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Abstract
The Necklace Splitting problem is a classical problem in combinatorics that has been intensively
studied both from a combinatorial and a computational point of view. It is well-known that the
Necklace Splitting problem reduces to the discrete Ham Sandwich problem. This reduction was
crucial in the proof of PPA-completeness of the Ham Sandwich problem. Recently, Borzechowski,
Schnider and Weber [ISAAC’23] introduced a variant of Necklace Splitting that similarly reduces
to the α-Ham Sandwich problem, which lies in the complexity class UEOPL but is not known to
be complete. To make this reduction work, the input necklace is guaranteed to be n-separable.
They showed that these necklaces can be fairly split in polynomial time and thus this subproblem
cannot be used to prove UEOPL-hardness for α-Ham Sandwich. We consider the more general unfair
necklace splitting problem on n-separable necklaces, i.e., the problem of splitting these necklaces
such that each thief gets a desired fraction of each type of jewels. This more general problem is the
natural necklace-splitting-type version of α-Ham Sandwich, and its complexity status is one of the
main open questions posed by Borzechowski, Schnider and Weber. We show that the unfair splitting
problem is also polynomial-time solvable, and can thus also not be used to show UEOPL-hardness
for α-Ham Sandwich.
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1 Introduction

One of the most famous theorems in fair division is the Ham Sandwich theorem [23]. It
states that any d point sets in Rd can be simultaneously bisected by a single hyperplane.
The Ham Sandwich theorem is closely related to another fair division theorem that lives
in R; the Necklace Splitting theorem. It states that given n point sets in R (a necklace with
n types of jewels), we can split the real number line at n points such that when we partition
the resulting pieces alternatingly, each of the two parts contains exactly half of the jewels
of each type. In fact, the Necklace Splitting theorem can be proven by lifting the necklace
to the moment curve in Rn, which is the curve parameterised by (t, t2, t3, . . . , tn), and then
applying the Ham Sandwich theorem.

Under some additional assumptions on the input points, the Ham Sandwich theorem
can be significantly strengthened: If the input point sets are well-separated and in general
position, the α-Ham Sandwich theorem [22] says that we can not only simultaneously bisect
each point set, but we can for each i choose any number 1 ≤ αi ≤ |Pi|, and find a single
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71:2 Unfairly Splitting Separable Necklaces

hyperplane that cuts off exactly αi points from each point set Pi. Informally, a family
of point sets is well-separated if the union of any subfamily can be separated from the
union of the complement subfamily by a single hyperplane. Borzechowski, Schnider and
Weber [6] introduced an analogue of this well-separation condition for necklaces: A necklace
is n-separable, if any subfamily can be separated from the complement subfamily by splitting
the necklace at at most n points. It is shown in [6] that a necklace is n-separable if and only
if its lifting to the moment curve is well-separated.

Existence theorems such as the Ham Sandwich and the Necklace Splitting theorem can
also be viewed from the lens of computational complexity. The corresponding problems are
total search problems, i.e., problems in which a solution is always guaranteed to exist, but
the task is to actually find a solution. In this setting, the strategy used above to prove
the Necklace Splitting theorem using the Ham Sandwich theorem also yields a reduction
from the Necklace Splitting problem to the Ham Sandwich problem. This reduction was
crucial for establishing the PPA-hardness of the Ham Sandwich problem, which is since
known to be PPA-complete [12]. The α-Ham Sandwich problem is known to lie in the
subclass UEOPL ⊆ PPA [8], but no matching hardness result is known. It is thus natural
to ask whether UEOPL-hardness of α-Ham Sandwich could be proven by reduction from a
Necklace Splitting problem on n-separable necklaces. Borzechowski, Schnider and Weber [6]
showed that the classical (fair) Necklace Splitting problem on n-separable necklaces is
polynomial-time solvable and thus very unlikely to be UEOPL-hard. However, the natural
necklace-splitting-type analogue of α-Ham Sandwich would actually allow for unfair splittings
on n-separable necklaces, where the first of the two thieves should get exactly αi jewels of
type i, for some input vector α. We settle the complexity status of this problem variant
by providing a polynomial-time algorithm. This completely disqualifies Necklace Splitting
variants on n-separable necklaces as possible problems to prove UEOPL-hardness of α-Ham
Sandwich.

We would like to note that necklace splitting and its extensions to higher dimensions
and larger numbers of thieves, as well as other related problems have enjoyed much research
interest [1, 2, 4, 5, 7, 10, 11, 13, 14, 17, 20, 21].

1.1 Results
Before we can state our results we have to begin with the most crucial definitions.

▶ Definition 1 (Necklace). A necklace is a family C = {C1, . . . , Cn} of disjoint finite point
sets in R. The sets Ci are called colours, and each point p ∈ Ci is called a bead of colour i.

We align the following definition of α-cuts in necklaces as closely as possible with the
definition of α-cuts in the α-Ham Sandwich theorem (which we will define later). We require
that an α-cut of a necklace splits the necklace at exactly one bead per colour, called the cut
point. Furthermore, the parity of the permutation of how these cut points appear along R
determines whether the first part of the necklace is given to the first or the second thief. Let
us make this definition more formal.

▶ Definition 2 (α-Cut). Let C = {C1, . . . , Cn} be a necklace. A set of n cut points s1, . . . , sn

such that for all i we have si ∈ Ci defines the subset C+ of C1 ∪ . . . ∪ Cn that is assigned
to the first thief as follows. We first add the points s0 := −∞ and sn+1 := ∞, and let
π : {0, . . . , n + 1} → {0, . . . , n + 1} be the permutation such that sπ(0) < . . . < sπ(n+1). We
then get the two sets of closed intervals Aeven := {[sπ(i), sπ(i+1)] | 0 ≤ i ≤ n, i even} and
Aodd := {[sπ(i), sπ(i+1)] | 0 ≤ i ≤ n, i odd}. Let A+ be Asgn(π), i.e., the set of intervals
corresponding to the parity of π. Then, {s1, . . . , sn} is called an α-cut of C for the vector
α = (α1, . . . , αn), where αi = |A+ ∩ Ci|.
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Definition 2 is illustrated in Figure 1.

