
Efficiently Computing the Minimum Rank of a
Matrix in a Monoid of Zero-One Matrices
Stefan Kiefer #

Department of Computer Science, University of Oxford, UK

Andrew Ryzhikov #

Department of Computer Science, University of Oxford, UK

Abstract
A zero-one matrix is a matrix with entries from {0, 1}. We study monoids containing only such
matrices. A finite set of zero-one matrices generating such a monoid can be seen as the matrix
representation of an unambiguous finite automaton, an important generalisation of deterministic
finite automata which shares many of their good properties.

Let A be a finite set of n × n zero-one matrices generating a monoid of zero-one matrices, and
m be the cardinality of A. We study the computational complexity of computing the minimum
rank of a matrix in the monoid generated by A. By using linear-algebraic techniques, we show
that this problem is in NC and can be solved in O(mn4) time. We also provide a combinatorial
algorithm finding a matrix of minimum rank in O(n2+ω + mn4) time, where 2 ≤ ω ≤ 2.4 is the
matrix multiplication exponent. As a byproduct, we show a very weak version of a generalisation of
the Černý conjecture: there always exists a straight line program of size O(n2) describing a product
resulting in a matrix of minimum rank.

For the special case corresponding to complete DFAs (that is, for the case where all matrices
have exactly one 1 in each row), the minimum rank is the size of the smallest image of the set of
states under the action of a word. Our combinatorial algorithm finds a matrix of minimum rank in
time O(n3 + mn2) in this case.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Computing methodologies → Symbolic and algebraic manipulation

Keywords and phrases matrix monoids, minimum rank, unambiguous automata

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.61

Funding Andrew Ryzhikov: Supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (Grant agreement No. 852769, ARiAT).

Acknowledgements We thank the anonymous reviewers for their helpful comments that improved
the presentation of the paper.

1 Introduction

Matrix monoids are a rich and versatile object used in formal verification, program analysis,
dynamical systems and weighted automata. However, many of their properties are in general
undecidable. One such example is the well-studied matrix mortality problem. Given a finite
set A of n × n matrices, it asks if the monoid generated by A (that is, the set of all products
of matrices from A) contains the zero matrix. This problem is undecidable already for 3 × 3
integer matrices [40], and was studied for several decidable special cases, see e.g. [16, 6, 47].

Even if A is a set of zero-one matrices (that is, matrices with entries in {0, 1}), matrix
mortality is PSPACE-complete [47]. We thus restrict our attention to the case where the
whole monoid generated by A consists of zero-one matrices; in this case, matrix mortality
becomes decidable in polynomial time [34]. We call such monoids zero-one matrix monoids.
Intuitively, when multiplying any two matrices from such a monoid, we never get 1 + 1 as
a subexpression. Zero-one matrix monoids have a rich structure while still admitting good

© Stefan Kiefer and Andrew Ryzhikov;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 61; pp. 61:1–61:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stefan.kiefer@cs.ox.ac.uk
https://orcid.org/0000-0003-4173-6877
mailto:ryzhikov.andrew@gmail.com
https://orcid.org/0000-0002-2031-2488
https://doi.org/10.4230/LIPIcs.STACS.2025.61
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

61:2 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

algorithmic properties. They correspond precisely to unambiguous finite automata, and find
applications in formal verification [3], variable-length codes [9] and symbolic dynamics [38].
They are also an interesting special case of finite monoids of rational matrices (studied in,
e.g., [39, 28, 1, 13]), monoids of nonnegative matrices (studied in, e.g., [41, 10, 51, 22]), and,
in the case where they do not contain the zero matrix, of matrix monoids with constant
spectral radius [42].

In this paper, we consider a problem that can be seen as a natural generalisation of
matrix mortality: given a finite set A generating a zero-one monoid, find the minimum real
rank of a matrix in this monoid. By the real rank of a matrix we mean the dimension of
the subspace generated by its columns over the reals. Clearly, this rank is zero if and only
if the monoid contains the zero matrix. The minimum real rank of a matrix in a zero-one
matrix monoid is a much more tractable problem than deciding other similar properties: for
example, checking if a zero-one matrix monoid contains a matrix of a given real rank was
shown to be NP-hard1 [24].

The goal of our paper is threefold. Firstly, we present efficient algorithms for analysing
monoids of zero-one matrices and unambiguous finite automata. Secondly, to obtain these
algorithms, we provide new structural properties of such monoids and automata that might
be interesting on their own. Thirdly, we strengthen the connections between the areas of
synchronising automata, weighted automata and matrix semigroups by transferring methods
and tools between them. We also highlight open problems in the intersection of these areas.

2 Existing results and our contributions

Throughout the paper, we always assume that matrix monoids are defined by sets of
generators, and all matrices are square zero-one unless stated otherwise.

Complete DFAs

An n × n zero-one matrix with exactly one 1 in every row can be equivalently seen as a
transformation of a set Q of size n. A set of such matrices generates a zero-one matrix
monoid, and can be seen as a complete deterministic finite (semi-)automaton2 (complete
DFA) A = (Q, Σ, δ). Here, Σ is a finite alphabet whose letters correspond to the generating
matrices, and δ : Q × Σ → Q is the transition function defined in such a way that for
each a ∈ Σ, δ(_, a) is the transformation of Q induced in the natural way by the matrix
corresponding to a. Thus, words over Σ correspond to products of the generating matrices.

The rank of a word w in A is the size of the image of Q under the transformation
corresponding to w. Equivalently, it is the real rank of the matrix corresponding to w. The
rank of a complete DFA is the minimum among the ranks of all its words. This concept was
studied from the perspectives of automata theory [43, 30] and the theory of transformation
semigroups [48, 31]. It is the subject of the rank conjecture (called the Černý-Pin conjecture
in [43]), which states that every complete DFA of rank r admits a word of rank r having length
at most (n − r)2. The Černý conjecture, one of the oldest open problems in combinatorial
automata theory [50], is a special case with r = 1. We refer to surveys [49, 4, 30, 50] for the
vast literature on the Černý conjecture. Underlying digraphs of complete DFAs of a given
rank were studied in [12, 4] in the context of the road colouring problem.

1 In fact, it is PSPACE-complete, which follows directly from [8, Theorem 3]: add a fresh state and define
all yet undefined transitions to lead to this state.

2 In this paper, all automata are semi-automata, meaning that they do not have any initial or accepting
states, and do not recognise any languages. Following the usual conventions (as in, e.g., [9]), we omit
“semi-”, in particular because it would make abbreviations like DFA less recognisable.

S. Kiefer and A. Ryzhikov 61:3

The rank of an n-state complete DFA over an alphabet of size m can be found in O(m4n4)
time [43, Theorem 1]. In contrast, for any fixed r ≥ 2, the problem of checking if a complete
DFA admits a word of rank r is NP-hard [24]. Checking if an n-state complete DFA over
an alphabet of size m has rank one is NL-complete [26, 50], and can be done in O(mn2)
time [20, 49]. For each complete DFAs of rank r, there exists a word of rank r of length
at most (n−r)3

6 + O((n − r)2) [37], and if r = 1, finding a word of rank one can be done in
O(n3 + mn2) time and O(n2) space [20].

Unambiguous finite automata

Generalising the case of complete DFAs, a set A of n × n zero-one matrices generating a
zero-one matrix monoid can be equivalently seen as an unambiguous nondeterministic finite
(semi-)automaton (UFA). Let Q = {q1, . . . , qn} be its set of states. To each matrix in A we
again associate a letter in the alphabet Σ, and the transition relation ∆ ⊆ Q × Σ × Q is
defined so that (qi, a, qj) ∈ ∆ if and only if the entry (i, j) in the matrix corresponding to a

is equal to one. Just as in the complete DFA case, words over Σ naturally correspond to
products of matrices from A.

The obtained NFA then has the property that is sometimes called diamond-free: for every
two states p, q and every word w, there is at most one path from p to q labelled by w. A
simple reachability argument shows that the length of a shortest word labelling two such
paths, if it exists, is at most quadratic in the dimension of the matrices. Hence, deciding
whether an NFA is a UFA (and thus whether a set of zero-one matrices generates a zero-one
monoid) is in coNL = NL. It is actually NL-complete as described in the next subsection.

A UFA is called complete if it does not admit a word whose matrix is the zero matrix.
For an n-state UFA the length of such a word if it exists is at most n5 [34]. The best known
lower bound is quadratic in n, and is achieved by a series of DFAs [44]. For UFAs, the
quadratic upper bound was conjectured to be tight [43, Conjecture 2]. Checking if a UFA is
complete can be done in NC2 [34].

The real rank of a UFA is the minimum among the real ranks of the matrices corresponding
to words. It was shown in [14] that for an n-state UFA of real rank r ≥ 1 there always exists
a word of minimum rank of length O(rn3). For n-state strongly connected Eulerian UFAs of
rank one, a subclass with remarkably nice properties, there always exists a word of length
at most (n − 1)2 of rank one [15, Corollary 4]. All mentioned constructions also provide
polynomial time algorithms that construct words with the required properties (in particular,
with a length within the stated bounds).

Applications to variable-length codes

A variable-length code (or simply a code) is a set X of finite words over an alphabet Σ such
that every finite word over Σ has at most one factorisation over X. In other words, a code is
a basis of a free submonoid of Σ∗.

