobs or, equivalently, maximizes the weighted number of early
jobs W =

∑
j|σ(j)=(i,t)∧t+p≤dj

wj . We call a feasible schedule that maximizes the weighted
number of early jobs optimal. Formally, the problem is defined as follows.

P | rj , pj = p |
∑

wjUj

Input: A number n of jobs, a number m of machines, a processing time p, a list
of release dates (r1, r2, . . . , rn), a list of due dates (d1, d2, . . . , dn), and a list of
weights (w1, w2, . . . , wn).

Task: Compute a feasible schedule σ that maximizes W =
∑

j|σ(j)=(i,t)∧t+p≤dj
wj .

We use P | rj , pj = p |
∑

Uj to denote the unweighted (or, equivalently, uniformly
weighted) version of P | rj , pj = p |

∑
wjUj , that is, the case where wj = wj′ for every two

jobs j and j′, or equivalently, w# = 1.
Note that given any feasible schedule of the early jobs, one can easily extend this to

a feasible schedule of all jobs as tardy jobs can be scheduled arbitrarily late. Thus, when
describing a schedule, we will only describe how the early jobs are scheduled.

Given an instance I of P | rj , pj = p |
∑

wjUj , we can make the following observation,
essentially implying that one can switch the roles of release dates and due dates.

▶ Observation 1. Let I be an instance of P | rj , pj = p |
∑

wjUj and let dmax be the largest
due date of any job in I. Let I ′ be the instance obtained from I by setting r′

j = dmax − dj

and d′
j = dmax − rj. Then I admits a feasible schedule where the weighted number of early

jobs is W if and only if I ′ admits a feasible schedule where the weighted number of early jobs
is W .

K. Heeger and H. Molter 47:5

To see that Observation 1 is true note that a feasible schedule σ for I can be transformed
into a feasible schedule σ′ for I ′ (with the same weighted number of early jobs) by setting
σ′(j) = (i, dmax − t − p), where σ(j) = (i, t).

We now show that we can restrict ourselves to schedules where jobs may start only at
“few” different points in time, which will be useful in our proofs. In order to do so, we define
a set T of relevant starting time points.

T = {t | ∃ rj and ∃ 0 ≤ ℓ ≤ n s.t. t = rj + p · ℓ}

It is known that there always exists an optimal schedule where the starting times of all jobs
are in T .

▶ Lemma 2 ([2, 3]). Let I be an instance of P | rj , pj = p |
∑

wjUj. Then there exists a
feasible schedule σ that maximizes the weighted number of early jobs such that for each job j

we have σ(j) = (i, t) for some t ∈ T .

Parameterized Complexity. We use the following standard concepts from parameterized
complexity theory [7, 11, 13]. A parameterized problem L ⊆ Σ∗ × N is a subset of all
instances (x, k) from Σ∗ × N, where k denotes the parameter. A parameterized problem L is
in the class FPT (or fixed-parameter tractable) if there is an algorithm that decides every
instance (x, k) for L in f(k) · |x|O(1) time for some computable function f that depends only
on the parameter. A parameterized problem L is in the class XP if there is an algorithm
that decides every instance (x, k) for L in |x|f(k) time for some computable function f that
depends only on the parameter. If a parameterized problem L is W[1]-hard or W[2]-hard,
then it is presumably not contained in FPT [7, 11, 13].

3 Hardness of P | rj, pj = p | ∑
Uj

In this section, we present our main result, namely that the unweighted version of our
scheduling problem, P | rj , pj = p |

∑
Uj , is NP-hard and W[2]-hard when parameterized

by the number m of machines. The former resolves an open problem in Note 2.1.19 by
Kravchenko and Werner [25] and Open Problem 2 by Sgall [36], and the latter resolves Open
Problem 7 by Mnich and van Bevern [32].

▶ Theorem 3. P | rj , pj = p |
∑

Uj is NP-hard and W[2]-hard parameterized by the
number m of machines.

In order to show Theorem 3, we present a parameterized reduction from Hitting Set
parameterized by solution size k, which is known to be NP-hard [21] (unparameterized) and
W[2]-hard [10].

Hitting Set
Input: A finite set U = {u0, . . . , un−1}, a set A = {A0, . . . , Am−1} of subsets of U , and

an integer k.
Question: Is there a hitting set of size k, that is, a set X ⊆ U with |X| = k and

X ∩ Aj ̸= ∅ for every j ∈ {0, . . . , m − 1}?

Let I = (U = {u0, . . . , un−1}, A = {A0, . . . , Am−1}, k) be an instance of Hitting Set.
In order to ease the presentation, we give jobs names rather than identifying them with
natural numbers. Furthermore, for a job J , we use r(J) to denote the release date of J , and
we use d(J) to denote the deadline of J .

STACS 2025

47:6 Minimizing the Number of Tardy Jobs with Uniform Processing Times

JA1,u1

JA1,u2

JA1,u3

p

p

p

DA1

JA2,u3

JA1,u4

JA1,u5

p

p

p

DA2

JA3,u1

JA3,u5

JA3,u6

p

p

p

DA3

Figure 1 The jobs of the first reduction approach for the Hitting Set instance I =
({u1, u2, u3, u4, u5, u6}, {A1 = {u1, u2, u3}, A2 = {u3, u4, u5}, A3 = {u1, u5, u6}, k = 2).

Our reduction will have k machines. The main idea behind the reduction is as follows.
Each machine acts as a “selection gadget”, that is, we will interpret the jobs scheduled on
each machine in an optimal schedule as the selection of a particular element of U to be
included in the hitting set. As there are k machines, this ensures that the (hitting) set
consisting of the selected elements has size at most k. Intuitively, we want that selecting
element ui on a machine corresponds to all jobs on this machine starting at time i modulo p

in an optimal schedule. For each set Aj ∈ A, there are two kinds of jobs.
First, jobs JAj ,ui

for each ui ∈ Aj , where scheduling job JAj ,ui
encodes that the element ui

is selected to be part of the hitting set.
Second, there are k − 1 dummy jobs DAj

which can be scheduled on the up to k − 1
machines not corresponding to elements of Aj .

