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Abstract
We study the problem of partitioning a set of n objects in a metric space into k clusters V1, . . . , Vk.
The quality of the clustering is measured by considering the vector of cluster costs and then
minimizing some monotone symmetric norm of that vector (in particular, this includes the ℓp-norms).
For the costs of the clusters we take the weight of a minimum-weight spanning tree on the objects
in Vi, which may serve as a proxy for the cost of traversing all objects in the cluster, for example in
the context of Multirobot Coverage as studied by Zheng, Koenig, Kempe, Jain (IROS 2005), but
also as a shape-invariant measure of cluster density similar to Single-Linkage Clustering.

This problem has been studied by Even, Garg, Könemann, Ravi, Sinha (Oper. Res. Lett.,
2004) for the setting of minimizing the weight of the largest cluster (i.e., using ℓ∞) as Min-Max
Tree Cover, for which they gave a constant-factor approximation algorithm. We provide a careful
adaptation of their algorithm to compute solutions which are approximately optimal with respect to
all monotone symmetric norms simultaneously, and show how to find them in polynomial time. In
fact, our algorithm is purely combinatorial and can process metric spaces with 10,000 points in less
than a second.

As an extension, we also consider the case where instead of a target number of clusters we are
provided with a set of depots in the space such that every cluster should contain at least one such
depot. One can consider these as the fixed starting points of some agents that will traverse all
points of a cluster. For this setting also we are able to give a polynomial-time algorithm computing
a constant-factor approximation with respect to all monotone symmetric norms simultaneously.

To show that the algorithmic results are tight up to the precise constant of approximation
attainable, we also prove that such clustering problems are already APX-hard when considering only
one single ℓp norm for the objective.
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1 Introduction

A typical clustering problem takes as input a set of n objects in a metric space (V, d),
and seeks a partition of these objects into k clusters V1, . . . , Vk, so as to optimize some
objective function. For example, we might try to place k facilities onto the nodes of an
edge-weighted graph with node set V , and then assign each remaining node to some facility.
To model the cost of serving these nodes from their facility, one can use the cost of a
minimum-weight spanning tree Ti on the subgraph induced by them. For i = 1, . . . , k, let
w(Ti) =

∑
e∈E(Ti) w(e) be the weight of tree Ti. Historically, these kinds of problems have

been studied for two different objectives. On the one hand, in the Min-Sum Tree Cover
problem one might want to find k trees T1, . . . , Tk to cover all nodes in V , while minimizing
the total length of the service network, i.e., the sum

∑
i∈[k] w(Ti) of the weights of the

spanning trees. On the other hand, it is desirable that each facility does not serve too large of
a network, so we can instead minimize the weight maxi∈[k] w(Ti) of the heaviest tree, which
leads to the Min-Max Tree Cover problem [10, 19].

Many fundamental clustering problems were studied under this min-sum objective and
min-max objective. These objectives can equivalently be considered as that of minimizing
the 1-norm, or the ∞-norm, of the clustering. Examples include the k-median problem
and the minimum-load k-facility location problem. These two problems are siblings in that
they both deal with the assignment of points (or clients) to k centers (or facilities), with
the costs of connecting those points to respective centers. Each point v is then assigned
to one of these open centers, denoted as c(v). The cost costc for each center c, which also
reflects the cost associated with each facility, is calculated as the sum of distances between
the center and all the points allocated to it, i.e, costc =

∑
v∈V :c(v)=c d(v, c). In the k-median

problem [14, 7, 21, 2], the objective is to minimize the ℓ1-norm of {costc}c, i.e.,
∑

c costc,
which represents the total cost of all clusters; whereas the minimum-load k-facility location
problem [1] seeks to minimize the maximum load of an open facility, symbolised by the
ℓ∞-norm function of {costc}c, i.e., maxc costc.

There is a diverse array of cost functions that could be applicable to a variety of problem
domains, and often, efficient algorithms are crafted to suit each specific objective. However,
it is crucial to note that an optimal solution for one objective may not perform well for
another. For instance, a solution for an instance of the Tree Cover that minimizes the
ℓ1-norm might be particularly inefficient when it comes to minimizing the ℓ∞-norm, and
vice versa (see examples in Figure 1a and Figure 1b). Therefore, one may wonder what the
“generally optimal” solution would be for a given problem. Finding such a generally optimal
solution is the task of the following problem:

▶ Definition 1 (All-norm clustering problem). An all-norm clustering problem takes as input
a metric space (V, d), a cost function w : P(V ) → R≥0, and a positive integer k. The goal is
to partition V into clusters V1, . . . , Vk which minimize

α = max
p∈R≥1∪{∞}

(
∑

i (w(Vi))p)1/p

OPTp
,

where OPTp denotes the value of an optimal solution for the k-clustering problem under the
ℓp-norm objective. Here, α is referred to as the all-norm approximation factor.

Our focus in this paper is the all-norm clustering problem where the cost w(Vi) of each
cluster is the cost of a minimum-weight spanning tree on Vi with respect to the metric d. We
call this problem the All-Norm Tree Cover problem in line with the naming convention



M. Kaul, K. Luo, M. Mnich, and H. Röglin 57:3

in the literature, and denote its instances by (V, d, w, k). (Note that, for simplicity, we
only consider ℓp-norms here. However, the proofs turn out to work for any norm which is
monotone and symmetric, cf. Ibrahimpur and Swamy [16] for a detailed introduction to such
norms.) Observe that the number k of clusters is part of the input, i.e., it is not fixed.

The choice of the cost of a minimum-weight spanning tree might appear to be somewhat
arbitrary here, but spanning trees are the key connectivity primitive in network design
problems. Any constant-factor approximation for All-Norm Tree Cover will, for example,
transfer to a constant-factor approximation for the all-norm version of the Multiple
Traveling Salesperson Problem [5] where we ask to cover a metric space by k cycles
instead of trees. This use of spanning trees as a proxy for the traversal times of the clusters
was a key ingredient for by Zheng et al. [24] to partition a floorplan into similar-size areas to
be served by different robots.

