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Abstract
Given a set P of n points in the plane, its unit-disk graph G(P ) is a graph with P as its vertex
set such that two points of P are connected by an edge if their (Euclidean) distance is at most 1.
We consider several classical problems on G(P ) in a special setting when points of P are in convex
position. These problems are all NP-hard in the general case. We present efficient algorithms for
these problems under the convex position assumption.

For the problem of finding the smallest dominating set of G(P ), we present an O(kn log n) time
algorithm, where k is the smallest dominating set size. We also consider the weighted case
in which each point of P has a weight and the goal is to find a dominating set in G(P ) with
minimum total weight; our algorithm runs in O(n3 log2 n) time. In particular, for a given k, our
algorithm can compute in O(kn2 log2 n) time a minimum weight dominating set of size at most
k (if it exists).
For the discrete k-center problem, which is to find a subset of k points in P (called centers)
for a given k, such that the maximum distance between any point in P and its nearest cen-
ter is minimized. We present an algorithm that solves the problem in O(min{n4/3 log n +
kn log2 n, k2n log2 n}) time, which is O(n2 log2 n) in the worst case when k = Θ(n). For compar-
ison, the runtime of the current best algorithm for the continuous version of the problem where
centers can be anywhere in the plane is O(n3 log n).
For the problem of finding a maximum independent set in G(P ), we give an algorithm of O(n7/2)
time and another randomized algorithm of O(n37/11) expected time, which improve the previous
best result of O(n6 log n) time. Our algorithms can be extended to compute a maximum-weight
independent set in G(P ) with the same time complexities when points of P have weights.

If we are looking for an (unweighted) independent set of size 3, we derive an algorithm of
O(n log n) time; the previous best algorithm runs in O(n4/3 log2 n) time (which works for the
general case where points of P are not necessarily in convex position).
If points of P have weights and are not necessarily in convex position, we present an algorithm
that can find a maximum-weight independent set of size 3 in O(n5/3+δ) time for an arbitrarily
small constant δ > 0. By slightly modifying the algorithm, a maximum-weight clique of size 3
can also be found within the same time complexity.

For the dispersion problem, which is to find a subset of k points from P for a given k, such
that the minimum pairwise distance of the points in the subset is maximized. We present an
algorithm of O(n7/2 log n) time and another randomized algorithm of O(n37/11 log n) expected
time, which improve the previous best result of O(n6) time.

If k = 3, we present an algorithm of O(n log2 n) time and another randomized algorithm
of O(n log n) expected time; the previous best algorithm runs in O(n4/3 log2 n) time (which
works for the general case where points of P are not necessarily in convex position).
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1 Introduction

Let P be a set of n points in the plane. The unit-disk graph of P , denoted by G(P ), is
the graph with P as its vertex set such that two points are connected by an edge if their
(Euclidean) distance is at most 1. Equivalently, G(P ) is the intersection graph of congruent
disks with radius 1/2 and centered at the points in P (i.e., two disks have an edge if they
intersect). This model is particularly useful in applications such as wireless sensor networks,
where connectivity is determined by signal ranges, represented by unit disks [6, 19,42,43].

1.1 Our results
We consider several classical problems on G(P ). These problems are all NP-hard. However,
little attention has been given to special configurations of points, such as when the points
are in convex position, despite the potential for significant algorithmic simplifications in such
cases. In this paper, we systematically study these problems under the condition that the
points of P are in convex position (i.e., every point of P appears as a vertex in the convex
hull of P ) and present efficient algorithms. We hope our results can lead to efficient solutions
to other problems in this setting.

Dominating set. A dominating set of G(P ) is a subset S of vertices of G(P ) such that
each vertex of G(P ) is either in S or adjacent to a vertex in S. The dominating set problem,
which seeks a dominating set of the smallest size, is a classical NP-hard problem [19,29,31].
In the weighted case, each point of P has a weight and the problem is to find a dominating
set of minimum total weight. The dominating set problem has been widely studied, with
various approximation algorithms proposed [23,27,41,55].

To the best of our knowledge, we are not aware of any previous work under the convex
position assumption. For the unweighted case, we present an algorithm of O(kn log n) time,
where k is the smallest dominating set size of G(P ). For the weighted case, we derive an
algorithm of O(n3 log2 n) time. In particular, given any k, our algorithm can compute in
O(kn2 log2 n) time a minimum-weight dominating set of size at most k.

Discrete k-center. A closely related problem is the discrete k-center problem. Given a
number k, the problem is to compute a subset of k points in P (called centers) such that the
maximum distance between any point in P and its nearest center is minimized. The problem,
which is NP-hard [49], is also a classical problem with applications in clustering, facility
locations, and network design. An algorithm for the dominating set problem can be used to
solve the decision version of the discrete k-center problem: Given a value r and k, decide
whether there exists a subset of k centers such that the distance from any point in P to its
nearest center is at most r. Indeed, if we define the unit-disk graph of P with respect to r,
then a dominating set of size k in the graph is a discrete k-center of P for r, and vice versa.

For the convex position case, we are not aware of any previous work. We propose an
algorithm of O(min{n4/3 log n + kn log2 n, k2n log2 n}) time.

Independent set. An independent set of G(P ) is a subset of vertices such that no two
vertices have an edge. The maximum independent set problem is to find an independent set
of the largest cardinality. The problem of finding a maximum independent set in G(P ) is
NP-hard [19]. Many approximation algorithms for the problem have been developed in the
literature, e.g., [21, 22,37,38].
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Under the convex position assumption, using the technique of Singireddy, Basappa, and
Mitchell [47] for a dispersion problem (more details to be discussed later), one can find
a maximum independent set in G(P ) in O(n6 log n) time. We give a new algorithm of
O(n7/2) time,1 and another randomized algorithm of O(n37/11) expected time using the
recent randomized result of Agarwal, Ezra, and Sharir [1]. Furthermore, our algorithm
can be extended to compute a maximum-weight independent set of G(P ) within the same
time complexity when points of P have weights; specifically, a maximum-weight independent
set is an independent set whose total vertex weight is maximized. Since the vertices of a
graph excluding an independent set form a vertex cover, our algorithm also computes a
minimum-weight vertex cover of G(P ) in O(n7/2) time or in randomized O(n37/11) expected
time.

Furthermore, we consider a small-size case that is to find an (unweighted) independent
set of size 3 in G(P ). If P is not necessarily in convex position, the problem has been studied
by Agarwal, Overmars, and Sharir [2], who presented an O(n4/3 log2 n) time algorithm. We
consider the convex position case and derive an algorithm of O(n log n) time. Note that
finding an independent set of size 2 is equivalent to computing a farthest pair of points of P ,
which can be done in O(n log n) time using the farthest Voronoi diagram [45].

In addition, we consider a more general small-size case that is to find a maximum-weight
independent set of size 3 in G(P ) when points of P have weights and are not necessarily
in convex position. Our algorithm runs in O(n5/3+δ) time; δ refers to an arbitrarily small
positive constant. Our technique can also be used to find a maximum-weight clique of size 3
in G(P ) within the same time complexity. In addition, we show that a maximum-weight
independent set or clique of size 2 can be found in n4/32O(log∗ n) time. All these algorithms
also work for computing the minimum-weight independent set or clique. We are not aware of
any previous work on these weighted problems. As mentioned above, the problem of finding
an (unweighted) independent set of size 3 can be solved in O(n4/3 log2 n) time [2]. It is also
known that finding an (unweighted) clique of size 3 in a disk graph (not necessarily unit-disk
graph) can be done in O(n log n) time [30].

