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Abstract
We present new algorithms and constructions for linear delta-matroids. Delta-matroids are gen-
eralizations of matroids that also capture structures such as matchable vertex sets in graphs and
path-packing problems. As with matroids, an important class of delta-matroids is given by linear
delta-matroids, which generalize linear matroids and are represented via a “twist” of a skew-symmetric
matrix. We observe an alternative representation, termed a contraction representation over a skew-
symmetric matrix. This representation is equivalent to the more standard twist representation up
to O(nω)-time transformations (where n is the dimension of the delta-matroid and ω < 2.372 the
matrix multiplication exponent), but it is much more convenient for algorithmic tasks. For instance,
the problem of finding a max-weight feasible set now reduces directly to finding a max-weight basis in
a linear matroid. Supported by this representation, we provide new algorithms and constructions for
linear delta-matroids. In particular, we show that the union and delta-sum of linear delta-matroids
are again linear delta-matroids, and that a representation for the resulting delta-matroid can be
constructed in randomized time O(nω) (or more precisely, in O(nω) field operations, over a field of
size at least Ω(n · (1/ε)), where ε > 0 is an error parameter). Previously, it was only known that
these operations define delta-matroids. We also note that every projected linear delta-matroid can
be represented as an elementary projection. This implies that several optimization problems over
(projected) linear delta-matroids, including the coverage, delta-coverage, and parity problems, reduce
(in their decision versions) to a single O(nω)-time matrix rank computation. Using the methods of
Harvey, previously applied by Cheung, Lao and Leung for linear matroid parity, we furthermore show
how to solve the search versions in the same time. This improves on the O(n4)-time augmenting
path algorithm of Geelen, Iwata and Murota, albeit with randomization. Finally, we consider the
maximum-cardinality delta-matroid intersection problem (equivalently, the maximum-cardinality
delta-matroid matching problem). Using Storjohann’s algorithms for symbolic determinants, we
show that such a solution can be found in O(nω+1) time. This provides the first (randomized)
polynomial-time solution for the problem, thereby solving an open question of Kakimura and
Takamatsu.
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1 Introduction

Matroids are important unifying structures in many parts of computer science and discrete
mathematics, abstracting and generalizing notions from linear vector spaces and graph theory;
see, e.g., Oxley [30] and Schrijver [32]. Formally, a matroid is a collection of independent sets,
subject to particular axioms (see below). A maximum independent set is a basis. Among
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other things, matroids are a very useful source of algorithmic meta-results, since there are
many problems on matroids which admit efficient, general-purpose algorithms – such as the
greedy algorithm for finding a max-weight basis, generalizing algorithms for max-weight
spanning trees; or Matroid Intersection, the problem of finding a maximum common
feasible set in two given matroids, which generalizes bipartite matching.

An important class of matroids are linear matroids, where independence in the matroid
is represented by the column space of a matrix. Linear matroids enjoy many properties not
shared by generic matroids. For example, the famous Matroid Parity problem, which
generalizes the matching problem in general graphs, is known to be intractable in the general
case but efficiently solvable over linear matroids [26]. In addition, linear representations,
as a compact representation of combinatorial information, have seen many applications
in parameterized complexity for purposes of sparsification and kernelization [24, 25], and
algebraic algorithms over linear matroids have proven a very useful general-purpose tool in
FPT algorithms [14, 12] (cf. [8, 15]).

Delta-matroids are a generalization of matroids, where, informally, the notion of bases is
replaced by the notion of feasible sets, which satisfy an exchange axiom similar to matroid
bases but need not all have the same cardinality. Delta-matroids were introduced by Bouchet
(although similar structures were independently defined by others), and have connections
to multiple areas of computer science such as structural and topological graph theory [28],
constraint satisfaction problems [13, 22], matching and path-packing problems and more.
Like with matroids, there is also a notion of linear delta-matroids, where the feasible sets are
represented through a skew-symmetric matrix. These generalize linear matroids, although
this fact (or indeed the fact that skew-symmetric matrices define delta-matroids) is not
elementary [17]. Delta-matroids (linear or otherwise) are remarkably flexible structures, in
that there are many ways to modify or combine given delta-matroids into new delta-matroids,
including twisting (partial dualization), contraction and deletion, existential projection, and
unions and delta-sums of delta-matroids (all described below).

Similarly to matroids, there is also a range of generic problems that have been considered
over delta-matroids, including delta-matroid intersection, partition, and parity problems.
Unfortunately, due to the generality of delta-matroids, these problems are all intractable in the
general case, since they generalize matroid parity. However, they are tractable on linear delta-
matroids, where Geelen et al. [17] gave an algorithm (and a corresponding min-max theorem)
with a running time of O(n4), and O(nω+1) using fast matrix multiplication. However, other
variants remain open. Kakimura and Takamatsu [21] considered the maximum cardinality
version of delta-matroid parity (as opposed to the result of Geelen et al. [17], which is more
of a feasibility or minimum error version). They gave a solution for a restricted class of
linear and projected linear delta-matroid, but left the general case open. Furthermore, the
natural weighted optimization variants of the above appear completely open.

In this paper, we show new constructions of linear delta-matroids and new and faster
randomized algorithms for the aforementioned problems on linear and projected linear delta-
matroids. In particular, we show a new representation variant for linear delta-matroids –
dubbed contraction representation, as opposed to the standard twist representation – which
appears more amenable to efficient algorithms. Using this representation, we show for the first
time that unions and delta-sums of linear delta-matroids (represented over a common field
F) define linear delta-matroids, and that a representation can be constructed in randomized
polynomial time. We also show new algorithmic results, including solving the search version of
Linear Delta-Matroid Parity (Linear DM Parity for short) in O(nω) field operations1

1 Throughout, we give our running times as field operations. If the field has size nO(1), as in most
applications, then this is just polylogarithmic overhead.
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and giving the first (randomized) polynomial-time algorithm for the maximum cardinality
version of the problem in O(nω+1) field operations, thereby settling an open question from
Kakimura and Takamatsu [21].

1.1 Introduction to delta-matroids
Before we describe our results in detail, let us review some background on delta-matroids.
For more material, we refer to the survey by Moffatt [28].

Like matroids, delta-matroids are formally defined as set systems satisfying particular
axioms. Formally, a delta-matroid is a pair D = (V, F) where V is a ground set and F ⊆ 2V

a non-empty collection of subsets of V , referred to as feasible sets in D, subject to the
following symmetric exchange axiom:

For all F1, F2 ∈ F and x ∈ F1∆F2 there exists y ∈ F1∆F2 such that F1∆{x, y} ∈ F ,

where ∆ denotes symmetric difference.
It should be enlightening to compare this to the definition of matroids. Formally, a

matroid is most commonly defined as a collection of independent sets; i.e., a matroid is
defined as a pair M = (V, I) where V is the ground set and I ⊆ 2V is a collection of sets,
referred to as independent sets in M , subject to (1) ∅ ∈ I; (2) if B ∈ I and A ⊂ B then
A ∈ I; and (3) if A, B ∈ I with |A| < |B| then there exists an element x ∈ B \ A such that
A + x ∈ I. The second condition encodes that (V, I) is an independence system. However,
matroids can also be equivalently defined from just the collection of maximal independent
sets, known as bases. Under this definition, a matroid is a pair M = (V, B) where B ⊆ 2V is
a non-empty collection of bases, subject to the basis exchange property:

For all A, B ∈ B and x ∈ A \ B there exists y ∈ B \ A such that A∆{x, y} ∈ B.