R

Aeven

Aodd

Figure 1 A 3-separable necklace with three colours C1 (red), C2 (green), and C3 (blue). In each
colour, the point illustrated as a square is chosen as the cut point si. This defines the intervals
Aeven illustrated above the necklace, and the intervals Aodd illustrated below. The cut points are
coloured 1 3 2 when ordered increasingly. Since the parity of the permutation 0 1 3 2 4 is odd,
A+ = Aodd. The filled points are thus exactly those in A+, and A− consists of the square cut points
and the empty circles. Thus this cut is (the unique) (4, 1, 3)-cut.

With this definition, n-separability of the necklace and the α-Ham Sandwich theorem
guarantee a unique α-cut for every vector α fulfilling 1 ≤ αi ≤ |Ci|, as we will see later. We
are now ready to define the α-Necklace-Splitting problem.

▶ Definition 3 (α-Necklace-Splitting). Given an n-separable necklace C with n colours,
and a vector α = (α1, . . . , αn) with 1 ≤ αi ≤ |Ci|, the α-Necklace-Splitting problem is
to find the unique α-cut of C.

We are now ready to introduce our results.

▶ Theorem 4. α-Necklace-Splitting is polynomial-time solvable.

We contrast this result by showing that without the promise of n-separability, the
associated decision problem is NP-complete.

▶ Theorem 5. Given a necklace C with n colours, and a vector α = (α1, . . . , αn) with
1 ≤ αi ≤ |Ci|, the problem of deciding whether C has an α-cut is NP-complete.

Note that Borzechowski, Schnider and Weber [6] proved that it is possible to check whether
a given necklace is n-separable in polynomial time. This is in contrast to the Ham Sandwich
setting, where it has been shown that checking well-separation is co-NP-complete [3].

1.2 Proof Techniques
The algorithm of Borzechowski, Schnider and Weber [6] relies on the following core observation:
If some colour only appears in the necklace in two components (i.e., consecutive intervals
of R that contain only points of this colour), the smaller of the two components can be
discarded since the cut point of that colour must lie in the larger component. While for fair
splitting this follows quite immediately – the larger component must be split, otherwise the
cut cannot be fair – this observation does not generalise to unfair splitting. We thus have to
use a more complicated approach.

We first show that under the promise of n-separability the number of colours that consist
of more than two consecutive components is bounded by a constant. For each of these colours
we can guess in which component the cut point of this colour lies. For each guess we reduce
each of these colours to the single component containing the cut point, and try to compute
the α-cut for the resulting necklace. For one of these guesses, the resulting α-cut must be
adaptable to an α-cut of the original necklace. To compute the α-cut for these necklaces (in
which now every colour consists of at most two components), we reduce the necklace further
according to some reduction rules similar to those in [6]. This process will eventually come

STACS 2025
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to an end; we will reach an irreducible necklace. Here comes the crucial part of our proof:
We will show that for each n, the irreducible necklaces with n colours all have the same walk
graph (as introduced in [6] and below in Section 2). We translate α-Necklace-Splitting
on irreducible necklaces into an integer linear program (ILP), and use the rigid structure
of irreducible necklaces to show that the primal graph of this ILP has constant treewidth.
Using the FPT algorithm of Jansen and Kratsch [15], we can thus solve these ILPs efficiently.

For the NP-hardness proof of the decision version of α-Necklace-Splitting we use a
reduction from e3-Sat.

2 Preliminaries

Let us first formally introduce separability, as defined by Borzechowski, Schnider and
Weber [6].

▶ Definition 6 (Separability). A necklace C is k-separable if for all A ⊆ C there exist
k separator points s1 < . . . < sk ∈ R that separate A from C \ A. More formally, if we
alternatingly label the intervals (−∞, s1], [s1, s2], . . . , [sk−1, sk], [sk, ∞) with A and A (starting
with either A or A), for every interval I labelled A we have I ∩

⋃
c∈(C\A) c = ∅ and for every

interval I ′ labelled A we have I ′ ∩
⋃

c∈A c = ∅.
The separability sep(C) of a necklace C is the minimum integer k ≥ 0 such that C is

k-separable.

We call each maximal set of consecutive points that have the same colour c a component
of c. We say a colour c is an interval, if it consists of exactly one component. In other words,
a colour c is an interval if its convex hull does not intersect any other colour c′.

Borzechowski, Schnider and Weber further showed that n-separability is strongly related
to the notion of well-separation.

▶ Definition 7. Let P1, . . . , Pk ⊂ Rd be point sets. They are well-separated if and only if for
every non-empty index set I ⊂ [k], the convex hulls of the two disjoint subfamilies

⋃
i∈I Pi

and
⋃

i∈[k]\I Pi can be separated by a hyperplane.

▶ Lemma 8 ([6]). Let C be a set of n colours in R. Let C ′ be the set of subsets of Rn obtained
by lifting each point in each colour of C to the n-dimensional moment curve using the function
f(t) = (t, t2, . . . , tn). Then the set C is n-separable if and only if C ′ is well-separated.

The following theorem due to Steiger and Zhao [22] shows that we can always unfairly
bisect well-separated point sets.

▶ Lemma 9 (α-Ham-Sandwich Theorem, [22]). Let P1, . . . , Pn ⊂ Rn be finite well-separated
point sets in general position, and let α1, . . . , αn be positive integers with αi ≤ |Pi|, then there
exists a unique (α1, . . . , αn)-cut, i.e., a hyperplane H that contains a point from each colour
and such that for the closed positive halfspace H+ bounded by H we have |H+∩Pi| = αi. Here,
the positive side of a hyperplane H containing one point pi per point set Pi is determined by
the orientation of these pi, i.e., for any point h ∈ H+ the simplex (p1, . . . , pn, h) is oriented
positively.

Note that the (α1, . . . , αn)-cut in Lemma 9 is defined by one point from each colour,
and the positive side of the cut is determined by the orientation of these points on the
hyperplane. This is the motivation of the similar restrictions in our definition of an α-cut in
α-Necklace-Splitting (Definition 2).
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Through the classical reduction of Necklace Splitting to the Ham-Sandwich problem
obtained by lifting the points to the moment curve, as it appeared in many works before [9,
12, 16, 19], we can easily obtain the following theorem.

▶ Theorem 10. α-Necklace-Splitting always has a unique solution.

Proof (sketch). By Lemma 8, the point sets lifted to the moment curve are well-separated,
and thus Lemma 9 applies. α-Necklace-Splitting thus always has a solution, and
uniqueness follows from the fact that two different solutions of α-Necklace-Splitting
would lift to different solutions of α-Ham Sandwich. ◀

To argue about the separability of necklaces, we use the view of walk graphs that were
also introduced in [6].

