
Card-Based Protocols Imply PSM Protocols
Kazumasa Shinagawa #

Ibaraki University, Ibaraki, Japan
National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan

Koji Nuida #

Institute of Mathematics for Industry (IMI), Kyushu University, Fukuoka, Japan
National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan

Abstract
Card-based cryptography is the art of cryptography using a deck of physical cards. While this area
is known as a research area of recreational cryptography and is recently paid attention in educational
purposes, there is no systematic study of the relationship between card-based cryptography and
the other “conventional” cryptography. This paper establishes the first generic conversion from
card-based protocols to private simultaneous messages (PSM) protocols, a special kind of secure
multiparty computation. Our compiler supports “simple” card-based protocols, which is a natural
subclass of finite-runtime protocols. The communication complexity of the resulting PSM protocol
depends on how many cards are opened in total in all possible branches of the original card-based
protocol. This result shows theoretical importance of such “opening complexity” of card-based
protocols, which had not been focused in this area. As a consequence, lower bounds for PSM protocols
imply those for simple card-based protocols. In particular, if there exists no PSM protocol with
subexponential communication complexity for a function f , then there exists no simple card-based
protocol with subexponential opening complexity for the same f .

2012 ACM Subject Classification Security and privacy → Information-theoretic techniques

Keywords and phrases Card-based cryptography, private simultaneous messages

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.72

Funding This work was supported by Institute of Mathematics for Industry, Joint Usage/Research
Center in Kyushu University: FY2022 Short-term Visiting Researcher “On Minimal Construction of
Private Simultaneous Messages Protocols” (2022a006), FY2023 Short-term Visiting Researcher “On
the Relationship between Physical and Non-physical Secure Computation Protocols” (2023a009),
and FY2024 Short-term Visiting Researcher “Private Simultaneous Messages and Card-Based
Cryptography” (2024a015).
Kazumasa Shinagawa: This work was supported in part by JSPS KAKENHI Grant Numbers
21K17702 and 23H00479, and JST CREST Grant Number MJCR22M1.
Koji Nuida: This work was supported in part by JSPS KAKENHI Grant Number JP22K11906.

1 Introduction

1.1 Background
Secure computation allows a set of parties, each with a secret input, to compute an output
value of a function of their inputs without revealing any information on the inputs beyond
the output value. Although secure computation is typically assumed to be implemented on
electronic devices, there is a line of research to implement secure computation using a deck
of physical cards, which is called card-based cryptography [8, 11,21].

In card-based cryptography, an important research topic is to determine the minimum
number of cards required for secure compution of a function. For the logical AND function, for
example, upper and lower bounds on the number of cards have been studied by constructing
a protocol and by proving impossibility for a certain number of cards [16–19], respectively.

© Kazumasa Shinagawa and Koji Nuida;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 72; pp. 72:1–72:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kazumasa.shinagawa.np92@vc.ibaraki.ac.jp
https://orcid.org/0000-0002-5219-1975
mailto:nuida@imi.kyushu-u.ac.jp
https://orcid.org/0000-0001-8259-9958
https://doi.org/10.4230/LIPIcs.STACS.2025.72
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

72:2 Card-Based Protocols Imply PSM Protocols

Other than AND protocols, lower bounds are so far known only for COPY protocols [16, 21]
and protocols for generating a random permutation without fixed points [14], and as far as
we know, no lower bounds for general functions have been explored.

On the other hand, in “conventional” (or “electronic”) cryptography, there have been
derived some lower bounds for general functions. For example, lower bounds on the commu-
nication complexity have been studied for secure multiparty computation (MPC) [10], private
simultaneous messages (PSM) [2, 4, 5, 12], conditional disclosure of secrets (CDS) [1, 13], and
secret sharing (SS) [9].

If there is some technical relationship between card-based and conventional cryptography,
lower bounds in card-based cryptography might be obtained from lower bounds in conventional
cryptography. Unfortunately, however, there has been no systematic study of the relationship
between card-based and conventional cryptography so far.

In this line of research, den Boer [11], in the historically first paper on card-based protocols,
proposed a conventional cryptographic protocol based on an idea from a card-based protocol.
However, there is no other research on constructing conventional cryptographic protocols
from card-based protocols; this line of research has not progressed at all for more than
30 years, long enough for many cryptographers to believe that there is no more technical
relationship between card-based and conventional cryptography.

1.2 Our Contribution
In this paper, we study a technical relationship between card-based and conventional crypto-
graphy. In particular, we develop a generic conversion from card-based to PSM protocols.

The model of PSM was initially introduced by Feige, Kilian, and Naor [12] and later
generalized by Ishai and Kushilevitz [15]. A PSM protocol is a kind of secure computation
protocols with one-round and unidirectional communication from n input players, having
input-independent pre-shared common randomness, to an output player called a referee.

Our compiler supports a class of finite-runtime card-based protocols, which we name
simple protocols (see Section 4.1): Roughly speaking, a finite-runtime protocol is said to
be simple if, throughout an execution, all cards in each step are face-down except when
opening cards. When the total number of possibly opened cards in a simple protocol is t,
the resulting PSM protocol has communication complexity nt. This parameter t, which we
name the opening complexity of the protocol, is a new complexity measure for card-based
protocols not well investigated in the previous studies. It is an interesting research direction
to design card-based protocols with small opening complexity.

For a special case, we consider single-shuffle full-open (SSFO) protocols (see Section 3).
Since SSFO protocols are simple and the opening complexity of an SSFO protocol is exactly
the same as the number of cards d used in the protocol, the communication complexity of
the resulting PSM protocol is nd.

The main contribution of this study is deepening our understanding of card-based
cryptography by connecting to the world of conventional cryptography. We believe that our
work enhances a new direction for future research on card-based cryptography: An interesting
research topic is to determine a class of functions for which our conversion yields efficient PSM
protocols; Another interesting topic is to develop deeper connections between card-based
protocols and PSM protocols or other kinds of conventional cryptographic protocols.

As a direct consequence of our conversion, lower bounds on the opening complexity t in
card-based protocols will be derived from lower bounds on the communication complexity
of PSM protocols (Corollary 5). If there exists no PSM protocol for any function with
subexponential communication complexity, which is an unproven but plausible statement

K. Shinagawa and K. Nuida 72:3

and is stated as Conjecture 6, then there exists no simple protocol computing any function
with subexponential opening complexity (Corollary 7). To prove an unconditional non-trivial
lower bound for card-based protocols, we need a super-quadratic lower bound for PSM
protocols, i.e., ω(kn2) for a function f : ({0, 1}k)n → {0, 1}. Unfortunately, as far as we
know, the state-of-the-art lower bound is Ω(kn2/ log(nk)) by Ball and Randolph [5] and no
super-quadratic lower bound has been proved yet. We believe that our result provides a new
motivation for obtaining such a lower bound.

Another application of our conversion is to provide a new method to construct PSM
protocols. As a concrete example, we construct a card-based protocol for an indirect storage
access (ISA, for short) function [23] and then convert it to a PSM protocol with communication
complexity O(KL2 + K2L log L), where K and L are parameters for the input length. Our
protocol is more efficient than the existing constructions based on branching programs (BP,
for short) and gate evaluation secret sharing (GESS, for short), both of which, to the best of
our knowledge, are the only existing constructions for efficient PSM protocols effective for
the ISA function.

