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Abstract
We show that if p = O(1/n), then the Erdős-Rényi random graph G(n, p) with high probability
admits a canonical labeling computable in time O(n log n). Combined with the previous results
on the canonization of random graphs, this implies that G(n, p) with high probability admits a
polynomial-time canonical labeling whatever the edge probability function p. Our algorithm combines
the standard color refinement routine with simple post-processing based on the classical linear-time
tree canonization. Noteworthy, our analysis of how well color refinement performs in this setting
allows us to complete the description of the automorphism group of the 2-core of G(n, p).
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1 Introduction

On an n-vertex input graph G, a canonical labeling algorithm computes a bijection λG :
V (G) → {1, . . . , n} such that if another graph G′ is isomorphic to G, then the isomorphic
images of G and G′ under respective permutations λG and λG′ are equal. Given the labelings
λG and λG′ , it takes linear time to check whether G and G′ are isomorphic. The existence of
polynomial-time algorithms for testing isomorphism of two given graphs and, in particular,
for producing a canonical labeling remain open. Babai’s breakthrough quasi-polynomial
algorithm for testing graph isomorphism [7] was subsequently extended to a canonical labeling
algorithm of the same time complexity [8]. In the present paper, we address the canonical
labeling problem for the Erdős-Rényi (or binomial) random graph G(n, p). Recall that the
vertex set of G(n, p) is {1, . . . , n}, and each pair of vertices is adjacent with probability
p = p(n), independently of the other pairs.

Babai, Erdős, and Selkow [5] proved that the simple algorithmic routine known as color
refinement (CR for brevity) with high probability produces a discrete coloring of the vertices
of G(n, 1/2), that is, a coloring where the vertex colors are pairwise different. Since the
vertex colors are isomorphism-invariant, this yields a canonical labeling of G(n, 1/2) by
numbering the color names in the lexicographic order. Here and throughout, we say that an
event happens for G(n, p) with high probability (whp for brevity) if the probability of this
event tends to 1 as n → ∞. The result of [5] has a fundamental meaning: almost all graphs
admit an easily computable canonical labeling and, hence, the graph isomorphism problem
has low average-case complexity.
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75:2 Canonical Labeling of Sparse Random Graphs

The argument of [5] can be extended to show [14, Theorem 3.17] that the CR coloring of
G(n, p) is whp discrete for all n−1/5 ln n ≪ p ≤ 1/2. Note that it is enough to consider the
case of p ≤ 1/2 since G(n, 1 − p) has the same distribution as the complement of G(n, p).
Remarkably, the algorithm of Babai, Erdős, and Selkow performs only a bounded number of
color refinement steps and, due to this, works in linear time.

A different algorithm suggested by Bollobás [12] works in polynomial time and whp
produces a canonical labeling of G(n, p) in a much sparser regime, namely when (1+δ) ln n

n ≤
p ≤ 2n−11/12 for any positive constant δ. The next improvement was obtained by Czajka
and Pandurangan [16] who proved that, in a bounded number of rounds, CR yields a discrete
coloring of G(n, p) whp when ln4 n

n ln ln n ≪ p ≤ 1
2 . Finally, Linial and Mosheiff [27] designed

a polynomial time algorithm for canonical labeling of G(n, p) when 1
n ≪ p ≤ 1

2 . As shown
by Gaudio, Rácz, and Sridhar [21], in the subdiapason p ≥ (1+δ) ln n

n for any fixed δ > 0, a
canonical labeling can still be provided by CR in a bounded number of rounds.

The decades-long line of research summarized above leaves open the question whether a
random graph G(n, p) admits efficient canonization in the regime p = O(1/n). Note that
the case of p = o(1/n) is easy. Indeed, as long as pn = 1 − ω(n−1/3), whp G(n, p) is a
vertex-disjoint union of trees and unicyclic graphs (i.e., connected graphs containing exactly
one cycle). Canonization of such graphs is tractable due to the classical linear-time canonical
labeling algorithms for trees [1] and even planar graphs (see [6] for a survey of the early work
on graph isomorphism covering these graph classes). Thus, efficient canonization remains
unknown for all p = p(n) such that, for some C > 0 and all n, 1 − Cn−1/3 ≤ pn ≤ C (even
though G(n, p) stays planar with a non-negligible probability as long as pn = 1 + O(n−1/3);
see [32]). Our first result closes this gap.

▶ Theorem 1. If p = O(1/n), then G(n, p) whp admits a canonical labeling computable in
time O(n log n).

The development of canonical labeling algorithms for G(n, p) is summarized in Table 1.
The sources marked by ∗ show that canonical labeling in the corresponding range can be
obtained by CR in a constant number of refinement rounds. An inspection of the other
algorithms reveals that all of them can be implemented as a combination of the 2-WL

Table 1 Canonical labeling algorithms for random graphs in the full-scale Erdős-Rényi evolutional
model G(n, p).

Edge probability Algorithm

p = 1
2 Babai, Erdős, and Selkow [5]∗

n−1/5 ln n ≪ p ≤ 1/2 Bollobás [14]∗

(1+δ) ln n
n

≤ p ≤ 2n−11/12 Bollobás [12]

ln4 n
n ln ln n

≪ p ≤ 1
2 Czajka and Pandurangan [16]∗

(1+δ) ln n
n

≤ p ≪ n−5/6 Gaudio, Rácz, and Sridhar [21]∗

1
n

≪ p ≤ 1
2 Linial and Mosheiff [27]

p = O( 1
n

) this paper



O. Verbitsky and M. Zhukovskii 75:3

(2-dimensional Weisfeiler-Leman) algorithm [34] with tree canonization. The 2-WL is an
extension of CR which computes a canonical coloring of pairs of vertices. Thus, in these
cases, canonical labeling can be obtained in time O(n3 log n), matching the running time
bound for 2-WL (see [23]). If p = O(1/n), the running time is actually O(n log n) because
our algorithm, as discussed below, uses CR along with simple pre- and post-processing.

A simple argument shows that Theorem 1, combined with the previous results, implies
that the Erdős-Rényi random graph G(n, p) whp admits an efficiently computable canonical
labeling whatever the edge probability function p(n).

▶ Corollary 2. There exists a polynomial time algorithm that, for any function p = p(n) with
values in [0, 1], whp produces a canonical labeling of G(n, p).

We now recall some highlights of the evolution of the random graph. Erdős and Rényi [19]
proved their spectacular result that when p passes a certain threshold around 1/n, then the
size of the largest connected component in G(n, p) rapidly grows from Θ(log n) to Θ(n). A
systematic study of the structure of connected components in the random graph when p is
around the critical value 1/n was initiated in the influential paper of Bollobás [13]. For more
details about the phase transition, see, e.g., [24, Chapter 5].

A connected graph is called complex, if it has more than one cycle. The union of all
complex components of a graph G will be called the complex part of G, and the union of
the other components will be referred to as the simple part. As we already mentioned, if
pn = 1 − ω(n−1/3) then the complex part of G(n, p) is whp empty. This is the so-called
subcritical phase. In the critical phase, when pn = 1 ± O(n−1/3), the complex part of G(n, p)
whp has size OP (n2/3) and its structure is thoroughly described in [29, 30]. Here and below,
for a sequence of random variables ξn and a sequence of reals an we write ξn = OP (an)
if the sequence ξn/an is stochastically bounded1. Finally, in the supercritical phase, when
pn = 1 + ω(n−1/3), whp G(n, p) contains a unique complex connected component and this
component has size Θ(n2(p − 1/n)). In particular, when p = O(1/n) and p > (1 + δ)/n for a
constant δ > 0 (we refer to this case as strictly supercritical regime), whp this component
has linear size Ω(n). It is called the giant component as all the other connected components
have size O(log n).

In general, the simple part of a graph G is easily canonizable by the known techniques,
which reduces our problem to finding a canonical labeling for the complex part of G.
Furthermore, recall that the 2-core of a graph H, which we will for brevity call just core and
denote by core(H), is the maximal subgraph of H that does not have vertices of degree 1.
Equivalently, core(H) can be defined as the subgraph of H obtained by iteratively pruning
all vertices in H that have degree at most 1 until there are no more such vertices. Thus, if H

is the (non-empty) complex part of G, then H consists of core(H) and some (possibly empty)
rooted trees planted at the vertices of the core. It follows that if we manage to canonically
label the vertices of core(H), then this labeling easily extends to a canonical labeling of the
entire graph G.

