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Abstract
We propose an algorithm for counting the number of cycles under local differential privacy for
degeneracy-bounded input graphs. Numerous studies have focused on counting the number of
triangles under the privacy notion, demonstrating that the expected ℓ2-error of these algorithms is
Ω(n1.5), where n is the number of nodes in the graph. When parameterized by the number of cycles of
length four (C4), the best existing triangle counting algorithm has an error of O(n1.5 +

√
C4) = O(n2).

In this paper, we introduce an algorithm with an expected ℓ2-error of O(δ1.5n0.5 + δ0.5d0.5
maxn0.5),

where δ is the degeneracy and dmax is the maximum degree of the graph. For degeneracy-bounded
graphs (δ ∈ Θ(1)) commonly found in practical social networks, our algorithm achieves an expected
ℓ2-error of O(d0.5

maxn0.5) = O(n). Our algorithm’s core idea is a precise count of triangles following
a preprocessing step that approximately sorts the degree of all nodes. This approach can be
extended to approximate the number of cycles of length k, maintaining a similar ℓ2-error, namely
O(δ(k−2)/2d0.5

maxn(k−2)/2 + δk/2n(k−2)/2) or O(d0.5
maxn(k−2)/2) = O(n(k−1)/2) for degeneracy-bounded

graphs.
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1 Introduction

In recent years, differential privacy [13, 15] has become the gold standard for providing strong
privacy guarantees while enabling meaningful data analysis. Differential privacy ensures
that the output of a computation does not significantly change when any single individual’s
data is modified, thus safeguarding individual privacy. While much of the initial work in
differential privacy focused on traditional tabular data [14, 26], there is increasing interest in
extending these privacy guarantees to graph data [31, 35], which presents its own unique set
of challenges.
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49:2 Cycle Counting Under Local Differential Privacy for Degeneracy-Bounded Graphs

Differential privacy has evolved into numerous variants to accommodate different scenarios,
as detailed in [8]. Of particular interest to us is the concept of local differential privacy [7, 17].
This variant is unique in that it does not rely on the assumption of a trusted central
server. Instead, users must obfuscate their private data before sharing it with an untrusted
computing entity. In the context of graph data, the most commonly adopted notion is edge
local differential privacy [29], where the sensitive information of each user pertains to their
connections with others.

A widely used obfuscation method is randomized response [33, 32]. In this approach,
users invert each bit of their adjacency vector with a certain probability. The server then
collects this distorted information to construct an obfuscated graph. Although it is possible
to publish various graph statistics from the obfuscated graph, the resulting information tends
to be imprecise. Algorithms specifically designed to publish particular statistics typically
yield more accurate and useful graph information.

Table 1 Upper and lower bounds of the expected ℓ2-error for triangle and k-cycle counting
under the local differential privacy. “Interactive” refers to a scenario in which multiple rounds of
communication between the server and the clients are permitted.

Upper Bound Lower Bound
Triangle O(n2) ([22], general graphs) Ω(n1.5) (non-interactive) [24]

O(d1.5
maxn0.5) ([16], general graphs) Ω(n1.5) (interactive) [16]

O(d0.5
maxn0.5) (this work, degeneracy-bounded graph) Ω(n2) (non-interactive) [16]

Odd length O
(
nk−1) (folklore, general graphs)

cycles Ck O
(
n(k−1)/2) (this work, degeneracy-bounded graph)

One graph statistic frequently considered by researchers in local differential privacy is the
number of subgraphs [22, 20]. Specifically, many studies have focused on the publication of
triangle counts [22, 23, 20, 16]. Theoretical analysis results on the ℓ2-error are summarized
in Table 1. Unfortunately, to date, when n is the number of nodes and dmax is the max-
imum degree of the input graphs, the best algorithm has an expected ℓ2-error of O(n2) or
O(d1.5

maxn0.5). We believe that this error is too large for many applications and should be
improved. On the other hand, it has been shown that for all locally differentially private
algorithms, there exists a class of graphs where the ℓ2-error is Ω(n1.5) [16]. This lower bound
implies that the expected ℓ2-error cannot be significantly improved.

1.1 Our Contribution
This motivates us to consider a specific class of graphs. In this paper, we specifically focus on
graphs with bounded degeneracy, as most social graphs exhibit degeneracy values that are
substantially smaller than both the number of vertices and the maximum degree. The table
in the Appendix of [12] provides statistics on a diverse range of graphs, detailing the number
of nodes, degeneracy, and maximum degree. As shown in the paper, for sufficiently large
graphs, degeneracy is consistently at least an order of magnitude smaller than the maximum
degree, and in some instances, several orders of magnitude smaller.

Additionally, several synthetic graph models commonly considered realistic naturally
produce graphs with low degeneracy. Examples include preferential attachment graphs [1]
and bounded expansion graphs [27].

Degeneracy is particularly significant in parameterizing the complexity of subgraph count-
ing algorithms, as demonstrated in [6, 2, 5]. Given the relationship between computational
complexity and estimation error in triangle counting algorithms, degeneracy is an important
parameter for characterizing accuracy.
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Let the graph degeneracy be δ. We propose a locally differentially private algorithm with
an expected ℓ2-error of O

(
δ1.5n0.5 + δ0.5d0.5

maxn0.5). When the graph degeneracy is bounded
(δ = O(1)), the expected ℓ2-error becomes O(d0.5

maxn0.5) = O(n). This result implies that our
expected error for the degeneracy-bounded graphs can be smaller than the lower bound for
general graphs.

We also extend our results to count the number of cycles with odd lengths in degeneracy-
bounded graphs. To our knowledge, there are only two local differentially private algorithms
proposed for counting subgraphs of more than three nodes. The first algorithm [24] is designed
to count the number of four-length cycles but operates within the shuffle model, which is
weaker than the original local differential privacy model. The second algorithm counts the
number of walks of length k [3]. This field has limited work due to the significant noise
introduced to ensure user privacy, which accumulates as the subgraph size increases. This
accumulation results in unacceptable errors for differential privacy in larger subgraphs. For
instance, while the expected ℓ2-error from triangle counting algorithms based on randomized
response is O(n2) [24], the expected ℓ2-error for similar algorithms estimating the number
of Ck is as high as O(nk−1). In other words, the error increases by a factor of n with each
increment in cycle length.

In this work, we propose an algorithm that significantly reduces the expected ℓ2-error
to O(n(k−1)/2) in degeneracy-bounded graphs. We believe that this error is much smaller
than the actual number of cycles in most graphs. Consequently, our algorithm is the first to
publish a meaningful number of large cycles under local differential privacy.

1.2 Technical Overview

In this section, we provide an overview of the technical concepts behind our triangle counting
algorithm. The algorithm for counting odd-length cycles, for k ≥ 5, extends these ideas but
requires a more intricate and detailed analysis.

Let the input graph be G = (V = {ν1, . . . , νn}, E). In prior work [22], they apply a
randomized response mechanism that flips each bit in the adjacency matrix with a certain
probability. Let the resulting graph after applying the randomized response be G′ = (V, E′).
In the local differential privacy setting, each node νi knows whether it is connected to
another node νj (where νj ̸= νi) if {νi, νj} ∈ E. For the triangle counting method, node
νi considers (νi, νj , νκ) as a triangle if {νi, νj} ∈ E, {νi, νκ} ∈ E, and {νj , νκ} ∈ E′. Define
ei,j,κ = 1 if node νi considers (νi, νj , νκ) as a triangle, otherwise set ei,j,κ = 0. Define
Si = {(j, κ) : {νi, νj}, {νi, νκ} ∈ E and j < κ}. The estimated number of triangles for node
νi, reported by the user, is t̃i =

∑
(j,κ)∈Si

ei,j,κ. The total estimated number of triangles in

the graph is then f̃∆(G) = 1
3
∑

i t̃i = 1
3
∑

i

∑
(j,κ)∈Si

ei,j,κ, where dividing by three corrects
for the fact that each triangle is counted once by each of the three users forming it (i.e.,
triple-counted), ensuring each triangle is counted only once.