2 Preliminaries

For an integer n ≥ 2, we denote [n] := {1, 2, . . . , n}. For an integer k ≥ 1, we denote
the k-th symmetric group by Sk. For a k-bit string s = (s1, s2, . . . , sk) ∈ {0, 1}k and a
permutation π ∈ Sk, a permuted string of s by π, denoted by π(s), is defined by π(s) :=
(sπ−1(1), sπ−1(2), . . . , sπ−1(k)). For example, for a string s = 111000 ∈ {0, 1}6 and a cyclic
permutation π = (1 2 3 4 5 6) ∈ S6, we have π(s) = 011100. We denote by X∗ the set of
finite sequences (of various lengths) from a set X.

2.1 PSM Protocols
Feige, Kilian, and Naor [12] introduced a minimal model of secure two-party computation
protocols. Ishai and Kushilevitz [15] generalized the model to the multiparty case, which is
called private simultaneous messages (PSM).

Suppose that n players P1, P2, . . . , Pn hold x1, x2, . . . , xn ∈ X, respectively. They want
to tell the output value f(x1, x2, . . . , xn) of a given function f : Xn → Y only to the referee,
who is not one of the n players, without revealing any information on the inputs beyond
the output value. The n players are assumed to share a common randomness and each of
them is allowed to send a single message to the referee. The model of PSM is summarized in
Figure 1.

Now we define the syntax and requirements for PSM protocols formally. Let X, Y

be finite sets and f : Xn → Y a function. Let R, M1, M2, . . . , Mn be finite sets and M :=
M1×M2×· · ·×Mn. A private simultaneous messages (PSM) protocol for f is an (n+2)-tuple
(R, Enc1, Enc2, . . . , Encn, Dec), where R is a probability distribution over R, Enci : X ×R→
Mi is the i-th encoding function (1 ≤ i ≤ n), and Dec : M → Y is the decoding function. The
protocol proceeds as follows: First, a common randomness r ← R is chosen and distributed
to the n players P1, P2, . . . , Pn. Then each player Pi holding (xi, r), where xi ∈ X is an input
of Pi, computes a message mi = Enci(xi, r) and sends it to the referee. Finally, on receiving
m1, m2, . . . , mn, the referee determines an output value y = Dec(m1, m2, . . . , mn).

The protocol is said to be correct if we have Dec(Enc1(x1, r), . . . , Encn(xn, r)) = f(x⃗) for
any x⃗ = (x1, . . . , xn) ∈ Xn and any r ∈ R such that Pr[r ← R] > 0. The protocol is said
to be secure if there exists an algorithm Sim called a simulator such that for any x⃗ ∈ Xn,

STACS 2025

72:4 Card-Based Protocols Imply PSM Protocols

Referee

m1 m2 mn

P1 P2 · · · Pn

x1, r x2, r xn, r

y

Figure 1 The model of PSM protocols.

the distribution of Sim(f(x⃗)) equals the distribution of (Enc1(x1,R), . . . , Encn(xn,R)). The
communication complexity of the protocol is defined by

∑n
i=1 log2 |Mi|. The randomness

complexity of the protocol is defined by the Shannon entropy H(R) of R.

2.2 Card-Based Protocols
Mizuki and Shizuya [21] proposed a computational model for card-based protocols, referred
to as the Mizuki–Shizuya model. We review the Mizuki–Shizuya model below. (We also
follow the well-summarized description of [19].)

A deck D is a finite and non-empty multiset of symbols. For a symbol c ∈ D, c
? and ?

c

denote a face-up card and face-down card with symbol c, respectively, where ‘?’ is a special
backside symbol that is not contained in D. For a card (i.e., face-up card or face-down card)
α, top(α) is defined by top(c

?) := c and top(?
c) := ?, and the flipped card of α is defined to be

?
c if α = c

? and to be c
? if α = ?

c .
In this paper, we mainly deal with a two-colored deck D, which consists of two types of

symbols ♣ and ♡. The face-up cards ♣
? and ♡

? are depicted by ♣ and ♡ , respectively, and
a face-down card is depicted by ? .

A sequence of cards from D is obtained by permuting D and, for each symbol c ∈ D,
choosing a face-up card c

? or a face-down card ?
c . For example, when D = [♣,♡,♡] (where

the square brackets represent a multiset), Γ = (♡
? , ♣

? , ?
♡) is a sequence of cards from D. For

a sequence of cards Γ = (α1, . . . , αd), vis(Γ) := (top(α1), . . . , top(αd)) is called the visible
sequence of Γ. We denote the set of all visible sequences of card sequences from D by VisD.

For a sequence of cards Γ = (α1, . . . , αd), we can apply the following three types of
actions:

(perm, π) for π ∈ Sd is an action that converts Γ to π(Γ) := (απ−1(1), απ−1(2), . . . , απ−1(d)).
(shuf, Π,F) for a subset Π ⊆ Sd and a probability distribution F over Π is an action that
converts Γ to π(Γ), where π ∈ Π is drawn from F . Here, no player should know which
permutation is chosen by the shuffle when it is applied to a sequence of face-down cards.
(turn, T) for a subset T ⊆ [d] is an operation that converts Γ to (β1, . . . , βd) where βi is
the flipped card of αi if i ∈ T and βi = αi otherwise.

The set of actions for card sequences from D is denoted by ActionD.
A Mizuki–Shizuya (MS) protocol is defined by a tuple (D, U, Q, A), where D is a deck,

U is a set of input sequences (of cards), Q is a set of states including the initial state
q0 and the set of final states Qfin ⊆ Q, and A : (Q \ Qfin) × VisD → Q × ActionD is a

K. Shinagawa and K. Nuida 72:5

partial function called an action function. An MS protocol starts with an input sequence
Γ0 ∈ U and the initial state q0. For the current sequence Γi and the current state q, if
A(vis(Γi), q) = (q′, action), the MS protocol applies action to Γi and updates the state to q′.
The MS protocol terminates when entering a final state q ∈ Qfin. The list of all sequences
(Γ0, Γ1, . . . , Γk) for a protocol execution is called the sequence trace of the protocol execution,
and (vis(Γ0), vis(Γ1), . . . , vis(Γk)) is called the visible sequence trace of the protocol execution.

We note that an MS protocol is defined as a mechanism for converting an input sequence
into an output sequence, and does not explicitly address the function to be computed. To
associate a function f : Xn → Y with an MS protocol (D, U, Q, A), we need to give a map
in : Xn → U called an input function and a map out : (VisD)∗ → Y called an output function.
For an input x⃗ ∈ Xn, the input sequence of the protocol is set to in(x⃗) ∈ U , and the
output of the protocol is defined by out(v0, v1, . . . , vk) ∈ Y when the visible sequence trace
is (v0, v1, . . . , vk) ∈ (VisD)k+1.

Let ini be the function representing the i-th card of the input sequence, i.e., in(x⃗) :=
(in1(x⃗), . . . , ind(x⃗)). We naturally assume that the output of each function ini depends only
on at most one input, say xj ∈ X (including the case that the output of ini is constant),
referred to as the locality of in.

A protocol is defined by a tuple (D, U, Q, A, in, out), where (D, U, Q, A) is an MS protocol,
and in and out are input and output functions, respectively. A protocol for a function f is
said to be correct if for all inputs x⃗ ∈ Xn, the protocol outputs f(x⃗) whenever it terminates.
A protocol for f is said to be secure if there exists an algorithm Sim called a simulator such
that for any x⃗ ∈ Xn, the distribution of Sim(f(x⃗)) equals the distribution of the visible
sequence trace of the protocol execution with input x⃗. A protocol is said to be finite-runtime
if it terminates within a fixed number of steps. A protocol is said to be Las Vegas if its
runtime is finite in expectation.