Let us observe that solving the All-Norm Tree Cover problem is non-trivial, as
a solution which is good for one objective (i.e., for one particular norm ℓp) may be bad
for another objective (i.e., for another norm ℓp′), and vice versa. For examples of this
phenomenon, see Figure 1.

v1 v2 vnvk... ...

1 + ε 1

(a) The path forms a metric where any two neigh-
boring nodes in the set {v1, . . . , vk} have distance
1 + ε, while the distance of all other edges is 1. In
this case, the optimal solution under the ℓ1-norm
involves removing all edges with distance 1 + ε, res-
ulting in an ℓ∞-norm objective cost n−k. However,
the optimal solution cost for the ℓ∞-norm is less
than n(1 + ε)/k.

v1 v2k−3

v2
v3

v4

v2(k−1)
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. . .

. . .

1
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(b) The spider graph includes 2k + L − 1 nodes.
All edges connecting a node v2i−3 (where i =
1, . . . , k) and vi (where i = 2k − 1, . . . , 2k + L − 2)
to the center have distance 1, and all edges
{v2i−1, v2i}i=1,...,k−1 have distance a large in-
teger L. In this case, the optimal solution under
the ℓ∞-norm involves removing all edges connected
to the nodes {v2i−1}i=1,...,k−1, resulting in an ℓ1-
norm objective cost of kL. However, the optimal
solution for the ℓ1 norm has cost k + L − 1.

Figure 1 Two instances of the All-Norm Tree Cover problem. Figure 1a is an instance where
an optimal ℓ1-norm solution does not return a good approximation in the ℓ∞-norm; Figure 1b is an
instance where an optimal ℓ∞-norm solution does not return a good approximation in the ℓ1-norm.

The All-Norm Tree Cover problem, alongside the related path cover and cycle cover
problems, involves covering a specified set of nodes of a(n edge-weighted) graph with a limited
number of subgraphs. These problems have attracted significant attention from the operations
research and computer science communities due to their practical relevance in fields like
logistics, network design, and data clustering. For instance, these problems are naturally
applicable in scenarios such as vehicle routing, where the task involves designing optimal
routes to service a set of customers with a finite number of vehicles. Different optimization
objectives could be considered depending on the specific requirements. One could aim to
minimize the maximum waiting time for any customer, an objective that is equivalent to
the ℓ∞-norm of the cost function associated with each vehicle. This ensures fairness, as it
attempts to prevent any single customer from waiting excessively long. Alternatively, one
could aim to minimize the total travel time or cost, which corresponds to the ℓ1-norm of
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the cost function across all vehicles [6, 4]. This objective seeks overall efficiency, making
it beneficial from an operational perspective as it reduces fuel consumption and allows for
more customers to be serviced within the same time frame [11, 4, 10, 19]. Understanding
these problems in an all-norm setting thus enables the development of routing strategies that
are adaptable to different priorities, including customer satisfaction, operational efficiency,
or a balance between the two. Given that minimum spanning trees provide constant-factor
approximations to traveling salesperson tours [8], we explore the possibility of covering the
nodes of a graph with k trees.

In a scenario where each vehicle already has an assigned station, and the task is limited to
the assignment of nodes to the vehicles, we are confronted with a variation of the All-Norm
Tree Cover problem known as the All-Norm Tree Cover with Depots problem
(also commonly referred to as the Rooted All-Norm Tree Cover problem), denoted
by (V, d, w, D) where D ⊆ V is a set of depots [10]. These problems under all norms will be
formally defined and addressed in the subsequent sections of this paper.

1.1 Our contributions
Computing optimal tree covers is NP-hard even for the single ℓ∞-norm; for this norm,
it admits a constant-factor approximation in polynomial time. Our goal in this paper is
thus to design constant-factor approximations for All-Norm Tree Cover, that is, for
all monotone symmetric norms simultaneously. Building upon the example in Figure 1,
it becomes clear that a constant-factor approximation for one norm objective does not
necessarily guarantee a constant approximation for another norm. Meanwhile, achieving an
all-norm approximation factor better than 3/2 within polynomial time is infeasible, as a
lower bound of 3/2 on the approximability of the Tree Cover problem under the ℓ∞-norm
has been demonstrated by Xu and Wen [23] (assuming P ̸= NP). In previous work, Even
et al. [10] proposed a 4-approximation algorithm for the Min-Max Tree Cover problem,
which is representative of the ℓ∞-norm. That algorithm was subsequently refined by Khani
and Salavatipour [19], who devised a 3-approximation. However, these existing algorithms
fail to guarantee a constant approximation factor for optimal solutions under other norms,
proving to be unbounded specifically, this holds even for the ℓ1-norm (for an example, see
Figure 3 in Section 3).

Our first main contribution is a polynomial-time constant-factor approximation algorithm
for the All-Norm Tree Cover problem. Our algorithm amalgamates the strategies of
suitable algorithms for both the ℓ1-norm and the ℓ∞-norm. It is well-understood that an
optimal solution for the ℓ1-norm objective involves successively eliminating the heaviest
edges until precisely k components remain. Conversely, the algorithm for ℓ∞-norm objective
concludes when the number of trees generated by the edge-decomposition with respect to
a guessed optimal value R is about to exceed k [10]. Our proposed method continually
approximates the decomposed trees towards an ideal state. So in that sense the algorithm
proposed by Even et al. [10] is effectively refined to solve other norm problems. Notably, our
algorithm produces a feasible solution that is at most double the optimal solution for the
ℓ1-norm and four times the optimal solution for the ℓ∞-norm simultaneously.

▶ Theorem 2. There exists a polynomial-time O(1)-approximation algorithm for the All-
Norm Tree Cover problem.

We next consider the more involved All-Norm Tree Cover problem with depots.
For All-Norm Tree Cover with depots, each tree in a tree cover solution is rooted at
a specific depot. The special problem case of the single ℓ∞-norm is the Min-Max Tree
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Figure 2 Example instance where the algorithm of Even et al. [10] does not return a good
approximation in the ℓ1-objective. The left figure is an example of the graph metric when k = 4 and
the right figure is the final solution obtained by the rooted-tree-cover algorithm by Even et al. [10].