The ℓ2-error of the estimated triangle count f̃∆(G) mostly arises from the variance in the
estimation. A significant portion of this variance comes from the covariance between pairs of
variables in the summation 1

3
∑
i

∑
(j,κ)∈Si

ei,j,κ. Two variables, ei,j,κ and ei′,j′,κ′ , are dependent

if (j, κ) = (j′, κ′). The number of dependent pairs in the counting process is equivalent to
the number of tuples (νi, νj , νi′ , νκ) such that (j, κ) ∈ Si ∩ Si′ , which corresponds to the
number of 4-cycles in the input graph G. Therefore, the squared ℓ2-error is approximately
proportional to the number of 4-cycles in the graph, which is O(n4).

STACS 2025



49:4 Cycle Counting Under Local Differential Privacy for Degeneracy-Bounded Graphs

Let us assume that the indices of all users are predetermined and publicly known before
the counting process begins. Define S′

i = {(j, κ) : {νi, νj}, {νi, νκ} ∈ E and j < i < κ}.
If node i only considers the pairs (j, κ) within S′

i, then each triangle is counted exactly
once. The estimated number of triangles, f̂∆(G), can be calculated as f̂∆(G) =

∑
i t̂i, where

t̂i =
∑

(j,κ)∈S′
i

ei,j,κ. In this counting method, the number of dependent variable pairs is at

most the number of 4-cycles that contain the three nodes νi, νj , νκ with j < i < κ.
Let δ represent the degeneracy of the input graph G, and for each ν ∈ V , let d(ν)

denote the degree of ν. Assume that the degrees of all nodes are publicly known, and
the nodes are indexed in non-decreasing order of their degree, i.e., if i > j, then d(νi) ≤
d(νj). Referring to the bound established by Chiba and Nishizeki [6], which states that∑
(νi,νj)∈E

min(di, dj) ≤ O(δ · |E|), we demonstrate in this paper that the number of such cycles

is O(δ3n). Consequently, the squared ℓ2-error is reduced from O(n4) in previous work to
O(δ3n).

However, we cannot assume that the degrees of all nodes are publicly known, as this
information is sensitive. To address this issue, we use local Laplacian queries, allowing each
user to publish a noisy version of their degree. Let the noisy degree of ν ∈ V be denoted
as d̃(ν). We then assign indices to users based on these noisy degrees, such that if i > j,
then d̃(νi) ≤ d̃(νj). Afterward, we run the protocol described in the previous paragraph. We
show that even with noisy degrees, the expected number of such cycles remains bounded by
O(δ3n).

In summary, our mechanism involves two steps. First, users publish their noisy degrees
using the local Laplacian mechanism, and the server assigns indexes based on these noisy
values. In the second step, using the results of randomized response, each user νi estimates
the number of triangles (νi, νj , νκ) where j < i < κ. This method significantly reduces the
number of dependent triangle pairs in degeneracy-bounded graphs, which in turn lowers the
variance of the estimation.

1.3 Related Works
The field of graph data mining under local differential privacy is relatively new. In contrast,
differential privacy has been studied for many years by various researchers, including works
like [18, 28]. According to [22], local differential privacy typically only hides edges or
relationships, except in special cases like [36]. Differential privacy, on the other hand, can
hide whether an individual or node is part of a social network, as shown in [19, 30]. Therefore,
while both edge and node differential privacy exist, node differential privacy does not apply
in the context of local differential privacy.

Recent works have proposed methods to estimate the densest subgraph, k-core decom-
position, and degeneracy under local differential privacy [10, 9, 11]. However, since we are
focused on estimating different graph statistics in graphs, we do not use or extend the ideas
from these works. Instead, the estimation of degeneracy can be used to approximate the
ℓ2-error of our algorithm.

2 Preliminaries

2.1 Notations
For V = {ν1, . . . , νn} a set of vertices and E ⊆ V 2 a set of edges, we denote by G = (V, E)
the graph on V . We consider simple undirected graphs, meaning that for ν, ν′ ∈ V , (ν, ν) ̸∈ E

and (ν, ν′) ∈ E =⇒ (ν′, ν) ∈ E. We denote by n = |V | the size of the graph and m = |E|
its number of edges.
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For each i ∈ [1, n], we introduce ai = [ai,1, . . . , ai,n], the adjacency list of user νi, where
for any j ∈ [1, n], ai,j = 1 if the edge (νi, νj) is in E and ai,j = 0 otherwise. Additionally, we
introduce di, the degree of node νi, which corresponds to the number of edges incident to νi.

We call a path of length k ∈ N, denoted Pk, any tuple (νl1 , . . . , νlk
) such that, for all

i ∈ [1, k], (νli
, νli+1) ∈ E, and, for all i ̸= j, νli

̸= νlj
. We also use #Pk(G) to refer to the

number of paths of length k in G. Similarly, a cycle of length k ∈ N, or Ck, is a tuple
(νl1 , . . . , νlk

) that forms a path and satisfies (νlk
, νl1) ∈ E. We will also use #Ck(G) to refer

to the number of cycles of length k in G.

2.2 Edge Local Differential Privacy
We say that two adjacency lists a and a′ are neighboring if they differ by one bit, i.e. if we
can go from one to the other by adding or removing an edge to node νi. If a′ is a neighbor
of a, we write that a ∼ a′. The notion of edge local differential privacy is as follows:

▶ Definition 1 (ε-edge local differentially private query). Let ε > 0. A randomized algorithm
R is a ε-edge local differentially private query on the node νi if, for all neighboring bit strings
a ∼ a′, and for all S, it holds that

P [R(a) ∈ S] ≤ eεP [R(a′) ∈ S] .

▶ Definition 2 (ε-edge local differentially private algorithm [29]). Let A be an algorithm that
generates multiple randomized queries for each user, has each user apply these queries to
their adjacency vector, and then estimates some graph statistics based on the results. We say
A is an ε-edge local differentially private algorithm if, for all users νi and for all possible
sets of queries R1, . . . ,Rk inquired to νi (where for each 1 ≤ j ≤ k, Rj is an εj-edge local
differentially private query), it holds that ε1 + · · ·+ εk ≤ ε.

2.3 Laplacian Query and Restricted Sensitivity
Next, we introduce queries that are ε-edge local differentially private. We first consider a
query which aims to give an estimate of a real number statistics of the adjacency vector.

▶ Definition 3 (Edge local Laplacian query [21]). For a function f : {0, 1}n → R on adjacency
lists, and a ∼ a′ denoting neighboring adjacency lists, the global sensitivity of f is defined as
∆f = max

a∼a′
|f(a)− f(a′)|. For ε > 0, the query that outputs f(a) + Lap(∆f /ε) is ε-edge local

differentially private, where Lap(b) represents noise drawn from the Laplacian distribution
with parameter b.

Global sensitivity in Definition 3 is designed to handle the worst-case scenario, which can
lead to large amounts of noise being added to the data when using the Laplacian mechanism.
However, if the data is known to belong to a specific set, restricted sensitivity allows us to
adjust the noise according to the sensitivity within that set, resulting in more tailored and
potentially lower noise levels.

▶ Definition 4 (Restricted sensitivity (Definition 8 of [4])). Let a = (a1, . . . , an), a′ =
(a′

1, . . . , a′
n) ∈ {0, 1}n and d(a, a′) be the Hamming distance between a and a′. The restricted

sensitivity of f over a set of possible output H is

RSf (H) = max
a,a′∈H

(
|f(a)− f(a′)|

d(a, a′)

)
.

STACS 2025



49:6 Cycle Counting Under Local Differential Privacy for Degeneracy-Bounded Graphs

We can use restricted sensitivity to publish data even if it is not initially in the set. To
do this, we first need to define a projection method to map the data to the set. In this work,
we will consider Hd, the class of adjacency list with a maximum degree of d, for calculating
restricted sensitivity. We assume that the order of all nodes is fixed, and if a node νi is
adjacent to more than d nodes, we retain only the first d nodes according to this order. The
map can be considered as an operation on each adjacency vector ai. We denote the mapping
result on ai as µd(ai).