The dispersion problem. A related problem is the dispersion problem (also called maximally
separated set problem [2]). Given P and a number k, we wish to find a subset of k points
from P so that their minimum pairwise distance is maximized. The problem is NP-hard [50].
An algorithm for the independent set problem of G(P ) can be used as a decision algorithm
for the dispersion problem: Given a value r, we can decide whether P has a subset of k

points whose minimum pairwise distance is larger than r using the independent set algorithm
(i.e., by defining an edge for two points in the graph if their distance is at most r).

Under the convex position assumption, Singireddy, Basappa, and Mitchell [47] previously
gave an O(n4k2) time algorithm for the problem. Using our independent set algorithm
as a decision procedure and doing binary search among the interpoint distances of P , we
present a new algorithm that can solve the problem in O(n7/2 log n) time, or in randomized
O(n37/11 log n) expected time. For a special case where k = 3, the algorithm of [2] solves the
problem in O(n4/3 log3 n) time even if the points of P are not in convex position. Our new
algorithm, which works on the convex-position case only, runs in O(n log2 n) time. This is
achieved using parametric search [20,39] with our independent set algorithm as a decision
algorithm. In addition, with our decision algorithm and Chan’s randomized technique [11],
we can obtain a randomized algorithm of O(n log n) expected time. We note that a recent
work [35] proposed another algorithm of O(n2) time, apparently unaware of the result in [2].

1 Throughout the paper, the algorithm runtime is deterministic unless otherwise stated.
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1.2 Related work
Unit-disk graphs are a fundamental model in wireless networks, particularly where coverage
and connectivity are governed by proximity [6, 19, 42, 43]. However, many classical graph
problems, including coloring, vertex cover, independent set, and dominating set, remain
NP-hard even when restricted to unit-disk graphs [19]. One exception is that finding a
maximum clique in a unit-disk graph can be done in polynomial time [19, 25, 26] and the
current best algorithm runs in O(n2.5 log n) time [26] (see [34] for a comment about improving
the runtime to O(n7/3+o(1))).

The assumption that points are in convex position can simplify certain problems that are
otherwise NP-hard for general point sets in the plane. This has motivated the exploration
of other computational problems under similar assumptions. For example, the continuous
k-center problem where centers can be anywhere in the plane is NP-hard for arbitrary points
but become polynomial time solvable under the convex position assumption [18]. The convex
position constraint was even considered for classical problems that are already polynomial
time solvable in the general case. For instance, Aggarwal, Guibas, Saxe, and Shor [4] gave a
renowned linear time algorithm for computing the Voronoi diagram for a set of planar points
in convex position. Refer to [15,36,44] for more work for points in convex position.

The k-center problem under a variety of constraints has received much attention. Partic-
ularly, when k, the number of centers, is two and the centers can be anywhere in the plane
(referred to as the continuous 2-center problem), several near-linear time algorithms have
been developed [12,24,46,51], culminating in an optimal O(n log n) time [17]. The problem
variations under other constraints were also considered. For example, the k-center problem
can be solved in O(n log n) time if centers are required to lie on the same line [16, 53] or
two lines [10]. The continuous one-center problem is the classical smallest enclosing circle
problem and can be solved in linear time [40].

For the convex position case of the continuous k-center problem, Choi, Lee, and Ahn [18]
proposed an O(min{k, log n} · n2 log n + k2n log n) time algorithm. For comparison, the
worst-case runtime of their algorithm is cubic, while our discrete k-center algorithm runs in
near quadratic time.

The discrete 2-center problem also gets considerable attention. Agarwal, Sharir, and
Welzl gave the first subquadratic O(n4/3 log5 n) time algorithm [3]; the logarithmic factor
was slightly improved by Wang [52]. As the continuous two-center problem can be solved
in O(n log n) time [17] while the current best discrete two-center algorithm runs in Ω(n4/3)
time [3, 52], the discrete problem appears more challenging than the continuous counterpart.
This makes our discrete k-center algorithm even more interesting because it is almost a linear
factor faster than the continuous k-center algorithm in [18]. Therefore, it is an intriguing
question whether the algorithm in [18] can be further improved.

Other variations of the discrete k-center problem for small k were recently studied by
Chan, He, and Yu [13], improving over previous results [8, 9, 32].

The dispersion problem and some of its variants have also been studied before. The
general planar dispersion problem can be solved by an exact algorithm in nO(

√
k) time [2]. If

all points of P lie on a single line, Araki and Nakano [5] gave an algorithm of O((2k2)k · n)
time (assuming that the points are not given sorted), which is O(n) for a constant k. For
a circular case where all points of P lie on a circle and the distance between two points
is measured by their distance along the circle, the problem is solvable in O(n) time [48],
provided that the points are given sorted along the circle. We note that this implies that the
line case problem, which can be viewed as a special case of the circular case, is also solvable
in O(n) time after the points are sorted on the line.
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pi1

pik

Figure 1 Illustrating the ordering property of S (the centers of the disks).

1.3 Our approach
The weighted dominating set problem reduces to the following problem: Given any k, find a
minimum weight dominating set of size at most k. This is equivalent to finding a minimum
weight subset of at most k points of P such that the union of the unit disks centered at these
points covers P . Let S be an optimal solution for the problem (points of S are called centers).
If we consider P as a cyclic list of points along the convex hull of P , then for each center
p ∈ S, its unit disk Dp may cover multiple maximal contiguous subsequences (called sublists)
of P . We prove that it is possible to assign at most two such sublists to each center p ∈ S

such that (1) p belongs to at least one of these sublists; (2) the union of the sublists assigned
to all centers is P ; (3) for every two centers pi, pj ∈ S, the sublists of the points assigned
to pi can be separated by a line from the sublists assigned to pj . Using these properties,
we further obtain the following structural property (called ordering property; see Figure 1)
about the optimal solution S: There exists an ordering of the centers of S as pi1 , pi2 , . . . , pik

such that (1) pi1 (resp., pik
) is only assigned one sublist; (2) if a center pij , 1 < j < k, is

assigned two sublists, then one of them is on P1, the portion of P from pi1 to pik
clockwise,

and the other is on P2, the portion of P from pi1 to pik
counterclockwise; (3) the order of the

centers of the sublists along P1 (resp., P2) from pi1 to pik
is a (not necessarily contiguous)

subsequence of the above ordering.
The above ordering property is crucial to the success of our method. Using the property,

we develop a dynamic programming algorithm of O(kn2 log2 n) time. Setting k = n leads
to an O(n3 log2 n) time algorithm for the original weighted dominating set problem. These
properties are also applicable to the unweighted case, which is essentially a special case of
the weighted problem. Using an additional greedy strategy, the runtime of the algorithm can
be improved by roughly a linear factor for the unweighted case.