▶ Definition 11 (Walk graph). Given a necklace C, the walk graph GC is the multigraph
with V = C and with every potential edge {a, b} ∈

(
V
2
)

being present with the multiplicity
equal to the number of pairs of points p ∈ a, p′ ∈ b that are neighbouring.

Note that given a necklace C as a set of point sets, the walk graph can be built in linear
time in the size of the necklace N :=

∑
c∈C |c| .

Recall that a graph is Eulerian if it contains a Eulerian tour, a closed walk that uses all
edges exactly once. A graph is semi-Eulerian if it contains a Eulerian path, a (not necessarily
closed) walk that uses all edges exactly once.

▶ Observation 12. The walk graph of a necklace is connected and semi-Eulerian, and thus
at most two vertices have odd degree.

The separability of a necklace turns out to be equivalent to the max-cut in its walk graph.

▶ Definition 13 (Cut). In a (multi-)graph G on the vertices V , a cut is a subset A ⊆ V .
The size µ(A) of a cut A is the number of edges {u, v} in G such that u ∈ A and v ̸∈ A. The
max-cut, denoted by µ(G), is the largest size of any cut A ⊆ V .

▶ Lemma 14 ([6]). For every necklace C, we have sep(C) = µ(GC).

3 Tractability of the Search Problem

In this section we prove Theorem 4 by providing a polynomial-time algorithm for α-
Necklace-Splitting. As mentioned above, the algorithm works in two main phases.

In the first phase, the necklace is first reduced to a necklace where each colour consists of
at most two components by guessing the correct component to cut for colours with three
or more components. The necklace with only colours with at most two components is then
further reduced to an irreducible necklace.

In the second phase, we reduce necklace splitting in an irreducible necklace to a labelling
problem of its walk graph. This labelling problem is then modelled as an integer linear
program, which turns out to be tractable in polynomial time. To prove that this ILP is
tractable, we prove some strong structural properties about the walk graphs of irreducible
necklaces.
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3.1 Reducing Necklaces
Instead of solving α-Necklace-Splitting, we will actually solve the following slightly more
general problem. Given a vector α = (α1, . . . , αn), we define the complement vector α as the
vector (|C1| − α1 + 1, . . . , |Cn| − αn + 1). If α denotes the number of points per point set
on the positive side of a cut, α denotes the number of points on the other side, both sides
including the cut points. Since the cut parity can change in our reduction steps and thus the
positive side may become the negative side and vice versa, the following problem is nicer to
solve recursively than α-Necklace-Splitting.

▶ Definition 15. α-α-Necklace-Splitting
Input: An n-separable necklace C = {C1, . . . , Cn},

a vector α = (α1, . . . , αn), αi ∈ {1, . . . , |Ci|}.
Output: A pair (S, S), where S is the unique α-cut and S the unique α-cut.

3.1.1 Reducing to at most two components per colour
In this section we will algorithmically reduce α-α-Necklace-Splitting to the following
subproblem, where each colour in the necklace consists of at most two components.

▶ Definition 16. α-α-Necklace-Splitting2

Input: An n-separable necklace C = {C1, . . . , Cn}, where each colour has at most 2
components, and a vector α = (α1, . . . , αn), αi ∈ {1, . . . , |Ci|}.

Output: A pair (S, S), where S is the unique α-cut and S the unique α-cut.

Our reduction is based on the following observation, proven in the full version of this
paper.

▶ Lemma 17. Let C be an n-separable necklace with n colours for n ≥ 8. Then in the
necklace at least one of the following must be true:

(i) there are two neighbouring intervals, or
(ii) there is no colour with more than four components, and at most two colours have more

than two components.

The proof of Lemma 17 as well as the proofs of many other structural results on n-
separable necklaces in this paper and in [6] rely on Lemma 14 and the following bound that
is a corollary of a theorem of Poljak and Turzík.

▶ Corollary 18 ([18]). A connected (multi-)graph G with n vertices and m edges has a
maximum cut µ(G) of at least ω(G) := m

2 + n−1
4 .

This corollary directly gives a bound on the number of edges in the walk graph of an
n-separable necklace. By this we can also bound the degree distribution of the vertices in
the walk graph and therefore also the distribution of the numbers of components of colours
in the necklace.

Algorithmically, the conditions (i) and (ii) can be used as follows. If there are two
neighbouring intervals, since an α-cut must go through exactly one bead of each colour, there
must be a cut in both intervals. Moreover, in between these cuts there is no other cut point.
Therefore, we remove the two intervals and solve on the newly obtained necklace recursively.
Finally, we add the cuts at the right positions in the removed intervals.

If there are no neighbouring intervals, condition (ii) states that at most two colours
have more than two components. The strategy will be to look at these colours and test
out every possible component per colour. Again by condition (ii), this requires at most
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4 · 4 = 16 ∈ O(1) tests. That is, for each colour with more than two components we fix a
component and remove all other components of that colour. In this smaller necklace (that
still consists of n colours) we recursively solve for an α-cut. The necklace for the recursive
call will then be a necklace where each colour has at most two components, so we need to
solve an α-α-Necklace-Splitting2 instance in the recursive step.

Since there must be an α-cut, one combination of components must lead to a smaller
necklace whose α-cut can be augmented by inserting the cut of each colour in the fixed
component.

Note that for our recursive calls to be valid, we also need that removing neighbouring
intervals yields a (n − 2)-separable necklace on n − 2 colours, and removing all but one
component from a colour does not destroy n-separability either. Both of these facts are
shown in [6, Lemmas 19 and 20].

This lets us conclude the following proposition.

▶ Proposition 19. Let T2(n, N) be the time to solve α-α-Necklace-Splitting2 on an
n-separable necklace with n colours and a total of N beads. Then α-α-Necklace-Splitting
on an n-separable necklace with a total of N beads and n colours can be solved in at most
O(T2(n, N) + n · N) time.

Proof. We describe an algorithm for α-α-Necklace-Splitting in this proof, pseudocode
of this algorithm can be found in the full version of this paper.

As a base case, for n small enough (n < 8) we simply apply a brute force algorithm that
iterates through every possible cut and checks if it has found the α-cut or α-cut. Otherwise,
the algorithm proceeds as follows.