The definitions of both UFAs and codes rely, intuitively, on the uniqueness of certain
representations. In fact, UFAs and codes are tightly related. Let us illustrate this relationship.
If the cardinality of a code X is finite, one can construct its flower automaton, which is a UFA
with a chosen state s such that, for each word from X, there is a separate cycle containing s

and labelled by this word, see Figure 1 (left) for an example. More generally, codes that are
regular languages correspond precisely to strongly connected UFAs in a similar way, see [9,
Chapter 4] for the details.

STACS 2025

61:4 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

12

3 4

5

6

789

a
a

a

a

b
a

b
a

a

ba

b

a b a b a

b a b a b a a b a

Figure 1 The flower automaton of the code X = {aa, aab, aba, abab} (left), two adjacent inter-
pretations of ababa over X (top right), and two disjoint interpretations of bababaaba over X (bottom
right). Note that this code is not complete, but still illustrates all the discussed properties.

A useful corollary of the construction of the flower automaton is the fact that deciding if
a set of zero-one matrices generates a zero-one monoid is NL-hard. Indeed, a finite set of
words is a code if and only if its flower automaton is unambiguous [9]. Deciding if a finite set
of words is a code is NL-complete [45], and the flower automaton can be constructed in AC0.

A code X over Σ is called complete if every word over Σ is a factor of a concatenation of
codewords, that is, for every word w ∈ Σ∗ there exist u, v ∈ Σ∗ with uwv ∈ X∗. A code that
is a regular language is complete if and only if the corresponding UFA is complete [9]. For
complete codes that are regular languages, the real rank of the corresponding UFA is equal
to a natural and important parameter called the degree of a code [9, Proposition 9.6.1].

Let us explain the intuition behind the notion of degree, see [9, Chapter 9.6] for the
formal definitions. For each word w we can consider all possible factorisations over X of all
its extensions uwv ∈ X∗ with u, v ∈ Σ∗, called interpretations of w. Two such interpretations
either match in at least one position (as in Figure 1 (top right) between the second and the
third letter), or do not match in any position (as in Figure 1 (bottom right)), in which case
they are called disjoint. The degree of a word is the number of pairwise disjoint interpretations
of this word. The degree of a code X is the minimum nonzero degree of all words w ∈ Σ∗.

A particularly important case is when a complete code has degree one. Then there exists
a word w ∈ X∗ (called a synchronising word) such that for any concatenation of codewords
uwwv ∈ X∗ with u, v ∈ Σ∗ we have uw, wv ∈ X∗. Intuitively, this means that the two halves
uw and wv can be decoded separately and independently.

Computational complexity classes

In this paper, we characterise the computational complexity of problems by showing that
they belong to the classes NL ⊆ NC2 ⊆ NC ⊆ P, see [2, 23] for their formal definitions. NL is
the class of problems solvable in nondeterministic logarithmic time. NCk is the class of
problems solvable by O((log n)k)-depth polynomial-size bounded fan-in Boolean circuits,
and NC is the union of these classes for all k ≥ 1. The class NC represents problems that
have efficient parallel algorithms, and is a subclass of problems solvable in polylogarithmic
space [2]. Intuitively, NC is the class of problems that can be solved using local computations,
as opposed to P-complete problems, which are inherently sequential and thus require storing
the entire structure in the memory unless NC = P. Showing that a problem is in NC also
allows to obtain a polynomial space algorithm for the case of exponential-size input computed
by a PSPACE-transducer (as done, e.g., in [3]), which is not necessarily true for arbitrary
problems solvable in polynomial time.

S. Kiefer and A. Ryzhikov 61:5

NC2 is an especially important class in computational algebra. To quote [23, page 468],
“NC2 is the habitat of most natural problems in linear algebra”. Indeed, matrix multiplication,
computing the determinant, inverse and rank of a matrix belong to NC2 [11, 18, 7, 19].

Our contributions

The known results about reachability properties of zero-one matrix monoids (including the
special case of complete DFAs), such as [14, 20, 46, 34], mostly construct a product of
minimum rank iteratively, with each iteration decreasing the number of different rows or the
rank of a matrix. Such an approach is inherently sequential, since the matrix in the new
iteration has to depend on the previous one, which thus has to be constructed explicitly.
In particular, this requires matrix multiplication at every step, which heavily increases the
time complexity. In this paper, we take a different direction by strongly relying on linear
algebra. While linear-algebraic arguments are used widely in the synchronising automata
literature, they mostly serve to decrease the number of iterations in the iterative scheme
described above. Our approach is to instead relate the rank of a zero-one matrix monoid to
efficiently computable linear-algebraic properties, without explicitly constructing a matrix of
minimum rank.

Our first main result is that computing the rank of a zero-one matrix monoid provided in
the input by a generating set of m matrices of dimension n (or, equivalently, by a UFA with n

states and m letters) is in NC2 (Theorem 18) and can be done in time O(mn4) (Theorem 22).
Previously, it was not known that this problem is in NC, not even for complete DFAs or
finite complete codes. Moreover, the naive implementation of the polynomial time algorithm
from the literature works in time O(n4+ω + mn4) [14].

These results rely on a new concept of weight of the matrices in a complete zero-one
monoid. This theory of matrix weight, which we develop in Section 4, is our main technical
contribution. Matrix weight is a natural generalisation of an existing notion of weight of
columns of matrices in complete DFAs, which was used, e.g., in connection with the road
colouring problem [21, 29, 25]. We show that all matrices in a zero-one matrix monoid have
the same weight, and that this weight is tightly related to both the rank of the monoid and
to the maximal weight of the columns and rows of its matrices (Section 4.3). This connection
allows us to reduce the computation of the monoid rank to the computation of maximal
column and row weight. Then we show that we can instead compute the weight of “maximal
pseudo-columns” and “maximal pseudo-rows”, as they have the same weight as maximal
columns and rows, respectively (Section 4.4). Finally, we transfer linear-algebraic techniques
from the literature on weighted automata to compute those weights, and thus the rank of
the monoid, efficiently (Section 5 and Section 6.2).

We complement the linear-algebraic algorithms with a combinatorial algorithm, our
second main contribution. While the latter has higher time complexity of O(n2+ω + mn4) in
the general case (Theorem 23), it also constructs a matrix of minimum rank in addition to
computing the rank of the monoid. For complete DFAs, our combinatorial algorithm runs
in time O(n3 + mn2) (Theorem 24), thus outmatching the linear-algebraic counterpart and
improving upon the O(m4n4) algorithm known before [43]. The two key technical ingredients
of our combinatorial algorithm are explained in the beginnings of Section 6.3 and Section 6.4.
Our results on the time complexity of computing the rank are summarised in the table below.

class previous best linear-algebraic algorithm combinatorial algorithm
UFA O(n4+ω + mn4) [14] O(mn4) (Theorem 22) O(n2+ω +mn4) (Theorem 23)
complete DFA O(m4n4) [43] O(mn3) (see Section 6.2) O(n3 + mn2) (Theorem 24)

STACS 2025

61:6 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

3 Main definitions

Let Q be a finite set, which we view as a set of states. For S ⊆ Q we write [S] for the column
vector x ∈ {0, 1}Q such that x(q) = 1 if and only if q ∈ S. We may write [q] for [{q}]. For a
column vector x ∈ {0, 1}Q we write xT for the transpose, a row vector. For two column vectors
x1, x2 ∈ RQ we write x1 ≥ x2 if the inequality holds component-wise. We view the elements
of RQ×Q (and similar sets) as matrices. Vector and matrix addition and multiplication are
defined in the usual way (over R). We denote by ⟨X⟩ the span of a set X of vectors, i.e., the
set of all linear combinations of X with real coefficients. The real rank of a matrix A ∈ RQ×Q

is, as usual, the dimension of the column space of A over the field of the reals (which equals
the dimension of the row space); i.e., rankR(A) = dim ⟨A[q] | q ∈ Q⟩ = dim ⟨[q]T A | q ∈ Q⟩.

Let A = {A1, . . . , Am} be a set of matrices from {0, 1}Q×Q, and Σ = {a1, . . . , am} be
a finite alphabet. We associate the letters with the matrices by setting M(ai) = Ai for
1 ≤ i ≤ m. Throughout this paper, when speaking about computational complexity, we
assume that the input is the function M : Σ → {0, 1}Q×Q from letters to zero-one matrices.
We can extend M : Σ → {0, 1}Q×Q naturally (and often implicitly) to M : Σ∗ → ZQ×Q

≥0 by
defining M(a1 · · · ak) = M(a1) · · · M(ak). Thus, M is a monoid homomorphism from Σ∗ to
the matrix monoid M(Σ∗) generated by A = M(Σ). Note that M(ε) = I, where ε denotes
the empty word and I the Q × Q identity matrix. In this paper, we consider only monoid
morphisms M : Σ∗ → ZQ×Q

≥0 that are unambiguous, i.e., M : Σ∗ → {0, 1}Q×Q. If M is
unambiguous, A = M(Σ) generates a finite matrix monoid M(Σ∗) ⊆ {0, 1}Q×Q.

Viewing the matrices as transition matrices of an automaton, we obtain a nondeterministic
finite (semi-)automaton (NFA) (Q, Σ, ∆) with transition relation ∆ = {(p, a, q) ∈ Q×Σ×Q |
[p]T M(a)[q] = 1}. Recall that in this paper automata do not have dedicated initial or
accepting states, see footnote 2 on page 2. We can extend ∆ from letters to words in the
usual way so that we have ∆ = {(p, w, q) ∈ Q×Σ∗ ×Q | [p]T M(w)[q] ≥ 1}. An NFA (Q, Σ, ∆)
is unambiguous (or diamond-free) if for every two states p, q and for every two words w1, w2
there exists at most one t ∈ Q with (p, w1, t) ∈ ∆ and (t, w2, q) ∈ ∆; see Figure 2 for an
illustration of the forbidden configuration. We denote unambiguous NFAs as UFAs. Recall
from the previous section that deciding if an NFA is unambiguous is NL-complete. In the
following, we often identify M : Σ∗ → {0, 1}Q×Q with the corresponding UFA (Q, Σ, ∆). In
particular, a monoid homomorphism is unambiguous if and only if the corresponding NFA is
unambiguous.

p

t1

q

t2

w1 w2

w1 w2

Figure 2 The configuration that is forbidden in a UFA.