Suppose that CR is run on H. In the most favorable case, it would output a vertex
coloring discrete on core(H). It turns out that, though not exactly true, this is indeed the
case to a very large extent.

1 I.e. for every ε > 0, there exists C > 0 and n0 such that P(|ξn/an| > C) < ε for all n ≥ n0.
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▶ Theorem 3. Let Gn = G(n, p) and assume that p = O(1/n). Let Hn denote the complex
part of Gn and Cn = core(Hn). When CR is run on Hn, then
1. CR assigns individual colors to all but OP (1) vertices in Cn;
2. the other color classes whp have size 2;
3. whp, every such color class is an orbit of the automorphism group Aut(Hn) consisting of

two vertices with degree 2 in Cn.

▶ Remark 4. From our proofs it is easy to derive that, when np = 1 + o(1), then CR
distinguishes between all vertices of Cn whp.

Theorem 3 allows us to obtain an efficient canonical labeling algorithm for G(n, p), as
stated in Theorem 1, by combining CR with simple post-processing whose most essential
part is invoking the linear-time tree canonization. Another consequence of Theorem 3 is that
CR alone is powerful enough to solve the standard version of the graph isomorphism problem
for the complex part of G(n, p). Specifically, we say that a graph H is identifiable by CR
if CR distinguishes H from any non-isomorphic graph H ′ (in the sense that CR outputs
different multisets of vertex colors on inputs H and H ′). It is not hard to see that H is
identifiable by CR whenever the CR coloring of H is discrete. Fortunately, the properties of
the CR coloring ensured by Theorem 3 are still sufficient for CR-identifiability.

▶ Corollary 5. Under the assumption of Theorem 3,
1. Hn is whp identifiable by CR and, consequently,
2. whp, Gn is identifiable by CR exactly when the simple part of Gn is identifiable.

The CR-identifiability of the simple part of a graph admits an explicit, efficiently verifiable
characterization, which we give in Theorem 14. This characterization can be used to show
that the random graph Gn is identifiable by CR with probability asymptotically bounded
away from 0 and 1.

Our techniques for proving Theorems 1 and 3 can also be used for deriving a structural
information about the automorphisms of a random graph. As proved by Erdős and Rényi [20]
and by Wright [35], G(n, p) for p ≤ 1/2 is asymmetric, i.e., has no non-identity automorphism,
if np − ln n → ∞ as n → ∞. This result is best possible because if, np − ln n ≤ γ for some
constant γ > 0, then the random graph has at least 2 isolated vertices with non-vanishing
probability. It is noteworthy that the asymmetry of G(n, p) in the regime p ≥ (1+δ) ln n

n can
be certified by the fact that CR coloring of G(n, p) is discrete due to the aforementioned result
of Gaudio, Rácz, and Sridhar [21]. In the diapason of p forcing G(n, p) to be disconnected,
the action of the automorphism group can be easily understood on the simple part and on the
tree-like pieces of the complex part, and full attention should actually be given to the core of
the complex part. Theorem 3 provides a pretty much precise information about the action of
Aut(Gn) on Cn. More subtle questions arise if, instead of considering the action of Aut(Gn)
on Cn, we want to understand the automorphisms of Cn itself. It is quite remarkable that
the CR algorithm, applied to Cn rather than to Hn, can serve as a sharp instrument for
tackling this problem (and, in fact, the proof of Theorem 3 is based on an analysis of the
output of CR on Cn).

We begin with describing simple types of potential automorphisms of Cn (with the
intention of showing that, whp, all automorphism of Cn are actually of this kind). If a vertex
x has degree 2 in Cn, then it belongs to a (unique) path from a vertex s of degree at least 3
to a vertex t of degree at least 3 with all intermediate vertices having degree 2. We call such
a path in Cn pendant. It is possible that s = t, and in this case we speak of a pendant cycle.
Clearly, the reflection of a pendant cycle fixing its unique vertex of degree more than 2 is
an automorphism of Cn. Furthermore, call two pendant paths transposable if they have the
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same length and share the endvertices. Note that Cn has an automorphism transposing such
paths (and fixing their endvertices). Let A1 denote the set of the automorphisms provided by
pendant cycles, and let A2 be the set of the automorphisms provided by transposable pairs of
pendant paths. Moreover, Cn can have a connected component consisting of two vertices of
degree 3 and three pendant paths of pairwise different lengths between these vertices. Such
a component has a single non-trivial automorphism, which contributes in Aut(Cn). The set
of such automorphisms of Cn will be denoted by A3.

Recall that an elementary abelian 2-group is a group in which all non-identity elements
have order 2 or, equivalently, a group isomorphic to the group (Z2)k for some k.

▶ Theorem 6. Let Gn = G(n, p) and assume that p = O(1/n). Let Cn be the core of the
complex part of Gn.
1. The order of Aut(Cn) is stochastically bounded, i.e., | Aut(Cn)| = OP (1).
2. Whp, Aut(Cn) is an elementary abelian 2-group. Moreover, A1 ∪ A2 ∪ A3 is a minimum

generating set of Aut(Cn).2
3. In addition,

(a) if pn ≥ 1 + δ for a constant δ > 0, then both A1 and A2 are non-empty with
non-negligible probability, while A3 = ∅ whp.

(b) If pn = 1 + o(1) and pn = 1 + ω(n−1/3), then A1 ̸= ∅ with non-negligible probability,
while A2 = A3 = ∅ whp.

(c) If pn = 1 ± O(n−1/3), then both A1 and A3 are non-empty with non-negligible
probability, while A2 = ∅ whp.

This theorem makes a final step in the study of the automorphisms group of a random
graph. Recall that Hn is whp empty when np = 1 − ω(n−1/3) and that G(n, p) is connected
and asymmetric when np = ln n + ω(1). We, therefore, focus on the intermediate diapason. If
np → ∞ as n → ∞, then the core of the giant component of G(n, p) is whp still asymmetric,
as proved independently by Łuczak [28] and Linial and Mosheiff [27]. Moreover, Łuczak
described the automorphisms group of the core of the giant component of G(n, p) when
np > γ for a large enough constant γ, and obtained an analogue of Theorem 6 for this case;
see [28, Theorem 4]. Our Theorem 6 not only extends [28, Theorem 4] to the full range of
p = O(1/n) but also refines this result even for np > γ by showing that Aut(Cn) is actually
an elementary 2-group. Another interesting observation is that some automorphisms of the
core do not extend to automorphisms of the entire G(n, p). Indeed, if np = 1 + o(1), then
whp Aut(G(n, p)) acts trivially on the core; see Remark 4.

Related work. As we already mentioned, Theorem 1 combined with the previous results on
canonical labeling of G(n, p) for 1/n ≪ p ≤ 1/2 implies the existence of a polynomial-time
canonical labeling algorithm succeeding on G(n, p) whp for an arbitrary edge probability
function p = p(n). In this form, this result has been independently obtained by Michael
Anastos, Matthew Kwan, and Benjamin Moore [2]. Another result in their paper describes
the action of Aut(G(n, p)) on the core of G(n, p), which follows also from our Theorem 3
and the results of Łuczak [28] and Linial and Mosheiff [27]. The techniques used in [2] and
in our paper are completely different, though both proofs rely on color refinement. The
two approaches have their own advantages. The method developed in [2] is used there also

2 Consequently, whp Cn contains neither a triple of pairwise transposable paths, nor two isomorphic com-
ponents with an automorphism in A3, nor a cyclic component with a single chord between diametrically
opposite vertices. Moreover, whp no two pendant cycles in Cn share a vertex.

STACS 2025
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to show that color refinement is helpful for canonical labeling of the random graph when
p ≫ 1/n and to study the smoothed complexity of graph isomorphism. Our method allows
obtaining precise results on the automorphism group of the core (Theorem 6).

