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Abstract
Given a graph G and an integer k, the H-free Edge Deletion problem asks whether there exists a
set of at most k edges of G whose deletion makes G free of induced copies of H. Significant attention
has been given to the kernelizability aspects of this problem – i.e., for which graphs H does the
problem admit an “efficient preprocessing” procedure, known as a polynomial kernelization, where
an instance I of the problem with parameter k is reduced to an equivalent instance I ′ whose size and
parameter value are bounded polynomially in k? Although such routines are known for many graphs
H where the class of H-free graphs has significant restricted structure, it is also clear that for most
graphs H the problem is incompressible, i.e., admits no polynomial kernelization parameterized by k

unless the polynomial hierarchy collapses. These results led Marx and Sandeep to the conjecture that
H-free Edge Deletion is incompressible for any graph H with at least five vertices, unless H is
complete or has at most one edge (JCSS 2022). This conjecture was reduced to the incompressibility
of H-free Edge Deletion for a finite list of graphs H. We consider one of these graphs, which we
dub the prison, and show that Prison-Free Edge Deletion has a polynomial kernel, refuting the
conjecture. On the other hand, the same problem for the complement of the prison is incompressible.
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1 Introduction

Let H be a graph. A graph G is H-free if it does not contain H as an induced subgraph.
More generally, let H be a collection of graphs. A graph is H-free if it is H-free for every
H ∈ H. In the H-free Edge Editing (respectively H-free Edge Editing) problem,
given a graph G and an integer k, the task is to add or delete at most k edges from
G such that the result is H-free (respectively H-free). The Edge Deletion and Edge
Completion variants are the variants where only deletions, respectively only adding edges
is allowed. These are special cases of the much more general graph modification problem
class, where a problem is defined by a graph class G and the natural problem variants (G
Edge Editing/Deletion/Completion respectively G Vertex Deletion) are where the
input graph G is to be modified so that the result is a member of G.

As Cai [2] noted, for every finite H, the H-free graph modification problems are FPT
with a running time of O∗(2O(k)) by a simple branching algorithm. However, the question of
kernelization is much more subtle. A polynomial kernelization for a parameterized problem
is a polynomial-time procedure that takes as input an instance of the problem, for example,
I = (G, k) in the case of a graph modification problem, and outputs an instance (G′, k′) of
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the same problem such that |V (G′)|, k′ ≤ p(k) for some polynomially bounded function p(k)
of k, and such that (G′, k′) is a yes-instance if and only if (G, k) is a yes-instance. If so, we
say that the problem has a polynomial kernel. This has been used as a way to capture the
notion of efficient instance simplification and preprocessing, and deep and extensive work
has been done on determining whether various parameterized problems have polynomial
kernels or not (under standard complexity-theoretical assumptions). See the book by Fomin
et al. [11].

For many graph modification problems, both those characterized by finite and infinite
families H, polynomial kernelization is known, but for many others, the question is wide
open; see the survey of Crespelle et al. on parameterized edge modification problems [5]. For
the structurally simpler case of H-free Edge Deletion, if H is a clique then the problem
reduces to d-Hitting Set for d = |E(H)| and has a polynomial kernel by the sunflower
lemma, and if |E(H) ≤ 1 then the problem is trivial. For the same reason, H-free Vertex
Deletion has a polynomial kernel for every fixed H. But in all other cases, the question is
more intricate, since deleting an edge in one copy of H in G can cause another copy of H

to occur, implying a dependency between modifications that is not present in the simpler
cases. Beyond cliques and near-empty graphs, polynomial kernels are known when H is
P3 (i.e., H-free graphs are cluster graphs) [12], P4 (i.e., H-free graphs are cographs) [13],
the paw [7] and the diamond [4] (see Figure 1). Kernels are also known for several simple
classes characterized by finite sets H. But there are significant open cases; Crespelle et
al. [5] highlight the classes of claw-free graphs and line graphs, although the case of line
graphs has since been resolved [6]. Initially, progress led Fellows et al. [9] to ask (very
speculatively) whether H-free graph modification problems have polynomial kernels for all
finite H. This was refuted by Kratsch and Wahlström [14], and after a series of lower bounds,
most importantly by Cai and Cai [3], the answer now appears to be the opposite – the
H-free graph modification problems have polynomial kernels only for particularly restrictive
choices of H. Furthermore, in all such cases the kernel depends intimately on the structural
characterization of the graph class, such as structural decomposition results. However, it
would appear unlikely that such a structural characterization of H-free graphs should exist
for any arbitrary graph H, and correspondingly, we would expect H-free edge modification
problems not to admit polynomial kernelization. For example, despite the above-mentioned
positive results, H-free Edge Deletion has no kernel for H = Pℓ where ℓ ≥ 5, for
H = Cℓ for ℓ ≥ 4 or for any H such that H or its complement is 3-connected (excepting the
trivial cases) [3]. Marx and Sandeep [15] pushed the pendulum in the other direction and
conjectured that for graphs H on at least five vertices, only the above-mentioned immediate
kernels exist, conjecturing the following.

▶ Conjecture 1 (Conjecture 2 of [15]). H-free Edge Deletion does not have a polynomial
kernel for any graph H on at least 5 vertices, unless H is complete or has at most one edge.

They showed that this conjecture is equivalent to the statement that H-free Edge
Deletion admits no polynomial kernelization if H is one of nineteen specific graphs on
five or six vertices. They also gave a corresponding conjecture for H-free Edge Editing
(where |E(H)| = 1 is no longer a trivial case), and the case of H-free Edge Completion
follows by dualization.

In this paper, we refute this conjecture. We study the graph H shown in Figure 1 (the
complement of P3 + 2K1), which we dub a prison (given that it can be drawn as the 5-vertex
“house” graph with additional crossbars added). This is the first graph in the set H in [15].
We show that Prison-free Edge Deletion has a polynomial kernel. On the other hand,
Prison-free Edge Completion admits no polynomial kernelization unless the polynomial
hierarchy collapses. We leave Prison-free Edge Editing open for future work.
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1.1 Our results
As expected, our result builds on a characterization of prison-free graphs. We then derive
the kernelization and lower bound results working over this characterization.

Prison-free graphs. The start of our results is a structure theorem for prison-free graphs.
To begin with, note that the 4-vertex induced subgraphs of a prison are K4, the diamond
and the paw; see Figure 1. The structure of diamond-free and paw-free graphs are known: A
graph is diamond-free if and only if it is strictly clique irreducible, i.e., every edge of the graph
lies in a unique maximal clique [17], and a graph is paw-free if and only if every connected
component is either triangle-free or complete multipartite [16]. The structure of prison-free
graphs generalizes both.

