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Abstract
For a set P of n points in the plane and a value r > 0, the unit-disk range reporting problem is
to construct a data structure so that given any query disk of radius r, all points of P in the disk
can be reported efficiently. We consider the dynamic version of the problem where point insertions
and deletions of P are allowed. The previous best method provides a data structure of O(n log n)
space that supports O(log3+ϵ n) amortized insertion time, O(log5+ϵ n) amortized deletion time,
and O(log2 n/ log log n + k) query time, where ϵ is an arbitrarily small positive constant and k is
the output size. In this paper, we improve the query time to O(log n + k) while keeping other
complexities the same as before. A key ingredient of our approach is a shallow cutting algorithm for
circular arcs, which may be interesting in its own right. A related problem that can also be solved
by our techniques is the dynamic unit-disk range emptiness queries: Given a query unit disk, we
wish to determine whether the disk contains a point of P . The best previous work can maintain
P in a data structure of O(n) space that supports O(log2 n) amortized insertion time, O(log4 n)
amortized deletion time, and O(log2 n) query time. Our new data structure also uses O(n) space but
can support each update in O(log1+ϵ n) amortized time and support each query in O(log n) time.
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1 Introduction

Range searching is a fundamental problem and has been studied extensively in computational
geometry [2, 3, 26]. In this paper, we consider a dynamic range reporting problem regarding
disks of fixed radius, called unit disks.

Given a set P of n points in the plane, the unit-disk range reporting problem (or UDRR
for short) is to construct a data structure to report all points of P in any query unit disk.
The problem is also known as the fixed-radius neighbor problem in the literature [4,14,16,17].
Chazelle and Edelsbrunner [17] constructed a data structure of O(n) space that can answer
each query in O(log n + k) time, where k is the output size; their data structure can be
constructed in O(n2) time. By a standard lifting transformation [5], the problem can be
reduced to the half-space range reporting queries in 3D; this reduction also works if the radius
of the query disk is arbitrary. Using Afshani and Chan’s 3D half-space range reporting data
structure [1], one can construct a data structure of O(n) space with O(log n + k) query time,
while the preprocessing takes O(n log n) expected time since it invokes Ramos’ algorithm [27]
to construct shallow cuttings for a set of planes in 3D. Chan and Tsakalidis [13] later presented
an O(n log n)-time deterministic shallow cutting algorithm. Combining the framework in [1]
with the shallow cutting algorithm [13], one can build a data structure of O(n) space in
O(n log n) deterministic time that can answer each UDRR query in O(log n + k) time.
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We consider the dynamic UDRR problem in which point insertions and deletions of P

are allowed. By the lifting transformation, the problem can be reduced to dynamic halfspace
range reporting in 3D [7,10,11], which also works for query disks of arbitrary radii. Using
the currently best result of dynamic halfspace range reporting [6], one can obtain a data
structure of O(n log n) space that supports O(log3+ϵ n) amortized insertion time, O(log5+ϵ n)
amortized deletion time, and O(log2 n/ log log n + k) query time, where ϵ is an arbitrarily
small positive constant and k is the output size.

Our result. In this paper, we achieve the optimal O(log n + k) query time, while the space
of the data structure and the update time complexities are the same as above.

A byproduct of our techniques is a static data structure of O(n) space that can be built
in O(n log n) time and support O(log n + k) query time. This matches the above result
of [1,13]. But our method is much simpler. Indeed, the algorithm of [1,13] involves relatively
advanced geometric techniques like computing shallow cuttings for the planes in 3D, planar
graph separators, etc. Our algorithm, on the contrary, relies only on elementary techniques
(the most complicated one might be a fractional cascading data structure [18, 19]). One
may consider our algorithm a generalization of the classical 2D half-plane range reporting
algorithm of Chazelle, Guibas, and Lee [20].

Our techniques may also be useful for solving other problems related to unit disks. In
particular, we can obtain an efficient algorithm for the dynamic unit-disk range emptiness
queries. For a dynamic set P of points in the plane, we wish to determine whether a query unit
disk contains any point of P (and if so, return such a point as an “evidence”). The previous
best solution is to use a dynamic nearest neighbor search data structure [11]. Specifically,
we can have a data structure of O(n) space that supports O(log2 n) amortized insertion
time, O(log4 n) amortized deletion time, and O(log2 n) query time. Using our techniques, we
obtain an improved data structure of O(n) space that supports both insertions and deletions
in O(log1+ϵ n) amortized time and supports queries in O(log n) time.

Our approach. We first discuss our static data structure. We use a set of O(n) grid cells
(each of which is an axis-parallel rectangle) to capture the proximity information for the
points of P , such that the distance between any two points in the same cell is at most 1.
For a query unit disk Dq whose center is q, points of P in the cell C that contains q can be
reported immediately. The critical part is handling other cells that contain points of P ∩ Dq.
The number of such cells is constant and each of them is separated from C (and thus from q)
by an axis-parallel line. The problem thus boils down to the following subproblem: Given a
set Q of points in a grid cell C ′ above a horizontal line ℓ, report the points of Q in any query
unit disk whose center is below ℓ. A point p ∈ Q is in Dq if and only if q lies in the unit disk
Dp centered at p, or equivalently, q is above the arc of the boundary of Dp below ℓ. Let Γ
denote the set of all such arcs for all points p ∈ Q. To find the points of Q in Dq, it suffices
to report the arcs of Γ below q. To tackle this problem, we follow the same framework as
that for the 2D half-plane range reporting algorithm [20], by constructing lower envelope
layers of Γ and building a fractional cascading data structure on them [18,19].

To make the data structure dynamic, we first derive a data structure to maintain the grid
cells dynamically so that each update (point insertions/deletions) can be handled in O(log n)
amortized time. This dynamic data structure could be of independent interest. Next, we
develop a data structure to dynamically maintain arcs of Γ to support the arc-reporting
queries (i.e., given a query point, report all arcs of Γ below it). To this end, we cannot
use the fractional cascading data structure anymore because it is not amenable to dynamic
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changes. Instead, we adapt the techniques for dynamically maintaining a set of lines to answer
line-reporting queries (i.e., given a query point, report all lines below the query point; its
dual problem is the halfplane range reporting queries) [6,9–11,23]. To make these techniques
work for the arcs of Γ in our problem, we need an efficient shallow cutting algorithm for Γ.
For this, we adapt the algorithm in [13] for lines and derive an O(|Γ| log |Γ|) time shallow
cutting algorithm for Γ. As shallow cuttings have many applications, our algorithm may be
interesting in its own right.

Outline. The rest of the paper is organized as follows. In Section 2, we introduce notation
and a conforming coverage set of grid cells to capture the proximity information for points
of P . Section 3 discusses our dynamic UDRR data structure. A main subproblem of it is
solved in Section 4. A key ingredient of our method is an efficient algorithm for computing
shallow cuttings for arcs; this algorithm is presented in Section 5. Section 6 demonstrates
that our techniques may be used to solve other related problems, such as dynamic unit-disk
range emptiness queries. Due to the space limit, some details and proofs are omitted but
can be found in the full paper.

2 Preliminaries

We define some notation that will be used throughout the paper. A unit disk refers to a disk
of radius 1. A unit circle is defined similarly. Unless otherwise stated, a circular arc or an
arc refers to a circular arc of radius 1. For a circular arc γ, we call the circle that contains γ

the underlying circle of γ and call the disk whose boundary contains γ the underlying disk.
For any point q, let Dq denote the unit disk centered at q. For any region R and any set P

of points in the plane, let P (R) denote the subset of points of P inside R, i.e., P (R) = P ∩ R.
For any region R in the plane, we use ∂R to denote its boundary, e.g., if R is a disk, then
∂R is its bounding circle.

Unless otherwise stated, ϵ refers to an arbitrarily small positive constant. Depending on
the context, we often use k to denote the output size of a reporting query. For any point p

in the plane, we use x(p) and y(p) to denote the x and y-coordinates of p, respectively.