To solve the discrete k-center problem, we use the algorithm for the unweighted dominating
set problem as the decision problem: Given any value r, determine whether r ≥ r∗, where r∗

is the optimal objective value, i.e., the minimum value for which there exist k centers such that
the maximum distance from any point of P to its closest center is at most r∗. Observe that
r∗ must be equal to the distance of two points of P . As such, by doing binary search on the
pairwise distances of points of P and applying the distance selection framework in [54] with
our unweighted dominating set algorithm, we can compute r∗ in O(n4/3 log n+kn log2 n) time.
Furthermore, using parametric search [20,39], we develop another algorithm of O(k2n log2 n)
time, which is faster than the first algorithm when k = o(n1/6/

√
log n).

For the independent set problem, our algorithm is a dynamic program, which is in turn
based on the observation that the Voronoi diagram of a set of points in convex position
forms a tree [4]. The (unweighted) size-3 case is solved by new observations and developing

STACS 2025
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efficient data structures. As discussed above, we tackle the dispersion problem by using
the independent set algorithm as a decision procedure. For computing a maximum-weight
independent set of size 3 for points in arbitrary position, our algorithm relies on certain
interesting observations and a tree-structured biclique partition of P . Biclique partition has
been studied before, e.g., [33, 54]. However, to our best knowledge, tree-structured biclique
partitions have never been introduced before. Our result may find applications elsewhere.

Outline. The rest of the paper is organized as follows. After introducing notation in
Section 2, we present our algorithms for the dominating set, the discrete k-center, the
independent set, and the dispersion problems for points in convex position in Sections 3, 4,
5 and 6, respectively. As the only problem for points in arbitrary position studied in this
paper, the size-3 weighted independent set problem is discussed in Section 7. Due to the
space limit, many details and proofs are omitted but can be found in the full paper.

2 Preliminaries

We introduce some notations that will be used throughout the paper, in addition to those
already defined in Section 1, e.g., P , n, G(P ).

A unit disk refers to a disk with radius 1; the boundary of a unit disk is a unit circle.
For any point p in the plane, we use Dp to denote the unit disk centered at p. For any two
points p and q in the plane, we use |pq| to denote their (Euclidean) distance and use pq to
denote the line segment connecting them. Let −→pq to denote the directed segment from p to q.

Let H(P ) be the convex hull of P . If the points in P are in convex position, then we can
consider P as a cyclic sequence. Specifically, let P = ⟨p1, p2, . . . , pn⟩ represent a cyclic list of
the points ordered counterclockwise along H(P ). We use a sublist to refer to a contiguous
subsequence of P . Multiple sublists are said to be consecutive if their concatenation is also
a sublist. For any two points pi and pj in P , we define P [i, j] as the sublist of P from pi

counterclockwise to pj , inclusive, i.e., if i ≤ j, then P [i, j] = ⟨pi, pi+1, . . . , pj⟩; otherwise,
P [i, j] = ⟨pi, pi+1, . . . , pn, p1, . . . , pj⟩. We also denote by P (i, j] the sublist P [i, j] excluding
pi, and similarly for other variations, e.g., P [i, j) and P (i, j).

For simplicity of the discussion, we make a general position assumption that no three
points of P are collinear and no four points lie on the same circle. This assumption is made
without loss of generality as degenerate cases can be handled through perturbations.

3 The dominating set problem

In this section, we present our algorithms for the dominating set problem on a set P of n points
in convex position. The weighted and unweighted cases are discussed in Sections 3.2 and 3.3,
respectively. We first prove in Section 3.1 the structural properties that our algorithms rely
on and then present these algorithms.

3.1 Structural properties
We examine the structural properties of the dominating sets in the unit-disk graph G(P ) for
the weighted case, which are also applicable to the unweighted case.

Let A represent a partition of P into consecutive, nonempty, and disjoint sublists. Suppose
S ⊆ P is a dominating set of G(P ); points of S are called centers. It is not difficult to see
that the union of the collection D of unit disks centered at the points in S covers P .
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We say that a collection D of unit disks covers A if every sublist α ∈ A is covered by
at least one disk from D. An assignment ϕ : A → S is a mapping from sublists in A to
points in S, such that each sublist α is assigned to exactly one center pi ∈ S with α ⊆ Dpi

.
For each pi ∈ S, we define Gpi as the set of points in the sublists α ∈ A that are assigned
to pi; Gpi

is called the group of pi. Depending on the context, Gpi
may also represent the

collection of sublists assigned to pi. By definition, the groups of two centers of S are disjoint.
An assignment ϕ is said to be line separable if, for every two groups of ϕ, there exists a

line ℓ that separates the points from the two groups, that is, the points of one group lie on
one side of ℓ or on ℓ while those of the other group lie strictly on the other side of ℓ.

As discussed in Section 1.3, our main target is to prove the ordering property. This is
achieved by proving a series of lemmas. We start with the lemma that proves a line separable
property.

▶ Lemma 1. Let S be a dominating set of G(P ). There exist a partition A of P and a
line-separable assignment ϕ : A → S such that for any center pi ∈ S, pi ∈ Gpi

, meaning that
a sublist of pi contains pi.

For the assignment ϕ from Lemma 1, for each center pi ∈ S, we refer to the sublist of pi

that contains pi as the main sublist of pi.

▶ Lemma 2. Let S be a dominating set for G(P ). Then there exist a partition A of P and
an assignment ϕ : A → S with the following properties: (1) ϕ is line separable; (2) each
center of S is assigned at most two sublists, one of which is a main sublist.

▶ Lemma 3. Let S be an optimal dominating set and ϕ : A → S be the assignment given by
Lemma 2. There exists a pair of centers (pi, pj) in S, called a decoupling pair, such that the
following hold: (1) each of pi and pj has only one sublist; (2) for any center S that has two
sublists, one sublist is in P (i, j) while the other is in P (j, i).

Let S be an optimal dominating set and ϕ : A → S be the assignment given by Lemma 2.
Let (pi, pj) be a decoupling pair from Lemma 3. For any center of S \ {pi, pj}, each of its
sublist must be either entirely in P (i, j) or in P (j, i), and by Lemma 3, the center has at most
one sublist in P (i, j) and at most one sublist in P (j, i). We finally prove in the following
lemma the ordering property discussed in Section 1.3.

▶ Lemma 4. (The ordering property) Let S be an optimal dominating set and ϕ : A → S be
the assignment given by Lemma 2. Let (pi, pj) be a decoupling pair from Lemma 3. Then,
there exists an ordering of all centers of S as pi1 , pi2 , . . . , pik

with k = |S| such that (see
Figure 1)
1. pi = pi1 and pj = pik

, i.e., pi1 and pik
are the first and last points in the ordering,

respectively.
2. The sequence of the centers of S that have at least one sublist in P [i, j] (resp., P [j, i])

ordered by the points of their sublists appearing in P [i, j] (resp., P [j, i]) from pi to pj is a
(not necessarily contiguous) subsequence of the ordering.

3. For any t, 1 ≤ t ≤ k, the sublists of the first t centers in the ordering are consecutive
(i.e., their union, which is

⋃t
l=1 Gil

, is a sublist of P ).
4. For any t, 2 ≤ t ≤ k,

⋃t−1
l=1 Gil

⊆
⋃t

l=1 Gil
.

