
Improved Approximation Algorithms for (1,2)-TSP
and Max-TSP Using Path Covers in the
Semi-Streaming Model
Sharareh Alipour #

Department of Computer Science, Tehran Institute for Advanced Studies (TeIAS),
Khatam University, Tehran, Iran

Ermiya Farokhnejad # Ñ

Department of Computer Science, University of Warwick, Coventry, UK

Tobias Mömke #

Department of Computer Science, University of Augsburg, Germany

Abstract
We investigate semi-streaming algorithms for the Traveling Salesman Problem (TSP). Specifically,
we focus on a variant known as the (1, 2)-TSP, where the distances between any two vertices are
either one or two. Our primary emphasis is on the closely related Maximum Path Cover Problem,
which aims to find a collection of vertex-disjoint paths that covers the maximum number of edges
in a graph. We propose an algorithm that, for any ϵ > 0, achieves a (2

3 − ϵ)-approximation of the
maximum path cover size for an n-vertex graph, using poly(1

ϵ
) passes. This result improves upon

the previous 1
2 -approximation by Behnezhad et al. [3] in the semi-streaming model. Building on this

result, we design a semi-streaming algorithm that constructs a tour for an instance of (1, 2)-TSP with
an approximation factor of (4

3 + ϵ), improving upon the previous 3
2 -approximation factor algorithm

by Behnezhad et al. [3]1.
Furthermore, we extend our approach to develop an approximation algorithm for the Maximum

TSP (Max-TSP), where the goal is to find a Hamiltonian cycle with the maximum possible weight
in a given weighted graph G. Our algorithm provides a (7

12 − ϵ)-approximation for Max-TSP in
poly(1

ϵ
) passes, improving on the previously known (1

2 − ϵ)-approximation obtained via maximum
weight matching in the semi-streaming model.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Streaming, sublinear and near linear time algorithms; Theory of computation →
Approximation algorithms analysis

Keywords and phrases (1, 2)-TSP, Max-TSP, Maximum Path Cover, Semi-Streaming Algorithms,
Approximation Algorithms, Graph Algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.9

Related Version Full Version: https://arxiv.org/abs/2501.04813 [2]

Funding Tobias Mömke: Partially supported by DFG Grant 439522729 (Heisenberg-Grant).

1 Introduction

The Traveling Salesman Problem (TSP) is a fundamental problem in combinatorial optimiza-
tion. Given a graph G = (V, E) with distances assigned to the edges, the objective is to find
a Hamiltonian cycle with the lowest possible cost. The general form of TSP is known to be
inapproximable unless P = NP [22]. Consequently, research often focuses on specific types of

1 Although Behnezhad et al. do not explicitly state that their algorithm works in the semi-streaming
model, it is easy to verify.

© Sharareh Alipour, Ermiya Farokhnejad, and Tobias Mömke;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 9; pp. 9:1–9:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sharareh.alipour@gmail.com
https://orcid.org/0000-0002-3626-8960
mailto:ermiya.farokhnejad@warwick.ac.uk
https://www.ermiyafr.com/
https://orcid.org/0009-0008-6529-8625
mailto:moemke@informatik.uni-augsburg.de
https://orcid.org/0000-0002-2509-6972
https://doi.org/10.4230/LIPIcs.STACS.2025.9
https://arxiv.org/abs/2501.04813
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Semi-Streaming Algorithms for (1,2)-TSP, Max-TSP

distance functions, particularly the metric TSP, where distances satisfy the triangle inequality.
Two notable metric versions of TSP are the graphic TSP, where distances correspond to
the shortest path lengths in an unweighted graph, and (1, 2)-TSP, a variant of TSP with
distances restricted to either one or two [1, 4, 5, 6, 12, 14, 15, 17, 18, 19, 23, 24, 25].

Most research is conducted within the classic centralized model of computation. However,
with the surge of large data sets in various real-world applications (as reviewed in [7]), there
is a growing demand for algorithms capable of handling massive inputs. For very large graphs,
classical algorithms are not only too slow but also suffer from excessive space complexity.
When a graph’s size exceeds the memory capacity of a single machine, algorithms that rely
on random access to the data become impractical, necessitating alternative computational
models. One such model that has gained significant attention recently is the graph stream
model, introduced by Feigenbaum et al. [8, 9]. In this model, edges of the graph are not
stored in memory but arrive sequentially in a stream, requiring processing in that order.
The challenge is to design algorithms that use minimal space and ideally make only a
small constant number of passes over the stream. A widely studied variant of this is the
semi-streaming model. In the semi-streaming model, as outlined by Feigenbaum et al. [9],
we consider a graph G with n vertices. The algorithm processes the graph’s edges as they
arrive in the stream and aims to compute results with minimal passes while using limited
memory, constrained to Õ(n) := O(n · polylog(n)).