We give the jobs JAj ,ui
and DAj

release dates and due dates such that they are the only
jobs that can be started in the interval [j · p, (j + 1) · p − 1] and are early. See Figure 1 for
an illustration. Intuitively, this makes sure that an optimal solution has to schedule one of
these jobs on each machine. In particular, one job JAj ,ui

is scheduled, implying that Aj is
hit by one of the selected elements. See Figure 2 for an illustration.

There is, however, one problem with the reduction as sketched above. We do not ensure
that all early jobs scheduled on some machine start at the same time modulo p. Thus, it
is possible to schedule e.g. first job JA1,u2 on machine 1 and then job JA2,u3 such that the
two jobs are both early. Machine 1 now does not encode the selection of a single element to
the hitting set. We illustrate an example in Figure 3. However, note that it is only possible
to increase the index of the “selected” element, and as there are only k machines, the total
increase is bounded by k · (n − 1). Consequently, repeating the reduction sketched above
k · (n − 1) + 1 times ensures that at least one of the repeated instances will select only one
item per machine, and then this instance correctly encodes a hitting set of size k.

We now describe the reduction in detail. Formally, given the instance I of Hitting Set,
we construct an instance I ′ of P | rj , pj = p |

∑
Uj as follows. We set the processing time

to p = 2n. We construct the following jobs for each Aj ∈ A and ℓ ∈ {0, . . . , k · (n − 1)}:

1:

2:

JA1,u1 DA2 JA3,u1

DA1 JA2,u3 DA3

Figure 2 An optimal schedule for the instance from Figure 1 representing the hitting set {u1, u3}.

K. Heeger and H. Molter 47:7

1:

2:

JA1,u2 JA2,u3 DA3

DA1 DA2 JA3,u1

Figure 3 An optimal schedule for the instance from Figure 1 which does not represent a hitting
set.

one job Jℓ
Aj ,ui

for each ui ∈ Aj with release date r(Jℓ
Aj ,ui

) = (ℓ · m + j) · p + i and due
date d(Jℓ

Aj ,ui
) = r(Jℓ

Aj ,ui
) + p, and

k − 1 dummy jobs Dℓ
Aj

with release date r(Dℓ
Aj

) = (ℓ · m + j) · p and due date d(Dℓ
Aj

) =
r(Dℓ

Aj
) + p + n.

Finally, we set the number of machines to k. This finishes the construction. For an
overview of the due dates and release dates of the jobs, see Table 1. We can easily observe
the following.

▶ Observation 4. Given an instance I of Hitting Set, the above-described instance I ′ of
P | rj , pj = p |

∑
Uj can be computed in polynomial time and has k machines.

We continue by showing the correctness of the reduction. More specifically, we show that
the Hitting Set I instance is a yes-instance if and only if the constructed instance I ′ of
P | rj , pj = p |

∑
Uj admits a feasible schedule with (k · (n − 1) + 1) · m · k early jobs. We

split the proof into the forward and backward direction. We start with the forward direction.

▶ Lemma 5. If the Hitting Set instance I admits a hitting set of size k, then the
P | rj , pj = p |

∑
Uj instance I ′ admits a feasible schedule with (k · (n − 1) + 1) · m · k early

jobs.

Proof. Let X = {ui1 , . . . , uik
} be a hitting set of size k for I. We construct a schedule for I ′

as follows. On machine q, for each ℓ ∈ {0, . . . , k · (n − 1)} and j ∈ {0, . . . , m − 1}, we schedule
one job to start at time (ℓ · m + j) · p + iq. This job is Jℓ

Aj ,uiq
if uiq

∈ Aj , and Dℓ
Aj

otherwise.
Because X is a hitting set, we have that uiq

∈ Aj for some q ∈ {1, . . . , k} and hence we
schedule each dummy job Dℓ

Aj
at most k − 1 times, that is, at most its multiplicity times.

We can observe that all jobs scheduled so far are early. For each job Jℓ
Aj ,uiq

that is
scheduled on machine q, we have set its starting time to (ℓ · m + j) · p + iq which equals this
job’s release date (cf. Table 1). Furthermore, job Jℓ

Aj ,uiq
finishes at (ℓ · m + j + 1) · p + iq,

its deadline. Each dummy job Dℓ
Aj

is early as well, since their release times are smaller or
equal to the release time of Jℓ

Aj ,uiq
, and their due dates are larger or equal to the due date

of Jℓ
Aj ,uiq

. Furthermore, we can observe that there is no overlap in the processing times
between any two jobs scheduled on machine q.

It follows that we have feasibly scheduled (k · (n − 1) + 1) · m · k such that they finish
early. We schedule the remaining jobs in some arbitrary way such that the schedule remains
feasible. ◀

Table 1 Overview of the release dates and due dates of the jobs created for each Aj ∈ A and
ℓ ∈ {0, . . . , k · (n − 1)}.

job release date due date multiplicity
Jℓ

Aj ,ui
(ℓ · m + j) · p + i (ℓ · m + j + 1) · p + i 1

Dℓ
Aj

(ℓ · m + j) · p (ℓ · m + j + 1) · p + n k − 1

STACS 2025

47:8 Minimizing the Number of Tardy Jobs with Uniform Processing Times

Next, we continue with the backward direction.

▶ Lemma 6. If the P | rj , pj = p |
∑

Uj instance I ′ admits a feasible schedule with
(k · (n − 1) + 1) · m · k early jobs, then the Hitting Set instance I admits a hitting set of
size k.