5. For any t, 1 ≤ t ≤ k, each sublist of pit
appears at one end of

⋃t
l=1 Gil

(if t = k, then⋃t
l=1 Gil

becomes the cyclic list of P ; for convenience, we view
⋃t

l=1 Gil
as a list by

cutting it right after the clockwise endpoint of Gik
).

STACS 2025
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Proof. First of all, notice that the first two properties imply the last three. Therefore, it
suffices to prove the first two properties.

Let S1 (resp., S2) be the subset of centers of S \ {pi, pj} that have a sublist in P (i, j)
(resp., P (j, i)). By Lemma 3, each center of S1 has at most one sublist in P (i, j) and each
center of S2 has at most one sublist in P (j, i). We add pi and pj to both S1 and S2. We
sort all centers of S1 as a sequence (called the sorted sequence of S1) by the points of their
sublists appearing in P [i, j] from pi to pj (and thus pi is the first center and pj is the last
one in the sequence). Similarly, we sort all centers of S2 as a sequence (called the sorted
sequence of S2) by the points of their sublists appearing in P [j, i] from pi to pj (and thus pi

is the first center and pj is the last one in the sequence). To prove the first two properties of
the lemma, it suffices to show the following statement: There exists an ordering of S such
that (1) pi is the first one in the ordering and pj is the last one; (2) the sorted sequence of
S1 (resp., S2) is a subsequence of the ordering.

We say that two centers pj1 , pj2 ∈ S are conflicting if pj1 appears in front of pj2 in the
sorted sequence of S1 while pj2 appears in front of pj1 in the sorted sequence of S2. It is not
difficult to see that if no two centers of S are conflicting then the above statement holds.
Assume to the contrary that there exist two centers pj1 , pj2 ∈ S that are conflicting. Then,
since the two centers are in both S1 and S2, each of them has two sublists. Since they are
conflicting, by the definition of the sorted sequences of S1 and S2 and due to the convexity
of P , the group of pj1 cannot be separated from the group of pj2 by a line, a contradiction
with the line separable property of ϕ. ◀

3.2 The weighted dominating set problem
For each point pi ∈ P , let wi denote its weight. We assume that each wi > 0, since otherwise
pi could always be included in the solution. For any subset S ⊆ P , let w(S) denote the total
weight of all points of S. We mainly consider the following bounded size problem: Given a
number k, compute a dominating set S of minimum total weight with |S| ≤ k in the unit-disk
graph G(P ). If we have an algorithm for this problem, then applying the algorithm with
k = n can compute a minimum weight dominating set for G(P ). Let S∗ denote an optimal
dominating set for the above bounded size problem. Define W ∗ = w(S∗).

In what follows, we first describe the algorithm and then discuss how to implement the
algorithm efficiently.

Algorithm description. We begin by introducing the following definition.

▶ Definition 5. For two points pi, pj ∈ P (pi = pj is possible), define aj
i as the index of

the first point p of P counterclockwise from pj such that |pip| > 1, and bj
i the index of the

first point p of P clockwise from pj such that |pip| > 1 (if |pipj | > 1, then aj
i = bj

i = j). If
|pip| ≤ 1 for all points p ∈ P , then let aj

i = bj
i = 0.

For a subset P ′ ⊆ P , let D(P ′) denote the union of the unit disks centered at the points
of P ′. Note that a subset S ⊆ P is a dominating set if and only if P ⊆ D(S).

Our algorithm has k iterations. In each t-th iteration with 1 ≤ t ≤ k, we compute a set
Lt of O(n2) sublists of P , and each sublist L ∈ Lt is associated with a weight w′(L) and a
set SL ⊆ P of at most t points. Our algorithm maintains the following invariant: For each
sublist L ∈ Lt, w(SL) ≤ w′(L) and points of L are all covered by D(SL). Suppose that there
exists a set S ⊆ P of k points such that P ⊆ D(S). Then we will show that Lk contains a
sublist L that is P and w′(L) ≤ W ∗. As such, after k iterations, we only need to find all
sublists of Lk that are P and then return the one with the minimum weight.
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In the first iteration, for each point pi ∈ P , we compute the two indices ai
i and bi

i; we
show in Lemma 7 that this can be done in O(log n) time after O(n log n) time preprocessing.
Then, let L1 = {P (bi

i, ai
i) | pi ∈ P}. For each sublist L = P (bi

i, ai
i) of L1, we set SL = {pi}

and w′(L) = wi. Clearly, the algorithm invariant holds on all sublists of L1. This finishes
the first iteration. Although |L1| = O(n), as will be seen next, |Lt| = O(n2) for all t ≥ 2.

In general, suppose that we have a set Lt−1 of O(n2) sublists and each sublist L ∈ Lt−1
is associated with a weight w′(L) and a set SL ⊆ P of at most t − 1 points such that the
algorithm invariant holds, i.e., w(SL) ≤ w′(L) and points of L are all covered by D(SL). We
now describe the t-th iteration of the algorithm.

For each point pi ∈ P , we perform a counterclockwise processing procedure as follows. For
each point pj ∈ P , we do the following. Compute the minimum weight sublist from Lt−1 that
contains P [ai

i, j]; we call this step a minimum-weight enclosing sublist query. We show later
that each such query can be answered in O(log2 n) time after O(n2 log n) time preprocessing
on the sublists of Lt−1. Let P [ji1, ji2] be the sublist computed above. Then, we compute
the index aji2+1

i . By definition, the union of the following three sublists is a sublist of P :
P (bi

i, ai
i), P [ji1, ji2], and P (ji2, aji2+1

i ); denote by L the sublist. We set SL = SL′ ∪ {pi}
and w′(L) = w′(L′) + wi, where L′ = P [ji1, ji2]. We add L to Lt. We next argue that
the algorithm invariant holds for L, i.e., points of L are covered by D(SL), |SL| ≤ t, and
w(SL) ≤ w′(L). Indeed, by definition, all the points of P (bi

i, ai
i) ∪ P (ji2, aji2+1

i ) are covered
by the disk Dpi . Since the sublist L′ is from Lt−1, by our algorithm invariant, L′ is covered
by D(SL′), |SL′ | ≤ t − 1, and w(SL′) ≤ w′(L′). Therefore, L is covered by D(SL′ ∪ {pi}) and
|SL| ≤ t. In addition, we have w(SL) ≤ w(SL′) + wi ≤ w′(L′) + wi = w′(L). As such, the
algorithm invariant holds on L.

The above counterclockwise processing procedure for pi will add O(n) sublists to Lt.
Symmetrically, we perform a clockwise processing procedure for pi, which will also add O(n)
sublists to Lt. We briefly discuss it. Given pi ∈ P , for each point pj ∈ P , we compute
the minimum weight sublist from Lt−1 that contains P [j, bi

i]. Let P [ji3, ji4] be the sublist
computed above. Then, we compute the index bji3−1

i . Let L be the sublist that is the union
of the following three sublists: P (bi

i, ai
i), P [ji3, ji4], and P (bji3−1

i , ji3). We let SL = SL′ ∪{pi}
and w′(L) = w′(L′) + wi, where L′ = P [ji3, ji4]. As above, the algorithm invariant holds on
L. We add L to Lt. In this way, the t-th iteration computes O(n2) sublists in Lt.