A complete multipartite graph with classes P1, . . . , Pm is a graph whose vertex set is the
disjoint union P1 ∪ . . . ∪ Pm and with an edge uv for u ∈ Pi and v ∈ Pj if and only if i ̸= j.
Note that a clique is a complete multipartite graph where every part is a singleton. We show
the following.

▶ Theorem 2. A graph G = (V, E) is prison-free if and only if the following holds: Let
F ⊆ V be an inclusion-wise maximal set such that G[F ] is complete multipartite with at least
4 parts, and let v ∈ V \ F . Then N(v) intersects at most one part of F .

Furthermore, let cmdp(G) for p ∈ N be the collection of all inclusion-wise maximal
F ⊆ V (G) such that G[F ] is complete multipartite with at least p classes. We show that
cmd4(G) induces a form of partition of the cliques of G.

▶ Corollary 3. Let G = (V, E) be a prison-free graph. The following hold.
1. If F, F ′ ∈ cmd4(G) are distinct and F ∩ F ′ ≠ ∅, then F ∩ F ′ intersects only one class

C of F and C ′ of F ′, and there are no edges between F \ C ′ and F ′ \ C. In particular,
G[F ∩ F ′] is edgeless.

2. If F, F ′ ∈ cmd4(G) with F ∩ F ′ = ∅, then for every v ∈ F ′, N(v) intersects at most one
class of F

3. Let e ∈ E(G) be an edge that occurs in at least one K4 in G. Then there is a unique
F ∈ cmd4(G) such that e occurs in G[F ].

In particular, every Kp in G, p ≥ 4 is contained in a unique F ∈ cmd4(G). It also follows
that cmd4(G) can be enumerated in polynomial time in prison-free graphs.

Lower bound for prison-free completion. We show that Prison-free Edge Completion
is incompressible, i.e., admits no polynomial kernel parameterized by k unless the polynomial
hierarchy collapses. Counterintuitively, this result exploits the property that minimum
solutions for the problem can be extremely expensive – we can design a sparse graph G such
that every prison-free supergraph of G contains Θ(n2) edges (for example, by ensuring that
the only possible cmd4-decomposition of a prison-free supergraph of G consists of a single
component F = V (G)). More strongly, we use this to show an additive gap hardness version
of the problem.

▶ Theorem 4. For any ε > 0, it is NP-hard to approximate Prison-free Edge Completion
up to an additive gap of g = Θ(n2−ε), even if G has an edge e such that G − e is K4-free.

With this in place, we can proceed with the lower bound using standard methods, using
the notion of cross-composition [1, 11]. We follow the method used in previous lower bounds
against kernelization of H-free edge modification problems [14, 3]. Given a list I1, . . . , It of
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instances of the above gap-version of Prison-Free Edge Completion with parameter
value k, our task is to produce an instance of Prison-Free Edge Completion with
parameter (k′ +log t)O(1) which corresponds to the OR of the instances Ii. For this, we define
a binary tree of height O(log t) and place the instances at the leaves of the tree. At the root
of the tree, we place a single induced prison. For the internal nodes, we design propagational
gadgets with the function that if the gadget at the node is edited, then one of the gadgets at
the children of the node must be edited as well. Finally, for every instance Ij = (Gj , k) with
an edge ej such that Gj − e is prison-free, we connect ej to the corresponding gadget at the
leaf of the tree and remove ej from Gj . This forces at least one edge ej , j ∈ [t] to be added
to the resulting graph and the original instance Ij = (Gj , k) must be solved.

The crux is that, unlike previous proofs (for example in Cai and Cai [3] when H is
3-connected) we cannot “control” the spread of the edge completion solution to be confined
to Gj . On the contrary, the solution must spread all the way to the root and incorporate
all vertices from gadgets on the root-leaf path of the binary tree into a single complete
multipartite component of the resulting graph G′. Thus, we have no tight control over the
number of edges added in the corresponding solution. However, by the strong lower bound on
gap-hardness of Theorem 4 we do not need tight control – we can simply set the additive gap
g large enough that the number of edges added outside of Gj in the resulting propagation is
a lower-order term compared to g.

▶ Theorem 5. Prison-free Edge Completion does not have a polynomial kernel para-
meterized by k unless the polynomial hierarchy collapses.

Kernel for prison-free deletion. The kernelization algorithm depends directly on the
structural characterization of prison-free graphs. We start by using the sunflower lemma to
obtain a small set P ′ of prisons in the graph G such that any set of edges of size at most
k that intersects all prisons in P ′ has to intersect all prisons in G. We let S be the set
of vertices of these prisons. Note that |S| = O(k8), and outside of S we only need to be
concerned by prisons that are created by deleting some edge from G. This lets us delete all
edges not in E(G[S]) that do not belong to a strict supergraph of a prison. In addition, if a
prison in G contains a single edge inside S, then such an edge has to be included in every
solution of size at most k, so it can be deleted and k decreased. After exhaustive application
of these two reduction rules, we show that the edges of G[V (G) \ S] can be partitioned into
maximal complete multipartite subgraphs of G[V (G) \ S] (even those which do not occur
in cmd4(G[V (G) \ S])). For each of these maximal complete multipartite subgraphs, we
can check whether it is in some larger complete multipartite subgraph F in G that is nicely
separated from the rest of G, in the sense that every x ∈ V (G) \ F neighbors vertices in
at most one class of F . For any such F , no supergraph of a prison can contain edge both
outside and inside of F and edges inside of F can be safely deleted from G. This allows us to
bound the number of maximal complete multipartite subgraphs outside of S by O(|S|3). In
addition, we show that any supergraph of a prison in G that contains an edge fully outside of
S is fully contained in S ∪ F for a single maximal multipartite subgraph F of G[V (G) \ S].
This allows us to treat these multipartite subgraphs separately. Moreover, using the fact
that for any edge e ∈ G[S], the graph G[V (G) \ (S \ e)] is still prison-free, we can show that
the interaction between S and a maximal multipartite subgraph F of G[V (G) \ S] is very
structured. This allows us to reduce the size of each of these subgraphs and we obtain the
following theorem.

▶ Theorem 6. Prison-Free Edge Deletion admits a polynomial kernel.
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Figure 1 Three graphs: The prison, the paw, and the diamond (as subgraphs of the prison).

Structure of the paper. In Section 2 we derive the basic facts about prison-free graphs.
Section 3 contains the lower bound against Prison-free Edge Completion and Section 4
contains the polynomial kernel for Prison-free Edge Deletion. We conclude in Section 5.