Immerman and Lander [23] showed a tight connection between CR-identifiability and
definability of a graph in first-order logic with counting quantifiers. Corollary 5 can, therefore,
be recast in logical terms as follows. If p = O(1/n), then Hn is whp definable in this logic
with using only two first-order variables (where the definability of a graph H means the
existence of a formula which is true on H and false on any graph non-isomorphic to H).
Definability of the giant component of G(n, p) in the standard first-order logic (without
counting quantifiers) was studied by Bohman et al. [11].

The rest of the paper and proof strategy. Section 2 begins with formal description of the
color refinement algorithm in Subsection 2.1 and then, in Subsection 2.2, presents a useful
criterion of CR-distinguishability in terms of universal covers. The concept of a universal
cover appeared in algebraic and topological graph theory [10, 15, 31], and its tight connection
to CR was observed in [3]. Subsection 2.3 pays special attention to the CR-identifiability
of unicyclic graphs, which in Subsection 2.4 allows us to obtain an explicit criterion of
CR-identifiability for general graphs in terms of the complex and the simple part of a graph.
Finally, in Subsection 2.5 we use the relationship between CR and universal covers to prove
useful properties of the CR-coloring of the core of an arbitrary graph.

Theorem 1 and Corollaries 2 and 5 are proved in Section 3. The proofs of Theorem 1
and Corollary 5 are based on Theorem 3. A crucial ingredient of the proof of Theorem 3 is
our Main Lemma (Lemma 20). This lemma says that CR is unable to distinguishe between
two vertices in the core only if they lie either on pendant paths (with the same endvertices)
transposable by an automorphism of the graph or on a pendant cycle admitting a reflection
by an automorphism. Note that this statement alone, which is a part of the information
provided by Theorem 3, is enough to derive Theorem 1 and Corollary 5.

The proof of Main Lemma is outlined in Section 4. It heavily relies on the notion of a
kernel. The kernel K(G) of a graph G is a multigraph obtained from core(G) by contracting
all pendant paths. That is, K(G) is obtained via the following iterative procedure: at
every step if there exists a vertex u with only two neighbors v1, v2, we remove u with both
incident edges and add the edge {v1, v2} instead. Note that this transformation can lead to
appearance of multiple edges and loops.

To prove that CR colors vertices of the core in the described manner, we use the contiguous
models due to Ding, Lubetzky, and Peres [18] in strictly supercritical regime and due to
Ding, Kim, Lubetzky, and Peres in critical regime [17]. They allow to transfer properties of
random multigraphs with given degree sequences to the kernel of the giant component in
the random graph. Another important ingredient in our proofs is the fact that in the kernel
of the supercritical random graph there are whp no small complex subgraphs. We consider
separately two types of vertices: first, we prove that CR colors differently all vertices such that
their neighborhoods induce trees. This is done in Sections 4.1 and 4.2 for p = 1 + ω(n−1/3)
and p = 1 + O(n−1/3) respectively. Then, in Section 4.3, we prove that these vertices are
helpful to distinguish between all the remaining vertices.

A complete proof of Theorem 3 and the proof of Theorem 6 are omitted due to the space
constraints and can be found in the full version of the paper [33].
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2 Color refinement: From identifiability to canonical labeling

2.1 Description of the CR algorithm

We now give a formal description of the color refinement algorithm (CR for short). CR
operates on vertex-colored graphs but applies also to uncolored graphs by assuming that
their vertices are colored uniformly. An input to the algorithm consists either of a single
graph or a pair of graphs. Consider the former case first. For an input graph G with initial
coloring C0, CR iteratively computes new colorings

Ci(x) =
(

Ci−1(x), {{Ci−1(y)}}y∈N(x)

)
, (1)

where {{}} denotes a multiset and N(x) is the neighborhood of a vertex x. Denote the
partition of V (G) into the color classes of Ci by Pi. Note that each subsequent partition
Pi+1 is either finer than or equal to Pi. If Pi+1 = Pi, then Pj = Pi for all j ≥ i. Suppose
that the color partition stabilizes in the t-th round, that is, t is the minimum number such
that Pt = Pt−1. CR terminates at this point and outputs the coloring C = Ct. Note that if
the colors are computed exactly as defined by (1), they will require exponentially long color
names. To prevent this, the algorithm renames the colors after each refinement step, using
the same set of no more than n color names.

If an input consists of two graphs G and H, then it is convenient to assume that their
vertex sets V (G) and V (H) are disjoint. The vertex colorings of G and H define an initial
coloring C0 of the union V (G)∪V (H), which is iteratively refined according to (1). The color
partition Pi is defined exactly as above but now on the whole set V (G) ∪ V (H). As soon as
the color partition of V (G)∪V (H) stabilizes, CR terminates and outputs the current coloring
C = Ct of V (G) ∪ V (H). The color names are renamed for both graphs synchronously.

We say that CR distinguishes G and H if {{C(x)}}x∈V (G) ≠ {{C(x)}}x∈V (H). If CR fails
to distinguish G and H, then we call these graphs CR-equivalent and write G ≡CR H. A
graph G is called CR-identifiable if G ≡CR H always implies G ∼= H.

2.2 Covering maps and universal covers

A surjective homomorphism from a graph K onto a graph G is a covering map if its restriction
to the neighborhood of each vertex in K is bijective. We suppose that G is a finite graph,
while K can be an infinite graph. If there is a covering map from K to G (in other terms, K

covers G), then K is called a covering graph of G. Let G be connected. We say that a graph
U is a universal cover of a graph G if U covers every connected covering graph of G. A
universal cover U = UG of G is unique up to isomorphism. Alternatively, UG can be defined
as a tree that covers G. If G is itself a tree, then UG ∼= G; otherwise the tree UG is infinite.

A straightforward inductive argument shows that a covering map α preserves the coloring
produced by CR, that is, Ci(u) = Ci(α(u)) for all i, where Ci is defined by (1). It follows
that, if two connected graphs G and H have a common universal cover, i.e., UG ∼= UH ,
then { C(u) : u ∈ V (G)} = { C(v) : v ∈ V (H)}. The converse implication is also true, as a
consequence of the following lemma.

▶ Lemma 7 (cf. Lemmas 2.3 and 2.4 in [26]). Let UG and UH be universal covers of connected
graphs G and H respectively. Furthermore, let α be a covering map from UG to G and β be
a covering map from UH to H. For a vertex x of UG and a vertex y of UH , let UG

x and UH
y

be the rooted versions of UG and UH with roots at x and y respectively. Then UG
x

∼= UH
y

(isomorphism of rooted trees) if and only if C(α(x)) = C(β(y)).

STACS 2025
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The union of CR-identifiable graphs does not need be CR-identifiable. However, the
concept of a universal cover allows us to state the following criterion, which is an extension
of [4, Thm. 5.4] (see [4, p. 649] for details).

▶ Lemma 8. Let G1, . . . , Gk be connected CR-identifiable graphs and G be their vertex-
disjoint union. Then G is CR-identifiable if and only if, for every pair of distinct i and j

such that neither Gi nor Gj is a tree, the universal covers of Gi and Gj are non-isomorphic.

2.3 Unicyclic graphs

2.3.1 Universal covers of unicyclic graphs
For a unicyclic graph G, its core(G) is the set of vertices lying on the unique cycle of G. We
use the notation c(G) = | core(G)| for the length of this cycle. For a vertex x in core(G),
let Gx denote the subgraph of G induced by the vertices reachable from x along a path
avoiding the other vertices in core(G). This is obviously a tree. Moreover, we define Gx as
a rooted tree with root at x. Let t(x) denote the isomorphism class of the rooted tree Gx.
We treat t as a coloring of core(G) and write R(G) to denote the cycle of G endowed with
this coloring. Thus, R(G) is defined as a vertex-colored cycle graph. It will also be useful to
see R(G) as a circular word over the alphabet {t(x) : x ∈ core(G)}; see, e.g., [22] and the
references therein for more details on this concept in combinatorics on words. In fact, R(G)
is associated with two circular words, depending on one of the two directions in which we go
along R(G). However, the choice of one of the two words is immaterial in what follows.

