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Abstract
The Constant Degree Hypothesis was introduced by Barrington et. al. [5] to study some extensions
of q-groups by nilpotent groups and the power of these groups in a computation model called
NuDFA (non-uniform DFA). In its simplest formulation, it establishes exponential lower bounds for
MODq ◦ MODm ◦ ANDd circuits computing AND of unbounded arity n (for constant integers d, m

and a prime q). While it has been proved in some special cases (including d = 1), it remains wide
open in its general form for over 30 years.

In this paper we prove that the hypothesis holds when we restrict our attention to symmetric
circuits with m being a prime. While we build upon techniques by Grolmusz and Tardos [23], we
have to prove a new symmetric version of their Degree Decreasing Lemma and use it to simplify
circuits in a symmetry-preserving way. Moreover, to establish the result, we perform a careful
analysis of automorphism groups of MODm ◦ ANDd subcircuits and study the periodic behaviour of
the computed functions. Our methods also yield lower bounds when d is treated as a function of n.

Finally, we present a construction of symmetric MODq ◦ MODm ◦ ANDd circuits that almost
matches our lower bound and conclude that a symmetric function f can be computed by symmetric
MODq ◦MODp ◦ANDd circuits of quasipolynomial size if and only if f has periods of polylogarithmic
length of the form pkqℓ.
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1 Introduction

Establishing strong lower bounds for general Boolean circuits represents one of the paramount
and yet unattained objectives in the field of Computational Complexity Theory. Whenever
such lower bounds can be obtained, it is usually in some very restricted setting. One of
the standard limitations imposed on circuits in this context is the restriction of their depth.
Some strong results were obtained when the circuits have depth bounded by a constant h
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and are built of unbounded fan-in Boolean AND/OR gates and unary ¬ gates (so-called
AC0 circuits). By a classical result of Furst, Saxe and Sipser [19], proved independently by
Ajtai [1], polynomial-size AC0 circuits cannot compute the PARITY function (i.e., the sum
of the input bits modulo 2). In fact, a followup paper by Yao [38] strengthens the lower
bound for n-ary PARITY to be of the form 2Ω(nc), with a final result of Håstad [26] finding
a precise c = 1

h−1 . Interestingly, extending the AC0 lower bounds from PARITY to MODm

(i.e. the characteristic function of addition modulo an arbitrary integer m) can be achieved
by the very same proof as in [26]. For a precise formulation and even more general results in
this direction, see the subsequent work by Smolensky [36].

Here, a natural dual question arises: can modulo counting gates represent the n-ary
Boolean ANDn function in the bounded-depth setting? To be more precise, a CCh[m] circuit
is a circuit of depth h using only (unbounded fan-in) MODR

m gates. Each such gate sums
the inputs modulo m and outputs 1 if the sum belongs to the set R (we allow different
R ⊆ [m] for different gates), otherwise it outputs 0. Thus, the question is, after fixing h and
m, what size does a CCh[m] circuit require to compute ANDn? Is there a polynomial-size
construction for ANDn, making the class ACC0 collapse to CC0 (where CC0 =

⋃
h,m CCh[m])?

The first question has a trivial answer when m is a prime power, as then CCh[m] circuits can
express only bounded-arity AND (see [5] or [29] for more details). Surprisingly, for m having
multiple prime divisors, only slightly super-linear lower bounds are known [12] and only for
the number of wires – even more: to the best of our knowledge it is consistent with the
current understanding that NP ⊆ CC2[6]. At the same time, the current best construction
for ANDn has size 2O(nc) [11, 29] for some constant c depending on h and m.

This huge gap between lower and upper bounds suggests that the problem of establishing
lower bounds in this context is very difficult. Hence, one can consider simpler computational
models before answering the above more general questions. Interestingly, group theory
outlines in-between steps which can be considered in this context. Barrington, Straubing
and Thérien [5] studied a model of non-uniform DFA (NuDFA) over finite groups (or, more
generally, monoids), which they used to recognize Boolean languages. They discovered that,
if a group is an extension of a p-group by an abelian group, then its corresponding NuDFA
can recognize all languages (however, most of them in exponential size). Nevertheless, such
NuDFAs cannot compute ANDn unless they have size at least 2Ω(n) [5]. Later this result
was restated in a circuit language, saying that, if m is an integer and q is a prime, then any
2-level MODq ◦ MODm circuit computing ANDn requires size 2Ω(n) [23, 22, 37] (here, as
usual, the circuits have to be read that the MODq gate is the output gate – other than e.g.
in [29]). The equivalence of the two statements is due to the fact that these (solvable) groups
have an internal structure based on modulo counting. The authors of [5] conjectured that
this 2Ω(n) lower bound generalizes to NuDFAs over extensions of nilpotent groups by p-groups.
This again can be reformulated to a 2Ω(n) lower bound for MODq ◦ MODm ◦ ANDd circuits
computing ANDn (see [23]). This conjecture is known as Constant Degree Hypothesis (CDH
for short), whose name corresponds to adding a layer of constant-arity ANDd gates on the
input level to a MODq ◦ MODm circuit. Interestingly enough, recently in [30] it was proven
that all the other groups (which do no correspond to CDH) do not admit this lower bound,
i.e. one can construct ANDn of size 2O(nc) for some c < 1 using NuDFAs (or corresponding
circuits) over these groups. In particular, it follows from [30] as well as the related work
[3, 29] that the only MODm′ ◦ MODm ◦ ANDd circuits (where m, m′ are arbitrary integers)
for which subexponential constructions of ANDn are not known are either the ones described
by CDH (i.e., m, m′ prime) or such circuits with m = pα, m′ = pαqβ , where pα, qβ are powers
of different primes. However, in the latter case, replacing m′ = pαqβ with just qβ does not
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meaningfully change the expressive power of the related circuits (based on [29]). As a result,
MODq ◦ MODm ◦ ANDd circuits are really the only (algebraically) natural subclass of CC0

circuits for which these strong 2Ω(n) lower bounds remain to be proven (or disproven).
Low-level CC0 circuits have many surprising connections. For instance, the techniques

used in the construction of relatively small CC0 circuits for the ORn function (equivalently,
ANDn) found in [3] are useful in constructing small explicit Ramsey-type graphs [21, 20].
These constructions are also used to produce better locally-decodable error-correcting codes
[17, 15], private information retrieval schemes [16], and secret sharing schemes [33]. The
lower bounds for codes considered in [17] imply lower bounds for certain CC0 circuits. On
the contrary, good lower bounds for low-level CC0 circuits imply faster algorithms for solving
equations in solvable groups [30], faster algorithms for certain algebraic versions of circuit
satisfiability problems [28] and also faster algorithms for some variants of the Constraint
Satisfaction Problem with Global Constraints [8].

These diverse interconnections encourage to put even more effort to find the correct
sizes for optimal modulo-counting circuits computing ANDn. In this pursue, proving (or
disproving) CDH plays a central role. The hypothesis is already proven in several special
cases: in particular, the case d = 1 was confirmed in the very same paper the hypothesis
was defined. Moreover, if there is a bound on the number of ANDd gates that are wired to
each MODm gate, the desired lower bound is also true [23]. More precisely, the number of
such connections is required to be o( n2

log n ). The technique used in this case is based on the
so-called Degree Decreasing Lemma, whose name corresponds to gradually decreasing the
degree d, which eventually leads to the d = 1 case. The Degree Decreasing Lemma can also
be used when the polynomials over Zm corresponding to the MODm ◦ ANDd part of the
circuit can be written using a sublinear number of binary multiplications [21].

In many studies of different circuit complexity classes, symmetry seems to play an
important role. In this context both symmetric circuits, as well as symmetric functions were
considered. Here, symmetry for a circuit/function means that permuting its inputs/variables
does not change the considered circuit/function. Let us here mention the recent results on
lower bounds for symmetric arithmetic circuits for the permanent and also a construction of
short symmetric circuits for the determinant [13] as well as the lower bound from [27] for
computing a certain entry in a product of matrices (here, symmetry means invariance under
permuting rows and columns of matrices).

Symmetry seems to play also a special role for CCh[m] circuits. The remarkable con-
struction of relatively small circuits for ANDn in [3] uses symmetric polynomials as an
intermediate object before translating them to circuits. This translation, when done carefully,
leads also to symmetric circuits. Similarly, some of the newer, more optimal constructions
of two level CC2[m] circuits for ANDn can be performed fully symmetrically [11, 29]. Ad-
ditionally, [23, 22, 37] analyze the periodic behaviour of the symmetric functions that can
be represented by small (not necessarily symmetric) MODq ◦ MODm circuits. A value of
a symmetric Boolean function f(x1, . . . , xn) is determined by the number of ones among
x1, . . . , xn. Hence, for an integer 0 ≤ m ≤ n, we can naturally define f(m) as f(1m0n−m)
and say that an integer r is a period of f whenever f(m + r) = f(m) for all 0 ≤ m ≤ n − r.
It follows from [23, 37] that the only symmetric functions that have representations as
MODq ◦ MODm circuits of subexponential size must have periods of the form m · qk with
m · qk ≤ n. In particular, ANDn must have exponential-size circuits.

The dual question, namely the behaviour of symmetric functions computed by small AC0

circuits, has been studies quite a lot: In [14], polynomial-size symmetric AC0 circuits of arity
n are shown to represent only functions that are constant on the interval {nε, . . . , n − nε}
(for large enough n).