In particular, all bases of a matroid have the same cardinality. Thus, delta-matroids can
be seen as the relaxation of matroids where the feasible sets (analogous to the bases) need
not all have the same cardinality. In fact, a delta-matroid where all feasible sets have the
same cardinality is precisely a matroid (represented as a set of bases). A similar statement
holds for independent sets – the independent sets of a matroid form the feasible sets of a
delta-matroid, and a delta-matroid which is an independence system is precisely a matroid
in this sense – but the formulation from the set of bases is standard and more convenient.

As a further illustration, consider the case of graph matchings. Let G = (V, E) be a
graph. The matching matroid of G is a matroid over ground set V where a set B ⊆ V is a
basis if and only if it is the set of endpoints of a maximum matching of G. Correspondingly,
the independent sets S ⊆ V of the matching matroid are vertex sets that can be covered by a
matching. On the other hand, the matching delta-matroid over G is the delta-matroid where
a set S ⊆ V is feasible if and only if G[S] has a perfect matching. Thus, the maximal feasible
sets of the matching delta-matroid form the bases of the matching matroid, but clearly, the
matching delta-matroid captures more of the structure of G than the matching matroid does.

Linear delta-matroids. As with matroids, an important class of delta-matroids are linear
delta-matroids. A matrix A is skew-symmetric if AT = −A. Let A be a skew-symmetric matrix
with rows and columns indexed by a set V . Then A defines a delta-matroid D(A) = (V, F)
where for S ⊆ V we have S ∈ F if and only if the principal submatrix of A indexed by
S, denoted by A[S], is non-singular. We refer to D(A) as a directly represented linear
delta-matroid. More generally, the twist of a delta-matroid D = (V, F) by a set S ⊆ V ,
denoted D∆S, is the delta-matroid with feasible sets

F∆S := {F∆S | F ∈ F}.

STACS 2025
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It is easy to check that D∆S is a delta-matroid. The twisting operation is also known as
partial dualization, since the twist D∗ := D∆V corresponds to the dualization M∗ of a
matroid M . A general representation of a linear delta-matroid is given as D = D(A)∆S for
some skew-symmetric matrix A and twisting set S. A delta-matroid D is even if all feasible
sets have the same cardinality modulo 2; all linear delta-matroids are even. In addition, we
consider projected linear delta-matroids, which is a delta-matroid D = (V, F) defined via
existential projection over a set X from a larger linear delta-matroid D′ = D(A)∆S over
ground set V ∪ X. We denote this D = D′|X, where D has the feasible set

F = {F \ X | F ∈ F(D′)}.

As a canonical example, the matching delta-matroid of a graph G is directly represented by
the Tutte matrix over G. The set of bases of a linear matroid forms a linear delta-matroid,
and the independent sets form a projected linear delta-matroid, under natural representations
(see Section 3.1 of the full version of the paper).

Underpinning algorithms on linear delta-matroids are a number of fundamental operations
on skew-symmetric matrices. For a skew-symmetric matrix A indexed by V and a set S ⊆ V

such that A[S] is non-singular, there is a pivoting operation that constructs a new skew-
symmetric matrix A′ = A ∗ S such that for any U ⊆ V , A′[U ] is non-singular if and only
if A[S∆U ] is. Via this operation, linear delta-matroids are closed under the contraction
operation D/T as well as deletion D \ T (see Section 2 for the definitions). Another
fundamental property of skew-symmetric matrices is the Pfaffian, defined as follows. Let A

be a skew-symmetric matrix with rows and columns indexed by V . The support graph of A

is the graph G = (V, E) where uv ∈ E if and only if A[u, v] ̸= 0. Then the Pfaffian of A is
defined as

Pf A =
∑
M

σ(M)
∏

e∈M

A[u, v],

where M ranges over all perfect matchings in G and σ(M) ∈ {1, −1} is a sign term. It holds
that det A = (Pf A)2, thus A is non-singular if and only if Pf A ̸= 0. Via this connection to
matchings, the Pfaffian forms a link between the combinatorial and algebraic aspects of linear
delta-matroids, in a way that is often exploited in this paper. The Pfaffian also enjoys some
useful algebraic properties, such as the Pfaffian sum formula and the Ishikawa-Wakayama
formula, with clear combinatorial interpretations. See Section 2 for details.

1.2 Our results
We show a range of results regarding the representation and construction of linear delta-
matroids, and new and faster algorithms for computational problems over them. We discuss
these in turn.

Representations and constructions. Our first result, which supports the others, is the
introduction of a new representation for linear delta-matroids. Recall that a linear delta-
matroid D = (V, F) is represented as D = D(A)∆S for a skew-symmetric matrix A with
rows and columns indexed by V . We refer to this as a twist representation. Although this
representation is intimately connected to the structure of delta-matroids, it is less convenient
for algorithmic purposes. For this, we introduce the contraction representation, representing
a linear delta-matroid D = (V, F) as D = D(A)/T for a skew-symmetric matrix A indexed
by V ∪ T . Thus, a set F ⊆ V is feasible in D if and only if A[F ∪ T ] is non-singular.
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We show that the representations are equivalent, and given a representation in one form,
we can efficiently and deterministically construct one in the other; see Section 3.1. Thus
contraction representations do not change the class of representable delta-matroids; however,
we find that the contraction representation is more compatible with the algorithmic methods
of linear algebra.

Next, we consider two methods of composing linear delta-matroids. Let D1 = (V, F1)
and D2 = (V, F2) be given delta-matroids (padding the ground sets with dummy elements if
necessary so that they are defined over the same ground set V ). The union D1 ∪ D2 is the
delta-matroid D = (V, F) where

F = {F1 ∪ F2 | F1 ∈ F1, F2 ∈ F2, F1 ∩ F2 = ∅},

i.e., the feasible sets in D are the disjoint unions of feasible sets in D1 and D2. Additionally,
the delta-sum D1∆D2 is defined as the delta-matroid D = (V, F) with feasible sets

F = {F1∆F2 | F1 ∈ F1, F2 ∈ F2},

where ∆ denotes symmetric difference. Bouchet [2] and Bouchet and Schwärzler [4] showed
that D1∪D2 and D1∆D2 are delta-matroids. Using properties of Pfaffians and the contraction
representation, we show that furthermore, the union and delta-sum of linear delta-matroids
are linear delta-matroids.

The construction is randomized, and takes an error parameter ε > 0 which controls the
size of the field that the output delta-matroid is represented over. For this purpose, we say
that an algorithm constructs an ε-approximate representation of a delta-matroid D = (V, F)
if it constructs a representation of a delta-matroid D′ = (V, F ′) where F ′ ⊆ F and for every
F ∈ F the probability that F ∈ F ′ is at least 1 − ε. Setting ε = O(1/2n) where n = |V |
gives a representation that with good probability is correct for all subsets. However, this
leads to a prohibitive field size, with significant overhead cost per field operation. Thus, for
algorithmic applications, a smaller value of ε may be faster and sufficient.