After the k-th iteration, we find from all sublists of Lk that are P the one L∗ whose
weight w′(L∗) is the minimum. Based on the ordering property in Lemma 4, the next lemma
shows that SL∗ is an optimal dominating set.

▶ Lemma 6. SL∗ is an optimal dominating set and W ∗ = w′(L∗).

Time analysis. In each iteration, we perform O(n2) operations for computing indices aj
i and

bj
i , and perform O(n2) minimum-weight enclosing sublist queries. We show later that each

query takes O(log2 n) time after O(n2 log n) time preprocessing. As such, each iteration of the
algorithm takes O(n2 log2 n) time and the total time of the algorithm is thus O(kn2 log2 n).

Algorithm implementation. The following lemma provides a data structure for computing
the indices aj

i and bj
i .

▶ Lemma 7. We can construct a data structure for P in O(n log n) time such that the indices
aj

i and bj
i can be computed in O(log n) time for any two points pi, pj ∈ P .

Given a set L of m sublists of P , each sublist has a weight. We wish to build a data
structure to answer the following minimum-weight enclosing sublist queries: Given a sublist
L, compute the minimum weight sublist of L that contains L. We have the following lemma.
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▶ Lemma 8. We can construct a data structure for L in O(m log m) time, with m = |L|, so
that each minimum-weight enclosing sublist query can be answered in O(log2 m) time.

Theorem 9 summarizes our result. Applying Theorem 9 with k = n leads to Corollary 10.

▶ Theorem 9. Given a number k and a set P of n weighted points in convex position in the
plane, we can find in O(kn2 log2 n) time a minimum-weight dominating set of size at most k

in the unit-disk graph G(P ), or report no such dominating set exists.

▶ Corollary 10. Given a set P of n weighted points in convex position in the plane, we can
compute a minimum-weight dominating set in the unit-disk graph G(P ) in O(n3 log2 n) time.

3.3 The unweighted case
In this section, we consider the unweighted dominating set problem. The goal is to compute
the smallest dominating set in the unit-disk graph G(P ). Note that all properties for the
weighted case are also applicable here. In particular, by setting all point weights to 1 and
applying Theorem 9, one can solve the unweighted problem in O(n3 log2 n) time. We provide
an improved algorithm of O(kn log n) time, where k is the smallest dominating set size.

Algorithm description. We follow the iterative algorithmic scheme of the weighted case, but
incorporate a greedy strategy using the property that all points of P have the same weight.

In each t-th iteration of the algorithm, t ≥ 1, we compute a set Lt of O(n) sublists and
each list L ∈ Lt is associated with a set SL ⊆ P of at most t points. Our algorithm maintains
the following invariant: For each sublist L ∈ Lt, all points of L are covered by D(SL), i.e.,
the union of the unit disks centered at the points of SL. If k is the smallest dominating set
size, we show in Lemma 11 that after k iterations, Lk is guaranteed to contain a sublist that
is P . Thus, we can stop the algorithm as soon as the first sublist that is P is computed.

Initially, we compute the indices ai
i and bi

i for all points pi ∈ P . By Lemma 7, this
takes O(log n) time after O(n log n) time preprocessing. In the first iteration, we have
L1 = {P (bi

i, ai
i) | pi ∈ P}. For each sublist L = P (bi

i, ai
i) ∈ L1, we set SL = {pi}. Clearly,

the algorithm invariant holds.
In general, suppose that we have a set Lt−1 of O(n) sublists such that the algorithm

invariant holds. We assume that no sublist of Lt−1 is P . Then, the t-th iteration of the
algorithm works as follows. For each point pi ∈ P , we perform the following counterclockwise
processing procedure. We first compute the sublist of Lt−1 that contains pai

i
and has the most

counterclockwise endpoint. This is done by a counterclockwise farthest enclosing sublist query.
We show later in Section 3.3 that each such query takes O(log n) time after O(n log n) time
preprocessing for Lt−1. Let P [ji1, ji2] be the sublist computed above. Then, we compute
the index aji2+1

i in O(log n) time by Lemma 7. Note that the union of the following three
sublists is a sublist L of P : P (bi

i, ai
i), P [ji1, ji2], and P (ji2, aji2+1

i ). We add L to Lt and set
SL = SL′ ∪ {pi} with L′ = P [ji1, ji2]. By our algorithm invariant, points of L′ are covered by
D(SL′). By definition, points of P (bi

i, ai
i) ∪ P (ji2, aji2+1

i ) are covered by Dpi . Therefore, all
points of L are covered by D(SL). Hence, the algorithm invariant holds for L. In addition, if
L is P , we stop the algorithm and return SL as an optimal dominating set.

Symmetrically, we perform a clockwise processing procedure for pi. We compute the
sublist from Lt−1 that contains bi

i and has the most clockwise endpoint; this is done by a
clockwise farthest enclosing sublist query. Let P [ji3, ji4] be the sublist computed above. Then,
we compute the index bji3−1

i . Let L be the sublist that is the union of the following three
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sublists: P (bi
i, ai

i), P [ji3, ji4], and P (ji3, bji3−1
i ). Let SL = SL′ ∪ {pi} with L′ = P [ji3, ji4].

As above, the algorithm invariant holds on L. We add L to Lt. If L is P , then we stop the
algorithm and return SL as an optimal dominating set.

The following lemma proves the correctness of the algorithm.

▶ Lemma 11. If the algorithm first time computes a sublist L that is P , then SL is the
smallest dominating set of G(P ).

Time analysis. In each iteration, we perform O(n) operations for computing indices aj
i

and bj
i and O(n) counterclockwise/clockwise farthest enclosing sublist queries. Computing

indices aj
i and bj

i takes O(log n) time by Lemma 7. We show in Lemma 12 that each
counterclockwise/clockwise farthest enclosing sublist query can be answered in O(log n) time
after O(n log n) time preprocessing. As such, each iteration runs in O(n log n) time and the
total time of the algorithm is O(kn log n), where k is the smallest dominating set size.

Algorithm implementation. It remains to describe the data structure for answering counter-
clockwise/clockwise farthest enclosing sublist queries. We only discuss the counterclockwise
case as the clockwise case can be handled analogously. Given a set L consisting of n sublists
of P , the goal is to build a data structure to answer the following counterclockwise farthest
enclosing sublist queries: Given a point p ∈ P , find a sublist in L that contains p with the
farthest counterclockwise endpoint from p. We have the following lemma.

▶ Lemma 12. We can construct a data structure for L in O(n log n) time such that each
counterclockwise farthest enclosing sublist query can be answered in O(log n) time.

We conclude with the following theorem and corollary, which will be used in Section 4 to
solve the discrete k-center problem.

▶ Theorem 13. Given a set P of n points in convex position in the plane, the smallest
dominating set of the unit-disk graph G(P ) can be computed in O(kn log n) time, where k is
the size of the smallest dominating set.