2.1 Conforming coverage of P

Let P be a set of n points in the plane. We wish to have a data structure for P to answer
the following unit-disk range reporting queries: Given a query unit disk D, report P (D), i.e.,
the points of P in D.

As discussed in Section 1, our method (for both static and dynamic problems) relies on
a set of grid cells to capture the proximity information for the points of P . The technique
of using grids has been widely used in various algorithms for solving problems in unit-disk
graphs [12, 28–32]. However, the difference here is that we need to handle updates to P

and therefore our grid cells will be dynamically changed as well. To resolve the issue, our
definition of grid cells is slightly different from the previous work. Specifically, we define a
conforming coverage set of cells for P in the following.

▶ Definition 1 (Conforming Coverage). A set C of cells in the plane is called a conforming
coverage for P if the following conditions hold.
1. Each cell of C is an axis-parallel rectangle of side lengths at most 1/2. This implies that

the distance of every two points in each cell is at most 1.
2. The union of all cells of C covers all the points of P .
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3. Every two cells are separated by an axis-parallel line.
4. Each cell C ∈ C is associated with a subset N(C) ⊆ C of O(1) cells (called neighboring

cells of C) such that for any point q ∈ C, P (Dq) ⊆
⋃

C′∈N(C) P (C ′).
5. For any point q, if q is not in any cell of C, then P ∩ Dq = ∅.

To solve the static problem, after computing a conforming coverage set of cells for P , we
never need to change it in the future. As such, the following lemma from [28] suffices.

▶ Lemma 2 ([28]).
1. A conforming coverage set C of size O(n), along with P (C) and N(C) for all cells C ∈ C,

can be computed in O(n log n) time and O(n) space.
2. With O(n log n) time and O(n) space preprocessing, given any point q, we can do the

following in O(log n) time: Determine whether q is in a cell C of C, and if so, return C

and N(C).

However, for the dynamic problem, due to the updates of P , the conforming coverage set
also needs to be maintained dynamically. For this, we have the following lemma.

▶ Lemma 3. A conforming coverage set C of O(n) cells for P can be maintained in O(n)
space (where n is the size of the current set P ) such that each point insertion of P can be
handled in O(log n) worst-case time, each point deletion can be handled in O(log n) amortized
time, and the following query can be answered in O(log n) time: Given a query point q,
determine whether q is in a cell C of C, and if so, return C and N(C).

The proof of Lemma 3, which is lengthy and technical, is in the full paper. Roughly
speaking, if a point p is inserted to P , then at most O(1) cells will be added to C and p will
eventually be inserted into P (C) for the cell C ∈ C containing p. If a point p is deleted from
P , the deletion boils down to the deletion of p from P (C) for the cell C ∈ C containing p.
We do not remove cells from C. Instead, we reconstruct the entire data structure after n/2
deletions; this guarantees that the size of C is always O(n). See the full paper for the details.

3 Dynamic range reporting

Let P be a set of points in the plane. We wish to maintain a data structure for P to answer
unit-disk range reporting queries subject to point insertions and deletions of P . Let n denote
the size of the current set P .

Using Lemma 3, we maintain a conforming coverage set C of O(n) cells for P . To insert
a point p to P , our insertion algorithm for Lemma 3 boils down to inserting p to P (C) for a
cell C ∈ C that contains p. To delete a point p from P , our deletion algorithm for Lemma 3
boils down to deleting p from P (C) for a cell C ∈ C that contains p.

Consider a query unit disk Dq whose center is q. If q is not in a cell of C, then by
Definition 1(5), P (Dq) = ∅ and thus we simply return null. Otherwise, to report P (Dq),
it suffices to report P (C ′) ∩ Dq for all cells C ′ ∈ N(C). In the case of C ′ = C, since the
distance between two points in C is at most 1 by Definition 1(1), we can simply report all
points of P (C). If C ′ ̸= C, C and C ′ are separated by an axis-parallel line by Definition 1(3).
Without loss of generality, we assume that C and C ′ are separated by a horizontal line ℓ

with C ′ above ℓ and C below ℓ. As q ∈ C, q is below ℓ, i.e., q is separated from C ′ by ℓ. Our
goal is to report points of P (C ′) ∩ Dq. Due to the point updates of P (C ′), our problem is
reduced to the following subproblem, called dynamic line-separable UDRR problem.
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▶ Problem 1 (Dynamic line-separable UDRR). For a set Q of m points above a horizontal
line ℓ, maintain Q in a data structure to support the following operations. (1) Insertion:
insert a point to Q; (2) deletion: delete a point from Q; (3) unit-disk range reporting query:
given a point q below ℓ, report the points of Q in the unit disk Dq.

We have the following Lemma 4 for the dynamic line-separable UDRR problem.

▶ Lemma 4. For the dynamic line-separable UDRR problem, we can have a data structure
of O(m log m) space to maintain Q to support insertions in O(log3+ϵ m) amortized time,
deletions in O(log5+ϵ m) amortized time, and unit-disk range reporting queries in O(k+log m)
time, where k is the output size, ϵ is an arbitrarily small positive constant, and m is the size
of the current set Q.

We will prove Lemma 4 in Section 4. With Lemmas 3 and 4, we can obtain the following
main result for our original dynamic UDRR problem.

▶ Theorem 5. We can maintain a set P of points in the plane in a data structure of
O(n log n) space to support insertions in O(log3+ϵ n) amortized time, deletions in O(log5+ϵ n)
amortized time, and unit-disk range reporting queries in O(k + log n) time, where k is the
output size, ϵ is an arbitrarily small positive constant, and n is the size of the current set P .

Proof. We build the data structure D in Lemma 3 to maintain a conforming coverage set C
of O(n) cells for P . For each cell C ∈ C that contains at least one point of P , we maintain
a data structure De(C) for P (C) with respect to the supporting line of each edge e of C.
Since the space of each De(C) is O(|P (C)| log |P (C)|), each cell of C has four edges, and∑

C∈C |P (C)| = n, the total space of the overall data structure is O(n log n).
Insertions. To insert a point p to P , we first update D by Lemma 3, which takes O(log n)
worst-case time. The insertion algorithm of Lemma 3 eventually inserts p to P (C) for a cell
C ∈ C that contains p. We insert p to De(C) for each edge e of C, which takes O(log3+ϵ n)
amortized time by Lemma 4. As such, each insertion takes O(log3+ϵ n) amortized time.
Deletions. To delete a point p from P , we first update D by Lemma 3, which takes O(log n)
amortized time. The deletion algorithm of Lemma 3 eventually deletes p from P (C) for a cell
C ∈ C that contains p. We delete p from De(C) for each edge e of C, which takes O(log5+ϵ n)
amortized time by Lemma 4. As such, each deletion takes O(log5+ϵ n) amortized time.
Queries. Given a query unit disk Dq with center q, we first check whether q is in a cell of
C, and if so, find such a cell; this takes O(log n) time by Lemma 3. If no cell of C contains q,
then P ∩ Dq = ∅ and we simply return null. Otherwise, let C be the cell of C that contains
q. We first report all points of P (C). Next, for each C ′ ∈ N(C), by Definition 1(3), C and
C ′ are separated by an axis-parallel line ℓ. Since each edge of C and C ′ is axis-parallel, C ′

must have an edge e whose supporting line is parallel to ℓ and separates C and C ′. Using
De(C ′), we report all points of P (C ′) inside Dq. As |N(C)| = O(1), the total query time is
O(log n + k) by Lemma 4. ◀

4 Proving Lemma 4: Dynamic line-separable UDRR

We now prove Lemma 4. For notational convenience, instead of m, we use n to denote the
size of Q.