Proof. Let σ be a feasible schedule for I ′ with (k · (n − 1) + 1) · m · k early jobs. Since the
largest due date is (k · (n − 1) · m + m) · p + n and p = 2n, it follows that on each machine,
at most k · (n − 1) · m + m jobs can be scheduled in a feasible way such that they finish early.
Consequently, on each machine, there are exactly (k · (n − 1) + 1) · m early jobs.

More specifically, for each machine, each ℓ ∈ {0, . . . , k · (n − 1)} and j ∈ {0, . . . , m − 1},
there must be one job which starts in the interval [(ℓ · m + j) · p, (ℓ · m + j) · p + n]. Otherwise,
there would be less than (k · (n − 1) + 1) · m early jobs on that machine. For machine q,
let xq

ℓ ∈ {1, . . . , n} such that there is a job on machine q which starts at time ℓ · m · p + xq
ℓ

(the existence of such a job is guaranteed by the previous observation). Then we must have
1 ≤ xq

0 ≤ xq
1 ≤ . . . ≤ xq

k·(n−1) ≤ n. This follows from the observation that if xq
ℓ > xq

ℓ+1, then
the starting time of the job corresponding to xq

ℓ+1 would be earlier than the completion time
of the job corresponding to xq

ℓ and hence the schedule would be infeasible. Consequently,
there are at most n − 1 values of ℓ such that xq

ℓ ̸= xq
ℓ+1. As there are k machines, this implies

that there are at most k · (n − 1) values such that xq
ℓ ̸= xq

ℓ+1 for some machine q. We can
conclude that there exists at least one ℓ ∈ {0, . . . , k · (n − 1)} so that xq

ℓ = xq
ℓ+1 for every

machine q. This implies that for each j ∈ {0, . . . , m − 1} and each machine q, there is one
job starting at time (ℓ · m + j) · p + xq

ℓ on machine q. We fix such an ℓ for the rest of the
proof and claim that X = {ux1

ℓ
, . . . , uxk

ℓ
} is a hitting set of size at most k for I.

Clearly, X has size at most k. Consider some set Aj ∈ A with j ∈ {0, . . . , m − 1}. The
only jobs which can start in the interval [(ℓ · m + j) · p, (ℓ · m + j) · p + n] are the dummy
jobs Dℓ

Aj
and the jobs Jℓ

Aj ,ui
for ui ∈ Aj . Because there are only k − 1 dummy jobs Dℓ

Aj

but k machines, this implies that there exists at least one machine q such that job Jℓ
Aj ,ui

is scheduled at machine q for some ui ∈ Aj . We know that on machine q one job starts in
the interval [(ℓ · m + j) · p, (ℓ · m + j) · p + n] and has starting time (ℓ · m + j) · p + xq

ℓ . By
construction, this job must be Jℓ

Aj ,ui
with i = xq

ℓ which implies that ui = uxq
ℓ

∈ X. We can
conclude that X is a hitting set for I. ◀

Now we have all the pieces to prove Theorem 3.

Proof of Theorem 3. Observation 4 shows that the described reduction can be computed
in polynomial time and produces an instance of P | rj , pj = p |

∑
Uj with k machines.

Lemmas 5 and 6 show that the described reduction is correct. Since Hitting Set is known
to be NP-hard [21] and W[2]-hard when parameterized by k [10], the result follows. ◀

4 New Analysis of Known Algorithm for P | rj, pj = p | ∑
wjUj

With Theorem 3 we have established that P | rj , pj = p |
∑

Uj is NP-hard. Hence, it
is natural to resort to parameterized algorithms for efficiently finding exact solutions in
restricted cases. To the best of our knowledge, the only known parameterized algorithm for
P | rj , pj = p |

∑
wjUj is an XP-algorithm for the number m of machines as a parameter by

Baptiste et al. [2, 3].

▶ Theorem 7 ([2, 3]). P | rj , pj = p |
∑

wjUj can be solved in nO(m) time, where n is the
number of jobs and m is the number of machines.

K. Heeger and H. Molter 47:9

Theorem 7 implies that P | rj , pj = p |
∑

wjUj is in XP when parameterized by the
number m of machines. Since Theorem 3 also shows W[2]-hardness for P | rj , pj = p |

∑
Uj

parameterized by the number m of machines, the algorithm behind Theorem 7 presumably
cannot be improved to an FPT-algorithm.

However, as it turns out, we can upper-bound the running time of the algorithm behind
Theorem 7 in different ways to obtain additional tractability results. In the remainder of
this section, we show that the algorithm developed by Baptiste et al. [2, 3] additionally to
Theorem 7 also implies the following.

▶ Theorem 8. P | rj , pj = p |
∑

wjUj can be solved in pO(m) ·nO(1) time and in mO(p) ·nO(1)

time, where n is the number of jobs, m is the number of machines, and p is the processing
time.

Theorem 8 implies that P | rj , pj = p |
∑

wjUj is in XP when parameterized by the
processing time p and that P | rj , pj = p |

∑
wjUj is in FPT when parameterized by the

combination of the number m of machines and the processing time p. In order to prove
Theorem 8, we present the dynamic programming algorithm for P | rj , pj = p |

∑
wjUj by

Baptiste et al. [2, 3]. For the correctness of this algorithm, we refer to their work. We give
an alternative running time analysis that shows the claimed running time bounds.

To this end, we need to introduce some additional notation and terminology. Recall
that T denotes the set of relevant starting time points. The algorithm makes use of Lemma 2,
that is, we can assume the starting times of all jobs in an optimal schedule are from T . A
resource profile is a vector x = (x1, x2, . . . , xm) with x1 ≤ x2 ≤ . . . ≤ xm, xm − x1 ≤ p, and
xi ∈ T for all i ∈ {1, . . . , m}. Let X denote the set of all resource profiles. Now we define
the following dynamic program. We assume that the jobs are sorted according to their due
dates, that is, d1 ≤ d2 ≤ . . . ≤ dn.