When M (or, equivalently, ∆) is clear from the context, we may write p · w = {q ∈ Q |
(p, w, q) ∈ ∆}. Then [p ·w]T = [p]T M(w). Similarly, we may write w · q = {p ∈ Q | (p, w, q) ∈
∆}, so that [w · q] = M(w)[q]. We call M strongly connected if for all p, q ∈ Q there is w ∈ Σ∗

with p · w ∋ q. We call M complete if 0 ̸∈ M(Σ∗), where 0 is the zero matrix. The real
rank of M (and of M(Σ∗)) is rankR(M) := min{rankR(M(w)) | w ∈ Σ∗}. Note that M is
complete if and only if rankR(M) ̸= 0.

Suppose that |p · a| = 1 holds for every p ∈ Q and a ∈ Σ, or, equivalently, that every
matrix in A has exactly one 1 in each row. Then |p · w| = 1 holds for every p ∈ Q and
w ∈ Σ∗. We call such UFAs complete deterministic finite (semi-)automata (complete DFAs)

S. Kiefer and A. Ryzhikov 61:7

and we may write δ instead of ∆ to highlight that it is a transition function δ : Q × Σ → Q

instead of a transition relation. A complete DFA (Q, Σ, δ) is complete in the sense defined
above (i.e., 0 ̸∈ M(Σ∗)), and for any w ∈ Σ∗ we have that rankR(M(w)) is the number of
nonzero columns in M(w).

4 Main concepts and the linear algebra toolbox

In this section, we introduce the main tools that we will use for both linear-algebraic and
combinatorial algorithms in later sections. Until Section 4.5, we fix an unambiguous, complete,
and strongly connected monoid morphism M . In Section 4.5 we will show that the case
where M is not strongly connected can be easily reduced to the strongly connected case.

4.1 Columns, rows and the structure of minimum rank matrices
The concept of maximum columns and rows plays a crucial role in dealing with reachability
problems in unambiguous monoid morphisms. Abusing language slightly in the following, by
column we refer to column vectors of the form [w · q] = M(w)[q] ∈ {0, 1}Q where w ∈ Σ∗

and q ∈ Q. Similarly, a row is of the form [q · w]T = [q]T M(w). See Figure 3 for an example.
In the case of complete DFAs, all rows are of the form [q]T . This fact makes complete DFAs
significantly simpler to deal with than general complete UFAs.

M(a) =

1 0 1 0
1 0 1 0
0 0 0 0
0 0 0 0

 M(b) =

0 0 0 0
0 0 0 0
0 1 0 1
0 1 0 1

 1

2

3

4

a
a

a
a

b

b

b

b

Figure 3 [a · 3] = M(a)[3] = [{1, 2}] is a column; [2 · a]T = [2]T M(a) = [{1, 3}]T is a row.

A column [C] is called maximal if there is no column [C ′] such that [C ′] ̸= [C] and
[C ′] ≥ [C] (that is, C ⊂ C ′). Maximal rows are defined in the same way. Recall that the
inequalities are taken component-wise.

Let A ∈ {0, 1}m×n be a zero-one matrix. One can view rankR(A) as the least number r such
that there are matrices C ∈ Rm×r and R ∈ Rr×n with A = CR. Define the unambiguous
rank rankun(A) as the least number r such that there are matrices C ∈ {0, 1}m×r and
R ∈ {0, 1}r×n such that A = CR. Analogously to rankR(M), define also rankun(M) :=
min{rankun(M(w)) | w ∈ Σ∗}. Clearly, rankR(A) ≤ rankun(A), and the inequality can be
strict, but in Corollary 2 below we show that rankR(M) = rankun(M). The reason we are
interested in the unambiguous rank is that Theorem 1 below implies that there is always a
matrix with a very simple structure such that its unambiguous rank is equal to its real rank
and both ranks are minimum.

In the following let us write r := rankun(M) when M is understood. A word u ∈ Σ∗ is of
minimum unambiguous rank if rankun(M(u)) = r. If u ∈ Σ∗ is of minimum unambiguous
rank then so is vuw for all v, w ∈ Σ∗.

Words of unambiguous rank one, known as synchronising words, play an especially
important role due to their applications in the theory of codes, as explained in Section 2. It
is easy to see that a word w has unambiguous rank one if and only if there exist C, R ⊆ Q

such that w maps a state p to a state q if and only if p ∈ C and q ∈ R. For complete DFAs,
we moreover have that C = Q and R has cardinality one.

STACS 2025

61:8 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

▶ Theorem 1 (Césari [17]). Let u ∈ Σ∗ be of minimum unambiguous rank. There are pairwise
disjoint sets C1, . . . , Cr ⊆ Q and pairwise disjoint sets R1, . . . , Rr ⊆ Q such that

M(u) =
r∑

i=1
[Ci][Ri]T .

Moreover, each [Ci] and [Ri]T is, respectively, a maximal column and a maximal row.

This theorem will play a central role. A proof can be found in [5, Proposition 4]. In the
case of a complete DFA, R1 is a singleton and Theorem 1 is fairly obvious.

In Theorem 1, since the Ci are pairwise disjoint and the Ri are pairwise disjoint, each
[Ci][Ri]T forms, intuitively, a “combinatorial rectangle”, and no such rectangle shares
a row or a column with any other rectangle. The column vectors [Ci] are exactly the
nonzero columns of M(u) and linearly independent, and the row vectors [Ri]T are exactly
the nonzero rows of M(u) and linearly independent. Thus, r is the number of distinct
nonzero columns and also the number of distinct nonzero rows in M(u). It follows that
r = rankun(M(u)) = rankR(M(u)). Thus we have:

▶ Corollary 2. We have r = rankun(M) = rankR(M).

We can thus define rank(M) as rankun(M) = rankR(M). For words w ∈ Σ∗ that are not
of minimum unambiguous rank, we may have rankR(M(w)) < rankun(M(w)), but the rank
of such matrices will rarely play a role in the following. In what follows, we call words of
minimum unambiguous rank simply words of minimum rank. Since we never refer to the
real rank of words below, this will not lead to any confusion.

4.2 The weight of columns and rows
The results in this subsection, about the column and row vectors that appear in the
matrices M(w), are mostly due to [17]; see also [5, Section 3]. Since a notion of column and
row weight will be crucial for us in the later development, we phrase and prove the results
around these concepts, but we do not view the lemmas of this subsection as novel.

Define A = 1
|Σ|

∑
a∈Σ M(a) ∈ [0, 1]Q×Q. Since M is strongly connected, A is irreducible.

Since M is unambiguous, the spectral radius of A is at most 1, and since M is complete,
it is at least 1. Thus, the spectral radius of A equals 1. Since A is irreducible, it follows
from basic Perron-Frobenius theory that A has an eigenvalue 1 and every right eigenvector
with eigenvalue 1 is a multiple of a strictly positive vector, say β ∈ RQ

>0. Since A has
only rational entries, we can assume β ∈ QQ

>0. Similarly for left eigenvectors. Therefore,
there are α, β ∈ QQ

>0 with αT A = αT and Aβ = β. Without loss of generality, we assume
that αT β = 1.

In the complete DFA case, since M(a)[Q] = [Q] for all a ∈ Σ, we have A[Q] = [Q] and so
it is natural to take β = [Q]. In that case, αT [Q] = αT β = 1 means that αT = αT A is the
(unique) stationary distribution of the Markov chain whose transition probabilities are given
by the row-stochastic matrix A; intuitively, in this Markov chain a letter a ∈ Σ is picked
uniformly at random in every step.

Define the weight of a column y and of a row xT by αT y ∈ R and xT β ∈ R, respectively.
Denote the maximum column weight and the maximum row weight by mcw and mrw,
respectively, i.e.,

mcw := max{αT y | y is a column} and mrw := max{xT β | xT is a row} .

S. Kiefer and A. Ryzhikov 61:9

A column y is called of maximum weight if αT y = mcw, and analogously for rows. In
the complete DFA case, every row is of the form [q]T for some q ∈ Q, hence every row is of
maximum weight.

▶ Lemma 3. A column (respectively, row) is maximal if and only if it is of maximum weight.

An important property that we will need later is that the set of maximal columns is
closed under left multiplication by matrices from the monoid, as stated in the following
lemma. Note that this is no longer true without the completeness assumption, and is the key
reason why the case of complete matrix monoids is easier to deal with.

▶ Lemma 4. Let v ∈ Σ∗ and q ∈ Q be such that [v · q] is a maximal column. Then [uv · q] is
a maximal column for all u ∈ Σ∗.

The following lemma will be useful later to construct minimum rank matrices from
maximal columns and rows.

▶ Lemma 5. Let w ∈ Σ∗ be such that all non-zero columns and rows in M(w) are maximal.
Then ww is of minimum rank.