▶ Theorem 1. Let D1 and D2 be delta-matroids represented over a common field F, and let
ε > 0 be given. Let F′ be an extension field of F with at least n·⌈1/ε⌉ elements. Then the delta-
matroid union D1 ∪ D2 and delta-sum D1∆D2 are linear, and ε-approximate representations
over F′ can be constructed in O(n2) respectively O(nω) field operations.

Algorithms. As a warm-up, we first consider the problem of finding a max-weight feasible
set in a given delta-matroid D = (V, F) with element weights w : V → R. Note that the
weights may be negative, and since not all feasible sets have the same cardinality, unlike
in matroids, they cannot simply be raised to be non-negative. Bouchet [3, 1] showed that
there is a variant of greedy algorithm that solves this problem using only separation oracle
calls. However, this requires O(n) separation oracle calls, each of which requires O(nω) field
operations in linear representation. We show that, using the contraction representation, the
max-weight feasible set problem in a linear delta-matroid reduces to finding a max-weight
column basis of an O(n) × O(n) matrix, which can be done significantly faster.

▶ Theorem 2. Let D = (V, F) be a linear or projected linear delta-matroid. In O(nω) field
operations, we can find a max-weight feasible set in D.

For more intricate questions, the literature contains a range of problems over delta-
matroids [3, 17, 29]. The most important are arguably the following.

STACS 2025
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DM Intersection: Given delta-matroids D1 = (V, F1) and D2 = (V, F2), find a
common feasible set F ∈ F1 ∩ F2.
DM Parity: Given a delta-matroid D = (V, F) and a partition Π of V into pairs, is
there a feasible set in D which is the union of pairs? More generally, find a feasible set
F ∈ F to minimize the number of broken pairs, i.e., the number of pairs p ∈ Π with
|p ∩ F | = 1.

Recall that the matroid versions differ in complexity; Matroid Intersection is tractable
in the oracle model while Matroid Parity is intractable in general but tractable for
linear matroids. However, due to the flexibility of delta-matroids, DM Intersection and
DM Parity are equivalent under efficient transformations [17], hence both intractable in
general. Given an instance (D1, D2) of DM Intersection, a reduction to DM Parity
is immediate by constructing the disjoint union of D1 and D2 [17]. In the other direction,
given a delta-matroid D = (V, F) and a partition Π of V into pairs, let DΠ be the matching
delta-matroid of the graph with edge set Π. Thus the feasible sets of DΠ are precisely the
sets S ⊆ V with no broken pairs, and the DM Parity instance (D, Π) has a perfect solution
– i.e., one with no broken pairs – if and only if D and DΠ have a common feasible set. For
linear-delta-matroids the problems are solvable in O(nω+1) time due to Geelen et al. [17].

Additionally, the following problems have been considered. Again, due to the flexibility
of delta-matroids, these problems are related to one another; see [17, 29]. The previously
fastest algorithm for all of them is by Geelen et al. [17] at O(nω+1) time. Let D1 = (V, F1)
and D2 = (V, F2) be given delta-matroids.

DM Covering: Given D1 and D2, find F1 ∈ F1, F2 ∈ F2 with F1 ∩ F2 = ∅ to maximize
|F1 ∪ F2|
DM Delta-Covering: Given D1 and D2, find F1 ∈ F1, F2 ∈ F2 to maximize |F1∆F2|
DM Partition: Given D1 and D2, find a partition V = P ∪ Q such that P ∈ F1 and
Q ∈ F2

The variant of DM Covering where the disjointness constraint is dropped reduces to
Matroid Union, since the maximal feasible sets of a delta-matroid form a matroid, hence
is of less interest for delta-matroids.

Using the methods of the previous subsection, the decision versions of the above for linear
and projected linear delta-matroids all reduce to computing the rank of an O(n) × O(n)
skew-symmetric matrix. Indeed, consider DM Delta-Covering. Assume that D1 and
D2 are given in some linear representation and let D = D(A)/T = D1∆D2. Then a set
F ⊆ V is a solution F = F1∆F2 to the delta-covering problem if and only if F ∪ T is a
basis of A. Similarly, DM Covering reduces to finding a maximum feasible set in D1 ∪ D2.
DM Intersection and DM Partition are asking whether ∅ is feasible in D1∆D2 and
D1 ∪ D2, respectively. For DM Parity, as above let the input be (D, Π) and construct
the delta-matroid DΠ. Then DM Parity reduces to finding the rank of D∆DΠ (or indeed
D ∪ DΠ). Thus the decision versions of all the above problems can be solved by a randomized
algorithm using O(nω) field operations given linear representations of D resp. D1 and D2
thanks to Theorem 2.

For general delta-matroids, these problems are as hard as Matroid Parity: Clearly,
DM Parity is as hard as Matroid Parity. Given an instance (D, Π) of DM Parity, let
D1 = D and D2 = DΠ. Then, the following is equivalent:

The instance (D, Π) has a perfect solution for DM Parity
(D1, D2) has a solution of cardinality V (D) for DM Covering
(D1, D2) has a solution of cardinality V (D) for DM Delta-Covering
(D1, D2) is a yes-instance of DM Partition
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This shows that these problems are all intractable in the oracle model. For linear delta-
matroids, achieving O(nω) time is arguably the best possible.

For the search versions, the situation changes slightly. Although these problems can be
reduced to straightforward questions about non-singularity or rank of a skew-symmetric
matrix A the resulting solution (e.g., a basis of A) provides only limited insight into the
solution of the original problem. For example, if (D, Π) is an instance of DM Parity,
then the rank of D∆DΠ tells us the number of broken pairs in an optimal solution (and a
maximum feasible set tells us the set of broken pairs in such a solution), it does not give
us the feasible set F ∈ F(D) that is the “actual” solution. Similarly, for DM Covering
and DM Delta-Covering the above reduction gives us the set F = F1 ∪ F2 respectively
F = F1∆F2 but not the pair (F1, F2). We refer to this (the set F for DM Parity and the
pair (F1, F2) for the other four problems) as the witness.

The algorithm of Geelen et al. [17] actually computes the witness for Linear DM Parity,
and can be implemented in O(nω+1) field operations. Applying self-reducibility over the
above-mentioned representation to find a witness would reproduce the same running time.
Using methods of Harvey [18] we show the following improved result. These methods also
underpin the currently fastest algorithm for linear matroid parity [6]. The condition of field
size is for simplicity; given representations over a common field F we can easily move to a
large enough extension field of F.

▶ Theorem 3. Let D1 = (V, F1) and D2 = (V, F2) be (projected) linear delta-matroids over
a common field with Ω(n3) elements. For a feasible set F ⊆ V in D1∆D2, we can, with high
probability, find feasible sets F1 ∈ F1 and F2 ∈ F2 with F1∆F2 = F in O(nω) field operations.