We give two remarks on the above definition. A pair of face-down cards with different
symbols is called a commitment to a bit, via the encoding rule ♣ ♡ = 0 and ♡ ♣ = 1.
Our definition of in can deal with input commitments: For a sequence of n commitments
to x1, x2, . . . , xn ∈ {0, 1}, in our definition, the input function in can be represented by
in(x⃗) =

(
?

x1
, ?

x1
, ?

x2
, ?

x2
, . . . , ?

xn
, ?

xn

)
using the encoding rule ♣ = 0 and ♡ = 1, where xi

denotes the negation of a bit xi. Our definition also captures other encoding rules as long as
they satisfy the locality.

There are two types of protocols in the area of card-based cryptography: a committed-
format protocol and a non-committed-format protocol. A protocol of the former type produces
a sequence of commitments as output, while a protocol of the latter type publicly outputs
the value f(x1, x2, . . . , xn). Our definition of the correctness and security supposed non-
committed-format protocols, but committed-format protocols can be obviously converted to
non-committed-format ones by just opening the output commitments and hence our proposed
conversion method is also applicable to them.

For a protocol P = (D, U, Q, A, in, out) (or an MS protocol P = (D, U, Q, A)), the protocol
diagram of P is defined as the directed edge-labeled graph as follows:

The set of vertices is Q.
A directed edge labeled by action ∈ ActionD from q to q′ exists if and only if there exists
a visible sequence v ∈ VisD such that A(q, v) = (q′, action).

See Figure 2 in Section 4.1 for an example of the protocol diagram of the four-card trick [20].
Note that a protocol diagram can be viewed as a reduced version of the Koch–Walzer–Härtel
diagram [19]. We remark that any finite-runtime protocol can be easily converted to a
(functionally equivalent) protocol whose protocol diagram forms a finite tree.

STACS 2025

72:6 Card-Based Protocols Imply PSM Protocols

3 Our Conversion for Special Case

In order to explain the essential idea of our proposed conversion before a general description
given in Section 4 below, in this section, we first describe our conversion for a special type of
card-based protocols which we call single-shuffle full-open protocols. A card-based protocol
is said to be single-shuffle full-open (SSFO) if it proceeds as follows:
1. The input sequence in(x⃗) is given:

? ? · · · ? ?︸ ︷︷ ︸
in(x⃗)

.

2. Apply a shuffle (shuf, Π,F) to the sequence as follows:

? ? · · · ? ?︸ ︷︷ ︸
in(x⃗)

→ ? ? · · · ? ?︸ ︷︷ ︸
π(in(x⃗))

,

where π ∈ Π is chosen according to F .
3. Turn over all cards and determine the output value:

? ? · · · ? ?︸ ︷︷ ︸
π(in(x⃗))

→ ♡ ♣ · · · ♣ ♡ ⇒ y ∈ Y.

In Section 3.1, we demonstrate our conversion for an SSFO protocol called the five-card trick.
In Section 3.2, we give our conversion for any SSFO protocol.

3.1 PSM Protocol from Five-Card Trick
The five-card trick is a five-card AND protocol proposed by den Boer [11]. First, we recall
the protocol description of the five-card trick.

1. The input sequence in(x⃗) is given as follows, where x⃗ = (x1, x2) ∈ {0, 1}2:

? ?︸ ︷︷ ︸
x1

?
♡

? ?︸ ︷︷ ︸
x2

.

2. Apply a shuffle (shuf, ⟨(1 2 3 4 5)⟩) to the sequence as follows:

? ? ? ? ?︸ ︷︷ ︸
in(x⃗)

→ ? ? ? ? ?︸ ︷︷ ︸
π(in(x⃗))

,

where π = (1 2 3 4 5)r for a uniformly random r ∈ {0, 1, 2, 3, 4}.
3. Turn over all cards. Output 0 if they are ♡♣♡♣♡ up to cyclic shifts, and 1 if they are
♡♡♡♣♣ up to cyclic shifts.

Now we convert the above protocol to a PSM protocol. Let Alice and Bob be the players
holding x1, x2 ∈ {0, 1}, respectively, and Charlie the referee.

First, following the encoding rule ♣ = 0 and ♡ = 1, the input sequence in(x1, x2), which
is the sequence of symbols for the cards, can be represented by

in(x1, x2) := (x1, x1, 1, x2, x2) ∈ {0, 1}5.

Although neither Alice nor Bob alone can compute the whole of in(x1, x2), Alice can compute

s1(x1) := (x1, x1, 1, 0, 0) ∈ {0, 1}5,

K. Shinagawa and K. Nuida 72:7

and Bob can compute

s2(x2) := (0, 0, 0, x2, x2) ∈ {0, 1}5.

We note that, by taking the component-wise XOR, we have

s1(x1)⊕ s2(x2) = (x1, x1, 1, x2, x2) = in(x1, x2).

In other words, thanks to the locality of in, Alice and Bob can jointly compute the input
sequence in(x1, x2) in a distributed manner.

Next, we notice that Alice and Bob can apply a shuffle to the sequence in their heads
by sharing a randomness of the shuffle as common randomness. In particular, by sharing
a random cyclic permutation π ∈ ⟨(1 2 3 4 5)⟩, Alice and Bob can compute π(s1(x1)) and
π(s2(x2)), respectively. We emphasize that

π(s1(x1))⊕ π(s2(x2)) = π(s1(x1)⊕ s2(x2)) = π(in(x1, x2))

by the property of permutations.
Finally, to hide their inputs, Alice and Bob compute m1 := π(s1(x1)) ⊕ r and m2 :=

π(s2(x2)) ⊕ r, respectively, where r ∈ {0, 1}5 is also shared as common randomness, and
send m1 and m2 to Charlie. Thanks to the masking by the random r, each of the messages
m1 and m2 alone does not leak any information on x1 and x2, respectively. Unmasking by
Charlie requires computation of XOR for the two messages to cancel the term r:

m := m1 ⊕m2 = (π(s1(x1))⊕ r)⊕ (π(s2(x2))⊕ r)
= π(s1(x1))⊕ π(s2(x2)) = π(in(x1, x2)) ,

which only tells Charlie the result π(in(x1, x2)) of the XOR and does not tell individual
sequences π(s1(x1)) nor π(s2(x2)). Then Charlie outputs 0 if m is equal to 10101 up to
cyclic shifts, and 1 if m is equal to 11100 up to cyclic shifts.

The resulting PSM protocol is summarized as follows.
1. The common randomness consists of a cyclic permutation π ∈ ⟨(1 2 3 4 5)⟩ and a 5-bit

string r ∈ {0, 1}5, both are chosen uniformly at random.
2. Alice (resp. Bob) computes m1 = π(s1(x1))⊕ r (resp. m2 = π(s2(x2))⊕ r) and sends it

to Charlie.
3. On receiving m1 and m2, Charlie determines an output value y as follows:

y :=
{

1 if m1 ⊕m2 ∈ {00111, 10011, 11001, 11100, 01110};
0 if m1 ⊕m2 ∈ {01011, 10101, 11010, 01101, 10110}.

The communication complexity of the protocol is 10 bits. The randomness complexity of the
protocol is 5 + log2 5 bits.

3.2 PSM Protocol from Any Single-Shuffle Full-Open Protocol
Let P = (D, U, Q, A, in, out) be any SSFO protocol whose shuffle operation is (shuf, Π,F).
By a similar observation to Section 3.1 thanks to the locality of the function in, we can define
a function si : X → {0, 1}d (i ∈ [n]) such that s1(x1)⊕ · · · ⊕ sn(xn) = in(x⃗) for any x⃗ ∈ Xn.

The resulting PSM protocol P̂ is given as follows, where H(F) denotes the Shannon
entropy of the distribution F .