2 Structure of prison-free graphs

We begin our study by characterizing the structure of prison-free graphs. This generalizes
two structures. The most closely related is for paw-free graphs; note that the paw is the
subgraph of the prison produced by deleting an apex vertex. Olariu [16] showed that a graph
is paw-free if and only if every connected component is either triangle-free or a complete
multipartite graph. The paw-free graph modification problems have polynomial kernels due
to Eiben et al. [7]. Second, less closely related but still relevant, the diamond K4 − e is
a subgraph of the prison produced by deleting a vertex of degree 3. It is known that a
graph is diamond-free if and only if every edge occurs in only one maximal clique [17]. The
diamond-free graph modification problems have polynomial kernels due to Cao et al. [4]. In
a sense, the structure of prison-free graphs generalizes both, as the edge-sets of cliques Kp,
p ≥ 4 in a prison-free graph G decomposes into complete multipartite induced subgraphs
of G.

We first prove Theorem 2 from the introduction, then use it to derive the more informative
Corollary 3.

▶ Lemma 7 (⋆1). Let G be a prison-free graph and let K ⊆ V (G) induce a K4 in G. Then
there is a complete multipartite graph G[F ] in G with K ⊆ F . Furthermore, if F is maximal
under this condition, then for any v ∈ V (G) \ F , N(v) intersects at most one component
of F .

Inspired by this, for any graph G and p ≥ 2, define cmdp(G) to consist of all maximal
subsets F ⊆ V such that G[F ] is complete multipartite with at least p parts. We refer to
cmdp(G) as the complete multipartite decomposition of G (and we will note that it is indeed
a decomposition for p ≤ 4 if G is prison-free). The following theorem is now an extension of
the previous lemma. Proofs of Theorem 2 and Corollary 3 are deferred to the full version.

▶ Theorem 2. A graph G = (V, E) is prison-free if and only if the following holds: Let
F ⊆ V be an inclusion-wise maximal set such that G[F ] is complete multipartite with at least
4 parts, and let v ∈ V \ F . Then N(v) intersects at most one part of F .

We will use this to derive a more useful description of prison-free graphs.

1 Results marked with ⋆ have their proofs deferred to the full version.
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▶ Corollary 3. Let G = (V, E) be a prison-free graph. The following hold.
1. If F, F ′ ∈ cmd4(G) are distinct and F ∩ F ′ ̸= ∅, then F ∩ F ′ intersects only one class

C of F and C ′ of F ′, and there are no edges between F \ C ′ and F ′ \ C. In particular,
G[F ∩ F ′] is edgeless.

2. If F, F ′ ∈ cmd4(G) with F ∩ F ′ = ∅, then for every v ∈ F ′, N(v) intersects at most one
class of F

3. Let e ∈ E(G) be an edge that occurs in at least one K4 in G. Then there is a unique
F ∈ cmd4(G) such that e occurs in G[F ].

In particular, the last item implies that every Kp, p ≥ 4 is contained in a unique
multipartite component F ∈ cmd4(G). Since every F ∈ cmd4(G) contains a K4, and each
maximal component F can be found greedily, cmd4(G) can be computed efficiently.

3 Incompressibility of Prison-free Edge Completion

In this section, we show that Prison-free Edge Completion admits no polynomial kernel
unless the polynomial hierarchy collapses. The proof is in two parts. First we show a strong
inapproximability result – it is NP-hard to approximate Prison-free Edge Completion
within an additive gap of g = O(n2−ε) for every ε > 0, even for graphs with prison-free
edge deletion number 1. We then use this to show a cross-composition (see below) for
Prison-free Edge Completion, thereby ruling out polynomial kernels under standard
complexity conjectures. This latter part roughly follows the outline of previous proofs of
incompressibility [14, 3].

3.1 Initial observations and support gadgets
We begin with some useful statements.

▶ Proposition 8. For a complete multipartite graph K with parts of sizes a1, a2, ..., am, the
number of edges of K is 1

2
∑

i ̸=j aiaj = 1
2 (|K|2 −

∑
i
a2

i ).

For a graph G = (V, E) and a set of edges A over V , we let G ∪ A denote the graph
G′ = (V, E ∪ A). A prison-free completion set for G is an edge set A over V (G) such that
G ∪ A is prison-free. A solution to (G, k) is a prison-free completion set A for G with |A| ≤ k.
The following is essential in our lower bounds.

▶ Lemma 9 (⋆). Let G be a graph with exactly one induced K4 and let A be a minimal
prison-free completion set for G. Then cmd4(G ∪ A) has exactly 1 component and A lives
within that component.

We next show a way to enforce forbidden edges, i.e., non-edges uv in G such that no
prison-free completion set for G of at most k edges contains uv.

▶ Lemma 10 (⋆). Let G be a graph, k ∈ N, and u, v ∈ V (G) with u ̸= v such that uv /∈ E(G).
There is a graph G′ on vertex set V (G′) = V (G) ∪ F such that G = G′ − F and the following
holds: the minimal solutions to (G′, k) are precisely the minimal solutions A to (G, k) such
that uv /∈ A. Furthermore, every solution A to (G′, k) satisfies uv /∈ A.

We now proceed with gadget constructions. A propagational component is a graph
containing 3 distinct non-edges e1, e2 and e3 such that for any graph G and subset A of
V (G)2, if G ∪ A is prison-free and e1 ∈ A, then e2 ∈ A or e3 ∈ A. Figure 2a shows this
component. In what follows, we will deduce gadgets from this propagation property, leaving
the proof of their prison-freeness for later.
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(c) Disjoint propagational component.

Figure 2 Gadgets for Section 3. Dotted lines are forbidden edges; dashed lines are named
“gadget-edges” with special semantics.

▶ Definition 11. Let l ≥ 4. A cloning component of length l is a component over the
vertices a0, ..., al−1, b0, ..., bl−1, c0, ..., cl−1 with the edges such that for all 0 ≤ i ≤ l − 1,
ai+1, ci+1, bi, ci, ai induces a propagational component with ei

1, ei
2, ei

3 = aici, ai+1ci+1, ci+1bi,
and the edge ei

3 = ci+1bi is forbidden. All arithmetic here is modulo l.

A cloning component is drawn in Figure 2b. Note that for all 0 ≤ i ≤ l − 1, if a solution
A for an instance (G, k) contains ei

1 in a cloning component, then it contains ei
2 (since ei

2 ∈ A

or ei
3 ∈ A, but ei

3 is forbidden). We inductively obtain the next property.