Cover problem with depots, for which Even et al. [10] devised a 4-approximation algorithm.
Subsequently, Nagamochi [22] enhanced this framework by offering a (3− 2

k+1 )-approximation
algorithm under the restriction that all depots are located at the same node. However, neither
of those algorithms can assure any constant approximation factor for the ℓ1-norm objective
(refer to the example in Figure 2).

Our key contribution extends the O(1)-approximation algorithm for All-Norm Tree
Cover from Theorem 2 to the problem with depots:

▶ Theorem 3. There exists a polynomial-time O(1)-approximation algorithm for the All-
Norm Tree Cover with Depots problem.

Our methodology comprises three stages:
1. Initially, we partition the nodes according to their distances to the depots, where partition

class i contains all nodes at distance between 2i−1 and 2i.
2. We then apply a version of the algorithm of Even et al. [10] in each class separately to

find a good “pre-clustering” of the nodes. This is simplified by the previous partitioning
since it allows us to assume that all nodes are at the same distance to the depots, up to
a factor of 2.

3. Finally, we assign the clusters from the second step to the depots by iteratively computing
matchings of clusters to depots, considering ever larger clusters, and allowing them to
be matched to ever more distant depots. In this way, we essentially maintain a running
estimate of the necessary tree weights, updating it when the matching process does not
succeed in assigning all nodes to some depot. If it does succeed, we can show that (up to
constant factors) no cluster is larger than the estimate, and that the estimate is correct,
i.e., every solution has trees at least as large as predicted by the estimate.

Note that both the depot and non-depot algorithms will require only very simple al-
gorithmic primitives such as minimum spanning trees and bipartite matchings. Thus, our
algorithms can be implemented to run very quickly using purely combinatorial techniques,
in particular without resorting to linear programming which can be impractically slow (see
also Davies at al. [9] for recent work on combinatorial clustering algorithms). In fact, an
implementation of our algorithm can process metric spaces with 10,000 points in less than a
second, see Section 6 for details.

STACS 2025
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Our final contribution complements the algorithmic result from Theorem 3 by a complexity-
theoretic lower bound: we show that one cannot expect polynomial-time approximation
schemes to exist, even in the presumably easier setting ℓp-Tree Cover with Depots where
we only want to approximate the optimum with respect to one specific ℓp-norm:

▶ Theorem 4. For every p ∈ (1, ∞] there exists a constant c such that ℓp-Tree Cover
with Depots is NP-hard to approximate within a factor c. The NP-hardness holds under
randomized reductions.

Specifically, we show that ℓp-Tree Cover is NP-hard to approximate to a factor

[ (106 − 1
4 + ε

2 )3p + ( 1
8 − ε

4 )(2p + 4p)
(106 − 2ε)3p + ε(2p + 4p)

]1/p

> 1,

for any choice of ε > 0.

2 Preliminaries

We set up some formal definitions. We will identify metric spaces and metrically edge-weighted
graphs to allow for an easier treatment of connectedness, trees, and similar graph-theoretic
objects. For any such graph G, we always keep in mind the underlying metric space V

induced by the shortest-path metric on G. We also assume that the metrics used are integral,
for ease of presentation. Our results extend to rational metrics by rescaling the metric.

We here concern ourselves with tree covers of graphs, which are to be defined as follows:

▶ Definition 5 (Tree cover). For a graph G , a tree cover is a collection {T1, . . . , Tk} of trees
for which

⋃
i V (Ti) = V . We call k the size of such a tree cover.

▶ Definition 6 (Tree cover with depots). For a graph G and a depot set D ⊆ V , a tree
cover with depots is a tree cover {T1, . . . , T|D|} of G, where each Ti contains a unique depot
from D.

Notice in particular that there is no expectation of disjointness for the trees. If disjointness
is required, we may assign every node to exactly one of the trees currently containing it
and recompute minimum-weight spanning trees for each of the resulting clusters. This
increases the cluster weights by at most a factor of 2 due to the gap between Steiner trees and
minimum-weight spanning trees (see Lemma 9). For any connected subgraph H of a graph G,
we use w(H) to denote the weight of a minimum-weight spanning tree in the subgraph H. It
is important to note that this weight can differ from the sum of the weight of the edges of H.
We then use the p-norm (p ≥ 1) as a measure of the quality of a tree cover. Specifically, the
cost of a tree cover {T1, . . . , Tk} is defined as the p-norm of the corresponding tree weights,

that is, wp =
(∑

i∈[k] (w(Ti))p
)1/p

.
There are two natural optimization questions for tree covers (and for tree covers with

depots) which have been considered in the literature: The ℓ1-Tree Cover problem, where
the aim is to minimize the sum of the weights of the k trees, and the ℓ∞-Tree Cover
problem in which the objective is to minimize the weight of the heaviest tree within the
cover. The ℓ1-Tree Cover problem admits a polynomial-time algorithm, regardless of the
presence of depots; in contrast, the ℓ∞-Tree Cover problem is APX-hard, again regardless
of whether depots are present or not.

We consider the interpolation between these two problems by allowing arbitrary ℓp norms:
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▶ Definition 7 (ℓp-Tree Cover (resp. ℓp-Tree Cover with Depots )). Given a graph G =
(V, d) and some integer k (resp. depots D ⊆ V ) and a p ∈ [1, ∞), find a tree cover {T1, . . . , Tk}

(resp. with depots) which minimizes the expression OPTp,k :=
(∑k

i=1(w(Ti))p
)1/p

.

We will usually omit k if it is clear from context. All of the ℓp-variants (except p = 1)
are NP-hard, as the proof of hardness for the ℓ∞-case works for all values of p > 1 [23].

▶ Definition 8 (All-Norm Tree Cover Problem (resp. All-Norm Tree Cover
Problem with Depots)). Given a graph G = (V, d) and some integer k (resp. depots
D ⊆ V ), find a tree cover {T1, . . . , Tk} (resp. with depots) which minimizes

max
p∈[1,∞)

(∑k
i=1(w(Ti))p

)1/p

OPTp
.