It is straightforward to design a deterministic one-pass streaming algorithm to compute
the cost of a Minimum Spanning Tree (MST) exactly, even in graph streams, which in
turn immediately provides an Õ(n) space algorithm to estimate TSP cost within a factor
of 2. Thus, in the semi-streaming regime, the key challenge is to estimate TSP cost within
a factor that is strictly better than 2. Recently, Chen, Khanna, and Tan [5] proposed a
deterministic two-pass 1.96-approximation factor algorithm for metric TSP cost estimation
in the semi-streaming model. For the case of (1, 2)-TSP, using the approach of Behnezhad
et al. [3], it is possible to provide a 1.5-approximation factor algorithm in the semi-streaming
model. In [3], authors presented a sub-linear version of their algorithm; however, it is
straightforward to implement their algorithm in the semi-streaming model.

In section 11 of [3], the authors showed a reduction from (1,2)-TSP to maximum matching
and stated that achieving better approximation than 1.5 for (1,2)-TSP in the sub-linear
model, solves an important open problem in sub-linear maximum matching. Considering
the same reduction in semi-streaming model shows achieving non-trivial approximations for
(1,2)-TSP in semi-streaming model is challenging. Since the maximum matching problem is
studied in the semi-streaming model extensively, the following question naturally arises.

Question. What is the trade off between the approximation ratio and the number of
passes for (1,2)-TSP in the semi-streaming model?

Maximum Path Cover. In an unweighted graph G, a subset of edges is called a path cover
if it forms a union of vertex-disjoint paths. A maximum path cover (MPC2) in an unweighted
graph is a path cover with the maximum number of edges (not paths) among all possible
path covers in the graph. The problem of finding an MPC is known to be NP-complete. It is

2 Throughout this paper we use this acronym for ’Maximum Path Cover’. Please note that we do not
refer to the common abbreviation for ’Massively Parallel Computation’.

S. Alipour, E. Farokhnejad, and T. Mömke 9:3

straightforward to see that a maximum matching provides a 1/2-approximation for MPC.
Therefore, computing a maximal matching, which is a 1/2-approximation for maximum
matching, yields a 1/4-approximate solution for MPC.

Behnezhad et al. [3] developed a 1/2-approximate MPC algorithm, which provides a
1.5-approximate solution for (1, 2)-TSP. Their algorithm can be implemented in one pass
within the semi-streaming model using Õ(n) space to return the cost, and in two passes if
the approximate solution itself is required. Our primary contribution is an improvement in
the approximation factor of their algorithm.

Result 1 (Formally as Theorem 8). For a given unweighted graph G, there is a
semi-streaming algorithm that returns a (2

3−ϵ)-approximation of MPC in poly(1
ϵ) passes.

(1, 2)-TSP. The classical problem (1, 2)-TSP is well-studied and known to be NP-hard [15],
and even APX-hard [20]. One can easily observe that in an instance of (1, 2)-TSP, the optimal
tour is almost the same as finding the MPC of the induced subgraph on edges with weight 1
and then joining their endpoints with edges with weight 2, except for a possible difference
of 1 (in the case that there exists a Hamiltonian cycle all of whose edges have weight 1). A
simple computation shows that if one can find a set of vertex-disjoint paths that is at least α

times the optimal size (α ≤ 1), then one can also find a tour whose cost is no more than
(2 − α) times the optimal cost for (1, 2)-TSP. Thus, Result 1 implies the following result.

Result 2 (Formally as Theorem 10). For an instance of (1, 2)-TSP, there is a semi-
streaming algorithm that returns a (4

3 + ϵ)-approximation of (1, 2)-TSP in poly(1
ϵ)

passes.

In the second part of the paper, we examine Max-TSP in the semi-streaming model.

Max-TSP. For a given complete weighted graph G, the goal of Max-TSP is to find a
Hamiltonian cycle such that the sum of the weights of the edges in this cycle is maximized.

It is evident that a maximum weighted matching provides a 1
2 -approximation for the

cost of Max-TSP. Consequently, the result of Huang and Saranurak [13], which computes
a (1 − ϵ)-approximate maximum weight matching in the semi-streaming model, yields a
(1

2 − ϵ)-approximation for Max-TSP. In this paper, we improve this bound to 7
12 − ϵ. Our

result is as follows.