In a first step, neighbouring intervals are removed from the necklace and the α- and α-cut
is computed in the obtained necklace recursively. Then in these cuts the right cuts are added
in the removed intervals to get the α- and α-cut. We need to make sure to maintain the
cut parity when inserting these cuts, so the algorithm checks first if the cut parity switches
when inserting these cuts and if yes, it swaps the α- and α-cuts obtained by the recursive
call. That is, if the cut parity switches, the algorithm uses the obtained α-cut and turns it
into the α-cut by inserting the correct cuts in the removed intervals (and similarly turns the
α-cut into an α-cut).

If there are no neighbouring intervals in the necklace, the algorithm determines the set
of all colours with at least three components, call this set C3. If C3 is empty, the necklace
consists only of colours each having at most two components, so we can use an algorithm for
α-α-Necklace-Splitting2 to compute the α- and α-cut.

Otherwise, if C3 is not empty, the algorithm iterates over all combinations of components
of colours in C3. That is, each iteration considers a choice (ci1 , . . . , ci|C3|

) of exactly one
component cik

of each colour Cik
in C3. In this iteration, all components from colours in C3

except the components from the current choice are removed. We obtain a necklace that still
consists of n colours but each colour has at most two components. Therefore, we can use
an algorithm for α-α-Necklace-Splitting2 to find an α- and α-cut in the new necklace.
However, since we removed beads from the colours in C3 the α vector might be invalid for
this necklace. We therefore use a dummy α value of 1 for these colours. Then the algorithm
checks if the obtained cuts can be turned to the corresponding α- or α-cut by shifting the
cuts along the beads within the components of the current iteration.

To show that the algorithm is correct, we need to show that the algorithm returns
the correct result in the case when removing neighbouring intervals, and in the case when
removing the components from colours with at least three components.
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71:8 Unfairly Splitting Separable Necklaces

We first consider the case when removing neighbouring intervals. Note that inserting cuts
in neighbouring intervals either changes the parity of the cut permutation for all cuts or for
no cut. This can be seen as moving neighbouring intervals as a pair cannot add additional
inversions to the cut permutation. Thus, moving them to the beginning of the necklace, there
are always either an even or an odd number of inversions, regardless of the cut to augment.
We can therefore indeed check whether inserting the cuts in the intervals changes parity and
if it does we swap the α- and α-cut of the necklace from the recursive call. This way, we
make sure that when inserting the correct cut points in the removed intervals, the obtained
cuts are indeed valid α- and α-cuts. This shows that in this case the algorithm returns the
unique α- and α-cuts.

Next we show that the cut returned for the case when there are colours with at least
three components is correct. We only argue for the α-cut, the case for the α-cut is analogous.
Notice that in the unique α-cut there is exactly one component per colour in C3 where the
cut lies in. Therefore, there must be one iteration for exactly that choice of components. For
that iteration, the cut obtained by the call of the algorithm for α-α-Necklace-Splitting2
is a valid α-cut in the necklace C ′ for all colours except the ones in C3, where C ′ is the
necklace obtained by removing all components from colours in C3 except the components
from the current choice. Then the α-cut in C ′ can be shifted to an α-cut in C. Observe that
we do not have to worry about changing cut parities, since the necklace C ′ works on the
same set of colours and the cuts are only shifted within components, so the cut permutation
does not change. Hence, the cut obtained in this case will be the correct α-cut.

For the runtime analysis note that the brute force step takes O(N) time. Moreover, as
long as there are neighbouring intervals the algorithm takes O(N) per recursive call. In each
recursive call the number of colours decreases by 2, so there are at most O(n) iterations.
Hence, the runtime for removing neighbouring intervals is at most O(n · N).

By Lemma 17 we have |C3| ≤ 2 and each colour in C3 has at most four components.
Therefore, the number of iterations over components of C3 is constant, where each iteration
takes time O(T2(n, N) + N).

Hence, the total runtime is O(n · N + T2(n, N) + N) = O(T2(n, N) + n · N). ◀

3.1.2 Further reductions until irreducibility
To solve the α-α-Necklace-Splitting2 problem we perform some further reductions to
reach a necklace that we cannot further reduce using any techniques known to us, which we
will call irreducible.

▶ Definition 20. An n-separable necklace C is called irreducible if and only if all of the
following conditions hold.

(i) All colours have at most two components,
(ii) there are no neighbouring intervals,
(iii) neither the first nor the last component is an interval,
(iv) the first and the last component are of different colours.

We thus reduce α-α-Necklace-Splitting2 to the following subproblem.

▶ Definition 21. α-α-Irr-Necklace-Splitting

Input: An n-separable irreducible necklace C = {C1, . . . , Cn},
a vector α = (α1, . . . , αn), αi ∈ {1, . . . , |Ci|}.

Output: A pair (S, S), where S is the unique α-cut and S the unique α-cut.
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To perform this reduction, we search for violations of any of the conditions (ii) to (iv)
in Definition 20. Note that although we already removed all neighbouring intervals in Sec-
tion 3.1.1, neighbouring intervals may have been reintroduced by removing some components
from the necklace when removing components from colours, or may be reintroduced now
when dealing with any of the other three violations in the further reduction.

In the following we show how the α-cut can be computed for each of the violations to
conditions (ii) to (iv). We already know how to deal with violations to condition (ii), i.e.,
neighbouring intervals, from the previous subsection.

If condition (iii) is violated because the first component is an interval, the idea is to
remove that colour and solve recursively on the smaller instance C ′. To obtain an α-cut we
take either the α-cut or the α-cut in C ′ and add the cut the first component at the correct
bead. Note that if the first component is of colour Ci and the number of colours Cj ∈ C ′

such that j < i is odd, then augmenting the cut will switch the parity of the cut permutation,
since adding the first cut in Ci /∈ C ′ adds an odd number of inversions to the permutation.
Moreover, adding a cut in the first component flips the positive and the negative side of the
rest of the necklace once more. Thus, if the first component is such that the cut permutation
parity does not flip, we extend the α-cut of C ′, and otherwise the α-cut.

The same idea is applied if the last component is an interval Ci. We again remove this
colour, solve recursively and add a cut in the last component. In this case, adding the cut to
the last component does not additionally flip the positive and negative side of the rest of the
necklace, but the permutation flips parity if the number of colours Cj ∈ C ′ such that j > i is
odd.