For two resource profiles a, b ∈ X and some k ∈ {1, . . . , n} we define W (k, a, b) to be the
maximum weighted number of early jobs of any feasible schedule for the jobs 1, . . . , k such
that

sorting the starting times of the first jobs on each machine from smallest to largest yields
a vector a′ with a ≤ a′, and
sorting the completion times of the last jobs on each machine from smallest to largest
yields a vector b′ with b′ ≤ b,

where for two vectors a, b of length m we say that a ≤ b if and only if for all i ∈ {1, . . . , m}
we have that ai ≤ bi.

From this definition, it follows that W (n, (0, . . . , 0), (tmax, . . . , tmax)), where tmax is the
largest element in T , is the maximum weighted number of early jobs of any feasible schedule.
Baptiste et al. [2, 3] proved the following.

▶ Lemma 9 ([2, 3]). For all k ∈ {1, . . . , n} and all resource profiles a, b ∈ X with a ≤ b it
holds that W (k, a, b) equals W (k − 1, a, b) if rk /∈ [a1, bm − p) and otherwise

max

W (k − 1, a, b), max
x∈X ,rk≤x1,x1+p≤dk,a≤x,

x′=(x2,x3,...,xm,x1+p)≤b

(
W (k − 1, a, x) + W (k − 1, x′, b) + wk

) ,

where we define W (0, a, b) = 0 for all a, b ∈ X with a ≤ b.

A straightforward running time analysis yields the following. We have that |T | ∈ O(n2) and
hence |X | ∈ O(n2m). It follows that the size of the dynamic programming table W is in
O(n4m+1) and the time to compute one entry is in O(n2m). This together with Lemma 9
yields Theorem 7. In the remainder of the section, we give an alternative running time
analysis to prove Theorem 8.

STACS 2025

47:10 Minimizing the Number of Tardy Jobs with Uniform Processing Times

Proof of Theorem 8. To prove Theorem 8 we give a different bound for the size of X . Recall
that for all resource profiles x ∈ X we have that xm − x1 ≤ p. It follows that there are |T |
possibilities for the value of x1, and then for 2 ≤ i ≤ m we have that x1 ≤ xi ≤ x1 + p.
Hence, we get that |X | ∈ O(n2 · pm−1). This together with Lemma 9 immediately gives us
that P | rj , pj = p |

∑
wjUj can be solved in pO(m) · nO(1) time.

Furthermore, we have x1 ≤ x2 ≤ . . . ≤ xm. Hence, the resource profile x can be
characterized by counting how many times a value t ∈ T appears in x. Again, we can exploit
that xm − x1 ≤ p. There are |T | possibilities for the value of x1 and given x1, each other
entry xi of x with 2 ≤ i ≤ m can be characterized by the amount 0 ≤ yi = xi − x1 ≤ p by
which it is larger than x1. Clearly, there are p + 1 different possible values for the amount yi.
It follows that given x1, we can characterize x by counting how often a value 0 ≤ t ≤ p

appears as an amount. Hence, we get that |X | ∈ O(n2 · mp+1). This together with Lemma 9
immediately gives us that P | rj , pj = p |

∑
wjUj can be solved in mO(p) · nO(1) time. ◀

Lastly, we remark that with similar alternative running time analyses for the dynamic
programming algorithm by Baptiste et al. [2, 3], one can show that P | rj , pj = p |

∑
wjUj

is in XP when parameterized by the number of release dates or due dates, and that P |
rj , pj = p |

∑
wjUj is in FPT when parameterized by the combination of the number of

machines and the number of release dates or due dates. However, as we show in the next
section, we can obtain fixed-parameter tractability by parameterizing only by the number of
release dates or parameterizing only by the number of due dates.

5 FPT-Algorithm for P | rj, pj = p | ∑
wjUj

In this section, we present a new FPT algorithm for P | rj , pj = p |
∑

wjUj parameterized
by the number of release dates or due dates. Formally, we show the following.

▶ Theorem 10. P | rj , pj = p |
∑

wjUj can be solved in 2O(2r# ·r#) · nO(1) time and
in 2O(2d# ·d#) · nO(1) time.

Theorem 10 implies that P | rj , pj = p |
∑

wjUj is in FPT when parameterized by
the number r# of different release dates and when parameterized by the number d# of
different due dates. We prove the first running time upper-bound of Theorem 10, where we
parameterize by the number r# of release dates. By Observation 1, the case for the number
d# of deadlines is symmetric. We present a reduction from P | rj , pj = p |

∑
wjUj to Mixed

Integer Linear Program (MILP).

Mixed Integer Linear Program (MILP)
Input: A vector x of n variables, a subset S of the variables which are considered integer

variables, a constraint matrix A ∈ Rm×n, and two vectors b ∈ Rm, c ∈ Rn.
Task: Compute an assignment to the variables (if one exists) such that all integer variables

in S are set to integer values, Ax ≤ b, x ≥ 0, and c⊺x is maximized.

We give a reduction that produces an MILP instance with a small number of integer
values. More precisely, the number of integer values will be upper-bounded by a function
of the number of release dates of the P | rj , pj = p |

∑
wjUj instance. This allows us to

upper-bound the running time necessary to solve the MILP instance using the following
well-known result.

▶ Theorem 11 ([8, 29]). MILP can be solved in 2O(nint log nint) · |I|O(1) time, where nint is
the number of integer variables and |I| is the instance size.

K. Heeger and H. Molter 47:11

Furthermore, we construct the MILP instance in a way that ensures that there always
exist optimal solutions where all variables are set to integer values. Informally, we ensure
that the constraint matrix for the rational variables is totally unimodular1. This allows us
to use the following result.

