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Abstract
We study a natural application of contract design in the context of sequential exploration problems.
In our principal–agent setting, a search task is delegated to an agent. The agent performs a sequential
exploration of n boxes, suffers the exploration cost for each inspected box, and selects the content
(called the prize) of one inspected box as outcome. Agent and principal obtain an individual value
based on the selected prize. To influence the search, the principal a-priori designs a contract with a
non-negative payment to the agent for each potential prize. The goal of the principal is to maximize
her expected reward, i.e., value minus payment. Interestingly, this natural contract scenario shares
close relations with the Pandora’s Box problem.

We show how to compute optimal contracts for the principal in several scenarios. A popular
and important subclass is that of linear contracts, and we show how to compute optimal linear
contracts in polynomial time. For general contracts, we obtain optimal contracts under the standard
assumption that the agent suffers cost but obtains value only from the transfers by the principal.
More generally, for general contracts with non-zero agent values for outcomes we show how to
compute an optimal contract in two cases: (1) when each box has only one prize with non-zero value
for principal and agent, (2) for i.i.d. boxes with a single prize with positive value for the principal.
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1 Introduction

In many real-world situations, e.g., the search for a job candidate or house, a decision maker
is faced with the choice between different alternatives of a-priori unknown value, which can
be explored at some cost. Due to missing qualifications or time constraints, in many markets
such exploration tasks are not executed directly by the decision maker. Rather, a decision
maker (called principal P in the following) can delegate the exploration to an agent A, whose
incentives are potentially misaligned with that of P.

Indeed, suppose the principal intends to buy a house. They might know an inspection
cost and have some prior knowledge about the value of each house. However, they might not
be qualified to determine the exact market value by inspecting it. They decide to delegate
the search to a real-estate agent. The agent can have an individual valuation for each house
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50:2 Designing Exploration Contracts

(e.g., a provision that is paid internally for selling the house). This individual value might
also depend on the condition of the house, which is revealed only after inspection. Similar
situations arise, e.g., when the principal wants to invest in a financial product and delegates
this search to a financial agent.

In these settings, as a consequence of delegating the search, P can merely observe the
outcome of the search, not the other actions taken by A. This leads to a possibly undesirable
outcome for P, even when they have the power to commit to accepting or rejecting certain
outcomes [5].

A natural approach to align the incentives of an agent with the goals of the principal in
such hidden-action settings are contracts. A contract allows for utility transfers to be made
from the principal to the agent as a function of the outcome of the delegated task. While
contract theory is a well-established [9] and celebrated [35] area in economics, the interest in
algorithmic contract design has surged only relatively recently, see e.g., [14, 17,20,21,27].

In this work, we initiate the study of algorithmic contract design for exploration problems.
Specifically, we consider the following problem (for a fully formal definition, see Section 2):
There are n boxes, the i-th of which contains a prize, drawn independently from a known
probability distribution, and can be opened by paying a known exploration cost ci. The
j-th prize from box i has some utilities aij and bij for A and P, respectively. Based on
that information, P commits to a contract, specifying a transfer tij for each prize, where
we assume non-negative transfers (limited liability). Given such a contract, A picks an
adaptive search strategy that allows to optimize the trade-off between value of the selected
prize (for A) and total exploration cost. A uses the strategy to sequentially open boxes
by paying the exploration cost. Depending on the observed prize, it determines the next
box to open or to stop by selecting a prize from an open box. Assuming A selects prize j

from box i, the resulting final utility of P is bij − tij . The goal is to efficiently compute a
contract that maximizes the expectation of the latter quantity. Here we assume that ties in
the optimization of A are broken in favor of P, which is a standard assumption that makes
the maximization problem well-defined.

For the problem of computing optimal contracts, there is a solution by linear programming
that runs in time polynomial in the number of outcomes and the number of actions of the
agent (cf., e.g., [20]). Note that this result does not yield a polynomial-time algorithm for our
problem since the action space is extremely succinctly represented – its size is lower-bounded
by the number of opening orders, n!.

Our Contribution. We show that, in a variety of natural cases, optimal contracts can be
computed in polynomial time (such as, e.g., optimal linear contracts, or optimal contracts
when the agent has no intrinsic value). While our results leave open the question whether
computing optimal contracts efficiently is always possible in general, our insights suggest
that doing so is a highly non-trivial task and represents one (of several) very interesting
avenue for future research.

Notably, A faces an exploration problem known in the literature as the Pandora’s Box
Problem. It was famously proposed and analyzed by Weitzman [39], who characterized
optimal search strategies by a simple greedy rule. Starting from [33], this problem has
recently received a lot of attention at the intersection of economics and computer science (see,
e.g., [6, 8, 10, 25, 26, 38] and a recent survey [7]). We reformulate Weitzman’s characterization
for A’s task: The fair cap of box i is a value such that the expected amount of aij + tij

exceeding the fair cap is precisely ci. The boxes are considered in non-increasing order of
fair caps. If the best aij + tij (initially 0) observed so far is larger than the next fair cap, the
next box is opened; if it is smaller, a corresponding prize is accepted. If neither is the case,
A is indifferent.
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The first observation we make is that Weitzman’s policy does not solve A’s problem
entirely. The reason is that A breaks ties in favor of P– recall that this is the standard
assumption that makes the maximization problem well-defined. Note that the number of
boxes that share some given fair cap φ may be linear in n, leading to a number of possible
ways of choosing the order that is exponential in n. Indeed, the order of such boxes may
matter to P since different orders may lead to stopping with prizes that lead to vastly
different utilities for P. A complicating factor is that ties whether to select a prize with
agent utility equal to φ have to be broken simultaneously. Interestingly, we show that the
problem of breaking ties can be reduced – in polynomial time but in a non-obvious way – to
solving different instances of the classic Pandora’s box problem.

With a solution of A’s problem at hand, the main trade-off inherent to an optimal contract
is as follows: Transfers manipulate the fair caps, the resulting exploration order, and the
acceptance decisions of A in such a way that leads to a more favorable outcome for P – but
transfers are costly for P which is unfavorable.

We start by considering linear contracts [20, 30], a class of simple and very intuitive
contracts that has received a lot of attention due to its widespread use in applications. The
agent receives a constant fraction of the principal’s revenue as commission. Formally, a linear
contract is represented by a number α ∈ [0, 1], which defines transfers tij = α · bij .

To compute linear exploration contracts, we identify a polynomial-time computable set of
critical values of α at which the set of A-optimal policies (i.e., the set of policies that satisfy
the above description) changes. By reasoning about the behavior of P’s utility between any
two such values, we can argue that the optimal contract needs to be a critical value. This
type of argument is reminiscent of arguments from the recent literature (e.g., [16, 17, 22]),
but here it requires special care. Due to the tie breaking in favor of P, which – as discussed
above – is a key property here, we need to keep track of the set of A-optimal policies.