▶ Corollary 14. Given k, r, and a set P of n points in convex position in the plane, one can
do the following in O(kn log n) time: determine whether there exists a subset S ⊆ P of at
most k points such that the distance from any point of P to its closest point in S is at most
r, and if so, find such a subset S.

Proof. We redefine the unit-disk graph of P with a parameter r, where two points in P

are connected by an edge if their distance is at most r. We then apply the algorithm of
Theorem 13. If the algorithm finds a sublist L that is P within k iterations, then we return
S = SL; otherwise such a subset S as in the lemma statement does not exist. Since we run
the algorithm for at most k iterations, the total time of the algorithm is O(kn log n). ◀

4 The discrete k-center problem

In this section, we present our algorithm for the discrete k-center problem. Let P be a set of
n points in convex position in the plane. Given a number k, the goal is to compute a subset
S ⊆ P of at most k points (called centers) so that the maximum distance between any point
in P and its nearest center is minimized. Let r∗ denote the optimal objective value.
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Given a value r, the decision problem is to determine whether r ≥ r∗, or equivalently,
whether there exist a set of k centers in P such that the distance from any point of P to its
closest center is at most r. By Corollary 14, the problem can be solved in O(kn log n) time.
Clearly, r∗ is equal to the distance of two points of P , that is r∗ ∈ R, where R is defined as
the set of all pairwise distances between points in P . If we explicitly compute R and then
perform a binary search on R using the algorithm of Corollary 14 as a decision algorithm,
then r∗ can be computed in O(n2 + kn log2 n) time. We can improve the algorithm by using
the distance selection algorithms, which can find the k-th smallest value in R in O(n4/3 log n)
time for any given k [33,54]. In fact, by applying the algorithmic framework of Wang and
Zhao [54] with our decision algorithm, r∗ can be computed in O(n4/3 log n + nk log2 n) time.

In the following, we present another algorithm of O(k2n log2 n) time using the parametric
search [20,39]. This algorithm is faster than the above one when k = o(n1/6/

√
log n).

We simulate the decision algorithm over the unknown optimal value r∗. The algorithm
maintains an interval (r1, r2] that contains r∗. Initially, r1 = −∞ and r2 = ∞. During the
algorithm, the decision algorithm is invoked on certain critical values r to determine whether
r ≥ r∗; based on the outcome, the interval (r1, r2] is shrunk accordingly so that the new
interval still contains r∗. Upon completion, we can show that r∗ = r2 must hold.

Algorithm overview. For any r, certain variables in our decision algorithm are now defined
with respect to r as the radius of unit disks and therefore may be considered as functions of
r. For example, we use aj

i (r) to represent aj
i when the unit disk radius is r. The algorithm

has k iterations. We wish to compute the sublist set Lt(r∗) in each t-th iteration, 1 ≤ t ≤ k.
Specifically, the set L1(r∗) relies on ai

i(r∗) and bi
i(r∗) for all points pi ∈ P . As such, in the

first iteration, we will compute ai
i(r∗) and bi

i(r∗) for all pi ∈ P . The computation process
will generate certain critical values r, call the decision algorithm on these values, and shrink
the interval (r1, r2] accordingly. After that, L1(r∗) can be computed.

In a general t-th iteration, our goal is to compute the set Lt(r∗). We assume that the set
Lt−1(r∗) is already available with an interval (r1, r2] containing r∗. Then, for each pi ∈ P ,
we perform a counterclockwise processing procedure. We first compute the sublist of Lt−1(r∗)
with the farthest counterclockwise endpoint and containing ai

i(r∗). This procedure depends
solely on ai

i(r∗) and Lt−1(r∗), which are already available, and thus no critical values are
generated. Suppose that P [ji1(r∗), ji2(r∗)] is the sublist computed above. The next step
is to compute a

ji2(r∗)+1
i (r∗). This step will again generate critical values and shrink the

interval (r1, r2]. After that, we add to Lt(r∗) the sublist that is the union of the following
three sublists: P (bi

i(r∗), ai
i(r∗)), P [ji1(r∗), ji2(r∗)], and P (ji2(r∗), a

ji2(r∗)+1
i ). Similarly, we

perform a clockwise processing procedure for each point pi ∈ P . After that, the set Lt(r∗) is
computed. The details can be found in the full version.

In summary, the algorithm can compute r∗ in O(k2n log2 n) time. Combining with the
O(n4/3 log n + kn log2 n) time algorithm discussed earlier, we obtain the following result.

▶ Theorem 15. Given a set P of n points in convex position in the plane and a number
k, we can compute in O(min{n4/3 log n + kn log2 n, k2n log2 n}) time a subset S ⊆ P of size
at most k, such that the maximum distance from any point of P to its nearest point in S is
minimized.
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Figure 2 Illustrating DT (S), the solid segments,
and VD(S), the dotted segments.
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Figure 3 Illustrating Lemma 18.

5 The independent set problem

In this section, we present our algorithms for the independent set problem, assuming that the
points of P are in convex position. In Section 5.1, we present the algorithm for computing
a maximum-weight independent set. Section 5.2 gives the algorithm for computing an
(unweighted) independent set of size 3.

5.1 The maximum-weight independent set problem
Recall that P = ⟨p1, p2, . . . , pn⟩ is a cyclic list ordered along H(P ) in counterclockwise order.
For each point pi ∈ P , let wi denote its weight. We assume that each wi > 0 since otherwise
pi can be simply ignored, which would not affect the optimal solution. For any subset P ′ ⊆ P ,
let w(P ′) denote the total weight of all points of P ′.

For any three points p1, p2, p3, let D(p1, p2, p3) denote the disk whose boundary contains
them. Thus, ∂D(p1, p2, p3) is the unique circle through these points. For any compact region
B in the plane, we use ∂B to denote its boundary and use B to denote the complement
region of B in the plane. In particular, for a disk D in the plane, ∂D is its bounding circle,
and D refers to the region of the plane outside D.

In what follows, we first describe the algorithm and explain why it is correct, and then
discuss how to implement the algorithm efficiently.

5.1.1 Algorithm description and correctness
To motivate our algorithm and demonstrate its correctness, we first examine the optimal
solution structure and develop a recursive relation on which our dynamic program is based.

Let S be a maximum-weight independent set of G(P ), or equivalently, S is a maximum-
weight subset of P such that the minimum pairwise distance of the points of S is larger
than 1. Let DT (S) denote the Delaunay triangulation of S. If (p, q) is the closest pair of
points of S, then pq must be an edge of DT (S) and in fact, the shortest edge of DT (S) [45].
As such, finding a maximum-weight independent set of G(P ) is equivalent to finding a
maximum-weight subset S ⊆ P such that the shortest edge of DT (S) has length larger
than 1. The algorithm in [47] is based on this observation, which also inspires our algorithm.

Consider a triangle △pipjpk of DT (S) such that the points pi, pj , pk are in the coun-
terclockwise order of P (i.e., ordered counterclockwise on H(P )). Due to the property of
Delaunay triangulation, the disk D(pi, pj , pk) does not contain any point of S\{pi, pj , pk} [45].
Since the points of S are in convex position, we have the following observation.
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▶ Observation 16. DT (S) does not contain an edge connecting two points from any two
different subsets of {P (i, j), P (j, k), P (k, i)}; see Figure 2.