STACS 2025
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The same result has been obtained in [18] also showing that, if a symmetric function f is
constant on the interval {logk n, . . . , n − logk n} (for some k and for large enough n), then it
is in AC0. Soon after, [9] showed that the latter condition is actually an if and only if.

These results were extended to AC0[p] circuits of quasipolynomial size by Lu [34]: f =
(fn)n∈N is symmetric with f ∈ qAC0[p] if and only if fn has period pt(n) = logO(1) n except at
both ends of length logO(1) n. Here, for a function f : {0, 1}∗ → {0, 1}, we write f = (fn)n∈N
where fn : {0, 1}n → {0, 1} is the restriction of f to {0, 1}n. As usual we say that f is
computed by a family of circuits if for each n there is a circuit computing fn.

For further results in this direction allowing threshold or majority gates see [4, 24, 39].
Recently, a new technique called torus polynomials were introduced [6] as a possible method
to separating TC0 from ACC0 and was shown that MAJORITY cannot be approximated by
small-degree symmetric torus polynomials.

Contribution. In this paper we prove that symmetric MODq ◦ MODp ◦ ANDd circuits
computing ANDn have exponential size. A key to the proof is to analyze the periodic
behaviour of the functions computed by such circuits. Our techniques work also when d is
unbounded and is considered as a function of n. The following theorem characterizes the
periodic behaviour of such functions.

▶ Theorem 1. Let p and q be primes and n ≥ 13 and let 1 ≤ d ≤ n. Then any function
computed by an n-input symmetric MODq ◦ MODp ◦ ANDd circuit of size s < 2n/9 has a
period pkpqkq given that pkp > d and qkq > log s + 1.

To fully understand the periodic behaviour of MODq ◦ MODp ◦ ANDd circuits, we would
also like to construct relatively small circuits given a function f with period of the form pkpqkq .
We present such a construction below in Proposition 19. The most interesting consequence
of this construction is that we get a tight characterization of the periodic behaviour of
functions computed by quasipolynomial-size MODq ◦ MODp ◦ ANDd circuits (recall that a
quasipolynomial is a function of the form 2logk n for some constant k).

▶ Corollary 2. Let p ̸= q be primes and d : N → N with d(n) ≤ n/2 for all n. A
function f = (fn)n∈N (with fn : {0, 1}n → {0, 1}) can be computed by symmetric MODq ◦
MODp ◦ ANDd(n) circuits of quasipolynomial size if and only if, for each n, fn has a period
pkp(n)qkq(n) ∈ logO(1)(n) for some functions kp, kq : N → N.

Next let us consider the case of the ANDn function more carefully. The following theorem
is a careful application of Theorem 1.

▶ Theorem 3. Let p and q be primes, let n be a large enough integer, and let d ≤
√

n. Then
every symmetric MODq ◦ MODp ◦ ANDd circuit computing the ANDn function has size at
least 2n/(2dpq).

Note that the restriction d ≤
√

n still includes the most interesting case. Indeed, for√
n ≤ d ≤ n −

√
n we get an almost trivial lower bound of 2

√
n (see Theorem 21). Moreover,

Theorem 3 suggests an interesting trade-of between the degree and the size at d ≈
√

n. Then
we can reach a lower bound for the size of the form 2Ω(

√
n).

As a direct consequence of Theorem 3 we get the desired result for ANDn.

▶ Corollary 4. For constant d, and primes p, and q every symmetric MODq ◦MODp ◦ANDd

circuit for ANDn has size at least 2Ω(n). Thus, CDH holds for symmetric circuits with p

being prime.
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Before we go to the more technical part, let us briefly mention an opposite perspective
on the results of this paper. Although current evidence seems to support CDH and lower
bounds for ANDn for general CCh[m] circuits, it is known that CCh[m] circuits using O(log n)
random bits are able to compute ANDn in polynomial size [25]. This was even improved
in [31], by showing that MODq ◦ MODp circuits can also be used for representing ANDn

in this probabilistic model. This might be interpreted as a argument against lower bounds,
because now it is enough to derandomize the construction for MODq ◦ MODp circuits. We
already understand these 2-level circuits relatively well (to the point that we can prove strong
lower bounds for them for the ANDn function itself). Our Corollary 4 implies that one
cannot construct ANDn with polynomial-size symmetric MODq ◦ MODp ◦ ANDd circuits.
Hence, to make short deterministic constructions one needs to either go beyond the symmetric
setting or consider larger depths.

Outline. The paper is organized as follows: in Section 2 we fix our notation on circuits
as well as hypergraphs and group actions. These notions are essential in the later study
of the symmetric structure of circuits. In Section 3, we describe how to rewrite a circuit
into a nicer form that we use throughout the paper. Then in Section 4 we present our key
lemmas including proofs or short proof sketches and show how to derive our main results.
The missing proofs can be found in the full version on arXiv [32]. In Section 5 we add some
discussion of our results.

2 Preliminaries

Hypergraphs. For d ∈ N we write [d] for the set of integers {1, . . . , d}. For a set X we
denote its power set by P(X). A hypergraph on a set of vertices V is a pair (V, E) with
E ⊆ P(V ) {∅}. A Fp-labeled hypergraph is a pair G = (V, λ) where λ : (P(V ) {∅}) → Fp.
We obtain an (unlabeled) hypergraph by setting E = {e ⊆ V | λ(e) ̸= 0} and call each e

with λ(e) ̸= 0 an edge of G. Thus, an Fp-labeled hypergraph is indeed a hypergraph where
we assign to each edge a number from Fp {0}. Moreover, (V, λ) is called an Fp-labeled
d-hypergraph if for all e ∈ P(V ) with |e| > d we have λ(e) = 0. We write Hd

p(V ) for the set
of Fp-labeled d-hypergraphs on V . For C ⊆ V we write C = V C for the complement of C.

If G = (V, λ) and H = (V, ζ) are Fp-labeled hypergraphs on the same set of vertices V , we
define G + H (resp. G − H) as (V, λ + ζ) (resp. (V, λ − ζ)) where λ + ζ denotes the point-wise
addition. We interpret any subset E ⊆ P(V ) {∅} as a hypergraph by setting λ(e) = 1 if
e ∈ E and λ(e) = 0 otherwise (be aware of the slight ambiguity as V is not uniquely defined
by E – but it always will be clear from the context). Thus, we have defined the addition
G + E (resp. G − E). We extend this to G + e = G + {e}.

Permutation groups. For any set V we denote the group of permutations on V by Sym(V )
(i.e., the symmetric group). For an integer n we write Sym(n) or Sn for the abstract
symmetric group acting on any n-element set. Any subgroup Γ ≤ Sym(V ) acts faithfully
on V and is called a permutation group. A subset U ⊆ V is called an orbit of the action
of Γ on V if U = G · x for some x ∈ V . If there is only one orbit, the action of Γ on V is
called transitive. Clearly, the orbits form a partition of V ; moreover, if U1, . . . , Uk ⊆ V are
the orbits of the action of Γ ≤ Sym(V ) on V , then Γ ≤ Sym(U1) × · · · × Sym(Uk) where ×
denotes the direct product of groups.

Finally, let Γ′ ≤ Γ be a subgroup. A left-transversal (in the following simply transversal)
of Γ′ in Γ is a subset R ⊆ Γ such that R is a system of representatives of Γ/Γ′ – in other words,
if RΓ′ = Γ and rΓ′ ∩ sΓ′ = ∅ for r, s ∈ R with r ̸= s. For further details on permutation
groups, we refer to [10].

STACS 2025



58:6 Violating Constant Degree Hypothesis Requires Breaking Symmetry

Actions on hypergraphs. Given an action of Sym(V ) on V , it induces an action on P(V ).
Moreover, this extends to an action on Hd

p(V ) where a permutation π ∈ Sym(V ) maps (V, λ)
to π((V, λ)) = (V, πλ) for πλ defined by (πλ)(e) = λ(π−1(e)). Be aware that the −1 is not
by accident but rather guarantees that if some e ∈ P(V ) has label γ = λ(e), then π(e) has
label πλ(π(e)) = λ(e). Note that two labeled hypergraphs with vertices V are isomorphic if
and only if they are in the same orbit under Sym(V ). A permutation π ∈ Sym(V ) is called
an automorphism of G = (V, λ) if π(G) = G – with other words, if λ(π(e)) = λ(e) for all
e ∈ P(V ). For a labeled hypergraph G, we denote its group of automorphisms by Aut(G).

Circuits. A circuit is usually defined as a directed acyclic graph with labels on its vertices
that inform what kind of operation (like for instance ∧, ∨, ¬, MODR

p ) a given vertex (gate)
computes. We allow multiple edges between any pair of gates. A depth-d circuit of arity n

is a circuit that consists of n inputs gates x1, . . . , xn and d layers (or levels) G1, . . . , Gd of
inner gates (we do not count the input gate as a level). Between neighbour layers Gi−1 and
Gi there is a layer of wires Wi which contains directed edges between g ∈ Gi−1 and h ∈ Gi

(where G0 = {x0, . . . , xn}). We allow for multiple (directed) edges between the same pair of
gates. Moreover, gates are labeled with necessary information which allows to compute a
function they represent. In our case we use MODR

p gates where p is a prime and R ⊆ Fp.
A MODR

p with inputs y1, . . . , yk outputs 1 if and only if the sum of its inputs modulo p

is contained in R. A circuit is called an expression if it is a tree when removing the input
layer. A subexpression of an expression is a subgraph containing for every gate also all its
predecessors (towards the input gates). For circuits C, D with n inputs we write C ≡ D if
for all inputs b ∈ {0, 1}n they evaluate to the same value. We define the size of a circuit as
its number of non-input gates.