Result 3 (Formally as Theorem 16). For a given weighted graph G, there is a semi-
streaming algorithm that returns a (7

12 − ϵ)-approximation of Max-TSP in poly(1
ϵ)

passes.

To the best of our knowledge, this is the first non-trivial approximation algorithm for
Max-TSP in the semi-streaming model.

Further related work
Our approach for computing MPC, (1, 2)-TSP and Max-TSP mainly uses the subroutines
for computing maximum matching in unweighted graphs and maximum weight matching in
weighted graphs.

STACS 2025

9:4 Semi-Streaming Algorithms for (1,2)-TSP, Max-TSP

In the semi-streaming model, Fischer, Mitrovic and Uitto [10] gave a (1−ϵ)-approximation
for the maximum matching problem in poly(1/ϵ) passes. This result was an improvement
over the (1/ϵ)O(1/ϵ) passes algorithm by McGregor [16].

For the maximum weight matching in the semi-streaming model, Paz and Schwartzman
gave a simple deterministic single-pass (1/2 − ϵ)-approximation algorithm [21]. Gamlath,
Kale, Mitrovic, and Svensson gave a (1 − ϵ)-approximation streaming algorithm that uses
Oϵ(1) passes and Oϵ(n · poly(log n)) memory. This was the first (1 − ϵ)-approximation
streaming algorithm for weighted matching that uses a constant number of passes (only
depending on ϵ) [11]. Also, Huang and Su in [13], gave a deterministic (1 − ϵ)-approximation
for maximum weighted matching using poly(1/ϵ) passes in the semi-streaming model. When
ϵ is smaller than a constant O(1) but at least 1/ logo(1) n, their algorithm is more efficient
than [11].

1.1 Notation
Let G be a simple graph. We denote the set of vertices and edges of G by V (G) and E(G)
respectively. We also denote the maximum matching size in G by µ(G) and the size of the
MPC in G by ρ(G).

For a subset of edges T ⊆ E(G), we denote G/T as the contraction of G on T , which is
the graph derived by repeatedly removing edges of T (it is well-known that the order does
not matter) from the graph and merging its endpoints to be a single node in the new graph.
Note that after contraction the graph might have parallel edges, but this does not interfere
with our algorithm. In the weighted case, if w(e) is the weight of edge e, then we define w(T)
to be the sum of weights of the elements of T i.e.

∑
e∈T w(e). Let P = (u1, u2, . . . , uk) be a

path of length k − 1 (ui ∈ V for 1 ≤ i ≤ k). We call u1 and uk end points of P and ui for
2 ≤ i ≤ k − 1 middle points of P .

2 Technical Overview and Our Contribution

We propose a simple algorithm that constructs a path cover with an approximation factor of
almost 2

3 for MPC. This new algorithm merely depends on basic operations and computing
matching and approximate matching.

Our algorithm for MPC is as follows. Assume that MMϵ is a (1 − ϵ)-approximation
algorithm for computing maximum matching in an unweighted graph G. We use MMϵ as
a subroutine in our algorithm, which has two phases. In the first phase, we run MMϵ to
compute a (1 − ϵ)-approximate maximum matching, denoted by M1. In the next phase,
we contract all edges in M1 to obtain a new graph G′ = G/M1. Then, we compute a
(1 − ϵ)-approximate maximum matching, denoted by M2, for G′ using MMϵ. Finally, we
return the edges of M1 and M2 as a path cover for G (see Algorithm 1).

We will show that the output of our algorithm is a collection of vertex-disjoint paths,
i.e., a valid path cover (see Lemma 1).

The algorithm is simple, but proving that its approximation factor is 2
3 − ϵ is challenging.

As a warm-up, it is straightforward to see that by computing a maximum matching in the
first phase, we achieve a 1

2 -approximate MPC. However, the challenge lies in the second
phase, which helps to improve the approximation factor.

Now we explain the idea of our proof to find the approximation factor of Algorithm 1.
For the matching M1 in graph G, we provide a lower bound for µ(G/M1). We show that
if we consider a maximum path cover P ∗ and contract P ∗ on M1, the contracted graph
becomes a particular graph in which we can find a lower bound on the size of its maximum

S. Alipour, E. Farokhnejad, and T. Mömke 9:5

matching. Let M2 be a maximum matching of G/M1, then this results in a lower bound for
|M2|. Finally, we exploit this lower bound for |M2| together with a lower bound for |M1|, to
come up with the approximation factor of Algorithm 1.

