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Abstract
The classic greedy coloring algorithm considers the vertices of an input graph G in a given order
and assigns the first available color to each vertex v in G. In the Grundy Coloring problem, the
task is to find an ordering of the vertices that will force the greedy algorithm to use as many colors
as possible. In the Partial Grundy Coloring, the task is also to color the graph using as many
colors as possible. This time, however, we may select both the ordering in which the vertices are
considered and which color to assign the vertex. The only constraint is that the color assigned to a
vertex v is a color previously used for another vertex if such a color is available.

Whether Grundy Coloring and Partial Grundy Coloring admit fixed-parameter tractable
(FPT) algorithms, algorithms with running time f(k)nO(1), where k is the number of colors, was
posed as an open problem by Zaker and by Effantin et al., respectively.

Recently, Aboulker et al. (STACS 2020 and Algorithmica 2022) resolved the question for
Grundy Coloring in the negative by showing that the problem is W[1]-hard. For Partial
Grundy Coloring, they obtain an FPT algorithm on graphs that do not contain Ki,j as a
subgraph (a.k.a. Ki,j-free graphs). Aboulker et al. re-iterate the question of whether there exists an
FPT algorithm for Partial Grundy Coloring on general graphs and also asks whether Grundy
Coloring admits an FPT algorithm on Ki,j-free graphs. We give FPT algorithms for Partial
Grundy Coloring on general graphs and for Grundy Coloring on Ki,j-free graphs, resolving
both the questions in the affirmative. We believe that our new structural theorems for partial
Grundy coloring and “representative-family” like sets for Ki,j-free graphs that we use in obtaining
our results may have wider algorithmic applications.
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1 Introduction

A proper coloring of a graph G is an assignment of colors to its vertices such that none of
the edges have endpoints of the same color. In k-Coloring, we are given a graph G, and
the objective is to test whether G admits a proper coloring using at most k colors. The k-
Coloring problem is one of the classical NP-hard problems, and it is NP-complete for every
fixed k ≥ 3. The problem is notoriously hard even to approximate. Indeed, approximating
k-Coloring within O(n1−ϵ), for any ϵ > 0, is hard [18]. Also, under a variant of Unique
Games Conjecture, there is no constant factor approximation for 3-Coloring [14].

The k-Coloring problem has varied applications ranging from scheduling, register
allocations, pattern matching, and beyond [8,9,29]. Owing to this, several heuristics-based
algorithms have been developed for the problem. One of the most natural greedy strategies
considers the vertices of an input graph G in an arbitrary order and assigns to each vertex
the first available color in the palette (the color palette for us is N). In literature, this is
called the first-fit rule. Notice that there is nothing special about using the “first” available
color; one may instead opt for any of the previously used colors, if available, before using a
new color; let us call this greedy rule the any-available rule. It leads to yet another greedy
strategy to properly color a graph, and one can easily prove that this greedy strategy is
equivalent to the “last-(available) fit” rule.

For any greedy strategy, one may wonder: How bad can the strategy perform for the
given instance? The above leads us to the well-studied fundamental combinatorial problems,
Grundy Coloring and Partial Grundy Coloring, that arise from the aforementioned
greedy strategies for proper coloring. In the Grundy Coloring problem, we are given a
graph G on n vertices and an integer k, and the goal is to check if there is an ordering of
the vertices on which the first-fit greedy algorithm for proper coloring uses at least k colors.
Similarly, we can define the Partial Grundy Coloring problem, where the objective is
to check if, for the given graph G on n vertices and integer k, there is an ordering of the
vertices on which the any-available greedy algorithm uses at least k colors. In this paper, we
consider these two problems in the realm of parameterized complexity.

The Grundy Coloring problem has a rich history dating back to 1939 [21]. Goyal
and Vishwanathan [20] proved that Grundy Coloring is NP-hard. Since then, there has
been a flurry of results on the computational and combinatorial aspects of the problem
both on general graphs and on restricted graph classes, see, for instance [3, 6, 7, 10, 16, 23, 24,
26, 27, 33, 35–39] (this list is only illustrative, not comprehensive). The problem Partial
Grundy Coloring was introduced by Erdös et al. [16] and was first shown to be NP-
hard by Shi et al. [34]. The problem has gained quite some attention thereafter; see, for
instance [1, 4, 5, 12,15,25,32,36].

These problems have also been extensively studied from the parameterized complexity
perspective. Unlike k-Coloring, both these problems admit XP algorithms [15, 38], i.e., an
algorithm running in time bounded by |V (G)|f(k). The above naturally raises the question
of whether they are fixed-parameter tractable (FPT), i.e., admit an algorithm running in
time f(k) · |V (G)|O(1). In fact, these problems have also been explicitly stated as open
problems [1, 7, 23,33].

Havet and Sampaio [23] studied Grundy Coloring with an alternate parameter and
showed that the problem of testing whether there is a Grundy coloring with at least |V (G)|−q

colors is FPT parameterized by q. Bonnet et al. [7] initiated a systematic study of designing
parameterized and exact exponential time algorithms for Grundy Coloring and obtained
FPT algorithms for the problem for several structured graph classes. They gave an exact
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algorithm for Grundy Coloring running in time 2.443n · nO(1) and also showed that the
problem is FPT on chordal graphs, claw-free graphs and graphs excluding a fixed minor. In
the same paper, they stated the tractability status of Grundy Coloring on general graphs
parameterized by the treewidth or the number of colors as central open questions. Belmonte
et al. [6] resolved the first question by proving that Grundy Coloring is W[1]-hard
parameterized by treewidth, but surprisingly, it becomes FPT parameterized by pathwidth.
Later, Aboulker et al. [1] proved that Grundy Coloring does not admit an FPT algorithm
(parameterized by the number of colors) and obtained an FPT algorithm for Partial
Grundy Coloring on Kt,t-free graphs (which includes graphs of bounded degeneracy,
graphs excluding some fixed graph as minor/topological minors, graphs of bounded expansion
and nowhere dense graphs). A graph is Ki,j-free if it does not have a subgraph isomorphic
to the complete bipartite graph with i and j vertices, respectively, on the two sides. They
concluded their work with the following natural open questions:

Question 1: Does Partial Grundy Coloring admit an FPT algorithm?
Question 2: Does Grundy Coloring admit an FPT algorithm on Ki,j-free graphs?

In this paper, we resolve the questions 1 and 2 in the affirmative by a new structural
result and a new notion of representative families for Ki,j-free graphs, respectively. In the
next section, we give an intuitive overview of both results, highlighting our difficulties and
our approaches to overcome them.

1.1 Our Results, Methods and Overview
Our first result is the following.

▶ Theorem 1. Partial Grundy Coloring is solvable in time 2O(k5) · nO(1).

Our algorithm starts with the known “witness reformulation” of Partial Grundy
Coloring. It is known that (G, k) is a yes-instance of Partial Grundy Coloring if and
only if there is a vertex subset W of size at most k2 such that, (G[W ], k) is a yes-instance
of the problem. In the above, the set W is known as a small witness set. Our algorithm
is about finding such a set W of size at most k2. Observe that this witness reformulation
immediately implies that Partial Grundy Coloring admits an algorithm with running
time nO(k2) time. To build our intuition, we first give a simple algorithm for the problem on
graphs of bounded degeneracy (or even, nowhere dense graphs). This algorithm has two main
steps: (a) classical color-coding of Alon-Yuster-Zwick [2], and (b) independence covering
lemma of Lokshtanov et al. [28].

Let (G, k) be a yes instance of Partial Grundy Coloring, where G is a d-degenerate
graph on n vertices, and W be a small witness set of size at most k2. As (G[W ], k) must be a
yes-instance of the problem, there exists an ordering of the vertices such that when we apply
any-available greedy rule, it uses at least k colors. Let ĉ be this proper coloring of G[W ].
The tuple (Wi := {v ∈ W | ĉ(v) = i})i∈[k] is called a k-partial Grundy witness for G. Now
we apply the color-coding step of the algorithm. That is, we color the vertices of G using k

colors independently and uniformly at random, and let Z1, · · · , Zk be the color classes of
this coloring. The probability that for each i ∈ [k], Wi ⊆ Zi, is k−k2 . Notice that since G is
a d-degenerate graph, we have that Gi = G[Zi], for each i ∈ [k], is d-degenerate. Now we
exploit this fact and apply the independence covering lemma of Lokshtanov et al. [28]. That
is given as input (Gi, k2), in time 2O(dk2)nO(1) it produces a family Fi of independent sets of
Gi, of size 2O(dk2) · log n. Furthermore, given any independent set I of Gi of size at most k2,
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there exists an independent set F ∈ Fi, such that I ⊆ F (F covers I). In particular, we know
that there is a set Fi ∈ Fi that covers Wi. So, the algorithm just enumerates each tuple
(F1, . . . , Fk) of F1 × · · · × Fk and checks whether (F1, · · · , Fk) is a k-partial Grundy coloring
of G[F1 ∪ · · · ∪ Fk]. If (G, k) is a yes instance, our algorithm is successful with probability
k−k2 . Moreover, we can convert the described randomized algorithm to a deterministic one
by using the standard derandomization technique of “universal sets” [17, 31]. Some remarks
are in order; it can be shown that each of |Wi| ≤ k, and hence we can call the independence
covering lemma on (Gi, k), resulting in an improved running time of 2O(dk2 log k) · nO(1).
Aboulker et al. [1] proved that Partial Grundy Coloring on Kt,t-free graphs is FPT,
which includes t-degenerate graphs. Aboulker et al. did not explicitly mention the running
time, but their running time is at least 2kt

n. Our new algorithm improves over this. For
general instances, we do not have a bound on the degeneracy of the input graph. However,
we can achieve this by using our new structural result.