For standard contract design, the authors in [20] describe a class of instances in which the
restriction to linear contracts leads to a multiplicative loss of n in P ’s achievable utility, where
n is the number of actions. In this class of instances, action i with cost ci deterministically
leads to an individual outcome with value Ri. We can create one box for each action i, with
opening cost ci and a single outcome with agent utility 0 and principal utility Ri. This leads
to a straightforward one-to-one correspondence between contracts in the two instances that
preserves utilities and linearity. Thus, the multiplicative loss of n transfers to our model,
which motivates our search for optimal general exploration contracts.

We first consider general contracts under the standard assumption that aij = 0, i.e.,
that the agent has no intrinsic motivation to explore any boxes and is only motivated by
payments from P. In contract design, this assumption is usually without loss of generality,
since arbitrary intrinsic agent values aij ̸= 0 can be accounted for with action costs to obtain
an equivalent instance with agent values aij = 0. However, for the exploration contracts
we consider, such an adjustment changes the costs of exploration strategies (rather than
individual boxes). This substantially changes the structure of the problem. Indeed, as we see
below, optimal policies for the problem with non-zero agent value have substantially different
properties than the ones for zero value.

Clearly, the utility that P can extract by solving the exploration problem themselves (i.e.,
ignoring the agent and paying the cost themselves) is a straightforward baseline; no policy
can extract more value for P. Solving the problem from P’s perspective yields fair caps φP

i .
If all aij = 0, then by transferring any value exceeding φP

i to A, the P-optimal policy is
adopted by A, without a loss in utility for P . This implies, in particular, that delegating the
exploration to A using an optimal contract yields the same utility for P as if she performed
the exploration on her own. Formally, the idea is somewhat inspired by [33] for the original
Pandora’s Box problem but different.

STACS 2025
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An orthogonal special case that has been considered in the literature (see, e.g., [5]) is
that of binary boxes. That is, each box contains one of only two prizes, and one of them
has 0 value for both P and A while the other one is arbitrary. Without any payments, the
fair cap (from A’s perspective again) of each box is its basic fair cap. The principal now
faces the question of whether to lift (by transfers) the basic fair caps of favorable boxes
above (or up to) the fair caps of less favorable boxes. While the latter is true in general,
the special structure of binary boxes allows us to compute an optimal exploration contract
by considering boxes in non-increasing order of their basic fair caps and moving their fair
cap greedily. Note that this algorithm alone does not suffice to tackle more general cases.
Indeed, when boxes are not binary, it may be profitable for the principal to choose different
payments for two boxes with the same distribution and the same fair caps – a condition we
encounter in the next and final case.

The final case we consider has a more general value structure, but we compromise on the
boxes having different distributions. Specifically, we consider instances with only a single
positive prize for P , and all distributions are identical. Still, transfers can be made depending
on the box from which the prize originates. Again, the complexity is reduced by the fact that
only a single payment per box has to be decided. Through an intricate sequence of exchange
arguments and the help of continuization, we establish that there is an optimal contract
with a simple structure: (i) In a first phase, the prize with positive principal value gets
immediately accepted, and all transfers are identical; (ii) all transfers for boxes in the second
phase are also identical. These conditions allow to find the optimal contract by enumerating
a polynomial-sized set of contracts.

In this final case, we also give a family of instances in which both the above phases exist
and have substantial lengths in any optimal solution. Hence, perhaps surprisingly, such a
relatively simple case already has optimal contracts with a fairly complicated structure.

Overview. After a review of related work in the subsequent section, we formally introduce
our problem in Section 2 along with preliminary observations. Section 3 treats linear contracts.
Section 4 deals with general contracts in several special cases (no agent value in Section 4.1
and binary boxes in Section 4.2). General contracts for i.i.d. boxes with a single positive
prize are discussed in Section 4.3. Missing proofs are provided in the full version of the paper.

1.1 Related Work
Contract design has recently gained a lot of attention from a computational point of view.
Duetting et al. [20] advocated the study of linear contracts as an alternative to the more
complicated (and sometimes unintuitive) general contracts. They show robustness results
and give parameterized approximation guarantees w.r.t. optimal (general) contracts. For
settings in which the outcome space is succinctly represented, hardness results are shown
in [21]. In a similar but different approach, combinatorial contracts [17] let the agent choose
a subset of actions which stochastically determines the (binary) outcome. Important recent
work in the area of combinatorial contracts includes [22], [16]. Contracts were also studied
with multiple agents [16,18], ambiguity [19], and private types [2] with connections to classic
mechanism design [1]. More generally, contracts have been of interest in specific application
domains, such as classification in machine learning [36].

Most closely related is prior work by Postl [34], who analyzes our contract-design problem
for two boxes without intrinsic agent value. The paper provides an explicit characterization
of the chosen box in the optimal contract, but neither considers algorithmic aspects nor
the reduction to the standard Pandora’s Box problem we discover in Sec. 4.1. Concurrent
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to our work, Ezra et al. [23] study the special case without agent value. In this special
case, they also give a polynomial-time algorithm for linear contracts (without discussing the
issues of tie-breaking in favor of P). For general contracts, the paper studies a technical
approach when there is a constant number of prizes. Finally, the authors show NP-hardness
for correlated distributions in the boxes.

Delegation is a related approach in the principal–agent framework and also received a
lot of attention in the economics literature starting from seminal work of Holstrom [31].
Computational aspects of delegation are receiving interest recently, initiated by Kleinberg
and Kleinberg [32]. In these models, the principal P delegates a (search) task to an agent
A, again with potentially different interests, who has to inspect alternatives and propose
an observed prize to P. Instead of committing to a contract with payments, P limits the
set of prizes she is willing to accept upon proposal by A. A prominent objective is to find
good acceptance policy for P and bound their performance by the delegation gap, which
measures the multiplicative loss in utility for P in comparison to the case when P performs
the (undelegated) search problem themselves. On a technical level, there are close connections
to prophet inequalities [32] and online contention resolution schemes, which were established
in different variants, such as multiple agents [37], stochastic probing [4, 5], as an online
problem [11], or with limited information about agent utilities [13]. Perhaps most related
is a version of the problem studied in [5]. Here, a principal delegates an instance of the
Pandora’s Box problem by committing to a set of acceptable outcomes. An agent has to
perform the costly inspection of alternatives. This standard delegation setting has some
obvious limitations, e.g., the agent would never perform an inspection if his expected intrinsic
value does not cover the inspection cost. A model variant with transfers is also studied
in [5] in which the principal can reimburse the agent for exploration costs. Crucially, this is
impossible in hidden-action principal-agent settings that we consider, where P simply cannot
directly reimburse A for his expenses, since she cannot observe which inspections have been
performed by A.