In this article we consider MODq ◦ MODp ◦ ANDd circuits: such a circuit consist of
3-levels. On level 1 there are ANDd gates each of which receives inputs from at most d

input gates. The second level G2 consists of MODR
p gates – each of them is labeled with

an accepting set R ⊆ {0, . . . , p − 1}. The output layer G3 contains only one MODR
q gate,

which sums all the wires from W3 modulo q.
We say that a circuit C is symmetric if no permutation of the input wires changes the

circuit. Note that here the word symmetric refers to a syntactic structure of a circuit, rather
than a semantic property of the function computed by it. More formally, a circuit C on
inputs x1, . . . , xn is called symmetric if for any π ∈ Sym({x1, . . . , xn}) there is a permutation
π′ on the set of gates extending π (meaning that π(xi) = π′(xi) for all i ∈ [n]) such that
there are k wires connecting gate i to gate j if and only if there are k wires connecting gates
π′(i) to gate π′(j).

3 Preparation: Circuits, Expressions and Hypergraphs

For a simpler notation of expressions, let us denote MODR
p with inputs y1, . . . , yk instead by

b(
∑k

i=1 yi; R) for R ⊆ Fp, where b computes the function

b(y; R) =
{

1 if y ∈ R

0 if y ̸∈ R.

Be aware that we use b for different domains, i.e. as a function Fp → {0, 1} and Fq → {0, 1}.
The domain will be clear from the context.
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From circuits to expressions. Any 2-level MODp ◦ANDd circuit corresponds to polynomial
over the field Fp. Indeed, the ANDd gates act like a multiplications on the two element
domain {0, 1} ⊆ Fp and the MODR

p gate sums the results and checks whether the sum
belong to the accepting set R. Because our circuits are of constant-depth, we can unfold the
circuits to obtain expressions. This means, if a gate g has an outgoing wire to several other
gates, we create multiple copies of g, so that each gate has only a single output wire. Note
that this might lead to a polynomial blow-up in size (more precisely, a circuit with size s and
depth bounded by h is converted to an expression of size at most sh−1 – thus, in our case s2).
Moreover, note that unfolding the circuit does not destroy the property of being symmetric.
Hence, every symmetric MODq ◦ MODp ◦ ANDd circuit yields also a symmetric expression

b
( l∑

i=0
αi b(pi(x); Ri); R

)
(1)

for suitable αi ∈ Fq, Ri ⊆ Fp and polynomials pi of degree bounded by d for i ∈ {1, . . . , l}
and R ⊆ Fq which computes the same function. Here, l is the number of MODp gates used
in the MODq ◦ MODp ◦ ANDd circuit, while αi tells us how many times a given MODp

gate is wired to the MODq gate. Let us take a closer look at what being symmetric means
for an expression of the form (1): for each π ∈ Sym(n) there exist π′ ∈ Sl such that for all
i ∈ {1, . . . , l} we have αi = απ′(i), Ri = Rπ′(i), and pi(x1, . . . , xn) = pπ′(i)(xπ(1), . . . , xπ(n))
(here = refers to equality in the polynomial ring Fp[x1, . . . , xn]).

Next, observe that if we omit the outer b of the expression (1), the function computed
by the resulting expression certainly does not have any new (smaller) periods than the one
of the complete expression. Therefore, as we are aiming for an upper bound on the periods
of the considered symmetric circuits, we will now concentrate on the symmetric expressions
of the form

f =
l∑

i=0
αi b(pi(x); Ri) (2)

with Ri ⊆ Fp, αi ∈ Fq and polynomials pi of degree bounded by d. Indeed, every period of f
is a period of b(f), so for proving lower bounds, it is enough to consider the periods of f . An
expression of the form (2) is called a Σq ◦ MODp ◦ ANDd expression and each b(pi(x); Ri)
is an elementary subexpression of f .

In the following, let us write b(p(x); r) for b(p(x); {r}). Using this notation we have
b(p(x); R) =

∑
r∈R b(p(x); r). Moreover, we always assume that for i ̸= j we have (pi, ri) ̸=

(pj , rj) as otherwise we can replace αi b(pi(x); ri) + αj b(pi(x); rj) by αij b(pi(x); ri) where
αij = αi + αj . Thus, using pol(n, d) to denote the set of multilinear polynomials in
Fp[x1, . . . , xn] with degree bounded by d, we rewrite f in (2) as

f =
∑

p∈pol(n,d)

∑
r∈Fp

αp,r b(p(x); r). (3)

Note that to compute the size of f we only need to count the non-zero αp,r (plus the number
of AND gates computing the polynomials p).

Polynomials and hypergraphs. Let us take a closer look at the MODp ◦ ANDd part of
a Σq ◦ MODp ◦ ANDd circuit or expression. As any such expression is represented by a
polynomial of degree d, we will need to deal with these polynomials and their symmetries.
Notice that without loss of generality, we can assume that the polynomial corresponding to
a MODp ◦ ANDd circuit is multi-linear since, because the values of variables are restricted
to {0, 1} each occurrence of a higher power xk of a variable x can be simply replaced by x.

STACS 2025
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In order to deal better with the combinatorics and symmetries of polynomials, we think
of polynomials as hypergraphs. A multilinear polynomial p ∈ Fp[x1, . . . , xn] with the degree
bounded by d can be naturally identified with an Fp-labeled d-hypergraph G = (V, λ) as
follows:
1. Treat each variable xi in p(x1, . . . , xn) as a vertex in the graph Gp. Thus, V =

{x1, . . . , xn}, which we also identify with the set [n].
2. Each monomial γ · x1 · . . . · xd is represented by a hyperedge with a label γ, i.e., we have

λ({x1, . . . , xd}) = γ.

Thus, we get a one-to-one correspondence between multilinear polynomials over Fp of
degree at most d and Fp-labeled d-hypergraphs. This means that we can also do the reverse –
for each labeled graph G we can create its corresponding polynomial pG. Moreover, note that
also the arithmetic operations we defined on hypergraphs as well as the group actions agree
with those on polynomials. Therefore, in the following, we use polynomials and hypergraphs
interchangeably.

Now, we can use our graph notation for polynomials in a more general setting and denote
each expression b(p(x); r) by b(Gp; r) or simply b(G; r) (when we start with a hypergraph
representing a given polynomial). Thus, we can reformulate any expression of the form (3)
as

∑
p∈pol(n,d)

∑
r∈Fp

αp,r b(Gp; r) =
∑

G∈Hd
p(V )

∑
r∈Fp

αG,r b(G; r).

Symmetric expressions induced by hypergraphs. Now we define several notions, useful in
analysing symmetric expressions. For G = (V, λ) and π ∈ Sym(V ), let us write bπ(G; R) for
b(πG; R). The action of Sym(V ) on V now extends naturally to an action on expressions of
the form f =

∑
G∈Hd

p(V )
∑

r∈Fp
αG,r b(G; r) by setting

π(f) =
∑

G∈Hd
p(V )

∑
r∈Fp

αG,r bπ(G; r).

Now, f being symmetric can be simply expressed as the fact that for each π ∈ Sym(V ) we
have π(f) = f .

▶ Definition 5. Let G = (V, λ) be a labeled d-hypergraph. Let Aut(G) be its group of
automorphisms and let π1, . . . , πk be a transversal of Sym(V )/ Aut(G). For a given r ∈ Fp,
define s(G; r) to be the following Σq ◦ MODp ◦ ANDd expression

s(G; r) =
k∑

i=0
bπi(G, r). (4)

One needs to check that the above definition does not depend on the choice of the transversal,
as there is a choice in picking the specific traversal π1, . . . , πk which we use to create
s(G; r). However, as G is invariant under its automorphisms, no matter how we choose
the specific π1, . . . , πk, we get the same expression in the end. In fact, every symmetric
Σq ◦MODp ◦ANDd expression containing b(G; r) as subexpression, must also contain s(G; r)
as subexpression. So s(G; r) is a symmetric closure of the basic expression b(G; r). Let us
summarize this as follows:

▶ Remark 6. For every labeled d-hypergraph G and every r ∈ Fp, the expression s(G; r) is
symmetric. Moreover, it is the smallest symmetric expression that contains b(G; r) as an
elementary subexpression.
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▶ Fact 7. Every symmetric Σq ◦ MODp ◦ ANDd expression f can be written as a sum

f(x) =
∑

G∈Hd
p(V )

∑
r∈Fp

βG,r · s(G; r)

for βG,r ∈ Fq (recall that Hd
p(V ) denotes the set of labeled d-hypergraphs on V ).

Proof. If a symmetric f has some β · b(G, r) as an elementary subexpression, it must also
have β · s(G; r) as a subexpression (see Remark 6). But now f − β · s(G; r) is a symmetric
expression which is shorter than f , and hence we can use induction to prove the desired
decomposition for f(x), by adding β · s(G; r) to the decomposition of f − β · s(G; r). ◀

4 Description of the Proof

We now start with an expression as in Fact 7 and prove our main theorems. For this, we
need several definitions and intermediate results. For some of these intermediate results, the
full proofs are deferred to the full version [32]; instead, we present short proof sketches, give
some high-level ideas how the respective results are used, and then, in Section 4.4, show how
our main results follow from the intermediate results. As every symmetric expression f is
decomposed into an appropriate sum of elements of the form α · s(G; r), we need a deeper
understanding of each s(G; r). We investigate these expressions s(G; r) in three main steps:
1. we analyze the symmetries of G to find a large so-called fully symmetric set (see

Lemma 10),
2. we process the hypergraph G further to make it symmetry purified (see Definition 13

and Lemma 14) applying two versions of the Degree Decreasing Lemma (Lemma 11 and
Lemma 12),

3. we analyze the periods of the resulting expressions s(G; r) (see Theorem 16).