▶ Theorem 2 (Structural result). There is a polynomial-time algorithm that given a graph G

and a positive integer k, does one of the following:
(i) Correctly concludes that (G, k) is a yes-instance of Partial Grundy Coloring, or
(ii) Outputs at most 2k3 induced bicliques A1, · · · , Aℓ in G such that the following holds.

For any v ∈ V (G), the degree of v in G − F is at most k3, where F is the union of the
edges in the above bicliques.

The structural result (Theorem 2) is one of our main technical contributions. Next, we
show how to design an algorithm for Partial Grundy Coloring using Theorem 2. We
follow the same steps as for the one described for the degenerate case. That is, we have
color classes Zis and they contain the respective Wis (the part of the small witness set W ).
Now, to design a family of independent sets in Gi = G[Zi], we do as follows. Let (Lj , Rj)
be a bipartition of Aj , for each j ∈ [ℓ]. Observe that any independent set I (in particular
of Gi) intersects Lj or Rj , but not both, for any j ∈ [ℓ]. Thus, we first guess whether Wi

intersects Lj , Rj or none. Let this be given by a function fi : [ℓ] → {L, R, N}, that is, if
fi(j) = L, then Wi ∩ Lj = ∅, if fi(j) = R, then Wi ∩ Rj = ∅, else Wi ∩ (Lj ∪ Rj) = ∅. Taking
advantage of this property, for each guess of which of Lj or Rj is not contained in Wi, we
delete the corresponding set (which is one of Lj or Rj , for each j ∈ [ℓ]) from Gi. We call the
resulting graph Gfi

i . This implies that for any fi, in Gfi

i we delete all edges of F (where F is
the union of edges in the bicliques). Hence, the maximum degree of Gfi

i is at most k3, and
therefore it has degeneracy at most k3. Now using the independence covering step of the
algorithm for degenerate graphs, we can finish the algorithm. The proof of Theorem 2 is
obtained by carefully analyzing the reason for the failure of a greedy algorithm.

Our next result is an affirmative answer to Question 2.

▶ Theorem 3. For any fixed i, j ∈ N, there is an FPT algorithm that given a graph G and a
positive integer k, decides if there is Grundy coloring of G using at least k colors.

For our algorithm, we use a reinterpretation of the problem which is based on the
existence of a small witness. Gyárfás et al. [22], and Zaker [38] independently showed that
a given instance (G, k) of Grundy Coloring is a yes-instance if and only if there is a
vertex subset W of size at most 2k−1, such that (G[W ], k) is also a yes-instance of the
problem. The existence of this small induced subgraph directly yield an XP algorithm for the
problem [38]. Using characterizations of [22,38] and basic Grundy coloring properties, we can
reduce Grundy Coloring to finding a homomorphic image, satisfying some independence
constraints, of some specific labeled trees (see Fig. 1, where different parts of it will be
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Figure 1 Illustration of a labelled homomorphism ω : V (T4) → V (G), where the graph is
shown in part (i), T4 with V (T4) = {r4, r4,3, r4,2, r4,1, r4,3,2, r4,3,1, r4,2,1} is shown in part (ii),
and a relation to Grundy coloring is illustrated in part (iii). Here, ω(r4) = v1, ω(r4,3) = v6,
ω(r4,2) = v2, ω(r4,1) = v3, ω(r4,3,2) = v2, ω(r4,3,1) = v3, and ω(r4,2,1) = v4.

discussed, shortly). Let the pair (T, ℓ) denote a rooted tree T together with a labeling
function ℓ : V (T ) → [k]. Given (T, ℓ) and a graph G, a function ω : V (T ) → V (G) is a
labeled homomorphism if: i) for each {u, v} ∈ E(T ), we have {ω(u), ω(v)} ∈ E(G), and ii)
for u, v ∈ V (T ), if ℓ(u) ̸= ℓ(v), then ω(u) ̸= ω(v). In particular, we will reduce the problem
to the following.

Constrained Label Tree Homomorhism (CLTH) Parameter: |V (T )|
Input: A host graph G and (T, ℓ : V (T ) → [k]), where T is a tree.
Question: Does there exists a labeled homomorphism ω : V (T ) → V (G) such that for
any z ∈ [k], Wi = {ω(t) | t ∈ V (T ) and ℓ(t) = i} is an independent set in G?

Now our goal is to identify ω (and thus the witness set W ). The first step of our algorithm
will be to use the color-coding technique of Alon-Yuster-Zwick [2] to ensure that the labeling
requirement of the graph homomorphism ω is satisfied. To this end, we randomly color the
vertices of G using k colors, where we would like the random coloring to ensure that for
each z ∈ [k], all the vertices in Wz are assigned the color z. Let X1, X2, · · · , Xk be the color
classes in a coloring that achieves the above property. Our objective will be to find ω such
that vertices of T that are labeled z ∈ [k] are assigned to vertices in Xz.

Our next challenge is to find a homomorphism that additionally satisfies the independence
condition. That is, vertices of the same label in T are assigned to an independent set in G.
Note that the number of potential ωs that satisfy our requirements can be very huge; however,
we will be able to carefully exploit Ki,j-freeness to design a dynamic programming-based
algorithm to identify one such ω (and thus the set W ). Our approach here is inspired
by dynamic programming in the design of FPT algorithms based on computations of
“representative sets” [19,30]. However, this inspiration ends here, as to apply known methods
we need to have an underlying family of sets that form a matroid. Unfortunately, we do not
have any matroid structure to apply the known technique. Here, we exploit the fact that we
have a specific labeled tree (T, ℓ) and a Ki,j-free graph. Next we define the specific trees
that we will be interested in (see Fig. 1, (ii)).

▶ Definition 4. For each k ∈ N \ {0}, we (recursively) define a pair (Tk, ℓk : V (Tk) → [k]),
called a k-Grundy tree, where Tk is a tree and ℓk is a labelling of V (Tk), as follows :
1. T1 = ({r1}, ∅) is a tree with exactly one vertex r1 (which is also its root), and ℓ1(r1) = 1.
2. Consider any k ≥ 2, we (recursively) obtain Tk as follows. For each z ∈ [k − 1], let (Tz, ℓz)

be the z-Grundy tree with root rz. We assume that for distinct z, z′ ∈ [k − 1], Tz and
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Tz′ have no vertex in common, which we can ensure by renaming the vertices.1 We set
V (Tk) =

(
∪z∈[k−1] V (Tz)

)
∪ {rk} and A(Tk) =

(
∪z∈[k−1] A(Tz)

)
∪ {(rk, rz) | z ∈ [k − 1]}.

We set ℓk(rk) = k, and for each z ∈ [k − 1] and t ∈ V (Tz), we set ℓk(t) = ℓz(t).
For v ∈ V (Tk), ℓk(v) is the label of v in (Tk, ℓk), and the elements in [k] are labels of Tk.

Observe that the label of a vertex t ∈ V (T ) is the depth of the subtree rooted at t (the
depth of a leaf is 1). In particular, the leaves are assigned the label 1, and when they are
deleted, we get vertices with the label 2 as leaves, and so on. This allows us to do a bottom-up
dynamic programming over Tk. Roughly speaking, for each z ∈ [k], we solve the special
labelled tree homomorphism from ωz : V (Tz) → X1 ∪ X2 . . . ∪ Xz, where the root of Tz is
mapped to a fixed vertex v ∈ Xz as follows: instead of having all potential choices for ωz (or
Wz = {ωz(t) | t ∈ V (Tz)}), we find enough representatives, that will allow us to replace Wz

by something that we have stored. It is a priori not clear that such representative sets of
small size exist and furthermore, even if they exist, how to find them. The existence and
computation of small representative sets in this setting is our main technical contribution for
Grundy Coloring.

We heavily exploit the Ki,j-freeness in our “representative set” computation. Very roughly
stating, while we have computed required representatives for Wz, and wish to build such
a representatives for Wz+1, by exploiting Ki,j-freeness, we either find a small hitting set
or a large sub-family of pair-wise disjoint sets. In the former case, we can split the family
and focus on the subfamily containing a particular vertex from the hitting set and obtain a
“representative” for it (and then take the union over such families). In the latter case, we
show that we are very close to satisfying the required property, except for the sets containing
vertices from an appropriately constructed small set S of vertices. The construction of this
small set S is crucially based on the Ki,j-freeness of the input graph. Once we have the set
S, we can focus on sets containing a vertex from it and compute “representatives” for them.

Again, using standard hash functions, we can obtain a deterministic FPT algorithm for
the problem by derandomizing the color coding based step [2, 31].

2 Preliminaries

Generic Notations. We denote the set of natural numbers by N. For n ∈ N, [n] denotes
the set {1, 2, · · · , n}. For a function f : X → Y and y ∈ Y , f−1(y) := {x ∈ X | f(x) = y}.

For standard graph notations not explicitly stated here, we refer to the textbook of Di-
estel [13]. For a graph G, we denote its vertex and edge set by V (G) and E(G), respectively.
Also, if the context is clear, we will use n and m to denote the numbers |V (G)| and |E(G)|,
respectively. The neighborhood of a vertex v in a graph G is the set of vertices that are
adjacent to v in G, and we denote it by NG(v). The degree of a vertex v is the size of its
neighborhood in G, and we denote it by dG(v). For a set of vertices S ⊆ V (G), we define
NG(S) = (∪v∈SN(v)) \ S. When the graph is clear from the context, we drop the subscript
G from the above notations. For X ⊆ V (G), the induced subgraph of G on X, denoted by
G[X], is the graph with vertex set X and edge set {{u, v} | u, v ∈ X & {u, v} ∈ E(G)}. Also,
G[V (G) \ X] is denoted by G − X. For v ∈ V (G), we use G − v to denote G − {v} for ease
of notation. For an edge subset F ⊆ E(G), G − F is the graph with vertex set V (G) and
edge set E(G) \ F . A bipartite graph G = (A ⊎ B, E) is called a biclique if every vertex in A

1 For the sake of notational simplicity we will not explicitly write the renaming of vertices used to ensure
pairwise vertex disjointness of the trees. This convention will be followed in the relevant section.
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is adjacent to every vertex in B. We assume that A and B are both non-empty sets. For
d ∈ N, a graph is d-degenerate if each of its subgraphs has a vertex of degree at most d. For
terminologies related to parameterized complexity, see the textbook of Cygan et al. [11].