STACS 2025

72:8 Card-Based Protocols Imply PSM Protocols

The PSM protocol P̂ from any SSFO protocol P

Input: x⃗ = (xi)i∈[n] ∈ Xn

Common Randomness: (π, (ri)i∈[n]) is generated as follows:
Choose a permutation π ∈ Π according to F .
Choose r1, r2, . . . , rn−1 ∈ {0, 1}d uniformly at random, and set rn := r1⊕r2⊕· · ·⊕rn−1.

Encoding Function: Output mi := π(si(xi))⊕ ri.
Decoding Function: Compute m := m1 ⊕m2 ⊕ · · · ⊕mn. The output value y is equal to
the output of the protocol P when the opened symbol is m.
Communication Complexity: nd

Randomness Complexity: (n− 1)d + H(F)

▶ Theorem 1. Let P be an SSFO protocol with correctness and security for f : Xn → Y

using d cards. Then the above PSM protocol P̂ is correct and secure for f with communication
complexity nd.

Proof. From the following computation, we have:

m = m1 ⊕m2 ⊕ · · · ⊕mn

= (π(s1(x1))⊕ r1)⊕ (π(s2(x2))⊕ r2)⊕ · · · ⊕ (π(sn(xn))⊕ rn)
= π(s1(x1))⊕ π(s2(x2))⊕ · · · ⊕ π(sn(xn))⊕ r1 ⊕ r2 ⊕ · · · ⊕ rn.

By the choice of rn in P̂, we have r1 ⊕ r2 ⊕ · · · ⊕ rn = 0. Hence we have

m = π(s1(x1))⊕ π(s2(x2))⊕ · · · ⊕ π(sn(xn))
= π(s1(x1)⊕ s2(x2)⊕ · · · ⊕ sn(xn)) = π(in(x⃗)),

which is exactly equal to the opened symbols of P. Thus, the correctness of P̂ follows from
the correctness of P.

We prove the security of P̂ by constructing a simulator Sim for P̂ . Given an output value
y ∈ Y , Sim first invokes a simulator for P on input y, which outputs a visible sequence trace
(?d, v) ∈ (VisD)∗ of a protocol execution. Here, v ∈ {0, 1}d represents the opened values at
the end of the protocol P, therefore v has the same conditional distribution as m in the
protocol P̂ conditioned on the output value y. Then Sim chooses r′

1, r′
2, . . . , r′

n−1 ∈ {0, 1}d

uniformly at random, and outputs (r′
1, r′

2, . . . , r′
n−1, r′

1⊕· · ·⊕ r′
n−1⊕v). Now the XOR of the

n components is v, which (as mentioned above) has the same conditional distribution as m.
Moreover, for each of the first n− 1 component, say the i-th, the message mi = π(si(xi))⊕ ri

is uniformly random thanks to the random choice of ri. Hence the distribution of Sim(y)
equals the distribution of the messages, therefore P̂ is secure. ◀

4 Our Conversion for General Case

In this section, we give our conversion for simple protocols. In Section 4.1, we define the class
of simple protocols. In Section 4.2, we give an overview of our conversion. In Section 4.3, we
describe our conversion for simple protocols.

K. Shinagawa and K. Nuida 72:9

q0

q1

q2

q3

q5

q7

q11

q8

q12

q4

q6

q9

q13

q10

q14

(shuf, {id, (1, 3)(2, 4)})

(shuf, {id, (2, 3)})

(turn, {2})

(turn, {2})

(turn, {4})

(turn, {4}) (turn, {4})

(turn, {2})

(turn, {1})

(turn, {1}) (turn, {1})

Figure 2 The protocol diagram of the four-card trick.

4.1 Simple Protocols
▶ Definition 2. A card-based protocol P = (D, U, Q, A, in, out) is said to be simple if P
satisfies the following conditions:
Finite-Tree: The protocol diagram of P forms a finite tree.
Face-Down: Any input sequence in U consists of face-down cards.
Mono-Opening: Every turn operation (turn, T) in P satisfies |T | = 1. (Intuitively speaking,

every turn operation flips a single card.)
Instant-Turn: Whenever a turn operation (turn, T) was applied to a sequence of all face-down

cards at the last step, the next operation is the same turn operation (turn, T). (Intuitively
speaking, if a face-down card is opened, then it is immediately faced down.)

Here we note that, from the viewpoint of feasibility, focusing only on the simple card-based
protocols does not decrease the generality of our conversion, because any finite-runtime
protocol P can be converted to a simple protocol (see Remark 3 below). We remark that
almost all existing finite-runtime card-based protocols are already simple or can be trivially
converted to simple (e.g., when some multiple cards are opened simultaneously, decomposing
this step into a series of opening and closing of each single card in order to satisfy the
mono-opening property). See Figure 2 for an example of the protocol tree of the four-card
trick [20].

Let P = (D, U, Q, A, in, out) be a simple protocol. Then any turn operation in P is
classified into the following two types:

The operation opens a single card from the whole sequence of face-down cards; referred to
as an open operation. In this case, since we deal with two-colored decks, there are at most
two subsequent states after this operation. We call this operation a branch operation if
there are two subsequent states, and a non-branch operation otherwise.
The operation faces down the card that was opened at the previous step; referred to as a
close operation.

Now we observe that for each non-final state q ∈ Q \Qfin, the operation performed at the
current step is uniquely determined from the state q. Indeed, when an open operation was
performed at the previous step, the operation at the current step must be a close operation

STACS 2025

72:10 Card-Based Protocols Imply PSM Protocols

for the unique opened card due to the instant-turn property. On the other hand, for the other
case, the current visible sequence is the trivial visible sequence v = (?, ?, . . . , ?), therefore the
operation A(q, v) in fact depends solely on q. This yields the following partitions for the set
of non-final states:

Q \Qfin = Qturn ⊔Qperm ⊔Qshuf

= (Q+
turn ⊔Q−

turn) ⊔Qperm ⊔Qshuf

= ((Qbranch ⊔Qnonbranch) ⊔Q−
turn) ⊔Qperm ⊔Qshuf ,

where Qturn, Q+
turn, Q−

turn, Qbranch, Qnonbranch, Qperm, and Qshuf are the sets of all non-final
states for which the next operation is a turn operation turn, an open operation, a close
operation (hence Qturn = Q+

turn ⊔Q−
turn), a branch operation, a non-branch operation (hence

Q+
turn = Qbranch ⊔ Qnonbranch), a permutation operation perm, and a shuffle operation shuf,

respectively.
The opening complexity of P is defined by |Q+

turn|. Note that this notion can be defined
similarly for any finite-runtime protocol that is not necessarily simple.
▶ Remark 3. We note that any finite-runtime protocol can be converted into a simple protocol
without affecting its correctness and security. As already stated in Section 2.2, finite-tree can
be easily obtained. Mono-opening can be obtained by replacing each (turn, {i1, . . . , ik}) with
(turn, {i1}), . . . , (turn, {ik}). Instant-turn can be obtained by appending close operations for
every open operations. The most non-trivial part is to obtain face-down. Note that if a
protocol is not face-down, then an input sequence may contain some face-up cards depending
on the inputs, and some shuffle operations are applied to a sequence containing face-up cards
called a branching shuffle. To obtain face-down, we modify the protocol as follows:

We associate a pair of auxiliary cards (faced down in default) to each card, representing
one-bit information by the order of two cards (where swapping these two cards corresponds
to bit flipping). Then:

We change each face-up card in in(x⃗) to be faced-down (satisfying instant-opening)
while recording this fact to auxiliary cards. At the beginning of the protocol, we read
information in auxiliary cards by opening them, and turn suitable cards to recover the
original in(x⃗).
Each step of the protocol is changed to: (1) turn down each face-up main (i.e., non-
auxiliary) card while recording to auxiliary cards which main cards are to be face-up;
(2a) in permutation/shuffle, main and auxiliary cards are synchronized; (2b) turn for
main cards are emulated by updating information in (i.e., permuting) auxiliary cards;
and (3) read information in auxiliary cards, turn up main cards suitably, and reset
auxiliary cards. This avoids permutation/shuffle operations for face-up cards.