To distinguish the problem versions for a fixed norm p from those for all p simultaneously,
we denote by (ℓp, k) (or (ℓp, D) for problems involving depots) the tree cover problem for a
specific value of p. Meanwhile, we use (ℓp∈[1,∞), k) (or (ℓp∈[1,∞), D) when depots are involved)
to represent the All-Norm Tree Cover problem that encompasses all values of p ∈ [1, ∞).
We omit naming the underlying metric space (V, d), unless explicitly stated otherwise.

We will state a result about the relationship between the cost of minimum-weight Steiner
trees and minimum-weight spanning trees, as we will harness this argument repeatedly:

▶ Lemma 9 (Kou et al. [20]). Let (V, d) be a metric space with some terminal set F ⊆ V ,
let T̂ be a minimum-weight (Steiner) tree containing all nodes from F , and let T be a
minimum-weight spanning tree of (F, d

∣∣
F

). Then w(T ) ≤ (2 − 2/|F |) · w(T̂ ).

Proof. An easy way to obtain the result is to take T̂ and use the tree-doubling heuristic to
compute a traveling salesperson tour T of F in (V, d), costing at most 2 ·w(T̂ ). Removing the
heaviest edge of T yields a (perhaps not yet minimal) spanning tree T ′ in (F, d

∣∣
F

) of weight
at most (2 − 2/|F |)w(T̂ ), allowing us to conclude that w(T ) ≤ w(T ′) ≤ (2 − 2/|F |)w(T̂ ). ◀

Lemma 9 will prove useful as we occasionally want to forget about some nodes of our instance.
This may actually increase overall costs, since certain Steiner trees become unavailable.
However, the lemma ensures that the increase in cost is bounded.

3 Simultaneous Approximations for the All-Norm Tree Cover Problem

First, to provide some some good intuition of the key techniques for the general case, we
show in detail that the Tree Cover algorithm of Even et al. [10] gives a constant-factor
approximation to the ℓp-tree cover problem without depots provided that it returns k trees.
Indeed, we show that the argument will work for all monotone symmetric norms. The original
algorithm works as follows, for a given graph G = (V, d):
1. Guess an upper bound R on the optimum value of the ℓ∞-norm tree cover problem for

instance G, where initially R = 1.
2. Remove all edges with weight larger than R from G, and compute a minimum-weight

spanning tree Ti for each connected component of the resulting graph.
3. Check that

∑
⌊ w(Ti)+2R

2R ⌋ = k; otherwise, reject R and go to step 1 with R := 2R.
4. Call a spanning tree Ti small if w(Ti) < 2R.

STACS 2025
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H1 H2 Hn

R

R

R

R

R

R

R

R

R

R

R

R
2R

Figure 3 Example instance where the algorithm of Even et al. does not return a good approx-
imation in the ℓ1-objective. The instance consists of n identical copies Hi of the 4-star where all
edges have length R and the copies are pairwise at distance 2R. For k = 5n − 1, the instance has
OP T∞ = OP T1 = R, but the algorithm will return 2n trees, each of weight 2R. Observe that the
partition requirement in Step 5 would also be fulfilled if the trees are not further partitioned and
kept at size 4R, however the algorithm of Even et al. produces the former solution. Both solutions
do not achieve a good approximation in the ℓ1 objective.

5. Call a spanning tree Ti large if w(Ti) ≥ 2R. Decompose each such tree into edge-disjoint
subtrees T̃j such that 2R ≤ w(T̃j) ≤ 4R for all but one residual T̃j in each component1.

6. Output the family of all small spanning trees, as well as all subtrees T̃j created in Step 5.

Even at al. show that this procedure will output at most k trees if OPT∞ ≤ R, although
they relax the condition in Step 3 to

∑
⌊ w(Ti)+2R

2R ⌋ ≤ k. For technical reasons, however, we
need the equality in this spot. Since every tree has weight most 4R, the algorithm evidently
gives a 4-approximation in the ℓ∞-norm if the correct value of R = OPT∞,k is guessed.
Otherwise, one can use binary search to find, in polynomial time, the smallest R for which
one gets at most k trees.

In general, however, we notice that this algorithm will sometimes compute fewer than k

trees, causing it to not return a good approximation for the other ℓp-norms, not even for the
ℓ1-norm (see Figure 3).

For this reason, we need the strengthened property in Step 3. Then, however, notice that
such a value R does not necessarily exist; for example, for the instance in Figure 3 this is the
case. We will describe later how to avoid this issue of non-existence; for now, we assume
that such a value R exists and can be computed in polynomial time.

So suppose that the algorithm has returned k trees T1, . . . , Tk, where we simply remove
some edges should the algorithm return fewer than k trees. This removal only improves the
objective value, so we will assume – without loss of generality – that the algorithm already
returned k trees. As a warm-up, we will start by considering only the case that p = 1, i.e.,
we show that this algorithm computes a solution that is a good approximation for (ℓ1, k)
tree cover.

▶ Lemma 10. Let {T1, . . . , Tk} be the set of trees returned by the algorithm for some fixed
value of R. Then we have

∑
w(Ti) ≤ 2OPT1,k .

Proof. We observe first that an optimal solution for (ℓ1, k) tree cover can be computed by
removing iteratively the heaviest edge as long as this does not cause the graph to decompose
into more than k components, as this procedure is equivalent to running Kruskal’s algorithm.
As the optimal solution contains no edges of weight greater than R, we consider the graph
G′ := G − {e | d(e) > R}. Let ks be the number of small spanning trees Si computed by

1 This can be done with a simple greedy procedure, cutting of subtrees of this weight. For the details of
this algorithm, we refer to Even et al. [10].
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the algorithm, and let kℓ be the number of large spanning trees Li. Then we certainly have∑
w(Ti) ≤

∑
w(Si) +

∑
w(Li), since the trees computed by the algorithm are edge-disjoint

subtrees of the initial spanning trees. Further, we have

OPT1,k ≥
∑

w(Si) +
∑

w(Li) − (k − ks − kℓ)R,

because the optimal solution will remove k − ks − kℓ edges from within the spanning trees
computed by the algorithm, each of weight at most R. But notice that we can use Step 3 to
obtain

k =
∑ ⌊

w(Si)
2R

+ 1
⌋

+
∑ ⌊

w(Li)
2R

+ 1
⌋

≤ ks + kl +
∑ w(Li)