We explain how to implement this algorithm in the semi-streaming model, achieving an
improved approximation factor for (1, 2)-TSP within this model.

For the Max-TSP, we use a similar algorithm, except we compute maximum weight
matching instead of maximum matching (see Algorithm 3). By computing the approximation
factor of this algorithm, we provide a non-trivial approximation algorithm for Max-TSP
in the semi-streaming model. Despite the extensive study of the weighted version of the
maximum matching problem, Max-TSP has not been studied extensively in the literature
within the semi-streaming model. One reason could be that it is not possible to extend the
approaches for the unweighted version to the weighted version. Fortunately, we can extend
our algorithm to the weighted version and improve the approximation factor of Max-TSP in
the semi-streaming model. However, our method for analyzing the approximation factor of
Algorithm 1 does not apply to the weighted version, so we present a different proof approach
for computing the approximation factor of Algorithm 3.

3 Improved Approximation Factor Semi-Streaming Algorithm for MPC

In Algorithm 1, we presented our novel algorithm for MPC. This section provides an analysis of
its approximation factor, followed by a detailed explanation of its streaming implementation.

Algorithm 1 Approximating maximum path cover on a graph G.

1: Run MMϵ on G to find a matching M1.
2: Contract G on M1 to get a new graph G′ = G/M1.
3: Run MMϵ on G′ to find another matching M2.
4: return M1 ∪ M2.

We start by proving the correctness of this algorithm.

▶ Lemma 1. If M1 and M2 are the matchings obtained in Algorithm 1, then M1 ∪ M2 forms
a path cover for G.

Proof. We claim that M1 ∪ M2 is a vertex-disjoint union of paths of length 1, 2 or 3. As a
result, it is a path cover. Suppose M1 = {u1v1, u2v2, . . . , ukvk}. Let us denote the vertices of
G/M1 by {(uv)1, (uv)2, . . . , (uv)k, w1, w2, . . . , wl} where (uv)i represents the vertices ui and
vi, merged in the contracted graph G/M1 and wj ’s for 1 ≤ j ≤ l are the rest of the vertices.
Let xy ∈ M2 be an arbitrary edge. By symmetry between x and y, there are three cases as
follows:
1. x, y ∈ {w1, w2, . . . , wl}.

In this case, x and y are intact vertices after contraction, which means there are no edges
in M1 adjacent to x and y. Since xy ∈ M2 and M2 is a matching, there are no other
edges in M1 ∪ M2 adjacent to x and y in G. As a result, xy would be a path of length 1
in M1 ∪ M2.

2. x ∈ {(uv)1, (uv)2, . . . , (uv)k} and y ∈ {w1, w2, . . . , wl}.
In this case, x = (uv)i for some 1 ≤ i ≤ k. As a result, xy would be uiy or viy in G. By
symmetry, assume that xy = uiy in G. Since M1 is a matching, no other edges in M1 are
adjacent to ui and vi. No edge in M1 is adjacent to y. Since M2 is a matching, the only
edge in M2 adjacent to at least one of ui, vi and y in G is xy = uiy. Finally, we can see
that (vi, ui, y) is a path of length 2 in M1 ∪ M2.

STACS 2025

9:6 Semi-Streaming Algorithms for (1,2)-TSP, Max-TSP

3. x, y ∈ {(uv)1, (uv)2, . . . , (uv)k}.
In this case, let x = (uv)i and y = (uv)j and by symmetry, assume that xy is the edge
connecting ui to uj in G. Since M1 is a matching, the only edges in M1 adjacent to at
least one of ui, uj , vi, vj are uivi and ujvj . Since M2 is a matching, the only edge in M2
adjacent to at least one of ui, uj , vi, vj is (uv)i(uv)j . As a result, (vi, ui, uj , vj) would be
a path of length 3 in M1 ∪ M2.

So, M1 ∪ M2 is a union of vertex-disjoint paths of length 1, 2 or 3. ◀

3.1 Analysis of the Approximation Factor of Algorithm 1
We start with a simple and basic lemmas that is crucial in our proof.

▶ Lemma 2. Let G be an arbitrary graph. We have:

ρ(G) ≥ µ(G) ≥ 1
2ρ(G).