▶ Lemma 12 (⋆). Let l ≥ 4, k ≥ 1 and G be a graph containing an induced cloning component
X of size l with vertices named ai, bi and ci as above. Let A be a subset of non-edges such
that |A| ≤ k and G ∪ A is prison-free. Then either {aici | 0 ≤ i ≤ l − 1} ∩ A = ∅ or aici ∈ A

for every 0 ≤ i ≤ l − 1. Furthermore, in the latter case all of X is contained in a complete
multipartite component of G ∪ A.

We define one final gadget, shown in Figure 2c. This does the same job as a propagational
component – i.e., if e1 ∈ A then e2 ∈ A or e3 ∈ A – except that the edges e1, e2, e3 are
pairwise vertex-disjoint. This is the propagational gadget mentioned in the proof overview.

▶ Definition 13. A disjoint propagational component is a graph isomorphic to the graph
shown in Figure 2c, i.e., a graph on a vertex set V = {v1, . . . , v11} such that vertex sets
{v1, . . . , v5}, {v4, . . . , v8} and {v3, v5, v9, v10, v11} all induce propagational components, v1v2,
v3v5, v4v5, v6v8 and v10v11 are standard non-edges and v7v8 and v9v11 are forbidden edges.
The edge labelled e1 = v1v2 is referred to as input edge and the edges e2 = v10v11 and
e3 = v6v8 are output edges.

3.2 NP-hardness of Gap Prison-free Edge Completion
We now prove the first half of the incompressibility result for Prison-Free Edge Comple-
tion, namely that it remains NP-hard even in a strong additive gap version.

Let Gap Prison-free Edge Completion be the variant of Prison-free Edge
Completion where the input is a triple (G, k, g) and the task is to distinguish between the
following cases:
1. G has a prison-free completion set of at most k edges.
2. G has no prison-free completion set of fewer than k + g edges.

STACS 2025



52:8 Kernelization for Prison-Free Edge Deletion and Completion

For intermediate cases (where the size t of a minimum-cardinality prison-free editing set is
k < t < k + g) the output may be arbitrary. The following is the more precise version of
Theorem 4 from the introduction. We defer the construction to the full version of the paper.

▶ Theorem 14 (⋆). For any ε > 0, it is NP-hard to distinguish between yes-instances and
no-instances (G, k, g) of Gap Prison-free Edge Completion even if G contains an edge
e such that G − e is K4-free and the gap is g = Θ(n2−ε).

Proof sketch. We can only give a brief sketch here and refer to the full version for details.
The result is shown by a reduction from Vertex Cover on cubic graphs. At its heart
is the following principle. We create a graph G which has a single induced K4. Then by
Lemma 9, for any minimal prison-free completion set A of G, V (A) will be contained in a
single complete multipartite component F of G ∪ A. Using forbidden edges, we can have
tight control over the partition of F , which lets us predict |A| well. In particular, we can
ensure that the number of edges |A| added scales quadratically with |V (A)|.

Our reduction uses two gadgets: cloning components, of sufficiently large length ℓ, and
disjoint propagational components. Let (G, t) where G = (V, E) be an input instance of
Vertex Cover where G is a cubic graph. Using one initial cloning component X0 with a
single seeded active edge e, we can force the propagation of e into m = |E| disjoint activation
edges ei, one for every edge of E. For every edge ab ∈ E, associated with an edge ei of
X0, we create a disjoint propagational component with input edge ei and output edges
fa,i and fb,i associated with the vertices a and b of G. Finally, for every vertex v ∈ V we
create a very large cloning component, which contains all edges fv,j associated with it, and
whose length ℓ depends on the desired gap g. Thus, prison-free completion sets A of the
resulting graph G′ which activate the cloning components of s distinct vertices of G, lead to a
prison-free supergraph G′ ∪ A of G′ where the unique complete multipartite component F of
cmd4(G′ ∪ A) contains O(ℓs) vertices, guaranteeing that |A| = Θ((sℓ)2) for a corresponding
minimum solution A. We can now achieve the desired gap by tuning ℓ to be sufficiently
large. ◀

3.3 Compositionality of Prison-Free Edge Completion
We prove Theorem 5 by an or-composition over instances of Gap Prison-free Edge
Completion, using Theorem 4 to support the composition.

We recall some definitions [1]. A polynomial equivalence relation is an equivalence relation
on Σ∗ such that the following hold:
1. There is an algorithm that given two strings x, y ∈ Σ∗ decides in time polynomial in

|x| + |y| whether x and y are equivalent.
2. For any finite set S ⊂ Σ∗, the number of equivalence classes that S is partitioned to is

polynomially bounded in the size of the largest element of S.
Let L ⊆ Σ∗ be a language, R a polynomial equivalence relation and Q ⊆ Σ∗ × N a
parameterized language. An OR-cross-composition of L into Q (with respect to R) is an
algorithm that given t instances x1, . . . , xt ∈ Σ∗ of L belonging to the same equivalence class
of R, uses time polynomial in

∑t
i=1 |xi| and outputs an instance (y, k) of Q such that the

following hold:
1. The parameter value k is polynomially bounded in maxi |xi| + log t.
2. (y, k) is a yes-instance of Q if and only if at least one instance xi is a yes-instance of L.
If an NP-hard language L has an OR-cross-composition into a parameterized problem Q

then Q admits no polynomial kernelization, unless the polynomial hierarchy collapses [1].
We proceed to show this for Prison-free Edge Completion.
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We present here a high-level sketch of the result, based directly on Theorem 4. In the
full version, we present a more careful proof with explicit parameters. Thus for simplicity,
let (Gi, ki, gi)t

i=1 be a sequence of instances of Gap Prison-free Edge Completion with
a sufficiently high gap value gi = Θ(|V (Gi)|2−ε), ε > 0, to be tuned later. Via a polynomial
equivalence relation, we may assume that |V (Gi)| = n0, |E(Gi)| = m0, ki = k0 and gi = g

holds for every input instance i. By Theorem 4, we assume that for every instance (Gi, ki, gi)
there is a single edge ei ∈ E(Gi) such that Gi −ei is prison-free; refer to this as the activation
edge of Gi an d delete it from the graph.

For the composition, let h ∈ N be such that 2h−1 < t ≤ 2h. Define a balanced binary
tree of height h whose leaves are labelled Li, i = 1, . . . , t. Please a disjoint propagational
component for every internal node x of the tree, identifying the two output edges with the
children of x and the input edge at x with the corresponding output edge of the parent of
x. Initially, all input and output edges are absent except that the input edge at the root
of the tree is present. Finally identify the output edge leading into the leaf Li with the
activation edge ei of the graph Gi. If there are any unused output edges, for example if t

is odd, make these edges forbidden. Let (G, k) be the resulting instance of Prison-free
Edge Completion where k is yet to be determined.