▶ Lemma 12 ([6]). Let Afrac ∈ Rm×n2 be totally unimodular. Then for any Aint ∈ Rm×n1 ,
b ∈ Rm, and c ∈ Rn1+n2 , the MILP

max c⊺x subject to (Aint Afrac)x ≤ b, x ≥ 0,

where x = (xint xfrac)⊺ with the first n1 variables (i.e., xint) being the integer variables, has
an optimal solution where all variables are integer.

Before we describe how to construct an MILP instance for a given instance of P | rj , pj =
p |

∑
wjUj , we make an important observation on optimal schedules. Intuitively, we show

that we can assume that each job is scheduled as early as possible and idle times only happen
directly before release dates.

▶ Lemma 13. Let σ be a feasible schedule for an instance of P | rj , pj = p |
∑

wjUj such
that the weighted number of early jobs is W . Then there exists a feasible schedule σ′ such that

the weighted number of early jobs is W ,
for each job j with σ′(j) = (i, t) for some t ̸= rj , machine i is not idle at time t − 1, and
all starting times of σ′ are in the set T of relevant starting time points.

Proof. Assume that there is a job j such that σ(j) = (i, t) for some t > rj and machine i is
idle at time t − 1. Assume that job j is the earliest such job, that is, the job with minimum t.
Since machine i is idle at time t − 1 and rj < t, we can create a new schedule σ′ that is the
same as σ except that σ′(j) = (i, t − 1). Clearly, we have that σ′ is feasible and has the
same weighted number of early jobs as σ. By repeating this process, we obtain a feasible
schedule σ′′ with the same set of early jobs and such that for each job j with σ′′(j) = (i, t)
and machine i is idle at time t − 1, it holds that t = rj . Furthermore, we have that each
starting point in σ′′ is a release date r or a time t with t = r + ℓ · p for some release date r

and some integer ℓ. Hence, all starting times of σ′′ are in the set T of relevant starting time
points. ◀

We call a feasible schedule σ release date aligned if the second condition of Lemma 13 holds,
i.e., for each job j with σ(j) = (i, t) for some t > rj , the machine i is not idle at time t − 1.
Note that Lemma 13 is stronger than Lemma 2 and implies that there always exists an
optimal feasible schedule that is release date aligned.

Given a feasible schedule σ that is release date aligned, we say that a release date rj is
active on machine i if job j is scheduled to start at this release date, that is, σ(j) = (i, rj),
and machine i is idle at time rj − 1. Let T be a subset of all release dates, then we say that
machine i has type T in σ if T is the set of active release dates on machine i.

Recall that T = {t | ∃ rj and ∃ 0 ≤ ℓ ≤ n s.t. t = rj + p · ℓ} denotes the set of relevant
starting time points. We say that a starting time t ∈ T is available on a machine with type T

if t = r + ℓ · p for some r ∈ T and t + p ≤ r′, where r′ is the smallest release date in T that
is larger than r.

1 A matrix is totally unimodular if each of its square submatrices has determinant 0, 1, or −1 [9].

STACS 2025

47:12 Minimizing the Number of Tardy Jobs with Uniform Processing Times

Given an instance I of P | rj , pj = p |
∑

wjUj , we create an instance I ′ of MILP as
follows. For each type T we create an integer variable xT that quantifies how many machines
have type T and create the constraint∑

T

xT ≤ m. (1)

For each starting time t ∈ T we create a fractional variable xt that quantifies on how
many machines the starting time t is available and create the following set of constraints.

∀ t ∈ T : xt =
∑

T

tT · xT , (2)

where tT = 1 if starting time t is available on a machine with type T and tT = 0 otherwise.
For each combination of a job j and a starting time t, we create a fractional variable xj,t

if job j can be scheduled to start at time t without violating j’s release date or due date.
This variable indicates whether job j is scheduled to start at starting time t and is early. We
create the following constraints.

∀ t ∈ T :
∑

j

xj,t ≤ xt. (3)

∀ j ∈ {1, . . . , n} :
∑

t

xj,t ≤ 1. (4)

Finally, we use the following function as the maximization objective.∑
j,t

wj · xj,t (5)

This finishes the construction of the MILP instance I ′. We can observe the following.

▶ Observation 14. Given an instance I of P | rj , pj = p |
∑

wjUj, the above described
MILP instance I ′ can be computed in O(2r# · (m + n)2) time and has 2r# integer variables.

In the following, we prove the correctness of the reduction to MILP. We start with showing
that if the P | rj , pj = p |

∑
wjUj instance admits a feasible schedule where the weighted

number of early jobs is W , then the constructed MILP instance admits a feasible solution
that has objective value W .

▶ Lemma 15. If the P | rj , pj = p |
∑

wjUj instance I admits a feasible schedule where the
weighted number of early jobs is W , then the MILP instance I ′ admits a feasible solution
that has objective value W .

Proof. Assume that we are given a feasible schedule σ for I such that the weighted number
of early jobs is W . By Lemma 13 we can assume that σ is release date aligned.

We construct a solution for I ′ as follows. Consider job j and let σ(j) = (i, t) such that
t + p ≤ dj , that is, job j is early. We know that t ∈ T . We set xj,t = 1 and for all t′ ∈ T
with t′ ̸= t, we set xj,t′ = 0. Note that this guarantees that Constraints (4) are fulfilled.
Furthermore, assuming we can set the remaining variables to values such that the remaining
constraints are fulfilled, we have that the objective value of the solution to I ′ is W .

In the remainder, we show how to set the remaining variables such that all constraints
are fulfilled. Initially, we set all variables xT to zero. Next, we determine the type of each
machine. Consider machine i. Then T := {r | ∃j s.t. σ(j) = (i, rj)} is the type of machine i.
Then we increase xT by one. We do this for every machine. Clearly, afterwards Constraint (1)
are fulfilled.