▶ Definition 5 (Edge local Laplacian query with restricted sensitivity on Hd [4]). For any
f queried to a user i, the query that answers f(µ(ai)) + Lap(3 ·RSf (Hd)/ε) is called edge
local Laplacian query with restricted sensitivity on Hd, and provides ε-edge local differential
privacy.

2.4 Unbiased Randomized Response
In this subsection, we consider the randomized response query, which aims to publish an
obfuscated adjacency vector.

▶ Definition 6 (Randomized response query [33, 32]). For ε > 0, the randomized response
mechanism takes an adjacency list a = (a1, . . . , an) as input and outputs an obfuscated list
ã = (ã1, . . . , ãn). For i, the probability that ãi is set to 1 is given by:

P [RR(ãi) = 1] =
{

eε

1+eε if ai = 1
1

1+eε if ai = 0.

With this definition, randomized response provides ε-edge local differential privacy.

We can construct a graph G̃ based on the collection of obfuscated adjacency vectors
obtained from all users. Using the statistics of the obfuscated graph G̃, we can then publish
various information, including the number of subgraphs [34, 22, 23, 20]. However, randomized
response produces biased results, making it less suitable for counting queries. This bias can
be fixed by the subsequent definition.

▶ Definition 7 (Unbiased randomized response query [16]). Let ε > 0 and ãi be the adjacency
vector published through randomized response with budget ε by user νi. Then, for all (i, j) ∈
[1, n]2,

âi,j = eε + 1
eε − 1 ãi,j −

1
eε − 1

is an unbiased estimator of ai,j . Additionally, for (i, j) ̸= (i′, j′), âi,j is independent of âi′,j′ ,
and Var (âi,j) = eε

(eε−1)2 . We refer to a query that publishes âi as the unbiased randomized
response query. This query is ε-edge locally differentially private.

We can use the results from the unbiased randomized response query to calculate the
number of subgraphs. For example, without privacy constraints, the number of triangles can
be calculated as

∑
i<j<k

ai,j · aj,k · ak,i. To privately estimate the number of triangles, we use∑
i<j<k

âi,j · âj,k · âk,i. It is theoretically shown in [16] that the estimator
∑

i<j<k

âi,j · âj,k · âk,i

has a smaller ℓ2-error compared to the estimator obtained from the randomized response
query,

∑
i<j<k

ãi,j · ãj,k · ãk,i.
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2.5 Graph Arboricity and Degeneracy
Graph arboricity and degeneracy can be defined as follows:

▶ Definition 8 (Arboricity). The arboricity of a graph G is the minimal number α(G) such
that the edges of G can be partitioned into α(G) forests.

▶ Definition 9 (Degeneracy). The degeneracy of a graph G is the smallest number δ(G) such
that any subgraph of G, contains at least one node with induced degree at most δ(G).

We observe that the variable δ is frequently used as a privacy parameter in differential
privacy. However, since we do not consider that parameter in this paper, we choose to use δ

to represent degeneracy, which is also a common convention. When the context is clear, we
will drop the G of the notation and simply write α and δ. The two quantities are linked by
the following theorem.

▶ Theorem 10 (equation 3 and lemma 2.2 of [37]). In any graph G, degeneracy and arboricity
satisfy α ≤ δ ≤ 2α− 1.

The arboricity has previously been used outside of the differential private community to
bound some graph statistics. A folklore useful result is that the number of edges in a graph
is smaller than δn. Another well known result is as follows:

▶ Theorem 11 (Chiba-Nishizeki Bound [6]). With m = |E| and di the degree of node νi, then∑
(νi,νj)∈E

min (di, dj) ≤ mα.

3 Node-Reordered Graphs and Their Properties

The first step of our mechanism is to order the vertices based on their estimated degree. The
algorithm for this step is shown in Algorithm 1. At Line 2 of the algorithm, we privately
publish the estimated degree. Under edge local differential privacy, the global sensitivity of
the degree is 1. Therefore, we can use the Laplacian query (Definition 3) with noise scaled to
1/ε0 to publish the degree, where ε0 is the privacy budget allocated to this step. We denote
the estimated degree as d̃i = di + Lap (1/ε0).

Algorithm 1 Calculate a low degree ordering of a graph with respect to the estimated
degree.

1 Function GetOrdering
Input: Graph G = (V, E), privacy budget ε0
Output: A low degree ordering ϕ of G with respect to the estimated degree

2 [User i] Calculate and send d̃i ← di + Lap( 1
ε0

) to the central server
3 [Server] Let ϕ(i) = j if d̃i is the j-the largest number in d̃1, . . . , d̃n. Calculate

ϕ(i) for all i

4 return ϕ;

After publishing the estimated degrees, in Line 3, we assign an order ϕ to the nodes based
on their degrees, which we refer to as a low degree ordering. For G = ({ν1, . . . , νn}, E), we
denote the reordered graph as Gϕ = (V ϕ, Eϕ), where V ϕ = {ηi | i ∈ [1, n]} and νi = ηϕ(i)
for all i. The edge set Eϕ is defined as {(ηϕ(i), ηϕ(j)) | (νi, νj) ∈ E}. We note that G and
Gϕ are isomorphic, and thus have the same number of subgraphs. We denote by di(Gϕ) the
degree of ηi in Gϕ and d−

i (Gϕ) the number of neighbors of node ηi in the set {η1, . . . , ηi−1}.

STACS 2025



49:8 Cycle Counting Under Local Differential Privacy for Degeneracy-Bounded Graphs

Table 2 List of subgraphs analyzed in Section 3, including their representations and bounds on
their counts in the graph produced by Algorithm 1. Oriented edges indicate directionality, with an
arrow from νj to νi signifying that j > i. The bound on S∗

2 aligns with the bound on S2 presented
in [6], but it constitutes a distinct contribution as it is established for imperfectly ordered graphs.
In contrast, the result on C∗

2k is entirely novel to this work and serves as the primary result of our
proof.

Symbol S∗
2 Pk Ck C∗

2k

Representation

Bound O
(
δ2n
)

O
(

δ⌈ k
2 ⌉n⌊ k

2 ⌋+1
)
O
(

δ⌈ k
2 ⌉n⌊ k

2 ⌋
)

[25] O
(
δk+1nk−1)

In the remainder of this section, we analyze the properties of graphs produced by the
reordering. Specifically, our focus is on bounding the frequency of certain substructures
within the reordered graph. A summary of the results from this section is provided in Table 2.

▶ Definition 12 (low star). For k ∈ N∗, a low-k-star is a subgraph consisting of a central
node and k neighboring nodes, where at least one of the neighboring nodes has an index
smaller than that of the central node. We denote by S∗

k(G) the number of such subgraphs
contained in a graph G.

▶ Theorem 13. E
[
S∗

2 (Gϕ)
]
≤ O

(
δ2n
)
.

Proof. Let Ni(Gϕ) be the set of neighbors of ηi in Gϕ. We have that:

S∗
2 (Gϕ) =

n∑
i=1

d−
i (Gϕ)(di(Gϕ)− 1) ≤

n∑
i=1

di(Gϕ)× d−
i (Gϕ) =

n∑
i=1

di(Gϕ)
∑

ηj∈Ni(Gϕ)

1j<i

=
∑

(ηi,ηj)∈Eϕ

dmax(i,j)(Gϕ)

Let τi denote the noise added to the estimated degree of user i. For each edge (ηi, ηj),
their ranks can only be exchanged if the sum of the errors in both degree estimations exceeds
the gap between the two degrees. Therefore, the quantity dmax(i,j)(Gϕ) satisfies

dmax(i,j)(Gϕ) ≤ min(di, dj) + |τi|+ |τj |.

Using this inequality, we can rewrite the count of S∗
2 (Gϕ) as

S∗
2 (Gϕ) ≤

∑
(ηi,ηj)∈Eϕ

min (di, dj) +
n∑

i=1
|τi|di.