4.2 Overview of Our Conversion
Let P be a simple protocol for f : Xn → Y . From the finite-runtime property, we can assume
that the protocol diagram of P forms a tree.

If all permutations in the shuffle operations are fixed, the order of the sequence of cards
at any step in an execution is determined. This is because the probability in an execution
is taken only for shuffle operations. So, the basic idea of our conversion is to share the
permutations chosen in shuffle operations as common randomness among the players, similar
to the protocol in Section 3.

Let c1, c2, . . . , ct ∈ {0, 1} be the opened symbols when a sequence of permutations π⃗

in the shuffle operations and the input x⃗ ∈ Xn are given. Similar to the protocol in
Section 3, we can observe that for each ci, at least one player can compute it if π⃗ is shared

K. Shinagawa and K. Nuida 72:11

as common randomness. Therefore, each player Pi can compute a message mi ∈ {0, 1}t such
that m1 ⊕m2 ⊕ · · · ⊕mn = (c1, c2, . . . , ct). Since the output value of P is determined by
the opened values, the referee can compute the output value from the messages and the
correctness of the obtained PSM protocol P̂ can be satisfied.

The remaining thing we need to consider is the security of P̂ . See Figure 2. This protocol
has three possible opened symbols c1, c2, c3 corresponding to q2, q4, q8, respectively, but only
two symbols are revealed in an execution as follows: If c1 = 0, the left path (c1, c2) should
be revealed; If c1 = 1, the right path (c1, c3) should be revealed. Since any leakage of the
values outside the path would compromise the security, the values outside the path must be
hidden from the referee. To hide these values, some player can replace the i-th bit of the
player’s message with a random bit if he notices that ci is not on the path.

The above idea is summarized as follows.
1. The common randomness consists of a sequence of permutations in all shuffle operations, an

n-tuple of t-bit random numbers (r1, r2, . . . , rn) ∈ ({0, 1}t)n such that r1⊕r2⊕· · ·⊕rn = 0t,
and other random bits to hide the values outside the path.

2. Each player Pi computes mi ∈ {0, 1}t such that m1 ⊕m2 ⊕ · · · ⊕mn equals the opened
values (c1, c2, . . . , ct).

3. Each player Pi updates mi to hide the values ci outside the path.
4. Each player Pi sets mi ← mi ⊕ ri and sends it to the referee.
5. On receiving m1, m2, . . . , mn, the referee obtains the opened symbols on the path from

m1 ⊕m2 ⊕ · · · ⊕mn, and determines an output value y based on simple protocol P.

4.3 Our Conversion for Simple Protocols
Let P = (D, U, Q, A, in, out) be a simple protocol for f : Xn → Y . We can assume that the
protocol diagram of P forms a tree.

For each q ∈ Qshuf , let (shuf, Πq,Fq) be the shuffle operation of q. As stated in Section 4.2,
given a sequence of permutations π⃗ = (πq)q∈Qshuf for πq ∈ Πq, the order of the sequence of
cards in a protocol execution is determined. In particular, given a sequence of permutations
π⃗ and an input x⃗ ∈ Xn, the opened symbol for q ∈ Q+

turn is determined.
Fix a sequence of permutations π⃗ and an input x⃗ ∈ Xn. We define the responsibility

for q ∈ Q+
turn as follows. We say that the first player P1 is responsible for q if the opened

value at q is a constant bit or depends on x1 ∈ X. We say that the i-th (i ̸= 1) player Pi is
responsible for q if the opened value at q is not a constant bit and depends on xi ∈ X. We
can observe that, for any q ∈ Q+

turn, exactly one player Pi is responsible for q.
Let cq ∈ {0, 1} be the opened symbol at q ∈ Q+

turn when π⃗ and x⃗ are given. We define a
map vali,q for i ∈ [n] and q ∈ Q+

turn as follows:

vali,q(π⃗, xi) :=
{

cq if Pi is responsible for q;
0 otherwise.

Since exactly one player is responsible for q, we have
n∑

i=1
vali,q(π⃗, xi) = cq,

i.e., the opened value cq is computed by the players in a distributed manner.
For a state q ∈ Q, the descendants of q is recursively defined as follows: a child of q is a

descendant of q, and a child of a descendant of q is a descendant of q. For a state q ∈ Q, we
define descen(q) as follows:

descen(q) := {q′ ∈ Q+
turn | q′ is a descendant of q}.

STACS 2025

72:12 Card-Based Protocols Imply PSM Protocols

For a branch state q ∈ Qbranch, let qb ∈ Q (b ∈ {0, 1}) be the child of q corresponding to the
opened value b, and we define descen(q, b) as follows:

descen(q, b) := {q′
b} ∪ descen(q′

b),

where q′
b is either q′

b = qb if qb ∈ Q+
turn or the nearest descendant of qb in Q+

turn.
The resulting PSM protocol is given as follows, where H(Fq) denotes the Shannon entropy

of the distribution Fq for q ∈ Qshuf and t := |Q+
turn| denotes the opening complexity of P.

The PSM protocol P̂ from any simple protocol P

Input: x⃗ = (xi)i∈[n] ∈ Xn

Common Randomness: (π⃗, r⃗, s⃗) is generated as follows:
For each q ∈ Qshuf whose operation is (shuf, Πq,Fq), choose a permutation πq ∈ Πq

according to Fq. Set π⃗ := (πq)q∈Qshuf .
Choose ri = (ri[q])q∈Q+

turn
∈ {0, 1}t for 1 ≤ i ≤ n − 1 uniformly at random, and set

rn := r1 ⊕ r2 ⊕ · · · ⊕ rn−1. Set r⃗ := (ri)i∈[n].
For each q ∈ Qbranch and q′ ∈ descen(q), choose s

(q)
q′ ∈ {0, 1} uniformly at random. Set

s⃗ := (s(q)
q′)q∈Qbranch,q′∈descen(q).

Encoding Function: Output mi := (mi[q])q∈Q+
turn
∈ {0, 1}t as follows:

1. For each q ∈ Q+
turn, set mi[q]← vali,q(π⃗, xi).

2. For each q ∈ Qbranch, if the player i is responsible for q, do the following:
Let cq ∈ {0, 1} be the opened value at q.
For each q′ ∈ descen(q, cq), compute mi[q′]← mi[q′]⊕ s

(q)
q′ .

3. For each q ∈ Q+
turn, set mi[q]← mi[q]⊕ ri[q].

Decoding Function: Compute m := m1 ⊕m2 ⊕ · · · ⊕mn. Since m = (m[q])q∈Q+
turn

repres-
ents a path on the tree, the referee outputs the value corresponding to the path. Commu-
nication Complexity: nt Randomness Complexity: (n− 1)t +

∑
q∈Qbranch

|descen(q)|+∑
q∈Qshuf

H(Fq)

▶ Theorem 4. Let P be a simple protocol with correctness and security for f : Xn → Y

with opening complexity t. Then the above PSM protocol P̂ is correct and secure for f with
communication complexity nt.