Proof. Since every matching is a path cover, we have ρ(G) ≥ µ(G). Also, given an MPC,
we can select every other edge in this MPC to obtain a matching that contains at least half
of its edges, which implies µ(G) ≥ 1

2 ρ(G). ◀

▶ Corollary 3. If M is a (1 − ϵ)-approximation of maximum matching in graph G, then

|M | ≥ 1
2(1 − ϵ)ρ(G).

We now present a lemma regarding the size of the maximum matching in a specific type
of graph. This lemma may be of independent interest. In this paper we utilize this lemma
on G/M1 to derive a lower bound for |M2|.

▶ Lemma 4. Assume G is a graph without loops such that each vertex v of G has degree 1,2,
or 4. If V4(G) denotes the set of vertices of degree 4 in G, then we have

µ(G) ≥ |E(G)| − |V4(G)|
3 .

Proof. The proof of this lemma is a bit long and technical. Here, we provide the proof sketch
of the lemma due to page limit constraints and we refer the reader to the full version of the
paper to see the complete proof.3 The main tools for the proof are induction and a charging
scheme. The induction is on the number of edges between nodes of degree 2 or 4 in graph G

denoted by |E2,4(G)|.
In a high level, we provide some special local topological properties of the graph. If G

does not satisfy at least one of the properties, then we do some delicate local changes on G

to get G′ such that |E2,4(G′)| ≤ |E2,4(G)|. Next, we improve a matching in G′ to a matching
for G with the desired size.

In the case that G satisfies all of the properties, we provide a charging scheme that
takes some tokens for each edge in an arbitrary maximum matching and spread these tokens
between incident edges, which proves the desired inequality. ◀

Using above lemma, we have the main lemma of this section as follows.

3 A full version of this extended abstract can be found at [2].

S. Alipour, E. Farokhnejad, and T. Mömke 9:7

▶ Lemma 5. If M is an arbitrary matching in a graph G, then

µ(G/M) ≥ ρ(G) − |M |
3 .

Proof. Assume P ∗ is a maximum path cover in G such that P ∗ ∩ M is maximal. We claim
that every e ∈ M \ P ∗ connects two middle points of P ∗. The proof of this claim follows
from a case by case argument. For the sake of contradiction, assume e = uv ∈ M \ P ∗ does
not connect two middle points of P ∗. We have three cases for u and v as follows.

None of u and v belong to P ∗ (case 1).
Exactly one of them (say u) belongs to P ∗. Then, u is an end point (case 2), or u is a
middle point (case 3).
Both u and v belong to P ∗. Then, we have two sub cases.

u and v are on different paths. Then either they are both end points (case 4), or one
is a middle point (say u) and the other one is an end point (case 5). Note that we have
considered that both of u and v are not middle points at the same time.

u and v belong to the same path. Then, either they are both end points (case 6), or
one is a middle point (say u) and the other one is an end point (case 7). Note that we
have assumed both of them are not middle points at the same time.

Now, we explain each case in detail.
1. Neither u nor v belongs to P̃ .

This case is impossible because P ∗ + e is a path cover with a size larger than |P ∗|, which
is in contradiction with P ∗ being MPC (see Figure 1a).

2. u is an end point of a path in P ∗ and v is not contained in P ∗.
Again, this case is impossible since P ∗ + e is a path cover with a size larger than |P ∗|,
which is in contradiction with P ∗ being MPC (see Figure 1b).

3. u is a middle point of a path in P ∗ and v is not contained in P ∗.
Let (p1, p2, . . . , pk) be the path in P ∗ containing u = pi. Replace P ∗ by P ∗ − pi−1pi + e

which is an MPC of G (see Figure 1c). Since e ∈ M , we have pi−1pi /∈ M . Therefore,
|P̃ ∩ M | increments. This is in contradiction with |P ∗ ∩ M | being maximal.

4. u and v are end points of different paths in P ∗.
In this case, let (p1, p2, . . . , pk) and (q1, q2, . . . , ql) be the paths in P ∗ containing u = p1
and v = q1, respectively. P ∗ + e would be a path cover of size greater than |P ∗| which is
in contradiction with P ∗ being MPC (see Figure 1d).

5. u and v are the middle and end points of different paths in P ∗, respectively.
In this case, let (p1, p2, . . . , pk) and (q1, q2, . . . , ql) be the paths in P ∗ containing u = pi

and v = q1 respectively. Replace P ∗ by P ∗ − pi−1pi + e which is an MPC of G (see
Figure 1e). Since e ∈ M , we have pi−1pi /∈ M . Therefore, |P ∗ ∩ M | increments. This is
in contradiction with |P ∗ ∩ M | being maximal.