Since τi is sampled from Lap(1/ε0), we have that |τi| follows an exponential law of
expectation 1/ε0. Hence,

E
[
S∗

2 (Gϕ)
]
≤

∑
(νi,νj)∈Eϕ

min (di, dj) + m

ε0
.
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Since G is isomorphic to Gϕ, α(G) = α(Gϕ) and using Theorem 11 it follows that∑
(νi,νj)∈Eϕ

min (di, dj) ≤ m · α(G).

Since m ≤ nδ and α(G) = O(δ), this gives E
[
S∗

2 (Gϕ)
]
≤ O

(
δ2n
)
. ◀

In addition to the ordered stars we just discussed, arboricity can also be used to bound
the number of paths and cycles in a graph, as demonstrated in the following lemma and
theorem. Recall that #Pk(G) is the number of paths with length k in the graph G.

▶ Lemma 14. For any positive integer k, #P2k(G) = O
(
δknk+1) , #P2k+1 = O

(
δk+1nk+1).

Proof. We first consider #P2k+1(G). Let f be a function that maps a path of length 2k + 1
to a tuple of k + 1 edges, defined as f(e1, . . . , e2k+1) = (e1, e3, . . . , e2k+1). We observe that,
for any tuple of k + 1 edges denoted by E = (e′

1, . . . , e′
k+1), f−1(E) is either a set containing

one path or an empty set. There is at most one path that uses e′
i as the (2i− 1)-th edge of

the path for all i. Thus, we can conclude that the number of paths of length 2k + 1 is at
most the number of sets of k + 1 edges, which is mk+1 = O

(
δk+1nk+1).

Next, let us consider #P2k(G). Let f be a function that maps a path of length 2k to
a tuple of k edges, defined as f(e1, . . . , e2k) = (e1, e3, . . . , e2k−1). We observe that, for any
tuple of k edges denoted by E = (e′

1, . . . , e′
k), f−1(E) is a set of size no larger than n. There

is at most one path of length 2k − 1 that uses e′
i as the (2i − 1)-th edge of the path, and

there are at most n possible ways to extend a path of length 2k − 1 to a path of length k.
Hence, #P2k(G) ≤ n ·mk = O

(
δknk+1). ◀

Recall that #Ck(G) is the number of cycles with size k in the graph G. We obtain the
following theorem.

▶ Theorem 15. For any k ≥ 1, #Ck+2(G) ≤ 2
k α(G)#Pk(G).

Proof. Let us denote #P
(i)
k the number of paths of length k that have node νi as an extremity

and #C
(i,j)
k the number of cycles of length k containing edge (νi, νj). Using these notations,

we have #Ck+2 = 1
k

∑
(νi,νj)∈E

#C
(i,j)
k+2 . Consider the number #C

(i,j)
k+2 . For a path of length k

that has a node νi as a terminal, there is at most one cycle of length k + 2 which includes
this path and the edge (νi, νj). Therefore, we conclude that #C

(i,j)
k+2 ≤ #P

(i)
k . Similarly, we

have #C
(i,j)
k+2 ≤ #P

(j)
k . Hence,

#Ck+2 ≤
1
k

∑
(νi,νj)∈E

min
(

#P
(i)
k , #P

(j)
k

)
.

For any function h : E → {1, . . . , n} such that for all e = (νi, νj) ∈ E, h(e) is equal to
either i or j, min

(
#P

(i)
k , #P

(j)
k

)
≤ #P

(h(νi,νj))
k . By definition of the arboricity, there exists

a set of disjoint forests {Fl}l=1,...,α(G) such that E =
⋃α(G)

l=1 Fl. By choosing a root for each
tree of these forests, we can introduce a function h such that each edge has its child node as
an image. In this way, each node can only be the image of one edge per forest. This leads to

#Ck+2 ≤ 1
k

α(G)∑
l=1

∑
(νi,νj)∈Fl

min
(

#P
(i)
k , #P

(j)
k

)
≤ 1

k

α(G)∑
l=1

∑
e∈Fl

#P
(h(e))
k ≤ 1

k

α(G)∑
l=1

∑
i∈V

#P
(i)
k

= 2
k

α(G)#Pk.
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The last step is justified by the fact that each path having two extremities, the sum of all
the paths of length k starting with node νi is twice the number of paths of length k. ◀

Combining Lemma 14 and Theorem 15, we obtain the following corollary1.

▶ Corollary 16. For k ≥ 1, #C2k+2 = O
(
δk+1nk+1) and #C2k+1 = O

(
δk+1nk

)
.

Next, we focus on the number of cycles of length 2k for any k ≥ 2, in which three
consecutive vertices of the cycle exhibit monotonic ranks C∗

2k, as illustrated in Table 2.
Throughout the rest of this article, we will denote the count of such subgraphs in G by
#C∗

2k(G), omitting G from the notation when the context is clear. In the following theorem,
for simplicity, we extend the notation by assuming #P−1(G) = 1 and #P0(G) = n for every
graph G.

▶ Theorem 17. For k ≥ 2, #C∗
2k(G) ≤ 2α(G)S∗

2 (G)#P2k−5(G).

Proof. Let #C
∗(i,j)
2k (G) represent the number of subgraphs in G where three consecutive

vertices exhibit monotonic ranks, with (νi, νj) being the edge immediately following these
consecutive vertices. Also, for k ≥ 2, let the number of paths of length p with a low-2-star as
one of its extremities be denoted as #P ∗

p . Since we can construct at most one path included
in #P ∗

p where a low-2-star and a path of length p − 3 are its extremities, we obtain the
inequality #P ∗

p ≤ S∗
2 ·#Pp−3.

Let C
∗(i,j)
2k be a cycle which is counted in #C

∗(i,j)
2k . Consider the path in C

∗(i,j)
2k of length

2k − 2 starting from νi that does not pass through νj and the other path in C
∗(i,j)
2k of the

same length starting from νj that does not pass through νi. We observe that one extremity
of the two paths is a low-2-star. Hence, #C

∗(i,j)
2k ≤ min

(
#P

∗(i)
2k−2, #P

∗(j)
2k−2

)
when #P

∗(i)
p

is the number of paths in the count of #P ∗
p that have νi as an extremity. Using the same

definition of h as in the proof of Theorem 15, we have

#C∗
2k(G) ≤

∑
(νi,νj)∈E

#C
∗(i,j)
2k ≤

∑
(νi,νj)∈E

min
(

#P
∗(i)
2k−2, #P

∗(j)
2k−2

)

≤
α(G)∑
l=1

∑
(νi,νj)∈Fl

min
(

#P
∗(i)
2k−2, #P

∗(j)
2k−2

)
≤

α(G)∑
l=1

∑
e∈Fl

#P
∗(h(e))
2k−2

≤
a(G)∑
l=1

∑
i∈V

#P
∗(i)
2k−2 ≤ 2α(G)#P ∗

2k−2 ≤ 2α(G)S∗
2#P2k−5. ◀

The next corollary follows Theorem 13, 17, and Lemma 14.

▶ Corollary 18. For k ≥ 2, E[C∗
2k(Gϕ)] = O

(
δk+1nk−1).

The next corollary considers the number of edge sets in Gϕ with specific properties.

▶ Corollary 19. For any p ∈ N, we consider edge sets E ⊆ Eϕ of size 2p such that 1) for some
c > 0, there exists a set of cycles C1, . . . , Cc in Gϕ where C1 ∪ · · · ∪ Cc = E and Ci ∩ Cj = ∅
for i ̸= j, and 2) at least one of C1, . . . , Cc contains three consecutive vertices of monotonic
index. The number of such edge sets is O

(
δp+1np−1).

1 We note that this result was independently established in [25] by a different proof. We are grateful to
the anonymous reviewer for bringing this to our attention.
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Proof. Consider a partition of 2p, denoted by (p1, . . . , pc), where p1 + · · ·+ pc = 2p. The
number of such partitions is a function of p and can be considered constant. We will
demonstrate that the number of cycle sets C1, . . . , Cc satisfying the conditions in the corollary
statement, with |Ci| = pi, is at most O

(
δp+1np−1). Therefore, the number of cycle sets

satisfying the corollary statement is no more than O
(
δp+1np−1).