In a more general context, online optimization in principal–agent settings has generated
significant interest recently, e.g., in game-theoretic versions of the Pandora box problem [15],
general optimal stopping problems [28,29], or with unknown agent utilities [3, 12,24,40].

2 Preliminaries

There are two parties, a principal P and an agent A, and n boxes. Each box i ∈ [n] has an
opening cost ci ≥ 0 and contains one of m possible prizes. Prize j ∈ [m] in box i yields a
value-pair (aij , bij), where aij ≥ 0 is the value for A and bij ≥ 0 the value for P. For each
box i ∈ [n], the prize in the box is distributed independently according to a known prior.
We denote by pij ≥ 0 the probability that prize j is in box i.
P would like to motivate A to open and inspect boxes in order to find and select a good

prize (for P). P cannot observe the actions taken by A (i.e., which boxes were opened in
which order), only the final selected box with the prize inside is revealed. Instead, P can
commit to an exploration contract (or simply, contract) T : For each selected prize (i, j), she
specifies an amount tij ∈ [0, bij ]1 that she pays to A. Then the final utility of P is bij − tij .

1 We make the natural assumption that tij ≤ bij , i.e., every transfer in the contract is bounded by the
prize value of P. For all scenarios we study here (linear contracts, no agent value, binary boxes, i.i.d.
with single positive prize for P) it is straightforward to see that this assumption is w.l.o.g. – there is an
optimal contract that satisfies tij ≤ bij for all (i, j) ∈ [n] × [m]. It is a very interesting open problem to
prove that this holds beyond the cases we study here.

STACS 2025
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Our model is an instance of the standard principal-agent model, where the hidden action
of the agent A is the policy to inspect and select from the boxes. Specifically, the task of
A is to open and inspect boxes to find and select at most one prize from an opened box.
Formally, a policy specifies in every situation, based on the previously seen prizes, which box
to open next, if any, or otherwise which prize to select from an opened box. Given a contract
T , she is facing the classic Pandora’s Box problem [39]: She obtains a utility of aij + tij for
the selected prize (0 if no prize is selected) minus the opening cost ci for all opened boxes.
Weitzman [39] shows that every optimal policy of A that maximizes his expected total utility
(called A-optimal policy in the following) is in the form of the following index policy: For
each box i ∈ [n] compute an index or fair cap φi such that∑

j∈[m]

pij max{0, aij + tij − φi} = ci.

The boxes are considered in non-increasing order of fair caps. Suppose box i is the next
unopened box in this order, and the best prize A has found thus far is v. If no box has been
opened, then v = 0, and otherwise v = ai′j′ + ti′j′ for some (i′, j′) where i′ is a box that has
already been opened, and prize j′ has been found in it. There are three cases: (1) v < φi:
A opens box i; (2) v = φi: A is indifferent between opening box i and stopping opening
boxes; and (3) v > φi: A stops opening boxes. Note that any box i with φi < 0 is never
opened. For each (i, j) ∈ [n] × [m] we define the capped value κi = min{aij + tij , φi}. A
policy as described above always selects the prize in box i∗ ∈ arg maxi κi, i.e., the prize with
the largest capped agent value.

Even under these conditions, there may still be several A-optimal policies. Specifically,
(i) the choice of φi is not unique when ci = 0,
(ii) the non-decreasing order of fair caps may not be unique,
(iii) in the case v = φi above, the choice of whether to stop or continue is not unique,
(iv) among the observed prizes, the prize (i, j) maximizing aij + tij may not be unique.

We assume that A breaks ties in favor of P2. Among the set of A-optimal policies, she
selects a P-optimal one, i.e., a policy that maximizes the expected utility for P. (Note that
such a policy may be vastly different from an P-optimal policy among all policies.) We call
a policy that is selected in this way an optimal policy (under contract T ).

In case (iv), it is clear how to resolve the ambiguity in favor of P: Simply select (i, j)
maximizing bij − tij . The other cases, however, can give rise to a very large number of
potential policies. Interestingly, in the full version of the paper we show that it is always
possible to implement the tie-breaking in polynomial time and find an optimal policy under
contract T . We prove this result through a reduction to the original Pandora’s Box problem.

▶ Theorem 1. Given a contract T , an optimal policy can be computed in polynomial time.

We study contracts for P that steer the index policy executed by A towards good outcomes
for P. We explore both linear and general contracts. A linear contract is given by a single
number α ∈ [0, 1], and tij = α · bij . Linear contracts are popular because of their simplicity,
but they often suffer from substantial limitations of the achievable revenue. As such, we
also explore general contracts, in which we only require every payment to be non-negative
tij ≥ 0 for every i ∈ [n] and j ∈ [m]. A (linear) contract T that, among all possible (linear)
contracts, achieves maximum expected utility for P when A executes an optimal policy under
T , is called optimal (linear) contract.

2 This is a standard assumption in bi-level problems. On a technical level, it ensures that the optimization
problem of finding an optimal contract for P is well-defined.
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3 Optimal Linear Contracts

In this section we consider linear contracts. Recall that these are contracts characterized by
a single α ∈ [0, 1] such that tij = α · bij for all (i, j) ∈ [n]× [m]. Our result is the following.

▶ Theorem 2. An optimal linear exploration contract can be computed in polynomial time.

Let α1, α2 ∈ [0, 1] such that the set of A-optimal policies (i.e., index policies) is the same
for all α ∈ [α1, α2]. Consider the expected utility of P according to an optimal policy (i.e.,
an P-optimal policy among this set of A-optimal policies) as a function of α within the
interval [α1, α2]. The following straightforward observation implies that this function is a
linear and non-increasing function of α.

▶ Observation 3. For every policy, there exists a constant c such that the expected utility of
P as a function of α is (1− α) · c.

Hence, within [α1, α2], an optimal contract is α1. To find a polynomial-time algorithm
for computing the global optimum α, it therefore suffices to show that, in polynomial time,
one can find a partition of the interval [0, 1] into (polynomially many) subintervals such
that, in each subinterval, the set of A-optimal policies is constant. (Strictly speaking, we
will encounter a technicality at the endpoints of the subintervals.) In the following, we
will define a (polynomial-time computable) set of critical values in [0, 1] such that, in an
interval (strictly) between any two consecutive critical values, the set of A-optimal policies is
constant.