▶ Lemma 15 (⋆). Let A be a prison-free completion set for G. Then there is some i ∈ [t]
such that A contains the activation edge ei of the graph Gi. Furthermore, for every i ∈ [t],
any minimal prison-free edge completion set Ai for Gi +ei can be completed into a prison-free
completion set A for G which contains every output edge in the path from the root to Li but
no other output edges from the tree.

We are now ready to finish the proof.

▶ Theorem 5. Prison-free Edge Completion does not have a polynomial kernel para-
meterized by k unless the polynomial hierarchy collapses.

Proof sketch. We show that the construction above is a cross-composition into Prison-free
Edge Completion with parameter k. Consider briefly the two cases. First, if for some
i ∈ [t] the input instance (Gi, k0, g0) is positive, let Ai be a prison-free completion set for
Gi with |Ai| ≤ k. By Lemma 15 there is a prison-free completion set A ⊇ Ai for G that
modifies edges along the root-leaf path to Li of the binary tree, and does not contain any
other output edge of the tree. By Lemma 9 and minimality of A and Ai we may now assume
that A touches no vertices of the binary tree except on the root-leaf path to Li, and contains
no further edges inside Gi beyond Ai. Let nt be the number of vertices in the gadgets of
the tree incident with edges of A; since the tree has height h = O(log t) and each node is
constant size, we have nt = O(log t). Thus

|A| ≤ |Ai| + (nh + n0)nh ≤ k0 + O((n0 + log t) log t).

On the other hand, assume that for every i ∈ [t] the minimum prison-free completion set Ai

for Gi has |Ai| ≥ k0 + g0. Let A be a prison-free completion set for G. By Lemma 15 there
is some i ∈ [t] such that the activation edge ei of Gi is contained in A. Thus A contains a
prison-free completion set for Gi and |A| ≥ k0 + g0. By the construction of Theorem 4, we
can tune the parameters so that these quantities separate, and choose a parameter k where

k0 + O((n0 + log t) log t) ≤ k < k0 + g0

in which case the reduction is complete. ◀
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4 Polynomial kernel for Prison-free Edge Deletion

In this section we will find a polynomial kernel for Prison-Free Edge Deletion. Let
G be a graph and k ≥ 1. We will fix (G, k) throughout this section to be an instance of
Prison-Free Edge Deletion.

Throughout this section, for a graph G, and an edge e = uv of G, we call common
neighborhood of e the set NG(e) = NG(u) ∩ NG(v). In addition, given a graph G and a set
of vertices S ⊆ V (G), we denote by S̄ the set V (G) \ S, when G is clear from the context.

4.1 Finding a Small Vertex Modulator
We start by finding a small subset of vertices S such that any edgeset A ⊆ E(G) with at
most k edges that intersects all prisons in G[S] also intersects all prisons in G. While this is
not sufficient for a kernel, as deleting an edge can create a prison, outside of this set, we only
need to focus on prisons that are created by deleting an edge. To obtain this set, we will use
well known Sunflower Lemma due to Erdös and Rado [8].

A sunflower in a set family F is a subset F ′ ⊆ F such that all pairs of elements in F ′

have the same intersection called core.

▶ Lemma 16 (Sunflower Lemma, [8, 10]). Let F be a family of subsets of a universe U , each
of cardinality exactly b, and let a ∈ N. If |F| ≥ b!(a − 1)b, then F contains a sunflower F ′

of cardinality at least a. Moreover, F ′ can be computed in time polynomial in |F|.

▶ Lemma 17 (⋆). We can in in polynomial time either determine that (G, k) is no-instance
of Prison-Free Edge Deletion or compute a set S ⊆ V (G) with |S| ≤ 5 · 8! · (k + 1)8

such that for every prison P in G and every A ⊆ E(G) with |A| ≤ k, it holds that if G[S]∆A

is prison-free, then A ∩ E(G[P ]) ̸= ∅.

Proof Sketch. The proof is a straightforward application of Lemma 16. Let S = {E(P ) |
P is a prison in G}. Note that each set X ∈ S0 contains precisely 8 edges. We iteratively
apply Lemma 16 on S to find a sunflower of size k + 2. If the core of the sunflower S ′

is empty, then G contains k + 2 edge-disjoint prisons and (G, k) is no instance. Else any
solution of size at most k interesects the core and that is the case even if we require to hit
only k + 1 prisons of S ′, so we remove arbitrary prison from S and repeat the procedure
until no suflower of size k + 2 can be find. At that point S contains at most 8! · (k + 1)8

many prisons and any A ⊆ E(G) with |A| ≤ k that intersect all of the prisons that are left
in S intersects all prisons in G. We let S to be the set of all vertices in these prisons. ◀

For the rest of the section and of the proof, we let S be the set computed by Lemma 17.
It follows, as long as we keep G[S] as the subgraph of the reduced instance, we only need to
be concerned about the prisons that are created by removing some edge from G, as all the
prisons that were in G to start with are hit by a set A of at most A edges as long as G[S]∆A

is prison-free. Given the above, the following two reduction rules are straightforward.

▶ Reduction Rule 1 (⋆). If an edge e ∈ (E(G) \ E(G[S])) is not in a strict supergraph of a
prison, delete it.

▶ Reduction Rule 2 (⋆). For every prison P in G, if E(G[S]) ∩ P = {e}, then remove e

and decrease k by one.

Thanks to these Reduction Rules, we found a set S of vertices of size polynomial in k

such that for any subset S′ of vertices of S such that G[S′] has at most one edge, G[S̄ ∪ S′]
is prison-free. We note that we assume that all reduction rules are applied exhaustively;
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that is whenever a reduction rule is applicable, we apply it and restart the process from the
beginning. Hence, in all statements in the rest of the section, we implicitely assume that
none of the reduction rules can be applied.

4.2 Consequences on the Structure of G[S̄]
Now we are able to show the following properties that will be useful for the kernel. The
following lemma gives us a stronger property than just the characterisation of prison-free
graphs.

▶ Lemma 18 (⋆). Let F ∈ cmd3(G[S̄]) be a maximal complete multipartite subgraph of G[S̄]
such that F has exactly three classes. Then there exists s ∈ S with F ⊆ N(s). Moreover,
there is a strict supergraph of a prison that contains s and an edge in F .