4.3 Weight preservation property and minimum rank
Every word w of minimum rank in a complete DFA induces a partition of the state set into
subsets of states mapped by w to the same state (that is, into columns). It was observed by
Friedman in [21] that all sets of such a partition have the same weight. This observation has
many applications to variations of the road colouring problem [21, 29, 25, 30]. Moreover, it
was proved in [25, Theorem 6], again in connection with road colouring, that for every w

the weights of all columns in M(w) sum up to 1 (assuming β = [Q] as suggested previously).
This can be seen as a weight preservation property: the total weight of columns in the matrix
of a word is preserved under multiplication by any matrix from the monoid. As a result we
get that 1 = r · mcw, and hence r = 1

mcw . The proof of the weight preservation property for
complete DFAs is quite simple and relies on the fact that for a state q and a word w the
set q · w is always a singleton. For complete UFAs this is no longer true; in particular, q · w

can be the empty set, thus permanently “losing” some weight collected in q. Hence, a more
refined property is required. The following result provides such a property. It also turns out
that its proof requires more sophisticated techniques than in the complete DFA case.

▶ Theorem 6. For all w ∈ Σ∗ we have 1 = αT M(w)β = r · mcw · mrw.

Similarly to the complete DFA case, this result allows us to reduce computing r to
computing mcw and mrw, which we will use later in our algorithms. Recall that we have
defined αT and β so that αT β = 1.

Towards a proof of Theorem 6 we first prove the following lemma.

▶ Lemma 7. Let u ∈ Σ∗ be of minimum rank. Then αT M(u)β = r · mcw · mrw.

Proof. Let M(u) =
∑r

i=1[Ci][Ri]T be as in Theorem 1. Each [Ci] and each [Ri] is of
maximum weight. Thus,

αT M(u)β =
r∑

i=1
αT [Ci][Ri]T β =

r∑
i=1

mcw · mrw = r · mcw · mrw . ◀

We also need the following proposition.

STACS 2025

61:10 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

▶ Proposition 8. Let x ∈ RQ and c ∈ R be such that xT M(u)β = c holds for all u ∈ Σ∗ of
minimum rank. Then xT M(w)β = c holds for all w ∈ Σ∗.

Proof. Let w ∈ Σ∗. Let u ∈ Σ∗ be of minimum rank. Recall that every word that contains u

as a factor is of minimum rank. For every k ≥ 0, partition Σk into sets W0(k) and W1(k)
so that W0(k) = Σk ∩ (Σ∗uΣ∗) and W1(k) = Σk \ (Σ∗uΣ∗); i.e., W0(k), W1(k) are the sets
of length-k words that do or do not contain u as a factor, respectively. For all v ∈ W0(k)
both v and wv are of minimum rank. Thus, we have xT M(wv)β = c for all v ∈ W0(k). It
follows that∑

v∈W0(k)

xT M(wv)β
|W0(k)| = c for all k ≥ 0. (1)

Let d > 0 be such that |xT Aβ| ≤ d for all A ∈ {0, 1}Q×Q. Then we have∑
v∈W1(k)

|xT M(wv)β|
|W1(k)| ≤ d for all k ≥ 0. (2)

Let m ≥ 0. Define p1(m) := |W1(m|u|)|
|Σ|m|u| . We can view p1(m) as the probability of picking

a word in W1(m|u|) when a word of length m|u| is picked uniformly at random. We have
p1(m) ≤

(
1 − 1

|Σ||u|

)m

, as in order to avoid u as a factor, it has to be avoided in each of the
m consecutive blocks of length |u|. Thus, limm→∞ p1(m) = 0. We have

xT M(w)β = xT M(w)Aβ = xT M(w)Am|u|
β = 1

|Σ|m|u|

∑
v∈Σm|u|

xT M(wv)β

= |W0(m|u|)|
|Σ|m|u|

∑
v∈W0(m|u|)

xT M(wv)β
|W0(m|u|)| + |W1(m|u|)|

|Σ|m|u|

∑
v∈W1(m|u|)

xT M(wv)β
|W1(m|u|)|

= (1 − p1(m)) · c + p1(m) ·
∑

v∈W1(m|u|)

xT M(wv)β
|W1(m|u|)| (by Equation (1)).

With Equation (2) it follows that |xT M(w)β − c| ≤ p1(m)(|c| + d) . Since this holds for all
m ≥ 0 and limm→∞ p1(m) = 0, we conclude that xT M(w)β = c. ◀

Now we prove Theorem 6.

Proof of Theorem 6. It follows from Lemma 7 and Proposition 8 that

αT M(w)β = r · mcw · mrw for all w ∈ Σ∗.

With w = ε we obtain 1 = αT β = αT M(ε)β = r · mcw · mrw, as required. ◀

4.4 Maximal pseudo-columns
In this subsection, we define maximal pseudo-columns, which are vectors that can be seen
as a relaxation of the notion of maximal columns. We show that the weight of a maximal
pseudo-column is equal to the weight of a maximal column, and a maximal pseudo-column is
a solution of a system of linear equations, and thus can be computed efficiently. By invoking
Theorem 6, this will allow us to efficiently compute r.

Denote by MCol ⊆ {0, 1}Q the set of maximal columns. By Theorem 1 (bearing in mind
also Corollary 2), the vector space spanned by all maximum columns, ⟨MCol⟩, is at least
r-dimensional:

S. Kiefer and A. Ryzhikov 61:11

▶ Proposition 9. We have r ≤ dim ⟨MCol⟩.

One might hypothesise that r = dim ⟨MCol⟩ or even that all minimum-rank matrices have
the same r nonzero (hence, maximum) columns. The following example shows that neither
is the case in general, not even for complete DFAs.

▶ Example 10. Consider the complete DFA with Σ = {a, b} and

M(a) =

1 0 0 0
0 0 1 0
0 0 1 0
1 0 0 0

 M(b) =

0 1 0 0
0 1 0 0
0 0 0 1
0 0 0 1

1 2

34

a b

ab

b

a

b

a

By symmetry, we have αT =
(1

4
1
4

1
4

1
4
)
. Since no word maps states 1 and 3 to

the same state, we have r = 2; i.e., a and b are both minimum rank. Further, MCol
consists exactly of the four nonzero columns in M(a) and M(b). Their span ⟨MCol⟩ is
3-dimensional, as

(
1 −1 1 −1

)
is orthogonal to each maximum column. Thus, r = 2 <

3 = dim ⟨MCol⟩ < 4 = |MCol|.

Define the vector space U := ⟨αT M(w) − αT | w ∈ Σ∗⟩. Intuitively, it is the set of all
differences of weight distributions over the states before and after a word is applied. Notice
that for all w1, w2 ∈ Σ∗ we have αT M(w1)−αT M(w2) ∈ U . Later (see the proof of Lemma 19
below) we show that U is closed under post-multiplication with M(a) for all a ∈ Σ. Such
“forward spaces” play an important role in weighted automata; see, e.g., [32]. Denote the
orthogonal complement of U by U⊥; i.e., U⊥ = {y ∈ RQ | ∀ w ∈ Σ∗ : αT M(w)y = αT y}.
Intuitively, it is the set of vectors whose weight does not change under pre-multiplication
with M(w) for any w (where by the weight of a vector y we understand αT y). Clearly,
dim U + dim U⊥ = |Q|. The following proposition follows immediately from Lemma 4.

▶ Proposition 11. We have MCol ⊆ U⊥.

It follows that ⟨MCol⟩ is a subspace of U⊥. With Proposition 9, we have r ≤ dim ⟨MCol⟩ ≤
dim U⊥. One might hypothesise that ⟨MCol⟩ = U⊥. The following example shows that this
is not the case in general, not even for complete DFAs.

▶ Example 12. Consider the DFA with Σ = {a, b, c} and

M(a) =

1 0 0 0
1 0 0 0
0 0 1 0
0 0 1 0

 , M(b) =

0 1 0 0
0 1 0 0
0 0 0 1
0 0 0 1

 , M(c) =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

1 2

3 4

a b

a b

a

b

a

b
cc cc

STACS 2025

61:12 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

We have Mer(1) = Mer(2) = {1, 2} and Mer(3) = Mer(4) = {3, 4}. Thus, MCol =
{
(
1 1 0 0

)T
,
(
0 0 1 1

)T }. Hence, dim ⟨MCol⟩ = 2.
On the other hand, by symmetry we have αT =

(1
4

1
4

1
4

1
4
)
. For any w ∈ Σ∗,

αT M(w) =

(

1
4

1
4

1
4

1
4

)
if w ∈ {c}∗(

1
2 0 1

2 0
)

if the last non-c letter in w is a(
0 1

2 0 1
2

)
if the last non-c letter in w is b .

It follows that U = ⟨
(
1 −1 1 −1

)
⟩. Thus, dim U⊥ = 4 − 1 = 3 > 2 = dim ⟨MCol⟩, and

⟨MCol⟩ is a strict subspace of U⊥. For example, the vector
(
1 0 0 1

)T is in U⊥ but not
in ⟨MCol⟩.

Although the dimension of U⊥ does not generally equal r, the vector space U⊥ turns out
useful for computing r. Recall that, by Theorem 6, we can obtain r by computing mcw (and,
symmetrically, mrw). For q ∈ Q define

Mer(q) := {q′ ∈ Q | ∃ S ⊇ {q, q′} such that [S] is a column} .

Intuitively, Mer(q) consists of the states that can “appear” in a column together with q, or,
equivalently, the states that are “mergeable” with q (that is, can be mapped to the same
state by a word). Note that q ∈ Mer(q). We will need the following lemma which is easy to
prove.

▶ Lemma 13. Let v ∈ Σ∗ and q ∈ Q be such that [v · q] is a maximal column. Then v · q′ = ∅
holds for all q′ ∈ Mer(q) \ {q}.