Speaking about a word, we mean a standard, non-circular word. Two words are conjugated
if they are obtainable from one another by cyclic shifts. A circular word is formally defined
as the conjugacy class of a word. A word u is a period of a word v if v = uk for some k ≥ 1.
A word u is a period of a circular word w if u is a period of some representative in the
conjugacy class of w. Note that if u is a period of a word v, then any conjugate of u is a
period of some conjugate of v. This allows us to consider periods of circular words themselves
being circular words. We define the periodicity p(w) of a circular word w to be the minimum
length of a period of w. It may be useful to keep in mind that a period of length p(w) is also
a period of every period of w; cf. [22, Proposition 1] (note that our terminology is different
from [22]).

For a unicyclic graph G, we define its periodicity by p(G) = p(R(G)), where R(G) is
seen as a circular word as explained above. Note that p(G) is a divisor of c(G) and that
1 ≤ | {t(x)}x∈core(G) | ≤ p(G) ≤ c(G).

Like trees, unicyclic graphs are also characterizable in terms of universal covers.

▷ Claim 9. A connected graph G is unicyclic if and only if UG has a unique infinite path.

The unique infinite path subgraph of UG will be denoted by P (UG). The structure of
UG is clear: The cycle of G is unfolded into the infinite path P (UG). Moreover, let α be
a covering map from UG to G. Then UG is obtained by planting a copy of the rooted tree
Gα(x) at each vertex x on P (UG). The path P (UG) will be considered being a vertex colored
graph, with each vertex x colored by t(α(x)).

The following observation is quite useful in what follows. Let α be a covering map from
UG to G. The restriction of α to P (UG) is a covering map from the vertex-colored path
P (UG) to the vertex-colored cycle R(G). Note that a covering map must preserve vertex
colors.
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▶ Lemma 10. Let G and H be connected unicyclic graphs. Then UG ∼= UH if and only if
the circular words R(G) and R(H) have a common period. Moreover, if UG ∼= UH , then
p(G) = p(H).

Proof. In one direction the statement is clear: if R(G) and R(H) have a common period,
then UG ∼= UH by the definition. Let U ∼= UG ∼= UH be a common universal cover of G and
H. We can naturally see P (U) as an infinite word. An arbitrary subword of length p(G) of
P (U) is a period of P (U), and the same is true for an arbitrary subword of length p(H) of
P (U). It follows that P (U) has a period u = u1 . . . uq of length q = gcd(p(G), p(H)). Indeed,
it is sufficient to note that there exist integers β1, β2 such that q = β1p(G) − β2p(H). Thus,
for any u0, uq at distance q in P (U), we get that u0 = uβ1p(G) = uq+β2p(H) = uq.

If α and β are covering maps from U to G and H respectively, then α(u1) . . . α(uq) is a
period of R(G) and β(u1) . . . β(uq) is a period of R(H). Since α and β preserve the vertex
colors, we have the equality α(u1) . . . α(uq) = β(u1) . . . β(uq). This also implies that, in fact,
q = p(G) = p(H). ◀

2.3.2 CR-identifiability of unicyclic graphs
▷ Claim 11. Let G be a connected unicyclic graph. Suppose that G ≡CR H and H consists
of connected components H1, . . . , Hm. Then
1. UHi ∼= UG for all i,
2. every Hi is unicyclic, and
3. c(G) = c(H1) + · · · + c(Hm).

Proof. 1. Fix i ∈ [m]. Let UG and W = UHi and αU , αW be the respective covering maps.
Let y be a vertex in UHi . Since G and H are CR-equivalent, UG must contain a vertex x

such that C(αU (x)) = C(αW (y)). By Lemma 7, Ux
∼= Wy. It follows that U ∼= W .

2. Immediately by Part 1 and Claim 9.
3. Fix a period of R(G) and set T =

∑
x |V (Gx)| where the summation goes over all

x in this period (this definition obviously does not depend on the choice of the period).
Let p = p(G). Note that |V (G)| = c(G)

p T . By Part 1 and Lemma 10, we similarly have
|V (Hi)| = c(Hi)

p T . The required equality now follows from the trivial equality |V (G)| =
|V (H1)| + · · · + |V (Hm)|. ◁

▶ Lemma 12. A connected unicyclic graph G is CR-identifiable if and only if one of the
following conditions is true:

p(G) = 1 and c(G) ∈ {3, 4, 5},
p(G) = 2 and c(G) ∈ {4, 6},
p(G) = c(G).

Proof. ( ⇐ ) Suppose that a connected unicyclic graph G satisfies one of the three conditions
and show that it is CR-identifiable. Assuming that H is CR-equivalent to G, we have to
check that G and H are actually isomorphic.

Assume first that H is connected. If H is not unicyclic, then G and H have equal number
of vertices but different number of edges. This implies that G and H have different degree
sequences, contradicting the assumptions that G ≡CR H. Therefore, H must be unicyclic.
By Part 3 of Claim 11, we have c(G) = c(H). Along with Lemma 10, which is applicable
because UG ∼= UH whenever G ≡CR H, this implies that R(G) ∼= R(H). The last relation,
in its turn, implies that G ∼= H.
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Assume now that H is disconnected. Let H1, . . . , Hm be the connected components of H.
Combining Claim 11 and Lemma 10, we see that p(G) = p(H1) ≤ c(H1) < c(G). It follows
that G satisfies one of the first two conditions. The restrictions on c(G), however, rule out the
equality in Part 3 of Claim 11. In particular, if c(G) = 6, then the only possible case is m = 2
and c(H1) = c(H2) = 3. However, it contradicts the equality p(H1) = p(H2) = p(G) = 2.
Thus, the case of disconnected H is actually impossible, that is, all such H are distinguishable
from G by CR.

( ⇒ ) Suppose that all three conditions are false. That is, either p(G) = 1 and c(G) ≥ 6, or
p(G) = 2 and c(G) ≥ 8 (note that c(G) is even in this case), or 3 ≤ p(G) < c(G) (in the last
case, p(G) is a proper divisor of c(G)). In each case, R(G) is CR-equivalent to a disjoint
union of two shorter vertex-colored cycles R1 and R2, both sharing the same period of length
p(G) with R(G). Taking the connected unicyclic graphs H1 and H2 such that R(H1) ∼= R1
and R(H2) ∼= R2, we see that G is CR-equivalent to the disjoint union of H1 and H2 and is,
therefore, not CR-identifiable. ◀

▶ Lemma 13. Let G and H be connected unicyclic graphs with c(H) ≤ c(G). Assume that
both G and H are CR-identifiable. Then UG ∼= UH if and only if {t(x) : x ∈ core(G)} =
{t(x) : x ∈ core(H)} and one of the following conditions is true:

G ∼= H,
p(G) = p(H) = 1 and 3 ≤ c(H) < c(G) ≤ 5,
p(G) = p(H) = 2 and c(H) = 4 while c(G) = 6.

Proof. ( ⇐ ) By Lemma 10.

( ⇒ ) Let G and H be CR-identifiable connected unicyclic graphs with c(H) ≤ c(G). Assume
that UG ∼= UH . The equality {t(x) : x ∈ core(G)} = {t(x) : x ∈ core(H)} immediately
follows from Lemma 10. By the same corollary, p(G) = p(H) = p. If p ≥ 3, then Lemma
12 yields the equality c(G) = p(G) = p(H) = c(H), which readily implies G ∼= H by using
Lemma 10 once again. If p ≤ 2, then either c(G) = c(H) and G ∼= H or c(H) < c(G) and
then, by Lemma 12, c(H) and c(G) are as claimed. ◀

2.4 A general criterion of CR-identifiability
Deciding whether a given graph is CR-identifiable is an efficiently solvable problem [4, 25].
For our purposes, it is beneficial to have a more explicit description of CR-identifiable graphs
in terms of the complex and the simple part of a graph. We now derive such a description
from the facts obtained for unicyclic graphs in the preceding subsection.