Consider a query unit disk Dq with center q below ℓ. The goal is to report Q(Dq).
Observe that a point p ∈ Q is in Dq if and only if q is in the unit disk Dp. The portion
of ∂Dp below ℓ is a circular arc, denoted by γp. Since p is above ℓ, γp is on the lower half
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circle of ∂Dp and thus is x-monotone. As such, p is in Dq if and only if q is above the arc γp.
Define Γ to be the set of arcs γp for all points p ∈ Q. Therefore, reporting the points of Q in
Dq becomes reporting the arcs of Γ that are below q, which we call arcs reporting queries.

In what follows, an arc of Γ always refers to the portion below ℓ of a unit circle with
center above ℓ. Our problem thus becomes dynamically maintaining a set Γ of arcs to report
the arcs of Γ below a query point q. The arcs reporting queries can be reduced to the
following k-lowest-arcs queries: Given a query vertical line ℓ∗ and a number k ≥ 1, report
the k lowest arcs of Γ intersecting ℓ∗. We have the following observation, which follows the
proof of Chan [7] for lines.

▶ Observation 6 ( [7]). Suppose that we can answer each k-lowest-arcs query in O(log n + k)
time. Then, the arcs of Γ below a query point q can be reported in O(log n + k) time, where
k is the output size.

In light of the above observation, we now focus on the k-lowest-arcs queries. We adapt a
technique for a similar problem on lines (which is the dual problem of the dynamic halfplane
range reporting problem): Dynamically maintain a set of lines (subject to insertions and
deletions) to report the k-lowest lines at a query vertical line. For this problem, Chan [10] gave
a data structure of O(n log n) space that supports O(log6+ϵ n) amortized update time and
O(k + log n) query time. De Berg and Staals [6] improved the result of [10] for dynamically
maintaining a set of planes in 3D. They gave a data structure of O(n log n) space that
supports O(log3+ϵ n) amortized insertion time, O(log5+ϵ n) amortized deletion time, and
O(log2 n/ log log n+k) query time. Their approach is based on the techniques for dynamically
maintaining planes for answering lowest point queries [9, 11, 23] and these techniques in turn
replies on computing shallow cuttings on the planes in 3D [13]. In the following, we will
extend these techniques to the arcs of Γ and prove the following result.

▶ Lemma 7. For the set Γ of arcs, we can have a data structure of O(n log n) space to
support insertions in O(log3+ϵ n) amortized time, deletions in O(log5+ϵ n) amortized time,
and k-lowest-arcs queries in O(k + log n) time, where n is the size of the current set Γ.

Combining Lemma 7 and Observation 6 immediately leads to Lemma 4.
In what follows, we first develop a shallow cutting algorithm for arcs of Γ in Section 4.1

and then using the algorithm to prove Lemma 7 in Section 4.2.

4.1 Shallow cuttings
Without loss of generality, we assume that ℓ is the x-axis. Let R− (resp., R+) be the
half-plane below (resp., above) ℓ. Note that each arc of Γ is x-monotone, every arc has both
endpoints on ℓ, and every two arcs cross each other at most once.

We use R+-constrained unit disk to refer to a unit disk with center in R+ and use
R+-constrained arc to refer to a portion of the arc C ∩ R− for a unit circle C with center
in R+. For any point q ∈ R−, let ρ(q) to denote the vertical downward ray from q. We say
that an arc γ of Γ is below q if it intersects ρ(q). As the center of γ is in R+ and ρq ∈ R−, γ

intersects ρq at most once.
For a parameter r ≤ n and a region R of the plane, a (1/r)-cutting covering R for the

arcs of Γ is a set of interior-disjoint cells such that the union of all cells covers R and each
cell intersects at most n/r arcs of Γ. For each cell ∆, its conflict list Γ∆ is the set of arcs of
Γ that intersect ∆. The size of the cutting is the number of its cells.
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For a point p ∈ R−, the level of p in Γ is the number of arcs of Γ below p. For any integer
k ∈ [1, n], the (≤ k)-level of Γ, denoted by L≤k(Γ), is defined as the region consisting of all
points of R− with level at most k. Given parameters r, k ∈ [1, n], a k-shallow (1/r)-cutting
is a (1/r)-cutting for Γ that covers L≤k(Γ).

We use pseudo-trapezoid to refer to a region that has two vertical line segments as left
and right edges, an R+-constrained arc or a line segment on ℓ as a top edge, and an R+-
constrained arc as a bottom edge. In particular, if a pseudo-trapezoid does not have a bottom
edge, i.e., the bottom side is unbounded, then we call it a bottom-open pseudo-trapezoid.

We say that a shallow cutting is in the bottom-open pseudo-trapezoid form if every cell of
it is a bottom-open pseudo-trapezoid. Our main result about the shallow cuttings for Γ is
given in the following theorem.

▶ Theorem 8. There exist constants B, C, and C ′, such that for a parameter k ∈ [1, n], we
can compute a (Bik)-shallow (CBik/n)-cutting of size at most C ′ n

Bik in the bottom-open
pseudo-trapezoid form, along with conflict lists of all its cells, for all i = 0, 1, . . . , logB

n
k ,

in O(n log n
k ) total time. In particular, we can compute a k-shallow (Ck/n)-cutting of size

O(n/k), along with its conflict lists, in O(n log n
k ) time.

Since the proof of Theorem 8 is technical and lengthy (and is one of our main results in
this paper), we devote the entire Section 5 to it.

4.2 Proving Lemma 7

We now prove Lemma 7. With the shallow cutting algorithm in Theorem 8, we generalize the
techniques of [6, 10] for lines to the arcs of Γ. We first give two deletion-only data structures,
which will be needed in our fully dynamic data structure for Lemma 7.

4.2.1 Deletion-only data structure

Our first deletion-only data structure is given in Lemma 9 (see the full paper for the proof).

▶ Lemma 9. There is a data structure of O(n) size to maintain a set Γ of n arcs to support
O(log n) amortized time deletions and O(

√
n logO(1) n + k) time k-lowest-arcs queries. If a

set Γ of n arcs is given initially, the data structure can be constructed in O(n log n) time.

We have the following lemma for another deletion-only data structure, obtained by
following the same algorithmic scheme as [6, Lemma 6] and replacing their shallow cutting
algorithm for lines with our shallow cutting algorithm for arcs of Γ in Theorem 8.

▶ Lemma 10. [6, Lemma 6] For any fixed r, there is a data structure of O(n log r) size to
maintain a set Γ of n arcs to support O(r log n) amortized time deletions and O(log r+n/r+k)
time k-lowest-arcs queries. If a set Γ of n arcs is given initially, the data structure can be
constructed in O(n log n) time.

4.2.2 Fully-dynamic data structure for Lemma 7

With the two deletion-only data structures in Lemmas 9 and 10, we are now in a position to
describe our fully dynamic data structure for Lemma 7.
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Overview. To achieve our result in Lemma 7, roughly speaking, we can simply plug our
shallow cutting algorithm for Γ in Theorem 8 and Lemma 9 into the algorithmic scheme
of [6] or [10]. The algorithms of [6] and [10] are similar. For the method of [10], we can
just replace their shallow cutting algorithm for lines [13] with our shallow cutting algorithm
for Γ in Theorem 8 and replace their deletion-only data structure [24] with a combination
of Lemmas 9 and 10. In addition, a general technique of querying multiple structures
simultaneously from [6, Theorem 1] is also needed. For the method of [6], it was described
for the plane problem in 3D with a query time O(log2 n/ log log n + k). We can follow the
same algorithmic scheme but using our shallow cutting algorithm for Γ in Theorem 8 and
Lemma 9 in the corresponding places. In addition, since our problem is a 2D problem, the
technique of dynamic interval trees in [13] can be used to reduce the query time component
from O(log2 n/ log log n) to O(log n). In the following, we adapt the method from Chan [10].