Proof. Let x⃗ be an input and π⃗ be all permutations in shuffle operations. Given x⃗ and π⃗,
let Qx⃗,π⃗ be the set of all states q ∈ Q+

turn that actually appear during the execution. By the
definition of encoding function in P̂, we can observe that mi[q] = vali,q(π⃗, xi)⊕ ri[q] if and
only if q ∈ Qx⃗,π⃗. For any q ∈ Qx⃗,π⃗, we have

m[q] = m1[q]⊕ · · · ⊕mn[q]
= (val1,q(π⃗, x1)⊕ r1[q])⊕ · · · ⊕ (valn,q(π⃗, xn)⊕ rn[q])
= val1,q(π⃗, x1)⊕ · · · ⊕ valn,q(π⃗, xn)⊕ r1[q]⊕ r2[q]⊕ · · · ⊕ rn[q].

By the choice of rn in P̂, we have r1[q]⊕ · · · ⊕ rn[q] = 0 for any q ∈ Q+
turn. Hence we have

m[q] = val1,q(π⃗, x1)⊕ · · · ⊕ valn,q(π⃗, xn) = cq,

where cq ∈ {0, 1} is the opened symbol at q ∈ Q+
turn of P . Thus, the correctness of P̂ follows

from the correctness of P.

K. Shinagawa and K. Nuida 72:13

We prove the security of P̂ by constructing a simulator Sim for P̂ . Given an output value
y ∈ Y , Sim first invokes a simulator for P on input y, which outputs a visible sequence trace
v⃗ ∈ (VisD)∗ of P. From v⃗, the path of the execution in the protocol tree of P is determined.
Let c1, c2, . . . , ck ∈ {0, 1} be the opened values in v⃗ and q1, q2, . . . , qk ∈ Q+

turn be the states
corresponding to them. Define m′ = (m′[q])q∈Q+

turn
∈ {0, 1}t as follows:

m′[q] :=
{

cq if q ∈ {q1, q2, . . . , qk};
0 otherwise.

Then the simulator Sim chooses r′
1, r′

2, . . . , r′
n−1 ∈ {0, 1}t uniformly at random and outputs

(r′
1, . . . , r′

n−1, r′
1⊕· · ·⊕r′

n−1⊕m′). For q ∈ Q+
turn, the message (m1[q], . . . , mn[q]) is uniformly

random conditioned on
∑n

i=1 mi[q] = cq thanks to the random choice of (r1[q], . . . , rn[q]). For
q ̸∈ Q+

turn, (m1[q], . . . , mn[q]) is uniformly random thanks to the random choice of s⃗. Hence
the distribution of Sim(y) equals the distribution of the messages, therefore P̂ is secure. ◀

4.4 Extension of Our Conversion to Up-Down Cards
A deck of up-down cards [22] consists of two types of cards ↑ and ↓ , which are transformed
to each other by 180◦ rotation. The extension of our conversion to up-down cards is somewhat
straightforward. The only difference is that random permutations πq ∈ Πq in the the common
randomness are replaced with extended permutations defined below.

Let ρ be the 180◦ rotation operation, and define CMap := {id, ρ} as the set of rotation
operations. An extended permutation (over d cards) is defined by a pair of d rotation
operations (ρ1, . . . , ρd) ∈ CMapd and a permutation π ∈ Sd. For a sequence of d cards
Γ := (α1, α2, . . . , αd), we define an action of an extended permutation ω := ((ρ1, . . . , ρd), π) ∈
CMapd × Sd by

ω(Γ) := (ρ1(απ−1(1)), . . . , ρd(απ−1(d))),

i.e., it first permutes the sequence of cards according to π and then applies the rotation
operations. Here, by defining the operation “◦” as

ω ◦ ω′ := ((ρ1 ◦ ρ′
π−1(1), . . . , ρd ◦ ρ′

π−1(d)), ππ′)
for ω =

(
(ρj)j∈[d], π

)
, ω′ =

(
(ρ′

j)j∈[d], π′) ∈ CMapd × Sd, the set CMapd × Sd forms a monoid
with id := ((id, . . . , id), id) being the identity element, which is so-called the wreath product
CMap ≀ Sd. In this extended model, perm and shuffle operations are extended to the set
of extended permutations CMap ≀ Sd instead of Sd. Other definitions are the same as the
Mizuki–Shizuya model.

Theorems 1 and 4 also hold for up-down cards. In particular, an SSFO protocol using d up-
down cards implies a PSM protocol with communication complexity nd, and a simple protocol
using up-down cards with opening complexity t implies a PSM protocol with communication
complexity nt. In Section 5.2, we demonstrate our conversion for a card-based protocol using
up-down cards.

5 Application

5.1 Lower Bounds of Card-Based Protocols
From our conversion method in Section 4, lower bounds on the opening complexity for card-
based protocols are immediately implied to lower bounds on the communication complexity
of PSM protocols. This is summarized by Corollary 5.

STACS 2025

72:14 Card-Based Protocols Imply PSM Protocols

▶ Corollary 5. Let ℓ be a lower bound on the communication complexity of PSM protocols for
a function f : Xn → Y . Then for any simple protocol computing f , the opening complexity t

must satisfy t ≥ ℓ/n. In particular, for any SSFO protocol computing f , the number of cards
d must satisfy d ≥ ℓ/n.

In 1994, Feige, Kilian, and Naor [12] constructed a two-player PSM protocol for any
function f : {0, 1}k × {0, 1}k → {0, 1} with communication complexity O(2k). After 20
years, Beimel, Ishai, Kumaresan, and Kushilevitz [6] improved it to O(2k/2). For multi-
player setting, in 2018, Beimel, Kushilevitz, and Nissim [7] constructed an n-player PSM
protocol for any function f : ({0, 1}k)n → {0, 1} with communication complexity O(2kn/2).
In 2021, Assouline and Liu [3] improved it to O(2k(n−1)/2) for infinitely many n. Although
the communication complexity has gradually improved, the communication complexity of
general-purpose protocols is still exponential with respect to the total input length nk, and
improving it to subexponential seems difficult at least based on the existing techniques. We
summarize this observation in the following conjecture.

▶ Conjecture 6. There exists no PSM protocol for f : ({0, 1}k)n → {0, 1} with subexponential
communication complexity 2o(kn).

From Conjecture 6, we obtain a lower bound on the opening complexity.

▶ Corollary 7. Assume Conjecture 6 holds. Then there exists no simple protocol for f :
({0, 1}k)n → {0, 1} with opening complexity 2o(kn). In particular, there exists no SSFO
protocol for f : ({0, 1}k)n → {0, 1} with 2o(kn) cards.

Proof. If there exists a card-based protocol with 2o(kn), there exists a PSM protocol with
n · 2o(kn) = 2o(kn), contradicting to Conjecture 6. ◀

Of course, whether Corollary 7 holds is an open problem, and thus whether such a
subexponential lower bound holds is not yet proven. However, we believe that the previous
work of PSM protocols provides a piece of evidence that such a subexponential lower bound
might hold in card-based cryptography.

One might imagine that a non-trivial lower bound for card-based protocols could be
obtained from existing lower bounds for PSM protocols. In 2022, Ball and Randlph [5] showed
a quadratic lower bound of PSM protocols based on the modified Nečiporuk measure G∗(f)
for a function f : ({0, 1}k)n → {0, 1}, which is a measure of function complexity. They proved
that the communication complexity of PSM protocols computing f : ({0, 1}k)n → {0, 1}
is greater than or equal to G∗(f)/2, and a random function f has G∗(f) = Ω(kn2

log2(kn)),
implying a quadratic lower bound of PSM protocols.