6. u and v are end points of the same path in P ∗.
In this case, let (p1, p2, . . . , pk) be the path in P ∗ containing u = p1 and v = pk. Replace
P ∗ by P ∗ − p1p2 + e which is an MPC of G (see Figure 1f). Since e ∈ M we have
p1p2 /∈ M . Therefore, |P ∗ ∩ M | increments. This is in contradiction with |P ∗ ∩ M | being
maximal.

7. u and v are the middle and end points of the same path in P ∗, respectively.
In this case, let (p1, p2, . . . , pk) be the path in P ∗ containing u = pi and v = p1 (since
e /∈ P ∗, we have 2 < i). Replace P ∗ by P ∗ − pi−1pi + e which is an MPC of G (see
Figure 1g). Since e ∈ M , we have pi−1pi /∈ M . Therefore, |P ∗ ∩ M | increments. This is
in contradiction with |P ∗ ∩ M | being maximal.

STACS 2025

9:8 Semi-Streaming Algorithms for (1,2)-TSP, Max-TSP

u v u v

(a) Case 1.

u
v

u
v

(b) Case 2.

u
v

u

v

(c) Case 3.

v

u

v

u

(d) Case 4.

u

v

u

v

(e) Case 5.

u v
u

v

(f) Case 6.

u
v

u
v

(g) Case 7.

Figure 1 Different possible cases for u and v.

Each case leads to a contradiction, implying that every e ∈ M \ P ∗ connects two middle
points of P ∗.

Now, contraction of each e ∈ M \ P ∗ makes a vertex of degree 4 in P ∗/M . Contraction of
each e ∈ M ∩ P ∗ makes a vertex of degree 2 and decrements the number of edges in P ∗. As
a result, P ∗/M is a graph whose vertices’ degrees are 1,2 or 4, |E(P ∗/M)| = |P ∗| − |P ∗ ∩ M |
and |V4(P ∗/M)| = |M \ P ∗|. Finally, using Lemma 4 for P ∗/M we have

µ(P ∗/M) ≥ |E(P ∗/M)| − |V4(P ∗/M)|
3 = |P ∗| − |P ∗ ∩ M | − |M \ P ∗|

3 = |P ∗| − |M |
3 .

Since P ∗/M is a subgraph of G/M we have

µ(G/M) ≥ µ(P ∗/M) ≥ |P ∗| − |M |
3 = ρ(G) − |M |

3 . ◀

Using the above results, we compute the approximation factor of Algorithm 1.

▶ Theorem 6. The approximation factor of Algorithm 1 is 2
3 (1 − ϵ), i.e.,

ρ(G) ≥ |M1 ∪ M2| ≥ 2
3(1 − ϵ)ρ(G). (1)

Proof. By Corollary 3 and, Lemma 5, we have

|M1 ∪ M2| = |M1| + |M2|
≥ |M1| + (1 − ϵ)µ(G/M1)

≥ |M1| + 1 − ϵ

3 (ρ(G) − |M1|)

≥ 1 − ϵ

3 ρ(G) + 2
3 |M1|

≥ 1 − ϵ

3 ρ(G) + 1 − ϵ

3 ρ(G) = 2
3(1 − ϵ)ρ(G).

Since M1 ∪ M2 is a path cover, we have ρ(G) ≥ |M1 ∪ M2|. Hence, the approximation
factor of Algorithm 1 is at least 2

3 (1 − ϵ). ◀

S. Alipour, E. Farokhnejad, and T. Mömke 9:9

Now, we show that our analysis of the approximation factor of Algorithm 1 is tight.
Consider the graph in Figure 2a and denote it by G̃. If we run Algorithm 1 on G̃, then the
edges of M1 could be the red edges shown in Figure 2b. After contracting G̃ on M1, we have
G̃/M1 shown in Figure 2c. Finally, the second matching M2 found by Algorithm 1 in G̃/M1
contains at most one edge which implies |M1 ∪ M2| ≤ 4. On the other hand, maximum path
cover P ∗ in G̃ contains 6 edges shown in Figure 2d.

(a) Graph G̃. (b) Matching M1 (red edges) found by Algorithm 1.

(c) G̃/M1. (d) P ∗ (blue edges) in G̃.

Figure 2 An example of a graph G̃ for which Algorithm 1 produces a path cover whose size is 2
3

times the size of the MPC.