The data structure is an adaptation of the one for dynamic 3D convex hulls [9, 11, 23]
(the idea was originally given in [9] and subsequent improvements were made in [11,23]). We
first give the following lemma. The lemma is similar to [10, Theorem 3.1], which is based on
the result in [9], but Lemma 11 provides slightly better complexities than [10, Theorem 3.1]
by using the recently improved result of [11] (see the full paper for more details).

▶ Lemma 11 ([9–11,23]). Let Γ be a set of arcs, which initially is ∅ and undergoes n updates
(insertions and deletions). For any b ≥ 2, we can maintain a collection of shallow cuttings
T j

i in the bottom-open pseudo-trapezoid form, i = 1, 2, . . . , ⌈log n⌉, j = 1, 2, . . . , O(logb n), in
bO(1) log5 n amortized time per update such that the following properties hold.
1. Each cutting T j

i is of size O(2i) and never changes until it is replaced by a new one
created from scratch. The total size of all cuttings created over time is bO(1) log3 n.

2. Each cell ∆ ∈ T j
i is associated with a list L∆ of O(n/2i) arcs of Γ. Each list L∆

undergoes deletions only after its creation. The total size of all such lists created over
time is bO(1)n log4 n.

3. For any k ≥ 1, let ik = ⌈log(n/Ck)⌉ for a sufficiently large constant C. For any vertical
line ℓ∗, if an arc γ ∈ Γ is among the k lowest arcs at ℓ∗, then there exists some j such
that γ is in the list L∆j of the cell ∆j ∈ T j

ik
intersecting ℓ∗.

4. At any moment, for each i, the number of cells of the current cuttings T j
i for all j is

O(2i). This implies that the total size of the lists L∆ of all cells ∆ of all current cuttings
T j

i at any moment is O(n log n).

With Lemma 11, we can answer a k-lowest-arcs query as follows. Consider a query
vertical line ℓ∗. By Lemma 11(3), for each j, we compute the cell ∆j of T j

ik
intersecting ℓ∗,

which takes O(log n) time by binary search as the x-projections of T j
ik

partition the x-axis
into intervals. Then, we use “brute-force” to find the k lowest arcs among all arcs in L∆j in
O(k) time as |L∆j | = O(k). Finally, among all arcs found above, we return the k lowest arcs,
which takes O(k logb n) time. As such, the total query time is O((log n + k) logb n).

An improved query algorithm. We now improve the query time. We store each list L∆
by a deletion-only data structure that supports k-lowest-arcs queries. Suppose that such
a deletion-only data structure is of space S0(|L∆|), supports each k-lowest-arcs query in
O(Q0(|L∆|) + k) time and D0(|L∆|) deletion time, and can be built in O(P0(|L∆|)) time.
Then, by Lemma 11(2), each update causes at most bO(1) log4 n amortized number of deletions
to the lists L∆, and thus the amortized update time is

U(n) = bO(1) log5 n + max
∆∈T j

i

D0(|L∆|) · bO(1) log4 n + P0(bO(1)n log4 n)/n. (1)
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Note that the last term is obtained due to the following. After every n updates, we reconstruct
the entire data structure and thus the reconstruction time is on the order of

∑
∆∈T j

i
P0(|L∆|),

which is bounded by P0(bO(1)n log4 n) since
∑

∆∈T j
i

|L∆| = bO(1)n log4 n by Lemma 11(2)
(assuming that P0(n) = Ω(n)).

By Lemma 11(4), the total space is

S(n) = O

(log n∑
i=1

2i · S0(n/2i)
)

. (2)

For each query, there are two tasks: (1) Compute the cell ∆j for every j; (2) find the k

lowest arcs of all lists L∆j for all j. In the following, we solve the first task in O(log n+logb n)
time and solve the second task in O(log n + k) time.

For the first task, following the method in [10], for each i, we use a dynamic interval
tree [5] to store the intervals of the x-projections of the cuttings T j

i for all j in an interval
tree Ti. Using Ti, all t intervals intersecting ℓ∗ can be computed in O(log n + t) time. In
our problem, t = O(logb n). Insertions and deletions of intervals on Ti can be supported in
O(log n) amortized time. We can thus maintain all interval trees Ti in additional amortized
log n · bO(1) log3 n time per update as the total size of all cuttings over time is bO(1) log3 n by
Lemma 11(1). This additional update time is subsumed by the first term in (1). In this way,
the first task can be solved in O(log n + logb n) time.

For the second task, instead of brute-force, we use the deletion-only data structures for
the lists L∆j and resort to a technique of querying multiple k-lowest-arcs data structures
simultaneously in [6, Theorem 1], which is based on an adaption of the heap selection
algorithm of Frederickson [22]. Applying [6, Theorem 1], the second task can be accomplished
in O(k + logb n · maxj Q0(|L∆j |)) time, which is O(k + logb n · Q0(O(k))) since the size of
each |L∆j | is O(k).

Combining the complexities of the first and second tasks, the overall query time is

Q(n) = O(log n + logb n + k) + Q0(O(k)) · logb n. (3)

Let m = |L∆|. Depending on m, we use different deletion-only data structures for L∆.
1. If m ≥ log3 n, then we use Lemma 9 to handle L∆ with P0(m) = O(m log m), S0(m) =

O(m), D0(m) = O(log m), Q0(m) = m1/2 logO(1) m. Plugging them into (1), (2), and
(3) and setting b = logϵ n, we obtain U(n) = O(log5+ϵ n), S(n) = O(n log n), and
Q(n) = O(log n + k + k1/2 logO(1) k · log n/ log log n). Since m = O(k), we have k = Ω(m).
As m ≥ log3 n, we have k = Ω(log3 n). Therefore, Q(n) = O(log n + k).

2. If m < log3 n, then we use Lemma 10 to handle L∆ by setting r = log n/ log log n. This re-
sults in P0(m) = O(m log m), S0(m) = O(m log log n), D0(m) = O(log n log m/ log log n),
Q0(m) = O(log log n + m log log n/ log n). Since m < log3 m, we have D0(m) = O(log n).
Plugging them into (1) and (3) and setting b = logϵ n, we obtain U(n) = O(log5+ϵ n) and
Q(n) = O(log n+k +(log log n+k log log n/ log n) · log n/ log log n), which is O(log n+k).
For the space, since m < log3 n, if we plug S0(m) = O(m log log n) into (2), we only
need to consider those i’s such that n/2i < log3 n. There are only O(log log n) such i’s.
Therefore, we obtain S(n) = O(n log2 log n) for all such m’s in this case.

Combining the above two cases leads to U(n) = O(log5+ϵ n), S(n) = O(n log n), and
Q(n) = O(log n + k). We can actually obtain a better bound for the insertion time. If P ′(n)
is the preprocessing time for constructing the data structure for a set of n arcs, then the
amortized insertion time I(n) is bounded by I(n) = O(b logb n · P ′(n)/n) [6, 11]. According
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` x

q

q′

Figure 1 Illustration the boundary of Hℓ(Q), where Q is the set of points below the x-axis ℓ.
It consists of three (blue) dashed horizontal line segments of y-coordinates −1, four (red) dotted
R+-constrained arcs with centers on ℓ, and four other solid R+-constrained arcs. The region below
the boundary is Hℓ(Q).

to our above discussion and Lemma 11(4), constructing the deletion-only data structures
for all lists L∆ is O(n log2 n). The shallow cuttings in Lemma 11 can be built in O(n log2 n)
following the method in [11] and using our shallow cutting algorithm in Theorem 8. In this
way, we can bound the amortized insertion time by O(b logb n log2 n), which is O(log3+ϵ n)
with b = logϵ n. This proves Lemma 7.