To prove the bound, we will consider two cases: either all the cycles have even lengths, or
at least two of them have odd lengths, given that the total number of edges is even.

If all the cycles are of even length, then, for some q > 0 one of them is of length 2q and
includes 3 consecutive vertices of monotonic index. By Corollary 18, there are O

(
δq+1nq−1)

possibilities for this cycle. For the remaining cycles, Corollary 16 tells us that the number of
admissible configurations is bounded by O (δp−qnp−q). In total, this gives a O

(
δp+1np−1)

bound. If at least two cycles have odd lengths, say 2q + 1 and 2r + 1, then by Corollary 16,
the number of possible configurations for these cycles can be bounded by O

(
δq+1nq

)
for the

first cycle and O
(
δr+1nr

)
for the second cycle, and O

(
δp−q−r−1np−q−r−1) for the remaining

cycles. Overall, this results in a bound of O
(
δp+1np−1). ◀

4 Triangle Counting Algorithm

We propose Algorithm 2 to count the number of triangles based on the ordering and properties
discussed in the previous section. First, we execute Algorithm 1 at Line 2. Next, at Line 3,
we use the randomized response query to obtain an obfuscated graph. From Lines 4 to 8,
we employ the Laplacian query with restricted sensitivity on Hd (Definition 5) to estimate
the number of triangles associated with User i. Finally, at Line 9, we sum all the estimates
and report the total as the estimated triangle count. We adopt the concept from [22] of
distributing randomized response results to all nodes and having each node estimate its
number of triangles. However, the other algorithmic ideas presented in this work are novel.
In the following theorem, we demonstrate that our algorithm is differentially private.

Algorithm 2 Our algorithm for estimating the number of triangles in degeneracy-bounded
graphs.

1 Function TriangleCounting
Input: Graph G = (V, E), privacy budget ε = ε0 + ε1 + ε2, parameter ζ

Output: Estimation of the number of triangles in G

2 [All Users and Server] ϕ← GetOrdering(G, ε0) (Algorithm 1);
3 [All Users and Server] Inquire the unbiased randomized response query with privacy

budget ε1 to all users. Let (âϕ
j,k) represent the results collected from this query. The

server then distributes (âϕ
j,k) to all users.

4 [User i] d̂ϕ
i ← d̃ϕ

i + 1
ε0

ln(n/ζ);
5 [User i] aϕ

i ← µ
d̂

ϕ
i

(aϕ
i ) (The function µd is defined before Definition 5.) ;

6 [User i] Si ← {(j, k) | aϕ
i,j = aϕ

i,k = 1, j < i < k};
7 [User i] t̂i ←

∑
(j,k)∈Si

âϕ
j,k;

8 [User i] t̃i ← t̂i + 3 · Lap( eε1 +1
eε1 −1 ·

d̂
ϕ
i

ε2
);

9 [User i] Upload t̃i to the central server;
10 [Server] f̂△(G)←

∑
νi∈V

t̃i;
11 return f̂△(G);

▶ Theorem 20. Algorithm 2 provides (ε0 + ε1 + ε2)-edge local differential privacy.
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Proof. For all possible executions of Algorithm 2, it inquires three queries to all users. They
are 1) the Laplacian query with privacy budget ε0 inside the GetOrdering function at Line
2, 2) the unbiased randomized response query with privacy budget ε1 at Line 3, and 3) the
Laplacian query with restricted sensitivity on Hd at Lines 4-8.

To prove this theorem, we only need to show that the query at Lines 4-8 is ε2-edge local
differentially private. The query aims to publish f(aϕ

i ) =
∑

(j,k)∈Si
âϕ

j,k. By the unbiased
randomized response in Line 3, we have that, for any j, k, j′, k′, |âϕ

j,k − âϕ
j′,k′ | ≤ eε1 +1

eε1 −1 . It
can be shown that, for aϕ

i , a
′ϕ
i ∈ Hd̂ϕ

i
(defined in Definition 5) such that d(aϕ

i , a
′ϕ
i ) ≤ d, the

number of different elements in the set Si obtained from aϕ
i ,a

′ϕ
i at Line 6 is at most d · d̂ϕ

i .
Therefore, the restricted sensitivity of the function f (denoted by RSf

(
Hd̂ϕ

i

)
in Definition 5)

is not larger than d · d̂ϕ
i · eε1 +1

eε1 −1 ·
1
d = d̂ϕ

i · eε1 +1
eε1 −1 . Hence, by Definition 5, the publication of t̃i

at Line 8 is ε2-edge local differentially private. ◀

We now discuss the accuracy of our estimation and its relation with the parameter ζ

appearing at Line 4 the algorithm. We will see that ζ controls the trade off between the bias
and the accuracy. The smaller ζ is, the smaller the average noise gets, but the larger the
probability of bias and its expected magnitude is.

In the following lemma, we discuss that the projection µϕ

d̂i
applied at Line 5 changes the

adjacency vector aϕ
i only with small probability.

▶ Lemma 21. For any ζ > 0, with probability at least 1− ζ, |d̃i − di| < (ln n
ζ )/ε0 for all i.

Proof. Using the cumulative distribution function of the Laplacian random variable, we have
P
[
|d̃i − di| ≥ ε0 ln n

ζ

]
≤ ζ

n . Thus, by taking this inequality for all i ∈ [1, n], and using the

union bound, we obtain P
[
∃i ∈ [1, n], |d̃i − di| ≥ ε0 ln n

ζ

]
≤ ζ. ◀

We show that our estimation has no bias with high probability in the subsequent theorem.

▶ Theorem 22. With probability at least 1− ζ, algorithm 2 provides an unbiased estimate of
the number of triangles in the graph, i.e. E

[
f̂△(G)

]
= #C3(G).

Proof. As discussed in Definition 7, we have that E(âϕ
j,k) = aϕ

j,k. Using Lemma 21, with
probability at least 1 − ζ, d̂ϕ

i is larger than dϕ
i for all i ∈ [1, n], and the function µd̂ϕ

i

has no effect. Consequently, Si precisely represents the set of forks centered on node νi,
encompassing all possible triangles. Therefore, t̂i is an unbiased estimate of the number of
triangles (νi, νj , νk) such that j < i < k. Given that Laplace noise is centered and triangles
can be decomposed accordingly, f̂△(G) is an unbiased estimation of f△(G). ◀

Corollary 23 ensures that even in the unlikely event of some clipping occurring, the
resulting bias would still represent only a small fraction of the actual count.

▶ Corollary 23. The expected value of the bias of Algorithm 2 is bounded by O
(

ζ
ε0n #C3

)
.

Proof. When the corrected estimated degree d̂ϕ
i is smaller than the actual degree di, di − d̂ϕ

i

edges are excluded. This exclusion introduces a bias because the potential triangles involving
these excluded edges are not counted. For each user i and their neighbor j, let t

(j)
i denote

the number of triangles counted by user i that involve the edge (νi, νj). We also define
tmax
i = maxj t

(j)
i . Then, the maximum bias resulting from a single clipped edge can be

bounded by tmax
i .
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The expected number of clipped edges for user i is determined by evaluating the following
integral, where β = ln(n/ζ)

ε0
serves as the correction term for the degree:

∫ −β

−∞

ε0

2 e−ε0|x|(−x− β) dx = −ε0

2

[
x− β

ε0
e−ε0x + 1

ε2
0

e−ε0x

]∞

β

= 1
2ε0

e−ε0β = ζ

2ε0n
.

We obtain the final result by combining these elements and observing that
∑

i tmax
i ≤∑

i,j t
(j)
i ≤ 2f△(G). ◀

The accuracy of our estimation is demonstrated in the subsequent theorem.

▶ Theorem 24. When ζ ≤ ε0, the squared expected ℓ2-error of algorithm 2 is bounded by

O
(

δ3n

ε2
1

+ δdmaxn

ε2
1ε2

2
+ n ln2(n/ζ)

ε2
0ε2

1ε2
2

)
.