4.1 Symmetries of Hypergraphs
Recall that one of our goals is to prove exponential lower bounds on the size of symmetric
circuits/expressions computing ANDn. In Lemma 10 we are going to show that, if in an
expression f we find a very asymmetric graph G, we know that the size of f must be relatively
large. This is because the automorphism group of G is small and, hence, the length of the
expression of the form (4) induced by G, i.e. s(G; R), must be large (more precisely, k as
defined above is large). On the other hand, for highly symmetric graphs G, we can find a
big, very regular substructure of G, which we will call a pseudo-clique.

▶ Definition 8. Let G be an Fp-labeled hypergraph G = (V, λ) (i.e. λ : P(V ) {∅} → Fp).
We say that a subset C ⊆ V is fully symmetric, if for each pair of subsets e1, e2 ⊆ V with
|e1| = |e2| and e1 ∩ C = e2 ∩ C we have λ(e1) = λ(e2).

Moreover, an Fp-labeled hypergraph G = (V, λ) is called a pseudo-clique if Aut(G) =
Sym(V ) – or, equivalently, if for each d ∈ [n] there is some λd such that λ(e) = λd all e ⊆ V

with |e| = d.

Note that an induced subgraph on a fully symmetric subset of vertices is a pseudo-clique.
We obtain the following easy observations.

▶ Fact 9. Let G be an Fp-labeled hypergraph G = (V, λ).
A subset C ⊆ V is fully symmetric if and only if Sym(C) ≤ Aut(G).
If C, D ⊆ V are fully symmetric sets with C ∩ D ̸= ∅, then so is C ∪ D.
If C ⊆ V is a maximal fully symmetric set with |C| > |V | /2, then Aut(G) = Sym(C) × Γ
for some Γ ≤ Sym(C).
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Now, we are ready to present a key lemma, which allows us to restrict our attention only
to very symmetric hypergraphs.

▶ Lemma 10. Let 0 < ε < 1/8. Every Fp-labeled hypergraph G = (V, λ) with n = |V | ≥ 13
has either

a fully symmetric subset on at least n − ⌊εn⌋ vertices, or
its automorphism group satisfies | Sym(V )/ Aut(G))| > 2⌊εn⌋.

Proof. Let us write Γ = Aut(G). We say that Γ is small if |Γ| ≤ n!/2⌊εn⌋. Let us first show
that either Γ is small or G contains a pseudo-clique on at least n − ⌊εn⌋ vertices (in a second
step, we will show that this pseudo-clique, indeed, is fully symmetric).

We start by observing that Γ is a subgroup of Sym(k1) × · · · × Sym(km), where ki are the
sizes of the orbits of the action on G. If ki < n − ⌊εn⌋ for all i, then |Γ| < (n − ⌊εn⌋)! · ⌊εn⌋!
and Γ is small because of

n!
|Γ|

>
n!

(n − ⌊εn⌋)! · ⌊εn⌋! =
(

n

⌊εn⌋

)
≥

(
n

⌊εn⌋

)⌊εn⌋

> 2⌊εn⌋.

So from now on there is one orbit C ⊆ V consisting of at least n − ⌊εn⌋ vertices. Then
we have Γ ≤ Sym(C) × Sym(C) and we denote by φ : Γ → Sym(C) the projection to the
first coordinate.

Suppose Γ̃ = φ(Γ) does not act primitively on C meaning that there is an Γ̃-invariant
partition of C with r classes each of which consists of 1 < m < |C| vertices (as Γ̃ acts
transitively on C, it must acts transitively on the classes; hence, they all have the same size).
Thus, Γ̃ is isomorphic to a subgroup of the wreath product Sym(m) ≀ Sym(r) with rm = |C|
(see [10, Theorem 1.8]). Hence,

|C|!
|Γ̃|

≥ |C|!
(m!)r · r! = 1 · . . . · m · . . . · |C|

(1 · · · m) · 1 · (1 · · · m) · 2 · . . . · (1 · · · m) · r
=

∏r−1
i=1

∏m−1
j=1 (im + j)

((m − 1)!)r−1

≥ 2(m−1)(r−1) ≥ 2|C|/4 ≥ 2⌊εn⌋.

Here the last inequality is because ε < 1/8 (in particular 1 − ε ≥ 1/2), the second last
inequality is due to the assumption ε ≤ 1/4 and m − 1 ≥ m/2 and r − 1 ≥ r/2. The third
last inequality is because

(∏m−1
j=1 (im + j)

)
/(m − 1)! =

∏m−1
j=1 (im + j)/j ≥ 2m−1 as i ≥ 1.

Since the index of Γ in Sym(V ) is at least the index of Γ̃ = φ(Γ) in Sym(C), again Γ is small.
Hence, it remains to consider the case that φ(Γ) ≤ Sym(C) acts primitively on C. Thus,

writing k = |C| , according to [7, 35] (see also [2]), there are three possibilities: φ(Γ) is either
Ak (the alternating group on k elements) or Sk

∼= Sym(C) or |φ(Γ)| ≤ 4k. First, let us
consider the last case. As n ≥ 13, we have k ≥ n − ⌊εn⌋ ≥ 11. Therefore, we conclude that
we have |φ(Γ)| ≤ 4k ≤ k!/2k/4 (which holds for all k ≥ 11) and, as above, the index of Γ in
Sym(V ) is at least 2k/4 ≥ 2(n−⌊εn⌋)/4 ≥ 2⌊εn⌋, meaning that Γ is small.

In the former two cases (i.e., that φ(Γ) is Ak or Sk), φ(Γ) acts set-transitively on C

(meaning that for each pair of subsets A, B ⊆ C with |A| = |B| there is a permutation π

mapping A to B); hence, C is a pseudo-clique.
To see that C is, indeed, fully symmetric if Γ is not small, we proceed as follows: Now,

let N ≤ Γ denote the kernel of the projection Γ → Sym(C) to the second component (i.e.
the pointwise stabilizer of C). Then we have φ(N) = N (when identifying Sym(C) with the
corresponding subgroup of Sym(C) × Sym(C)). As Ak is simple and the index of N is at
most (n − k)! in φ(Γ) (which is either Ak or Sk), we have N = Ak or N = Sk (as N is also
normal in φ(Γ)). In both cases N acts set-transitively on C and; hence, C is fully symmetric
(which, by Fact 9, also excludes the case N = Ak). ◀
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4.2 Reduction Based on the Degree Decreasing Lemma
One of the few examples of lower bounds for circuits using modulo counting are due to
Grolmusz and Tardos [23, 22]. The authors prove lower bounds for MODq ◦ MODp ◦ ANDd

circuits with restrictions put on connections between ANDd layer and MODp gates. More
precisely, [22] shows that if the number of multiplications needed to compute the polynomial
corresponding to each MODp ◦ ANDd subcircuit is bounded by cn for small enough c, then
a MODq ◦ MODp ◦ ANDd circuit requires exponential size to compute ANDn. One of their
key tools is the so-called Degree Decreasing Lemma:

▶ Lemma 11 (Degree Decreasing Lemma). Let p ̸= q be prime numbers. Then every function
f : F3

p 7→ Fq represented by a 3-ary Σq ◦ MODp ◦ AND2 expression b(γ · z1 · z2 + y; t) can be
also represented by an expression of the form∑

(j1,j2,j3)∈F3
p

∑
r∈Fp

β
(r)
j1,j2,j3

· b(j1z1 + j2z2 + j3y; r)

where β
(r)
j1,j2,j3

are some coefficients from Fq (also depending on γ and t).

The Lemma is a consequence of the result by Grolmusz [22, Lemma 6] (note that the
statement there does not include the factor γ, so formally, to obtain Lemma 11, one needs to
apply [22, Lemma 6] several times). One can also see it as a consequence of [29, Fact 3.3].
This very simple lemma allows us to navigate through the space of different representations
for a given function f by allowing a local change of its corresponding expression. The power
of the lemma comes from the fact that we can substitute arbitrary polynomials for z1, z2, y

and obtain many different equivalences.
We will need a more regular version of the Degree Decrasing Lemma when the multipli-

cation inside b has bigger arity. The price we pay for a nicer form is that the represented
function has a smaller (partially Boolean) domain, which slightly reduces the scope of appli-
cability of the lemma (as we cannot substitute any polynomial for the variables); however, it
still suffices for our purposes.

▶ Lemma 12 (Symmetric Degree Decreasing Lemma). Let p ̸= q be prime. Let γ ∈ Fp {0}.
Then every function f : {0, 1}d × Fp 7→ Fq represented by a d + 1-ary Σq ◦ MODp ◦ ANDd

expression

b(γ · x1 · . . . · xd + y; t)

can be also represented by an expression

h(x, y; t) = b(y; t) +
∑
r∈Fp

βt,r

∑
S⊆[d]

α|S| · b(γ ·
∑
s∈S

s + y; r)

for α|S| = (−1)|S| and some coefficients βt,r ∈ Fq.