Via the reductions given above, this lets us find a witness for all problems considered.
For Linear DM Covering, we would first find the optimal set F = F1 ∪ F2 as above, then
solve Linear DM Partition for the instance induced by F ; for the remaining problems
the solution is straightforward. See the full version of the paper for details.

▶ Corollary 4. The following search problems can be solved in O(nω) field operations with high
probability, given (projected) linear delta-matroids on ground sets of n elements represented
over a common field with Ω(n3) elements: DM Covering; DM Delta-Covering; DM
Intersection; DM Partition; and DM Parity.

Finally, we consider the weighted versions of the above problems. Again, the picture
becomes slightly different. For DM Partition, there is no sensible weighted version. For DM
Covering and DM Delta-Covering, the natural weight is the weight of the solution set F ,
in which case the problem is solved in strongly polynomial time of O(nω) field operations
using Theorem 2 and 3. For DM Parity, we would attach weights to the pairs, and consider
two weighted versions. In the first version, we want to minimize the weight of the broken
pairs; this problem is solved in O(nω) field operations using Theorem 2 and 3. For the
more interesting version, we assume that there exists a perfect delta-matroid parity solution,
and we wish to maximize the weight of such a set. This version, finally, is equivalent to
the weighted version of DM Intersection, which we focus on, and directly generalizes
Weighted Matroid Parity. We use the matrix representation of the problem to construct
a solution via algebraic methods.

As a special case, even the unit weight version, Maximum Linear DM Intersection,
is an interesting problem which up to now has had no polynomial-time solution. Kakimura
and Takamatsu [21] asked this as an open problem, and provided algorithms for some special
cases of it. We solve the general case with a randomized algorithm.

STACS 2025
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▶ Theorem 5. Let D1 = (V, F1) and D2 = (V, F2) be (projected) linear delta-matroids over
a common field with Ω(n2) elements and let w : V → {1, . . . , W} be element weights. In
O(Wnω) field operations we can find with high probability the maximum weight of a common
feasible set F ∈ F1 ∩ F2. In particular, we can find the maximum cardinality of |F | in O(nω)
field operations with high probability.

By self-reducibility, the search version can thus be solved by a factor O(n) overhead.

▶ Corollary 6. Maximum Linear DM Intersection can be solved with high probability
in O(nω+1) field operations. Weighted Linear DM Intersection and Weighted
Perfect DM Parity with maximum element weight W can be solved with high probability
in O(Wnω+1) field operations.

Removing the overhead on this result appears significantly harder. Indeed, a similar
overhead exists for algorithms for weighted linear matroid parity [6], and even removing the
overhead for Weighted Perfect Matching was significantly non-trivial [9]. We leave
this as a (challenging) open question.

Applications. We now review some applications of the results. Not all of these results are
new, but they serve to demonstrate the applicability of the setting.

One area of application is graph matching and factor problems. In the general factor
problem, we are given a graph G = (V, E), and a set of integers f(v) ⊆ N for each vertex
v ∈ V . The task is to find a spanning subgraph H = (V, F ) such that degH(v) ∈ f(v) for
every vertex v ∈ V . Cornuéjols [7] showed that this problem is polynomial-time solvable if
each f(v) has gaps of length at most 1, but becomes NP-hard otherwise.

For each v ∈ V , let δ(v) be the set of edges incident with v and define Fv = {S ⊆ δ(v) |
|S| ∈ f(v)}. Under the gap-1 condition, Dv = (δ(v), Fv) forms a delta-matroid for every
v ∈ V . We refer to Dv as a symmetric delta-matroid.

The general factor problem can be reformulated as a DM Intersection problem. We
define two delta-matroids on the ground set E2 = {(e, v) | e ∈ E, v ∈ e}, where each edge
uv ∈ E is represented by (uv, u) and (uv, v). Let DE be the matching delta-matroid of G′,
where G′ is the graph on E2 with edges between the pairs (uv, u) and (uv, v) for each edge
uv ∈ E. Furthermore, let Df be the direct sum of symmetric delta-matroids Dv = (∂v, Fv)
with ∂v = {(uv, v) | uv ∈ E} and Fv = {S ⊆ ∂v | |S| ∈ f(v)}. Then the intersection of DE

and Df captures the general factor problem.2
When the symmetric delta-matroids correspond to cases where f(v) = {a, a + 2, . . . , b}

and f(v) = {a, a+1, . . . , b}, they are linear and projected linear, respectively. The associated
factor problems are known as parity (a, b)-factors and (a, b)-factors. Thus, these problems
can be reduced to Linear DM Intersection, and solved via Corollary 4 (although a
naive formulation gives only time O(mω) here). The algebraic formulation of Gabow and
Sankowski [16] for the f -factor problem, where |f(v)| = 1 for all v ∈ V , can essentially
be derived from this method in a generic way using the Ishikawa-Wakayama formula (see
Lemma 10), as the corresponding systems form matroids. See also recent work on weighted
general factors [10, 23].

2 We find it interesting that in this formulation, the General Factor problem is tractable if and only if
every set system Dv, v ∈ V forms a delta-matroid. For more such occurrences, see the Boolean Edge
CSP [13, 22] and Boolean Planar CSP [11, 22] problems, both of which appear (roughly speaking)
to be interestingly tractable if and only if the constraints form delta-matroids in natural ways.
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For another example, let G = (V, E) be a graph and T ⊆ V a set of terminals. Let S
be a partition of T . An S-path packing is a vertex-disjoint packing of paths where every
path has endpoints in distinct parts of S and internal vertices disjoint from T . A classical
theorem of Mader shows a min-max theorem characterizing the maximum number of paths
in an S-path packing, generalizing Menger’s theorem and the Tutte-Berge formula; see
Schrijver [32]. Wahlström [36] recently showed the following. Let a set F ⊆ T be feasible
if there is an S-path packing whose set of endpoints is precisely F . Then D = (T, F) is
a linear delta-matroid. Then, via Linear DM Intersection as above, we can solve the
following “S-factor” problem: Given G, S and a prescribed set of degrees f(Ti) ∈ N, Ti ∈ S,
is there an S-path packing in (G, S) where precisely f(Ti) paths have an endpoint in Ti?
The generalizations to (a, b)-factors and (a, b)-parity factors can be handled similarly.

Structure of the paper. Section 2 contains all definitions. Section 3 gives results about
new representations, and Section 4 gives the algorithmic results. Section 5 concludes the
paper. For missing proofs (for results marked with ⋆) and additional results, including a
more extensive related work review, see the full version of the paper.

2 Preliminaries

For two sets A, B, we let A∆B = (A \ B) ∪ (B \ A) denote their symmetric difference.
For a matrix A and a set of rows S and columns T , we denote by A[S, T ] the submatrix

containing rows S and columns T . If S contains all rows (T contains all columns), then
we use the shorthand A[·, T ] (A[S, ·], respectively). The n × m zero matrix and the n × n

identity matrix is denoted by On×m and In, respectively. We often drop the subscript when
clear from context.