2R
,

which implies that (k − ks − kℓ)2R ≤
∑

w(Li). This inequality allows us to conclude that

OPT1,k ≥
∑

w(Si) +
∑

w(Li) − 1
2

∑
w(Li)

≥ 1
2(

∑
w(Si) +

∑
w(Li))

≥ 1
2

∑
w(Ti) . ◀

Notice that the strengthened version of Step 3 is indeed necessary here.
We can use a similar technique to show that the solution computed by the algorithm is a

constant-factor approximation for (ℓp, k) tree cover for any choice of p, and with a constant of
approximation independent of p. The key argument will be to show that an optimal solution
to (ℓp, k) tree cover must, as in Lemma 10, have a total weight comparable to that of the
solution computed by the algorithm. In a second step, one can then show that the algorithm
distributes the total weight of its trees fairly evenly, because the large trees all have weight
between 2R and 4R.

Meanwhile, for the small trees we can demonstrate that choosing them differently from
the algorithm will incur some cost of at least R. Thus, either the algorithms’ solution has
correctly chosen the partition on these small trees, or the optimal solution actually has a
heavy tree not in the algorithms’ solution, which we can use to pay for one of the large trees
that the algorithm has, but the optimal solution does not. Notice that, if the algorithm
achieves an equal distribution of some total weight that is comparable to the total weight of
an optimal solution under the ℓp-norm, it also achieves a good approximation of OPTp due
to convexity of the ℓp-norms.

To start with, we will only give a rough analysis of the quality of the solution returned
by the algorithm, although it already shows a constant factor of approximation. The full
version on arXiv gives a more detailed proof that achieves a better constant [18].

Let us fix some p ∈ [1, ∞) and any (ℓp, k) tree cover solution {T̂1, . . . , T̂k} (you may
imagine that it is optimal). Then let ks be the number of connected components computed
by the algorithm that had a small spanning tree, and call those components S1, . . . , Sks .
Similarly, for the large spanning trees, let there be kℓ components L1, . . . , Lkℓ

. Now we
denote by Eℓ the set of edges that are both contained in some T̂i and in the cut induced by
some Sj or Lj . In particular, all these edges have weight at least R. We count separately
the small Ti incident to some edge from Eℓ, say there are ks,1 of them. We will also denote
by ks,2 the number of Si for which one of the T̂j is a minimum-weight spanning tree, and
denote the set of these T̂j as T =. Note that any small component not counted by ks,1 or ks,2
is split into at least two components by the T̂i. For an illustration of this setting, we refer to
Figure 4.
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S1 S2 S3 S4

L1 L2

ks,1ks,2

ks

kℓ

Eℓ

≥ R

Figure 4 Illustration of how the algorithm’s solution and some optimal solution can align against
each other. The algorithm’s partition of the graph into connected component is indicated by solid
zones, the further subdivision of the large components by dotted zones. The trees of the optimal
solution are drawn, and all edges crossing the boundary of a connected component are dashed.

We can now start to measure the total sum of edge weights in the T̂j , i.e.,
∑

j w(T̂j). We
begin by relating it to the small trees of the algorithm’s solution that do not agree with the
optimal solution.

▶ Observation 11. It holds that
∑

j w(T̂j) −
∑

T̂i∈T = w(T̂i) ≥ ks,1
R
2 .

Proof. We have ks,1 pairwise disjoint node sets in G, each incident to at least one edge of
weight at least R present in Eℓ, so we get |Eℓ| ≥ ks,1/2 from the handshake lemma, and thus∑

j

w(T̂j) −
∑

T̂i∈T =

w(T̂i) ≥ |Eℓ|R ≥ ks,1

2 R,

noting that the trees in T = do not contain any of the edges from Eℓ. ◀

To compare the total weight against the number of large trees, we can use a similar argument as
in Lemma 10. We again note that the initial spanning trees have weight at least (k−kℓ−ks)2R,
and any tree cover cannot remove too many edges from them. The second part of this
argument is no longer true though, since it is now possible for a solution to have many edges
between the components of G − {e | d(e) ≥ R}, allowing it to remove many edges within the
components However, a careful analysis will show that this case does not pose a problem,
since such inter-component edges are themselves heavy.

▶ Observation 12. We have
∑

j w(T̂j) ≥ (k − kℓ − ks,1 − ks,2)R +
∑

T̂i∈T = w(T̂i).

Proof. Suppose we delete from the T̂j all edges from Eℓ. This will yield k + |Eℓ| trees. We
will count only those trees that lie in a large component Li, of which there are at most
k+ |Eℓ|−2ks +ks,1 +ks,2. This is because every small component contains at least 2 of the T̂j ,
except for ks,1 +ks,2 many. Now observe that to get a (k + |Eℓ|−2ks +ks,1 +ks,2)-component
spanning forest of minimum weight for the Li, we start with the initial minimum spanning
trees in each component (which have weight at least (k − ks − kℓ)2R) and remove at most
(k + |Eℓ| − kℓ − 2ks + ks,1 + ks,2) edges, each of weight at most R. The total remaining
weight is (k − ks − kℓ)2R − (k + |Eℓ| − kℓ − 2ks + ks,1 + ks,2) = (k − kℓ − ks,1 − ks,2 − |Eℓ|)R.
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Thus, we can measure the total weight of edges which are part of some T̂i and lie in a large
component as being at least the total weight the spanning trees of the Li, minus the weight
of the edges that may have been removed, and obtain∑

j

w(T̂j) −
∑

T̂i∈T =

w(T̂i) − |Eℓ|R ≥ (k − kℓ − ks,1 − ks,2 − |Eℓ|)R.

=⇒
∑

j

w(T̂j) −
∑

T̂i∈T =

w(T̂i) ≥ (k − kℓ − ks,1 − ks,2)R . ◀

Notice that with these two observations, we can almost show some result along the lines
of OPT1,k ≥ c · k · R for some c ∈ R, since either there are many large trees, in which case
Observation 12 gives us the desired result, or there are many small trees in which case we
can use Observation 11, unless ks,2 is large. However, the case that ks,2 is large, i.e., we
have computed many of the trees that are present in the optimal solution, should also be
beneficial, so we maintain a separate record of ks,2 in the analysis to obtain:

▶ Lemma 13. It holds that
∑

j w(T̂j) ≥ R
6 (k − ks,2) +

∑
T̂i∈T = w(T̂i).