3 FPT Algorithm for Partial Grundy Coloring

Consider a graph G and an integer k ∈ N \ {0}. For a (not necessarily proper) coloring
χ : V (G) → [k], for simplicity, we sometimes write χ as the ordered tuple (χ−1(1), χ−1(2), · · · ,

χ−1(k)). Recall that a proper coloring of a graph is a coloring of its vertices so that for
none of its edges, the two endpoints of it are of the same color. Also, a k-partial Grundy
coloring of G is a proper coloring c : V (G) → [k], such that for each i ∈ [k], there is a vertex
v ∈ V (G) with: (i) c(v) = i and (ii) for every j ∈ [i − 1], there is u ∈ NG(v) with c(u) = j.

We will begin with some definitions and results that will be useful in obtaining our main
structural result (Theorem 2) and our FPT-algorithm (Theorem 1).

Observe that given a k-partial Grundy coloring of an induced subgraph Ĝ of a graph G,
we can extend this coloring to a partial Grundy coloring of the whole graph G using at least
k colors by greedily coloring the uncolored vertices of G − V (Ĝ). The following observation
will be particularly useful when we work with a small “witness”.

▶ Observation 5. Given a graph G, an induced subgraph Ĝ of G, and a partial Grundy
coloring of Ĝ using k colors, we can find a partial Grundy coloring of G using at least k

colors in linear time.

Proof. Let ĉ : V (Ĝ) → [k] be a partial Grundy coloring of Ĝ with exactly k colors. We
construct a partial Grundy coloring c : V (G) → N of G using at least k colors as follows. For
each vertex v ∈ V (Ĝ), set c(v) := ĉ(v). Let v1, v2, · · · , vn′ be an arbitrarily fixed order of
vertices in V (G) \ V (Ĝ). Let G0 = Ĝ, and for each p ∈ [n′], Gp = G[V (Ĝ ∪ {v1, v2, · · · , vp})].
We iteratively create a partial Grundy coloring cp of Gp using at least k colors (in increasing
values of p) as follows. Note that c0 = ĉ is already a partial Grundy coloring of G0 that uses
at least k colors. Consider p ∈ [n′]\{0}, and assume that we have already computed a partial
Grundy coloring cp−1 : V (Gp−1) → N of Gp−1 that uses k′ ≥ k colors. For each z ∈ [k′],
let Vz = c−1

p−1(z). For each v ∈ V (Gp−1), we set cp(v) := cp−1(v). If the vertex vp has a
neighbor in each of the sets V1, V2, · · · , Vk′ , i.e., if for each z ∈ [k′], NG(vp) ∩ Vz ≠ ∅, then set
cp(vp) := k′ + 1. Otherwise, let z∗ ∈ [k′] be the smallest number such that NG(vp) ∩ Vz∗ = ∅,
and set cp(vp) := z∗. Notice that by construction, cp is a partial Grundy coloring of Gp using
at least k colors. From the above discussions, cn′ is a partial Grundy coloring of G = Gn′

using at least k colors. ◀

▶ Definition 6. Consider a graph G and an integer k ∈ N \ {0}. A sequence of pairwise
disjoint independent sets (Q1, Q2, . . . , Qk) of G is a k-partial Grundy witness if the following
holds. For any i ∈ [k], there is v ∈ Qi such that for all j ∈ [i − 1], Qj ∩ NG(v) ̸= ∅. The
vertex v is called a dominator in Qi.

▶ Observation 7. Given a graph G and an integer k, let (Q1, Q2, . . . , Qk) be a k-partial
Grundy witness. Suppose Y1, Y2, . . . , Yk are pairwise disjoint independent sets in G such that
Qi ⊆ Yi, for all i ∈ [k]. Then (Y1, Y2, . . . , Yk) is also a k-partial Grundy witness of G.

A k-partial Grundy witness (X1, X2, . . . , Xk) is small if for each i ∈ [k], |Xi| ≤ k−i+1. Next,
we prove the existence of a small k-partial Grundy witness. This result is the same as the
one obtained by Effantin et al. [15]; however, it is stated slightly differently for convenience.
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▶ Observation 8 (♠).2 Let G be a graph and k be an integer, where G has a k-partial
Grundy witness (Q1, . . . , Qk). Then, there exists a k-partial Grundy witness (X1, X2, . . . , Xk)
such that for each i ∈ [k], Xi ⊆ Qi and |Xi| ≤ k − i + 1.

The remainder of this section is organized as follows. In Section 3.1 we prove our key
structural result (Theorem 2), and then obtain our algorithm in Section 3.2. (Readers who
may want to read the algorithm directly, may skip Section 3.1.)

3.1 Degree Reduction: Proof of Theorem 2
The objective of this section is to prove Theorem 2. The proof of this theorem is based on
the following lemma for bipartite graphs.

▶ Lemma 9. There is a polynomial-time algorithm that, given a bipartite graph G = (A⊎B, E)
and a positive integer k, does one of the following.

(i) Correctly concludes that the partial Grundy coloring of G is at least k.
(ii) Outputs at most 4k − 4 bicliques A1, · · · , Aℓ in G such that for any v ∈ V (G), degree

of v in G − F is at most k2, where F is the union of the edges in the above bicliques.

We first give a proof of Theorem 2 based on the above lemma.

Proof of Theorem 2. Consider a graph G and a positive integer k. First, we run the first-
fit greedy algorithm for proper coloring of the graph G for an arbitrarily fixed ordering
(v1, v2, · · · , vn) of V (G). For each j, let Cj be the vertices colored j and k′ be the largest
integer such that Ck′ ≠ ∅. Note that (C1, · · · , Ck′) is a proper coloring of G. Also, for any
j ∈ [k′] and any vertex v in Cj , v has a neighbor in Cj′ for all j′ ∈ [j − 1]. If k′ ≥ k, then
(C1, · · · , Ck′) is a partial Grundy coloring of G using at least k colors, and thus we can
correctly report it.

Next, we assume that k′ < k. Note that all the edges in G are between the color
classes C1, · · · , Ck′ . Now for every distinct i, j ∈ [k′], where i < j, we apply Lemma 9 on
(Hi,j = (Ci ⊎ Cj , E(Ci, Cj)), k), where E(Ci, Cj) is the set of edges in G between the color
classes Ci and Cj . Our algorithm will declare that G has a partial Grundy coloring using
at least k colors if we get the output given in statement (i) in any of the

(
k′

2
)

applications
of Lemma 9. Otherwise, for every distinct i, j ∈ [k′], where i < j, let Ai,j,1, · · · , Ai,j,ℓi,j

be the bicliques, we get as output by the algorithm in Lemma 9 on (Hi,j , k). Note that
ℓi,j ≤ 4k − 4. Now our algorithm will output the bicliques {Ai,j,r : 1 ≤ i < j ≤ k′, r ∈ [ℓi,j ]}.
As k′ < k for all 1 ≤ i < j ≤ k′, the number of bicliques we output is at most (4k − 4)

(
k′

2
)
,

that is, at most 2k3. Since any vertex in a color class Cr has neighbors in other color classes,
for r ∈ [k′] and we applied Lemma 9 for every pair of color classes, the degree of v in G − F

is at most k3 for any v ∈ V (G), where F is the union of the edges in the above bicliques.
This completes the proof of the theorem. ◀

We now focus on the proof of Lemma 9. Toward this, we give a polynomial time procedure
that, given a bipartite graph G = (L ⊎ R, E) and a positive integer k, either concludes that
the input graph has partial Grundy coloring using at least k colors or it outputs at most
2k − 2 bicliques A1, . . . , Aℓ in G such that for any v ∈ L, dG−F (v) ≤ k2, where F is the
union of the edges in the above bicliques. That is, removal of the edges of these bicliques
bounds the degree of each vertex in L by k2. We get the proof of Lemma 9 by applying this
algorithm once for L and then for R.

2 The proofs of the result marked with ♠ can be found in the full version of the paper on arXiv.

https://arxiv.org/abs/2410.20629
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Overview of our algorithm. Let σ = v1, v2, . . . , vn be an ordering of the vertices in L in
non-increasing order of their degree in G. The algorithm constructs specific color classes
Q1, Q2, . . . , Qr in this order so that (C1 = Qr, C2 = Qr−1, . . . , Cr = Q1) is an r-partial
Grundy witness, where |Qj | ≤ j. Furthermore, we will construct sets Bi, i ∈ [r], which will
be used to construct the bicliques. Notice that if we obtain r ≥ k, then we will be able to
conclude that G has a partial Grundy coloring using at least k colors. Let Q1 = {v1} and in
our construction v1 will be the dominator in Q1 (and our construction needs to ensure this
property; see Definition 6). Consider the construction of Q2. Let i be the smallest index in
{2, 3, . . . , n} for which there is a vertex w ∈ NG(v1) such that vi is not adjacent to w. Then,
we set Q2 = {vi, w}, and designate vi as the dominator in color class Cr−1 = Q2. Notice
that all the vertices in B1 = {v2, . . . , vi−1} are adjacent to all the vertices in NG(v1), and
hence they together form a biclique (with bipartition B1 and NG(v1)). This property will be
extended in building each Qjs and the required bicliques.