It is easy to see that removing an interval at the beginning or the end of the necklace
decreases the separability by 1, since this interval can always be put on the correct side of a
cut so one cut is needed to separate it from the rest. Thus, C ′ is indeed (n − 1)-separable,
and the recursive call is legal.

If condition (iv) is violated because the first and last component are of the same colour,
we use a similar idea. We obtain the necklace C ′ by removing this colour. Note again that
C ′ is (n − 1)-separable. We again use recursion to get an α- and α-cut for the remaining
colours in C ′. The α-cut in C can now be found by trying to augment both the α-cut and
the α-cut of C ′ by inserting a cut in the first or last component. At least one of the two
augmentations must succeed as removing the cut in Ci from the unique α-cut in C must
yield either the α- or the α-cut of C ′. Similarly, we can also find the α-cut of C.

For the sake of completeness we give pseudocode for the way these reductions can be
implemented in the full version of this paper. From the arguments above it follows that the
algorithm is correct and runs in O(Tirr(n, N) + n · N) time, where Tirr(n, N) is the time
needed to solve α-α-Irr-Necklace-Splitting. This proves the following proposition.

▶ Proposition 22. Let Tirr(n, N) be the time to solve α-α-Irr-Necklace-Splitting on an
n-separable irreducible necklace with n colours and a total of N beads. Then α-α-Necklace-
Splitting2 on an n-separable necklace with a total of N beads and n colours can be solved
in at most O(Tirr(n, N) + n · N) time.

3.2 Structure of Irreducible Necklaces

To be able to solve α-α-Irr-Necklace-Splitting, we will first analyse the structure of the
walk graphs of irreducible necklaces.
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Figure 2 The graphs N7 to the left and N8 to the right.

First, we claim that the walk graphs G = (V, E) of irreducible necklaces with n colours
can be characterised as follows. A proof of this can be found in the full version of this paper,
but the lemma follows quite straightforwardly from Definition 20.

▶ Lemma 23. A graph G = (V, E) on n vertices is the walk graph of an irreducible necklace
with n colours if and only if it satisfies all of the following conditions.
a) G is semi-Eulerian but not Eulerian,
b) for all vertices v ∈ V we have deg(v) ∈ {2, 3, 4},
c) there are no adjacent vertices of degree 2,
d) the maximum cut of G is at most µ(G) ≤ n .

If a graph G is the walk graph for some irreducible necklace, we call G an irreducible
walk graph. We will see that all irreducible walk graphs on n vertices are isomorphic. In
particular, we claim that the walk graph is isomorphic to the graph Nn defined as follows.

▶ Definition 24. The cycle graph Cn is the cycle on the vertex set [n]. The graph P odd
n−1 is

the graph with vertex set [n] and edge set

E(P odd
n−1) =

{
{2i − 1, 2i + 1} | i ∈

[
⌊n − 1

2 ⌋
]}

,

that is P odd
n−1 is the graph on vertex set [n] with a path of length ⌊(n − 1)/2⌋ starting at vertex

1 and skipping every other vertex. Now the graph Nn obtained by taking the union of the
edges in Cn and in P odd

n−1 is called the irreducible necklace graph of size n.

See Figure 2 for two examples of these graphs. Solving α-α-Irr-Necklace-Splitting
heavily relies on the following proposition.

▶ Proposition 25. Let C be an irreducible necklace with n colours for some n ≥ 3. The walk
graph G of C is isomorphic to Nn.

The proof of this proposition is quite technical and lengthy. Moreover, the proof itself is not
instructive for the further design of the algorithm. We thus only present the proof in the full
version of this paper.

3.3 Splitting Irreducible Necklaces
As mentioned above, we will solve α-α-Irr-Necklace-Splitting by formulating it as an
edge labelling problem in the walk graph, which will then be formulated as an integer linear
program (ILP). While at first glance a reduction to an ILP might be counterintuitive due
to the NP-completeness of ILP, it turns out that in our special case the ILP is tractable in
polynomial time.
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Figure 3 Turning the walk graph to the label graph for n = 7 (left) and n = 8 (right). The
coloured edges and vertices are added to the walk graph to obtain the label graph.

3.3.1 The cut labelling problem

Recall that the edges of the walk graph correspond to intervals between beads of the necklace
– where one of the beads is the last bead of one component and the other is the first bead of
a component of some different colour. Any choice of one component per colour to put a cut
point puts some of these intervals on the positive side of the cut, and others on the negative
side. In this way, such a choice of components induces a labelling of the edges of the walk
graph by “positive” and “negative”. Of course, not every labelling corresponds to a cut. We
will now collect some properties of labellings that do correspond to cuts.

For every component of a colour c there are two edges (except if the component appears at
the beginning or at the end of the necklace): one edge corresponding to the change of colours
when entering the component and one edge when leaving the component. We call these pairs
of edges traversals. For a vertex v define trav(v) := {(e, e′) ∈ E ×E | e, e′ is a traversal of v}
to be the set of traversals of v. The two edges of a traversal are labelled the same if and
only if the corresponding component is not chosen to contain a cut point. Thus, if we now
consider a vertex corresponding to an interval, it must have exactly one positively labelled
incident edge, and one negatively labelled incident edge. Since a colour has exactly one
component with a cut point, a bicomponent that is neither the first nor the last colour of the
necklace must have either one positive and three negative, or one negative and three positive
incident edges.

The edges of the walk graph only contain information about the intervals between
components of the necklace. However, we additionally know that if n is even, the interval
from −∞ to the first cut point and the interval from the last cut point to ∞ must be on the
same side of the cut, as there is an even number of cut points. Similarly for n odd, the two
intervals are on opposite sides of the cut. To capture this information in the edge labelling,
we slightly modify our walk graph. We add an edge between the vertices corresponding
to the first and last component if n is even, or a subdivided edge (with a new degree two
vertex) between these two vertices if n is odd. This newly obtained graph is called the
label graph (see Figure 3). We see that a choice of one component per colour also induces a
labelling of these newly added edges. When n is odd, we see that the two edges incident to
the newly introduced vertex v must have different labels, just like if v was a regular vertex
corresponding to an interval.