Proof. We combine Observation 12 and Observation 11 convexly with coefficients 1/3, 2/3
to obtain ∑

j

w(T̂j) ≥ 1
3 [(k − kℓ − ks,1 − ks,2)R] + 2

3

[
ks,1

R

2

]
+

∑
T̂i∈T =

w(T̂i)

⇐⇒
∑

j

w(T̂j) ≥ R

3 (k − kℓ − ks,2) +
∑

T̂i∈T =

w(T̂i)

=⇒
∑

j

w(T̂j) ≥ R

6 (k − ks,2) +
∑

T̂i∈T =

w(T̂i),

where the final inequality follows from the following reasoning:

k =
∑ ⌊

w(Si) + 2R

2R

⌋
+

∑ ⌊
w(Li) + 2R

2R

⌉
≥ ks + 2kℓ,

and thus k − kℓ − ks,2 ≥ k − k−ks

2 − ks,2 = k
2 + ks

2 − ks,2 ≥ k−ks,2
2 . ◀

The upshot of Lemma 13 is then that any tree cover using k trees with some ks,2 trees in
common with the algorithm’s solution will have the property that the other k − ks,2 trees
have an average weight of Ω(R).

▶ Theorem 14. If the algorithm of Even et al. returns k trees T1, . . . , Tk, then we have[
k∑

i=1
(w(Ti)p)

]1/p

≤ 24
[

k∑
i=1

(w(T̂i)p)
]1/p

for any p and for any tree cover {T̂1, . . . , T̂k} of G with k trees.

Proof. From Lemma 13 we obtain
k∑

i=1
(w(T̂i)p) ≥ (k − ks,2)

(
R

6

)p

+
∑

T̂i∈T =

w(T̂i)p,

using convexity of |x|p for any p ≥ 1. At the same time, from the algorithm it is clear that
k∑

i=1
(w(Ti)p) ≤ (k − ks,2)(4R)p +

∑
T̂i∈T =

w(T̂i)p,
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because every tree is either identical to one of the T̂j , or has weight at most 4R. Putting
these inequalities together yields the statement of the theorem:∑k

i=1(w(Ti)p)∑k
i=1(w(T̂i)p)

≤
(k − ks,2)(4R)p +

∑
T̂i∈T = w(T̂i)p

(k − ks,2)
(

R
6

)p +
∑

T̂i∈T = w(T̂i)p
≤ (k − ks,2)(4R)p

(k − ks,2)
(

R
6

)p ≤ 24p . ◀

The whole proof, in particular the result of Lemma 13 can be reinterpreted to give an
even stronger result: namely, that the tree cover returned by the algorithm is approximately
“strongly optimal”, a concept introduced by Alon et al. [3] for analysing all-norm scheduling
algorithms. The point is to show a strong version of lexicographic minimality of the
constructed solution. Formally, let {T1, . . . , Tk} be the solution computed by the algorithm
for a given instance (ℓp∈[1,∞), k) and T̂1, . . . , T̂k any other tree cover for (ℓp∈[1,∞), k). Further,
let the trees be sorted non-increasingly by weight as w(T1) ≥ w(T2) ≥ . . . and w(T̂1) ≥
w(T̂2) ≥ . . . . Then {T1, . . . , Tk} is strongly optimal if for any j we have

j∑
i=1

w(Ti) ≤
j∑

i=1
w(T̂i) .

Similarly, one can speak of c-approximate strongly optimality if for some c ∈ R≥1 we have

j∑
i=1

w(Ti) ≤ c

j∑
i=1

w(T̂i) .

This property was also considered as “global c-balance” by Goel and Meyerson [12].
Approximate strong optimality suffices for our purposes, since a solution that is c-

approximate strongly optimal is also a c-approximation with respect to any p-norm; in
fact, we obtain a stronger result here, since c-approximate strongly optimality implies a
c-approximation with respect to any convex symmetric function, including all monotone
symmetric norms. This fact is the backbone of many all-norm approximation algorithms,
for example those by Golovin, Gupta, Kumar and Tangwongsan [13] for set cover variants.
Thus, we will obtain a 24-approximation from this analysis not only for all p-norms, but for
all monotone symmetric norms.

▶ Lemma 15. Let {T1, . . . , Tk} be the solution computed by the algorithm for a given
instance (ℓp∈[1,∞), k), and let {T̂1, . . . , T̂k} be any other tree cover for (ℓp∈[1,∞), k), where
w(T1) ≥ w(T2) ≥ . . . and w(T̂1) ≥ w(T̂2) ≥ . . . . Then

∑j
i=1 w(Ti) ≤ 24

∑j
i=1 w(T̂i) for

j = 1, . . . , k.

Proof. We obtain an upper bound for the values
∑j

i=1 w(Ti) by assuming that all trees
which are not accounted for by the ks,2 small component trees shared between the Ti and
the T̂i have weight exactly 4R. This will ensure that the shared trees are Tk−ks,2+1, . . . , Tk.
Similarly, we obtain a lower bound

∑j
i=1 w(T̂i) by allowing a non-descending permutation of

the T̂i. That is, we reorder the T̂i such that the first k − ks,2 trees are not the shared small
component trees with the Ti.