Proof Sketch. Since F has three classes, there are u, v, w such that uvw is a triangle in G[S̄].
Due to Reduction Rule 1, each edge of F is in a strict supergraph of a prison and hence in K4
in G. Now given a K4 (a, b, u, v) that contains uv, we conclude that w is adjacent to either
a or b, else (a, b, u, v, w) induces a prison with at most one edge in S and Reduction Rule 2
applies. Hence {u, v, w} is a subset of a K4, say (u, v, w, s). As a consequence of Lemma 7
and since G[S̄] is prison-free, one can show that F has to be fully included in the K4-free
part of G[S̄], and hence s ∈ S. Now, any vertex x ∈ F \ {u, v, w} is adjacent to exactly two
vertices in {u, v, w} and hence if sx /∈ E(G), then (u, v, w, s, x) induces a prison without an
edge in S, which is impossible due to the construction of S. ◀

▶ Lemma 19 (⋆). For all F ∈ cmd3(G[S̄]), for all x ∈ S̄ \ F , NG(x) intersects at most one
class of F .

Proof Sketch. The Lemma follows for F ∈ cmd4(G[S̄]) by Lemma 7. Hence, we can assume
F ∈ cmd3(G[S̄]) \ cmd4(G[S̄]). For the sake of contradiction, assume that for x ∈ S̄ \ F ,
we have that N(x) ∩ F contains an edge uv. Since F has three classes, for every w in the
class C that does not contain u nor v, we have that uvw is a triangle. Moreover, similarly
as in the proof of Lemma 18, one can show using Lemma 7 that (u, v, w, x) cannot be K4
and so wx /∈ E(G). Since, F is inclusion maximal, there is a ∈ F \ C such that xa /∈ E(G).
By Lemma 18, there is s ∈ S with F ⊆ N(s). But then either (u, v, w, s, x) or (u, v, a, s, x)
induces a prison with no edge in G[S] (depending on whether sx ∈ E(G) or not), which is
impossible due to the construction of S. ◀

▶ Lemma 20 (⋆). If a supergraph P of a prison of G has an edge in F ∈ cmd3(G[S̄]), then
P ⊆ S ∪ F .

Proof Sketch. For the sake of contradiction, let P be a supergraph of a prison of G that
has an edge uv in F ∈ cmd3(G[S̄]) and there is x ∈ P \ (S ∪ F ). One can show that due
to Lemma 19 and application of Reduction Rule 2, P = (a, b, u, v, x) is a strict supergraph
of a prison with {a, b} ⊆ S and vx (or ux) being the only non-edge of P . Moreover, F

contains triangle uvw, as it has at least three classes and wx /∈ E(G) by Lemma 19. Due to
Reduction Rule 2, (u, v, w, a, b) cannot induce a prison, and either wa ∈ E(G) or wb ∈ E(G).
If wa ∈ E(G) (resp. wb ∈ E(G)), then (x, a, u, w, v) (resp. (x, b, u, w, v)) induces a prison in
G with at most one edge in G[S], contradicting application of Reduction Rule 2. ◀

Let’s now focus on the edges of S̄ that are not in any triangle. We show that since
Reduction Rules 1 and 2 has been exhaustively applied, even these edges can be partitioned
to maximal complete bipartite subgraphs.
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Let B be the set of edges of G[S̄] that are not in any triangle in G[S̄]. For all e = ab ∈
E(G[S]), we note Be = B ∩ {uv : u, v ∈ N(a) ∩ N(b)}. Note that every edge f ∈ B belongs
to a K4 in G due to the application of Reduction Rule 1. Since, f is not in any triangle in
G[S̄], it follows that it is in some Be for e ∈ E(G[S]). On the other hand, we show that if
Be1 ∩ Be2 ̸= ∅, then Be1 = Be2 , otherwise G contains a prison with at most one edge in G[S],
which gives us the following lemma.

▶ Lemma 21 (⋆). {Be | e ∈ E(G[S])} is a partition of B.

The following lemma is a straightforward consequence of Reduction Rule 2, since for every
e ∈ E(S), G[S̄ ∪ e] is prison-free and hence NG(e) ∩ S̄ is P̄3-free.

▶ Lemma 22 (⋆). For all e ∈ E(G[S]), NG(e) ∩ S̄ is complete multipartite and if Be is non
empty, NG(e) is a complete bipartite graph.

▶ Lemma 23 (⋆). Let e ∈ E(G[S]). Assume that Be is not empty. Then any induced
supergraphs of a prison P that has an edge in Be is in Be ∪ S.

Proof Sketch. Assume that there is an induced supergraphs of a prison P = (a, b, u, v, w),
where uv in Be and w ∈ S̄ \ Be. It follows from Reduction Rule 2 and the fact that uv is
not in a triangle in G[S̄] that (1) P is a strict supergraph of a prison with only non-edge
uw (resp. vw) and (2) {a, b} ⊆ S. By Lemma 21, Be = Bab. Since Be is maximal complete
bipartite subgraph of G[S̄], the class that contains v (resp. u), contains a vertex v′ (resp. u′)
with v′w /∈ E(G). But then (a, b, v, v′, w) (resp. (a, b, u, u′, w)) induces a prison in G with
only one edge inside S, which is a contradiction. ◀

It follows that we can partition the edges of G[S̄] in complete multipartite subgraphs,
where one of these complete multipartite subgraphs can intersect another in at most one class.
The following reduction rule lets us reduce the number of complete multipartite subgraphs
in this partition to |S|3 + |S|2 = O(k24). Given this bound, we will reduce size of each of
these components as well as number of isolated vertices in G[S̄] by a polynomial function in
k as well.

▶ Reduction Rule 3 (⋆). Let F ′ ∈ cmd3(G[S̄]). If F ⊆ V (G) is a maximal complete
multipartite component such that F ⊇ F ′ and for every vertex v /∈ F , N(v) intersects at most
one class of F , remove all edges of F .

Proof Sketch. It is not difficult to show that there is no supergraph of a prison in G that
contains an edge with both endpoints in F and at the same time an edge with at least one
endpoint outside of F . Given this for every A ⊆ E(G), every prison in G∆A is either all
edge in F or all edges in G − E(F ), since F is complete multipartite and hence prison-free,
it suffices to hit all prisons in G − E(F ). ◀

Recall that we always assume that none of the previous reduction rules can be applied,
in particular from now on we assume also that Reduction Rule 3 is not applicable.

From now on, we denote F = cmd3(G[S̄]) ∪ {Be | e ∈ E(G[S])}.

▶ Lemma 24 (⋆). The edges of G[S̄] can be partitioned into at most |S|3 + |S|2 many maximal
complete multipartite subgraphs of G[S̄].