▶ Theorem 14.
1. A graph G is CR-identifiable if and only if both the complex and the simple parts of G

are CR-identifiable.
2. The simple part of G is CR-identifiable if and only if both of the following two conditions

are true:
(a) every unicyclic component of G is CR-identifiable, i.e., is as described in Lemma 12;
(b) every two unicyclic components of G have non-isomorphic universal covers, i.e., there

is no pair of connected components as described in Lemma 13.

Proof.
1. If G is CR-identifiable, then its complex and simple parts are both CR-identifiable as

a consequence a more general fact: The vertex-disjoint union of any set of connected
components of G is CR-identifiable. This fact is easy to see directly, and it also immediately
follows from Lemma 8.
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In the other direction, assuming that the complex and the simple parts of G are CR-
identifiable, we have to conclude that G is CR-identifiable. Lemma 8 reduces our task to
verification that if H is a complex connected component of G and S is a simple connected
component of G (a tree or a unicyclic graph), then the universal covers of H and S are
non-isomorphic. The last condition follows from the fact that the universal cover of a
tree is the tree itself and from Claim 9.

2. The second part of the theorem follows immediately from Lemma 8 due to the well-known
fact [23] that every tree is CR-identifiable. ◀

2.5 Coloring the cores of general graphs
We conclude this section by collecting useful general facts about the CR-colors of vertices in
the core of a graph. Let G be an arbitrary graph. If x is a vertex in core(G), then in G we
have a tree growing from the root x that shares with core(G) only the vertex x. We denote
this rooted tree by Tx.

▷ Claim 15. Let G and H be graphs. Let x be a vertex in core(G) and y be a vertex in
core(H). If Tx ̸∼= Ty, then C(x) ̸= C(y).

Proof. Clearly, it suffices to prove this for connected G and H. The condition Tx ̸∼= Ty

readily implies that UG
x ̸∼= UH

y , and the claim follows from Lemma 7. ◁

▷ Claim 16. Let G and H be two graphs (it is not excluded that G = H). For vertices
u ∈ V (G) and v ∈ V (H) assume that C(u) = C(v). Then u ∈ core(G) if and only if
v ∈ core(H).

Proof. Assume that G and H are connected (the general case will easily follow). Let αG be a
covering map from UG to G, and αH be a covering map from UH to H. Consider x ∈ V (UG)
and y ∈ V (UH) such that αG(x) = u and αH(y) = v. Note that u ∈ core(G) if and only if
there is a cycle in UG containing x, and the same is true about v any y. This proves the
claim because UG

x
∼= UH

y by Lemma 7. ◁

In our proofs, we will deal with cores that locally have a tree structure, that is, the
balls of sufficiently large radii around most of its vertices induce trees. In this case, CR
distinguishes vertices that have non-isomorphic neighborhoods.

▷ Claim 17. Let Br(v) denote the set of vertices at distance at most r from a vertex v. Let
v1, v2 ∈ V (G). If, for some r, the r-neighborhoods Br(v1) and Br(v1) induce non-isomorphic
trees rooted in v1 and v2 respectively, then C(v1) ̸= C(v2).

Proof. This is a direct consequence of Lemma 7. ◁

Throughout the paper, we identify the vertex set of the kernel of G with the set of
vertices of core(G) having degrees at least 3 in the core. We now state another consequence
of Lemma 7.

▷ Claim 18. Let G be a graph with minimum degree at least 2 and let K be its kernel.
Let r be a positive integer. For v ∈ V (K), let BK

r (v) be the subgraph of K induced by the
set of vertices at distance at most r from v in K. Let Br(v) ⊂ G be the subdivided version
of BK

r (v). Let v1, v2 be vertices of K such that, for some r, graphs Br(v1), Br(v2) ⊂ G are
non-isomorphic trees rooted in v1, v2. Then CG(v1) ̸= CG(v2).

Finally, we need the fact that the partition produced by CR on a graph refines the
partition produced by CR on its core.
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▷ Claim 19. Let u and v be vertices in core(G). Let C and C ′ be the colorings produced by
CR run on G and core(G) respectively. If C ′(u) ̸= C ′(v), then also C(u) ̸= C(v).

Proof. Clearly, it is enough to prove the claim for a connected graph G. Let us assume
towards a contradiction that C(u) = C(v). Let α be a covering map from UG to G. Let
x, y ∈ V (UG) be such that α(x) = u and α(y) = v. Due to Lemma 7, UG

x
∼= UG

y . Therefore,
U

core(G)
x = core(UG

x ) ∼= core(UH
y ) = U

core(H)
y . But then, again by Lemma 7, C ′(u) = C ′(v),

a contradiction. ◁

3 Proofs of main results

3.1 Derivation of Corollary 5 from Theorem 3
Part 1. Any isomorphism of graphs obviously respects their cores; cf. Claim 16. Note that
the CR-color of any vertex x in the core Cn contains a complete information about the
isomorphism type of the rooted tree Tx “growing” from this vertex (cf. Claim 15). This has
the following consequence. Let C′

n denote the colored version of Cn where each vertex x

is colored by the isomorphism type of Tx. Then Hn is CR-identifiable if and only if C′
n is

CR-identifiable. In order to show that C′
n is CR-identifiable it suffices to show that C′

n is
reconstructible up to isomorphism from the multiset of the vertex colors produced by CR on
input C′

n. The CR-color partition of C′
n is equal to the restriction of the CR-color partition of

Hn to Cn (recall Claim 16). Theorem 3, therefore, provides us with the following information
(whp):3

(a) every CR-color class of C′
n has size either 1 or 2,

(b) every two equally colored vertices have degree 2,
(c) every two equally colored vertices are transposable by an automorphism of C′

n.
Moreover, our Main Lemma (Lemma 20) ensures that Hn whp has no involutory automorphism
of type A3 described in Section 1. Along with this fact, the above conditions readily imply
that the color classes of size 2 occur either “along” a pair of transposable pendant paths
between two vertices of degree at least 3 or correspond to the reflectional symmetry of a
pendant cycle. Here we use the notions introduced in Section 1 in the context of Aut(Cn),
which should now be refined by taking into account the coloring of C′

n.
If {u} and {v} are two color classes of size 1, then the colors C(u) and C(v) yield the

information on whether the vertices u and v are adjacent or not. For color classes {u} and
{v, v′}, note that u and v are adjacent if and only if u and v′ are adjacent. This adjacency
pattern is as well reconstructible from the colors C(u) and C(v) = C(v′). If {u, u′} and
{v, v′} are two color classes of size 2, then they span either a complete or empty bipartite
graph or a matching (for example, u is adjacent to v, u′ is adjacent to v′, and there is no
other edges between these color classes). Each of these three possible adjacency patterns
is reconstructible from the colors C(u) = C(u′) and C(v) = C(v′). A crucial observation,
completing the proof, is that all ways to put a matching between {u, u′} and {v, v′} lead to
isomorphic graphs.

Part 2. This follows from part 1 by part 1 of Theorem 14.

3 Note that Conditions (b) and (c) are provided by Main Lemma. Condition (a) is not essential for
the argument in Subsections 3.1 and 3.2, which easily extends to the case of more than two mutually
transposable pendant paths.
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3.2 Derivation of Theorem 1 from Theorem 3
Before proceeding to the proof, we remark that when we say that a canonical labeling
algorithm succeeds on a random graph Gn, we mean that the algorithm works correctly on a
certain efficiently recognizable (closed under isomorphisms) class of graphs C such that Gn

belongs to C whp. Though not explicitly stated in the argument below, it will be clear that,
in our case, C is the class of all graphs satisfying the conditions of Theorem 3. Note that
these conditions are easy to check after running CR on a graph.

First of all, we distinguish the complex and the simple parts of Gn and compute a
canonical labeling of the simple part separately. This is doable in linear time. It remains to
handle the complex part Hn.