So far, all of our properties are invariant under flipping the labelling of all edges. However,
by the cut permutation, any choice of one component per colour fixes the positive side of the
cut. We can see that for every labelling fulfilling the previous properties, exactly one of the
labelling and its inverse are actually the labelling induced by some cut.
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We thus have now found a characterisation of the labellings that are induced by choices
of one component per colour to cut. However, we are interested only in α-cuts. We thus
would now like to characterise the labellings that are induced by α-cuts.

Clearly, if both edges of a traversal (e, e′) are labelled negative, all beads of the corres-
ponding component c of colour Cv must lie on the negative side of the cut. This cut can only
be an α-cut if αc is low enough, i.e., αv ≤ |Cv| − |c|. Similarly, if both edges were labelled
positive, we would have to have αv ≥ |c| + 1. It turns out that if an edge labelling of the
label graph fulfils this condition for some fixed α, we can actually place the cut points in the
corresponding components to get an α-cut. We thus define the following problem.

For notational convenience we let e(v, i, 1) and e(v, i, 2) be the two edges corresponding
to the i-th traversal of the vertex v. That is, (e(v, i, 1), e(v, i, 2)) ∈ trav(v), and this traversal
corresponds to the i-th component of that colour. In our case e(v, i, j) is only defined for
i ∈ {1, 2} for every vertex; for intervals only for i = 1. We furthermore define wv(i) as the
size of the i-th component of colour v.

▶ Definition 26. We define α-Cut-Labelling as the following problem.
Input: The label graph G = (V, E) of some n-separable irreducible necklace C = {C1, . . . , Cn},
and a vector α = (α1, . . . , αn), αi ∈ {1, . . . , |Ci|}.
Output: A subset of the edges P ⊆ E to be labelled positively (the negatively labelled edges
are N := E \ P) such that:
(1) ∀v ∈ V : |{e ∈ P | v ∈ e}| ∈ {1, 3},
(2) ∀v ∈ V, i ∈ {1, 2} : {e(v, i, 1), e(v, i, 2)} ⊆ P =⇒ αv ≥ wv(i) + 1,
(3) ∀v ∈ V, i ∈ {1, 2} : {e(v, i, 1), e(v, i, 2)} ⊆ N =⇒ αv ≤ |Cv| − wv(i),
(4) all edges in P lie on the positive side of the cut induced by the labelling (P, N ).

A solution of an α-Cut-Labelling instance for a given α-vector is called an α-labelling.
The concluding result of this section is the following.

▶ Proposition 27. Let Tlab(n) be the time required to solve α-Cut-Labelling on the label
graph of any irreducible necklace with n colours. We can solve α-α-Irr-Necklace-Splitting
on any necklace with n colours and N total beads in time O(Tlab(n, N) + N).

Proof. To solve α-α-Necklace-Splitting on the necklace C we simply solve α-Cut-
Labelling and α-Cut-Labelling on its label graph and translate the labellings back to α-
and α-cuts. We only consider the α-labelling, since the case for α works exactly the same
way.

We begin by placing a cut point in the first or last bead of each component that is cut
according to the α-labelling. Thanks to conditions (1) and (4) of an α-labelling, this already
yields an α′-cut for some other α′. The cut points can now be moved within their components.
Moving the cut point of colour v within its component only changes the number of points
on the positive side of colour v and leaves other colours unaffected. Moving the cut point
from one side of the component to the other allows us to include any number of points of
the component on the positive side, from 1 point up to all points. Thanks to conditions (2)
and (3), each cut point can be moved such that exactly αv points of the colour are on the
positive side. We have thus reached an α-cut we can return. Since this movement can be
computed for each colour individually, it can be performed in O(N). The label graph can
also be computed in O(N), and thus the statement follows. ◀

Note that for a given α, there must be a unique α-labelling, since applying the strategy
in the proof above to distinct α-labellings would yield distinct α-cuts, a contradiction to the
α-Ham Sandwich theorem.
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3.3.2 An ILP formulation

In this section we model α-Cut-Labelling as an Integer Linear Program (ILP). To do this,
we formulate an ILP such that any solution of the ILP corresponds to a labelling fulfilling
conditions (1)–(3) in Definition 26 and vice versa. Condition (4) can then be addressed by
observing that for a given instance of α-Cut-Labelling there are only a constant number
of labellings fulfilling conditions (1)–(3): namely the labelling induced by the α-cut and the
labelling induced by the α-cut, but with the label of all edges swapped. Instead of merely
solving for one solution of the ILP, we will later just enumerate all feasible solutions and
check the result against condition (4).

Our ILP formulation will only use binary variables. For the sake of clarity we use bold
face for variables in our ILP. To model that each edge is either labelled positively or negatively,
we introduce two binary variables per edge. For each edge e in the label graph add two
binary variables pe and ne with the interpretation that pe = 1 ⇐⇒ e is labelled positive
and ne = 1 ⇐⇒ e is labelled negative. Since any edge must have exactly one label we add
the constraint pe + ne = 1 for every edge e.

To model constraints on traversals, we introduce new binary variables pv,i and nv,i for
every vertex v and possible indices of traversals i. The interpretation of these variables are
that in the i-th traversal of v both the edges are labelled both positive or both negative,
respectively. To keep these new variables consistent with the variables for edges, we wish to
add the constraints pv,i = pe(v,i,1) · pe(v,i,2) and nv,i = ne(v,i,1) · ne(v,i,2). Note that these
constraints are not linear, but they can be linearised as follows.

pv,i ≤ pe(v,i,1) nv,i ≤ ne(v,i,1)

pv,i ≤ pe(v,i,2) nv,i ≤ ne(v,i,2)

pv,i ≥ pe(v,i,1) + pe(v,i,2) − 1 nv,i ≥ ne(v,i,1) + xe(v,i,2) − 1

We also wish to encode whether the edges corresponding to the i-th traversal have the same
label, no matter what this label is. We thus introduce the variables sv,i for each vertex v

and its traversals i. They are related to pv,i and nv,i as follows.

sv,i = pv,i + nv,i

Now we use these variables to encode condition (1) of a cut labelling. This can be done by
the following constraints.

∀v ∈ V, deg(v) = 4 : sv,1 + sv,2 = 1
∀v ∈ V, deg(v) = 2 : sv,1 = 0

Lastly, we need to encode the conditions the α-vector poses on the labelling, that is conditions
(2) and (3) of a cut labelling. Note that these conditions are only necessary for vertices with
multiple traversals, since for intervals the conditions are always satisfied.