Observation 16 implies the following: To find an optimal solution S, if we know that
△pipjpk is a triangle in DT (S), since no point of S \ {pi, pj , pk} lies in the disk D(pi, pj , pk),
we can independently search P (i, j) ∩ D(pi, pj , pk), P (j, k) ∩ D(pi, pj , pk), and P (k, i) ∩
D(pi, pj , pk), respectively. This idea forms the basis of our dynamic program.

Let W ∗ denote the total weight of a maximum-weight independent set of G(P ).
For any pair of indices (i, j) with |pipj | > 1, we call (i, j) a canonical pair and define

f(i, j) as the total weight of a maximum-weight subset P ′ of P (i, j) such that P ′ ∪ {pi, pj}
forms an independent set of G(P ); if no such subset P ′ exists, then f(i, j) = 0. Computing
f(i, j) is a subproblem in our dynamic program. For simplicity, we let f(i, j) = −(wi + wj)
if (i, j) is not canonical, i.e., |pipj | ≤ 1. Lemma 17 explains why we are interested in f(i, j).

▶ Lemma 17. W ∗ = max1≤i,j≤n(f(i, j) + wi + wj).

By Lemma 17, to compute W ∗, it suffices to compute f(i, j) for all pairs of indices
1 ≤ i, j ≤ n and the one with the largest f(i, j) + wi + wj leads to the optimal solution. To
compute f(i, j), we define another type of subproblems that will be used in our algorithm.

For any three points pi, pj , pk such that they are ordered counterclockwise in P and their
minimum pairwise distance is larger than 1, we call (i, j, k) a canonical triple.

For a canonical triple (i, j, k), by slightly abusing the notation, we define f(i, j, k) as the
total weight of a maximum-weight subset P ′ of P (i, j) ∩ D(pi, pj , pk) such that P ′ ∪ {pi, pj}
is an independent set; if no such subset P ′ exists, then f(i, j, k) = 0. For any canonical
pair (i, j), if we consider p0 a dummy point to the left of −−→pipj and infinitely far from the
supporting line of pipj so that D(pi, pj , p0) becomes the left halfplane of −−→pipj , then f(i, j, 0)
following the above definition is exactly f(i, j); for convenience, we also consider (i, j, 0) a
canonical triple. To make the discussion concise, we often use f(i, j, 0) instead of f(i, j) since
the way we compute f(i, j, 0) is consistent with the way we compute f(i, j, k) for k ̸= 0.

For any canonical triple (i, j, k), define Pk(i, j) = {p | p ∈ P (i, j), p ̸∈ D(pi, pj , pk), |ppi| >

1, |ppj | > 1}. For any canonical pair (i, j), define P0(i, j) = {p | p ∈ P (i, j), |ppi| > 1, |ppj | >

1}. Note that P0(i, j) is consistent with Pk(i, j) if we consider p0 a dummy point as defined
above. Observe also that Pk(i, j) = P0(i, j) ∩ D(pi, pj , pk) for any canonical triple (i, j, k).
By definition, f(i, j, k) (including the case k = 0) is the total weight of a maximum-weight
independent set P ′ ⊆ Pk(i, j); this is the reason we introduce the notation Pk(i, j).

The following lemma gives the recursive relation of our dynamic programming algorithm.

▶ Lemma 18. For any canonical triple (i, j, k), including the case k = 0, the following holds
(see Figure 3):

f(i, j, k) =
{

maxpl∈Pk(pi,pj)(f(i, l, j) + f(l, j, i) + wl), if Pk(i, j) ̸= ∅
0, otherwise.

(1)

With Lemma 18, it remains to find an order to solve the subproblems so that when
computing f(i, j, k), the values f(i, l, j) and f(l, j, i) for all pl ∈ Pk(pi, pj) are available.

For any two points pi, pj ∈ P , we call pipj a diagonal.
We process the diagonals pipj for all 1 ≤ i, j ≤ n in the following way. For each

j = 2, . . . , n in this order, we enumerate i = j − 1, j − 2, . . . , 1 to process pipj as follows. If
|pipj | ≤ 1, then we set f(i, j) = −(wi + wj). Otherwise, (i, j) is a canonical pair, and we
compute f(i, j), i.e., f(i, j, 0), by Equation (1); one can check that the values f(i, l, j) and
f(l, j, i) for all pl ∈ P0(pi, pj) have already been computed. Next, for each point pk ∈ P (j, i)
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with |pipk| > 1 and |pjpk| > 1, (i, j, k) is a canonical triple and we compute f(i, j, k) by
Equation (1); again, the values f(i, l, j) and f(l, j, i) for all pl ∈ Pk(pi, pj) have already been
computed. Finally, by Lemma 17, we can return the largest f(i, j) + wi + wj among all
canonical pairs (i, j) as W ∗. The algorithm only computes the value W ∗, but by the standard
back-tracking technique a maximum-weight independent set can also be obtained.

5.1.2 Algorithm implementation
We can easily implement the algorithm in O(n4) time. Indeed, there are O(n3) subproblems
f(i, j, k). Each subproblem can be computed in O(n) time by checking every point pl ∈
Pk(i, j). As such, the total time is O(n4). We give a better algorithm below.

Specifically, we show that for each canonical pair (i, j) we can compute the subproblems
f(i, j, k) for all pk ∈ P (j, i) in a total of O(n3/2) time. To this end, we reduce the problem
to an offline outside-disk range max-cost query problem. For each point pl ∈ Pk(i, j), we
define the cost of pl as cost(pl) = f(i, l, j) + f(l, j, i) + wl. Recall that P0(i, j) = {p | p ∈
P (i, j), |ppi| > 1, |ppj | > 1} and Pk(i, j) = P0(i, j) ∩ D(pi, pj , pk). As such, computing
f(i, j, k) is equivalent to finding the maximum-cost point of P0(i, j) outside the query disk
D(pi, pj , pk). Our goal is to answer all such disk queries for all pk ∈ P (j, i). We note that
this problem can be solved in O(n15/11) expected time by applying the recent randomized
algorithm of Agarwal, Ezra, and Sharir [1]. In the full version, we present a deterministic
algorithm of O(n3/2) time by using cuttings [14]. We thus have the following result.

▶ Theorem 19. Given a set P of n weighted points in convex position in the plane, a
maximum-weight independent set in the unit-disk graph of P can be computed in O(n7/2)
deterministic time, or in O(n37/11) randomized expected time.

Using the randomized result of [1], the problem can be solved in O(n37/11) expected time.
The following corollary will be used in Section 6 to solve the dispersion problem.

▶ Corollary 20. Given a set P of n points in convex position in the plane and a number
r > 0, one can find in O(n7/2) deterministic time or in O(n37/11) randomized expected time
a maximum subset of P such that the distance of every two points of the subset is larger
than r.

5.2 Computing an independent set of size 3
To facilitate the discussion in Section 6 for the dispersion problem, we consider the following
problem: Given a set P of n points in convex position and a number r > 0, find three points
from P whose minimum pairwise distance is larger than or equal to r.