Towards this definition, for any given α ∈ [0, 1] and every (i, j) ∈ [n]× [m], let vij(α) :=
aij + α · bij denote the value of prize j in box i for A. Furthermore, let φi(α) denote the
(unique) fair cap of box i ∈ [n] with ci > 0 as a function of α, i.e., it holds that∑

j∈[m]

pij max {0, vij(α)− φi(α)} = ci

for all α ∈ [0, 1]. Note that φi(α) is a continuous function of α in [0, 1].
We call α ∈ [0, 1] a critical value if α ∈ {0, 1} or one of the following properties holds:

(a) There exist boxes i, i′ ∈ [n] with ci > 0, ci′ > 0 such that the order of their fair caps
changes at α. Formally, φi(α) = φi′(α), and there exists ε > 0 such that φi(α′) ̸= φi′(α′)
for all α′ ∈ (α− ε, α) or for all α′ ∈ (α, α + ε).

(b) There exist i, i′ ∈ [n] with ci > 0, ci′ > 0 and j ∈ [m] such that the order between the
value of prize (i, j) for A and the fair cap of box i′ changes. Formally, vij(α) = φi′(α),
and there exists ε > 0 such that vij(α′) ̸= φi′(α′) for all α′ ∈ (α − ε, α) or for all
α′ ∈ (α, α + ε).

(c) There exists i ∈ [n] with ci > 0 such that φi(α) = 0.
Observe that the critical values indeed have the property that, for any two such values αc

1, αc
2,

the set of A-optimal policies is constant within (αc
1, αc

2). Note that any A-optimal policy is
also A-optimal under both αc

1 and αc
2, but there are potentially additional A-optimal policies

under αc
1 or under αc

2. Together with Observation 3, this implies that the optimal contract
is a critical value.

The following auxiliary lemma supports the analysis of the number of critical values.

▶ Lemma 4. For each i ∈ [n] with ci > 0, the fair cap φi : [0, 1]→ R is a monotone convex
piece-wise linear function with at most 2m + 1 linear segments.

STACS 2025
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α

φi(α)

vij(α)

α

φi(α)

vij(α)

Figure 1 Two cases for an intersection between vij and φi. Left: The slope of vij was less than
slope of φi before the intersection. By definition, it contributed to the weighted average slope that
defines the slope of φi. After the intersection, it does not contribute anymore, and the weighted
average only increases. Right: The slope of vij was greater than slope of φi before the intersection.
Symmetrical arguments.

Proof. For any α ∈ [0, 1], it holds
∑

j∈[m] pij max{0, vij(α)− φi(α)} = ci by definition. An
equivalent formulation would be

φi(α) =
∑

j∈Si(α) pijvij(α)− ci∑
j∈Si(α) pij

,

where Si(α) := {j ∈ [m] : vij(α) ≥ φi(α)}. Hence, φi(α) is the weighted average (minus
offset ci) of all vij(α) that are in Si(α), i.e., above φi(α). For a fixed set Si(α), this means
that the fair cap φi is linear in α, as every vij is linear in α. Therefore, the slope of φi only
changes at intersections with some vij , where the set Si(α) changes. We argue now that the
fair cap can only increase at those intersections (cf. Fig. 1).

For every (i, j) ∈ [n]× [m] and α ∈ (0, 1] with vij(α) = φi(α), but vij(α− ε) ̸= φi(α− ε)
for some ε > 0 , there are two cases:
1. vij(α − ε) > φi(α − ε). Then j ∈ Si(α − ε), but j /∈ Si(α + ε′) for some ε′ > 0. Hence

the slope of φi was greater than the slope of vij before the intersection at α. The new
weighted average of affine functions that are above the fair cap can only increase when
vij is not contributing to that average anymore.

2. vij(α − ε) < φi(α − ε). Then j /∈ Si(α − ε), but j ∈ Si(α). Hence the slope of φi was
less than the slope of vij before the intersection at α. The new weighted average of affine
functions that are above the fair cap can only increase when vij is starting to contribute
to that average.

Thus the slope of φi(α) is never decreasing when α increases, which makes φi convex. As vij

is an affine function, every vij can intersect at most twice with φi. Therefore, there are at
most 2m + 1 linear segments of φi on the interval [0, 1]. ◀

According to Lemma 4, there are at most O(n) critical values induced by case (c). By
the same lemma, there are at most O(nm) critical values for every box i ∈ [n] with ci > 0
induced by case (b), as φi is convex and there are nm affine functions vi′j , each of which
intersects φi at most twice. Thus, O(n2m) critical values in total are due to cases (b) and
(c). Similarly, each linear segment of φi can intersect with another convex function φi′ at
most twice. As there are at O(m) linear segments for α ∈ [0, 1] and n possible functions φi′ ,
there are at most O(nm) such intersections for φi. Thus, case (a) induces at most O(n2m)
critical values. Overall, the number of critical values is polynomial in n and m, and the set
of them can be computed in polynomial time.
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By Theorem 1, we can compute an optimal contract for any given critical value in
polynomial time. The expected utility of P under this contract can also be computed in
polynomial time. Thus, we can enumerate all critical values and take the best contract with
respect to the expected utility for P, implying Theorem 2.

4 Optimal General Contracts

4.1 No Intrinsic Agent Value
In the consideration of contract problems, it is often assumed that the agent has no intrinsic
value (only cost) and receives benefit only via transfers from the principal. In this case, we
have aij = 0 for all (i, j) ∈ [n]× [m]. We show that under this assumption, we can compute
an optimal contract in polynomial time.

▶ Theorem 5. Suppose that aij = 0 holds for all (i, j) ∈ [n] × [m]. Then an optimal
exploration contract can be computed in polynomial time.

Without any transfers from P, A has no intrinsic motivation to open any box – except
the ones with inspection cost 0. Specifically, if the agent opens box i ∈ [n], the (expected)
payments from P have to cover the inspection costs for A, i.e., it holds that

∑
j∈[m] pijtij ≥ ci.

As a direct consequence, P cannot obtain more utility from a contract with A over the one
obtained by exploring boxes and paying inspection costs by herself (she can simply imitate
A’s behavior under the contract).

▶ Definition 6. A given contract T implements a policy π if (1) π is optimal under T , and
(2)

∑
j∈[m] pijtij = ci for all i ∈ [n].

As observed above, an optimal contract cannot yield more utility for P than an optimal
policy π∗ that she can apply by herself (paying the costs herself). Hence, the next lemma
implies Theorem 5.

▶ Lemma 7. There exists a contract T ∗ that implements π∗.

Proof. Recall that the following is an optimal policy π∗ for P (when she pays the costs
herself). Define fair caps φP

i for each box i ∈ [n] such that
∑

j∈[m] pij max{0, bij − φP
i } = ci.

Then P opens boxes in non-increasing order of their fair caps as long as the best prize
observed so far does not exceed the fair cap of the next box.