K. Heeger and H. Molter 47:13

Next, we set xt :=
∑

T tT · xT , where tT = 1 if starting time t is available on a machine
with type T and tT = 0 otherwise. Clearly, this fulfills Constraints (2). It remains to show
that Constraints (3) are fulfilled. So consider some time t ∈ T . For each job j starting at
time t on some machine i, we increased xT by one for some T with tT = 1 when processing
machine i. Thus, we have

∑
j xj,t ≤

∑
T tT · xT = xt. ◀

Before we continue with the other direction of the correctness, we prove that we can
apply Lemma 12 to show that the MILP instance I ′ admits an optimal solution where all
variables are set to integer values.

▶ Lemma 16. The MILP instance I ′ admits an optimal solution where all variables are set
to integer values. Such a solution can be computed in 2O(2r# ·r#) · nO(1) time.

Proof. Notice that since the Constraints (2) are equality constraints, we have that in any
feasible solution to I ′, all variables xt are set to integer values. Hence, I ′ is equivalent to the
MILP I ′′ arising from I ′ by declaring xt to be integer variables for every t ∈ T (in addition
to the variables xT), and it suffices to show that I ′′ has an integer solution.

We show that the constraint matrix for the fractional variables xj,t in I ′′ (i.e., the
variables xj,t) is totally unimodular. By Lemma 12 this implies that I ′′ and therefore also I ′

admits an optimal solution where all variables are set to integer values.
Note that the Constraints (3) partition the set of fractional variables xj,t, that is, each

fractional variable is part of exactly one of the Constraints (3). The same holds for the
Constraints (4). Furthermore, the coefficients in the constraint matrix for each variable are
either 1 (if they are part of a constraint) or 0. Hence, we have that the constraint matrix is
a 0-1 matrix with exactly two 1’s in every column. Moreover, in each column, one of the
two 1’s appears in a row corresponding to the Constraints (3) and the other 1 is in a row
corresponding to the Constraints (4). This is a sufficient condition for the constraint matrix
to be totally unimodular [9].

Finally, we argue that an optimal integer solution for I ′′ can be computed in the claimed
running time upper-bound. We use the algorithm implicitly described by Chaudhary et
al. [6] in their proof for Lemma 12. First, we compute an optimal solution for I ′. By the
arguments at the beginning of this proof, this is also an optimal solution for I ′′. To transform
this optimal solution into an optimal solution where every variable is set to an integer value,
we fix all integer variables, resulting in an LP2 instance I ′′′ whose variables are precisely the
fractional variables from I ′′. Since the constraint matrix of this LP I ′′′ is totally unimodular
(as argued above), it is well-known that an optimal solution for I ′′′ where all variables are
set to integer values can be computed in polynomial time, see e.g. Korte and Vygen [24,
Theorem 4.18]. Combining this integral optimal solution for I ′′′ with the integral variables
from I ′′ then yields an optimal solution for I ′′. Now, with Theorem 11 and Observation 14,
we get the claimed overall running time upper-bound. ◀

Now we proceed with showing that if the constructed MILP instance admits an optimal
solution that has objective value W , then the original P | rj , pj = p |

∑
wjUj instance

admits a feasible schedule where the weighted number of early jobs is W .

▶ Lemma 17. If the MILP instance I ′ admits an optimal solution where all variables are set
to integer values and that has objective value W , then the P | rj , pj = p |

∑
wjUj instance I

admits a feasible schedule σ where the weighted number of early jobs is W . The schedule σ

can be computed from the optimal solution to I ′ in polynomial time (in the size of I ′).

2 Linear Program (LP) is the special case of MILP where no variables are considered integer variables
(that is, the set S in the definition of MILP is empty).

STACS 2025

47:14 Minimizing the Number of Tardy Jobs with Uniform Processing Times

Proof. Assume we are given an optimal solution for I ′ where all variables are set to integer
values and that has objective value W . We construct a feasible schedule σ as follows.

First, we assign a type to every machine. Iterate through the types T and, initially,
set i = 1. If xT > 0, then assign type T to machines i to i + xT − 1. Afterwards, increase i

by xT . Since the solution to I ′ fulfills Constraint (1), we know that this procedure does not
assign types to more than m machines.

Now iterate through the relevant starting times i ∈ T . Let Jt = {j | xj,t = 1} and let
Mt = {i | starting time t is available on machine i}. By Constraints (2) and (3) we know
that |Jt| ≤ |Mt| = xt. Hence, we can create a feasible schedule by setting σ(j) = (i, t)
for every job j ∈ Jt, where i ∈ Mt and for all j, j′ ∈ Jt with j ̸= j′ we have σ(j) = (i, t)
and σ(j′) = (i′, t) with i ≠ i′. In other words, we schedule each job in Jt to a distinct
machine i ∈ Mt with starting time t. The Constraints (4) ensure that we schedule each job
at most once. For all jobs j that are not contained in any set Jt with t ∈ T , we schedule j to
an arbitrary machine i to a starting time that is later than rj and later than the completion
time of the last job scheduled on i. Clearly, we can compute σ in time polynomial in |I ′|.
By the definition of available starting times and the fact that we only create variable xj,t if
t ≥ rj , this schedule is feasible.

It remains to show that the weighted number of early jobs is W . To this end, note that
we only create variable xj,t if rj ≤ t and t + p ≤ dj . Hence, for each job j with xj,t = 1 for
some t ∈ T , we know that this job is early in the constructed schedule σ. It follows that the
weighted number of early jobs is

∑
j,t wj · xj,t, which equals the maximization objective of I

and hence equals W . ◀

Now we have all the pieces to prove Theorem 10.