Condition (2) can be implemented using the constraints pv,i ·wv(i)+1 ≤ αv. For condition
(3) we need to be more careful since only using nv,i ·wv(i) ≥ αv results in a violated condition
if nv,i = 0. We thus need to include the case when nv,i = 0 and add a trivial upper bound
on αv. This can be done by using |Cv|, the total number of beads for that vertex. We obtain
the following constraints for all vertices v with deg(v) = 4.
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nv,1 · wv(2) + (1 − nv,1) · |Cv| ≥ αv

nv,2 · wv(1) + (1 − nv,2) · |Cv| ≥ αv

pv,1 · wv(1) + 1 ≤ αv

pv,2 · wv(2) + 1 ≤ αv

Note that in general ILPs also optimise an objective function. However, we are only
interested in the satisfying assignments. Let us now summarise the complete α-Cut-
Labelling-ILP.

▶ Definition 28. α-Cut-Labelling-ILP
Let G = (V, E) be a label graph of some n-separable necklace C = {C1, . . . , Cn} with

colours consisting of at most two components. The α-Cut-Labelling-ILP is the ILP given
by the feasibility of the following constraints.

∀e ∈ E : pe, ne ∈ {0, 1}
∀v ∈ V, i ∈ [deg(v)/2] : pv,i, nv,i, sv,i ∈ {0, 1}

∀e ∈ E : pe + ne = 1
∀v ∈ V, i ∈ [deg(v)/2] : pv,i ≤ pe(v,i,1)

pv,i ≤ pe(v,i,2)

pe(v,i,1) + pe(v,i,2) − 1 ≤ pv,i

nv,i ≤ ne(v,i,1)

nv,i ≤ ne(v,i,2)

ne(v,i,1) + ne(v,i,2) − 1 ≤ nv,i

sv,i = pv,i + nv,i

∀v ∈ V, deg(v) = 2 : sv,1 = 0
∀v ∈ V, deg(v) = 4 : sv,1 + sv,2 = 1

nv,1 · wv(2) + (1 − nv,1) · |Cv| ≥ αv

nv,2 · wv(1) + (1 − nv,2) · |Cv| ≥ αv

pv,1 · wv(1) + 1 ≤ αv

pv,2 · wv(2) + 1 ≤ αv

By construction, α-Cut-Labelling-ILP is equivalent to conditions (1)–(3) of α-Cut-
Labelling in the sense that any solution of the former can be turned to a labelling fulfilling
the conditions and vice versa, by simply considering the pe and ne as the encoding of a
labelling.

3.3.3 Solving cut labelling for irreducible necklaces
In this section we show that α-Cut-Labelling-ILP is solvable in polynomial time. To do
that we leverage the structure of the ILP given by the fact that the underlying necklace is
irreducible. We wish to use the following FPT algorithm by Jansen and Kratsch.

▶ Theorem 29 ([15]). For an ILP instance I where each variable is in the domain D,
feasibility can be decided in time O(|D|O(tw(P (I))) · |I|), where tw(P (I)) denotes the treewidth
of the primal graph of the instance. Moreover, if the ILP only has a constant number of
feasible solutions, they can be enumerated in the same time bound.
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The primal graph of an ILP encodes which pairs of variables occur in constraints together.
Treewidth is a very well-studied graph parameter that describes how “tree-like” a graph
is, with lower treewidth denoting that the graph is more “tree-like”. We omit the exact
definitions here and refer to the full version of this paper. The following proposition shown
in the full version of this paper using a hierarchical approach states that the primal graph of
the α-Cut-Labelling-ILP has a constant treewidth. Since the ILP is boolean, the domain
is D = {0, 1}, and thus from this Theorem 29 gives us polynomial runtime for enumerating
all solutions of α-Cut-Labelling-ILP, and thus for solving α-Cut-Labelling.

▶ Proposition 30. Let C = {C1, . . . , Cn} be an irreducible necklace with n colours. Then
the primal graph of the α-Cut-Labelling-ILP of that necklace has treewidth at most 55.

We are now ready to prove the following.

▶ Proposition 31. α-α-Irr-Necklace-Splitting can be solved in O(n · N) time.

Proof. Theorem 29 implies an O(n2) algorithm for α-Cut-Labelling-ILP, using that
|D| = |{0, 1}| ∈ O(1) and tw(P (I)) ∈ O(1) by Proposition 30. The size of the ILP instance
|I| is given by the number of entries of the matrix defining the instance I. Thus we have
|I| ∈ O(n·n), as we have a constant number of variables and constraints per colour. As argued
above, the ILP only has a constant number of feasible solutions. Hence, we can enumerate
these efficiently, and determine which of these satisfy condition (4) of α-Cut-Labelling.
This check can be implemented in O(N). This shows that α-Cut-Labelling can be solved
in time O(n2 + N). Therefore, by Proposition 27 α-α-Irr-Necklace-Splitting can be
solved in O(n2 + N) ∈ O(n · N) time, using that n ∈ O(N). ◀

Together with Propositions 19 and 22, we can conclude that α-α-Necklace-Splitting,
and thus α-Necklace-Splitting, can be solved in O(n · N) time. We have thus proven
Theorem 4.

4 NP-Completeness of the Decision Problem

In this section we prove Theorem 5, i.e., we show NP-completeness of deciding whether an
arbitrary necklace has an α-cut. Since an α-cut can be used as a yes-certificate and verified
in polynomial time, this problem is clearly in NP.

Instead of showing NP-hardness of this problem directly, we instead show NP-hardness of
the following problem.

▶ Definition 32. α/α-Necklace-Deciding

Input: A necklace C = {C1, . . . , Cn} and α = (α1, . . . , αn), αi ∈ {1, . . . , |Ci|}
Decide: Does C have a cut that is either an α-cut or an α-cut?

α/α-Necklace-Deciding can be seen as the problem of deciding whether there exist
cut points that split the necklace into two sides, one of which has size α, but not necessarily
the positive side of the cut defined via the cut parity. Clearly, α/α-Necklace-Deciding
can be solved by testing individually whether C has an α-cut, and whether it has an α-cut.
Thus, the following proposition immediately implies Theorem 5.