We call a vector y ∈ U⊥ a maximal pseudo-column if there is q ∈ Q with y(q) = 1 and
y(q′) = 0 for all q′ ̸∈ Mer(q). This notion, which is closely related to the “pseudo-cuts”
from [35], can be seen as a relaxation of the notion of a maximal column: clearly, every
maximal column is a maximal pseudo-column, but the converse is not true, since a maximal
pseudo-column is not necessarily a vector over {0, 1}, let alone a column in the strict sense,
i.e., of the form [w · p]. The following lemma however shows that the weight of a maximal
pseudo-column is equal to the weight of a maximal column. We will later show that computing
the former can be done in NC2.

▶ Lemma 14. Let y be a maximal pseudo-column. Then αT y = mcw.

Proof. Let q ∈ Q be such that y(q) = 1 and y(q′) = 0 for all q′ ̸∈ Mer(q). Let w ∈ Σ∗ be
such that [w · q] is a maximal column. We have

αT y = αT M(w)y (y ∈ U⊥)

=
∑
q′∈Q

y(q′)αT [w · q′]

=
∑

q′∈Mer(q)

y(q′)αT [w · q′] (y(q′) = 0 for q′ ̸∈ Mer(q))

= αT [w · q] +
∑

q′∈Mer(q)\{q}

y(q′)αT [w · q′] (y(q) = 1)

= αT [w · q] (Lemma 13)
= mcw (by the choice of w, q). ◀

S. Kiefer and A. Ryzhikov 61:13

▶ Example 15. We continue Example 10. We have U = ⟨
(
1 −1 1 −1

)
⟩ and Mer(2) =

{1, 2, 3}. Let y =
(
4/3 1 −1/3 0

)T . Then y ∈ U⊥. Since y(2) = 1 and y(4) = 0, vector y

is a maximal pseudo-column. Thus, by Lemma 14, mcw = αT y =
(1

4
1
4

1
4

1
4
)

y = 1
2 .

▶ Theorem 16. Let Γ be a basis of U , and let q ∈ Q. Then the following linear system for
y ∈ RQ has a solution, and all its solutions are maximal pseudo-columns:

γT y = 0 for all γT ∈ Γ
y(q) = 1

y(q′) = 0 for all q′ ̸∈ Mer(q) .

Proof. By Proposition 11, any maximal column solves the linear system. Let y ∈ RQ be a
solution of the linear system. The equations on the first line guarantee that y ∈ U⊥. Then,
the equations on the second and third line guarantee that y is a maximal pseudo-column. ◀

4.5 Dealing with the non-strongly connected case
The following lemma shows that in order to compute the minimum rank we can focus on the
strongly connected case.

▶ Proposition 17. Let M : Σ → {0, 1}Q×Q be an unambiguous matrix monoid morph-
ism. Suppose that Q1 ∪ Q2 = Q is a partition of Q such that for all w ∈ Σ∗ it holds
that [Q2]T M(w)[Q1] = 0; i.e., for all w ∈ Σ∗ matrix M(w) has the block form M(w) =(

M1(w) M12(w)
0 M2(w)

)
, where M1(w) ∈ {0, 1}Q1×Q1 and M12(w) ∈ {0, 1}Q1×Q2 and M2(w) ∈

{0, 1}Q2×Q2 . We have rankR(M) = rankR(M1) + rankR(M2) and rankun(M) = rankun(M1) +
rankun(M2).

By a straightforward induction it follows from Proposition 17 that the minimum rank of
an unambiguous matrix monoid is the sum of the minimum ranks of its strongly connected
components (where “incomplete” components count as having rank 0).

5 Computing the rank in NC2

In this section, we prove our first main result, which is as follows.

▶ Theorem 18. The problem of computing the (real) rank of an unambiguous matrix monoid
is in NC2.

In order to use Theorem 16, we need the following lemma. We use the notation defined
in the previous section. Recall that we defined U := ⟨αT M(w) − αT | w ∈ Σ∗⟩.

▶ Lemma 19. If M is strongly connected, one can compute a basis of U in NC2.

For each a ∈ Σ define M ′(a) := M(a)−I ∈ {−1, 0, 1}Q×Q and extend M ′ to M ′ : Σ∗ → ZQ×Q

by defining M ′(a1 · · · ak) = M ′(a1) · · · M ′(ak). Define U ′ := ⟨αT M ′(w) | w ∈ Σ+⟩. Note
that here w ranges over Σ+, i.e., nonempty words, only. By definition, U ′ is closed under
right multiplication by M ′(a) for all a ∈ Σ. We first show the following lemma.

▶ Lemma 20. We have U = U ′.

STACS 2025

61:14 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

Proof. For the inclusion U ⊆ U ′, we prove by induction on i ≥ 0 that for all length-i
words w ∈ Σi we have αT (M(w) − I) ∈ U ′. Concerning the induction base, i = 0, we have
αT (M(ε) − I) = 0 ∈ U ′. Concerning the induction step, let i ≥ 0, and let w ∈ Σi and a ∈ Σ.
We have

αT (M(wa) − I) = αT (M(w) − I)M(a) + αT (M(a) − I)
= αT (M(w) − I)(M(a) − I) + αT (M(w) − I) + αT (M(a) − I)
= αT (M(w) − I)M ′(a) + αT (M(w) − I) + αT M ′(a) .

It holds that αT M ′(a) ∈ U ′, and, by the induction hypothesis, αT (M(w) − I) ∈ U ′. It
follows that αT (M(wa) − I) ∈ U ′.

For the converse, U ′ ⊆ U , we proceed similarly by induction. Concerning the induction
base, i = 1, for all a ∈ Σ we have αT M ′(a) = αT (M(a) − I) ∈ U . Concerning the induction
step, let i ≥ 1, and let w ∈ Σi and a ∈ Σ. By the induction hypothesis there are n ≤ |Q| and
w1, . . . , wn ∈ Σ∗ and λ1, . . . , λn ∈ R such that αT M ′(w) =

∑n
i=1 λiα

T (M(wi) − I). Thus,
we have

αT M ′(wa) = αT M ′(w)(M(a) − I) =
n∑

i=1
λiα

T (M(wi) − I)(M(a) − I)

=
n∑

i=1
λiα

T
(
(M(wia) − I) − (M(a) − I) − (M(wi) − I)

)
∈ U ,

as required. ◀

Proof of Lemma 19. For each a ∈ Σ define U ′
a := ⟨αT M ′(a)M ′(w) | w ∈ Σ∗⟩. Using the

technique from [33, Section 4.2] (see [32, Proposition 5.2] for a clearer explanation), for each
a ∈ Σ one can compute3 a basis of U ′

a in NC2. The union of these bases, say Γ = {γT
1 , . . . , γT

n }
for some n ≤ |Σ||Q|, spans U ′, which equals U by Lemma 20. To shrink Γ to a basis
of U , for each i ∈ {1, . . . , n} include γT

i in the basis if and only if dim ⟨γT
1 , . . . , γT

i−1⟩ <

dim ⟨γT
1 , . . . , γT

i ⟩. The latter (rank) computation can be done in NC2 [27]. ◀

Now we can prove Theorem 18.

Proof of Theorem 18. Let M : Σ → {0, 1}Q×Q be an unambiguous monoid morphism. Its
strongly connected components can be computed in NL ⊆ NC2. It follows from the proof
of [34, Proposition 3] that one can check each component for completeness in NC2, since a
zero-one monoid contains the zero matrix if and only if the joint spectral radius of the set of
its generators is strictly less than one [34]. Therefore, using Proposition 17, we can assume
in the rest of the proof that M is complete and strongly connected.

We use the fact that one can compute a solution of a possibly singular linear system of
equations in NC2 [11, Section 5]. First, compute in NC2 vectors α, β ∈ QQ

>0 with αT A = αT

and Aβ = β and αT β = 1. Using Lemma 19 compute in NC2 a basis of U . Choose an
arbitrary q ∈ Q and compute Mer(q) in NL ⊆ NC2 with a reachability analysis. Then, solve
the linear system from Theorem 16 to compute in NC2 a maximal pseudo-column y ∈ QQ.
Hence, using Lemma 14, we can compute mcw = αT y in NC2. Symmetrically, we can
compute mrw in NC2. Finally, by Theorem 6, we can compute r = 1

mcw·mrw in NC2. ◀

3 In [33, 32] only membership in NC is claimed, but the bottleneck computations are matrix powering
and rank computation, which can in fact be done in DET ⊆ NC2; see [18]. The computations in [32,
Proposition 5.2] are on polynomially larger matrices, but this does not impact the membership in NC2,
as log2(poly(n)) = O(log2(n)).

S. Kiefer and A. Ryzhikov 61:15

▶ Example 21. We continue Examples 10 and 15. Since M is a complete DFA, it is natural
to take β = [Q]. Note that αT β = 1. Since every row is of the form [q]T for some q, we
have mrw = 1. Recall from Example 15 that mcw = 1

2 . With Theorem 6 we conclude that
r = 1

mcw·mrw = 2, as observed in Example 10.