Proof of Theorem 10. Given an instance I of P | rj , pj = p |
∑

wjUj we create an MILP
instance I ′ as described above and use Lemma 16 to compute an optimal solution for I

where all variables are set to integer values. Lemmas 15 and 17 show that we can correctly
compute an optimal schedule for I from the solution to I ′ in polynomial time (in the size
of I ′). Observation 14 together with Lemma 16 show that this algorithm has the claimed
running time upper-bound. ◀

6 Conclusion and Future Work

In this work, we resolved open questions by Kravchenko and Werner [25], Sgall [36], and Mnich
and van Bevern [32] by showing that P | rj , pj = p |

∑
Uj is NP-hard and W[2]-hard when

parameterized by the number of machines. The established hardness of the problem motivates
investigating it from the viewpoint of exact parameterized or approximation algorithms. In
this work, we focussed on the former, leaving the latter for future research. We provided a
first step in systematically exploring the parameterized complexity of P | rj , pj = p |

∑
wjUj .

Our parameterized hardness result shows that the known XP-algorithm for the number
of machines as a parameter is optimal from a classification standpoint. Furthermore, we
showed that this known algorithm implies that the problem is also contained in XP when
parameterized by the processing time, and that it is contained in FPT when parameterized
by the combination of the number of machines and the processing time. Finally, we give an
FPT-algorithm for P | rj , pj = p |

∑
wjUj parameterized by the number of release dates (or

due dates). We leave several questions open, the most interesting one is the following.
Is P | rj , pj = p |

∑
wjUj in FPT or W[1]-hard when parameterized by the processing

time p of any job?

K. Heeger and H. Molter 47:15

Other interesting parameters to consider might be the number of early jobs or the number
of tardy jobs. It is easy to see that P | rj , pj = p |

∑
wjUj is in XP when parameterized by

either one of those parameters, by some simple guess-and-check algorithm (recall that we
can check in polynomial time whether all jobs can be scheduled early [5, 37, 38]). Hence, it
remains open whether the problem is in FPT or W[1]-hard with respect to those parameters.

References
1 Esther M. Arkin and Ellen B. Silverberg. Scheduling jobs with fixed start and end times.

Discrete Applied Mathematics, 18(1):1–8, 1987. doi:10.1016/0166-218X(87)90037-0.
2 Philippe Baptiste. Scheduling equal-length jobs on identical parallel machines. Discrete

Applied Mathematics, 103(1-3):21–32, 2000. doi:10.1016/S0166-218X(99)00238-3.
3 Philippe Baptiste, Peter Brucker, Sigrid Knust, and Vadim G Timkovsky. Ten notes on

equal-processing-time scheduling: at the frontiers of solvability in polynomial time. Quarterly
Journal of the Belgian, French and Italian Operations Research Societies, 2(2):111–127, 2004.

4 Karl Bringmann, Nick Fischer, Danny Hermelin, Dvir Shabtay, and Philip Wellnitz. Faster
minimization of tardy processing time on a single machine. Algorithmica, 84(5):1341–1356,
2022. doi:10.1007/S00453-022-00928-W.

5 Peter Brucker and Svetlana A. Kravchenko. Scheduling jobs with equal processing times
and time windows on identical parallel machines. Journal of Scheduling, 11(4):229–237, 2008.
doi:10.1007/S10951-008-0063-Y.

6 Juhi Chaudhary, Hendrik Molter, and Meirav Zehavi. Parameterized analysis of bribery in
challenge the champ tournaments. In Proceedings of the 33rd International Joint Conference
on Artificial Intelligence (IJCAI), pages 2704–2712. ijcai.org, 2024. URL: https://www.ijcai.
org/proceedings/2024/299.

7 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

8 Daniel Dadush, Chris Peikert, and Santosh Vempala. Enumerative lattice algorithms in any
norm via M -ellipsoid coverings. In Proceedings of the 52nd IEEE Annual Symposium on
Foundations of Computer Science (FOCS), pages 580–589. IEEE, 2011. doi:10.1109/FOCS.
2011.31.

9 George Bernard Dantzig. Linear inequalities and related systems. Number 38. Princeton
University Press, 1956.

10 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer, 1999.
doi:10.1007/978-1-4612-0515-9.

11 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Springer, 2013. doi:10.1007/978-1-4471-5559-1.

12 Nick Fischer and Leo Wennmann. Minimizing tardy processing time on a single machine in
near-linear time. In Proceedings of the 51st International Colloquium on Automata, Languages,
and Programming (ICALP), volume 297 of LIPIcs, pages 64:1–64:15. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.ICALP.2024.64.

13 Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in The-
oretical Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

14 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

15 Ronald L. Graham, Eugene L. Lawler, Jan K. Lenstra, and A. H. G. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. In Annals of Discrete
Mathematics, volume 5, pages 287–326. Elsevier, 1979.

16 Klaus Heeger and Danny Hermelin. Minimizing the weighted number of tardy jobs is W[1]-
hard. In Proceedings of the 32nd Annual European Symposium on Algorithms (ESA), volume
308 of LIPIcs, pages 68:1–68:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.
doi:10.4230/LIPICS.ESA.2024.68.

STACS 2025

https://doi.org/10.1016/0166-218X(87)90037-0
https://doi.org/10.1016/S0166-218X(99)00238-3
https://doi.org/10.1007/S00453-022-00928-W
https://doi.org/10.1007/S10951-008-0063-Y
https://www.ijcai.org/proceedings/2024/299
https://www.ijcai.org/proceedings/2024/299
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1109/FOCS.2011.31
https://doi.org/10.1109/FOCS.2011.31
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.4230/LIPICS.ICALP.2024.64
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.4230/LIPICS.ESA.2024.68

47:16 Minimizing the Number of Tardy Jobs with Uniform Processing Times

17 Klaus Heeger, Danny Hermelin, George B Mertzios, Hendrik Molter, Rolf Niedermeier, and
Dvir Shabtay. Equitable scheduling on a single machine. Journal of Scheduling, 26(2):209–225,
2023. doi:10.1007/S10951-022-00754-6.