Delta-matroids. A delta-matroid is a pair D = (V, F) where V is a ground set and F ⊆ 2V

a collection of feasible sets, subject to the rule

∀A, B ∈ F , x ∈ A∆B ∃y ∈ A∆B : A∆{x, y} ∈ F .

This is known as the symmetric exchange axiom. For D = (V, F) we let V (D) = V and
F(D) = F . A delta-matroid is even if all feasible sets have the same parity. Note that in
this case we must have x ̸= y in the symmetric exchange axiom, although this does not
necessarily hold in general.

A separation oracle for a delta-matroid D = (V, F) is an oracle that, given a pair (S, T )
of disjoint subsets of V , reports whether there is a set F ∈ F such that S ⊆ F and F ∩ T = ∅.
If so, the pair (S, T ) is separable. A delta-matroid is tractable if it has a polynomial-time
separation oracle.

For a delta-matroid D = (V, F) and S ⊆ D, the twisting of D by S is the delta-matroid
D∆S = (V, F∆S) where F∆S = {F ∆S | F ∈ F}. This generalizes some common operations
from matroid theory. The dual delta-matroid of D is D∆V (D). For a set S ⊆ V (D), the
deletion of S from D refers to the set system D \ S = (V \ S, {F ∈ F | F ⊆ V \ S}). The
contraction of S refers to D/S = (D∆S) \ S = (V \ S, {F \ S | F ∈ F , S ⊆ F}).

Skew-symmetric matrices. A square matrix A is skew-symmetric if A = −AT . In the case
that A is over a field of characteristic 2, we will additionally assume that it has zero diagonal,
unless stated otherwise. For a skew-symmetric matrix A with rows and columns indexed by
a set V = [n], the support graph of A is the graph G = (V, E) where E = {uv | A[u, v] ̸= 0}.
A fundamental tool for working with skew-symmetric matrices is the Pfaffian, defined for a
skew-symmetric matrix A as Pf A =

∑
M σ(M)

∏
e∈M A[u, v], where M ranges over all perfect
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matchings of the support graph of A and σ(M) ∈ {1, −1} is the sign of the permutation:(
1 2 · · · n − 1 n

v1 v′
1 · · · vn/2 v′

n/2

)
, where M = {viv

′
i | i ∈ [n/2]} with vi < v′

i for all i ∈ [n/2]. It is

known that det A = (Pf A)2, hence in particular Pf A ̸= 0 if and only if A is non-singular.
However, for many algorithms it will be more convenient to work directly with the Pfaffian.
In fact, Pfaffian generalizes the notion of determinants as follows.

▶ Lemma 7. For an n × n-matrix M , it holds that det M = (−1)n(n−1)/2 Pf
(

O M

−MT O

)
.

An important operation on skew-symmetric matrices is pivoting. Let A ∈ Fn×n be
skew-symmetric and let S ⊆ [n] be such that A[S] is non-singular. Order the rows and

columns of A so that A =
(

B C

−CT D

)
, where A[S] = B. Then the pivoting of A by S

is A ∗ S =
(

B−1 B−1C

CT B−1 D + CT B−1C

)
. Note that this is a well-defined, skew-symmetric

matrix.

▶ Lemma 8 ([34]). It then holds, for any X ⊆ [n], that det(A ∗ S)[X] = det A[X∆S]
det A[S] , In

particular, (A ∗ S)[X] is non-singular if and only if A[X∆S] is non-singular.

Finally, let us note a formula on the Pfaffian of a sum of two skew-symmetric matrices:

▶ Lemma 9 ([29, Lemma 7.3.20]). For two skew-symmetric matrices A1 and A2 both indexed
by V = [n], we have

Pf (A1 + A2) =
∑

U⊆V

σU Pf A1[U ] · Pf A2[V \ U ],

where Pf Ai[∅] = 1 for i = 1, 2 and σU ∈ {1, −1} is a sign of the permutation(
1 2 · · · |U | |U | + 1 · · · |V | − 1 |V |
u1 u2 · · · u|U | v1 · · · v|V \U |−1 u|V \U |

)
,

where ui and vi are the i-th largest elements of U and V \ U , respectively.

The following is a generalization of the Cauchy-Binet formula to skew-symmetric matrices.
The algebraic approach of Lovász [26] for matroid parity can be derived from this formula
(see [27]).

▶ Lemma 10 (Ishikawa-Wakayama formula [19]). For a skew-symmetric 2n × 2n-matrix A

and a 2k × 2n-matrix B with k ≤ n, we have

Pf BABT =
∑

U∈([2n]
2k )

det B[·, U ] Pf A[U ].

Linear representation. A skew-symmetric matrix defines a delta-matroid as follows. For a
skew-symmetric matrix A ∈ FV ×V over a field F, define F = {X ⊆ V | A[X] is non-singular}.
Then, (V, F), which is denoted by D(A), is a delta-matroid. We say that a delta-matroid
D = (V, F) is representable over F if there is a skew-symmetric matrix A ∈ FV ×V and
a twisting set S ⊆ V such that D = D(A)∆S. If A[X] is non-singular, or equivalently
∅ ∈ F(D), we say that D is directly representable over F. Note that a directly representable
delta-matroid D can be represented without a twisting set X, as D(A)∆X = D(A ∗ X). We
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will say that D is directly represented by A if D = D(A). A delta-matroid is called normal if
∅ is feasible. Note that every linear delta-matroid is even, and that a linear delta-matroid is
directly representable if and only if it is normal. Linear delta-matroids are tractable [3].

In addition, we consider projected linear delta-matroids. Let D = (V, F) be a delta-
matroid and X ⊆ V . Then the projection D|X is defined as D|X = (V \ X, F|X) where
F|X = {F \ X | F ∈ F}. Then D|X is a delta-matroid, although it is in general not
even, hence not linear. When D is linear, then we refer to D′ = D|X as a projected linear
delta-matroid. When |X| = 1 we refer to this as an elementary projection, following Geelen
et al. [17].

As noted above, we assume that A has a zero diagonal (this naturally follows from the
definition over all fields with a characteristic not 2). However, if F is a field of characteristic
2, then linear delta-matroids over F with a non-zero diagonal correspond to projected linear
delta-matroids over F; see Geelen et al. [17].

For a matroid M = (V, I) with the basis family B, D = (V, B) is a delta-matroid. If M

is represented by A, D can be represented as follows. Fix a basis B ∈ B. We may assume
w.l.o.g. that A[·, B] = I. Define

A′ =
( B V \B

B O A[·, V \ B]
V \B −AT [V \ B, ·] O

)
.

Observe that for every F ⊆ V , A′[F ] is non-singular if and only if A[F ∩ B, F \ B] is
non-singular. Since A[·, B] = I, this is equivalent to A[·, (B \F )∪ (F \B)] being non-singular,
and thus D = D(A′)∆B.

Conversely, let D = (V, F) be a delta-matroid. Then the set of maximum-cardinality
feasible sets in D forms the set of bases of a matroid M = (V, I). Furthermore, if D = D(A)
is directly represented, then A (as a column space) is also a representation of the matroid
M . This is because if B is a column basis for a skew-symmetric matrix A, then A[B] is
non-singular (see e.g., [31] or [29, Proposition 7.3.6]).