The key property of the formula h is that it is invariant under permutations of the
variables x1, . . . , xd, which is not the case for original Degree Decreasing Lemma of [22]. The
next step in the proof is to apply the Symmetric Degree Decreasing Lemma (Lemma 12)
to expressions generated by highly-symmetric hypergraphs in order to obtain an even nicer
representation defined as follows:

▶ Definition 13. We call an Fp-labeled d-hypergraph G = (V, λ) symmetry-purified with
respect to C ⊆ V if
1. C is fully symmetric in G,
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2. if λ(e) ̸= 0, then e is completely contained either in C or in C (i.e., every edge e is fully
contained either in C or in C,

3. if λ(e) ̸= 0 and e ⊆ C, then |e| = 1 (i.e., every edge e with e ∩ C = ∅ satisfies |e| = 1).

Moreover, if the graph satisfies only conditions 1 and 2, we will call it partially symmetry
purified. We write sp(V, C) for the set of all symmetry-purified d-hypergraphs with respect to
C ⊆ V and psp(V, C) for the set of partially symmetry-purified d-hypergraphs with respect to
C ⊆ V (note that d and p are implicitly defined from the context for sp(V, C) and psp(V, C)).

The next crucial lemma allows us to restrict our attention only to expressions s(G; u) over
symmetry-purified graphs, which have a very regular and much easier to analyze structure.
This enables a later combinatorial analysis of the periodic behaviour of such s(G; u). The
proof of the lemma relies on carefully applying both Lemma 11 and Lemma 12 to alter the
graphs while preserving the symmetry of the corresponding expression.

▶ Lemma 14. Let p ≠ q be prime numbers, let u ∈ Fp, and let G = (V, λ) be an Fp-labeled
d-hypergraph. Moreover, let C ⊆ V be a maximal fully symmetric subset with |C| > |V | /2.
Then there are constants βH,r ∈ Fq such that

s(G; u) ≡
∑

H∈sp(V,C)

∑
r∈Fp

βH,r s(H, r).

Proof sketch. We will first represent a function computed by s(G; u) by a sum of expressions
s(H, r) for H being partially symmetry purified. Let e be an edge in G, such that eC =
e ∩ C ̸= ∅ and eC = e ∩ C ̸= ∅. We would like to remove the edge e from G. To do so,
we apply Lemma 11 to replace e by a linear combination of eC and eC . However, if we do
this only for e we may destroy the symmetry of the resulting expression. For this reason,
we pick not only e but its entire orbit O = Aut(G) · e = {e1, . . . , eℓ} and apply Lemma 11
simultaneously to it. Indeed, setting P = Aut(G) · eC and Q = Aut(G) · eC , since C is fully
symmetric, we have

e1 + · · · + eℓ = (
∑
w∈P

w)(
∑
v∈Q

v).

Since all the ei must have the same label γ, we have

s(G; u) = s(γ(e1 + · · · + eℓ) + G′; u) = s(γ · z1 · z2 + G′; u)

where z1 =
∑

w∈P w, z2 =
∑

v∈Q v and G′ = G − γ · (e1 + · · · + eℓ). Thus, after applying
Lemma 11 to each summand of s (as in the formula (4)), we get a symmetric expression
which is a linear combination of subexpressions of the form bπi(j1z1 + j2z2 + j3G′; r). Hence,
we have replaced s(G, u) with a sum

∑
H,r s(H, r), where each graph H does not contain the

edge e anymore and has no new edges intersecting both C and C non-trivially. We apply
this reasoning recursively for s(H, r) as long as there is any edge in any graph in the sum
that intersects non-trivially with C and C. At the very end there are no such edges left, so
we managed to represent s(G, u) as a sum of expressions s(H, r) over partially symmetry
purified graphs H.

Next, assume that G is already partially symmetry purified with respect to C but not
yet symmetry purified. Pick an edge e ⊆ C of size at least 2 and denote its orbit as
Aut(G) · e = {e1, e2, . . . , eℓ}. We have

s(G, u) =
k∑

i=1
bπi(γ · e1 + · · · + γ · eℓ + G′; u).
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Now by applying Lemma 12 subsequently to the edges e1, . . . , eℓ, we can replace all these
edges with linear combinations of its vertices. Because the formula in Lemma 12 is symmetric,
we end up with a symmetric expression at the end. So we have replaced s(G, u) by a sum of
s(H, r), but now each H has less bad edges. We apply this reasoning recursively to write
s(G, u) as a sum of s(H, r) where each H is symmetry purified. ◀

4.3 Period of Symmetry-Purified Expressions
For a fixed input b ∈ {0, 1}n and an n-ary symmetric expression f , we can compute the
value f(b) only knowing the Hamming weight of the input, i.e. the number of 1s in b. This
means that f represents not only a function {0, 1}n → D, but we can also view it as a
function {0, 1, . . . , n} → D. It turns out that a relatively small Σq ◦ MODp ◦ ANDd circuit
can compute only functions with a relatively small period. Here, by a period of f we mean
an integer r ∈ N {0} that satisfies f(m + r) = f(m) for all m in the range [0, n − r]. Note
that all functions have periods > n, so we are mainly interested in finding periods in the
range [1, n]. Note that the ANDn function, which is of our particular interest, does not
have any period (less than n + 1). Thus, proving an upper bound for a period of a function
computed by a relatively short expression will give us a lower bound for the length of
representation of ANDn. This is in line with some of the previous research [3, 22, 37]. As any
Σq ◦ MODp ◦ ANDd can be transformed into a symmetric expression over symmetry-purified
graphs, we only need to concentrate on these special graphs. Indeed, any common period
among all the elements of the sum, transfers to the sum itself.

For the following theorem, we need a careful analysis how an expression s(G; u) for some
symmetry purified graph G is computed. We rely on the fact that, for fixed s ∈ N, the
function m 7→

(
m
s

)
mod p is periodic with period pk for each k ∈ N such that pk > s (see

for instance [29, Proof of Fact 3.4]). Recall that a multinomial coefficient
(

n
s1,...,sl

)
counts

the number of ordered partition of n elements set into sequences of disjoint subsets of sizes
s1, . . . , sl. More formally, for s1 + · · · + sl = n we have(

n

s1, . . . , sl

)
=

(
s1

s1

)
·
(

s1 + s2

s2

)
· . . . ·

(
s1 + · · · + sl

sl

)
. (5)

▶ Lemma 15. Let p be a prime. Let s1, . . . sl−1 be a sequence of integers. Let k be such that
pk > s1 + · · · + sl−1. Then the function

f(n) =
(

n

s1, . . . , sl(n)

)
mod p

is periodic with period pk where sl(n) = n − (s1 + s2 + · · · + sl−1).

Proof. We use the formula (5) for computing multinomial coefficient. Note that the first
l − 1 factors of the above product are constants, while the last one satisfies(

s1 + · · · + sl

sl(n)

)
=

(
n

sl(n)

)
=

(
n

n − sl(n)

)
=

(
n

s1 + · · · + sl−1

)
.

So, periodicity of multinomial coefficient comes from periodicity of the binomial coefficients.
◀

▶ Theorem 16. Let p ̸= q be prime numbers, r ∈ Fp and let G be an Fp-labeled d-hypergraph
on n vertices that is symmetry purified with respect to a maximal fully symmetric subset of
vertices C of size |C| > n/2. Then pkp · qkq is a period of s(G; r) where kp is the smallest
integer satisfying pkp > d and kq is the smallest integer satisfying qkq > n − |C|.
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Note that, if pkp · qkq > n, Theorem 16 establishes no non-trivial periods.

Proof. Note that the induced subgraph on the set C is a pseudo-clique. Moreover, as
|C| > |V |

2 , we can reconstruct the graph G up to isomorphism having the following information
1. the size lC of the largest pseudo-clique C in G,
2. the type t = (t1, . . . , td) ∈ Fd

p of the pseudo-clique, where ti is the label of every i-ary
edge in the pseudo-clique

3. sizes l0, l1, . . . , lp−1, where li is the number of vertices j that are not in the pseudo-clique
C and have a unary edge with label i = λ({j}). Vertices corresponding to label i in G

will be denoted Li (thus, li = |Li|).

Using this characterization of a symmetry purified hypergraph G = (V, λ), we obtain

▶ Fact 17. Aut(G) = Sym(C) × Sym(L0) × · · · × Sym(Lp−1)

In particular, we have at most p + 1 orbits under the automorphism groups (note that we
have less than p + 1 orbits if some of the li are 0)

Now we evaluate s(G; r) on some integer m (and denote this by s(G; r)(m)). In order to
do it, pick b which has ones on the first m coordinates, i.e b = 1m · 0n−m. Hence,

s(G; r)(m) = s(G; r)(b) =
k∑

i=1
b(πi(G); r)(b)

where, as before, π1, . . . , πk is a transversal of Sym(V )/ Aut(G). Each summand b(πi(G); r)(b)
evaluates to 1 or 0, depending on the mapping πi. Being more precise, if πi maps s0 elements
of L0 to [1..m], . . . , and sp−1 elements of Lp−1 to [1..m], then πi(G)(b) evaluates to

d∑
j=1

tj ·
(

sC(m)
j

)
+

q−1∑
j=1

j · sj (mod p). (6)

where sC(m) denotes the number of elements of C mapped to [1..m], which is computed
according to formula sC(m) = m − (s0 + · · · + sp−1). Recall that b(πi(G); r)(b) = 1 if and
only if πi(G)(b) = r.