18 Danny Hermelin, Yuval Itzhaki, Hendrik Molter, and Dvir Shabtay. On the parameterized
complexity of interval scheduling with eligible machine sets. Journal of Computer and System
Sciences, page 103533, 2024. doi:10.1016/J.JCSS.2024.103533.

19 Danny Hermelin, Shlomo Karhi, Michael L. Pinedo, and Dvir Shabtay. New algorithms for
minimizing the weighted number of tardy jobs on a single machine. Annals of Operations
Research, 298(1):271–287, 2021. doi:10.1007/S10479-018-2852-9.

20 Danny Hermelin, Hendrik Molter, and Dvir Shabtay. Minimizing the weighted number of
tardy jobs via (max,+)-convolutions. INFORMS Journal on Computing, 2023.

21 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Springer, 1972. doi:10.1007/978-1-4684-2001-2_9.

22 Matthias Kaul, Matthias Mnich, and Hendrik Molter. Single-machine scheduling to minimize
the number of tardy jobs with release dates. In Proceedings of the 19th International Symposium
on Parameterized and Exact Computation (IPEC), volume 321 of LIPIcs, pages 19:1–19:15.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.IPEC.2024.
19.

23 Kim-Manuel Klein, Adam Polak, and Lars Rohwedder. On minimizing tardy processing
time, max-min skewed convolution, and triangular structured ilps. In Proceedings of the 2023
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2947–2960. SIAM,
2023. doi:10.1137/1.9781611977554.CH112.

24 Bernhard Korte and Jens Vygen. Combinatorial Optimization. Springer, 6th edition edition,
2018.

25 Svetlana A Kravchenko and Frank Werner. Parallel machine problems with equal processing
times: a survey. Journal of Scheduling, 14:435–444, 2011. doi:10.1007/S10951-011-0231-3.

26 Sven O Krumke, Clemens Thielen, and Stephan Westphal. Interval scheduling on related
machines. Computers & Operations Research, 38(12):1836–1844, 2011. doi:10.1016/J.COR.
2011.03.001.

27 Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

28 Eugene L. Lawler and James M. Moore. A functional equation and its application to resource
allocation and sequencing problems. Management Science, 16(1):77–84, 1969.

29 Hendrik W. Lenstra. Integer programming with a fixed number of variables. Mathematics of
Operations Research, 8:538–548, 1983. doi:10.1287/MOOR.8.4.538.

30 Jan K. Lenstra, A.H.G. Rinnooy Kan, and Peter Brucker. Complexity of machine scheduling
problems. Annals of Discrete Mathematics, 1:343–362, 1977.

31 LL Liu, Chi To Ng, and TC Edwin Cheng. Bicriterion scheduling with equal processing
times on a batch processing machine. Computers & Operations Research, 36(1):110–118, 2009.
doi:10.1016/J.COR.2007.07.007.

32 Matthias Mnich and René van Bevern. Parameterized complexity of machine scheduling: 15
open problems. Computers & Operations Research, 100:254–261, 2018. doi:10.1016/J.COR.
2018.07.020.

33 James M. Moore. An n job, one machine sequencing algorithm for minimizing the number of
late jobs. Management Science, 15:102–109, 1968.

34 Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems, 5th Edition. Springer, 2016.
35 Baruch Schieber and Pranav Sitaraman. Quick minimization of tardy processing time on a

single machine. In Proceedings of the 18th International Symposium on Algorithms and Data
Structures Symposium (WADS), volume 14079 of Lecture Notes in Computer Science, pages
637–643. Springer, 2023. doi:10.1007/978-3-031-38906-1_42.

https://doi.org/10.1007/S10951-022-00754-6
https://doi.org/10.1016/J.JCSS.2024.103533
https://doi.org/10.1007/S10479-018-2852-9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.4230/LIPICS.IPEC.2024.19
https://doi.org/10.4230/LIPICS.IPEC.2024.19
https://doi.org/10.1137/1.9781611977554.CH112
https://doi.org/10.1007/S10951-011-0231-3
https://doi.org/10.1016/J.COR.2011.03.001
https://doi.org/10.1016/J.COR.2011.03.001
https://doi.org/10.1287/MOOR.8.4.538
https://doi.org/10.1016/J.COR.2007.07.007
https://doi.org/10.1016/J.COR.2018.07.020
https://doi.org/10.1016/J.COR.2018.07.020
https://doi.org/10.1007/978-3-031-38906-1_42

K. Heeger and H. Molter 47:17

36 Jirí Sgall. Open problems in throughput scheduling. In Proceedings of the 20th Annual European
Symposium on Algorithms (ESA), volume 7501 of Lecture Notes in Computer Science, pages
2–11. Springer, 2012. doi:10.1007/978-3-642-33090-2_2.

37 Barbara B. Simons. Multiprocessor scheduling of unit-time jobs with arbitrary release times
and deadlines. SIAM Journal on Computing, 12(2):294–299, 1983. doi:10.1137/0212018.

38 Barbara B. Simons and Manfred K. Warmuth. A fast algorithm for multiprocessor scheduling
of unit-length jobs. SIAM Journal on Computing, 18(4):690–710, 1989. doi:10.1137/0218048.

39 Shao Chin Sung and Milan Vlach. Maximizing weighted number of just-in-time jobs on
unrelated parallel machines. Journal of Scheduling, 8(5):453–460, 2005. doi:10.1007/
S10951-005-2863-7.

STACS 2025

https://doi.org/10.1007/978-3-642-33090-2_2
https://doi.org/10.1137/0212018
https://doi.org/10.1137/0218048
https://doi.org/10.1007/S10951-005-2863-7
https://doi.org/10.1007/S10951-005-2863-7

	1 Introduction
	2 Preliminaries
	3 Hardness of Prj, pj = p Uj
	4 New Analysis of Known Algorithm for Prj, pj = p wj Uj
	5 FPT-Algorithm for Prj, pj = p wj Uj
	6 Conclusion and Future Work