Now we try to obtain a lower bound of card-based protocols from the Ball–Randlph’s
lower bound. From Corollary 5, we obtain a lower bound d = Ω(kn

log2(kn)) on the number of
cards d of SSFO protocols, but this is not a strong bound because a card-based protocol
naturally requires Ω(kn) cards for representing a kn-bit input. Unfortunately, since Ball
and Randlph also showed that G∗(f) ≤ kn2

log2(kn) for any f , we cannot obtain any better
lower bound using the Nečiporuk measure. In order to obtain a non-trivial lower bound
of card-based protocols, we need to obtain a super-quadratic lower bound ω(kn2) of PSM
protocols. As far as we know, no super-quadratic lower bound of PSM protocols has been
proven so far, but our result provides a new motivation for obtaining such a lower bound.

K. Shinagawa and K. Nuida 72:15

5.2 PSM Protocol for Indirect Storage Access Function
An indirect storage access (ISA, in short) function [23] is a function fk,ℓ

ISA : {0, 1}k+ℓK+L →
{0, 1}, where K = 2k and L = 2ℓ, defined as follows:

fk,ℓ
ISA(a, x0, x1, . . . , xK−1, y) := y|x|a||,

where a = (a0, . . . , ak−1) ∈ {0, 1}k, xj = (xj,0, . . . , xj,ℓ−1) ∈ {0, 1}ℓ (0 ≤ j ≤ K − 1),
y = (y00···0, y00···1, . . . , y11···1) ∈ {0, 1}L, and for a bit string b = (b0, b1, . . . , bt−1) ∈ {0, 1}t,
|b| represents an integer

∑t−1
i=0 bi2i.

We describe our protocol for fk,ℓ
ISA using up-down cards when k = ℓ = 2. The general case

follows similarly. The protocol proceeds as follows:
1. Arrange the input sequence as follows:

p0 p1

︸ ︷︷ ︸
a

q00 q01

︸ ︷︷ ︸
x0

q10 q11

︸ ︷︷ ︸
x1

q20 q21

︸ ︷︷ ︸
x2

q30 q31

︸ ︷︷ ︸
x3

r0 r1 r2 r3︸ ︷︷ ︸
y

,

where pi, qi,j , and ri are labels of positions.
2. Apply a shuffle (shuf, {id, ω0}) for ω0 defined as follows:

q00

A
q10

B
q20

C
q30

D
r0

E
r1

F
r2

G
r3

J →

A B C D

F E J G ,

where A, B, . . . , J are alphabets with no 180◦-rotational symmetry. (Note that these
characters are only used to represent the rotation and permutation, and are not actually
written on the cards. In the following, we will use the same notation in the protocol.)

3. Apply a shuffle (shuf, {id, ω1}) for ω1 defined as follows:

q01

A
q11

B
q21

C
q31

D
r0

E
r1

F
r2

G
r3

J →

A B C D

G J E F .

4. Apply a shuffle (shuf, {id, ω′
0}) for ω′

0 defined as follows:

p0

A
q00

B
q01

C
q10

D
q11

E
q20

F
q21

G
q30

J
q31

K →

A

D E B C J K F G .

5. Apply a shuffle (shuf, {id, ω′
1}) for ω′

1 defined as follows:

p1

A
q00

B
q01

C
q10

D
q11

E
q20

F
q21

G
q30

J
q31

K →

A

F G J K B C D E .

6. Open the first k cards. Let ã ∈ {0, 1}k be the k-tuple of the opened values.
7. Open the ℓ consecutive cards from the (k + 1 + |ã|ℓ)-th card. Let x̃ ∈ {0, 1}ℓ be the

ℓ-tuple of the opened values.
8. Open the (k + ℓK + 1 + |x̃|)-th card and output the opened value.

For the general case, since the number of opened cards is k +ℓ+1, the opening complexity
is 2k+ℓ+1 = 2KL. Thus the communication complexity of the resulting PSM protocol is
2KL(k + ℓK + L) = O(KL2 + K2Lℓ). The communication complexity of Ishai–Kushilevitz’s
protocol for fk,ℓ

ISA is O(K2L3 + K3L2ℓ) since fk,ℓ
ISA can be computed by a BP of size O(KL),

and that of Kolesnikov’s protocol for fk,ℓ
ISA is O(K2L2(k + ℓ)2) since fk,ℓ

ISA can be computed by
a formula of depth 2(k + ℓ). Therefore, our protocol is more efficient than those protocols.

STACS 2025

72:16 Card-Based Protocols Imply PSM Protocols

6 Conclusion

In this paper, we showed a generic conversion from card-based to PSM protocols. The
significance of our conversion is to show a direct relationship from card-based to conventional
cryptography for the first time, which was previously thought to be of little relevance.

Finally, we list open problems and future research directions as follows:
Deriving unconditional lower bounds for card-based protocols: An open problem is to de-

rive unconditional lower bounds for card-based protocols from those of PSM protocols.
To obtain such a lower bound for card-based protocols, it is sufficient to obtain a super-
quadratic lower bound ω(kn2) on the communication complexity of the PSM protocols
for f : ({0, 1}k)n → {0, 1}. However, as already mentioned in Section 5.1, a lower bound
from the Nečiporuk measure will never be super-quadratic. Thus, it seems essential to
develop new techniques to obtain super-quadratic lower bounds.

Constructing efficient PSM protocols: An open problem is to determine a class of functions
for which our conversion yields efficient PSM protocols. Since the resulting PSM protocol
has communication complexity linear to the opening complexity of the underlying protocol
(or the number of cards for SSFO protocols), the following questions are worthy towards
obtaining efficient PSM protocols with polynomial communication:

What is the class of functions for which a simple card-based protocol exists with
opening complexity polynomial in the input length?
What is the class of functions for which an SSFO card-based protocol exists with
polynomial number of cards in the input length?

Further relations among card-based and PSM protocols: An open problem is to develop
deeper connections between card-based protocols and PSM or other kinds of conventional
cryptographic protocols as follows:

Is it possible to improve the efficiency (i.e., the communication complexity of the
resulting PSM protocol) of our conversion?
Can we establish a conversion in the opposite direction, i.e., from a certain subclass of
PSM protocols back to card-based protocols?

References
1 Benny Applebaum, Barak Arkis, Pavel Raykov, and Prashant Nalini Vasudevan. Conditional

disclosure of secrets: Amplification, closure, amortization, lower-bounds, and separations.
SIAM J. Comput., 50(1):32–67, 2021. doi:10.1137/18M1217097.

2 Benny Applebaum, Thomas Holenstein, Manoj Mishra, and Ofer Shayevitz. The communication
complexity of private simultaneous messages, revisited. J. Cryptol., 33(3):917–953, 2020.
doi:10.1007/S00145-019-09334-Y.

3 Léonard Assouline and Tianren Liu. Multi-party psm, revisited: Improved communication
and unbalanced communication. In Kobbi Nissim and Brent Waters, editors, Theory of
Cryptography – 19th International Conference, TCC 2021, Raleigh, NC, USA, November 8-11,
2021, Proceedings, Part II, volume 13043 of Lecture Notes in Computer Science, pages 194–223.
Springer, 2021. doi:10.1007/978-3-030-90453-1_7.

4 Marshall Ball, Justin Holmgren, Yuval Ishai, Tianren Liu, and Tal Malkin. On the complexity
of decomposable randomized encodings, or: How friendly can a garbling-friendly PRF be? In
Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS
2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 86:1–86:22.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.ITCS.2020.
86.

https://doi.org/10.1137/18M1217097
https://doi.org/10.1007/S00145-019-09334-Y
https://doi.org/10.1007/978-3-030-90453-1_7
https://doi.org/10.4230/LIPICS.ITCS.2020.86
https://doi.org/10.4230/LIPICS.ITCS.2020.86

K. Shinagawa and K. Nuida 72:17

5 Marshall Ball and Tim Randolph. A note on the complexity of private simultaneous messages
with many parties. In Dana Dachman-Soled, editor, 3rd Conference on Information-Theoretic
Cryptography, ITC 2022, July 5-7, 2022, Cambridge, MA, USA, volume 230 of LIPIcs, pages
7:1–7:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ITC.
2022.7.