To avoid intricate representation issues, we assume that every linear representation is
given over some finite field. We note that a representation over the rationals can be efficiently
transformed into an equivalent representation over a finite field.

Approximate linear representation. For a delta-matroid D = (V, F), we say that a delta-
matroid D′ = (V, F ′) is an ε-approximate representation of D if F ′ ⊆ F and for every F ∈ F ,
the probability that F ∈ F ′ is at least 1 − ε. For constructing an ε-approximate linear
representation, the Schwartz-Zippel lemma [33, 37] (also referred to as the DeMillo-Lipton-
Schwartz-Zippel lemma) comes in handy. It states that a polynomial P (X) of total degree
at most d over a field F becomes nonzero with probability at least 1 − d/|F| when evaluated
at uniformly chosen elements from F, unless P (X) is identically zero.

Let G = (V, E) be an undirected graph and let F ⊆ 2V contain all sets F ⊆ V such
that G[F ] has a perfect matching. Then D(G) = (V, F) is a delta-matroid referred to as
the matching delta-matroid of G. The Tutte matrix gives rise to an approximate linear
representation. Note that setting ε = O(2−|V |) (or lower) gives a matrix of polynomial size
which with high probability is a correct representation of D(G). However, this will inflate
the time needed for field operations over F by at least Ω(n), so for efficiency reasons we work
with ε-approximate representations where ε is a parameter.

STACS 2025



62:12 Faster Algorithms on Linear Delta-Matroids

▶ Lemma 11 (⋆). Let G = (V, E) be a graph on n vertices and F be a field with at least
n · ⌈1/ε⌉ elements. We can construct a ε-approximate linear representation of the matching
delta-matroid of G over F.

Operations in matrix product time. Determinant, rank, basis, inverse can be found in
O(nω) time. Given an n × 2n-matrix, its row echelon form can be computed in O(nω). We
can find a lexicographically smallest column basis in O(nω) time. See [35].

3 Contraction representation of linear delta-matroids

In this section, we introduce a novel linear representation for delta-matroids, called contraction
representation. For the sake of clarity, we will say that the representation of a delta-matroid
as D = D(A)∆S is a twist representation. As we will see in Section 4, the contraction
representation is useful in the design of more efficient algorithms for linear delta-matroids.
We also give further results, supported by the new representation. First, we show that the
union and delta-sum of linear delta-matroids is linear. Previously, this was only known to
define delta-matroids [2, 4]. We also use this to provide a compact representation of projected
linear delta-matroids. All of these additional results will be useful in our algorithms.

3.1 Contraction representations

For a delta-matroid D = (V, F), a contraction representation of D is a pair (A, T ) where A is
a skew-symmetric matrix over a field F whose rows and columns are labelled by V ∪ T , such
that D = D(A)/T , i.e., for every F ⊆ V , F is feasible in D if and only if F ∪ T is feasible in
D(A). This is closely related to strong maps of delta-matroids. For two delta-matroids D

and D◦, D◦ is a strong map of D if there exists a delta-matroid D+ = (V ∪ Z, F) such that
D = D+ \ Z and D◦ = D+/Z (see Geelen et al. [17]). Hence, if D = (V, F) = D(A)/T is
a contraction representation of a delta-matroid D, then D is a strong map of the directly
representable delta-matroid D(A[V ]). We show that the contraction and twist representations
are equivalent.

▶ Lemma 12. Given a delta-matroid D in twist representation, we can construct a contraction
representation D = D(A)/T of D deterministically in O(n2) time.

Proof. Let D = (V, F) be given as D = D(A)∆S, S ⊆ V . For a set T of size |S|, define a
skew-symmetric matrix A′ over V ∪ T by

A′ =


T S V \S

T O I O

S −I A[S] A[S, V \ S]
V \S O A[V \ S, S] A[V \ S]


where I is an identity matrix. Note that the support graph of A′[T ∪ S] has a unique perfect
matching (namely, every vertex in T has degree one), thus Pf A′[T ∪ S] = ±1 and A′[T ∪ S]
is non-singular. Thus, we can construct the matrix A∗ = A′ ∗ (T ∪ S). Note that

(A′[T ∪ S])−1 =
(

O I

−I A[S]

)−1

=
(

A[S] −I

I O

)
,
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and consequently, the result of pivoting is

A∗ =


T S V \S

T A[S] −I −A[S, V \ S]
S I O O

V \S −A[V \ S, S] O A[V \ S]

.

Clearly, A∗ can be constructed in O(n2) time. Now by Lemma 8, for any F ⊆ V , A∗[F ∪ T ]
is non-singular if and only if A′[(F ∪ T )∆(S ∪ T )] = A′[F∆S] is. Since F∆S ⊆ V and
A′[V ] = A[V ], this is equivalent to F ∈ F(D), thereby showing that D(A∗)/T is a contraction
representation of D. ◀

▶ Lemma 13. Given a contraction representation D = D(A)/T , we can find a twist
representation of D deterministically using O(nω) field operations.

Proof. Let S ⊆ V be a set such that A[S∪T ] is non-singular; such a set exists since F(D) ̸= ∅
by assumption, and can be found efficiently over A. Then A′ = A ∗ (S ∪ T ) is well-defined.
Let A∗ = A′ \T . Observe that D = D(A)∆S, that is, for every F ⊆ V , A∗[F ∆S] = A′[F ∆S]
is non-singular if and only if A[(F∆S)∆(S ∪ T )] = A[F ∪ T ] is non-singular by Lemma 8.
All operations above can be performed in matrix multiplication time. ◀

We also observe that the contracted set T in a representation of a delta-matroid D = (V, F)
never needs to be larger than |V |.

▶ Lemma 14 (⋆). Given a contraction representation D = D(A)/T of a delta-matroid
D = (V, F), in O(nω) field operations, where n = |V | + |T |, we can find a contraction
representation D = D(A′)/T ′ where |T ′| ≤ |V |.

3.2 Constructions
We next consider an immediate way to combine two delta-matroids into a new delta-matroid,
the delta-matroid union (surveyed in the introduction). Let D1 = (V1, F1) and D2 = (V2, F2)
be two delta-matroids on not necessarily disjoint ground sets and let V = V1 ∪ V2. Define
F = F1 ⊎ F2 := {F1 ∪ F2 | F1 ∈ F1, F2 ∈ F2, F1 ∩ F2 = ∅} as the collection of sets that can
be produced as disjoint unions from F1 and F2, and write D = (V, F) = D1 ∪ D2. Then
Bouchet [2] showed that D = (V, F) is a delta-matroid. We show that furthermore, if D1
and D2 are linear or projected linear then so is D, and an ε-approximate representation can
be constructed in polynomial time. Note that we may as well assume that V = V1 = V2, by
adding the missing elements to the respective delta-matroid as loops.

▶ Lemma 15 (⋆). Let D1 = (V, F1) and D2 = (V, F2) be linear (respectively projected linear)
delta-matroids defined over a common field F and given in contraction representation. Then
the delta-matroid union D = D1 ∪ D2 is a linear (respectively projected linear) delta-matroid,
and an ε-approximate representation of D can be constructed in O(n2) field operations over
an extension field of F with at least n · ⌈1/ε⌉ elements.