As a result, |M1 ∪ M2|
|P ∗|

≤ 2
3 , so this example and Theorem 6 imply that the approximation

factor of Algorithm 1 is 2
3 − ϵ.

3.2 Implementation of Algorithm 1 in the Semi-Streaming Model
Now we explain how to implement Algorithm 1 in the semi-streaming model. We start with
the following theorem by Fischer, Mitrovic and Uitto [10].
▶ Theorem 7 (Theorem 1.1 in [10]). Given a graph on n vertices, there is a deterministic
(1 − ϵ)-approximation algorithm for maximum matching that runs in poly(1

ϵ) passes in the
semi-streaming model. Furthermore, the algorithm requires n · poly(1

ϵ) words of memory.
To implement Algorithm 1 in the semi-streaming model, we proceed as follows: In the

first phase, by applying Theorem 7, we compute a (1 − ϵ)-approximate matching for the
graph G, denoted as M1. At the end of this phase, we have the edges of this matching. In the
second phase, we again apply Theorem 7 to compute a matching for G/M1 in the streaming
model.

During the second phase, when we apply the algorithm of Theorem 7, while processing
each edge (vi, vj) in the stream, we follow these rules: If (vi, vj) ∈ M1, we ignore this edge. If
(vi, vj) /∈ M1, but one of vi or vj is an endpoint of an edge in M1 (e.g., vi, vk ∈ M1), then since
(vi, vj) is contracted, we consider vi and vj as a single vertex, vij . In this case, vk is considered
adjacent to the new vertex vij . Consequently, we can compute a (1 − ϵ)-approximation
matching for G/M1 in the next poly(1/ϵ) passes.

Thus, combining the results of Algorithm 1, Theorem 6, and Theorem 7, we have the
main result of this section:
▶ Theorem 8. Given an unweighted graph G on n vertices, there is a deterministic algorithm
that returns a (2

3 − ϵ)-approximate MPC in the semi-streaming model in poly(1
ϵ) passes.

STACS 2025

9:10 Semi-Streaming Algorithms for (1,2)-TSP, Max-TSP

4 (1, 2)-TSP

In this section, we present our algorithm for the (1, 2)-TSP, detailed in Algorithm 2, and
analyze its approximation factor. We also provide an explanation of how to implement this
algorithm in the semi-streaming model.

Algorithm 2 Our algorithm for (1, 2)-TSP.

1: Let G1 be the subgraph of G consisting of edges with weight 1.
2: Run Algorithm 1 on G1 to get a path cover P̃ .
3: Arbitrarily extend P̃ to a Hamiltonian cycle C̃ by adding edges between end points of P̃

or/and existing vertices not in P̃ .
4: return C̃.

▶ Theorem 9. The approximation factor of Algorithm 2 for (1, 2)-TSP is 4
3 + ϵ + 1

n .

Proof. Let T ∗ be the optimal solution of (1,2)-TSP, ρ∗ be the size of an MPC in G1, and n

be the number of vertices of G. Since every Hamiltonian cycle contains n edges with weights
1 or 2, we have n ≤ T ∗ ≤ 2n. We also have T ∗ = 2n − ρ∗ − 1 or T ∗ = 2n − ρ∗, where
T ∗ = 2n − ρ∗ − 1 occurs only when G contains a Hamiltonian cycle consisting solely of edges
with weight 1.

Let ρ̃ be the size of the path cover obtained by Algorithm 1 in G1. The Hamiltonian
cycle obtained by Algorithm 2 has a cost of at most 2(n − ρ̃) + ρ̃ = 2n − ρ̃. Let α ≤ 1
be the approximation factor of Algorithm 1, then we have αρ∗ ≤ ρ̃ ≤ ρ∗. As a result,
T ∗ ≤ 2n − ρ∗ ≤ 2n − ρ̃. We also have:

2n − ρ̃ ≤ 2n − αρ∗ = (2 − 2α)n + α(2n − ρ∗ − 1) + α

≤ (2 − 2α)T ∗ + αT ∗ + α = (2 − α)T ∗ + α

≤ (2 − α)T ∗ + 1

≤ (2 − α)T ∗ + T ∗

n
=

(
2 − α + 1

n

)
T ∗. (2)

By Theorem 6, we have α ≥ 2
3 − ϵ. Using Equation (2), we conclude that:

2n − ρ̃ ≤
(

2 − α + 1
n

)
T ∗

≤
(

2 −
(

2
3 − ϵ

)
+ 1

n

)
T ∗ =

(
4
3 + ϵ + 1

n

)
T ∗.