6 Time and space complexity

In this section, we study the time and space complexity of computing the rank of a zero-one
matrix monoid and finding a matrix of minimum rank in it. We provide two approaches. The
first one relies on the linear-algebraic tools developed in Section 4. It turns out to be faster
than the second, combinatorial, approach, but is limited to only computing the rank. This is
due to the fact that we never explicitly construct a maximal column in this approach, which is
required in order to find a matrix of minimum rank by Theorem 1. Moreover, it is not known
if one can find a maximal column in NC. In contrast, the combinatorial approach explicitly
constructs a matrix of minimum rank step by step. In a way, this is exactly the reason why
it is slower than the linear-algebraic approach, since this requires performing a large number
of matrix multiplications. In the complete DFAs case, where direct matrix multiplication
can be avoided due to the special shape of transformation matrices, it becomes much more
efficient, and outmatches its linear-algebraic counterpart by a factor of the alphabet size.

The three main results of this section are as follows.

▶ Theorem 22. The (real) rank of an n-state UFA over an alphabet of size m can be
computed in O(mn4) time and O(n2) space.

▶ Theorem 23. A matrix of minimum (real) rank in an n-state UFA over an alphabet of
size m can be found in O(n2+ω + mn4) time and O(n3) space.

▶ Theorem 24. A matrix of minimum (real) rank in an n-state complete DFA over an
alphabet of size m can be found in O(n3 + mn2) time and O(n2) space.

Until the end of the section, fix a strongly connected complete UFA A = (Q, Σ, ∆).
Denote n = |Q|, m = |Σ|. Section 4.5 shows that strong connectivity can be assumed without
loss of generality.

6.1 Square automaton and square digraph

We will need the construction of the square automaton of an NFA. The square automaton
A(2) = (Q(2), Σ, ∆(2)) of A is defined as follows. Let Q(2) = {(p, q) | p, q ∈ Q}, and for
p, q ∈ Q and a ∈ Σ, the transitions are defined component-wise, that is,

∆(2) = {((p, q), a, (p′, q′)) ∈ Q(2) × Σ × Q(2) | (p, a, p′), (q, a, q′) ∈ ∆}.

Note that the square automaton of a complete DFA is also a complete DFA.
We call states of the form (q, q) in A(2) singletons. Observe that the restriction of A(2)

to singletons is equal to A. We denote by G(2) = (V (2), E(2)) the underlying digraph of A(2)

obtained by forgetting the labels of the transitions. Note that |E(2)| = O(mn4), and there
exists an infinite series of complete UFAs over a two-letter alphabet with |E(2)| = Θ(n4) [36,
Appendix A]. If A is a complete DFA, then |E(2)| = mn2.

STACS 2025

61:16 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

6.2 Minimum rank in O(mn4) time
We now perform the steps of the linear-algebraic algorithm described in Section 5, but
implement them efficiently in terms of time and space complexity.

▶ Lemma 25. For a state p, the set Mer(p) can be computed in O(mn4) time and O(n2)
space.

Proof. Perform a multi-source backwards digraph search starting from all singletons in G(2)

and label all states q ∈ Q such that (p, q) or (q, p) is visited during this search. This search
can be performed in time linear in the number of edges of |E(2)|, and |E(2)| = O(mn4).
Observe that only the vertices of this digraph have to be stored in the memory explicitly,
since the edges can be computed on the fly from the input without increasing the time
complexity, hence the space complexity of the algorithm is O(n2). ◀

▶ Lemma 26. A maximal pseudo-column can be found in O(mn4) time and O(n2) space.

Proof. To use Theorem 16 we first need to set up the linear system of equations described
there. The average matrix A can be computed in time O(mn2). The weight vectors α, β ∈ QQ

can then be computed in time O(n3) by solving a system of linear equations. Then, using
Lemma 25, we compute in O(mn4) time the set Mer(p) for some state p. We also need to
compute a basis of the vector space U defined in Section 4.4. As in the proof of Lemma 19,
we compute a basis of U = U ′ = ⟨αT M ′(w) | w ∈ Σ+⟩, which is the smallest vector space
that contains αT M(a) for all a ∈ Σ and is closed under post-multiplication with M(a) for
all a ∈ Σ. This can be done in O(mn3) time and O(n2) space using a worklist algorithm
and keeping a basis in echelon form using Gaussian elimination, as described, e.g., in [32,
Section 2]. Finally, we solve the system of linear equations from Theorem 16, which can be
done in O(n3) time. Each step requires at most O(n2) space. ◀

By Lemma 14, we thus get that mcw and mrw can be computed in O(mn4) time and
O(n2) space, which together with Theorem 6 proves Theorem 22. We remark that for
complete DFAs the proof of Lemma 26 gives O(mn3) time for computing the rank. The
combinatorial algorithm provided below will improve it to O(n3 + mn2) (see Section 6.5),
while additionally finding a matrix of minimum rank.

6.3 Efficiently constructing a maximal column
We now consider a more general problem of finding a matrix of minimum rank in a zero-one
matrix monoid. As mentioned above, by Theorem 1 we have to explicitly construct a maximal
column for that, which turns out to be a more difficult task in terms of the time complexity.
We will see in the next subsection that we only need one maximal column (together with a
word constructing it) to get a matrix of minimum rank. The goal of this subsection is thus
to show how to efficiently compute a short representation of a word constructing a maximal
column, since the word itself may be longer than the time complexity we are aiming for. We
do so by reusing repeating subwords in such a word, and describing their occurrences with a
straight line program.

In [20, Section 5], an algorithm for constructing a word of rank one in complete DFAs in
O(m3 + mn2) time and O(n2) space was suggested. Our approach for finding a maximal
column and a word constructing it follows a similar direction, with a few key differences.
Firstly, we observe that it is enough to only compute words merging states with one chosen
state p, instead of finding all pairs of mergeable states. This both simplifies the algorithm

S. Kiefer and A. Ryzhikov 61:17

(in [20] an additional step is required to decrease the space complexity from O(n3) to O(n2),
which we get for free) and allows to present our results in terms of straight line programs,
giving a better insight into the regularities present in the constructed word of minimum rank.

We define set straight line programs (set-SLPs), which are just SLPs with multiple initial
symbols, and thus encode a set of words instead of one word. Formally, a set-SLP is a tuple
(V, Σ, R, S), where V and Σ are disjoint finite sets of nonterminal and terminal symbols
respectively, R : V → (V ∪ Σ)∗ is a function defining a derivation rule for each nonterminal
symbol, and S ⊆ V is a set of initial symbols. For v ∈ V, we write R(v) as v → w with
w ∈ (V ∪ Σ)∗, and we call v and w the left- and right-hand sides of this derivation rule
respectively. The length of a set-SLP is the total length of the right-hand sides of all the
derivation rules. The semantics of a set-SLP is defined as follows. Given an initial symbol
s ∈ S, we recursively replace each symbol in R(s) with the right-hand side of its derivation
rule until we obtain a word over Σ, which is called the word encoded by s. We require that
each initial symbol produces a unique word over Σ as a result of such derivation. Namely, we
require that there exists a total linear order ≤ on the set V such that for all v with v → w, w

does not contain v′ ∈ V with v′ ≤ v. The (multi-)set of words encoded by all initial symbols
is called the set of words encoded by a set-SLP.

▶ Example 27. Consider a set-SLP ({w1, w3, w5, u1, u2, u3}, {a, b}, R, {w1, w3, w5}) with

w1 → u1, w3 → u3u2, w5 → u2, u1 → aab, u2 → aab, u3 → aaba.

This set-SLP encodes the (multi-)set {aab, aabaaab, aab}, and illustrates the reason why we
are using set-SLPs: they allow to construct sets of words out of smaller “pieces” without
having to explicitly repeat these “pieces” multiple times (in our example, we are reusing u2).
Note that the set-SLPs that we construct below only encode sets of words whose total length
is polynomial in the size of the set-SLPs.

▶ Lemma 28. Given a state p, a set-SLP of length O(n2) defining a set {wq | q ∈ Mer(p)},
where wq is a word with p ∈ p · wq and p ∈ q · wq, can be computed in O(mn4) time and
O(n2) space.

Proof sketch. Call vertices (p, q) with q ∈ Mer(p) merging. The idea is to construct, by a
digraph search of G(2), a directed tree T rooted in (p, p) and containing a path from each
merging vertex to the root, and then use the joint subpaths of these paths in the tree to
obtain a short set-SLP describing these paths. See Figure 5 for an example. ◀

▶ Lemma 29. For a given state p of A, an SLP of length O(n2) encoding a word w such
that [w · p] is a maximal column can be computed in O(n2+ω + mn4) time and O(n3) space.

Proof sketch. Compute the matrices of the words encoded by the set-SLP from Lemma 28.
We rely on the property, already used in some form in [14], that if for all q ∈ Mer(p), q ̸= p,
the vector [w · q] is zero, then [w · p] is a maximal column. To construct a word with this
property, we iteratively concatenate the words wq depending on nonzero columns in the
matrix in each iteration. The number of iterations is bounded by n. ◀

6.4 Finding a matrix of minimum rank
We now use the results of the previous section to construct a matrix of minimum rank. The
key idea is as follows: since the set of maximal columns is stable under left multiplication by
matrices from the monoid, we can iteratively make each column of the matrix maximal or

STACS 2025

61:18 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

1

2 3

4

5

67

8

a

a, b

a, b

a, b

a, b

b

a, b

a, b

b

a

4, 4 1, 3

3, 1

2, 4 3, 5

4, 6

5, 7

6, 87, 1

8, 2

1, 5 2, 6

7, 38, 4

3, 3

a

aa

a

b

a

b a

a

b

Figure 5 An example of A (left), and a part of the underlying digraph G(2) of its square automaton
(right). Merging vertices are doubly circled. The edges of T for p = 7 are represented by dotted edges,
and these edges are labelled with one of the letters labelling the corresponding transition in A(2).
Furthermore, we have ρ1 = (7, 1) → (8, 2) → (1, 3) → (4, 4), ρ2 = (5, 7) → (6, 8) → (3, 1) → (4, 4),
ρ3 = (7, 3) → (8, 4) → (1, 5) → (4, 6) → (5, 7). A set-SLP encoding the labels of these path is
presented in Example 27, with ui labelling the path ρi, i ∈ {1, 2, 3}.

zero by, intuitively, applying the same word (together with a short “reachability” word) to a
state in each column. This simple observation significantly decreases the time complexity of
our algorithm compared to the naive implementation of the algorithm from [14] constructing
a word of minimum rank. Indeed, in the approach of [14], the word is constructed letter by
letter, and requires to know the result of applying the last letter at every step. Since the
constructed word has length O(rn3) = O(n4), where n is the number of states and r is the
rank, this results in O(n4+ω) time complexity. By efficiently constructing only one maximal
column (as described in the previous section) and reusing it for the whole set of states (as
described in this section), we decrease the time complexity to O(n2+ω).