6 Amos Beimel, Yuval Ishai, Ranjit Kumaresan, and Eyal Kushilevitz. On the cryptographic
complexity of the worst functions. In Yehuda Lindell, editor, Theory of Cryptography - 11th
Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014.
Proceedings, volume 8349 of Lecture Notes in Computer Science, pages 317–342. Springer,
2014. doi:10.1007/978-3-642-54242-8_14.

7 Amos Beimel, Eyal Kushilevitz, and Pnina Nissim. The complexity of multiparty PSM
protocols and related models. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances
in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part II, volume 10821 of Lecture Notes in Computer Science, pages 287–318. Springer, 2018.
doi:10.1007/978-3-319-78375-8_10.

8 Claude Crépeau and Joe Kilian. Discreet solitary games. In Douglas R. Stinson, editor,
Advances in Cryptology - CRYPTO ’93, 13th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 22-26, 1993, Proceedings, volume 773 of Lecture Notes
in Computer Science, pages 319–330. Springer, 1993. doi:10.1007/3-540-48329-2_27.

9 László Csirmaz. The size of a share must be large. J. Cryptol., 10(4):223–231, 1997. doi:
10.1007/S001459900029.

10 Deepesh Data, Manoj Prabhakaran, and Vinod M. Prabhakaran. On the communication
complexity of secure computation. In Juan A. Garay and Rosario Gennaro, editors, Advances
in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part II, volume 8617 of Lecture Notes in Computer
Science, pages 199–216. Springer, 2014. doi:10.1007/978-3-662-44381-1_12.

11 Bert den Boer. More efficient match-making and satisfiability: The Five Card Trick. In Jean-
Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryptology - EUROCRYPT
’89, Workshop on the Theory and Application of of Cryptographic Techniques, Houthalen,
Belgium, April 10-13, 1989, Proceedings, volume 434 of Lecture Notes in Computer Science,
pages 208–217. Springer, 1989. doi:10.1007/3-540-46885-4_23.

12 Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation (extended
abstract). In Frank Thomson Leighton and Michael T. Goodrich, editors, Proceedings of the
Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal,
Québec, Canada, pages 554–563. ACM, 1994. doi:10.1145/195058.195408.

13 Romain Gay, Iordanis Kerenidis, and Hoeteck Wee. Communication complexity of conditional
disclosure of secrets and attribute-based encryption. In Rosario Gennaro and Matthew Robshaw,
editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 485–502. Springer, 2015. doi:10.1007/978-3-662-48000-7_24.

14 Yuji Hashimoto, Koji Nuida, Kazumasa Shinagawa, Masaki Inamura, and Goichiro Hanaoka.
Toward finite-runtime card-based protocol for generating a hidden random permutation without
fixed points. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 101-A(9):1503–1511,
2018. doi:10.1587/TRANSFUN.E101.A.1503.

15 Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols with applications.
In Fifth Israel Symposium on Theory of Computing and Systems, ISTCS 1997, Ramat-
Gan, Israel, June 17-19, 1997, Proceedings, pages 174–184. IEEE Computer Society, 1997.
doi:10.1109/ISTCS.1997.595170.

STACS 2025

https://doi.org/10.4230/LIPICS.ITC.2022.7
https://doi.org/10.4230/LIPICS.ITC.2022.7
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-319-78375-8_10
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/S001459900029
https://doi.org/10.1007/S001459900029
https://doi.org/10.1007/978-3-662-44381-1_12
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1145/195058.195408
https://doi.org/10.1007/978-3-662-48000-7_24
https://doi.org/10.1587/TRANSFUN.E101.A.1503
https://doi.org/10.1109/ISTCS.1997.595170

72:18 Card-Based Protocols Imply PSM Protocols

16 Julia Kastner, Alexander Koch, Stefan Walzer, Daiki Miyahara, Yu-ichi Hayashi, Takaaki
Mizuki, and Hideaki Sone. The minimum number of cards in practical card-based protocols.
In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT
2017 – 23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part III, volume
10626 of Lecture Notes in Computer Science, pages 126–155. Springer, 2017. doi:10.1007/
978-3-319-70700-6_5.

17 Alexander Koch. The landscape of optimal card-based protocols. IACR Cryptol. ePrint Arch.,
page 951, 2018. URL: https://eprint.iacr.org/2018/951.

18 Alexander Koch, Michael Schrempp, and Michael Kirsten. Card-based cryptography
meets formal verification. New Gener. Comput., 39(1):115–158, 2021. doi:10.1007/
S00354-020-00120-0.

19 Alexander Koch, Stefan Walzer, and Kevin Härtel. Card-based cryptographic protocols
using a minimal number of cards. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in
Cryptology – ASIACRYPT 2015 – 21st International Conference on the Theory and Application
of Cryptology and Information Security, Auckland, New Zealand, November 29 – December 3,
2015, Proceedings, Part I, volume 9452 of Lecture Notes in Computer Science, pages 783–807.
Springer, 2015. doi:10.1007/978-3-662-48797-6_32.

20 Takaaki Mizuki, Michihito Kumamoto, and Hideaki Sone. The five-card trick can be done with
four cards. In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology – ASIACRYPT
2012 – 18th International Conference on the Theory and Application of Cryptology and
Information Security, Beijing, China, December 2-6, 2012. Proceedings, volume 7658 of Lecture
Notes in Computer Science, pages 598–606. Springer, 2012. doi:10.1007/978-3-642-34961-4_
36.

21 Takaaki Mizuki and Hiroki Shizuya. A formalization of card-based cryptographic protocols
via abstract machine. Int. J. Inf. Sec., 13(1):15–23, 2014. doi:10.1007/S10207-013-0219-4.

22 Takaaki Mizuki and Hiroki Shizuya. Practical card-based cryptography. In Alfredo Ferro,
Fabrizio Luccio, and Peter Widmayer, editors, Fun with Algorithms – 7th International
Conference, FUN 2014, Lipari Island, Sicily, Italy, July 1-3, 2014. Proceedings, volume
8496 of Lecture Notes in Computer Science, pages 313–324. Springer, 2014. doi:10.1007/
978-3-319-07890-8_27.

23 John E. Savage. Models of computation – exploring the power of computing. Addison-Wesley,
1998.

https://doi.org/10.1007/978-3-319-70700-6_5
https://doi.org/10.1007/978-3-319-70700-6_5
https://eprint.iacr.org/2018/951
https://doi.org/10.1007/S00354-020-00120-0
https://doi.org/10.1007/S00354-020-00120-0
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-642-34961-4_36
https://doi.org/10.1007/978-3-642-34961-4_36
https://doi.org/10.1007/S10207-013-0219-4
https://doi.org/10.1007/978-3-319-07890-8_27
https://doi.org/10.1007/978-3-319-07890-8_27

	1 Introduction
	1.1 Background
	1.2 Our Contribution

	2 Preliminaries
	2.1 PSM Protocols
	2.2 Card-Based Protocols

	3 Our Conversion for Special Case
	3.1 PSM Protocol from Five-Card Trick
	3.2 PSM Protocol from Any Single-Shuffle Full-Open Protocol

	4 Our Conversion for General Case
	4.1 Simple Protocols
	4.2 Overview of Our Conversion
	4.3 Our Conversion for Simple Protocols
	4.4 Extension of Our Conversion to Up-Down Cards

	5 Application
	5.1 Lower Bounds of Card-Based Protocols
	5.2 PSM Protocol for Indirect Storage Access Function

	6 Conclusion