We follow the notation in Section 2. In particular, P = ⟨p1, p2, . . . , pn⟩ is a cyclic list
ordered along H(P ) counterclockwise. In the following definition, for each point pi ∈ P , we
define ai similarly to ai

i in Definition 5 with respect to r (i.e., change “> 1” to “≥ r”).

▶ Definition 21. For each point pi ∈ P , define ai as the index of the first point p of P

counterclockwise from pi such that |pip| ≥ r; similarly, define bi ∈ P as the index of the
first point p clockwise from P such that |pip| ≥ r. If |pip| < r for all points p ∈ P , then let
ai = bi = 0.

We will make use of the following lemma, which has been proved previously in [35].

▶ Lemma 22 ([35]). P has three points whose minimum pairwise distance is at least r if
and only if there exists a point pi ∈ P such that P [ai, bi] has two points whose distance is at
least r.
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If pi is a point of P such that P [ai, bi] has two points whose distance is at least r, we
say that pi is a feasible point. By Lemma 22, it suffices to find a feasible point (if it exists).
Our algorithm comprises two procedures. In the first procedure, we compute ai and bi for
all points pi ∈ P . This can be done in O(n log n) time by slightly changing the algorithm
of Lemma 7. The second procedure finds a feasible point. In the following, we present an
O(n log n) time algorithm. We start with the following easy but crucial observation.

▶ Observation 23. A point pi ∈ P is a feasible point if and only if there is a point
pk ∈ P [ai, bi] such that pak

is also in P [ai, bi] and (pi, pk, pak
) is in counterclockwise order

in P .

For each point pi ∈ P , note that ai ̸= i must hold; we define a′
i =

{
ai, if i < ai

ai + n, otherwise.
By definition, i < a′

i always holds and a′
i = ai if a′

i ≤ n. Note that if ai = bi, then P [ai, bi]
has only one point, and therefore pi cannot be a feasible point. As such, we only need to
focus on the points pi with ai ≠ bi. Our algorithm is based on the following lemma, which in
turn relies on Observation 23.

▶ Lemma 24. For each pi ∈ P , we have the following.
1. If ai < bi, then pi is a feasible point if and only if mink∈[ai,bi] a′

k ≤ bi.
2. If ai > bi, then pi is a feasible point if and only if min

k∈[ai,n]
a′

k ≤ bi + n or min
k∈[1,bi]

a′
k ≤ bi.

Define an array A[1 · · · n] such that A[k] = a′
k for each 1 ≤ k ≤ n. In light of Lemma 24,

for each point pi ∈ P , we can determine whether pi is a feasible point using at most two
range-minima queries of the following type: Given a range [i, j] with i ≤ j, find the minimum
number in the subarray A[i · · · j]. It is possible to answer each range-minima query in O(1)
time after O(n) time preprocessing on A [7, 28]. For our problem, since it suffices to have
O(log n) query time and O(n log n) preprocessing time, we can use a simple solution by
constructing an augmented binary search tree. As such, in O(n log n) time we can find a
feasible point or report that no such point exists.

In summary, in O(n log n) time we can determine whether P has three points whose
minimum pairwise distance is at least r. If the answer is yes, then these three points can
also be found within the same time complexity according to the proofs of Lemmas 22 and 24.
We conclude with the following theorem.

▶ Theorem 25. Given a set P of n points in convex position in the plane and a number
r, in O(n log n) time one can find three points of P whose minimum pairwise distance is at
least r or report that no such three points exist.

6 The dispersion problem

Given a set P of n points in convex position in the plane and a number k, the dispersion
problem is to find a subset of k points from P so that the minimum pairwise distance of the
points of the subset is maximized.

Let r∗ be the minimum pairwise distance of the points in an optimal solution subset.
The value r∗ ∈ R, where R is the set of pairwise distances of the points of P . Given a value
r, the decision problem is to determine whether r < r∗, or equivalently, whether P has a
subset of k points whose minimum pairwise distance is larger than r. By Corollary 20, the
decision problem can be solved in O(n7/2) time. Using the decision algorithm and doing
binary search on the sorted list of R, r∗ can be computed in O(n7/2 log n) time.
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▶ Theorem 26. Given a set of n points in convex position in the plane and a number k, one
can find a subset of k points whose minimum pairwise distance is maximized in O(n7/2 log n)
deterministic time, or in O(n37/11 log n) randomized expected time.

The size-3 case. We now consider the case where k = 3. Given a number r, the decision
problem is to determine whether r ≤ r∗, that is, whether P has three points whose minimum
pairwise distance is at least r. With Theorem 25 as our decision algorithm, the decision
problem is solvable in O(n log n) time. To compute r∗, we follow the standard parametric
search framework [39] and simulate the decision algorithm on the unknown optimal value r∗

with an interval [r1, r2) that contains r∗. In fact, Cole’s technique [20] can be applied here. In
addition, we observe that Chan’s randomized technique [11] is applicable here. Consequently,
applying the technique with our O(n log n) time decision algorithm leads to a randomized
algorithm of O(n log n) expected time for the problem.

▶ Theorem 27. Given a set of n points in convex position in the plane, one can find three
points whose minimum pairwise distance is maximized in O(n log2 n) deterministic time or
in O(n log n) randomized expected time.

7 The size-3 weighted independent set for points in arbitrary position

Given a set P of n weighted points in the plane in arbitrary position, the problem is to find
a maximum-weight independent set of size 3 in G(P ). As the size of our target independent
set is fixed, we allow points to have negative weights.

Define G(P ) as the complement graph of G(P ). The problem is equivalent to finding a
maximum-weight clique of size 3 in G(P ). We want to partition G(P ) into bicliques, i.e.,
complete bipartite graphs. We give the formal definition below.

▶ Definition 28 (Biclique partition). Define a biclique partition of G(P ) as a collection of
edge-disjoint bicliques Γ(P ) = {At × Bt | At, Bt ⊆ P} such that the following are satisfied:
1. For each pair (a, b) ∈ At × Bt ∈ Γ, |ab| > 1.
2. For any points a, b ∈ P with |ab| > 1, Γ has a unique biclique At × Bt that contains (a, b).

In our problem, we need a stronger version of the partition, called a tree-structured
biclique partition, and Lemma 30 explains why we introduce the concept.

▶ Definition 29 (Tree-structured biclique partition). A biclique partition Γ(P ) = {At ×
Bt | At, Bt ⊆ P} is tree-structured if all the subsets At’s form a tree TA such that for each
internal node At, all its children subsets form a partition of At.

▶ Lemma 30. Let Γ(P ) = {At × Bt | At, Bt ⊆ P} be a tree-structured biclique partition of
G(P ) and TA is the tree formed by the subsets At’s. Then, the triple a, b, c ∈ P forms an
independent set in G(P ) if and only if Γ(P ) has a biclique (At, Bt) that contains a pair (a, b),
and At has an ancestor subset At′ in TA such that c ∈ Bt′ and |bc| > 1.

With this, we obtain the following result; see the full version for the details.

▶ Theorem 31. Given a set P of n weighted points in the plane, one can find a maximum-
weight (or minimum-weight) independent set (or clique) of size 3 in the unit-disk graph G(P )
in O(n5/3+δ) time, for any arbitrarily small constant δ > 0.
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