A contract T ∗ that implements π∗ is given by payments tij := max {0, bij − φP
i } for all

(i, j) ∈ [n]× [m]. Clearly, we have∑
j∈[m]

pijtij = ci, for all i ∈ [n]. (1)

Consequently, A is faced with an instance of the Pandora’s Box problem where her expected
prize in each box i equals the opening cost. Thus, if A applies the (A-optimal) index policy
for the emerging instance, the fair caps for A are given by φA

i = 0 for all i ∈ [n].
This means that A is entirely indifferent about the opening order. As long as there are

only prizes with tij = 0, A is also indifferent about stopping to open further boxes and
selecting any previously observed prize at any point in time. Thus, A’s behavior under these
conditions can be assumed to be consistent with the one imposed by π∗.
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Restrictions only arise from the fact that A must stop immediately whenever a prize j

with tij > 0 is drawn from box i, according to A’s index policy. However, this is consistent
with the behavior of the index policy π∗ for P: Note that tij > 0 if and only if bij > φP

i .
Hence, P also stops when prize j is drawn from box i, because bij exceeds the fair cap of
box i and, thus, the fair cap of the next box in the order.

Therefore, π∗ is an optimal policy under contract T ∗. Together with (1) this shows that
T ∗ implements π∗. ◀

4.2 Binary Boxes
We study a subclass of the problem where every box i ∈ [n] contains two prizes with positive
probability. One of those prizes has value 0 for both P and A, and is called 0-prize. The
other prize (the positive prize) is denoted by the value pair (ai, bi) with ai, bi ≥ 0 and has
probability pi ∈ (0, 1]. Consequently, the 0-prize is drawn from box i with probability 1− pi.
Note that there cannot be a positive payment for the 0-prize. Thus, payments for box i are
given by a single ti ≥ 0, the payment for the positive prize.

Depending on a payment of t ≥ 0, we define the fair cap φi(t) of box i for A by

φi(t) = t + ai −
ci

pi
. (2)

▶ Lemma 8. Given a contract T , there is an optimal policy that has the following properties.
A opens boxes in order of the fair cap defined by (2). Boxes with the same fair cap are
ordered according to the value bi − ti. A accepts the first box with a positive prize (if any).

Proof. As discussed in Section 2, the fair cap for boxes is unique whenever ci > 0. For boxes
with ci = 0 we also assume that the fair cap is given as in (2). This is the smallest fair cap for
this box and defers the inspection of box i to the latest point. Clearly, the agent is indifferent
regarding this choice. Consequently, it is A-optimal to stop immediately and accept as soon
as A opens a box with a positive prize in it, since the value is ai + ti ≥ φi(ti) ≥ φi+1(ti+1).

To argue that this behavior is also P-optimal, suppose some box i∗ with ci∗ = 0 gets a
higher fair cap φi∗(ti∗) > ai∗ + ti∗ and gets opened earlier (in accordance with the resulting
index policy of A). With such fair cap for i∗, A does not stop until all subsequent boxes i

with fair cap φi(ti) > ai∗ + ti∗ are opened. As such, we can defer the opening of box i∗ until
after these boxes are opened. Now if there are several boxes with the same fair caps, it is
optimal for P if the opening is done in non-increasing order of bi − ti. This guarantees that
there is no subsequent box with the same fair cap and a prize that has a better value for
P. Conversely, any box with the same fair cap and potentially better value for P has been
inspected before. As such, using minimal fair caps for boxes with ci = 0, breaking ties w.r.t.
bi − ti, and stopping as soon as a positive prize is observed is also P-optimal. ◀

Let us define a basic fair cap of box i to be φi(0). A box with negative basic fair cap
would not be considered by A unless the payment ti is at least ci/pi − ai, in which case the
fair cap would be precisely 0. Note that boxes with prohibitively high cost pi(ai + bi) ≤ ci

are w.l.o.g. never opened by A under any contract T . In what follows, we exclude such boxes
from consideration. For the remaining boxes pi(ai + bi) > ci, and, hence, bi > ci/pi−ai =: t̃i.
Whenever t̃i > 0, the exploration cost exceeds the expected value for A in box i. As such, a
transfer of t̃i is clearly necessary to motivate A to inspect box i at all. We renormalize the
box by adjusting the value of the positive prize to (ai + t̃i, bi − t̃i). Then the basic fair cap
becomes φi(0) = 0. Indeed, assuming ti ≥ t̃i is w.l.o.g.: Consider any contract T in which
ti < t̃i for all i in some non-empty set of boxes B, and the optimal policy π under T . Note
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that choosing a contract T ′ where ti is increased to t̃i for such boxes does not hurt: This will
increase the fair caps in B to 0. An A-optimal policy π′ for T ′ can be obtained from π by
opening the boxes B in the end if no prize has been found yet, in any order. The resulting
utility for P in such cases is non-negative rather than 0 (as t̃i ≤ bi); the utility in all other
cases does not change.

In the remainder of the section, we consider the instance with renormalized boxes, i.e., each
box i has a basic fair cap φi(0) ≥ 0. Furthermore, we re-number the boxes and assume that
the indices are assigned in non-increasing order of basic fair caps, i.e. i < j =⇒ φi(0) ≥ φj(0)
for all i, j ∈ [n]. We break ties in the ordering w.r.t. non-increasing value of bi.

Our next observation will allow us to restrict attention to the permutation and the fair
caps in the policy of A. By (2), fair caps are linear in payments. Clearly, for an optimal
contract we strive to set smallest payments (and, hence, smallest fair caps) to induce a
behavior of A. For any given contract T , we say T implements an ordering σ of boxes if
there is an optimal policy under T that considers boxes in the order of σ. For the reverse
direction, we need a slightly more technical definition.

▶ Definition 9. For any given ordering σ of boxes, we define a contract T (σ) as follows: For
each position i (occupied with box σ(i)), let j = max(arg maxj′∈{i,i+1,...,n}{φσ(j′)(0)}) be the
latest position of any subsequent box (including σ(i) itself) with the highest basic fair cap of
the subsequent boxes. In T (σ), we assign payments to the unique positive prizes for the boxes
on positions i, i + 1, . . . , j such that they all have a fair cap of exactly φσ(j)(0). If T (σ) has
feasible payments and implements σ, we call T (σ) the canonical contract for σ.

We have the following lemma concerning whether T (σ) is the canonical contract for σ.

▶ Lemma 10. For any ordering σ, we can decide in polynomial time if T (σ) is the canonical
contract for σ (and compute it in this case). If T (σ) is not the canonical contract for σ,
then every contract T that implements σ is suboptimal for the given instance. Otherwise, the
canonical contract has point-wise minimal payments among all contracts that implement σ.