It is enough to compute a suitable injective coloring of Hn and subsequently to rename
the colors in their lexicographic order by using the labels that were not used for the simple
part. To this end, we run CR on Hn. This takes time O(n log n) as CR can be implemented
[9] in time O((n + m) log n), where m denotes the number of edges (which is linear for the
sparse random graph under consideration). Then we begin with coloring the vertices of the
core Cn. Theorem 3 along with Claim 16 ensures that the vertices of degree at least 3 already
received individual colors. The duplex colors occur along transposable pendant paths and
pendant cycle (like in Section 3.1, these notions are understood with respect to Hn rather
than to Cn alone). To make such vertex colors unique, we keep the original colors along one
of two transposable paths and concatenate their counterparts in the other path with a special
symbol. We proceed similarly with symmetric pendant cycles. In this way, every vertex x

in the core Cn receives an individual color ℓ(x). In the last phase, we compute a canonical
labeling for each tree part Tx of Hn, regarding Tx as a tree rooted at x. This coloring is not
injective yet because some Tx and Ty can be isomorphic. This is rectified by concatenating
all vertex colors in Tx with ℓ(x).

3.3 Proof of Corollary 2
As well known, if 1/n ≪ p ≤ 1/2 then the core of the giant component of G(n, p) coincides
with the core of the entire graph. Due to the classical linear-time algorithms for canonical
labeling of trees, this observation reduces canonical labeling of G(n, p) with 1/n ≪ p ≤ 1/2
to canonical labeling of its core.

Linial and Mosheiff [27] suggested an algorithm A1 that, for any p with 1
n ≪ p(n) < n−2/3,

whp labels canonically G(n, p) in time O(n4) by distinguishing between all vertices of the
core. In [16], it was proved that, if ln4 n

n ≤ p ≤ 1
2 , then CR whp distinguishes between all

vertices of the entire G(n, p). Finally, our Theorem 1 provides an algorithm A2 that, for any
p = O(1/n), whp labels canonically G(n, p) in time O(n ln n). Now, consider the following
algorithm A:
1. Run CR. If it colors differently all vertices, then halt and output the canonical labeling

produced by CR.
2. If the algorithm does not halt in Step 1, then run A1. If it succeeds (i.e., colors differently

all vertices in the core of the input graph), then halt and output the labeling produced
by A1.

3. If the algorithm does not halt in Steps 1 and 2, then run A2 and output the labeling it
produces (or give up if A2 fails).

Let us show that the algorithm A succeeds whp for any p with p(n) ≤ 1/2. Assume, to
the contrary, that there exist a constant ε > 0 and a sequence (nk)k∈N such that

P(A fails on G(nk, p(nk))) > ε
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for all k. If there is a subsequence (nki)i∈N and a constant C > 0 such that p(nki) < C/nki

for all i, then we get a contradiction with the performance of the algorithm A2. Therefore,
p(nk) ≫ 1

nk
. If there is a subsequence (nki

)i∈N such that p(nki
) < n

−2/3
ki

for all i, then we
get a contradiction with the performance of the algorithm A1. It follows that p(nk) ≥ n

−2/3
k

for all k. This, however, contradicts the result of [16] that CR in this regime produces a
discrete coloring of G(n, p) whp.

In order to obtain canonical labeling, whp, for all p with p(n) ∈ [0, 1], we run the algorithm
A on input G and if it fails, then we run A once again on the complement of G.

4 CR-coloring of the random graph

In this section, we state and prove our Main Lemma that describes the output of CR on the
random graph. Given a graph G, we call vertices u and v in core(G) interchangeable, if

they both have degree 2 in core(G),
u and v belong to a cycle F ⊂ core(G) with the following property: there exists a vertex
w on the cycle such that w has degree at least 3 in core(G), dF (u, w) = dF (v, w), and all
the other vertices on the cycle, but the vertex opposite to w when |V (F )| is even, have
degree 2 in core(G). In other words, u and v either belong to a pendant cycle or to two
transposable pendant paths, and the respective transposition replaces u and v.

▶ Lemma 20 (Main Lemma). Let γ > 1 be a constant, pn ≤ γ, and Gn = G(n, p). Let Hn be
the union of complex components in Gn, and Cn be its core. If CR is run on Hn, then whp
any pair of vertices in Cn receiving the same color is interchangeable. Under the condition
pn = 1 + ω(n−1/3), this is true also if CR is run on Cn.

The proof of Main Lemma is given in Sections 4.1–4.3. We consider separately large
p (supercritical phase) and small p (critical phase). In both cases, we specify good sets of
vertices and show that all vertices from good sets are distinguished by CR. This is done
in Section 4.1 for large p and Section 4.2 for small p. Finally, in Section 4.3 we complete
the proof: we show that distinguishing between good vertices in the core is sufficient to
distinguish between all pairs in the core that are not interchangeable.

For a graph G, dG(u, v) is the shortest-path distance between u and v in G. Sometimes,
when the graph is clear from the context, we omit the subscript G. For a vertex v and a real
number r, we denote by BG

r (v) the ball of radius r around v in G, i.e., the graph induced on
the set of all vertices at distance at most r from v in G. For a non-negative integer r, we
denote by SG

r (v) ⊂ BG
r (v) the sphere of radius r around v in G, i.e., the graph induced on

the set of all vertices at distance exactly r from v in G.
For a connected graph G, its excess is the difference between the number of edges and

the number of vertices. In particular, a tree has excess −1. We call ℓ-complex a connected
graph with excess ℓ. The total excess of a graph without unicyclic components is the sum of
excesses of all its components.

4.1 Distinguishing good vertices in the core in the supercritical and
strictly supercritical phases

In this subsection, we let p = p(n) be such that γ ≥ np = 1 + ω(n−1/3) for some constant
γ > 1. Denote δn := np − 1. We denote the kernel and the core of the giant component of
Gn ∼ G(n, p) by Kn and Cn. Let Ccore be the coloring produced by CR on Cn.
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We assign to every edge e of Cn the weight 1/ℓ, where ℓ − 1 is the number of vertices that
subdivide the edge of the kernel e belongs to. The weight of a path is the sum of weights of
its edges. For u, v ∈ V (Cn), let df (u, v) be the fractional distance between u and v, i.e. the
minimum weight of a path between u and v. We denote the respective metric space by Mn.

Fix a positive real s. Let Ds be the set of all v ∈ V (Cn) such that the ball around v

in Mn of radius s induces an acyclic graph. For every vertex v ∈ Ds and integer r < s,
let Pr(v) be the multiset of lengths of edge-disjoint paths from Cn that are produced by
subdividing edges {x, y} ∈ E(Kn), where df (x, v) ≤ r while df (y, v) > r. We will need the
following facts.

▷ Claim 21. Let s ≥ 0.6(ln(δ3
nn))2/3. Whp for any two different u, v ∈ Ds ∩ V (Kn), there

exists an integer r ≤ 0.5(ln(δ3
nn))2/3 such that the multisets Pr(u) and Pr(v) are different.

Proof. We fix s ≥ 0.6(ln(δ3
nn))2/3 and let D := Ds. We prove this claim in the contiguous

models G̃n, defined in [17, Thm. 2] and [18, Thm. 1] and then use these theorems to conclude
that it also holds in Gn. So, in what follows, K̃n = K(G̃n), C̃n = C(G̃n), and D̃ = D(K̃n).

Let us expose K̃n and let u, v ∈ D̃ ∩ V (K̃n). As proved in [17, 18], whp N = |V (K̃n)| =
Θ(δ3

nn). Assume first that the distance between u and v is at most 0.4(ln(δ3
nn))2/3 in K̃n.

Let P be the shortest path between u and v – it is unique due to the definition of D̃.
Let v′ be a neighbor of v in K̃n that does not belong to P . Then, by the definition of
D̃,
∣∣∣SK̃n

r (v′) \ BK̃n
r (v)

∣∣∣ ≥ 2r for all r ∈
[
0.4(ln(δ3

nn))2/3, 0.5(ln(δ3
nn))2/3]. Since u, v ∈ D̃,

we have that BK̃n
s (u) and BK̃n

s (v) are trees. It immediately implies, that for every such r,∣∣∣SK̃n
r+1(v) \ BK̃n

r+1(u)
∣∣∣ ≥ 2r.