For the construction of Qj , we consider unprocessed vertices (i.e., the vertices that do not
belong to the previously constructed sets, i.e., to Q1 ∪ B1 ∪ . . . ∪ Qj−1 ∪ Bj−1) as follows. We
would now like to choose an unprocessed vertex vi′ , so that we can make vi′ the dominator
of Qj , and additionally, for each j′ ∈ [j − 1], we can include a neighbor of the dominator
from Qj′ to the set Qj . Note for us to do the above, we need to ensure that the vertices that
we add to Qj is an independent set in G, and all the vertices that we want to include in
the set Qj are outside Q1 ∪ . . . ∪ Qj−1. That is, among the unprocessed vertices, we choose
the first vertex vi′ with the following property: for each j′ ∈ [j − 1], we have a neighbor
wj′ of the previously constructed dominator in Qj′ such that wj′ /∈ Q1 ∪ . . . ∪ Qj−1 and
(vi′ , wj′) /∈ E(G); we set Qj = {vi′ , w1, . . . , wj−1}. We would like to mention that all the
dominators we construct are from the bipartition L and hence {w1, . . . , wj−1} ⊆ R. This
will imply that Qj is an independent set.

Moreover, by the choice of vi′ as the smallest vertex with the desired property, it follows
that for any vertex vr that appears before vi′ in the order σ and vr /∈ P = Q1 ∪ . . . ∪ Qj−1,
the vertex vr is adjacent to all the vertices in N(xj′) \ P , where xj′ is the dominator in Qj′ ,
for some j′ ∈ [j −1]. Then we add vr to Bj′ . Note that in the above process, we still maintain
the biclique property, by explicitly ensuing that Bj′ and N(xj′) \ (Q1 ∪ . . . ∪ Qj−1 ∪ Qj)
forms a biclique.

Description of the algorithm. We give a pseudocode of our algorithm in Algorithm 1.
First, the algorithm intializes the sets Bi and Qi to be the empty set, for all i ∈ [k] (see
Algorithm 1). Let σ = v1, v2, . . . , vn be an ordering of the vertex set L in the non-increasing
order of their degrees. Now, we want to construct the color classes Q1, Q2, . . . , Qk, iteratively,
such that (C1, C2, . . . , Ck) = (Qk, Qk−1, . . . , Q1) is a k-partial Grundy witness. At line 3,
we intialize with Q1 := {v1}, x1 := v1, and fix the index q = 2. Here, Q1 will be the color
class Ck with dominator vertex x1. Now consider an iteration of the while loop. The
algorithm checks if the set L \

( ⋃
j∈[q−1](Qj ∪ Bj)

)
is non-empty and executes the while

loop. At this point we have constructed sets Q1, . . . , Qq−1 such that (Qq−1, Qq−2, . . . , Q1)
is a (q − 1)-partial Grundy witness such that each xi is a dominator vertex in Qi. Let vr

be the first unprocessed vertex in L and P = ∪j∈[q−1]Qj by Lines 5 and 6. Now, we check
if we can construct the current color class Qq with vertex vr as a dominator vertex, and
for that, we need to add a neighbor wj (which is not added to any Qi′ before) for each
already discovered dominator xj such that wj is non-adjacent to vr. Now, if there exists
some j ∈ [q − 1] such that each neighbor of xj is a neighbor of vr , then we will not be able to
construct Qq with vertex vr in it. In that case, we choose such a value j and add vr to Bj(See
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Algorithm 1 Algorithm for one-sided bipartite structural result.

1 Initialize Bi := ∅ and Qi := ∅, for each i ∈ [k].
2 Let σ = v1, · · · , vn be an order of the vertices in L in the non-increasing order of

their degrees.
3 Let x1 := v1, Q1 := {x1} and q := 2.
4 while L ⊈

⋃
j∈[q−1](Qj ∪ Bj) do

5 Let vr be the first vertex in σ from L \
( ⋃

j∈[q−1](Qj ∪ Bj)
)
.

6 Let P =
⋃

j∈[q−1] Qj .
7 if there exists j ∈ [q − 1] such that N(xj) ⊆ P ∪ N(vr) then
8 choose an arbitrary j with this property and set Bj := Bj ∪ {vr}.
9 else

10 For each j ∈ [q − 1], N(xj) \ (P ∪ N(vr)) ̸= ∅. Then, for each j ∈ [q − 1]
arbitrarily pick a vertex wj from N(xj) \ (P ∪ N(vr)).

11 //(Notice that in the above, wj may be equal to wj′ for distinct j, j′ ∈ [q − 1]).
12 Set xq := vr.
13 Set Qq := {xq} ∪ {w1, · · · , wq−1}.
14 Set q := q + 1.
15 end
16 end
17 if q ≥ k + 1 then
18 Declare that partial Grundy coloring of G is at least k.
19 else
20 For all j ∈ [q − 1], let Aj be the bipartite graph induced on Bj union N(xj) \ P

and Sj be the graph induced on N [xj ], where P =
⋃

j∈[q−1] Qj .
21 Output A1, · · · , Aq−1 and S1, · · · , Sq−1

22 end

Line 8). Here, notice that vr is adjacent to all the vertices N(xj) \ P . We will maintain this
property for all the vertices added to Bj , i.e., Bj union N(xj) \

⋃
i Qi forms a biclique. Now

consider the case that the condition in the if statement in Line 7 is false. Then, we choose
a vertex wj ∈ N(xj) \ (P ∪ N(vr)) for each j ∈ [q − 1], by line 11 and set the vertex vr as
the dominator for Qq, that is, Qq := {xq} ∪ {w1, · · · , wq−1}, at Line 13. Notice that Qq

is an independent set because there is no edge between x1 and a vertex in {w1, . . . , wq−1},
and {w1, . . . , wq−1} is a subset of R, the right part of the bipartition of G. We repeat the
iteration until one of the while loop conditions at line 4 fails. Next, if q ≥ k + 1, we conclude
that G has a partial Grundy coloring using k colors by line 18, because (Qq−1, . . . , Q1) is a
(q − 1)-partial Grundy witness, where q − 1 ≥ k. Otherwise, by line 20, let Aj be the graph
induced on Bj ∪ (N(xj) \ P ) and Sj be the graph induced on N [xj ], for each j ∈ [q − 1].
Recall that Aj is a biclique. It is easy to see that Sj is a biclique, because G is a bipartite
graph. At line 21, the algorithm outputs the set of graphs A1, · · · , Aq−1 and S1, · · · , Sq−1.

The number of iterations of the while loop is at most n and each step in the algorithm
takes polynomial time, the total running time of the algorithm is polynomial in the input
size. Next, we prove the correctness of the algorithm.

▶ Lemma 10. Algorithm 1 is correct.

Proof. Let q⋆ be the value of q at the end of the algorithm. To prove the correctness of the
algorithm, first, we prove the following claim.
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V \ Ai

v

N(xi) \ P

Ai Bi

Figure 2 Here the vertex v ∈ Bi in the biclique Ai (right side). The number of neighbors of v

outside Ai (blue edges) cannot be more than |P | as dG(v) ≤ dG(xi) = |NG(xi)| and v has |N(x) \ P |
neighbours in the biclique Ai.

▷ Claim 11. The following statements are true.
(i) For each i ∈ [q⋆ − 1], Qi is an independent set and Qi ̸= ∅.
(ii) For each i ∈ [q⋆ − 1] and j ∈ [i − 1], N(xj) ∩ Qi ̸= ∅.
(iii) For each i ∈ [q⋆ −1] and v ∈ Bi, v is adjacent to all the vertices in N(xi)\(

⋃
j∈[q⋆−1] Qj)

and dG(v) ≤ dG(xi).

Proof. We prove the statements by induction on i. The base case is when i = 1. Clearly,
Q1 = {x1} and hence statement (i) is true. Statement (ii) is vacuously true. Next, we prove
statement (iii). Notice that in any iteration of the while loop, in Step 8, we may add a
vertex vr to B1. If this happens, then we know that N(x1) ⊆ P ∪ N(vr), where P is a subset
of

⋃
j∈[q⋆−1] Qj . That is, all the vertices in N(x1) \ P are adjacent to vr. This implies that

vr is adjacent to all the vertices in N(x1) \ (
⋃

j∈[q⋆−1] Qj). Since x1 is the vertex with the
maximum degree, we have that dG(vr) ≤ d(x1).