Proof. The construction of T (σ) and the subsequent feasibility check described in Definition 9
can be done in polynomial time. Note that if T (σ) is the canonical contract for σ, it uses
point-wise minimal payments for implementing σ: Having less payments for any box would
directly contradict implementation of σ, since every optimal policy considers boxes in the
order of their fair caps, which are lower bounded by the respective basic fair caps. Thus, if
T (σ) is not the canonical contract for σ due to infeasible payments, then implementing σ is
impossible with any contract, because even higher payments would be necessary. If T (σ) is
not the canonical contract for σ, but the construction in Definition 9 defines feasible payments,
it defines a canonical contract T (σ′) of some other ordering σ′ ̸= σ using point-wise minimal
payments. Note that σ′ instead of σ only emerges because of tie-breaking in favor of P , which
implies that boxes with identical fair caps have to be considered in non-increasing order of
bi − ti. Thus it could be possible to implement σ with another contract T , but additional
payments would be required to remove (some of the) ties. However, since tie-breaking was
already done in favor of P , this contract T clearly yields less utility than T (σ′) and hence is
not an optimal contract for the given instance. ◀

In the following, we will discuss how to compute the fair caps for the policy of A in
an optimal contract. By Lemma 10, the order σ that we compute in this way has to be
implemented by T (σ).

Let eP(φ1, . . . , φn) denote the expected utility for P under a contract given by fair caps
φ1, . . . , φn. Algorithm 1 computes optimal fair caps for all boxes. Initially, the fair cap of
each box is given by its basic fair cap. Then we calculate the optimal fair cap of boxes
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Algorithm 1 Optimal Contract for Binary Boxes.

Data: Binary boxes 1, . . . , n (non-increasing φi(0), tie-break: non-increasing bi)
Result: Contract (t1, . . . , tn)
xk ← φk(0) for all k ∈ [n] ; // Initialize with basic fair caps.
for k = 1, . . . , n do

for j = 1, . . . , k do
/* Compute expected utility for P when box k had fair cap xj */
ρ← xj ;
ej ← eP(x1, . . . , xk−1, ρ, xk+1, . . . , xn) ;

end
j∗ ← arg maxj∈{1,...,k} ej ; // Box k receives optimal fair cap xj∗.
tk ← xj∗ − φk(0) ;

end

1, . . . , n iteratively. In iteration k of the outer for-loop, we find the optimal fair cap for box
k among the fair caps of previous boxes. Crucially, it is sufficient to test which of those fair
caps yield maximum utility, even if the final fair caps of subsequent boxes are not determined
yet. Note that by (2), to raise the fair cap of any box i ∈ [n] to φ > φi(0), the required
payment ti is a constant independent of the probabilities and values in box i – more precisely,
it is exactly ti = φ− φi(0).

▶ Theorem 11. Algorithm 1 computes an optimal exploration contract for binary boxes in
polynomial time.

Proof. For the proof, we show inductively that the decision of the algorithm in each iteration
of the outer for-loop regarding box k is optimal. Formally, there is an optimal ordering of
all boxes that, when restricted to boxes 1, . . . , k, is identical to the ordering computed by
the algorithm after iteration k. By Lemma 10, this implies that the selected fair cap for
box k is optimal (and, thus, the payment in T ), as boxes are numbered and considered in a
non-increasing order of their basic fair caps.

For the rest of the proof we show the following statement. For every k ∈ [n], let σk denote
the ordering of boxes after iteration k of the outer for-loop in Algorithm 1. There is an
optimal ordering σ∗ such that the relative order of boxes 1, . . . , k is identical in σ∗ and σk.

We proceed by induction. The statement is trivially true for k = 1. Now suppose the
statement holds for every of the first k− 1 iterations, and consider iteration k. Let i∗ denote
the position of box k w.r.t. boxes 1, . . . , k in σ∗, and let i denote its position σk. Note that
position i∗ corresponds to a position i∗

n ≥ i∗ in the overall ordering σ∗ (since for definition of
i∗ we ignore boxes k + 1, . . . , n). Clearly, the statement holds when i∗ = i.

For the two remaining cases (i∗ > i and i∗ < i) we show that the optimal ordering can
be changed sequentially into one that has i∗ = i without decreasing the expected value for P .
We discuss the proof for case 1: i∗ > i. The proof of the other case is very similar (as seen in
the full version of the paper).

Consider i∗ > i. Now suppose box k was brought to position i (w.r.t. first k boxes) in
σ∗. The fair cap of k must be strictly increased, since otherwise k would receive the same
payment and the same position in σk and σ∗ (due to optimal tie-breaking by the agent
in non-increasing order of principal value). Note that position i corresponds to a position
in < i∗

n in σ∗.
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Consider the set L of boxes located between positions in and i∗
n in σ∗. Consider the first

box r ∈ L with r > k and the position ir in σ∗. Let L1 be the boxes located before box r in
positions in, . . . , ir − 1. We use p̃1 for the combined probability of selection in L1 and b̃1 for
the combined expected value of a selected box in L1.

Let bk
r be the remaining value of box r after a payment that lifts the fair cap of r to the

basic fair cap of k. We split the analysis into two cases: bk
r ≥ bk and bk

r < bk. If bk
r ≥ bk,

consider the move of r to position in. Since there are only boxes j < k in L1, we could place
box k on position i + |L1|+ 1 in σk – right after boxes from L1, similar to the position ir of
box r in σ∗. We use ∆ir

to denote the payment required to lift the fair cap of box k from its
basic fair cap to the one required at position ir. Moreover, ∆in,ir is the additional payment
required to lift the fair cap of box k from the one at position ir to the one at in. Since the
algorithm places k at in instead of ir, we know that

pk(bk −∆ir −∆in,ir ) + (1− pk)p̃1b̃1 ≥ p̃1b̃1 + (1− p̃1)pk(bk −∆ir ),

which implies

bk ≥ b̃1 + ∆ir
+ ∆in,ir

/p̃1.

Suppose now we move r from ir to in, then we have the same terms with bk
r instead of

bk. Clearly, since bk
r ≥ bk we know that the move is also profitable. This means that we can

move r to position in without deteriorating the value of σ∗. Thereby we reduce the number
of boxes j ≥ k between the positions of k in σ∗ and σk.

For the second case consider bk
r < bk. We here consider two moves in σ∗ – either swap box

r right after box k, or swap box k right before box r. Neither of these moves shall maintain
the value of σ∗, and we show that this is impossible.