Let χ[G; r](m) denote the set of s = (s0, . . . , sp−1) that make the sum (6) evaluate to
r. Observe that we have natural inequalities 0 ≤ si ≤ li for all i ∈ {0, . . . , p − 1} and
0 ≤ sC(m) ≤ lC . Hence, the feasible s ∈ Np can be described by

s ∈ χ[G; r](m) ⇐⇒


∑d

j=1 tj ·
(

sC (m)
j

)
+

∑p−1
j=1 j · sj (mod p) = r

0 ≤ si ≤ li for i ∈ {0, . . . , p − 1}
0 ≤ sC(m) ≤ lC .

(7)

Moreover, let #[s](m) denote the number of permutations in {π1, . . . , πk} that map sC(m)
elements of C to [m] and si elements of Li to [m] (for i = 0, . . . , p − 1). Hence, we have

s[G; r](m) =

 ∑
(s)∈χ[G;r](m)

#[s](m)

 (mod q).

Next, let us determine #[s](m). Note that each permutation πi in {π1, . . . , πk}
maps each of the sets L0, . . . , Lp−1, C to some subsets L′

0, . . . , L′
p−1, C ′ ⊆ [n] with |L′

0| =
|L0|, . . . , |L′

p−1| = |Lp−1|, and |C ′| = |C|. Now, if two mappings πi, πj output the same
image πiL0 = πjL0, . . . , πiLp−1 = πjLp−1, πiC = πjC, then πiG = πjG and hence πi and
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πj must belong to the same coset of Aut(G) in Sym(V ). Since {π1, . . . , πk} were chosen to
be a transversal of Sym(V )/ Aut(G), this is only possible when πi = πj . So, the mapping
πi 7→ (L′

0, . . . , L′
p−1, C ′) is injective.

In fact, the mapping is also surjective as for any particular (L′
0, . . . , L′

p−1, C ′) with
|L′

0| = |L0|, . . . , |L′
p−1| = |Lp−1|, |C ′| = |C| we can find some π ∈ {π1, . . . , πk} which maps

π(Li) = L′
i and π(C) = C ′. Indeed, just pick any σ ∈ Sym(V ) satisfying σ(Li) = L′

i for all
i and σ(C) = C ′ and take its representative in the equivalence class modulo Aut(G) as πi.
So we have a bijective mapping between permutations (πi)i=1..p−1 and ordered partitions
(L′

0, . . . , L′
p−1, C ′) of [n] satisfying |L′

0| = |L0|, . . . , |L′
p−1| = |Lp−1|, and |C ′| = |C|.

Thus, if we want to count #(s), we need to count the number of proper partitions
satisfying |L′

1 ∩ [1..m]| = s1, . . . , |L′
p−1 ∩ [1..m]| = sp−1, and |C ′ ∩ [1..m]| = sC(m). In other

words, we partition an m-element set into disjoint subsets of sizes s0, s1, . . . , sp−1, sC(m) and
an n − m-element set into disjoint subsets of sizes l0 − s0, . . . , lp−1 − sp−1, lC − sC(m); this
leads to the following formula

#[s](m) =
(

m

s0, . . . , sp−1, sC(m)

)
·
(

n − m

l0 − s0, . . . , lp−1 − sp−1, lC − sC(m)

)
. (8)

Now, when fixing s0, . . . , sp−1, we will use Lemma 15 to show that the function m 7→
#[s](m) mod q is periodic with period qkq in the interval {0, . . . , n} where kq is the smallest
integer such that qkq > l0 + · · · + lp−1 = n − |C|. The periodicity is immediate for the first
element of the product by Lemma 15. Let s′

i = l0 − s0. One can see that the values of the
second element of the product produce, in the interval [0..n], a reversed sequence compared
to the one produced by(

m

s′
0, . . . , s′

p−1, m − (s′
0 + · · · + s′

p−1)

)
Indeed, lC −sC(m) = n−(l0 + · · ·+ lp−1)−(m−(s0 + · · ·+sp−1)) = (n−m)−(s′

0 + · · ·+s′
p−1)

and n − m plays the role of m in the reversed sequence. As periodicity of any given sequence
on the interval [0..n] is preserved under reversing, and as qkq > l0 + · · ·+lp−1 ≥ s′

0 + · · ·+s′
p−1,

we get the desired periodicity of #[s](m) (as the period transfers to the product).
Now, one could argue that then the sum

s[G; r](m) =

 ∑
(s)∈χ[G;r](m)

#[s](m)

 (mod q)

must be periodic, as it is just a sum of elements that are periodic. Unfortunately, χ[G; r](m)
selects elements of the sum depending on m (i.e. the si depend on m). We need to address
this issue.

Note that in (7) we can drop the condition 0 ≤ sC(m) ≤ lC because whenever sC(m) < 0
or sC(m) > lC the formula (8) returns value 0 anyway (as multinomial coefficient takes value
0 whenever s0 + · · · + sp−1 > m or s′

0 + · · · + s′
p−1 > m). So we can effectively get rid of

sC(m) in χ to get an updated definition

s ∈ χ′[G; r](m) ⇐⇒

{∑d
j=1 tj ·

(
sC (m)

j

)
+

∑q−1
j=1 j · sj (mod p) = r

0 ≤ si ≤ li for i ∈ {0, . . . , p − 1}
(9)

and maintain the value of the sum, i.e. ∑
(s)∈χ′[G;r](m)

#[s](m)

 =

 ∑
(s)∈χ[G;r](m)

#[s](m)

 .
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Let K be the smallest integer satisfying pK > max(l0 + l1 + · · · + lp−1, d). We further modify
the definition of χ′ to create χ∗ in the following way

s ∈ χ∗[G; r](m) ⇐⇒

{∑d
j=1 tj ·

(
sC (m)+pK

j

)
+

∑q−1
j=1 j · sj (mod p) = r

0 ≤ si ≤ li for i ∈ {0, . . . , p − 1}
(10)

We claim that for all m ∑
(s)∈χ′[G;r](m)

#[s](m)

 (mod q) =

 ∑
(s)∈χ∗[G;r](m)

#[s](m)

 (mod q)

There are 2 cases we need to consider.
1. When some fixed s belongs to both χ′[G; r](m) and χ∗[G; r](m), then #[s](m) cancels

out from both sides of the equation. Similarly if s does not belong to either of the sets,
we do not have #[s](m) on either of sides of the equation.

2. If s ∈ χ′[G; r](m) and s ̸∈ χ∗[G; r](m) or s ̸∈ χ′[G; r](m) and s ∈ χ∗[G; r](m), there
must be some j such that

(
sC(m)

j

)
̸=

(
sC(m)+pK

j

)
. This can only be the case if sC(m) is

negative: otherwise, because pK > d ≥ j, from the periodicity of function a 7→
(

a
j

)
mod p

(for natural numbers a ≥ 0), we would get that
(

sC (m)
j

)
=

(
sC(m)+pK

j

)
mod p and, hence,

the conditions for χ′[G; r](m) and χ∗[G; r](m) would be identical from the perspective of
s. But when sC(m) < 0, then #[s](m) is zero due to definition of multinomial coefficient,
so it does not contribute to any of the sides anyway.

So we obtain that

s(G; r)(m) =

 ∑
(s)∈χ∗[G;r](m)

#[s](m)

 (mod q).

But now the formula (10) gives ranges 0 ≤ sj ≤ lj for j ∈ {0, . . . , p−1}; thus, we conclude
that sC(m)+pK is always positive (since sC(m)+pK = m+pK − (s0 + · · ·+sp−1) ≥ m ≥ 0).
So m 7→

(
sC (m)+pK

j

)
mod p is periodic with period pkp > d where kp is the smallest integer

with pkp > d. Looking at the definition of χ∗ we conclude:

▶ Fact 18. Let s ∈ Np. For m ≥ 0 we have

s ∈ χ∗[G; r](m) ⇐⇒ s ∈ χ∗[G; r](m + pkp)

Hence, the condition s ∈ χ∗(G; r) depends not really on m, but on the remainder of m

modulo pkp . So now, for all integers j ∈ {0, . . . , pkp − 1} we define χ∗
j [G; r] as χ∗[G; r](j)

in order to obtain that χ∗[G; r](m) = χ∗
j [G; r] for j = m mod pkp . Now we can see that

s(G; r)(m) is periodic with period pkp · qkq :

s(G; r)(m + pkp · qkq ) =
∑

(s)∈χ∗
j

[G;r]

#[s](m + pkp · qkq )

=
∑

(s)∈χ∗
j

[G;r]

#[s](m)

= s(G; r)(m) (mod q).

The first and the third equality comes from periodicity of the condition χ∗ and the fact
that m and m + pkp · qkq give the same rest modulo pkp and the second one comes from the
equality of rests modulo qkq and periodicity of #(s)(m). ◀
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4.4 Main Theorems
Now we have all the necessary components to prove our main theorems.

Proof of Theorem 1. As discussed in Section 3, any MODq ◦ MODp ◦ ANDd circuit has a
corresponding symmetric Σq ◦ MODp ◦ ANDd expression f with no periods smaller than the
circuit we started with (note that there can happen some blow-up in size, but this does not
matter as we argue below). By Fact 7, f can be written as a sum of expressions of the form
s(G; r). Hence, from now on let us consider one of these expressions s(G; r).