▶ Proposition 30. An SLP of length O(n2) encoding a word w of minimum rank can be
computed in O(n2+ω + mn4) time and O(n3) space.

Proof sketch. Compute the matrix of the word w encoded by the SLP from Lemma 29.
Iteratively, for each q ∈ Q, concatenate w with a word of length at most n mapping p to a
state corresponding to a nonzero element of the row in the current iteration. Denote by wn

the resulting word, which has the property that all nonzero columns of M(wn) are maximal.
Symmetrically compute w′

n for rows. Then by Lemma 5 the word wnw′
nwnw′

n matrix has
minimum rank. ◀

Given an SLP of length O(n2) encoding a word w, we can compute the matrix of w by
computing the matrices of words occurring in the derivation of w from bottom to top in time
O(n2+ω). Thus we prove Theorem 23. We also get the following result, which can be seen as
a proof of a very weak version of the Černý conjecture generalised from rank one words in
complete DFAs to minimum rank words in complete UFAs.

▶ Theorem 31. For every n-state complete UFA, there exists an SLP of length O(n2)
encoding a word of minimum rank.

We remark that the length of the word encoded by the constructed SLP asymptotically
matches the best known upper bound for words of minimum rank: O(n4) for complete
UFAs [14] and O(n3) for complete DFAs [37]. In particular, one can efficiently compute
words of minimum rank within these bounds.

S. Kiefer and A. Ryzhikov 61:19

6.5 Complete DFAs
For complete DFAs, we follow the same algorithms as in the proof of Theorem 23, but exploit
the fact that elementary matrix operations can be performed more efficiently. Namely, if A
is a complete DFA, then each word defines a transformation on Q. By storing matrices of
words as transformations, we get that matrix multiplication can be performed in O(n) time,
and each matrix requires O(n) space. Moreover, we have |E(2)| = mn2. By taking these
improvements into account, we get the proof of Theorem 24.

7 Conclusions and open problems

We list a few open questions that follow directly from our work.
In [20], it was asked if a word of rank one for a complete DFA can be found in NC.
Similarly, can a matrix of minimum rank for a complete DFA be computed in NC?
Given an unambiguous morphism M : Σ → {0, 1}Q×Q and a vector α ∈ QQ

>0, can a basis
of ⟨αT M(w) | w ∈ Σ∗⟩ be computed faster than in O(|Q|3) time? This would improve
algorithms for several fundamental problems for weighted automata [32]. Similarly, for
complete DFAs, computing a basis of U from Section 4.4 in subcubic time (see the proof
of Lemma 26) would allow to compute the minimum rank of a complete DFA faster than
in cubic time.
The bottleneck in the time complexity in Theorem 22 is the very first step, computing
Mer(q) via digraph search in the square digraph of A. The number of edges of this digraph
can be quadratic in the number of its vertices [36, Appendix A], hence of order |Q|4. Can
Mer(q) be computed faster than in time O(|Q|4)? Very little seems to be known about
general properties of square automata of DFAs or UFAs.
One of the bottlenecks of the combinatorial algorithm is performing matrix multiplication.
Can it be done faster for matrices from a zero-one matrix monoid? If not, are there any
subclasses of UFAs (other than DFAs) where it can be done more efficiently?

References

1 Jorge Almeida and Benjamin Steinberg. Matrix mortality and the Černý-Pin conjecture. In
Volker Diekert and Dirk Nowotka, editors, Developments in Language Theory, pages 67–80,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. doi:10.1007/978-3-642-02737-6_5.

2 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

3 Christel Baier, Stefan Kiefer, Joachim Klein, David Müller, and James Worrell. Markov chains
and unambiguous automata. Journal of Computer and System Sciences, 136:113–134, 2023.
doi:10.1016/J.JCSS.2023.03.005.

4 M.-P. Béal and D. Perrin. Synchronised automata. In Valérie Berthé and Michel Rigo, editors,
Combinatorics, Words and Symbolic Dynamics, Encyclopedia of Mathematics and its Applic-
ations, pages 213–240. Cambridge University Press, 2016. doi:10.1017/CBO9781139924733.
008.

5 Marie-Pierre Béal, Eugen Czeizler, Jarkko Kari, and Dominique Perrin. Unambiguous automata.
Math. Comput. Sci., 1(4):625–638, 2008. doi:10.1007/S11786-007-0027-1.

6 Paul C. Bell, Igor Potapov, and Pavel Semukhin. On the mortality problem: From multiplicative
matrix equations to linear recurrence sequences and beyond. Information and Computation,
281:104736, 2021. doi:10.1016/J.IC.2021.104736.

7 Stuart J. Berkowitz. On computing the determinant in small parallel time using a small
number of processors. Information Processing Letters, 18(3):147–150, 1984. doi:10.1016/
0020-0190(84)90018-8.

STACS 2025

https://doi.org/10.1007/978-3-642-02737-6_5
https://doi.org/10.1016/J.JCSS.2023.03.005
https://doi.org/10.1017/CBO9781139924733.008
https://doi.org/10.1017/CBO9781139924733.008
https://doi.org/10.1007/S11786-007-0027-1
https://doi.org/10.1016/J.IC.2021.104736
https://doi.org/10.1016/0020-0190(84)90018-8
https://doi.org/10.1016/0020-0190(84)90018-8

61:20 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

8 Mikhail V. Berlinkov. On two algorithmic problems about synchronizing automata (short
paper). In Arseny M. Shur and Mikhail V. Volkov, editors, Developments in Language
Theory – 18th International Conference, DLT 2014, Ekaterinburg, Russia, August 26-29, 2014.
Proceedings, volume 8633 of Lecture Notes in Computer Science, pages 61–67. Springer, 2014.
doi:10.1007/978-3-319-09698-8_6.

9 Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes and automata, volume
129. Cambridge University Press, 2010.

10 Vincent D. Blondel, Raphaël M. Jungers, and Alex Olshevsky. On primitivity of sets of
matrices. Automatica, 61:80–88, 2015. doi:10.1016/J.AUTOMATICA.2015.07.026.

11 Allan Borodin, Joachim von zur Gathen, and John E. Hopcroft. Fast parallel matrix and GCD
computations. Information and Control, 52(3):241–256, 1982. doi:10.1016/S0019-9958(82)
90766-5.

12 Greg Budzban and Philip Feinsilver. The generalized road coloring problem and periodic
digraphs. Applicable Algebra in Engineering, Communication and Computing, 22:21–35, 2011.
doi:10.1007/S00200-010-0135-Z.

13 Georgina Bumpus, Christoph Haase, Stefan Kiefer, Paul-Ioan Stoienescu, and Jonathan
Tanner. On the size of finite rational matrix semigroups. In Artur Czumaj, Anuj Dawar,
and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and
Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference),
volume 168 of LIPIcs, pages 115:1–115:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPICS.ICALP.2020.115.

14 Arturo Carpi. On synchronizing unambiguous automata. Theoretical Computer Science,
60:285–296, 1988. doi:10.1016/0304-3975(88)90114-4.

15 Arturo Carpi and Flavio D’Alessandro. Strongly transitive automata and the Černý conjecture.
Acta Informatica, 46(8):591–607, 2009. doi:10.1007/S00236-009-0106-7.

16 Julien Cassaigne, Vesa Halava, Tero Harju, and François Nicolas. Tighter undecidability
bounds for matrix mortality, zero-in-the-corner problems, and more. CoRR, abs/1404.0644,
2014. arXiv:1404.0644.

17 Yves Césari. Sur l’application du théorème de Suschkewitsch à l’étude des codes rationnels com-
plets. In Jacques Loeckx, editor, Automata, Languages and Programming, 2nd Colloquium, Uni-
versity of Saarbrücken, Germany, July 29 - August 2, 1974, Proceedings, volume 14 of Lecture
Notes in Computer Science, pages 342–350. Springer, 1974. doi:10.1007/3-540-06841-4_73.

18 Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Inf. Control.,
64(1-3):2–21, 1985. doi:10.1016/S0019-9958(85)80041-3.

19 Laszlo Csanky. Fast parallel matrix inversion algorithms. SIAM Journal on Computing,
5(4):618–623, 1976. doi:10.1137/0205040.

20 David Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing,
19(3):500–510, 1990. doi:10.1137/0219033.

21 Joel Friedman. On the road coloring problem. Proceedings of the American Mathematical
Society, 110(4):1133–1135, 1990.

22 Balázs Gerencsér, Vladimir V. Gusev, and Raphaël M. Jungers. Primitive sets of nonnegative
matrices and synchronizing automata. SIAM Journal on Matrix Analysis and Applications,
39(1):83–98, 2018. doi:10.1137/16M1094099.