Proof Sketch. Clearly every edge in G[S̄] is in a maximal complete multipartite subgraph
of G[S̄]. We only need to show that each edge is in precisely one such subgraph and that
their number is at most |S|3 + |S|2. First note the edges in B are partitioned into at most
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|E(G[S])| ≤ |S|2 many complete bipartite graphs by Lemma 21. Hence, we only need
to consider the edges that are in some F ∈ cmd3(G[S̄]). It is a rather straightforward
consequence of Lemma 19 that any edge e in F cannot be in any other maximal complete
multipartite subgraph in cmd3(G[S̄]). It remains to show that show that |cmd3(G[S̄])| ≤ |S|3.

We will now define a function f : cmd3(G[S̄]) → cmd4(G) such that for all F ∈
cmd3(G[S̄]), it holds that (1) F ⊆ f(F ) and (2) f(F ) contains at least one vertex in
S. That is f is injective. We will show that every edge in G[S] is in at most |S| many
complete multipartite subgraph in the image of f and every element of the image of f

contains an edge of G[S], bounding cmd3(G[S̄]) by |E(G[S])| ≤ |S|3.
If F ∈ cmd4(G[S̄]), then since Reduction Rule 3 has been exhaustively applied, there

is v ∈ S such that N(v) intersects at least two classes of G[F ], and since G[S̄ ∪ {v}] is
prison-free and F contains a K4, G[F ∪ {v}] is complete multipartite. We define f(F )
as any maximal complete multipartite component of G containing F ∪ {v}. Else, if F ∈
cmd3(G[S̄]) − cmd4(G[S̄]), then by Lemma 18, there is a vertex s ∈ S such F ⊆ N(s) and
G[F ∪ {s}] is a complete multipartite graphs with at least four parts. We define f(F ) as a
maximal complete multipartite subgraph of G containing F ∪ {s}.

▷ Claim 25 (⋆). Let e = uv be an edge of G[S]. Then at most |S| elements of Im(f)
contains the vertices of e.

There are thus at most |S|3 elements of Im(f) that contains an edge in S.

▷ Claim 26 (⋆). Each element of Im(f) contains an edge in S.

So |Im(f)| ≤ |S|3. Since f is injective, |cmd3(G[S̄])| ≤ |S|3. Therefore, |F| =
|cmd3(G[S̄])| + |{Be | e ∈ E(G[S])}| ≤ |S|3 + |S|2. ◀

We will have a kernel once we have bounded the size of a maximal complete multipartite
subgraphs and the number of isolated vertices in G[S̄]. Before we show how to bound those,
let us observe the following two simple lemmas.

▶ Lemma 27 (⋆). Let F ∈ cmd3(G[S̄]) and s ∈ S. If N(s) intersects more than one class
of F , then either N(s) ∩ F = F \ C, where C is a single class in F , or N(s) ∩ F = F .

▶ Lemma 28 (⋆). Let e such that Be is non empty, and let s ∈ S. N(s) either contains Be

or it intersects at most one class of G[Be].

4.3 Marking important vertices
We will now mark some important vertices that we will keep to preserve the solutions and
afterwards argue that we can remove all the remaining vertices without changing the value of
an optimal solution. To better understand why this marking procedure works, it is useful to
recall Lemmas 20 and 23 that state that any (not necessarily strict) supergraph of a prison
that has at least one edge in some F ∈ F is fully contained in S ∪F . That is only supergraphs
of the prison that can contain vertices in more than one complete multipartite subgraph
from F are those with all edges either in S or between S and N(S). Such supergraphs
of a prison have always at most two vertices outside of S. Before we give the details of
the marking procedure, let us introduce a concept of neighborhood pattern. Let X ⊆ V (G)
and a ∈ V (G) \ X, then the neighborhood pattern of a in X is N(a) ∩ X. Moreover, for
two vertices a, b ∈ V (G) \ X, we say a and b have the same neighborhood pattern in X if
N(a) ∩ X = N(b) ∩ X.
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Now, let F ∈ F . By Lemmas 27 and 28, for every s ∈ S, if N(s) ∩ F ≠ ∅, then there are
only three possibities how N(s) and F can interact. Namely,
1. N(s) ∩ F ⊆ C for a single part C of F ;
2. N(s) ∩ F = F \ C for a single part C of F ;
3. N(s) ∩ F = F .
Given the above, we can split the classes C of F into two types.
Type 1. There is s ∈ S such that N(s) ∩ F ⊆ C or N(s) ∩ F = F \ C. We denote the set of

classes of Type 1. as T 1
F ;

Type 2. The rest, which we denote T 2
F .

Note that |T 1
F | ≤ |S| due to Lemmas 27 and 28 all classes C in F with C /∈ T 1

F have
exactly the same neighborhood in S.

We compute a set MF of marked vertices for the component F ∈ F as follows. We note
that whenever we say, we mark some number x of vertices with some property, we mean
that if there are more than x many vertices with that property, we mark arbitrary x many
of them, else we mark all of them. Let us start with marking vertices in a class C of Type 1.
for every C ∈ T 1

F . For each S′ ⊆ S with |S′| = 4, and for each neighborhood pattern ξ in S′,
we add to MF arbitrary 2k + 5 vertices of C with the neighborhood pattern ξ in S′. Observe
that for any S′′ with |S′′| < 4, there is S′ ⊃ S′′ with |S′| = 4 and so for any neighborhood
pattern ξ′′ in S′′, there is a neighborhood pattern in S′ that is equal to ξ′′ if restricted to
S′′. Hence, using this marking, we marked at least 2k + 5 vertices with any neighborhood
pattern in any S′ with |S′| ≤ 4 as well.

In addition, we pick arbitrary 2k + 5 classes of F that are in T 2
F and add arbitrary 2k + 5

vertices from each picked class to MF .

▶ Lemma 29 (⋆). Given the above marking procedure, for all F ∈ F , it holds that |MF | ≤
|S|5 · (2k + 5) + (2k + 5)2.

In addition to marking the set MF for each F ∈ F , we mark additional set of at most
24 ·

(|S|
4

)
· (2k +5) vertices by going over all subsets S′ of S of size 4 and for each neighborhood

pattern ξ in S′, we mark at most 2k + 5 additional vertices of V (G) \ S that are not in
any F ∈ F with the given neighborhood pattern ξ in S′. We denote this set of at most
|S|4 · (2k + 5) vertices as M∅. Additionally, observe that this way, we mark at least 2k + 5
vertices for each neighborhood pattern in any subset of S of size at most four as well.