Proof. The squared ℓ2-error can be decomposed into the square of the bias plus the vari-
ance. We have established in Corollary 23 that the bias of the algorithm is bounded by
O
(

ζ
ε0n #C3

)
= O

(
δ2). We will now focus on bounding the variance of the algorithm. This

variance arises from two distinct sources: the randomized response query and the Laplacian
query with restrictive sensitivity.

Regarding the noise introduced by the Laplacian query with restrictive sensitivity, its
variance is simply the sum of the variances of each term, which is

9
(

eε1 + 1
eε1 − 1

)2 ∑
νi∈V

d̂2
i

ε2
2

= O
(

ε2
0δdmaxn + n ln2(n/ζ)

ε2
2ε2

1ε2
0

)
.

Next, we consider the variance from the randomized response query. In the following
equations, we use the notation N ∗

j,k to denote the set of neighbors νi of both νj and νk such
that j < i < k. Note that by including one node from N ∗

j,k along with νj and νk, a triple
in S∗

2 is formed. Similarly, including two nodes from N ∗
j,k along with νj and νk results in

a quadruplet in #C∗
4 . We also notice from Definition 7 that, for (j, k) ̸= (j′, k′), âϕ

j,k is
independent to âϕ

j′,k′ and Cov
(

âϕ
j,k, âϕ

j′,k′

)
= 0. Hence,

Var

 ∑
νi∈V ϕ

∑
(j,k)∈Si

âϕ
j,k

 =
∑

(νj ,νk)∈(V ϕ)2

 ∑
νi∈N ∗

j,k

Var
(

âϕ
j,k

)
+

∑
νi,νi′ ∈N ∗

j,k

Cov
(

âϕ
j,k, âϕ

j,k

)
= O

(
(S∗

2 + #C∗
4 )/ε2

1
)

By Theorem 13 and Collorary 18, Var
(

f̂(G)
)

= O
(

δ3n
ε2

1
+ δdmaxn

ε2
1ε2

2
+ n ln2(n/ζ)

ε2
0ε2

1ε2
2

)
. ◀

In the previous work [16], the number of terms in the variance calculation is bounded
by the number of cycles of length four, which is O

(
d3

maxn
)
. We reduce that number to

#C∗
4 = O

(
δ3n
)

using the GetOrdering function in Line 2 and by including only pairs (j, k)
such that j < i < k. It is known that δ ≤ dmax and, in many practical graphs, the degeneracy
is much smaller than the maximum degree.
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5 Odd Length Cycle Counting

In this section, we will describe how to utilize low-degree ordering to accurately count
odd-length cycles in graphs with bounded degeneracy. Some concepts are extended from
the previous section. As shown in Algorithm 3, the algorithm for estimating the number of
odd-length cycles is similar to Algorithm 2, except that the restricted sensitivity at Line 9 is
larger, and at Line 8, we replace âϕ

i,j with an estimate for the number of paths under specific
constraints. We discuss the privacy of the algorithm in the subsequent theorem. The main
challenge of the proof is to demonstrate that the Laplacian query under restricted sensitivity
at Lines 5-9 is ε2-differentially private.

Algorithm 3 Our algorithm for estimating the number of odd-length cycles in degeneracy-
bounded graphs.

1 Function OddCycleCounting
Input: Graph G = (V, E), privacy budget ε = ε0 + ε1 + ε2, k an odd number not

smaller than 5, parameter ζ

Output: Estimation of the number of k-cycles in G

2 [All Users and Server] ϕ← GetOrdering(G, ε0) (Algorithm 1);
3 [All Users and Server] Inquire the unbiased randomized response query with privacy

budget ε1 to all users.
4 [Server] Let (âϕ

i,j) represent the results collected from this query. The server then
distributes (âϕ

i,j) to all users.
5 [Server] Calculate

#P̂k−4 :=
∑

(l1,...,lk−3)∈V k−3

∏
q∈[1,k−4]

âϕ
lq,lq+1

,

then send this information to all users;
6 [User i] d̂ϕ

i ← d̃ϕ
i + 1

ε0
ln(n/ζ);

7 [User i] aϕ
i ← µ

d̂
ϕ
i

(aϕ
i );

8 [User i] Si ← {(j, κ) | aϕ
i,j = aϕ

i,κ = 1, j < i < κ};
9 [User i] ĉi ←

∑
(j,κ)∈Si

#P̂
(i)
k−2(j, κ) when

#P̂
(i)
k−2(j, κ) =

∑
(l1,...,lk−1)∈X

(i)
k−2(j,κ)

∏
q∈[1,k−2]

âϕ
lq,lq+1

and X
(i)
k−2(j, κ) is a set of non-repeating combination of k − 1 vertices in Gϕ with

endpoints νj and νκ, such that, for any three consecutive nodes (νq, νr, νs) in the path
with monotonic ranks, the node νi has a lower rank than νr;

10 [User i] c̃i ← ĉi + Lap
(

3 ·
(

eε1 +1
eε1 −1

)2 · d̂ϕ
i ·#P̂k−4/ε2

)
;

11 [User i] Upload c̃i to the central server;
12 [Server] f̂k(G)←

∑
νi∈V

c̃i;

13 return f̂k(G);

▶ Theorem 25. Algorithm 3 provides (ε0 + ε1 + ε2)-edge local differential privacy.

Proof. We need to demonstrate that Lines 5-9 of the algorithm, involving the Laplacian query
with restricted sensitivity on Hd̂ϕ

i
, ensure ε2-differential privacy. Following the arguments

of Theorem 20, we assert that altering d entries of aϕ
i,j changes the set Si by at most d · d̂ϕ

i

elements. A single element change in Si can alter the value of ĉi by
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#P̂
(i)
k−2(j, κ) =

∑
(l1,...,lk−1)∈X

(i)
k−2(j,κ)

∏
q∈[1,k−2]

âϕ
lq,lq+1

≤
(

eε + 1
eε − 1

)2
#P̂k−4.

Therefore, the restricted sensitivity of c̃i is d · d̂ϕ
i

(
eε+1
eε−1

)2
#P̂k−4/d = d̂ϕ

i

(
eε+1
eε−1

)2
#P̂k−4.

Consequently, the publication of c̃i at Line 9 is ε2-differentially private. ◀

The bias of the algorithm is given in the following theorem.

▶ Theorem 26. With a probability of at least 1 − ζ, Algorithm 3 provides an unbiased
estimate of the number of k-cycles in any graph G for any odd integer k.

Proof. Since we publish âϕ
lq,lq+1

using the unbiased randomized response query, the publica-
tion is an unbiased estimation of aϕ

lq,lq+1
. Furthermore, as those estimators are independent

from one another, for each (j, κ) ∈ Si and {l1, . . . , lk−1} ∈ X
(i)
k−2(j, κ),

∏
q∈[1,k−2]

âϕ
lq,lq+1

is an

unbiased estimate of
∏

q∈[1,k−2]
aϕ

lq,lq+1
. It results from this that #P̂

(i)
k−2(j, κ) is an unbiased

estimator of the number of paths between j and κ with length k − 2 such that, for any three
consecutive nodes (νq, νr, νs) with monotonic ranks, the node νi has a lower rank that νr.
We denote the number of such paths as #P

(i)
k−2(j, κ).

Let us introduce C
(i)
k =

∑
(j,k)∈Si

#P
(i)
k−2(j, κ). Assuming no clipping occurs, which

happens with a probability of at least 1− ζ, we have by linearity of expectation that both ĉi

and c̃i are unbiased estimators of C
(i)
k . Therefore, all that remains to be proven is that the

number of k-cycles in G is equal to
∑

νi∈V ϕ C
(i)
k . It is evident that for each element counted

in
∑

νi∈V ϕ C
(i)
k , there is a corresponding cycle (νi, l1, . . . , lk−1) in Gϕ and, also, in G.