5 Algorithm for shallow cuttings

In this section, we prove Theorem 8. We follow the notation in Section 4.1.
As in [13], we use parameter K = n/r instead of r. A k-shallow (1/r)-cutting becomes a k-

shallow (K/n)-cutting and we use a (k, K)-shallow cutting to represent it. It has the following
properties: (1) |Γ∆| ≤ K for each cell ∆; (2) the union of all cells covers L≤k(Γ). Theorem 8
says that a (k, O(k))-shallow cutting of size O(n/k) in the bottom-open pseudo-trapezoid
form can be computed in O(n log n

k ) time.
Following the analysis of Matoušek [25], we start with the following lemma (see the full

paper for the proof), which shows the existence of the shallow cutting in the pseudo-trapezoid
form, i.e., each cell is a pseudo-trapezoid but not necessarily bottom-open.

▶ Lemma 12. For any k ∈ [1, n], there exists a (k, O(k))-shallow cutting of size O(n/k) in
the pseudo-trapezoid form.

Chan and Tsakalidis [13] introduced a vertex form of the shallow cutting for lines. Here
for arcs of Γ, using vertices is not sufficient. We will introduce a vertex-segment form in
Section 5.2. The definition requires a concept, which we call line-separated α-hulls and is
discussed in Section 5.1. In Section 5.3, we present our algorithm to compute shallow cuttings
in the vertex-segment form.

5.1 Line-separated α-hulls
The line-separated α-hull is an extension of the α-hull introduced in [21]. In [21], α-hull is
considered for all values α ∈ (−∞, ∞). For our problem, we only consider the value α = −1.

Let Q be a set of points in R−. We define the line-separated α-hull Hℓ(Q) of Q with
respect to the x-axis ℓ as the complement of the union of all unit disks with centers in R+

that do not contain any point of Q (so the disk centers and the points of Q are separated by
ℓ, which is why we use “line-separated”; see Fig. 1).

Many of the properties of the α-hulls [21] can be extended to the line-separated case. We
list some of these in the following observation; the proof is a straightforward extension of
that in [21] by adding the “line-separated” constraint.
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` x

q

p p′

a

Figure 2 Illustration the wings of the a point
q. The two (red) dotted curves are wing arcs and
the two (blue) dashed segments are wing half-
lines. p and p′ are the left and right wing vertices,
respectively.

` x

q

q′
p p′

Figure 3 Illustration two points q and q′ that
are in far-away position. The two (red) dotted
arcs and the (blue) dashed segments in between
constitute β(q, q′).

▶ Observation 13.
1. Q ⊆ Hℓ(Q), and for any subset Q′ ⊆ Q, Hℓ(Q′) ⊆ Hℓ(Q).
2. A point q ∈ Q is a vertex of Hℓ(Q) if and only if there exists a unit disk with center in

R+ and its boundary containing q such that the interior of the disk does not contain any
point of Q.

3. If there is an R+-constrained arc connecting two points of Q such that the interior of the
underlying disk of the arc does not contain any point of Q, then the arc is an edge of
Hℓ(Q).

For any two points q, q′ ∈ R− that can be covered by a R+-constrained unit disk, there
exists a unique R+-constrained arc that connects q and q′; we use γ(q, q′) to denote that arc.

5.1.1 Algorithm for computing Hℓ(Q)
By slightly modifying the algorithm of [21], Hℓ(Q) can be computed in O(m log m) time,
where m = |Q|. The algorithm also suggests that ∂Hℓ(Q) is x-monotone. In the following,
assuming that the points of Q are already sorted from left to right as q1, q2, . . . , qm, we give
a linear time algorithm to compute Hℓ(Q), which is similar in spirit to Graham’s scan for
computing convex hulls.

Irrelevant points. Note that if a point q ∈ Q whose y-coordinate is smaller than or equal
to −1, then q must be in Hℓ(Q) because every R+-constrained disk does not contain q in the
interior. Hence, in that case q is irrelevant for computing Hℓ(Q) and thus can be ignored.
If all points of Q are irrelevant, then Hℓ(Q) is simply the region below the horizontal line
whose y-coordinate is −1. In the following, we assume that every point of Q is relevant.

Wings. Consider a point q ∈ Q. Let a be a point on the x-axis ℓ with x(a) < x(q) such
that q is on the unit circle Ca centered at a. Let p be the lowest point of Ca. We define the
left wing of q to be the concatenation of the following two parts (see Fig. 2): (1) the arc of
Ca ∩ R− between q and p, called the left wing arc, and the horizontal half-line with p as
the right endpoint, called the left wing half-line. The point p is called the left wing vertex
of q. We define the right wing of q and the corresponding concepts symmetrically. The left
and right wings together actually form the boundary of the line-separated α-hull of {q}. In
Fig. 1, the four (red) dotted arcs are wing arcs and the three (blue) dashed segments are on
wing half-lines.

Far-away position. Consider two points q, q′ ∈ R− such that x(q) < x(q′). We say that
(q, q′) are in far-away position if x(p) < x(p′) holds, where p is the right wing vertex of q

and p′ is the left wing vertex of q′ (see Fig. 3). In this case, q′ is above the right wing of q
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and there is no R+-constrained unit disk covering both q and q′. We use β(q, q′) to denote
the concatenation of the right wing arc of q, the segment pp′, and the left wing arc of q′. In
fact, the left wing of q, β(q, q′), and the right wing of q′ together form the boundary of the
line-separated α-hull of {q, q′}. In Fig. 1, q and q′ are also in far-away position.

The algorithm. Define Qi = {q1, . . . , qi} for each 1 ≤ i ≤ m. Our algorithm handles the
points of Q incrementally from q1 to qm. For each qi, the algorithm computes Hℓ(Qi) by
updating Hℓ(Qi−1) with qi. Suppose that qi1 , qi2 , . . . , qit

are the points of Qi that are the
vertices of Hℓ(Qi) sorted from left to right. Then, our algorithm maintains the following
invariant: the boundary ∂Hℓ(Qi) is x-monotone and consists of the following parts from left
to right: the left wing of qi1 , γ(qij

, qij+1) or β(qij
, qij+1), for each j = 1, 2, . . . , t − 1 in order,

and the right wing of qit . Hℓ(Qi) is the region below ∂Hℓ(Qi).
Initially, for q1, we set ∂Hℓ(Q1) to the concatenation of the left wing and the right wing

of q1. In general, suppose we already have ∂Hℓ(Qi−1). We compute ∂Hℓ(Qi) as follows. We
process the points of qi1 , qi2 , . . . , qit

in the backward order. For ease of exposition, we assume
that t > 1; the special case t = 1 can be easily handled.

We first process the point qit
. If qit

and qi are in the far-away position, then we delete
the right wing of qit from Hℓ(Qi−1) and add β(qit , qi) and the right wing of qi. This finishes
computing Hℓ(Qi). Below, we assume that qit

and qi are not in the far-away position.
If qi is below the right wing of qit

, then qi is inside Hℓ(Qi−1). In this case, Hℓ(Qi) is
Hℓ(Qi−1) and we are done. If qi is above the right wing of qit

, then we further check whether
the arc γ(qit , qi) exists (which is true if and only if there exists an R+-constrained unit disk
covering both qit

and qi).
If γ(qit

, qi) does not exist (in this case qit
must be below the left wing of qi and thus qit

does not contribute to Hℓ(Qi) because it is “dominated” by qi), then we “prune” qit from
∂Hℓ(Qi−1), i.e., delete the right wing of qit

and also delete γ(qit−1 , qit
) or β(qit−1 , qit

)
whichever exists in Hℓ(Qi−1). Next, we process qit−1 following the same algorithm.
If γ(qit

, qi) exists, then we further check whether D contains qit−1 , where D is the
underlying disk of γ(qit , qi). If qit−1 ∈ D, then qit must be in Hℓ({qit−1 , qi}) and thus
does not contribute to Hℓ(Qi). In this case, we prune qit

as above and continue processing
qit−1 . If qit−1 ̸∈ D, we delete the right wing of qit from ∂Hℓ(Qi−1) and add the arc
γ(qit

, qi) and the right wing of qi; this finishes computing Hℓ(Qi).