We choose ε such that 2s = 2ε·n (meaning that ε · n = log s + 1 and ε < 1/8). If G does
not contain a fully symmetric set |C| of size at least n − ⌊εn⌋, by Lemma 10, it satisfies
|Sym([n])/ Aut(G)| ≥ 2⌊εn⌋. Thus, writing s(G; r) =

∑k
i=0 bπi(G, r) as in Equation (4), it

follows that k ≥ 2⌊εn⌋. As all the different terms in this sum get their inputs from different
graphs πi(G), also for each term in the sum there must have been a different gate in the
original circuit we started with. This is a contradiction as 2⌊εn⌋ > s.

Hence, all the subexpressions s(G; r) contain a fully symmetric set C of size at least
n − ⌊εn⌋. Now, Lemma 14 tells us that we can write f as a sum of expressions of the form
s(G; r) where G is symmetry-purified with respect to C. Then, Theorem 16 implies that
each such s(G; r) has a period pkp · qkq , where kp is the smallest integer such that pkp > d

and kq is the smallest integer such that qkq > n − |C| = ⌊εn⌋. As f is a sum of different
s(G; r), which all share the period pkp · qkq , it itself has period pkp · qkq . ◀

The following result shows that the estimate of size which can be derived from Theorem 1
is asymptotically (almost) precise.

▶ Proposition 19. Let p ̸= q be primes. Let kp, kq be natural numbers. For every symmetric
function f with a period pkp · qkq there is a symmetric MODq ◦ MODp ◦ ANDd circuit of
size O(d ·

(
n
d

)
+ d · l2 ·

(
n
l

)
) which computes f , where d = pkp − 1 and l = qkq − 1 and d, l < n

2 .

The proof, which is a rather straightforward application of known facts, can be found in the
full version on arXiv.

▶ Corollary 20. Let p ̸= q be primes and d : N → N with d(n) ≤ n/2 for all n. A
function f = (fn)n∈N (with fn : {0, 1}n → {0, 1}) can be computed by a family of symmetric
MODq ◦ MODp ◦ ANDd(n) circuits of quasipolynomial size if and only if, for each n, fn has
a period pkp(n)qkq(n) ∈ logO(1)(n) for some functions kp, kq : N → N.

Moreover, if d = pkp − 1 is a constant, then f can be computed by symmetric MODq ◦
MODp ◦ ANDd circuits of quasipolynomial size if and only if, for each n, fn has a period
pkpqkq(n) ∈ logO(1)(n) for some function kq : N → N.

Proof. If fn has period pkp(n)qkq(n) ∈ logO(1)(n), by Proposition 19, fn is computed by
a MODq ◦ MODp ◦ ANDd circuit of size O(d ·

(
n
d

)
+ d · l2 ·

(
n
l

)
) where l = qkq . As(

n
logO(1)(n)

)
⊆ 2logO(1)(n), it follows that f can be computed by a family of quasipolynomial-

size MODq ◦ MODp ◦ ANDd(n) circuits. In the case that d ∈ {pk − 1 | k ∈ N} is a constant,
Proposition 19 still can be applied with the same outcome.

On the other hand, if f is computed by a family of quasipolynomial-size MODq ◦MODp ◦
ANDd(n) circuits, we first observe that without loss of generality d(n) ∈ logO(1)(n). Indeed,
if for some n the circuits use an ANDd gate for some d ≥ logk(n), then the size of the circuit,
because of the symmetry property, is at least

(
n
d

)
≥ (n

d )d ≥ 2d ≥ 2logk(n). If this holds
for every k ∈ N and infinitely many n, then the circuit family is not of quasipolynomially
bounded size.
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Now, it remains to apply Theorem 1, which tells us that fn has period pkpqkq where kp

is the smallest integer with pkp > d(n) and kq is the smallest integer with qkq > log s(n) + 1
where s(n) ∈ 2logO(1)(n) is the size of the n-input circuit. As pkpqkq ∈ logO(1)(n), both parts
of the corollary follow (for the second part, observe that pkp is the smallest p-power greater
than d). ◀

Instead of directly proving Theorem 3, let us derive the following slightly more explicit
and general variant of the theorem:

▶ Theorem 21. Let p ̸= q be primes and let n ≥ max{13, 4p2q2} and d ≤ n −
√

n. Then
every symmetric MODq ◦ MODp ◦ ANDd circuit computing the ANDn function has size at
least 2max{n/(2dpq),

√
n}.

Proof. Let us write V = {x1, . . . , xn}. First consider the case that d ≥
√

n and there is
actually an ANDk gate v with n −

√
n ≥ k ≥

√
n inputs. Since for any π ∈ Sym(V ) also

π(v) must be a gate in the circuit, we obtain different ANDk gates for each k-element subset
of V . As there are

(
n
k

)
≥ max{(n/k)k, (n/(n − k))n−k} ≥ 2

√
n ≥ 2n/d many such subsets,

the theorem holds in this case (almost trivially).
Therefore, in the following, we assume d <

√
n ≤ n/(2pq) and consider an arbitrary

n-input MODq ◦ MODp ◦ ANDd circuit C of size s ≤ 2n/(2pqd). By Theorem 1, the function
computed by C has period pkpqkq where kp is the smallest integer with pkp > d and kq

is the smallest integer with qkq > log s + 1 ≥ n/(2pqd) + 1. Notice that pkp ≤ d · p and
qkq ≤ (n/(2pqd) + 1) · q and, hence, we have

pkp · qkq ≤ d · p · (n/(2pqd) + 1) · q = n/2 + dpq < n.

Thus, C does not compute the ANDn function as ANDn does not have any non-trivial
period. ◀

5 Further Perspectives

Arguably one of the strongest applications of the Degree Decreasing Lemma is Theorem
4 in [22]. It implies that, if all the polynomials over Fp that compose the top levels of
a MODq ◦ MODp ◦ ANDd-circuit can be written with a sublinear number of (binary)
multiplications, then the circuit can be replaced with a MODq ◦ MODp circuit with only a
subexponential blow-up in size. We argue that this kind of theorem cannot be applied in the
context of our proof.

Note that a large pseudo-clique in the symmetry-purified expressions are (arbitrary)
symmetric polynomials. Most of symmetric polynomials over Fp require at least a linear
number of multiplications in any formula (circuit) defining them. To see it, consider the
example p(x) =

∑
i<j xi · xj as a polynomial over F2. One can easily check that it represents

a function with smallest period 4. But now, if it could be written with a sub-linear number
of multiplications, by Theorem 4 in [22], it could be represented by a sub-exponential size
MOD3 ◦ MOD2 circuit. However, this contradicts [23, Theorem 2.4] as subexponential size
MOD3 ◦ MOD2 circuits can only represent periodic functions with period of the form 2 · 3k.
This shows that that the Degree Decreasing Lemma cannot be used in this context, as it
puts the limitations on its own applicability, by providing arithmetic circuit lower bounds.
Such lower bounds can be proved for all non-trivial symmetric polynomials over Fp with
d ≥ p using a similar period analysis. Thus, our symmetry purification technique as well
as combinatorial analysis contained in the proof of Theorem 16 constitute a substantial
improvement over the Degree Decreasing Lemma and its accompanying techniques.
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The results of the present paper indicate what type of symmetric functions might be
computable by small, but not necessarily symmetric, MODq ◦ MODp ◦ ANDd circuits. It
is natural to believe that the optimal (or nearly optimal) representation of the symmetric
function should also be symmetric. Thus, we state the following

▶ Conjecture 22. For fixed d, p, q, the only symmetric functions that can be represented
by MODq ◦ MODp ◦ ANDd circuits of subexponential size have to be periodic with some
period of the form pkp · qkq , for kp being the smallest integer with pkp ≥ d and kq be such
that pkp · qkq ≤ n.

References

1 Miklós Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1–48,

1983. doi:10.1016/0168-0072(83)90038-6.
2 László Babai. Primitive coherent configurations and the order of uniprimitive permutation

groups, 2018. URL: https://people.cs.uchicago.edu/~laci/papers/uni-update.pdf.
3 David A. Mix Barrington, Richard Beigel, and Steven Rudich. Representing Boolean functions

as polynomials modulo composite numbers. Computational Complexity, 4:367–382, 1994.
doi:10.1007/BF01263424.

4 David A. Mix Barrington and Howard Straubing. Complex polynomials and circuit lower
bounds for modular counting. Computational Complexity, 4:325–338, 1994. doi:10.1007/
BF01263421.

5 David A. Mix Barrington, Howard Straubing, and Denis Thérien. Non-uniform automata over
groups. Information and Computation, 89(2):109–132, 1990. doi:10.1016/0890-5401(90)
90007-5.

6 Abhishek Bhrushundi, Kaave Hosseini, Shachar Lovett, and Sankeerth Rao. Torus polynomials:
An algebraic approach to ACC lower bounds. In 10th Innovations in Theoretical Computer
Science Conference, ITCS 2019, volume 124 of LIPIcs, pages 13:1–13:16. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ITCS.2019.13.

7 Alfred Bochert. Ueber die Zahl der verschiedenen Werthe, die eine Function gegebener
Buchstaben durch Vertauschung derselben erlangen kann. Mathematische Annalen, 33(4):584–
590, 1889. doi:10.1007/BF01444035.

8 Joshua Brakensiek, Sivakanth Gopi, and Venkatesan Guruswami. Constraint satisfaction prob-
lems with global modular constraints: Algorithms and hardness via polynomial representations.
SIAM Journal on Computing, 51(3):577–626, 2022. doi:10.1137/19m1291054.

9 Bettina Brustmann and Ingo Wegener. The complexity of symmetric functions in bounded-
depth circuits. Information Processing Letters, 25(4):217–219, 1987. doi:10.1016/
0020-0190(87)90163-3.