Conversely, consider a cycle of length k in G. Since it is also a cycle in Gϕ, we can represent
it in Gϕ as (ν1, . . . , νk). Because the cycle is of odd length, there exist three consecutive
nodes with a monotonic rank. Among all possible triplets, consider the one where the central
node has the smallest rank, denoted as (νj , νi, νκ) with j < i < κ. Furthermore, let j = l1
and κ = lk−1, and assign the indices of the other nodes in the cycle to l2 through lk−2 in
the order they appear in the cycle. Thus, the cycle is counted in

∑
νi∈V ϕ C

(i)
k . Furthermore,

if any other node in the cycle were chosen as νi, the remaining path would not be part of
X

(i)
k−2(j, κ). This ensures that each cycle is counted exactly once in

∑
νi∈V ϕ C

(i)
k . ◀

Finally, the ℓ2-error of Algorithm 3 is proven in the next theorem. The most challenging
aspect of this theorem is to bound the covariance in the summation at Lines 8 and 10. We
assert that any two dependent elements of X

(i)
k−2(j, κ) can be considered as a set containing

an even number of edges which forms multiple disjoint cycles with specific properties.
Consequently, we can utilize our results from Corollary 19 to bound the number of such
pairs. The proof of the theorem is given in the appendix of this paper.

▶ Theorem 27. When ζ ≤ ε0, the expected squared ℓ2-error of algorithm 3 is bounded by

O

(
δ3

ε2
1

(
1
ε2

1
+ δ

)k−3
nk−2 + δk−2dmaxnk−2

ε2
2ε4

1
+ δk−3nk−2 ln2(n/ζ)

ε2
2ε4

1ε2
0

)
.

Before proving Theorem 27, we demonstrate the following lemma.

▶ Lemma 28. The expected value of the bias of Algorithm 3 is bounded by O
(

ζ
ε0n #Ck

)
.
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Proof. We have already seen the proof of Corollary 23 that the expected value of the number
of clipped edges for user i was bounded by ζ

2ε0n . We now have to bound the bias created by
one edge removal, i.e. the maximal number of cycles one edge can part of.

With c
(j)
i the number of cycles counted by i that involve edge (i, j), the maximal

bias for user i is bounded by
∑

j c
(j)
i , and the bias of the algorithm by ζ

2ε0n

∑
i,j c

(j)
i ≤

O
(

ζ
ε0n #Ck

)
. ◀

Now, we are ready to prove Theorem 27.

Proof of Theorem 27. The squared ℓ2-error can be decomposed into the square of the bias
plus the variance. In Lemma 28, we established that the bias of the algorithm is bounded
by O

(
ζ

ε0n #Ck

)
= O

(
δ

k+1
2 n

k−3
2

)
. We will now focus on bounding the variance of the

algorithm.
Let the indicator variable 1(l1,...,lp) be 1 if the path (νl1 , . . . , νlp) exists in Gϕ, and 0

otherwise. We also denote the random variable
∏

q∈[1,p] âϕ
lq,lq+1

by Z(l1,...,lp+1). Finally, we
define U(l1,...,lp+1) = Z(l1,...,lp+1) − 1(l1,...,lp+1). This random variable U(l1,...,lp+1) has the
properties that E

[
U(l1,...,lp+1)

]
= 0 and Var

(
U(l1,...,lp+1)

)
= Var

(
Z(l1,...,lp+1)

)
.

Similar to the case with triangles, the variance of Algorithm 3 arises from both the
unbiased randomized response query and the Laplacian query with restricted sensitivity.

Concerning the variance term coming from the randomized response, we have to compute
the variance of

Ĉ =
∑

νi∈V

(ĉi − ci) =
∑

νi∈V

∑
(j,κ)∈Si

∑
{l1,...,lk−1}∈X

(i)
k−2(j,κ)

U(l1,...,lk−1).

We have to take into account the term that comes from the sum of the variances of the U as
well as the one coming from the covariances between them.

To compute the sum of variances, we start with:

Var
(
U(l1,...,lk−1)

)
=

∏
q∈[1,k−2]

Var
(

âϕ
lq,lq+1

)
= O

(
1

ε2k−4
1

)
.

Additionally, for each i and (j, κ) ∈ Si, the cardinality of X
(i)
k−2(j, κ) is bounded by nk−3, and

the number of ways to choose (i, j, κ) is bounded by S∗
2 , which is O

(
δ2n
)

by Theorem 13. This
contributes a term in the variance from the sum of variances bounded by O

(
δ2nk−2/ε2k−4

1
)
.

To analyze the term arising from the covariances, we first examine the covariance between
U(l1,...,lk−1) and U(l′

1,...,l′
k−1). In the following equations, let A be the set of edges that appear

only in (l1, . . . , lk−1) or (l′
1, . . . , l′

k−1), and let B be the set of edges that appear in both.
Recall that, for any (i, j) E

[
âϕ

i,j

]
= 0 and E

[
âϕ

i,j

]
= Var

(
âϕ

i,j

)
.

Cov
(

U(l1,...,lk−1), U(l′
1,...,l′

k−1)

)
= E

 ∏
q∈[1,k−2]

âϕ
lq,lq+1

∏
q∈[1,k−2]

âϕ
l′
q,l′

q+1

− 1(l1,...,lk−1)1(l′
1,...,l′

k−1)

=
∏

(i,j)∈A

1(i,j)
∏

(i,j)∈B

Var
(

aϕ
i,j

)
−

∏
q∈[1,k−2]

1(lq,lq+1)1(l′
q,l′

q+1).
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We observe that the covariance between U(l1,...,lk−1) and U(l′
1,...,l′

k−1) is zero if the paths
(νl1 , . . . , νlk−1) and (νl′

1
, . . . , νl′

k−1
) do not share at least one common edge or if the edges

present in only one of the paths are not present in the original graph. Now consider the
situation where the covariance is non-zero. We have that |B| > 0. Additionally, we will
denote νi the node responsible for counting this instance of U(l1,...,lk−1) and νi′ the one
responsible for U(l′

1,...,l′
k−1).

Let V := {νi, νl1 , . . . , νlk−1 , νi′ , νl′
1
, . . . , νl′

k−1
}, and let

E :=
⋃

1≤q≤k−2
{(νlq , νlq+1), (νl′

q
, νl′

q+1
)} ∪ {(νlk−1 , νi), (νi, νl1), (νl′

k−1
, νi′), (νi, νl′

1
)}.

In other words, the set E consists of the edges in the paths {l1, . . . , lk−1} and {l′
1, . . . , l′

k−1},
along with the additional edges (νlk−1 , νi), (νi, νl1), (νl′

k−1
, νi′), and (νi, νl′

1
). Additionally, let

A′ := A ∪ {(νlk−1 , νi), (νl′
k−1

, νi′) | (νlk−1 , νi) ̸= (νl′
k−1

, νi′)}
∪{(νi, νl1), (νi′ , νl′

1
) | (νi, νl1) ̸= (νi′ , νl′

1
)}.

Similarly, let

B′ := B ∪ {(νlk−1 , νi) | (νlk−1 , νi) = (νl′
k−1

, νi′)} ∪ {(νi, νl1) | (νi, νl1) = (νi′ , νl′
1
)}.

In other words, the sets A′ and B′ are the sets A and B extended to include the additional
edges (νi, νl1), (νlk−1 , νi), (νi′ , νl′

1
), and (νl′

k−1
, νi′).

We introduce d the difference between the cardinal of B′ and B, d := |B′| − |B|. Let
q ∈ [1, k− 2] be the cardinality of B. In this case, the covariance is O

(
1/ε2q

1

)
. We have that

|A′|+ 2|B′| = 2k, which gives |A′| = 2k − 2q − 2d.
In the next step, we will calculate the number of the pairs of paths with |A′| = 2(k−q−d).

Let us consider the degree of each node in (V, E). It is clear that the degrees are neither
greater than four nor less than two. A node has a degree of three only if one of the three
edges incident to it belongs to B′ and the other two to A′. A node has a degree of four if all
four edges incident to it are in A′, and it has a degree of two if both edges incident to it are
either in A′ or in B′. Hence, if we consider the graph (V, A′), we have a graph of degree two
or four, which is a union of multiple disjoint cycles.