Clearly, the runtime for computing Hℓ(Qi) is O(1 + t′), where t′ is the number of points
of qi1 , qi2 , . . . , qit pruned from Hℓ(Qi−1). The overall algorithm for computing Hℓ(Q) takes
O(m) time since once a point is pruned it will never appear on the hull again, which resembles
Graham’s scan for computing convex hulls.

5.1.2 Vertical decompositions

According to the above discussion, Hℓ(Q) has at most 5m vertices with m = |Q|, including
all wing vertices. The vertical downward rays from all vertices partition Hℓ(Q) into at
most 5m bottom-open pseudo-trapezoids and rectangles. We call this partition the vertical
decomposition of Hℓ(Q), denoted by VD(Q).

In our later discussion, we need to combine Q with a set S of pairwise disjoint segments
on ℓ whose endpoints are all in Q. For each segment s ∈ S, we draw a vertical downward ray
from each endpoint of s; let R(s) denote the bottom-open rectangular region bounded by
the two rays and s. The regions R(s) for all segments s ∈ S form the vertical decomposition
of S, denoted by VD(S).
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We combine VD(Q) and VD(S) to form a vertical decomposition of (Q, S), denoted by
VD(Q ∪ S) as follows. Let U be the upper envelope of Hℓ(Q) and S. We draw a vertical
downward ray from each vertex of v of U . These rays divide the region below U into cells,
each of which is bounded by two vertical rays from left and right, and bounded from above
by a line segment or an R+-constrained arc. These cells together form the decomposition
VD(Q ∪ S). In the following, depending on the context, VD(Q) may refer to the region
covered by all cells of it; the same applies to VD(S) and VD(Q ∪ S). As such, we have
VD(Q ∪ S) = VD(Q) ∪ VD(S). Note that since the endpoints of all segments of S are in Q

and on ℓ, the boundary ∂VD(Q ∪ S) is x-monotone.

5.2 Shallow cuttings in the vertex-segment form
We introduce a vertex-segment form of the shallow cutting. Given parameters k, K ∈ [1, n]
with k ≤ K, a (k, K)-shallow cutting for the arcs of Γ in the vertex-segment form is a set Q

of points in R− along with a set S of interior pairwise-disjoint segments on ℓ such that the
following conditions hold:
1. The endpoints of all segments of S are in Q.
2. Every point of Q has level at most K in Γ.
3. Every segment of S intersects at most K arcs of Γ.
4. VD(Q ∪ S) covers L≤k(Γ).
The conflict list of a point q ∈ Q, denoted by Γq, is the set of arcs of Γ below q. Note that
|Γq| ≤ K as the level of q is at most K. The conflict list of a segment s ∈ S, denoted by
Γs, is the set of arcs intersecting s. The conflict lists of (Q, S) refer to the conflict lists of
all points of Q and all segments of S. The size of the cutting is defined to be |Q|. Observe
that since the endpoints of all segments of S are in Q and the segments of S are interior
pairwise-disjoint, we have |S| < |Q|. Therefore, VD(Q ∪ S) has O(|Q|) cells, and more
specifically, at most 5|Q| cells. Further, we have following observation.

▶ Observation 14. Suppose that (Q, S) is a (k, K)-shallow cutting for Γ in the vertex-segment
form. Then every cell of VD(Q ∪ S) intersects at most 3K arcs of Γ.

Proof. Consider a cell ∆ of VD(Q ∪ S). Let e be the top edge of ∆. By the definition of
VD(Q ∪ S), e is one of the following: a segment of S, an arc γ(q, q′) for two points q, q′ ∈ Q,
a wing arc of a point q ∈ Q, and a segment of a wing half-line of a point q ∈ Q. Below, we
argue |Γ∆| ≤ 3K for each of these cases, where Γ∆ is the set of arcs of Γ intersecting ∆.

1. If e a segment of S, then recall that |Γe| ≤ K. Also, the size of the conflict list of each
endpoint of e is at most K. For any arc γ ∈ Γ intersecting ∆, since the center of γ is in
R+, γ must either intersect e or in the conflict list of at least one endpoint of e. Therefore,
|Γ∆| ≤ 3K holds.

2. If e is an arc γ(q, q′) for two points q, q′ ∈ Q, then any arc γ ∈ Γ intersecting ∆ must be
in the conflict list of one of q and q′. Hence, we have |Γ∆| ≤ 2K.

3. If e is a wing arc γ of a point q ∈ Q, then q is an endpoint of γ. Let p be the other
endpoint of γ. By definition, the y-coordinate of p is −1. Thus, no arc of Γ is below
p. By definition, the radius of γ is 1 and the center of γ is on ℓ. Hence, any arc of Γ
intersecting ∆ must be in the conflict list of q and thus |Γ∆| ≤ |Γq| ≤ K.

4. If e is a segment s of a wing half-line of a point q ∈ Q, then by definition e is horizontal
and has y-coordinate equal to −1. As centers of all arcs of Γ are in R+, no arc of Γ can
intersect ∆. Hence, |Γ∆| = 0.

Combining all the above cases leads to |Γ∆| ≤ 3K. ◀
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In the next two lemmas, we show that shallow cuttings in the vertex-segment form and
in the pseudo-trapezoid form can be transformed to each other.

▶ Lemma 15. A (k, K)-shallow cutting of size t in the pseudo-trapezoid form can be
transformed into a (k, k + K)-shallow cutting in the vertex-segment form of size O(t).

Proof. Let Ξ be a (k, K)-shallow cutting of size t in the pseudo-trapezoid form. Without
loss of generality, we assume that all cells of Ξ intersect L≤k(Γ). Define Q to be the set of
vertices of all cells of Ξ. Define S to be the top edges of all cells of Ξ that are segments of
ℓ. Since the interiors of cells of Ξ are pairwise disjoint, the segments of S are also interior
pairwise-disjoint. As Ξ has t cells, we have |Q| = O(t). In the following, we argue that (Q, S)
is a (k, k + K)-shallow cutting in the vertex-segment form.

First of all, by definition, endpoints of all segments of S are in Q. Consider a point q ∈ Q,
which is a vertex of a cell ∆ ∈ Ξ. As ∆ intersects L≤k(Γ) and |Γ∆| ≤ K, there are at most
k + K arcs of Γ below q. Hence, q has level at most k + K in Γ. For each segment s ∈ S,
since it is a top edge of a cell ∆ ∈ Ξ and |Γ∆| ≤ K, we obtain |Γs| ≤ K.

It remains to argue that VD(Q ∪ S) covers L≤k(Γ). By definition, the union of all cells
of Ξ covers L≤k(Γ). Consider a cell ∆ ∈ Ξ, which is a pseudo-trapezoid. We show that
∆ ⊆ VD(Q ∪ S), which will prove that VD(Q ∪ S) covers L≤k(Γ).

Let e be the top edge of ∆. As ∆ is a pseudo-trapezoid, e is either a segment on ℓ or
an R+-constrained arc. If e is a segment of ℓ, then e ∈ S and thus ∆ is a cell of VD(S).
Hence, ∆ ⊆ VD(S) ⊆ VD(Q ∪ S). If e is an R+-constrained arc, then let q1 and q2 be its
two endpoints; thus e is the arc γ(q1, q2). Since ∆ is a pseudo-trapezoid with γ(q1, q2) as the
top edge, ∆ must be contained in the line-separated α-hull Hℓ({q1, q2}), which is a subset of
Hℓ(Q) by Observation 13(1) as q1, q2 ∈ Q. Recall that VD(Q) is the vertical decomposition
of Hℓ(Q). Hence, we have ∆ ⊆ VD(Q) ⊆ VD(Q ∪ S).

This proves ∆ ⊆ VD(Q ∪ S) and therefore VD(Q ∪ S) covers L≤k(Γ). ◀

▶ Lemma 16. A (k, K)-shallow cutting of size t in the vertex-segment form can be transformed
into a (k, 3K)-shallow cutting of size O(t) in the bottom-open pseudo-trapezoid form.