We then generate subdivisions of the edges of the kernel from the definition of G̃n in the
following order: for every r =

⌈
0.4(ln(δ3

nn))2/3⌉ , . . . ,
⌊
0.5(ln(δ3

nn))2/3⌋, we, first, subdivide
all edges growing from BK̃n

r+1(u) outside of the ball, and then all edges growing from SK̃n
r+1(v)

outside of BK̃n
r+1(v). Notice that all sets SK̃n

r+1(v) are disjoint for different r. For every
r, as soon as the edges that correspond to the vertex u are subdivided, the event that
Pr+1(u) = Pr+1(v) immediately implies that the random multiset of lengths of paths from
C̃n, that are produced by subdividing edges from K̃n that grow from BK̃n

r+1(v) outside, should
be equal to a predefined value. This multiset has size at least 2r. Since the geometric random
variables considered in [17, 18] do not have atoms with probability measure 1 − o(1), the
latter event has probability at most 2−Θ(r) due to the de Moivre–Laplace local limit theorem.
Eventually,

P
(

Pr+1(u) = Pr+1(v) for all r ∈
[
0.4(ln(δ3

nn))2/3, 0.5(ln(δ3
nn))2/3

])
≤

≤ exp
(

−Θ((log(δ3
nn))4/3)

)
.

Assume now that the distance between u and v is bigger than 0.4(ln(δ3
nn))2/3 in K̃n.

Then, by the definition of D̃, sets BK̃n

0.2(ln(δ3
nn))2/3(v) and BK̃n

0.2(ln(δ3
nn))2/3 are disjoint and sets

SK̃n
r (v) have size at least 2r for all r ∈ [0.15(ln(δ3

nn))2/3, 0.2(ln(δ3
nn))2/3 − 1]. As above, we

get that Pr(u) = Pr(v) for all r ∈
[
0.15(ln(δ3

nn))2/3, 0.2(ln(δ3
nn))2/3 − 1

]
with probability at

most exp
(
−Θ((log(δ3

nn))4/3)
)
.

The union bound over all pairs u, v ∈ D̃ along with [17, Thm. 2] and [18, Thm. 1]
completes the proof. ◁

▷ Claim 22. Let s∗ := ⌊(ln(δ3
nn))2/3⌋ and D = Ds∗ . Whp, Ccore(u) ̸= Ccore(v) for any

distinct u, v ∈ D.
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Proof. Assume that the assertion of Claim 21 holds for s = s∗ and s = s∗ −1 deterministically.
Let u, v ∈ D ∩ V (Kn). Let Bu and Bv be the subdivided versions of BKn

s∗ (u) and BKn
s∗ (v)

in Cn. Since Bu ≇ Bv due to the conclusion of Claim 21, we get that Ccore(u) ̸= Ccore(v)
due to Claim 18. It remains to consider the case v ∈ D \ V (Kn) and v ̸= u ∈ D. Assume
towards contradiction that Ccore(u) = Ccore(v). Then, both u and v have degree 2 in Cn. In
particular, u /∈ V (Kn). Consider the edges eu, ev of Kn that u and v subdivide. Let Pu, Pv

be the subdivided versions of eu, ev. Due to the assertion of Claim 21 applied to s = s∗ − 1,
we get that all vertices of Kn from eu ∪ ev have different colors. On the other hand, by the
definition of CR, the neighbors of u should have exactly the same color as the neighbors of v.
Thus, by induction, we get that the entire paths Pu, Pv are colored identically. It may only
happen if the endpoints of Pu coincide with the endpoints of Pv. By the definition of D, it
means that Pu = Pv =: P . Since the endpoints of P are colored in different colors, it can be
easily shown by induction that all vertices in P are also colored in different colors. Thus,
u = v, yielding a contradiction. ◁

4.2 Distinguishing good vertices in the core in the critical regime
Let A be a large positive number. Let 1 − n−1/3 ln n ≤ pn = 1 + o(1). Whp any complex
component in Gn ∼ G(n, p) has size at least 100A ln n due to the following well-known fact.

▷ Claim 23. Let γ > 1, np ≤ γ, and Gn ∼ G(n, p). There exists ε = ε(γ) such that ε → ∞
as γ → 1 and whp any connected subgraph of Gn of size at most ε ln n is not complex.

Let us say that a path u1 . . . uk extends the path v1 . . . vk if, for some i ∈ {2, . . . , k}
the sets {v1, . . . , vi−1} and {uk−i+2, . . . , uk} are disjoint and u1 = vi, . . . , uk−i+1 = vk. For
convenience, we assume that this notion is closed under rotations of paths, i.e. if u1 . . . uk

extends v1 . . . vk, then it also extends vk . . . v1 and we also say that uk . . . u1 extends both
v1 . . . vk and vk . . . v1 in this case. We call two paths v1 . . . vk and u1 . . . uk weakly disjoint, if
they are either vertex-disjoint or one paths extends the other one.

▷ Claim 24. Whp in Gn there are no two weakly disjoint paths v1 . . . vk and u1 . . . uk of
length k = ⌊A ln n⌋ such that, for every i ∈ {2, . . . , k − 1}, vi has degree 2 if and only if ui

has degree 2.

Proof. Due to Claim 23, whp in Gn there are no complex subgraphs with at most 2k vertices.
For a path P = v1 . . . vk in Gn, let us consider a binary word w(P ) = (w2, . . . , wk−1)

defined as follows: wi = 1 if and only if vi has degree 2 in Gn. Notice that, if a path u1 . . . uk

extends the path v1 . . . vk so that u1 = vi, . . . , uk−i+1 = vk and w(v1 . . . vk) = w(u1 . . . uk),
then w(u1 . . . uk) is periodic and defined by w(v1 . . . vi+1) = (w2, . . . , wi).

Let X be the number of pairs of paths as in the statement of the claim and such that
there are at most 2 edges between the paths (we are allowed to assume this since there
are no complex subgraphs of size at most 2k). Fix two weakly disjoint path v = v1 . . . vk

and u = u1 . . . uk and assume without loss of generality that either u extends v, or they
are disjoint. Let i be such that u1 = vi. If there is no such i, i.e. the paths are disjoint,
set i = k + 1. Then, expose edges from all vj , j ≤ i, and assume that they send at most
2 edges to u2, . . . , uk−1, other than the edge {u1, u2}. Then, probability that for every
j ∈ {2, . . . , k − 1}, vj has degree 2 if and only if uj has degree 2, is at most

max
{

(1 − p)n−2k, (1 − (1 − p)n)
}k−4 ≤

(
1 − e−(1+o(1))

)k−4
= o

((
2
3

)k
)

.
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We then get

EX ≤
k+1∑
i=2

nk+i−1pk+i−3
(

2
3

)k

≤ kn2(1 + o(1))2k

(
2
3

)k

= o(1),

for an appropriate choice of A. Due to Markov’s inequality, P(X ≥ 1) ≤ EX = o(1),
completing the proof. ◁

Let D be the set of all vertices v in Cn = core(Gn) that belong to a complex component of
Gn and such that Bv := BGn

3A ln n(v) is a tree. Let C be the coloring produced by CR on Gn.

▷ Claim 25. Whp, C(u) ̸= C(v) for any u, v ∈ D.

Proof. Assume that the statement of Claim 24 holds deterministically in Gn. Fix two different
u, v ∈ D. Let us show towards contradiction that trees Bv and Bu are not isomorphic.