Let the number of those disjoint cycles be c and the size of those cycles be r1, . . . rc. We
have that

∑c
t=1 rt = 2k − 2q − 2d, i.e. (r1, . . . , rc) is a partition of 2k − 2q − 2d. We know

that the number of such partitions is bounded by a function of k. Let suppose that the
bound is f(k).

Let us give the number of A′ with cycle size (r1, . . . , rc). We can use Corollary 16 to
show that the number of such sets A′ is O

(∏c
t=1 δrt/2nrt/2) = O

(
δk−q−dnk−q−d). When

d = 0, we know that {νi, νj} and {νi, νk} are in A′. There are three consecutive nodes with
monotonic ranks in the union of disjoint cycles (V, A′). Hence, we can use Corollary 19 to
show that the number of such sets A′ is bounded by O

(
δk−q+1nk−q−1). By combining the

two cases, we can conclude that the number of possible sets A′ with cycle size (r1, . . . , rc) is
at most O

(
δk−q+1−dnk−q−1). The number of possible A′ is then f(k) ·O

(
δk−q+1−dnk−q−1).

As k is a constant, the number is O
(
δk−q+1−dnk−q−1).

We then consider the number of configurations for B′, which consists of a union of
disjoint paths. Let the number of paths be c and their lengths be r1, . . . , rc. We have that
|r1|+ · · ·+ |rc| = q, and (r1, . . . , rc) forms a partition of q. The number of possible partitions
is bounded by a function of k, denoted as f(k). Each part must begin and end in the node set
A′, where |A′| ≤ 2k. Therefore, the number of possible paths rt is at most 4k2nrt−1, and the
number of possible sets B′ with the partition (r1, . . . , rc) is at most

∏c
t=1 4k2nrt−1 = O

(
nq−1).

Hence, the total number of possible sets B′ is f(k) · O
(
nq−1) = O

(
nq−1).
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Consequently, for each set A′, the number of possible configurations for B′ is at most
O
(
nq−1). The number of pairs of paths {l1, . . . , lk−1} and {l′

1, . . . , l′
k−1} with |A′| = 2(k −

q − d) is then at most O
(
δk−q+1−dnk−q−1 · nq−1) = O

(
δk−q+1nk−2). Each of these pairs

contributes Var
(

âϕ
j,k

)2q

= O
(

1/ε2q
1

)
to the covariance sum.

The covariance of Ĉ can then be calculated as follows:

O

(
k−2∑
q=1

δk−q+1nk−2 1
ε2q

1

)
= O

(
nk−2δ3

ε2
1

(
δ + 1

ε2
1

)k−3
)

.

Since this bound is larger than the one for the sum of variances, we can disregard the latter.
To compute the variance resulting from the Laplacian query with restricted sensitivity,

we sum the variance of the Laplacian distribution for all nodes:

9
(

eε + 1
eε − 1

)4
E
[
#P̂ 2

k−4

] ∑
νi∈V

d̂2
i

ε2
2

= O
(

δdmaxn

ε2
2ε4

1
+ n ln2(n/ζ)

ε2
2ε4

1ε2
0

)
E
[
#P̂ 2

k−4

]
. (1)

Let us now consider the expected value

E
[
#P̂ 2

k−4

]
= E

[
#P̂k−4

]2
+ Var

(
#P̂k−4

)
= #P 2

k−4 + Var
(

#P̂k−4

)
. (2)

By Lemma 14 and the fact that k − 4 is an odd number, we have #P 2
k−4 = O

(
δk−3nk−3).

The variance can be decomposed into the sum of the variances of each path, which is bounded
by O

(
nk−3/ε2k−8

1
)
, and the sum of covariances.

The covariance is non-zero only if at least two edges are shared between the two paths
and all edges that appear only once exist in the original graph. As previously discussed, this
forms a cycle structure, except for the path extremities that do not need to be connected.
Recall the definitions of the sets A and B from the previous paragraph.

The set A consists of two paths at the extremities and multiple disjoint cycles. Suppose
the number of edges in A is 2p, the number of edges in the two paths are q1 and q2, and
the number of disjoint cycles is c, with the number of edges in these cycles being r1, . . . , rc.
This gives us 2p = q1 + q2 +

∑c
i=1 ri. In other words, (q1, q2, r1, . . . , rc) forms a partition of

2p ≤ 2k. The number of such partitions is bounded by a function of k. Let the bound be
f(k).

We now discuss the number of possible configurations of A for the partition
(q1, q2, r1, . . . , rc). From Lemma 14 and Corollary 16, the number of cycles of length q is
bounded by O

(
δq/2nq/2), and the number of paths of length q is bounded by O

(
δq/2nq/2+1).

Thus, the number of configurations for the partition (q1, q2, r1, . . . , rc) is:

O

(
δq1/2nq1/2+1 · δq2/2nq2/2+1 ·

c∏
t=1

δrt/2nrt/2

)
= O

(
δpnp+2) .

Hence, the number of possible configurations for A with 2p edges is no more than f(k) ·
O
(
δpnp+2) = O

(
δpnp+2).

The number of edges in B is (2k − 8 − 2p)/2 = k − p − 4. Using the previous ar-
gument when calculating the number of possible set B′, we obtain that the number of
configurations for B is O

(
nk−p−5). The number of configurations with |A| = 2p is

then O
(
δpnp+2 · nk−p−5) = O

(
δpnk−3). Hence, the overall number of combinations is∑k−5

p=1 O
(
δpnk−3) = O

(
δk−5nk−3).
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From the previous paragraph, we observe that the covariance term outweighs the sum
of the variances, leading to Var

(
#P̂k−4

)
= O

(
δk−5nk−3). Additionally, when calcu-

lating E
[
#P̂ 2

k−4

]
in (2), it is evident that #P 2

k−4 dominates Var
(

#P̂k−4

)
, resulting in

E
[
#P̂ 2

k−4

]
= O

(
δk−3nk−3). Substituting E

[
#P̂ 2

k−4

]
with O

(
δk−3nk−3) in (1), we find

that the variance from the Laplacian mechanism is bounded by

O
(

δk−2dmaxnk−2

ε2
2ε4

1
+ δk−3nk−2 ln2(n/ζ)

ε2
2ε4

1ε2
0

)
.

We obtain the theorem result by summing the variance from the unbiased randomized
response query and the variance from the Laplacian query with restricted sensitivity. ◀

6 Conclusion

In this work, we introduced a private vertex ordering algorithm. The transformation on
the graph induced by this ordering reduces the count of specific order-sensitive motifs while
preserving the overall graph structure. Due to its reliance on the Laplacian mechanism, the
algorithm performs well even in high-privacy settings, making it an excellent preprocessing
step for subgraph counting queries.

Within this framework, we first propose a new triangle counting algorithm whose accuracy
depends on the count of specific ordered subgraphs. By combining this algorithm with the
ordering preprocessing step, we achieve an expected error of O (n) for graphs with bounded
degeneracy, compared to the O

(
n2) error seen in the current state of the art.

Subsequently, we extended the algorithm to address the more general case of odd-length
cycle counting. We propose the first purely local differentially private counting algorithm
specifically designed for cycles longer than triangles. Under the assumption of bounded
degeneracy, the algorithm achieves an error of O

(
n(k−1)/2) for cycles of length k.

Due to the constraints of local differential privacy, it might be assumed that the range
of tasks we can perform on graphs under this privacy notion is limited. However, in this
work, we demonstrate that more precise information can be published under local differential
privacy by restricting our inputs to certain types of graphs. We believe that parameterized
algorithms under local differential privacy represent an intriguing research area that can
contribute significantly to both algorithm design and information privacy.

One limitation of this method is that the relative error can become significantly large
when the number of cycles is small (or even zero), even in cases where the graph’s degeneracy
– and consequently the ℓ2-error of our algorithm – is high. Identifying a class of graphs for
which an algorithm with bounded relative error can be designed would be a direction for
future research. Another question for future investigation is determining lower bounds for
degeneracy-bounded graphs under the local differential privacy.
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