Proof. Let (Q, S) be a (k, K)-shallow cutting of size t in the vertex-segment form. We intend
to take the vertical decomposition VD(Q, S) as the (k, 3K)-shallow cutting Ξ of size O(t)
in the bottom-open pseudo-trapezoid form. However, a subtle issue is that some cells of
VD(Q, S) might not be pseudo-trapezoids. More specifically, consider a cell ∆ ∈ VD(Q, S).
Let e be the top edge of ∆. According to the definition of VD(Q, S), e belongs to one of the
three cases: (1) e is an R+-constrained arc; (2) e is a segment of ℓ; (3) e is a segment of a
wing half-line of a point of Q. In the first two cases, ∆ is a bottom-open pseudo-trapezoid
and we include ∆ in Ξ. In the third case, ∆ is not a pseudo-trapezoid by our definition since
e is a line segment but not on ℓ. In this case, we extend ∆ by moving e upwards until ℓ to
obtain an extended cell ∆′, which is a bottom-open pseudo-trapezoid; we add ∆′ to Ξ. We
call ∆′ a special cell of Ξ.

We claim that Γ∆′ = ∅, i.e., ∆′ does not intersect any arcs of Γ. Indeed, let e′ be the
top edge of ∆′. Let R be the rectangular region of ∆′ between e and e′ (see Fig. 4). Then,
∆′ = ∆∪R. Consider any point p ∈ R. We argue that no arc of Γ is below p, which will prove
the claim. Assume to the contradiction that there is an arc γ ∈ Γ below p. Without loss of
generality, we assume that γ is the lowest arc of Γ intersecting the vertical downward ray
ρ(p). Let p′ be the intersection of γ and ρ(p). By definition, p′ ∈ L≤0(Γ). Since (Q, S) is a
(k, K)-shallow cutting, VD(Q, S) covers L≤k(Γ) and thus covers L≤0(Γ) as k ≥ 0. Therefore,
VD(Q, S) covers p′. On the other hand, since e is on a wing half-line of a point of Q, the
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Figure 4 Illustrating the proof of Γ∆′ = ∅, with ∆′ = R ∪ ∆, where R is the gray rectangle and
∆ is the region below e.

y-coordinate of e is −1 and thus no arcs of Γ intersect e. Hence, p′ must be above e. But
since e is the top edge of the cell ∆ ∈ VD(Q, S), p′ cannot be covered by VD(Q, S), a
contradiction. This proves that Γ∆′ = ∅.

Since |Q| = t, VD(Q ∪ S) has O(t) cells. By definition, the size of Ξ is O(t). We next
show that Ξ is a (k, 3K)-shallow cutting in the bottom-open pseudo-trapezoid form. First
of all, by definition, each cell of VD(Q, S) is a bottom-open pseudo-trapezoid. Also, since
VD(Q, S) covers L≤k(Γ) and each cell of VD(Q, S) is either in Ξ or contained in a cell of Ξ,
VD(Q, S) is a subset of Ξ. Therefore, Ξ covers L≤k(Γ). For each ∆ of Ξ, if it is a special
cell, then |Γ∆| = 0 as proved above; otherwise ∆ is also a cell in VD(Q, S) and we have
|Γ∆| ≤ 3K by Observation 14. Therefore, Ξ is a (k, 3K)-shallow cutting in the bottom-open
pseudo-trapezoid form. ◀

Combining Lemmas 12 and 15 leads to the following.

▶ Corollary 17. Given k ∈ [1, n], there exists a (k, O(k))-shallow cutting of size O(n/k) in
the vertex-segment form.

5.3 Computing shallow cuttings in the vertex-segment form
In what follows, by extending the algorithm of [13], we present an algorithm to compute
shallow cuttings for Γ in the vertex-segment form.

We say that a (standard) cutting is in the pseudo-trapezoid form if every cell of the
cutting is a pseudo-trapezoid. The following result was known previously [15,28].

▶ Lemma 18 ( [15,28]). Given any constant ϵ > 0, an ϵ-cutting for Γ in the pseudo-trapezoid
form of O(1) size covering the plane, along with its conflict lists, can be computed in O(n)
time.

We say that a shallow cutting (Q, S) in the vertex-segment form is sorted if points of Q

are sorted by their x-coordinates. The following is the main theorem about our algorithm.

▶ Theorem 19. There exist constants B, C, C ′, such that for any parameter k ∈ [1, n],
given a (Bk, CBk)-shallow cutting (QIN, SIN) in the sorted vertex-segment form for Γ of
size at most C ′ n

Bk along with its conflict lists, we can compute a (k, Ck)-shallow cutting
(QOUT, SOUT) in the sorted vertex-segment form for Γ of size at most C ′ n

k along with its
conflict lists in O(n) time.
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Proof. Let ϵ be a constant to be set later. We begin by computing the decomposition
VD(QIN, SIN). Since QIN is sorted, Hℓ(QIN) can be computed in O(|QIN|) time using the
algorithm from Section 5.1. As the endpoints of all segments of SIN are in QIN and segments
of SIN are interior pairwise-disjoint on ℓ, the segments of SIN can also be sorted from left
to right in O(|QIN|) time. As such, computing VD(QIN, SIN) can be done in O(|QIN|) time,
which is O(n/k) as |QIN| ≤ C ′ n

Bk .
Next, for each cell ∆ ∈ VD(QIN, SIN), we perform the following two steps.

1. Compute an ϵ-cutting Ξ∆ of size O(1) for Γ∆. We clip the cells of Ξ∆ to lie within ∆
(and redecompose each new cell into pseudo-trapezoids if needed). Let Q∆ denote the
set of vertices of all cells of Ξ∆ and S∆ the set of top edges of the cells of Ξ∆ that are
segments of ℓ.
Since ϵ = O(1), Ξ∆ has O(1) cells and computing Ξ∆ takes O(|Γ∆|) time by Lemma 18.
Hence, both |Q∆| and |S∆| are O(1). As

∑
∆∈VD(QIN,SIN) |Γ∆| = O(n), the total time of

this step for all cells ∆ ∈ VD(QIN, SIN) is O(n).
2. Compute by brute force a smallest subset Q′

∆ ⊆ Q∆, along with a subset S′
∆ ⊆ S∆, such

that the following conditions are satisfied.
a. The endpoints of all segments of S′

∆ are in Q′
∆.

b. Every vertex in Q′
∆ has level in Γ∆ at most Ck.

c. Every segment in S′
∆ intersects at most Ck arcs of Γ∆.

d. For each cell σ ∈ Ξ∆ whose vertices are all in L≤2k(Γ∆), σ is covered by VD(Q′
∆, S′

∆).
As both |Q∆| and |S∆| are O(1), there are O(1) different pairs of Q′

∆ and S′
∆. For each

such pair (Q′
∆, S′

∆), we can check whether the four conditions are satisfied in O(|Γ∆|)
time, because |Q′

∆|, |S′
∆|, and the size of Ξ∆ are all O(1). Hence, finding a smallest

subset Q′
∆ with S′

∆ takes O(|Γ∆|) time. After that, for each point q ∈ Q′
∆, its conflict

list in Γ∆, which is also its conflict list in Γ, can be found in O(|Γ∆|) time. Similarly,
for each segment of S′

∆, its conflict list can be found in O(|Γ∆|) time. As both |Q′
∆|

and |S′
∆| are O(1), finding the conflict lists of (Q′

∆, S′
∆) takes O(|Γ∆|) time. Since∑

∆∈VD(QIN,SIN) |Γ∆| = O(n), the runtime of this step for all ∆ ∈ VD(QIN, SIN) is O(n).