It then follows directly that

j∑
i=1

w(Ti) ≤ j · 4R = 24(j · R

6 ) ≤ 24
j∑

i=1
w(T̂i) for j ≤ k − ks,2,
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as well as

k−ks,2∑
i=1

w(Ti) +
j∑

i=1+k−ks,2

w(Ti) ≤ 24
k−ks,2∑

i=1
w(T̂i) +

j∑
i=1+k−ks,2

w(T̂i)

=⇒
j∑

i=1
w(Ti) ≤ 24

j∑
i=1

w(T̂i) for j > k − ks,2 . ◀

3.1 Ensuring k trees

Recall that the previous analysis of the approximation factor relies on the algorithm being
able to find some R such that Step 3 holds, which is not generally true as per Figure 3. We
now demonstrate how to modify the algorithm in such a way that this is avoided. Consider a
list e1, . . . , em of the edges of G, such that d(ei) ≤ d(ej) if i ≤ j, i.e., they are sorted by length
with ties broken arbitrarily. Then we consider separately the graphs Gj := (V, {ei | i ≤ j})
for all j = 0, . . . , m and try to find for each Gj an R ∈ [d(ej−1), d(ej)] that is accepted by
the algorithm, where we set d(e0) := 0, and allow the larger interval [d(em),

∑
i d(ei)] for Gm.

Note that the intervals can potentially only contain a single node, but they are not empty.
Now observe that for G0 with R = 0, the algorithm would only accept this choice of R if

k = |V |. Similarly, for Gm and R =
∑

i d(ei), the algorithm would require k = 1. We can
then show that the k changes by at most one as we change R or keep R and move from Gj

to Gj+1. Let k(Gj , R) denote the value of k that would be accepted by the algorithm. Thus

▶ Observation 16. It holds that k(Gj−1, d(ej)) − k(Gj , d(ej)) ≤ 1.

Proof. Between Gj−1 and Gj , only the presence of ej changes. If this does not change the
connected components, we have k(Gj−1, d(ej)) = k(Gj , d(ej)). Otherwise, there is exactly
one connected component C in Gj that is split into two parts C1, C2 by removing ej . We
then see that⌊

w(C1) + 2d(ej)
2d(ej)

⌋
+

⌊
w(C2) + 2d(ej)

2d(ej)

⌋
≤ 2 +

⌊
w(C1)
2d(ej) + w(C2)

2d(ej)

⌋
≤ 1 +

⌊
w(C) + 2d(ej)

2d(ej)

⌋
. ◀

To see that changing R by a sufficiently small amount also only changes k(Gj , R) by at
most one, consider that there are only finitely many critical nodes where k(Gj , R) changes at
all, and they can be computed in polynomial time. They are all of the form R = w(Ci)/2ℓ

for some connected component Ci of Gj and ℓ ∈ 1, . . . , n. At these nodes, w(Ci)/2R will be
an integer, so ⌊w(Ci)/2R⌋ = 1 + ⌊(w(Ci) − ε)/2R⌋. If all critical nodes are pairwise different,
we can just iterate over them to find some Gj and R with k(Gj , R) = k.

If on the other hand a node is critical for multiple different components, assign to each
component a distinct weight which can be taken to be arbitrarily small, ensuring that all
critical nodes are now different. In effect, this is equivalent to taking all components where
w(Ci)+2R

2R is an integer and allowing the expression ⌊ w(Ti)+2R
2R ⌋ to also take the value w(Ti)

2R .
One may check that this does not impact the analysis, since in the analysis we only need
that each component has a minimum spanning tree of weight at least ⌊ w(Ti)

2R ⌋ · 2R. However,
for legibility reasons we will suppress this and generally assume that some R can be found
with k(Gj , R) = k. Combining with Theorem 14, this completes the proof of Theorem 2.
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4 All-norm tree cover problem with depots

The algorithm for the All-Norm Tree Cover problem with depots is considerably more
involved, in particular because the simple lower bound for the depot-less algorithm of
assuming an even distribution of the total weight can no longer work: it might be necessary
to have unbalanced cluster sizes, for instance if some depots are extremely far from all nodes.

Instead our algorithm constructs a c-approximately (here, c is a constant) strongly optimal
solution by also maintaining some (implicit) evidence that the optimum solution contains
large trees if it decides to create a large tree itself. More concretely we do the following:
1. First, we partition the node set V into layers Li such that all nodes in Li have distance

between 2i−1 and 2i to the depots.
2. Then we consider separately the nodes in the odd and even layers; this implies that nodes

in different layers have a large distance to each other. Computing separate solutions
for these two subinstances loses at most a factor 2 in the approximation factor due to
Lemma 9.

3. Next, we partition the nodes in each layer Li using the non-depot algorithm with R = 2i.
This yields a collection of subtrees in Li such that the cost of connecting such a subtree
to its nearest depot is in Θ(2i). This allows us to treat them basically identically, loosing
only the constant in the Θ. Indeed, we can show explicitly that this prepartitioning into
subtrees can be assumed to be present in an optimal solution, up to a constant factor
increase in the weight of each tree. For the full reasoning refer to the full version on
arXiv [18].

4. To assign these trees to the depots, we iteratively maintain an estimate of the largest tree
necessary in any solution as 2i. We then collect all trees of weight Θ(2i) and compute
a maximum matching between them and the depots at distance Θ(2i) to them. All
unmatched trees are then combined to form trees of weight Θ(2i+1), and we update our
estimate to 2i+1.

To analyse the output of this algorithm, it will suffice to show that the estimate was
correct up to a constant factor. That is, if in round i some trees (suppose ki trees) of weight
2i were assigned, we will be able to prove that any tree-cover solution must also have some
family of at most ki trees with total weight at least ki · 2i.

From this we are then able to conclude c-approximate strong optimality for some value
of c < 106. This is a rather large upper bound on the approximation factor, however, we
conjecture that the actual constant achieved by the algorithm is much smaller. For the
purposes of a clean presentation, we did not try to optimize the constant. The complete
proof can be found in the full version on arXiv [18].

5 Computational Hardness

To complement our algorithmic results, we establish hardness results for all-norm tree cover
problems and discuss on what kind of algorithmic improvements (to our algorithms) are
potentially possible in light of these complexity results. Specifically, we show:
1. For any p ∈ (1, ∞], problem ℓp-Tree Cover with Depots is weakly NP-hard, even

with only 2 trees.
2. For any p ∈ (1, ∞], problem ℓp-Tree Cover with Depots with k trees is (strongly)

W[1]-hard parameterized by depot size |D|.
3. For any p ∈ (1, ∞] there exists some ε > 0 such that ℓp-Tree Cover with Depots is

NP-hard to approximate within a factor < 1 + ε under randomized reductions.
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Results 1 and 2 were already essentially presented by Even et al. [10], but we restate them
for completeness. Note that, given these complexity results, numerous otherwise desirable
algorithmic outcomes become unattainable. For instance, there cannot be polynomial-
time approximation schemes for ℓp-Tree Cover with Depots, nor can we expect fixed-
parameter algorithms (parameterized by the number of depots) finding optimal solutions,
unless established hardness hypotheses (P̸=NP, FPT ̸= W[1]) fail. Further, the reduction of
Item 1 yields bipartite graphs of tree-depth 3, so parameterization by the structure of the
graph supporting the input metric also appears out of reach.