23 Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008. doi:10.1017/CBO9780511804106.

24 Pavel Goralčík and Václav Koubek. Rank problems for composite transformations. In-
ternational Journal of Algebra and Computation, 05(03):309–316, 1995. doi:10.1142/
S0218196795000185.

25 Vladimir V. Gusev and Elena V. Pribavkina. On synchronizing colorings and the eigenvectors of
digraphs. In Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier, editors, 41st International
Symposium on Mathematical Foundations of Computer Science, MFCS 2016, August 22-26,
2016 - Kraków, Poland, volume 58 of LIPIcs, pages 48:1–48:14. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2016. doi:10.4230/LIPICS.MFCS.2016.48.

https://doi.org/10.1007/978-3-319-09698-8_6
https://doi.org/10.1016/J.AUTOMATICA.2015.07.026
https://doi.org/10.1016/S0019-9958(82)90766-5
https://doi.org/10.1016/S0019-9958(82)90766-5
https://doi.org/10.1007/S00200-010-0135-Z
https://doi.org/10.4230/LIPICS.ICALP.2020.115
https://doi.org/10.1016/0304-3975(88)90114-4
https://doi.org/10.1007/S00236-009-0106-7
https://arxiv.org/abs/1404.0644
https://doi.org/10.1007/3-540-06841-4_73
https://doi.org/10.1016/S0019-9958(85)80041-3
https://doi.org/10.1137/0205040
https://doi.org/10.1137/0219033
https://doi.org/10.1137/16M1094099
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1142/S0218196795000185
https://doi.org/10.1142/S0218196795000185
https://doi.org/10.4230/LIPICS.MFCS.2016.48

S. Kiefer and A. Ryzhikov 61:21

26 Markus Holzer and Sebastian Jakobi. On the computational complexity of problems related
to distinguishability sets. Information and Computation, 259(2):225–236, 2018. doi:10.1016/
J.IC.2017.09.003.

27 Oscar H. Ibarra, Shlomo Moran, and Louis E. Rosier. A note on the parallel complexity of
computing the rank of order n matrices. Information Processing Letters, 11(4/5):162, 1980.
doi:10.1016/0020-0190(80)90042-3.

28 Gérard Jacob. Un algorithme calculant le cardinal, fini ou infini, des demi-groupes de matrices.
Theoretical Computer Science, 5(2):183–204, 1977. doi:10.1016/0304-3975(77)90006-8.

29 Jarkko Kari. A counter example to a conjecture concerning synchronizing words in finite
automata. Bulletin of the EATCS, 73:146, 2001.

30 Jarkko Kari, Andrew Ryzhikov, and Anton Varonka. Words of minimum rank in deterministic
finite automata. In Piotrek Hofman and Michal Skrzypczak, editors, Developments in Language
Theory – 23rd International Conference, DLT 2019, Warsaw, Poland, August 5-9, 2019,
Proceedings, volume 11647 of Lecture Notes in Computer Science, pages 74–87. Springer, 2019.
doi:10.1007/978-3-030-24886-4_5.

31 Nasim Karimi. Reaching the minimum ideal in a finite semigroup. Semigroup Forum, 94(2):390–
425, 2017.

32 Stefan Kiefer. Notes on equivalence and minimization of weighted automata. https://arxiv.
org/abs/2009.01217, 2020. arXiv:arXiv:2009.01217.

33 Stefan Kiefer, Ines Marusic, and James Worrell. Minimisation of multiplicity tree automata.
Logical Methods in Computer Science, 13(1), 2017. doi:10.23638/LMCS-13(1:16)2017.

34 Stefan Kiefer and Corto N. Mascle. On nonnegative integer matrices and short killing words.
SIAM Journal on Discrete Mathematics, 35(2):1252–1267, 2021. doi:10.1137/19M1250893.

35 Stefan Kiefer and Cas Widdershoven. Efficient analysis of unambiguous automata using matrix
semigroup techniques. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen, editors,
44th International Symposium on Mathematical Foundations of Computer Science, MFCS
2019, August 26-30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages 82:1–82:13. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.MFCS.2019.82.

36 Stefan Kiefer and Cas Widdershoven. Efficient analysis of unambiguous automata using matrix
semigroup techniques. CoRR, abs/1906.10093, 2019. arXiv:1906.10093.

37 A.A. Klyachko, I.K. Rystsov, and M.A. Spivak. An extremal combinatorial problem associated
with the bound on the length of a synchronizing word in an automaton. Cybernetics, 23(2):165–
171, 1987.

38 Douglas A. Lind and Brian Marcus. An introduction to symbolic dynamics and coding.
Cambridge university press, 2021.

39 Arnaldo Mandel and Imre Simon. On finite semigroups of matrices. Theoretical Computer
Science, 5(2):101–111, 1977. doi:10.1016/0304-3975(77)90001-9.

40 Mike Paterson. Unsolvability in 3 × 3 matrices. Studies in Applied Mathematics, 49:105–107,
1970.

41 Vladimir Yu. Protasov. Analytic methods for reachability problems. Journal of Computer
and System Sciences, 120:1–13, 2021. doi:10.1016/J.JCSS.2021.02.007.

42 Vladimir Yu. Protasov and Andrey S. Voynov. Matrix semigroups with constant spectral
radius. Linear Algebra and its Applications, 513:376–408, 2017.

43 Igor Rystsov. Rank of a finite automaton. Cybernetics and Systems Analysis, 28(3):323–328,
1992.

44 Igor K. Rystsov. Reset words for commutative and solvable automata. Theoretical Computer
Science, 172(1-2):273–279, 1997. doi:10.1016/S0304-3975(96)00136-3.

45 Wojciech Rytter. The space complexity of the unique decipherability problem. Information
Processing Letters, 23(1):1–3, 1986. doi:10.1016/0020-0190(86)90121-3.

46 Andrew Ryzhikov. Mortality and synchronization of unambiguous finite automata. In
Robert Mercas and Daniel Reidenbach, editors, Combinatorics on Words – 12th International
Conference, WORDS 2019, Loughborough, UK, September 9-13, 2019, Proceedings, volume
11682 of Lecture Notes in Computer Science, pages 299–311. Springer, 2019. doi:10.1007/
978-3-030-28796-2_24.

STACS 2025

https://doi.org/10.1016/J.IC.2017.09.003
https://doi.org/10.1016/J.IC.2017.09.003
https://doi.org/10.1016/0020-0190(80)90042-3
https://doi.org/10.1016/0304-3975(77)90006-8
https://doi.org/10.1007/978-3-030-24886-4_5
https://arxiv.org/abs/2009.01217
https://arxiv.org/abs/2009.01217
https://arxiv.org/abs/arXiv:2009.01217
https://doi.org/10.23638/LMCS-13(1:16)2017
https://doi.org/10.1137/19M1250893
https://doi.org/10.4230/LIPICS.MFCS.2019.82
https://arxiv.org/abs/1906.10093
https://doi.org/10.1016/0304-3975(77)90001-9
https://doi.org/10.1016/J.JCSS.2021.02.007
https://doi.org/10.1016/S0304-3975(96)00136-3
https://doi.org/10.1016/0020-0190(86)90121-3
https://doi.org/10.1007/978-3-030-28796-2_24
https://doi.org/10.1007/978-3-030-28796-2_24

61:22 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

47 Andrew Ryzhikov. On shortest products for nonnegative matrix mortality. In Laura Kovács
and Ana Sokolova, editors, Reachability Problems – 18th International Conference, RP 2024,
Vienna, Austria, September 25-27, 2024, Proceedings, volume 15050 of Lecture Notes in
Computer Science, pages 104–119. Springer, 2024. doi:10.1007/978-3-031-72621-7_8.

48 Sujin Shin and Jisang Yoo. A note on the rank of semigroups. Semigroup Forum, 81(2):335–343,
2010.

49 Mikhail V. Volkov. Synchronizing automata and the Černý conjecture. In Carlos Martín-Vide,
Friedrich Otto, and Henning Fernau, editors, Language and Automata Theory and Applications,
Second International Conference, LATA 2008, Tarragona, Spain, March 13-19, 2008. Revised
Papers, volume 5196 of Lecture Notes in Computer Science, pages 11–27. Springer, 2008.

50 Mikhail V. Volkov. Synchronization of finite automata. Russian Mathematical Surveys,
77(5):819–891, 2022. doi:10.4213/rm10005e.

51 Yaokun Wu and Yinfeng Zhu. Primitivity and Hurwitz primitivity of nonnegative matrix
tuples: A unified approach. SIAM Journal on Matrix Analysis and Applications, 44(1):196–211,
2023. doi:10.1137/22M1471535.

https://doi.org/10.1007/978-3-031-72621-7_8
https://doi.org/10.4213/rm10005e
https://doi.org/10.1137/22M1471535

	1 Introduction
	2 Existing results and our contributions
	3 Main definitions
	4 Main concepts and the linear algebra toolbox
	4.1 Columns, rows and the structure of minimum rank matrices
	4.2 The weight of columns and rows
	4.3 Weight preservation property and minimum rank
	4.4 Maximal pseudo-columns
	4.5 Dealing with the non-strongly connected case

	5 Computing the rank in NC2
	6 Time and space complexity
	6.1 Square automaton and square digraph
	6.2 Minimum rank in O(n4) time
	6.3 Efficiently constructing a maximal column
	6.4 Finding a matrix of minimum rank
	6.5 Complete DFAs

	7 Conclusions and open problems