Next, for the induction step, we assume that the induction hypothesis is true for i − 1,
and we will prove that the hypothesis is true for i. Consider the iteration h⋆ of the while
loop when q = i and Steps 11-14 is executed. Let vr be the vertex mentioned in Step 5 during
that iteration. The vertices w1, · · · , wq−1 belongs to R (the right side of the bipartition of
G) and hence {w1, · · · , wq−1} is an independent set. Also, notice that each wj does not
belong to N(vr) (See Step 11). Hence, Qq := {vr} ∪ {w1, · · · , wq−1} is an independent
set and Qq ̸= ∅. Thus, we proved statement (i). Again, notice that wj ∈ N(xj) for all
j ∈ [q − 1] (See Step 11). Thus, statement (ii) follows. Next, we prove statement (iii), which
is similar to the proof of it in the base case. Notice that in any iteration of the while loop
(after the iteration h⋆), in Step 8, we may add a vertex vr′ to Bi. If this happens, then
we know that N(xi) ⊆ P ∪ N(vr′), where P is a subset of

⋃
j∈[q−1] Qj . That is, all the

vertices in N(xi) \ P are adjacent to vr′ . This implies that vr′ is adjacent to all the vertices
in N(xi) \ (

⋃
j∈[q−1] Qj). Since xi ∈ Qi, considered in iteration h⋆, dG(vr′) ≤ dG(xi) (See

Step 5). This completes the proof of the claim. ◁

Now suppose q⋆ ≥ k + 1. Then, by Statements (i) and (ii) in Claim 11, we get that
(Qk, · · · , Q1) is a partial Grundy coloring of the graph induced on

⋃
j∈[q⋆−1] Qj . Thus, if the

algorithm executes Step 18, then it is correct because of Observation 5.
Now suppose q⋆ ≤ k. Then the algorithm executes Step 21 and outputs the sets

A1, . . . , Aq⋆−1 and S1, . . . , Sq⋆−1. Statement (iii) in Claim 11 implies that each Aj is a
biclique in G, where j ∈ [q⋆ − 1]. Also, note that Sj is a biclique in G as it is induced
on the set N [xj ], for each j ∈ [q⋆ − 1]. Let F be the union of the edges in the bicliques
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A1, . . . , Aq⋆−1 and S1, . . . , Sq⋆−1. Next, we prove that for any v ∈ L, dG−F (v) ≤ k2. Let
X = {x1, . . . , xq⋆−1}. It is easy to see that |Qj | ≤ k and L ∩ Qj = {xj} ⊆ X, for all
j ∈ [q⋆ − 1] (See Steps 11-13). Hence, |

⋃
j∈[q⋆] Qj | ≤ k2. Let v be an arbitrary vertex in L.

Note that if v ∈ X, the degree of v in G − F is zero (by the definition of Sj). Next, suppose
that v ∈ L \ X. Since L ⊆

⋃
j∈[q⋆−1](Qj ∪ Bj) (this is the condition for while loop to exit)

and L ∩ Qj ⊆ X for all j ∈ [q⋆ − 1], v belongs to Bi for some i ∈ [q⋆ − 1]. By statement (iii)
in Claim 11, v is adjacent to all the vertices in N(xi) \ (

⋃
j∈[q⋆−1] Qj) and dG(v) ≤ dG(xi).

Recall that the biclique Ai is the graph with bipartition Bi and N(xi) \ (
⋃

j∈[q⋆−1] Qj).
Moreover v ∈ Bi and dG(v) ≤ dG(xi) = |NG(xi)|. This implies that the number of neighbors
of v that does not belong to Ai is at most |

⋃
j∈[q⋆−1] Qj |, which is upper bounded by k2.

Therefore, the degree of v in G − F is at most k2. See Figure 2 for an illustration. This
concludes the proof. ◀

3.2 FPT Algorithm for Partial Grundy Coloring
In this section, we design an FPT algorithm A for Partial Grundy Coloring when the
input has a structure dictated the second item of Lemma 9. Then, we explain how to get an
FPT algorithm for Partial Grundy Coloring on general graphs using A and Theorem 2.
Moreover, our algorithm A will provide a faster algorithm for Partial Grundy Coloring
on d-degenerate graphs, improving the result in [1]. Toward the first task, we define the
following problem.

Structural Partial Grundy Coloring (SPGC )
Input: Positive integers k, d, ℓ ∈ N, a graph G, and ℓ bicliques A1, . . . , Aℓ in G such
that G − F is d-degenerate, where F is the union of the edges in the above bicliques.
Question: Decide if there is a partial Grundy coloring for G using at least k colors.

First, we design a randomized polynomial time algorithm A1 for SPGC with a success
probability at least (k(d+1))−2k2−k ·2−ℓk. We increase the probability of success to a constant
by running A1 multiple times. Finally, we explain the derandomization of our algorithm.
Then we prove Theorem 1 using this algorithm and our structural result (Theorem 2). To
design the algorithm A1, we use the following result of Lokshtanov et al. [28].

▶ Proposition 12 (Lemma 1.1. [28]). There is a linear-time randomized algorithm that,
given a d-degenerate graph H and an integer k, outputs an independent set Y such that
for any independent set X in H with |X| ≤ k, the probability that X ⊆ Y is at least((

k(d+1)
k

)
· k(d + 1)

)−1
.

The algorithm A1 has the following steps.
1. Color all vertices in V (G) uniformly and independently at random with colors from the

set [k]. Let the obtained coloring be ϕ : V (G) → [k], and Zi = ϕ−1(i), for each i ∈ [k].
2. For each i ∈ [ℓ], let Ai = (Li ⊎Ri, Ei). For each j ∈ [k] and i ∈ [ℓ], uniformly at randomly

assign Pj,i := Li or Pi := Ri. That is, with probability 1
2 , Pj,i := Li and with probability

1
2 , Pj,i := Ri. Let Dj =

⋃
i∈[ℓ] Pj,i.

3. Now for each j ∈ [k], we apply the algorithm in Proposition 12 for (G[Zj − Dj ], k) to
obtain an independent set Yj .

4. If (Y1, . . . , Yk) is a k-partial Grundy witness of G, then output Yes, else, output No.
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Since the algorithm in Proposition 12 runs in linear time, the algorithm A1 can be
implemented to run in linear time because Z1, . . . , Zk is a partition of V (G). Clearly, if the
algorithm A1 outputs Yes, then G has a k-Partial Grundy witness and hence G has a partial
Grundy coloring using at least k colors. We can prove that if G has a k-Partial Grundy
witness the algorithm A1 outputs Yes with probability (k(d + 1))−2k2−k · 2−ℓk.

Also, by running A1, 3 · (k(d + 1))2k2+k2ℓk times and outputting Yes if at least one of
the runs outputs a Yes, and outputs No, otherwise, we can boost the success probability to
2/3, and thus obtain the following result.

▶ Theorem 13. There is a randomized algorithm for SPGC running in time O((k(d +
1))2k2+k · 2ℓk · (m + n)). In particular, if (G, k) is a no-instance then with probability 1 the
algorithm outputs No; and if (G, k) is a yes-instance then with probability 2/3 the algorithm
outputs Yes.

Theorem 2 and 13 imply the following theorem.

▶ Theorem 14. There is a randomized algorithm for Partial Grundy Coloring running
in time 2O(k4)nO(1). In particular, if (G, k) is a no-instance then with probability 1 the
algorithm outputs No; and if (G, k) is a yes-instance then with probability 2/3 the algorithm
outputs Yes.

Proof Sketch. First we run the algorithm mentioned in Theorem 2. If it concludes that G

has a partial Grundy coloring with at least k colors, then we output Yes. Otherwise, we
get at most 2k3 induced bicliques A1 · · · , Aℓ in G such that the following holds. For any
v ∈ V (G), the degree of v in G − F is at most k3, where F is the union of the edges in the
above bicliques. That is the degeneracy of G − F is at most k3. Then, we apply Theorem 13,
and ouputs accordingly. ◀

The derandomization of our algorithm can be found in the full version.

4 FPT Algorithm for Grundy Coloring on Ki,j-free Graphs

This section aims to prove Theorem 3. Consider fixed i, j ∈ N \ {0}, where i ≥ j. Recall
that a graph is Ki,j-free if it does not contain a subgraph isomorphic to Ki,j . We call the
special case of Grundy Coloring where the input graph is Ki,j-free, Ki,j-Free Grundy
Coloring. Let (G, k) be an instance of Ki,j-Free Grundy Coloring. We begin by
intuitively explaining the flow of our algorithm.

Consider a Grundy coloring c : V (G) → [k′] of G, where k′ ≥ k, and for each z ∈ [k],
c−1(z) ̸= ∅. Furthermore, for z ∈ [k′], let Cz = c−1(z). Let us focus on the first k color
classes, and for z ∈ [k], arbitrarily fix a vertex vz ∈ Cz. (Note that vz has a neighbor in Cz′ ,
for each z′ ∈ [z − 1].) We next intuitively describe construction, for each z ∈ [k], a set Wz

initialized to {vz} as follows. Basically, for each vz, add an arbitrarily chosen neighbor of it
in color class Cz′ , for every z′ < z. We do the above process exhaustively; whenever we add
a vertex to a set Wz, we add an arbitrarily chosen neighbor of it from each color class Cz′ to
Wz′ , where z′ < z. Then, let W = ∪z∈[k]Wz; we will call such a set W a k-Grundy set for G

and we will show that such a set of size at most 2k−1 exists (for yes instances). For z ∈ [k],
let W≤z = ∪z′∈[z]Wz′ and W>z = ∪z′∈[k]\[z]Wz′ . Note that c|W is a k-Grundy coloring of
G[W ]. Also, we will show that G has a Grundy coloring using at least k colors if and only
if some subgraph of G has a Grundy coloring using exactly k colors. We remark that the
above result and the existence of W are the same as the results of Gyárfás et al. [22] and
Zaker [38], although, for the sake of convenience, we state it here slightly differently. If we
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Figure 3 An illustration of a graph G that admits a 4-Grundy coloring (on the left) and a
4-Grundy-witness ω (on the right).

can identify all the vertices in W (or some other k-Grundy set), then we will be done. The
first step of our algorithm will be to use the technique of color coding to randomly color the
vertices of G using k colors so that, for each z ∈ [k], v ∈ Wz is colored z; such a coloring will
be a nice coloring and it will be denoted by χ.

The next step of our algorithm is inspired by the design of FPT algorithms based on
computations of “representative sets” [19,30]. To this end, we will interpret W in a “tree-like”
fashion. With this interpretation, in a bottom-up fashion, for each z ∈ [k] and v ∈ Xz,
we will compute a family F ′

z,v, so that, if v ∈ Wz, then there will be W ′ ∈ F ′
z,v so that

W ′ ∪ W>z is also a k-Grundy set for G. We will now formalize the above steps.

Grundy Tree & Grundy Witness. We recall the Definition 4 from Section 1, and obtain
some properties regarding it.