Let D1 = (V1, F1) and D2 = (V2, F2) be delta-matroids on not necessarily disjoint ground
sets. Let V = V1 ∪ V2 and F = {F1∆F2 | F1 ∈ F1, F2 ∈ F2}. Then D = (V, F) is called
the delta-sum D = D1∆D2 of D1 and D2, and is itself a delta-matroid. Bouchet and
Schwärzler [4] give a proof, citing unpublished work by Duchamp for the result. We show that
the delta-sum of linear delta-matroids is linear when D1 and D2 are given as representations
over a common field. By Lemma 12, we can work with contraction representations.
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▶ Lemma 16 (⋆). The delta-sum of (projected) linear delta-matroids over a common field
is a (projected) linear delta-matroid, and a representation can be computed in randomized
polynomial time. More precisely, let D1 and D2 be linear delta-matroids given in contraction
representation over a common finite field F. Let ε > 0 be given and let F′ be a field extension
of F with at least n · ⌈1/ε⌉ elements. We can construct an ε-approximate contraction
representation of D1∆D2 in O(nω) field operations over F′.

Proof sketch. Let D1 = (V, F1) = D(A1)/T1 and D2 = (V, F2) = D(A2)/T2, w.l.o.g.
represented over the same ground set and with T1 ∩ T2 = ∅. Create three copies V ⊎ V1 ⊎ V2
of the ground set and define three sets of variables Yi = {yv,i | v ∈ V }, i = 1, 2, 3. Let

A =



V V1 T1 V2 T2

V O B1 O B2 O

V1 −B1 A1[V1] A1[V1, T1] B3 O

T1 O A1[T1, V1] A1[T1] O O

V2 −B2 −B3 O A2[V2] A2[V2, T2]
T2 O O O A2[T2, V2] A2[T2]


where Bi, i = 1, 2, 3 is a diagonal matrix whose v:th entry is yv,i. Note that A can be seen
as the sum of the representation of the disjoint union of D1 and D2 and the Tutte matrix of
the graph consisting of a disjoint union of triangles on {v, v1, v2} for every v ∈ V , where vi

is the copy of v in Vi, i = 1, 2. It now follows from the Pfaffian sum formula (Lemma 9) that
D(A)/(V1 ∪ T1 ∪ V2 ∪ T2) is an ε-approximate representation of D1∆D2. ◀

Recall that a projected linear delta-matroid D = (V, F) is a delta-matroid represented
as D = D′|X where D′ = (V ∪ X, F ′) is a linear delta-matroid. Projections of linear
delta-matroids were studied by Geelen et al. [17] in the context of linear delta-matroids over
fields of characteristic 2, and by Kakimura and Takamatsu [21] regarding generalizations of
constrained matching problems. We observe that if D is linear, then the even (respectively
odd) sets of D|X form a linear delta-matroid, and that every projected linear delta-matroid
D|X can be represented via an elementary projection.

▶ Lemma 17 (⋆). Let D = (V ∪ X, F) be a linear delta-matroid. Then the following
delta-matroids are linear and approximate representations can be constructed efficiently.
1. A linear delta-matroid D′ = (V ∪ X ′, F ′) such that D|X = D′|X ′ and |X ′| ≤ 1
2. The delta-matroid De = (V, Fe) where Fe contains the sets of F|X of even cardinality
3. The delta-matroid Do = (V, Fo) where Fo contains the sets of F|X of odd cardinality
More precisely, let D = D(A)/T in contraction representation over a finite field F and let
ε > 0 be given. Let F′ be a field extension of F with at least n · ⌈1/ε⌉ elements. We can
construct an ε-approximate contraction representation of each of the above delta-matroids in
O(n2) operations over F′.

4 Algorithms for fundamental delta-matroid problems

We now present the various algorithms over linear delta-matroids.

4.1 Max-weight feasible sets
We show an O(nω)-time algorithm for finding a max-weight feasible set in a linear delta-
matroid. More precisely, let D = (V, F) be a delta-matroid and w(v) ∈ Q, v ∈ V a set of
element weights. Let n = |V |. The goal is to find a feasible set F ∈ F to maximize the
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weight w(F ) =
∑

v∈F w(v). Note that since the feasible sets of D do not necessarily all have
the same cardinality, the negative element weights cannot easily be removed by any simple
transformation (as, e.g., shifting by a constant would affect different feasible sets differently).
This problem can be solved via the “signed greedy” algorithm, which extends the normal
greedy algorithm (in fact, like for matroids, the success of signed greedy can be taken as a
definition of delta-matroids) [3, 1]. However, this requires O(n) calls to a separation oracle.
If D is linear, this algorithm thus runs in O(nω+1) time. We show an improvement using the
contraction representation. We begin with the following observation.

▶ Lemma 18. Let D = (V, F) be a delta-matroid and w : V → Q a set of weights. Let
N ⊆ V be the set of elements v ∈ V such that w(v) < 0. Let D′ = D∆N , and define a
set of weights w′ by w′(v) = |w(v)| for every v ∈ V . For any feasible set F ∈ F , we have
w(F ) = w′(F∆N) + w(N).

Proof. The following hold: w(F ) = w′(F \ N) − w′(F ∩ N) and w′(F∆N) = w′(F \ N) +
w′(N \ F ). Thereby w(F ) − w′(F∆N) = −w′(N) = w(N) as promised. ◀

The problem of finding a max-weight feasible set in a linear delta-matroid in contraction
representation now reduces to the problem of finding a max-weight basis of a linear matroid.

▶ Theorem 2. Let D = (V, F) be a linear or projected linear delta-matroid. In O(nω) field
operations, we can find a max-weight feasible set in D.

Proof. By Lemma 17, it suffices to prove the statement for linear delta-matroids.
Let D = (V, F) and w : V → Q be given as input, and as above define N = {v ∈

V | w(v) < 0}, D′ = D∆N and w′ : V → Q where w′(v) = |w(v)| for all v ∈ V . Let
D(A)/T be a contraction representation of D′, which can be constructed using Lemma 12.
Finally, order the columns of A to begin with T and thereafter elements v ∈ V in order
of non-increasing weight w′(v). Let B be a lex-min column basis for A with respect to
this ordering. Then B can be computed in O(nω) field operations over A (see e.g., [5]),
and B is a max-weight column basis of A with respect to the weights w′. We claim that
F = (B \ T )∆N is a max-weight feasible set in D. For this, let F ∗ be a max-weight feasible
set in D with respect to the weights w. Then by Lemma 18, F ∗∆N is a max-weight feasible
set in D′ with respect to the weights w′. Hence B′ = (F ∗∆N) ∪ T is feasible in D(A) and
w′(B \ T ) ≥ w′(B′ \ T ) = w(F ∗) − w(N). On the other hand, let B be a lex-min basis of A

in the above ordering. Then T ⊆ B by construction. By Lemma 18, F = (B \ T )∆N is a
feasible set in D with w(F ) = w′(B \ T ) + w(N) ≤ w(F ∗). Hence w′(B \ T ) = w(F ∗) − w(N)
by sandwiching and w((B \ T )∆N) = w′(B \ T ) + w(N) = w(F ∗). ◀