Let L2 be the boxes located between r and k in σ∗. We use p̃2 and b̃2 to denote selection
probability and expected value of selected box, respectively. Now if we swap box r after box
k, a strict decrease in value yields

pr(bk
r −∆i∗

n
−∆i∗

n,ir
) + (1− pr)p̃2b̃2 + (1− pr)(1− p̃2)pk(bk −∆i∗

n
)

> p̃2b̃2 + (1− p̃2)pk(bk −∆i∗
n
) + (1− p̃2)(1− pk)pr(bk

r −∆i∗
n
).

Note that ensuring the same fair cap as box k at position i∗
n is enough, since bk

r < bk and
box r is then sorted after box k. We obtain

p̃2bk
r + pk(1− p̃2)bk

r > p̃2b̃2 + pk(1− p̃2)bk + p̃2∆i∗
n

+ ∆i∗
n,ir

and, since bk
r < bk,

bk
r > b̃2 + ∆i∗

n
+ ∆i∗

n,ir
/p̃2. (3)

For the other move, we see that a strict decrease in value yields

pr(bk
r −∆i∗

n
−∆i∗

n,ir
) + (1− pr)p̃2b̃2 + (1− pr)(1− p̃2)pk(bk −∆i∗

n
)

> pk(bk −∆i∗
n
−∆i∗

n,ir
) + (1− pk)pr(bk

r −∆i∗
n
−∆i∗

n,ir
) + (1− pk)(1− pr)p̃2b̃2.

Note that ensuring the same fair cap as box r at position ir is enough, since bk
r < bk and

box k is then sorted before box r. We obtain

(−pr − p̃2 + prp̃2)bk + (1− pr)p̃2∆i∗
n

> −(1− pr)∆i∗
n,ir
− prbk

r − p̃2b̃2 + prp̃2b̃2,
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so

(1− pr)p̃2b̃2 + (1− pr)p̃2∆i∗
n

+ (1− pr)∆i∗
n,ir

> p̃2(1− pr)bk + pr(bk − bk
r ).

This implies pr < 1, since otherwise we derive bk−bk
r < 0, a contradiction. Now, if pr ∈ (0, 1),

p̃2 ∈ (0, 1], and bk
r < bk, the above implies

b̃2 + ∆i∗
n

+ ∆2/p̃2 > bk. (4)

Equations (3) and (4) imply a contradiction with bk
r < bk.

At least one swap (either moving r right after k, or moving k right before r) must be
non-deteriorating in terms of solution value. Using this swap, we can change σ∗ and decrease
the set of agents j ≥ k between i∗

n and in without loss in value.
Now using these swaps (either the one for bk

r ≥ bk or one of the two for bk
r < bk) iteratively,

we can turn σ∗ into an ordering such that there are only boxes j < k in L. Then moving
box k from i∗

n to in is not harmful. We let pℓ denote the overall probability that a box in L

is chosen and bℓ the expected value. Let ∆i,i∗ be the additional payment required to raise
the fair cap from the one of position i∗ to the one of position i.

Indeed, our algorithm could have placed box k at position i∗, but preferred to place k in
position i < i∗. This means that

pk(bk −∆i,i∗) + (1− pk)pℓbℓ ≥ pℓbℓ + (1− pℓ)pkbk,

which also reflects the change in value if the move is executed in σ∗. This proves the inductive
step when i∗ > i. ◀

4.3 I.I.D. with Single Positive Prize for Principal
Finally, we study the subclass of the problem where all distributions are identical, with
the further restriction that there is only a single positive prize for the principal. Even this
restriction has a perhaps surprisingly complicated solution. We show the following result.

▶ Theorem 12. There exists an algorithm that computes an optimal exploration contract for
the i.i.d. case with a single positive prize for the principal in polynomial time.

We introduce some simplified notation for this subclass. All of the n boxes have an
identical distribution over prizes {0} ∪ [m] = {0, 1, . . . , m} and the same opening cost c ≥ 0.
For each prize j ∈ {0, 1, . . . , m}, the utilities for A and P are aj and bj , respectively. Without
loss of generality, prize 0 is the only prize for which P has a positive value, i.e., bj = 0 for all
j ≥ 1. The probability that prize j is drawn when a box is opened is denoted by qj ∈ [0, 1].
For the ease of notation, we define p := q0 and v := b0. For each box i ∈ [n], P defines a
(non-negative) payment of ti ≤ v for prize 0. We may assume v > 0 and p > 0 as otherwise
t1 = · · · = tn = 0 would be the unique transfers.

We make two further assumptions that are without loss of generality. First, the values aj

for j ≥ 1 are unique: If there are j1, j2 ∈ [m] with aj1 = aj2 , replace both prizes by a new
one with probability qj1 + qj2 . Second, we assume a1 ≤ a2 ≤ · · · ≤ am.

Similarly as in Section 4.2, let φ(t) be the fair cap of a box for A when payment t ≥ 0 is
made for prize 0 of that box. We call φ(0) the basic fair cap. Note that there is an optimal
contract in which each fair cap is either φ(0) or some value aj , where j ∈ [m], with aj > φ(0).
The reason is that, if that were not the case, we could decrease the payment for each box,
until that property is satisfied while keeping the policy optimal. Importantly, the agent value
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of outcome 0 (which is given by a0 + ti) need not be considered here: Whenever outcome 0
is drawn from a box i with φi > φ(0), the process stops immediately since, by definition of
the fair cap and the index policy, it must hold a0 + ti > φi ≥ φi+1, where φi+1 is the fair
cap of the next box.

Observe that φ(0) can be achieved with different payments t, as long as a0 + t ≤ φ(0).
This may influence the stopping behavior of A as the payment may determine the order of
a0 + t and aj for some prize j. To achieve some fair cap larger than φ(0), however, there is a
unique payment that achieves this fair cap because changing a values above the fair cap that
occurs with non-zero probability always changes the fair cap by definition.

Now consider an optimal contract. Index the boxes in the order in which they are opened,
and let φ1 ≥ φ2 ≥ · · · ≥ φn be the corresponding fair caps. We first concentrate on a
potential set of basic boxes with φ(0) in the final rounds of the process.

If a0 ≥ φ(0), then every positive payment of P would increase the fair cap to above φ(0).
Therefore, if basic boxes with fair cap φ(0) exist in an optimal contract, ti = 0 must hold for
all these boxes.

Otherwise, if a0 < φ(0), suppose j∗ ∈ [m] is the best other prize for A that is not
exceeding the basic fair cap, i.e., j∗ := arg maxj∈[m]{aj : aj ≤ φ(0)}. Observe that for
every basic box i, an optimal payment ti either fulfills a0 + ti = aj for some j ∈ [j∗], or
a0 + ti = φ(0). W.l.o.g., when prize 0 is drawn in a basic box i with a0 + ti = φ(0), the
process stops (by tie-breaking in favor of P, who cannot improve), and when an outcome
j ≥ 1 with aj = φ(0) is drawn in any round before n, the process continues (again by
tie-breaking in favor of P, who gets 0 if aj is accepted).