▶ Observation 15 (♠). For k ∈ N \ {0}, for the k-Grundy tree (Tk, ℓk), |V (Tk)| = 2k−1.

▶ Observation 16 (♠). Consider k ∈ N \ {0} and the k-Grundy tree (Tk, ℓk). We have
|ℓ−1(k)| = 1 and for each z ∈ [k − 1], |ℓ−1

k (z)| = 2k−z−1.

Next, we define the notion of k-Grundy witness in a graph G.

▶ Definition 17. Consider k ∈ N\{0} and a graph G. A k-Grundy witness for G is a function
ω : V (Tk) → V (G), where (Tk, ℓk) is the k-Grundy tree, such that: 1) for each z ∈ [k],
{ω(t) | t ∈ V (Tk) and ℓk(t) = z} is an independent set in G, 2) for each t, t′ ∈ V (Tk), if
ℓk(t) ̸= ℓk(t′) then ω(t) ̸= ω(t′), and 3) for each (t, t′) ∈ A(Tk), we have {ω(t), ω(t′)} ∈ E(G).

Recall that for k ∈ N\{0}, for the k-Grundy tree (Tk, ℓk), Tk is the tree obtained by adding
a root vertex rk attached to the roots of (pairwise vertex disjoint) trees Tk−1, Tk−2, · · · , T1,
where for each z ∈ [k − 1], (Tz, ℓz) is the z-Grundy tree. We have the following observation.

▶ Observation 18 (♠). Consider k ∈ N \ {0}, a graph G and a k-Grundy witness ω :
V (Tk) → V (G) for G. For each z ∈ [k], ω|V (Tz) is a z-Grundy witness for G.

The next observation is a partial Grundy counterpart of Observation 5.

▶ Observation 19 (♠). Consider a graph G, any induced subgraph Ĝ of it, and an integer
k ∈ N. If Ĝ has a Grundy coloring that uses exactly k colors, then G has a Grundy coloring
that uses at least k colors.
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In the following two lemmas, we show that the existence of a k-Grundy witness for a
graph is equivalent to the graph admitting a Grundy coloring with at least k colors.

▶ Lemma 20. For any k ∈ N \ {0} and a graph G, if G has a k-Grundy witness, then G has
a Grundy coloring with at least k colors.

Proof. Consider a graph G and any k ∈ N\{0}. For a k-Grundy witness ω : V (Tk) → V (G) of
G, let V̂ω = {ω(t) | t ∈ V (Tk)}, and for each z ∈ [k], let V̂ω,z = {ω(t) | t ∈ V (Tk) and ℓk(t) =
z}. Note that from item 2 of Definition 17, V̂ω,1, V̂ω,2, · · · , V̂ω,k is a partition of V̂ω, where
none of the parts are empty. Let cω : V̂ω → [k] be the function such that for each z ∈ [k] and
v ∈ V̂ω,z, we have cω(v) = q.

For each k ∈ N \ {0} and a k-Grundy witness ω : V (Tk) → V (G) of G, we will prove by
induction (on k) that cω is Grundy coloring of G[V̂ω] using k colors. The above statement,
together with Observation 19, will give us the desired result.

The base case is k = 1, where T1 has exactly one vertex, r1. For any 1-Grundy witness,
ω of G, note that cω(ω(r1)) = 1 is a Grundy coloring for G[{ω(r1)}] using 1 color. Now
for the induction hypothesis suppose that for some k̂ ∈ N \ {0, 1}, for each 0 < k < k̂, the
statement is true. Now we will prove the statement for k = k̂, and to this end, we consider
a k-Grundy witness ω : V (Tk) → [k], where rk is the root of Tk. Recall that Tk is the tree
obtained by adding a root vertex rk attached to the roots of (pairwise vertex disjoint) trees
Tk−1, Tk−2, · · · , T1, where for each z ∈ [k − 1], (Tz, ℓz) is the z-Grundy tree, and Tz is rooted
at rz. Let V ′ = V̂ω \ V̂ω,k, and consider a vertex v ∈ V̂ω,z∗ , where z∗ ∈ [k − 1]. We will argue
that for each z′ ∈ [z∗ − 1], NG(v) ∩ V̂ω,z′ ̸= ∅. Note that there must exists z ∈ [k − 1] and
t ∈ V (Tz) such that ω(t) = v and ℓz(v) = z∗, and we arbitrarily choose one such z and t.
Let Vz = {ω(t) | t ∈ V (Tz)}. From Observation 18, ωz = ω|V (Tz) is a z-Grundy witness for
G. Thus, from our induction hypothesis, cωz

= cω|Vz
is a Grundy coloring for G[Vz]. From

the above we can conclude that for each q′ ∈ [z∗ − 1], NG(v) ∩ V̂ω,z′ ̸= ∅. Now consider the
vertex ω(rk) = v∗

k and any z ∈ [k − 1]. Note that ℓk(rz) = z and from item 3 of Definition 17,
we can obtain that {v∗

k, ω(rz)} ∈ E(G). From the above discussions, we can obtain that cω

is Grundy coloring of G[V̂ω] using at least z colors. This concludes the proof. ◀

▶ Lemma 21. For any k ∈ N \ {0} and a graph G, if G has a Grundy coloring with at least
k colors, then G has a k-Grundy witness.

Proof. Consider a Grundy coloring c : V (G) → [k′] of G with k′ ≥ k colors, and for
each q ∈ [k′], let Cq = c−1(q). We construct a Grundy witness ω : V (Tk) → V (G) by
processing labels of Tk starting at k and iteratively proceeding to smaller labels as follows
while maintaining the below invariants.
Pre-condition: When we begin processing a label q ∈ [k − 1], for each t ∈ V (Tk) with
ℓk(t) ≥ q, we have fixed the vertex ω(t).
Post-condition: After processing label q ∈ [k], we have fixed, for each t ∈ V (Tk) with
ℓk(t) ≥ q, and t′ ∈ NTk

[t], the vertex ω(t′); and these are the only vertices in Tk for which
the vertex in G assigned by ω is determined.

Note that the pre-condition is vacuously satisfied for q = k. Recall that Tk is the tree
obtained by adding a root vertex rk attached to the roots rk−1, rk−2, · · · , r1 of (pairwise
vertex disjoint) trees Tk−1, Tk−2, · · · , T1, respectively, where for each q ∈ [k − 1], (Tq, ℓq) is a
q-Grundy tree. Pick any vertex vk ∈ Ck, and set ω(rk) := vk and for each q ∈ [k − 1], set
ω(rq) := wk

q , where wk
q is an arbitrarily chosen neighbor of vk from Cq (which exists as c is a

Grundy coloring). After the above step, the post-condition is satisfied for q = k.
Now we (iteratively, in decreasing order) consider q ∈ [k − 1] \ {1}. From the pre-

condition for q, we have fixed, for each t ∈ V (Tk) with ℓk(t) ≥ q, the vertex ω(t). Consider
t ∈ V (Tk) with ℓk(t) = q and let vt = ω(t). Let T̂q be the subtree of Tk rooted at t, and let
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ℓ̂q = ℓk|
V (T̂q). Notice that (T̂q, ℓ̂q) is a q-Grundy tree, where T̂q is the tree obtained from by

adding edge between t and the roots r̂q−1, r̂q−2, · · · , r̂1 of T̂q−1, T̂q−2, · · · , T̂1, respectively,
where (T̂q′ , ℓk|

V (T̂q′ )) is a q′-Grundy tree, for each q′ ∈ [q − 1]. For each q′ ∈ [q], let ŵq
q′ be

an arbitrarily chosen vertex from NG(v) ∩ Cq′ , and we set ω(r̂q′) = ŵq
q′ . Notice that after the

above step, the post-condition is satisfied for q, and the pre-condition is satisfied for q − 1.
After we are done processing each q ∈ [k] \ {1}, the post-condition for q = 2 (and the

pre-condition of q = 1 implies that for each t ∈ V (Tk), we have determined the vertex ω(t)).
Moreover, the construction of ω implies that all the three conditions in Definition 17 are
satisfied. This concludes the proof. ◀

We next summarize the result we obtain from the above two lemmas.

▶ Lemma 22. Consider any k ∈ N \ {0} and a graph G. The graph G has a k-Grundy
witness if and only if G has a Grundy coloring with at least k colors.

Color Coding of G. We will next use the above lemma to simplify our job in the following
sense. Let ω : V (Tk) → V (G) be a (fixed) k-Grundy witness of G (if it exists), where (Tk, k)
is a k-Grundy tree. Let V̂ω = {ω(t) | t ∈ V (Tk)}, and for each q ∈ [k], let V̂ω,q = {ω(t) | t ∈
V (Tk) and ℓk(t) = q}. Roughly speaking, our new objective will be to find the vertices in
V̂ω and say that G[V̂ω] admits a Grundy coloring with at least k colors, using which we can
conclude that G admits a Grundy coloring with at least k colors. We will use the technique
of color coding introduced by Alon et al. [2], to color the vertices in V̂ω “nicely” as follows.
Color each vertex in G uniformly at random using a color from [k], and let χ : V (G) → [k]
be this coloring. A nice coloring is the one where, for each q ∈ [k], the coloring assigns the
color q to all the vertices in V̂ω,q.

We will work with the assumption that χ is a nice coloring of G, and for each q ∈ [k],
let Xq = χ−1(q). Our objective will be to look for a k-Grundy witness ω̂ : V (Tk) → V (G),
where (Tk, k) is a k-Grundy tree, such that for each q ∈ [k] and t ∈ V (Tk) with ℓk(t) = q,
we have ω̂(t) ∈ Xq. To this end, we will store a “Grundy representative family” for each
vertex in a bottom-up fashion, starting from q = 1. The definition of such a representative is
inspired by the q-representative families [19, 30], although here we need a “vectorial” form of
representation. To this end, we introduce the following notations and definitions.