We define QOUT =
⋃

∆∈VD(QIN,SIN) Q′
∆ and SOUT =

⋃
∆∈VD(QIN,SIN) S′

∆. We can sort
the points of QOUT in O(n/k) time as follows. For each ∆ ∈ VD(QIN, SIN), we sort the
points of Q′

∆, which takes O(1) time as |Q′
∆| = O(1). Then, for all cells ∆ ∈ VD(QIN, SIN)

in order from left to right, we concatenate the sorted lists of Q′
∆, and the resulting list is a

sorted list of QOUT. This takes O(n/k) time in total as VD(QIN, SIN) has O(n/k) cells.
The total runtime of the above algorithm is O(n).

Correctness. In the following, we argue the correctness, i.e., prove that (QOUT, SOUT) is
a (k, Ck)-shallow cutting for Γ of size at most C ′ n

k . We first show that (QOUT, SOUT) is a
(k, Ck)-shallow cutting and then bound its size.

Consider a cell ∆ ∈ VD(QIN, SIN). For each point q ∈ Q′
∆, according to our algorithm, q

has level in Γ∆ at most Ck. In light of the definition of VD(QIN, SIN), ∆ is a bottom-open
cell bounded by two vertical rays. Hence, the level of q in Γ∆ is also its level in Γ. Therefore,
q has level in Γ at most Ck.

For each segment s ∈ S′
∆, by definition, s is a top edge of a cell ∆ ∈ VD(QIN, SIN).

According to our algorithm, s intersects at most Ck arcs of Γ∆. Since s ⊆ ∆, any arc of Γ
intersecting s must intersect ∆ and thus is in Γ∆. Therefore, s intersects at most Ck arcs of
Γ. In addition, according to our algorithm, the endpoints of s are in Q′

∆.
To show that (QOUT, SOUT) is a (k, Ck)-shallow cutting, it remains to prove that

VD(QOUT, SOUT) covers L≤k(Γ). Consider a point p ∈ L≤k(Γ). By definition, VD(QIN, SIN)
covers L≤Bk(Γ). By setting B > 1, VD(QIN, SIN) covers L≤k(Γ) and thus p must be in a
cell ∆ of VD(QIN, SIN). In the following, we argue that p is covered by VD(Q′

∆ ∪ S′
∆), which

will prove that VD(QOUT, SOUT) covers L≤k(Γ).
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Let σ be the cell of the cutting Ξ∆ that contains p. Since p has level in Γ∆ at most k

and the number of arcs of Γ∆ intersecting σ is at most ϵ · |Γ∆|, every vertex of σ has level
at most k + ϵ · |Γ∆|. Because the size of the conflict list of each point of QIN is at most
CBk, |Γ∆| ≤ 3CBk by Observation 14. Therefore, k + ϵ · |Γ∆| ≤ 2k by setting the constant
ϵ = 1/(3CB). Hence, all vertices of σ are in L≤2k(Γ∆) and thus σ is covered by VD(Q′

∆ ∪S′
∆)

according to our algorithm. As p ∈ σ, we obtain that p is covered by VD(Q′
∆ ∪ S′

∆).

Bounding the size of VD(QOUT, SOUT), i.e., |QOUT|. We now prove |QOUT| ≤ C ′n/k. To
this end, we compare it against a (5k, 5c0k)-shallow cutting (Q∗, S∗) of size at most c′

0n/(5k)
for some constant c′

0, whose existence is guaranteed by Corollary 17. The details can be
found in the full paper. This proves the theorem. ◀

▶ Corollary 20. There exist constants B, C, and C ′, such that for any parameter k ∈ [1, n],
we can compute a (Bik, CBik)-shallow cutting in the sorted vertex-segment form of size
at most C ′ n

Bik , along with its conflict lists, for all i = 0, 1, . . . , logB
n
k in O(n log n

k ) total
time. In particular, we can compute a (k, Ck)-shallow cutting of size O(n/k) in the sorted
vertex-segment form, along with its conflict lists, in O(n log n

k ) time.

Proof. By Theorem 19, the runtime T (n, k) satisfies the recurrence T (n, k) = T (n, Bk)+O(n)
with the trivial base case T (n, n) = O(n). The recurrence solves to T (n, k) = O(n log n

k ). ◀

Proving Theorem 8. We first apply Corollary 20 to compute the shallow cuttings in the
sorted vertex-segment form. Then, we transform them to shallow cuttings in the bottom-open
pseudo-trapezoid form by Lemma 16, which can be done in additional O(n log n

k ) time (i.e.,
linear time for each cutting). This proves Theorem 8.

6 Dynamic unit-disk range emptiness queries

Our techniques may be extended to solve other related problems about unit disks. In the
following, we demonstrate one exemplary problem: the dynamic unit-disk range emptiness
queries (see the full paper for a simple solution to the static problem using our techniques).

For a set P of points in the plane, we wish to maintain P in a dynamic data structure
for points insertions and deletions to answer unit-disk range emptiness queries: Given a unit
disk D, determine whether D contains a point of P , and if so, return such a point. One can
solve the problem by using a dynamic nearest neighbor search data structure (i.e., given a
query disk D, using a nearest neighbor query we find a point p ∈ P nearest to the center of
D; D contains a point of P if and only if p ∈ D). The current best dynamic nearest neighbor
search data structure is given by Chan [11]; with that, we can obtain a data structure of
O(n) space in O(n log n) time that supports O(log2 n) amortized insertion time, O(log4 n)
amortized deletion time, and O(log2 n) time for unit-disk range emptiness queries. In the
following, using our techniques, we propose a better result.

As in Section 3 for the dynamic reporting problem, we can use Lemma 3 to reduce the
problem to the following line-separated problem.

▶ Problem 2 (Dynamic line-separable unit-disk range emptiness queries). Given a set Q of
m points above a horizontal line ℓ, build a data structure to maintain Q to support the
following operations. (1) Insertion: insert a point to Q; (2) deletion: delete a point from Q;
(3) unit-disk range emptiness query: given a unit disk D whose center is below ℓ, determine
whether D contains a point of Q, and if so, return such a point.
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To solve the line-separable problem, we define the set Γ of arcs using Q in the same way
as before. Let Dq be a unit disk with center q below ℓ. Note that Dq ∩ Q ̸= ∅ if and only
if q is above the lower envelope of Γ. Further, q is above the lower envelope of Γ if and
only if the lowest arc of Γ intersecting ℓq is below q, where ℓq is the vertical line through q.
Therefore, our problem reduces to the following vertical line queries subject to arcs insertions
and deletions for Γ: Given a vertical line ℓ∗, find the lowest arc of Γ that intersects ℓ∗.

To solve the dynamic vertical line query problem among arcs of Γ, we apply Chan’s
framework [8] for the dynamic vertical line query problem among lines (in the dual plane,
a vertical line query is dual to: Finding an extreme point on the convex hull of all dual
points along a query direction). To this end, we need the following two components: (1) a
dynamic data structure of O(m) space with O(log m) query time and mO(1) update time; (2)
a deletion-only data structure of O(m) space that can be built in O(m log m) time, supporting
O(log m) query time and O(log m) amortized deletion time. For (1), we can use our static
data structure as discussed above, i.e., whenever there is an update, we simply rebuild the
data structure. For (2), Wang and Zhao [30] already provided such a data structure. Using
these two components, we can apply exactly the same framework of Chan [8]. Indeed, the
framework still works for the arcs of Γ because every arc is x-monotone. With the framework
and the above two components, we can obtain a data structure of O(m) space that allows
insertions and deletions of arcs of Γ in O(log1+ϵ m) amortized update time and answers a
vertical line query in O(log m) time, where m is the size of the current set Γ. Consequently,
we can solve Problem 2 with the same time complexities. Finally, with Lemma 3 and
our problem reduction, we can have a data structure of O(n) space that allows insertions
and deletions of points of P in O(log1+ϵ n) amortized time and answers a unit-disk range
emptiness query in O(log n) time, where n is the size of the current set P .
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