▶ Proposition 33. α/α-Necklace-Deciding is NP-hard.
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Proof. We reduce from e3-Sat. Let Φ = C1 ∧ · · · ∧ Cm be an instance of e3-Sat. Each
clause Ci consists of exactly three variables. We now construct a necklace ζ and a vector α

such that ζ has an α- or α-cut if and only if Φ is satisfiable. As discussed above, we can
instead show that Φ is satisfiable if and only if there exist cut points (one per colour) such
that some chosen side contains the desired number of points α.

To construct ζ, we use the following types of beads. The two types of beads P and N

are used to enforce that certain parts of the necklace are on the positive or negative side
(we will set α(P ) = |P | and α(N) = 1). For every variable x we use the types xA

0 and xB
0 to

construct a gadget which encodes the truth value of x. For every clause Ci such that x ∈ Ci

we additionally use the types xA
i and xB

i to read out the value of x at the clause Ci. To
transfer the value of x, we use yet another type of bead xT . For clauses Ci we only need one
more type of bead, which we simply name Ci.

We also need multiple types of beads as separator beads. A separator bead only occurs
once, and is used to enforce that there is a cut at its location. We denote a separator
bead type by S∗ where the subscript indicates the part of the necklace the separator bead
belongs to.

Finally, we need two types of beads a, b that are only used to enforce the positive side of
the cut. The necklace starts with the string a b a and we set α such that both beads of a

must be on the positive side. Since there must be exactly one cut through one bead of a and
another cut through the single occurrence of b, the only way of having both a and the b on
the positive side is to cut the second occurrence of a, and to put the unbounded interval
from −∞ to the first occurrence of a on the positive side of the cut, or to cut through the
first occurrence of a, and still putting the unbounded interval from −∞ to the first bead of
a on the positive side, which will then also put the second bead of a on the positive side.

The rest of the necklace consists of two main parts. The first part is the encoding part
where we encode the assignment of variables and the satisfiability of each clause. In the
second part we enforce the position of cuts for some types of beads. In the following we
describe both parts, starting with the encoding part.

The encoding part first contains the following string for each variable x

P xA
0 xT . . . xT︸ ︷︷ ︸

k times

xB
0 P xA

0 xB
0 P

where k is the number of occurrences of the variable x, that is, the number of clauses Ci such
that x ∈ Ci (either positively or negatively). Then, the encoding part contains the following
string for each clause Ci and each variable x ∈ Ci.

P xA
i Ci xB

i P xA
i xT xB

i P, if x appears as a positive literal in Ci,
P xA

i xB
i P xA

i xT Ci xB
i P, if x appears as a negative literal in Ci.

Note that the only difference between these two strings is the placement of the bead of
type Ci.

We prove that under the following assumptions the encoding part properly encodes true
assignments to Φ. These assumptions will be enforced by the α-vector and the second part
of the necklace. We first assume that there is no cut in any bead of types P, xT , Ci within
the encoding part. Furthermore, we assume that a cut is correct if and only if the positive
side of the cut within the encoding part contains all beads of type P , half of each xT (note
that xT occurs an even number of times), at most two beads of type Ci, and both beads of
types xA

i and xB
i (for all i including 0). Recall that a bead at which we cut the necklace is

counted towards the positive side.
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The only way to make the xA
i and xB

i types have both beads on the positive side is by
either cutting through the first xA

i and first xB
i , or by cutting through the second xA

i and
second xB

i . The first case will encode the assignment x = “true” and the latter encodes
x = “false”.

The cuts for i = 0 corresponding to a true assignment will move the k beads of type xT

between xA
0 and xB

0 to the negative side. Since we need half of the beads of type xT on the
positive side, this implies that for the cuts in xA

i and xB
i for i ̸= 0, the bead of type xT must

be on the positive side. Hence, the cuts in xA
i and xB

i must encode the same assignment as
the cuts in xA

0 and xB
0 .

We see that the bead of type Ci between xA
i and xB

i is on the negative side of the cut if
and only if Ci is satisfied by the variable x. We thus see that at most two of the beads of
type Ci are on the positive side if and only if Ci is fulfilled by one of its literals. Hence, we
can conclude that under the assumptions listed above, the encoding part correctly encodes
correct assignments to Φ.

In the second part of the necklace we will now first enforce that the cut points of type
P, xT , and Ci will lie in this second part.

We add the following three strings. For each clause Ci we add the string

P Ci Ci Ci Si P,

where Si is a new separator bead. Still assuming that P is not getting cut, this enforces that
one of the three beads of type Ci is cut.

Then, for each variable x we add the string

P xT . . . P xT︸ ︷︷ ︸
k times

N xT . . . N xT︸ ︷︷ ︸
k times

N Sx,

where again k is the number of clauses containing x, and Sx is a new separator bead.
Assuming P and N to not be cut, this enforces the k-th occurrence of xT to be cut, putting
k of the beads of type xT in this substring on the positive side, and k on the negative side.

Finally, we add the string

P N.

Since the number of types of beads is even (P comes paired with N , xA
i comes paired with

xB
i , Ci is paired with Si and xT is paired with Sx), we can see that this last bead of type

N must be cut: If it was not cut, it would be on the positive side of the cut, since both
unbounded intervals must belong to the positive side. However, the cut point of type N is
another bead that would be counted to the positive side, violating α(N) = 1. If however
this last bead of type N is cut, also the last bead of type P must be cut by a symmetric
argument.

We thus see that the second part of the string enforces the cuts we assumed in the
encoding part. Furthermore, since the second part has exactly half of the beads of type xT

and one up to three beads of type Ci on the positive side, the following α-vector exactly
gives us all of the assumptions on the number of beads on the positive side we made in the
encoding part.
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α(a) = 2, α(b) = 1,

α(P ) = |P |, α(N) = 1,

α(xA
i ) = 2, α(xB

i ) = 2 for all variables x and all i including 0,

α(xT ) = |xT |
2 for all variables xT , note that |xT | is even,

α(Ci) = 3 for all clauses Ci,
α(S∗) = 1 for any separator S∗.

We have argued before that a cut with the correct number of points α on the positive side
corresponds to a satisfying assignment of Φ. On the flip side, it is clear that a satisfying
assignment can be turned into a cut by cutting the xA

i , xB
i at the corresponding places and

the Ci at the correct of the three consecutive occurrences, depending on how many literals
in Ci are true.

The necklace ζ can be built in polynomial time in m, and we thus get that α/α-Necklace-
Deciding is NP-hard. ◀

For an example of this reduction see the full version of this paper.
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