Grundy Representative Sets. Recall we have the coloring χ of G with color classes Xz =
χ−1(z), for z ∈ [k]. A vertex subset A ⊆ V (G) is χ-independent if for each z ∈ [k], A ∩ Xz is
an independent set in G. For p ∈ N, a family of vertex subsets F is a p-family if each set in
F has size at most p and each A ∈ F if χ-independent. We will only be working with vectors
all of whose entries are from N without explicitly stating it. For a vector −→q = (q1, q2, · · · , qk),
sum(−→q ) denotes the number

∑
z∈[q] qz. For a vector −→q = (q1, q2, · · · , qk) and B ⊆ V (G), we

say that the size of B is −→q , written as |B| = −→q , if for each z ∈ [k], |B ∩ Xz| = qz. For vertex
subsets A and B, A fits B if A ∪ B is χ-independent. For two vectors −→q1 = (q1

1 , q1
2 , · · · , q1

k)
and −→q2 = (q2

1 , q2
2 , · · · , q2

k), and ⋄ ∈ {≤, ≥, >, <, =}, we write −→q1 ⋄ −→q2 if for each z ∈ [k], we
have q1

z ⋄ q2
z . We next define the notion of −→q -Grundy representation.

▶ Definition 23. Consider p ∈ N, a vector −→q = (q1, q2, · · · , qk), and a p-family F of vertex
subsets of G. For a sub-family F ′ ⊆ F , we say that F ′ −→q -Grundy represents F , written as
F ′ ⊆−→q

grep F , if the following holds. For any set B of size −→q , if there is A ∈ F that fits B,
then there is A′ ∈ F ′ that fits B. In the above, F ′ is a −→q -Grundy representative for F .

Next, we obtain some properties regarding −→q -Grundy representatives.
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▶ Observation 24 (♠). Consider p ∈ N, a vector −→q = (q1, q2, · · · , qk), and any two p-families
F1 and F2. If F ′

1 ⊆−→q
grep F1 and F ′

2 ⊆−→q
grep F2, then F ′

1 ∪ F ′
2 ⊆−→q

grep F1 ∪ F2.

Consider p ∈ N and v ∈ V (G). For a family F over V (G), F +v denotes the family
{A ∪ {v} | A ∈ F and A ∪ {v} is χ-independent}. Similarly, F −v denotes the family
{A \ {v} | A ∈ F}. A p-family F is a (p, v)-family if for each A ∈ F , we have v ∈ A.

▶ Observation 25 (♠). Consider p ∈ N, a vector −→q = (q1, q2, · · · , qk), a vertex v ∈ V (G)
and a (p, v)-family F . Let

−→
h be the vector obtained from −→q by increasing its χ(v)th coordinate

by 1. If F ′ ⊆
−→
h
grep F −v and F ′′ ⊆−→q

grep F −v, then (F ′ +v) ∪ (F ′′ +v) ⊆−→q
grep F .

For a p1-family F1 and a p2-family F2, we define a (p1 + p2)-family, F1 ⋆ F2 = {A1 ∪ A2 |
A1 ∈ F1, A2 ∈ F2, and A1 ∪ A2 is χ-independent}. The following lemma will be helpful in
obtaining a −→q -representative for F1 ⋆ F2.

▶ Lemma 26. Consider a p1-family F1, a p2-family F2, and a vector −→q = (q1, q2, · · · , qk),
where sum(−→q ) + p1 + p2 ≤ 2k−1. Let F ′

1 ⊆ F1 be a p1-family such that for every vector
−→q1 ≥ −→q with sum(−→q1) ≤ sum(−→q ) + p2, F ′

1 ⊆−→q1
grep F1. Similarly, consider a p2-family

F ′
2 ⊆ F2 such that for every vector −→q2 ≥ −→q with sum(−→q2) ≤ sum(−→q ) + p1, F ′

2 ⊆−→q2
grep F2.

Then, F ′
1 ⋆ F ′

2 ⊆−→q
grep F1 ⋆ F2.

Proof. Consider any B ⊆ V (G) of size −→q for which there is A ∈ F1 ⋆ F2, such that A fits
B. As A ∈ F1 ⋆ F2, there must exist sets A1 ∈ F1, A2 ∈ F2, such that A1 ∪ A2 = A.

Let
−→
δ1 = (δ1

z = |(A2 ∩ Xz) \ B|)z∈[k]. Note that |B ∪ A2| = −→q +
−→
δ1 , A1 fits B ∪ A2 and

sum(−→q ) + sum(
−→
δ1) ≤ sum(−→q ) + p2. By the premise of the lemma, there exist A′

1 ∈ F ′
1 such

that A′
1 fits B ∪A2, as F ′

1 ⊆−→q +
−→
δ1

grep F1. The above implies that A2 fits B ∪A′
1, where A′

1 ∈ F ′
1.

Let
−→
δ2 = (δ2

z = |(A′
1 ∩ Xz) \ B|)z∈[k], and note that |B ∪ A′

1| = −→q +
−→
δ2 , A2 fits B ∪ A′

1

and sum(−→q ) + sum(
−→
δ2) ≤ sum(−→q ) + p1. Again, as F ′

2 ⊆−→q +
−→
δ2

grep F2, there exists A′
2 ∈ F ′

2
such that A′

2 fits B ∪ A′
1. The above discussions imply that, A′

1 ∈ F ′
1, A′

2 ∈ F ′
2, and thus

A′
1 ∪ A′

2 ∈ F ′
1 ⋆ F ′

2, where A′
1 ∪ A′

2 fits B. This concludes the proof. ◀

Recall that G is a Ki,j-free graph, where i ≥ j. Consider any computable function f(k).
Let ηf(k) := i · f(k) · k; where we skip the subscript f(k) when the context is clear. Also, for
p ∈ N, let αp := 3 · k · (pη)i+1; again we skip the subscript p, when the context is clear. We
next state the main lemma, which lies at the crux of our algorithm.

▶ Lemma 27 (♠). Consider any computable function f : N → N\{0}. There is an algorithm
that takes as input k ∈ N \ {0}, p ∈ N, a vector −→q = (q1, q2, · · · , qk), and a p-family F of
vertex subsets of a Ki,j-free graph G on n vertices with a coloring χ : V (G) → [k], where
p + sum(−→q ) ≤ f(k). In time bounded by O(α2p+sum(−→q ) · p · | F |) we can find F ′ ⊆ F with at
most α2p+sum(−→q ) sets such that F ′ ⊆−→q

grep F .

In the remainder of this section, we prove Theorem 3, assuming the correctness of
Lemma 27.

Some Useful Notations. For z ∈ N \ {0} and z′ ∈ [z], let γz,z′ be the number of vertices
with label z′ in the z-Grundy tree (Tz, ℓz), i.e., γz,z′ = |ℓ−1

z (z′)|.
Let −→q ∗ = −→γk := (γk,1, γk,2, · · · , γk,k). We will define a vector −→qz

∗ = (q∗
z,1, q∗

z,2, · · · , q∗
z,k),

for every z ∈ [k]. Intuitively speaking, the z′th entry of −→qz
∗ will denote the number of vertices

with label z′ appearing in Tk after removing exactly one subtree rooted at a vertex with label
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z. Formally, for each z′ ∈ {z + 1, z + 2, · · · , k}, we have q∗
z,z′ = γk,z′ , and for each z′ ∈ [z],

q∗
z,z′ = γk,z′ − γz,z′ . For z ∈ [k], we let −→0z be the vector of dimension k where the zth entry

is 1, and all the other entries are 0.
For a tree T̂ rooted at r and t ∈ V (T̂ ), we let T̂ t be the subtree of T̂ rooted at t, i.e.,

V (T̂ t) = {t′ ∈ V (T̂ ) | t′ = t, or t′ is a descendant of t in T̂} and T̂ t = T̂ [V (T̂ t)].
For a set W ⊆ V (G), we say that W is a k-Grundy set if there is a k-Grundy witness

ω : V (Tk) → W for G. Moreover, W is minimal if no proper subset W ′ ⊂ W is a k-Grundy
set for G. For a k-Grundy set W and a k-Grundy witness ω : V (Tk) → W for G, for
t ∈ V (Tk), we let Wsub,t = {ω(t′) | t′ ∈ V (T t

k)} and Wexc,t = {ω(t′) | t′ ∈ V (Tk) \ V (T t
k)}.

Recall that we have a graph G and a coloring χ : V (G) → [k], where for z ∈ [k], we
have Xz = χ−1(z). For z ∈ [k] and v ∈ V (G), we define Fz,v := {W ⊆ ∪z′∈[z]Xz′ | v ∈
W, W is χ-independent and z ≤ |W | ≤ 2z−1}.

Description of the Algorithm. The objective of our algorithm will be to compute, for each
z ∈ [k] and v ∈ Xz, a family F ′

z,v ⊆ Fz,v; starting from z = 1 (and then iteratively, for other
values of z in increasing order), satisfying the following constraints:
Size Constraint. | F ′

z,v | ≤ α2k+1.
Correctness Constraint. For any z ∈ [k] and v ∈ Xz, the following holds:

1. Each A ∈ F ′
z,v is a z-Grundy set in G.

2. Consider any minimal k-Grundy set W , such that v ∈ W (if it exists). Furthermore,
let ω : V (Tk) → W be a k-Grundy witness for G. For any t ∈ V (Tk) with ω(t) = v,
where −→qt = |Wexc,t|, there is W ′ ∈ F ′

z,v ⊆ Fz,v such that Wexc,t ∪ W ′ is a k-Grundy
set in G, i.e., F ′

z,v ⊆−→qt
grep Fz,v.