4.2 Intersection, Parity, and Delta-Covering
Recall that the DM Parity problem is defined as follows. Let D = (V, F) be a delta-matroid
with V partitioned into n pairs Π. The problem is to find a feasible set F ∈ F minimizing the
number of broken pairs δΠ(F ) = |{P ∈ Π : |F ∩ P | = 1}|. Let δ(D, Π) = minF ∈F δΠ(F ). We
consider the equivalent DM Delta-covering problem defined as follows. Let D1 = (V, F1)
and D2 = (V, F2) be two given delta-matroids. The problem is to find F1 ∈ F1 and F2 ∈ F2
maximizing |F1∆F2|. Let τ(D1, D2) = maxFi∈Fi

|F1∆F2|. As described in Section 1, DM
Parity and DM Delta-Covering reduce to each other. Moreover, DM Covering and
DM Intersection are special cases of DM Parity and DM Delta-Covering.

We can compute τ(D1, D2) in O(nω) field operations as follows. Observe that τ(D1, D2)
is the maximum feasible set size in the delta-sum D1∆D2. By Lemma 16, we can find a linear
representation D(A)/T of D1∆D2 in O(nω) field operations. We then have τ(D1, D2) =

STACS 2025
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rank A − |T |. Thus the decision variants of DM Parity and DM Delta-Covering can be
solved in O(nω) field operations. Via self-reducibility, we obtain an algorithm that finds a
witness for DM Parity and DM Delta-Covering in O(nω+1) field operations, matching
the result of Geelen et al. [17]. We present an improvement to O(nω), using the method of
Harvey [18]. Specifically, we prove the following:

▶ Lemma 19 (⋆). Let A be an n × n skew-symmetric, non-singular polynomial matrix with
its row and column indexed by V = {v1, . . . , vn}. Suppose that A = B + Y , where (i) B is
a matrix defined over a field F containing Ω(n3) elements, and (ii) Y is the Tutte matrix
of a graph G = (V, E) with variables ye, e ∈ E. Suppose that G has connected components
C1, . . . , Cγ , with |Ci| ∈ O(1) for every i ∈ [γ]. It is possible to find an inclusion-wise maximal
set S ⊆ E for which A remains non-singular when setting ye to zero for all e ∈ S. This can
be done with probability 1 − 1/Ω(n) using O(nω) field operations over F.

Using Lemma 19, we prove Theorem 3, which yields algorithms for DM Delta-Covering
and DM Parity as well as DM Covering and DM Intersection using O(nω) field
operations (Corollary 4).

▶ Theorem 3. Let D1 = (V, F1) and D2 = (V, F2) be (projected) linear delta-matroids over
a common field with Ω(n3) elements. For a feasible set F ⊆ V in D1∆D2, we can, with high
probability, find feasible sets F1 ∈ F1 and F2 ∈ F2 with F1∆F2 = F in O(nω) field operations.

▶ Corollary 4. The following search problems can be solved in O(nω) field operations with high
probability, given (projected) linear delta-matroids on ground sets of n elements represented
over a common field with Ω(n3) elements: DM Covering; DM Delta-Covering; DM
Intersection; DM Partition; and DM Parity.

Proof sketch. We treat the problems in turn. Throughout, by Lemma 17 (and by exhaus-
tively guessing the parities of the feasible sets involved in the solution), we assume that every
delta-matroid D in the input is linear, and by Lemma 12 that it is provided in contraction
form D = D(A)/T for some skew-symmetric matrix A. We omit details of field size and
approximate representations.

DM Parity. Let the input be (D, Π) with D = D(A)/T . Construct the matching delta-
matroid DΠ of the graph with edge set Π and construct a contraction representation of
D′ = D∆DΠ using Lemma 16. Let F be a maximum feasible set in D′ and apply Theorem 3.

DM Intersection. Given input (D1, D2), construct D = D1∆D2. If ∅ is feasible in D,
then apply Theorem 3 to F = ∅; otherwise report a no-instance.

DM Partition. Given input (D1, D2), construct D = D1∆D2. If the full ground set V is
feasible in D, apply Theorem 3; otherwise report a no-instance.

DM Covering. Given input (D1, D2), construct D = D1 ∪ D2 and let F be a maximal
feasible set. Delete all elements of V \ F to create the induced delta-matroids D′

1 and D′
2

with ground set F , and apply Theorem 3 to D′ = D′
1∆D′

2.
DM Delta-Covering. Given input (D1, D2), construct D = D1∆D2 and let F be a

maximal feasible set. Apply Theorem 3 to F . ◀

Let D1 = (V, F1) and D2 = (V, F2) be two linear delta-matroids with weights w(v) ∈
N, v ∈ V . We consider the intersection problem, where the goal is to find a common
feasible set F ⊆ V , i.e., F ∈ F1 and F ∈ F2. The decision problem, i.e., whether there exists
F ∈ F1 ∩F2, can be solved in O(nω) by testing whether V is feasible in the delta-sum D1∆D∗

2 .
Moreover, we can find a common feasible set in O(nω) time using Theorem 3. We next
give a (pseudo)polynomial-time randomized algorithm for the Weighted Delta-matroid
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Intersection, where we are tasked with finding a common feasible set of maximum weight,
answering an open question of Kakimura and Takamatsu [21]. Previously, there has been no
polynomial-time algorithm even for the unweighted case.

▶ Theorem 5. Let D1 = (V, F1) and D2 = (V, F2) be (projected) linear delta-matroids over
a common field with Ω(n2) elements and let w : V → {1, . . . , W} be element weights. In
O(Wnω) field operations we can find with high probability the maximum weight of a common
feasible set F ∈ F1 ∩ F2. In particular, we can find the maximum cardinality of |F | in O(nω)
field operations with high probability.

5 Conclusions

We have introduced a novel representation for linear delta-matroids, the contraction represen-
tation, which enable us to derive a range of new results, including linear representations of
delta-matroid union and delta-sum, and faster algorithms for various problems including Lin-
ear Delta-Matroid Parity. We also show the first (pseudo)polynomial-time, randomized
algorithms for the maximum cardinality and weighted versions of Linear Delta-Matroid
Intersection, solving an open question of Kakimura and Takamatsu [21].

We note a few open questions. First, all our running times are stated purely in terms
of the number of elements n. It would be interesting to explore faster algorithms for linear
delta-matroids of bounded “rank”. But we also note two specific challenging questions.
1. Is there a strongly polynomial-time algorithm for Weighted Linear Delta-Matroid

Parity, extending the recent result for Weighted Linear Matroid Parity [20]?
2. Is there a Õ(Wnω)-time algorithm for Shortest Disjoint S-Paths? This would extend

results for graph matching [9].
Additionally, does there exist a good characterization of, and/or a deterministic algorithm
for the maximum cardinality version of Linear Delta-Matroid Intersection?
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