Take an arbitrary path v1 . . . vk of length k := ⌊1.9A ln n⌋, where v1 = v. Since, by
assumption, Bv

∼= Bu, there exists a path u = u1 . . . uk such that u1 = u and, for every
i ∈ {2, . . . , k − 1}, vi has degree 2 if and only if ui has degree 2. In the same way, since
v ∈ core(Gn) and Bv is a tree, we may consider a path v′

1 . . . v′
k that shares only the vertex

v′
1 = v = v1 with v1 . . . vk. Since Bu

∼= Bv, there should be a path u′ = u′
1 . . . u′

k that shares
with u1 . . . uk the only vertex u′

1 = u = u1 and such that, for every i ∈ {2, . . . , k − 1}, v′
i

has degree 2 if and only if u′
i has degree 2. Since Bv is acyclic and since pairs of paths

v1 . . . vk, u1 . . . uk and v′
1 . . . v′

k, u′
1 . . . u′

k cannot be disjoint due to Claim 24, u must lie on
the path P := vk . . . v1 . . . v′

k. Moreover, since Bu is acyclic, once u or u′ leave P , they never
meet with P again. Thus, the path uk . . . u1 . . . u′

k is divided by P in at most 3 parts: the
first part does not have common vertices with P , the second part is a subpath of P , and
the third part does not have common vertices with P again. Let Q be the longest part of
the three. Then Q has length ℓ ≥ 1

3 (2k − 1) > A ln n. Moreover, since degGn
u = degGn

v by
assumption and u ̸= v, there should be a subpath P ′ ⊂ P such that P ′ and Q are weakly
disjoint, and the degrees of internal vertices in P ′ and Q are aligned in the sense that the
i-th inner vertex of P ′ have degree 2 if and only if the i-th vertex of Q has degree 2. This is
impossible due to Claim 24. Thus, Bv ≇ Bu implying C(u) ̸= C(v) due to Claim 17. ◁

4.3 Completing the proof of Main Lemma (Lemma 20)
Due to Claims 22, 25, and 19, it remains to prove the following:
1. If 1 + ω(n−1/3) = pn ≤ γ, then

Ccore(u) ̸= Ccore(v) for every v ∈ V (Cn) \ D and u ∈ D;
Ccore(u) ̸= Ccore(v) for any non-interchangeable pair u, v ∈ V (Cn) \ D;

2. If 1 − n−1/3 ln n ≤ pn = 1 + o(1), then
C(u) ̸= C(v) for every v ∈ V (Cn) \ D and u ∈ D;
C(u) ̸= C(v) for any non-interchangeable pair u, v ∈ V (Cn) \ D.

We will use the following technical fact, which follows from [17, Thm. 2] and [18, Thm. 1].

▷ Claim 26. Let δ > 0 be a constant, n−1/3 ≪ δn := pn − 1 ≤ δ, and Gn ∼ G(n, p). Then
whp in K(Gn) there are no complex subgraphs of size at most (ln(nδ3

n))3/4.

For the sake of brevity, below we prove both statements in two different regimes simulta-
neously. Thus, with some abuse of notation, in the supercritical phase (i.e., 1 + ω(n−1/3) =
pn ≤ γ), we let Gn := Cn and C := Ccore as we only consider CR on Cn. We also assume
that when 1 + ω(n−1/3) = pn ≤ γ, the core is equipped with the fractional distance df ,
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constituting the metric space Mn. If 1 − n−1/3 ln n ≤ pn ≤ 1 + o(1), then Gn is equipped
with the usual shortest-path distance, that we denote by df as well. We also use the following
notation: d = ⌊(ln(δ3

nn))2/3⌋ when we prove the assertion for 1 + ω(n−1/3) = pn ≤ γ and
d = ⌊3A ln n⌋ when we prove it for 1 − n−1/3 ln n ≤ pn = 1 + o(1). In what follows, we
assume that the assertions of Claims 22, 23, 25, and 26 hold deterministically in Gn.
1. Assume that some v /∈ D and u ∈ D have C(u) = C(v). We know that v is d-close

to a cycle F of length at most 2d. If v ∈ V (F ), then let v′ be the closest to v vertex
on F that has degree more than 2 in the core. Otherwise, let v′ = v. Let P be the
shortest path from v′ to F . Let us extend this path by a path P ′ of length 10d beyond
v′. Due to Claim 23 and Claim 26, it has a subpath w . . . w′ of length 5d consisting
of vertices from D only such that df (w, v′) ≤ d. We know that all elements of the
vector c := (C(w), . . . , C(w′)) are different. Then, due to our assumption, u must have a
vertex z at distance at most df (w, v) such that z is the first vertex of a path z . . . z′ with
C(w) = C(z), . . . , C(w′) = C(z′).
We now consider separately two cases: w = z and w ̸= z. In the first case, we have that
the distance from u to the closest cycle (which is F , the same as for v) is at most

df (w, u) + df (w, v′) + df (v′, F ) ≤ length of F + 2(df (w, v′) + df (v′, F )) ≤ 6d.

Let P be the shortest path between u and v. Due to Claim 23 and Claim 26, there exists
a path uw̃ . . . w̃′ of length 5d + 1 that does not meet P and consists of vertices from D

only. Due to Claim 22 and Claim 25 all elements of the vector c̃ := (C(w̃), . . . , C(w̃′))
are different and no element of c̃ equals to any element of c. Moreover, by construction,
df (v, w̃) > df (u, w̃). Then, due to our assumption, v must have a neighbor z̃ ̸= w̃ such
that z̃ is the first vertex of a path z̃ . . . z̃′ with C(w̃) = C(z̃), . . . , C(w̃′) = C(z̃′). Note
that w̃ ≠ z̃, . . . , w̃′ ̸= z̃′ due to Claim 23 and Claim 26. Since all vertices in D are
distinguished by C(·), we conclude that all vertices z̃, . . . , z̃′ must be outside D. Due
to Claim 23, Claim 26, and the definition of D, they constitute a (self-avoiding) path
and are d-close to a cycle of length at most 2d. Since the path has length 5d, we get a
contradiction with Claim 23 or Claim 26.
We then assume w ̸= z. It may only happen when z /∈ D. Moreover, all z, . . . , z′ are not
in D. Indeed, otherwise, different paths w . . . w′ and z . . . z′ have common vertices. Then
the path from z to F that goes through w has length greater than d. However, due to
Claim 23 and Claim 26, there are no two different paths from z to F , both of length at
most 12d and, also, there is no other cycle F ′ of length at most 2d such that a path from
z to F ′ has at most d vertices. This contradicts the fact that z /∈ D. Thus, we again get
a (self-avoiding) path consisting of vertices z, . . . , z′ that are d-close to a cycle of length
at most 2d. This contradicts Claim 23 or Claim 26 again, since the path has length 5d.
We conclude that every vertex u ∈ D has C(u) that does not equal to the color of any
other vertex in the core.

2. It remains to prove that, for any two distinct u, v /∈ D that are not interchangeable,
C(u) ̸= C(v). Fix two such vertices u and v. We may assume that Tu

∼= Tv since otherwise
C(u) ̸= C(v) due to Claim 15. Let Fu and Fv be two cycles of length at most 2d that
are closest to u and v respectively (both are at distance at most d from the respective
vertices). If Fu ≠ Fv, then set F := Fu. In this case, we let u′ = u when u /∈ V (F )
and let u′ be the closest vertex of degree 3 in F to u otherwise. If Fu = Fv =: F , then,
without loss of generality we assume that either u is not in F or both u, v are in F . Let
u′ = u when u /∈ V (F ) and let u′ be a vertex of F that has degree at least 3 and such
that df (u, u′) ̸= df (v, u′) otherwise. Note that such a vertex exists due to the definition
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of an interchangeable pair. Consider a path P of length 10d that starts at u′ and does
not meet F . Due to Claim 23 and Claim 26, this path has a vertex w in D such that
d(w, u′) ≤ d. If Fu ̸= Fv, then

df (v, w) ≥ df (Fu, Fv) − df (v, Fv) − df (w, Fu) > df (u, w)

due to Claim 23 and Claim 26. Finally, let Fu = Fv. Assume, in addition, u /∈ V (F ).
Then the only possibility for C(u) to be equal to C(v) is to have a path P ′ between v

and w of length df (u, w). Let us extend P ′ by a path of length 10d beyond v. Due to
Claim 23 and Claim 26 this path has a vertex w′ from D such that df (w′, v) ≤ d. But
then df (u, w′) > df (v, w′), implying C(u) ̸= C(v). If u, v ∈ V (F ), then

df (v, w) = df (v, u′) + df (u′, w) ̸= df (u, u′) + df (u′, w) = df (u, w).

In either case, we get df (v, w) ̸= df (u, w) or C(u) ̸= C(v). Recalling that w has a unique
color, we readily conclude that C(u) ̸= C(v), completing the proof.
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