10 Peter J. Cameron. Permutation Groups. London Mathematical Society Student Texts.
Cambridge University Press, 1999. doi:10.1017/CBO9780511623677.

11 Brynmor Chapman and Ryan Williams. Smaller ACC0 circuits for symmetric functions. In
13th Innovations in Theoretical Computer Science Conference, ITCS 2022, volume 215 of
LIPIcs, pages 38:1–38:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPIcs.ITCS.2022.38.

12 Arkadev Chattopadhyay, Navin Goyal, Pavel Pudlak, and Denis Therien. Lower bounds for
circuits with MODm gates. In 47th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2006, pages 709–718, 2006. doi:10.1109/FOCS.2006.46.

13 Anuj Dawar and Gregory Wilsenach. Symmetric arithmetic circuits. In 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020, volume 168 of LIPIcs,
pages 36:1–36:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/
LIPIcs.ICALP.2020.36.

STACS 2025

https://doi.org/10.1016/0168-0072(83)90038-6
https://people.cs.uchicago.edu/~laci/papers/uni-update.pdf
https://doi.org/10.1007/BF01263424
https://doi.org/10.1007/BF01263421
https://doi.org/10.1007/BF01263421
https://doi.org/10.1016/0890-5401(90)90007-5
https://doi.org/10.1016/0890-5401(90)90007-5
https://doi.org/10.4230/LIPIcs.ITCS.2019.13
https://doi.org/10.1007/BF01444035
https://doi.org/10.1137/19m1291054
https://doi.org/10.1016/0020-0190(87)90163-3
https://doi.org/10.1016/0020-0190(87)90163-3
https://doi.org/10.1017/CBO9780511623677
https://doi.org/10.4230/LIPIcs.ITCS.2022.38
https://doi.org/10.4230/LIPIcs.ITCS.2022.38
https://doi.org/10.1109/FOCS.2006.46
https://doi.org/10.4230/LIPIcs.ICALP.2020.36
https://doi.org/10.4230/LIPIcs.ICALP.2020.36


58:20 Violating Constant Degree Hypothesis Requires Breaking Symmetry

14 Larry Denenberg, Yuri Gurevich, and Saharon Shelah. Definability by constant-depth
polynomial-size circuits. Information and Control, 70(2/3):216–240, 1986. doi:10.1016/
S0019-9958(86)80006-7.

15 Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching vector codes. SIAM Journal
on Computing, 40(4):1154–1178, 2011. doi:10.1137/100804322.

16 Zeev Dvir and Sivakanth Gopi. 2-server PIR with sub-polynomial communication. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC
2015, pages 577–584. ACM, 2015. doi:10.1145/2746539.2746546.

17 Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM Journal on
Computing, 41(6):1694–1703, 2012. doi:10.1137/090772721.

18 Ronald Fagin, Maria M. Klawe, Nicholas Pippenger, and Larry J. Stockmeyer. Bounded-depth,
polynomial-size circuits for symmetric functions. Theoretical Computer Science, 36:239–250,
1985. doi:10.1016/0304-3975(85)90045-3.

19 Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical systems theory, 17:13–27, 1984. doi:10.1007/BF01744431.

20 Parikshit Gopalan. Constructing Ramsey graphs from Boolean function representations.
Combinatorica, 34:173–206, 2014. doi:10.1007/s00493-014-2367-1.

21 Vince Grolmusz. Superpolynomial size set-systems with restricted intersections mod 6 and
explicit Ramsey graphs. Combinatorica, 20(1):71–86, 2000. doi:10.1007/s004930070032.

22 Vince Grolmusz. A degree-decreasing lemma for (MODp-MODm) circuits. Discrete Mathe-
matics and Theoretical Computer Science, 4(2):247–254, 2001. doi:10.46298/dmtcs.289.

23 Vince Grolmusz and Gábor Tardos. Lower bounds for (MODp-MODm) circuits. SIAM Journal
on Computing, 29(4):1209–1222, 2000. doi:10.1137/S0097539798340850.

24 Kristoffer Arnsfelt Hansen. Computing symmetric boolean functions by circuits with few exact
threshold gates. In Computing and Combinatorics, 13th Annual International Conference,
COCOON 2007, Proceedings, volume 4598 of Lecture Notes in Computer Science, pages
448–458. Springer, 2007. doi:10.1007/978-3-540-73545-8_44.

25 Kristoffer Arnsfelt Hansen and Michal Koucký. A new characterization of ACC0 and probabilis-
tic CC0. Computational Complexity, 19(2):211–234, 2010. doi:10.1007/s00037-010-0287-z.

26 Johan Håstad. Computational limitations for small depth circuits. PhD thesis, Massachusetts
Institute of Technology, 1986.

27 William He and Benjamin Rossman. Symmetric formulas for products of permutations. In
14th Innovations in Theoretical Computer Science Conference, ITCS 2023, volume 251 of
LIPIcs, pages 68:1–68:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPIcs.ITCS.2023.68.

28 Paweł M. Idziak, Piotr Kawałek, and Jacek Krzaczkowski. Intermediate problems in modular
circuits satisfiability. In Proceedings of 35th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2020, pages 578–590, 2020. doi:10.1145/3373718.3394780.

29 Pawel M. Idziak, Piotr Kawalek, and Jacek Krzaczkowski. Complexity of modular circuits.
In Proceedings of 37th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2022, pages 32:1–32:11, 2022. doi:10.1145/3531130.3533350.

30 Paweł M. Idziak, Piotr Kawałek, Jacek Krzaczkowski, and Armin Weiß. Satisfiability Prob-
lems for Finite Groups. In 49th International Colloquium on Automata, Languages, and
Programming, ICALP 2022, volume 229 of LIPIcs, pages 127:1–127:20. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.127.

31 Pawel M. Idziak and Jacek Krzaczkowski. Satisfiability in multivalued circuits. SIAM Journal
on Computing, 51(3):337–378, 2022. doi:10.1137/18m1220194.

32 Piotr Kawalek and Armin Weiß. Violating constant degree hypothesis requires breaking
symmetry. CoRR, abs/2311.17440, 2023. doi:10.48550/arXiv.2311.17440.

33 Tianren Liu and Vinod Vaikuntanathan. Breaking the circuit-size barrier in secret sharing. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, pages 699–708, 2018. doi:10.1145/3188745.3188936.

https://doi.org/10.1016/S0019-9958(86)80006-7
https://doi.org/10.1016/S0019-9958(86)80006-7
https://doi.org/10.1137/100804322
https://doi.org/10.1145/2746539.2746546
https://doi.org/10.1137/090772721
https://doi.org/10.1016/0304-3975(85)90045-3
https://doi.org/10.1007/BF01744431
https://doi.org/10.1007/s00493-014-2367-1
https://doi.org/10.1007/s004930070032
https://doi.org/10.46298/dmtcs.289
https://doi.org/10.1137/S0097539798340850
https://doi.org/10.1007/978-3-540-73545-8_44
https://doi.org/10.1007/s00037-010-0287-z
https://doi.org/10.4230/LIPIcs.ITCS.2023.68
https://doi.org/10.4230/LIPIcs.ITCS.2023.68
https://doi.org/10.1145/3373718.3394780
https://doi.org/10.1145/3531130.3533350
https://doi.org/10.4230/LIPIcs.ICALP.2022.127
https://doi.org/10.1137/18m1220194
https://doi.org/10.48550/arXiv.2311.17440
https://doi.org/10.1145/3188745.3188936


P. Kawałek and A. Weiß 58:21

34 Chi-Jen Lu. An exact characterization of symmetric functions in qAC0[2]. Theoretical
Computer Science, 261(2):297–303, 2001. doi:10.1016/S0304-3975(00)00145-6.

35 Cheryl E. Praeger and Jan Saxl. On the orders of primitive permutation groups. The Bulletin
of the London Mathematical Society, 12(4):303–307, 1980. doi:10.1112/blms/12.4.303.

36 Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
STOC 1987, pages 77–82. ACM, 1987. doi:10.1145/28395.28404.

37 Howard Straubing and Denis Thérien. A note on MODp-MODm circuits. Theory of Computing
Systems, 39(5):699–706, 2006.

38 Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles (preliminary
version). In 26th Annual Symposium on Foundations of Computer Science, FOCS 1985, pages
1–10. IEEE Computer Society, 1985. doi:10.1109/SFCS.1985.49.

39 Zhi-Li Zhang, David A. Mix Barrington, and Jun Tarui. Computing symmetric functions with
AND/OR circuits and a single MAJORITY gate. In Proceedings of 10th Annual Symposium
on Theoretical Aspects of Computer Science, STACS 1993, volume 665 of Lecture Notes in
Computer Science, pages 535–544. Springer, 1993. doi:10.1007/3-540-56503-5_53.

STACS 2025

https://doi.org/10.1016/S0304-3975(00)00145-6
https://doi.org/10.1112/blms/12.4.303
https://doi.org/10.1145/28395.28404
https://doi.org/10.1109/SFCS.1985.49
https://doi.org/10.1007/3-540-56503-5_53

	1 Introduction
	2 Preliminaries
	3 Preparation: Circuits, Expressions and Hypergraphs
	4 Description of the Proof
	4.1 Symmetries of Hypergraphs
	4.2 Reduction Based on the Degree Decreasing Lemma
	4.3 Period of Symmetry-Purified Expressions
	4.4 Main Theorems

	5 Further Perspectives