The result in Item 3 follows by a direct gadget reduction from Max-Sat for 3-ary linear
equations modulo 2 (MAX-E3LIN2), which was shown to be APX-hard by Håstad [15]. We
show that one can transform such equations into an instance of ℓp-Tree Cover with
Depots where every unsatisfied equation will correspond roughly to a tree of above average
weight. This allows us to recover approximately the maximum number of simultaneously
satisfiable constraints of such systems of equations.

Formally, we reduce from 3R{2, 3}L2, a modification of MAX-E3LIN2 where every
variable occurs in exactly 3 equations, and for which hardness of approximation was shown by
Karpinski et al. [17]. From an instance of 3R{2,3}L2 we construct an instance of ℓp-Tree
Cover with Depots by introducing gadgets for the variables and clauses:

For every variable x, introduce three nodes x̂, x0, and x1, as well as edges x̂, xi for i = 0, 1
with weight 3. Add the xi’s as depots.
For every ternary clause C, introduce nodes Ĉ, C000, C110, C101, and C011 with edges
{Ĉ, Ci} of weight 3. Add the Ci’s as depots.
For every binary clause C = x ⊕ y = 0, introduce nodes Ĉ, C00, and C11 with edges
{Ĉ, Ci} of weight 2. Add the Ci’s as depots. Further add nodes Ĉ00 and Ĉ11 where Ĉi is
connected only to Ci by an edge of weight 1.
For every binary clause C = x ⊕ y = 1, introduce nodes Ĉ, C01, and C10 with edges
{Ĉ, Ci} of weight 2. Add the Ci’s as depots. Further add nodes Ĉ01 and Ĉ10 where Ĉi is
connected only to Ci by an edge of weight 1.

We connect the gadgets as follows:
For every clause C = x ⊕ y ⊕ z = 0 we connect Cb1b2b3 to xb1 , yb2 , and zb3 with a path of
length 2 where both edges have weight 1.
For every clause C = x ⊕ y = b we connect Cb1b2 to xb1 , yb2 with a path of length 2 where
both edges have weight 1.

Intuitively, there is a depot for every way a clause could be satisfied, and the depots
for a clause have a joint neighbour that is expensive to connect. The depot absorbing this
neighbour should correspond to the way in which the clause is satisfied. Similarly there are
two depots for each variable representing the two possible assignments to the variable. In
this case the depot that does not get assigned the joint neighbour corresponds to the chosen
assignment.

There are then additional vertices between the clause and vertex depots which can be
assigned to the clause depots, unless the adjacent clause depot corresponds to the satisfying
assignment of that clause. In that case they need to be assigned to an adjacent variable
depot, which is to say the variables of the clause will have to be assigned in such a way that
the clause is satisfied.

One can quickly check that a satisfying assignment to the clauses will allow us to compute
a tree cover where every tree has size 3. Meanwhile every non-satisfied clause will push at
least one unit of excess weight to a tree of size at least 3. Quantifying this relationship then
permits us to compute approximately the maximum number of satisfiable clauses in such a
system of equations.
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6 Computational Experiments

To illustrate the practical performance achievable by our clustering algorithms, we implemen-
ted the algorithm from Section 3 for the setting without depots in C++ and tested it on
instances proposed by Zheng et al. [24]. Those instances model real-world terrain, which is
to be partitioned evenly so that a fixed number robots can jointly traverse it. They consist
of a grid where either random cells are set to be obstacles, i.e., inaccessible, or a grid-like
arrangement of rooms is superimposed with doors closed at random. A metric is induced on
the accessible cells of the grid by setting the distance of neighbouring cells to be 1.

For all instances on grids of size 200 by 200 (ca. 40,000 nodes), our implementation was
able to compute a clustering in less than 200ms on an Intel i5-10600K under Windows with
48GB of available memory (although actual memory usage was negligible). The resulting
partitions are illustrated in Figure 5. Note that we make two small heuristic changes to the
original algorithm, which are, however, not amenable to be analyzed formally:

First, we adapt the partitioning of the large trees in Step 5 to try to cut the trees
into subtrees of weight at least 2R rather than 4R. Note that the choice of 4R captures
a worst-case scenario where the instance contains edges of size almost R that are to be
included in a solution. If the heaviest edges are considerably smaller than R, the necessary
cutoff approaches 2R rather than 4R. Thus, we run the partitioning algorithm with 2R

rather than 4R, and resort to the higher cutoff only in the case that this fails. Yet, for the
considered instances this was not necessary.

Second, we post-process the computed solution to ensure that it has exactly k components.
It is in principle possible that the algorithm computes a solution with fewer than k trees; in
this case, we iteratively select the largest tree and split it into two parts of as similar a size
as possible until we obtain exactly k components.

The clusterings obtained in this way in Figure 5 are all at least 3-approximately strongly
optimal when compared to a hypothetical solution that distributes the total weight perfectly
evenly on the k clusters.

(a) Output of the algorithm on a
200 × 200 grid with walls partitioned
into 8 clusters. The cluster sizes are
2433, 5516, 9528, 4550, 5271, 3985, 2482 and
4240; consequently the solution is at least
2.01-approximately strongly optimal.

(b) Output of the algorithm on a 200 × 200
grid with walls partitioned into 6 clusters. The
cluster sizes are 7993, 4774, 6390, 8004, 5267, and
6638; consequently, the solution is at least 1.61-
approximately strongly optimal.

Figure 5 Visualizations of the results of our implementation of the non-depot tree cover algorithm.
Inaccessible sections of the grid are marked in black; other colors represent the computed clusters.
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