We next show that all basic boxes i with a0 + ti = φ(0) can be assumed to be opened
first among the set of basic boxes. The argument is an exchange argument and given in the
full version of the paper.

▶ Lemma 13. There is an optimal contract where all basic boxes ℓ with a0 + tℓ = φ(0) are
opened first among the set of basic boxes.

We now divide the process into two phases. In every round i of Phase 1, φi ≥ φ(0) and
prize 0 gets accepted by A immediately if it is found. In Phase 2, φi = φ(0) and prize 0 is
not accepted immediately (only if in the last round a prize 0 represents the best one for A).
Suppose Phase 1 contains boxes 1, . . . , k and Phase 2 boxes k + 1, . . . , n. Note that either
phase might be empty.

Before analyzing the process, we show an example that shows the perhaps counter-intuitive
fact that the optimal contract might indeed involve two such phases, each of substantial
length. Moreover, even though all boxes have the same distribution and the same fair cap,
in the optimal contract they are assigned one of two different payments depending on their
position in the inspection sequence.

▶ Example 14. Consider an instance with m = 2. Prize 0 has value a0 = 0 and b0 = 1+α for
some α > 0 determined below, as well as q0 = 1/n. The other prizes have a1 = 2, q1 = 1/n

and a2 = 0, q2 = 1− 2/n. The inspection cost is c = 1/n, and the basic fair cap is φ(0) = 1.
Clearly, if prize 1 is found in a box, then A always accepts. If prize 2 is found, A continues

to inspect further boxes. Suppose A draws a prize 0 in the first round. It is rather unlikely
that A will run through all remaining n− 1 boxes without finding a prize 1 and eventually
accept prize 0 from round 1. Specifically, this probability is (1− 1/n)n−1. Now P can set
t1 = 1 = φ(0), leading to direct acceptance by A and immediate profit of α. Alternatively,
P can decide to set t1 = 0 (and, in an optimal contract, then ti = 0 throughout) gambling
for a high profit of 1 + α in the end. The gambling strategy is unprofitable if
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α ≥ (1 + α) · (1− 1/n)n−1 or, equivalently, α ≥ (1− 1/n)n−1

1− (1− 1/n)n−1 .

Suppose α satisfies this inequality, then round 1 is part of Phase 1 in an optimal contract.
Via the same calculation, we can determine further rounds i of Phase 1. A accepts prizes 0
and 1 in all earlier rounds 1, . . . , i− 1, so reaching round i is only possible if prize 2 has been
found in all these rounds.

Now suppose for some k ∈ {1, . . . , n− 1}

α = (1− 1/n)k

1− (1− 1/n)k
.

Then P wants to set ti = 1 for all i ≤ k, i.e., this becomes Phase 1 with direct acceptance of
prize 0. For all rounds i ≥ k + 1, it is more profitable to gamble that no prize 1 will arrive in
the remaining rounds and P will secure a value of 1 + α. This represents Phase 2. ⌟

Turning to the analysis, we start by examining Phase 1. Using a relatively straightforward
exchange argument given in the full version of the paper, we show the following.

▶ Lemma 15. There is an optimal contract in which all boxes of Phase 1 have the same fair
cap.

In Phase 2, all boxes have fair cap φ(0), but this does not exclude the possibility of
different payments. If the first box of Phase 2, box k + 1, is about to be opened, the highest
agent value observed so far (if any) is at most φ(0). In particular, prize 0 was never observed
at that point, since this would have led to acceptance of A in an earlier round.

During Phase 2, the process only stops early when an outcome j > j∗ is drawn. In this
case, the utility for P is 0. If the process does not stop early, P receives a utility only if
outcome 0 is the best outcome for the agent among all n outcomes.
P could have different payments for different boxes as long as, for every box i, there is some

j ∈ [j∗] such that a0 +ti = aj . If an outcome from a box with payment t = aj−a0 ≤ φ(0)−a0
(for some j ∈ [j∗]) is the maximum after n rounds, then

outcome 0 must have been drawn from any number of boxes that have this payment t,
and
in all boxes with a payment of at most t, some outcome 0 ≤ j′ < j was drawn, and
in all remaining boxes, some outcome 1 ≤ j′ < j was drawn.

Let nj := |{i ∈ [n] : a0 + ti = aj}| denote the number of boxes of Phase 2 with such payment,
for every j ∈ [j∗]. Furthermore, for every j ∈ [j∗], let Qj :=

∑j
j′=1 qj′ denote the combined

probability of all outcomes (other than 0) that are not better for A, and Nj =
∑j

j′=1 nj′

denote the number of boxes with the according payment. The probability that outcome 0
with a payment of t = aj − a0 is the best outcome after n rounds is then given by

nj∑
i=1

(
nj

i

)
· pi · (p + Qj)Nj−1 ·Qn−Nj−1−i

j

=
nj∑

i=1

(
nj

i

)
· pi ·

(
p + Qj

Qj

)Nj−1

·Qn+nj−nj−i
j

=
nj∑

i=1

(
nj

i

)
· pi ·

(
p

Qj
+ 1
)Nj−1

·Qn−nj

j ·Qnj−i
j
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=
(

p

Qj
+ 1
)Nj−1

·Qn−nj

j ·

(
nj∑

i=0

(
nj

i

)
· pi ·Qnj−i

j −Qnj

)

=
(

p

Qj
+ 1
)Nj−1

·Qn−nj

j · ((p + Qj)nj −Qnj )

=
(

p

Qj
+ 1
)Nj−1

·Qn
j ·
((

p

Qj
+ 1
)nj

− 1
)

= Qn
j ·

((
p

Qj
+ 1
)Nj

−
(

p

Qj
+ 1
)Nj−1

)
.

Thus, the expected utility for P for Phase 2 is

j∗∑
j=1

vj ·Qn
j ·

((
p

Qj
+ 1
)Nj

−
(

p

Qj
+ 1
)Nj−1

)
.

With this at hand, we show the following lemma in the full version of the paper.

▶ Lemma 16. There is an optimal contract in which all boxes of Phase 2 have the same
payment for prize 0. There is j+ ∈ [j∗] such that nj+ = n− k (and nj = 0 for all j ̸= j+).

By the previous lemmas, it suffices to enumerate all combinations of the length of Phase
1, the fair cap in Phase 1, and the unique payment of prize 0 for Phase 2 (determined by a
prize j to be targeted, a payment of 0, or a payment resulting in value φ(0) for A for prize 0).
These are polynomially many combinations, and for each combination the expected utility of
P for the resulting contract can be computed in polynomial time. Theorem 12 follows.
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