▶ Lemma 30 (⋆). Let G′ = G[S ∪ M∅ ∪
⋃

F ∈F MF ]. Then (G, k) is yes-instance of Prison-
Free Edge Deletion if and only if (G′, k) is. In addition |V (G′)| = O(k65).

Proof. The bound on the size of G′ follows from the fact that that |S| = O(k8), |F| ≤
|S|3 + |S|2, and Lemma 29. Now, G′ is an induced subgraph of G and hence for every
A ⊆ E(G), if G∆A is prison-free, then also G′∆(A ∩ E(G′)) is. Therefore, if (G, k) is
yes-instance, then so is (G′, k).

For the rest of the proof, let us assume that (G′, k) is yes-instance and let A ⊆ E(G′) be
such that |A| ≤ k and G′∆A is prison-free. We show that G∆A is also prison-free. For the
sake of contradiction, let’s assume that P = (a, b, c, d, e) induces a prison in G∆A. Let us
distinguish two cases depending on whether P contains an edge between two vertices outside
of S or not.
Case 1. All edges of P have at least one endpoint in S. Note that in this case, there are at

most two vertices of P outside of S.
If only one vertex of P , say a, is outside of S, then clearly a is the only vertex of P not in
G′. Note that this also means that none of the edges incident with a is in A. Moreover,
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G′ contains at least 2k + 5 vertices with the same neighborhood pattern in {b, c, d, e},
else a would have been either in M∅ or in MF for some F ∈ F . Since |A| ≤ k, it follows
that at least one of these 2k + 5 vertices, let’s call it a′, is not incident to an edge in
A and in particular to an edge between a′ and a vertex in {b, c, d, e}. However, then
(G′∆A)[{a′, b, c, d, e}] is isomorphic to P and induces a prison, which is a contradiction
with G′∆A being prison-free.
Now assume that two vertices a and b are outside of S, and there is no edge between a

and b in G∆A. Note that the other non-edge of P share an endpoint with ab, and w.l.o.g.,
we can assume it is ac. As at least one of a and b is not in G′, ab /∈ E(G). Moreover,
ac ∈ E(G) ∩ A, else P is a prison in G and Lemma 17 implies that A intersects P . Hence,
b /∈ V (G′), by our marking procedure, there are at least 2k + 5 vertices b′ in V (G′) \ S

with {c, d, e} ⊆ N(b′) and bb′ /∈ E(G). One of these vertices is not incident on any edge in
A. For such a vertex b′, either (a, b′, c, d, e) or (a, b, b′, d, e) is a prison in G′∆A depending
on whether ab′ ∈ E(G) or ab′ /∈ E(G).

Case 2. P contains an edge in G − S. Then by Lemmas 20 and 23, it follows that there
exists F ∈ F such that P ⊆ S ∪ F . Let S′ = P ∩ S. Now, for x ∈ P \ S, If x belongs to
C ∈ T 1

F , then by construction of MF and the fact that |A| ≤ k, MF either contains x or
a vertex x′ such that (1) x′ ∈ C, (2) N(x) ∩ S′ = N(x) ∩ S′, and (3) x′ is not incident
to any edge of A. On the other hand, if some of the vertices in P ∩ F are in the classes
in T 2

F , then all such vertices have exactly same neighborhood in S, moreover, either all
their respective classes contain vertices in MF , or there are at least five classes of F that
each has 2k + 5 vertices in G′ and no vertex in these classes is incident on an edge in A.
Hence, for each vertex x in P ∩ F that belongs to a class C ∈ T 2

F , we can find C ′ ∈ T 2
F

and x′ ∈ C ′ such that (1) x′ ∈ MF , (2) x′ is not incident on any edge in A, and (3) if x

and y are in P ∩ F , then x′ and y′ are in the same class of F if and only x and y are.
Let P ′ = (a′, b′, c′, d′, e′) be a subgraph of G′ such that for all x ∈ {a, b, c, d, e}, if x ∈ G′,
then x′ = x and else x′ is computed as described above, depending on whether x ∈ T 1

F

or x ∈ T 2
F . It follows that for all x, y ∈ {a, b, c, d, e}, there is an edge xy ∈ E(G) if and

only if x′y′ ∈ E(G′). Moreover, since xy ∈ A implies that {x, y} ⊆ V (G′), it follows
that xy ∈ A if and only if x′y′ ∈ A. Therefore, P ′ induces a prison in G′, which is a
contradiction.

Hence, such prison P in G∆A cannot exist and G∆A is prison-free as well. Consequently,
(G′, k) is yes-instance of Prison-Free Edge Deletion if and only if (G, k) is and the
Lemma follows. ◀

The polynomial kernel for Prison-Free Edge Deletion then follows from Lemma 30 by
observing that all reduction rules as well as marking procedure can be applied in polynomial
time.

▶ Theorem 6. Prison-Free Edge Deletion admits a polynomial kernel.

5 Conclusions

We have showed that H-free Edge Deletion has a polynomial kernel when H is the
5-vertex graph we call the “prison” (consisting of K5 minus two adjacent edges). On the
other hand, H-free Edge Completion for the same graph H does not have a polynomial
kernel unless the polynomial hierarchy collapses. By edge complementation, this is equivalent
to the statement that H-free Edge Deletion has no polynomial kernel, where H is the
edge complement of H. The positive result refutes a conjecture by Marx and Sandeep [15],
who conjectured that H-free Edge Deletion has no polynomial kernel for any graph H

on at least five vertices except trivial cases.
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In [15], the conjecture is reduced to the statement that H-free Edge Deletion has
no polynomial kernel for any graph H in a list H of nineteen small graphs, via a sequence
of problem reductions. In this naming scheme, the prison is the complement of H1. The
exclusion of co-H1 from this list introduces a sequence of new minimal graphs H ′ for which
the kernelization problem is open, out of which the smallest are the prison plus a vertex v

which is (respectively) an isolated vertex; attached to a degree-3 vertex of the prison; or
attached to both a degree-3 and a degree-2 vertex of the prison (R. B. Sandeep, personal
communication, using software published along with [15]). It is at the moment not known
whether the new list H′ is finite using the methods of [15].

More broadly, the result suggests that the picture of kernelizability of H-free Edge
Modification problems could be more complex than conjectured by Marx and Sandeep. If so,
the question of precisely where the tractability line goes for polynomial kernelization seems
highly challenging, as all kernelization results so far (including ours) rely on highly case-
specific structural characterizations of H-free graphs. We leave these deeper investigations
into the problem open for future work. We also leave open the question of a polynomial
kernel for Prison-free Edge Editing.
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