Base Case. We are in our base case when z = 1; note that [20] = {1}. For each v ∈ X1, set
F ′

1,v := F1,v = {{v}}. Note that F ′
1,v satisfies both the size and the correctness constraints.

Recursive Formula. Consider z ∈ [k] \ {1} and v ∈ Xz. We suppose that for each
z′ ∈ [z − 1] and v′ ∈ Xz′ , we have computed F ′

z′,v′ that satisfies both the size and the
correctness constraints.

For each z′ ∈ [z − 1], we create a family Fz,v,z′ , initialized to ∅ as follows. For each
u ∈ Xz′ ∩ NG(v) and W ∈ F ′

z′,u, if W ∪ {v} is χ-independent and |W ∪ {v}| ≤ 2z−1, then
add W ∪ {v} to Fz,v,z′ . Note that | Fz,v,z′ | ≤ n · α2k+1

p , where p = 2z′−1. Using Lemma 27,
for each vector −→q ≤ −→qz

∗, we compute F ′
z,v,z′,−→q ⊆−→q

grep Fz,v,z′ , where | F ′
z,v,z′,−→q | ≤ α2k , and

set F ′
z,v,z′ = ∪−→q ≤−→qz

F ′
z,v,z′,−→q . Note that F ′

z,v,z′ ≤ 2(k−1)k ·α2k ≤ α2k+1 and we can compute
it in time bounded by O(α2k+1 · 2k−1 · | Fz,v,z′ |).

Next we will iteratively “combine and reduce” the families F ′
z,v,z′ , for z′ ∈ [z], to obtain

a family F̂z,v ⊆ Fz,v as follows. We set F̂z,v,1 := F ′
z,v,1. Iteratively, (in increasing order),

for each z′ ∈ [z − 1] \ {1}, we do the following:
1. Set F̃z,v,z′ := F̂z,v,z′−1 ⋆ F ′

z,v,z′ .
2. Compute F̂z,v,z′,−→q ⊆−→q

grep F̃z,v,z′ , for each −→q ≤ −→qz′ = −→γk −
( ∑

ẑ∈[z′](
−→γk − −→q

ẑ
∗)

)
− −→0z , and

set F̂z,v,z′ = ∪−→q ≤−→qz′ F̂z,v,z′,−→q . Note that |F̂z,v,z′ | ≤ α2k+1 and it can be computed in
time bounded by O(α2k+1 · 2k−1 · |F̃z,v,z′ |).

We add each A ∈ F̂z,v,z−1 to F ′
z,v, which is a z-Grundy set in G (note that since the size

of each set is bounded by 2k−1, we can easily do it in the allowed amount of time). In the
following lemma, we show that F ′

z,v satisfies the correctness constraints.

▶ Lemma 28. F ′
z,v satisfies the correctness constraint.
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Proof. Consider any v ∈ Xz and a minimal k-Grundy set W , such that v ∈ W (if it
exists) and let ω : V (Tk) → W be a k-Grundy witness for G. Next consider any t ∈ V (Tk)
with ω(t) = v. We will argue that, there is W ′ ∈ F ′

z,v such that Wexc,t ∪ W ′ is a k-
Grundy set in G. For each z′ ∈ [z − 1], let tz′ be the child of t in Tk with ℓk(tz′) = z′

and vz′ = ω(tz′). Note that for each z′ ∈ [z − 1], vz′ ∈ Xz′ . For each z′ ∈ [z − 1], let
Âz′ = {ω(t′) | t′ ∈ V (T tz′

k )}, and note that |Âz′ | ≤ 2z′−1. Now we iteratively take the
union of the above sets as follows. For each z′ ∈ [z − 1], let Az′ = ∪

ẑ∈[z′]Âẑ
. Now for each

z′ ∈ [z − 1], we construct a subset, Bz′ of W that contains ω(t′), for each t′ ∈ V (Tk) that
does not belong to the subtrees rooted at any of the vertices t1, t2, · · · , tz′ . Formally, for
z′ ∈ [z − 1], let Bz′ = {ω(t′) | t′ ∈ V (Tk) \

( ⋃
z′′∈[z′] V (T tz′′

k )
)
}. Furthermore, let −→sz′ be the

size of Bz′ . Notice that for each z′ ∈ [z − 1], all of the following holds:
1. −→sz′ ≤ −→qz′ ,
2. |Az′ | ≤

∑
ẑ∈[z′] 2ẑ−1,

3. |Âz′ | ≤ 2z′−1 and Âz′ ∈ Fz′,vz′ ,
4. Az′ ∪ Bz′ = W , and thus, Az′ fits Bz′ .
We will now iteratively define sets A′

1, A′
2, · · · , A′

z−1 and functions ω1, ω2 · · · , ωz−1, and
we will ensure that, for each z′ ∈ [z − 1], we have: i) ωz′ : V (Tk) → A′

z′ ∪ Bz′ is a k-
Grundy witness for G, ii) for each z′ ∈ [z − 1] and t′ ∈ V (Tk) \

( ⋃
z′′∈[z′] V (T tz′′

k )
)
, we have

ωz′(t′) = ω(t′), iii) A′
z′ ∈ F̂z,v,z′ , and iv) for each z′′ ∈ [z′], there is a minimal z′′-Grundy

set A′
z′,z′′ ⊆ A′

z′ , where the unique vertex in A′
z′,z′′ ∩ Xz′′ is a neighbor of v.

Recall that z ≥ 2 and F̂z,v,1 = F ′
z,v,1 ⊆ Fz,v,1. Also, we have Â1 = A1 = {u′}, for some

u′ ∈ NG(v) ∩ X1, and A1 ∪ B1 = W is a k-Grundy set. Thus, there must exist A′
1 ∈ F ′

z,v,1
such that A′

1 ∪ B1 is χ-independent. Moreover by the construction of F ′
z,v,1, A′

1 = {u},
for some u ∈ NG(v) ∩ X1. Let ω1 : V (Tk) → A′

1 ∪ B1 be the function such that for each
t′ ∈ V (Tk) \ {t1}, we have ω1(t′) = ω(t′) and ω1(t1) = u. As A′

1 ∪ B1 is χ-independent and
{u, v} ∈ E(G), we can obtain that ω1 is a k-Grundy witness for G. Note that if z = 2, then
by the above arguments, we have constructed the desired sets and functions, which is just
the set A′

1 and the function ω1.
We now consider the case when z′ ≥ 2. Also, we assume that for some ẑ ∈ [z − 2],

for each z′ ∈ [ẑ], we have constructed A′
z′ and ωz′ satisfying the desired condition. Now

we prove the statement for z′ = ẑ + 1. Note that A′
z′−1 ∪ Bz′−1 is a k-Grundy set and

ωz′−1 : V (Tk) → A′
z′−1 ∪ Bz′−1 is a k-Grundy witness for G, where A′

z′−1 ∈ F̂z,v,z′ . Note
that Âz′ ⊆ Bz′−1. Let B′

z′ = {ωz′−1(t′) | t′ ∈ V (Tk) \ V (T tz′
k )}. Note that |B′

z′ | ≤ −→qz′ and
Âz′ fits B′

z′ , and recall that Âz′ ∈ Fz′,vz′ . As F ′
z′,vz′ ⊆−→q

grep Fz′,vz′ , for every −→q ≤ −→qz′ , there
must exists Ãz′ ∈ F ′

z′,vz′ , such that Ãz′ fits B′
z′ . By the construction of F ′

z′,vz′ , we have
vz′ ∈ Ãz′ and Ãz′ ∪ B′

z′ is χ-independent, and also v ∈ B′
z′ . From the above discussions

we can conclude that Ãz′ ∪ {v} ∈ Fz,v,z′ . Moreover, as A′
z′−1 ∈ F̂z,v,z′−1, A′

z′−1 ⊆ B′
z′ and

Ãz′ ∪B′
z′ is χ-independent, we can obtain that A′

z′−1 ∪Ãz′ ∪{v} ∈ F̂z,v,z′−1 ⋆F ′
z,v,z′ = F̃z,v,z′ .

As F̂z,v,z′ ⊆−→q
grep F̃z,v,z′ , for every −→q ≤ −→qz′ ∗ and |Bz′ | ≤ −→qz′ ∗, there must exists A′

z′ ∈ F̂z,v,z′

such that A′
z′ ∪ Bz′ is χ-independent.

As A′
z′ ∈ F̂z,v,z′ , there must exist Ĉ ∈ F̂z,v,z′−1 and C ′ ∪ {v} ∈ F ′

z,v,z′ , such that
A′

z′ = Ĉ ∪ C ′ ∪ {v}. By the correctness for z′ − 1, C ′ contains for each z′′ ∈ [z′ − 1], a
minimal z′′-Grundy set A′

z′−1,z′′ ⊆ A′
z′−1, where the unique vertex in A′

z′−1,z′′ ∩ Xz′′ is a
neighbor of v. Also by the construction of F ′

z,v,z′ , C ′ contains a minimal z′-Grundy set C ′′

in G, where the unique vertex in C ′′ ∩ Xz′ is a neighbor of v. From the above discussions,
we can conclude that A′

z′ ∪ Bz′ is a k-Grundy set in G. ◀

STACS 2025



5:20 Parameterized Saga of First-Fit and Last-Fit Coloring

Using the above algorithm, we can compute for each z ∈ [k] and v ∈ Xz, a family
F ′

z,v ⊆ Fz,v that satisfies the correctness and the size constraints, in time bounded by
αO(2k+1) · nO(1). Note that G has a Grundy coloring using at least k colors if and only if for
some v ∈ Xk, F ′

z,v ̸= ∅. This implies a proof of Theorem 3.
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