Hence, T ∗ ≤ 2n − ρ̃ ≤
(4

3 + ϵ + 1
n

)
T ∗. So, the approximation factor of our algorithm for

(1,2)-TSP is 4
3 + ϵ + 1

n . ◀

4.1 Implementation of Algorithm 2 in the Semi-Streaming Model
For a given instance of (1, 2)-TSP in the streaming model, we compute an approximate MPC
for the induced subgraph on the edges of weight 1 as explained in Theorem 8, then we add
extra edges to connect these paths and vertices not in these paths arbitrarily to construct a
Hamiltonian cycle, which gives us a (4/3 + ϵ + 1/n)-approximate tour for (1, 2)-TSP. So, we
have the main result of this section as follows.

▶ Theorem 10. Given an instance of (1, 2)-TSP on n vertices, there is a deterministic
algorithm that returns a (4

3 + ϵ + 1
n)-approximate (1, 2)-TSP in the semi-streaming model in

O(poly(1
ϵ)) passes.

S. Alipour, E. Farokhnejad, and T. Mömke 9:11

5 Max-TSP

In this section, we introduce our algorithm for Max-TSP, which closely resembles our
approach for MPC. The key difference is that, instead of using MMϵ, we employ a subroutine
to compute an approximate maximum weight matching in a weighted graph.

Let MWMϵ be a subroutine for computing a (1 − ϵ)-approximate maximum weighted
matching in a weighted graph G. First, we compute a matching M1 for G using MWMϵ.
Then, we contract the edges of M1 to obtain another graph G′ = G/M1 and compute
another matching, M2, for G′ using MWMϵ again. We derive the union of the two weighted
matchings, M1 ∪ M2. Similar to Lemma 1, it is evident that M1 ∪ M2 forms a union of
vertex-disjoint paths in G. Finally, since the graph is complete, there can be only one vertex
that is not in M1 ∪ M2. In this case we connect this vertex to one of the paths in M1 ∪ M2.
Now, we add edges arbitrarily between the endpoints of the paths in M1 ∪ M2 to obtain a
Hamiltonian cycle C for G.

Algorithm 3 Our algorithm for Max-TSP on a complete weighted graph G.

1: Run MWMϵ on G to find a matching M1.
2: Contract G on M1 to get a new graph G′ = G/M1.
3: Run MWMϵ on G′ to find another matching M2.
4: Arbitrarily extend M1 ∪ M2 to a Hamiltonian cycle C by adding edges between end

points of M1 ∪ M2 or/and existing vertices not in M1 ∪ M2.
5: return C.

Note that after contracting G on M1 to obtain G′ = G/M1, this new graph might have
parallel edges between to vertices. Since we aim to find a maximum matching in G′, we can
simply consider the edge with the largest weight for parallel edges and ignore the rest.

5.1 Analysis of the Approximation Factor of Algorithm 3
To analyze the approximation factor of Algorithm 3, we begin with a series of lemmas.

▶ Lemma 11. Suppose C is a cycle of length k in a weighted graph G. Then, there exists a
matching M ⊆ C such that w(M) ≥ k−1

2k w(C).

Proof. Assume that e ∈ C is the edge with the minimum weight. Hence, w(e) ≤ w(C)/k.
Since C − e is a path, there is a matching M ⊆ C − e (which is also a subset of C) whose
weight is at least w(C − e)/2. Finally,

w(M) ≥ 1
2w(C − e) = 1

2(w(C) − w(e)) ≥ 1
2

(
w(C) − w(C)

k

)
= k − 1

2k
w(C). ◀

▶ Lemma 12. Suppose T is a path or a cycle in a weighted graph G. Then there exists a
matching M ⊆ T such that w(M) ≥ 1

3 w(T).

Proof. We have two cases
T is a path. Enumerate the edges of T from one end point to the other. The odd
numbered edges form a matching called Modd. The same applies for even numbered edges,
which form a matching called Meven. Since T = Modd ∪ Meven, at least one of these two
matchings has weight no less than w(T)/2.
T is a cycle. If it is a cycle of length 2 (i.e. T consists of two parallel edges), then
obviously we can pick the edge e with bigger weight that satisfies w(e) ≥ 1

2 w(T) ≥ 1
3 w(T).

If the length of T is at least 3, then using Lemma 11, we conclude that there is a matching
M ⊆ T such that w(M) ≥ k−1

2k w(T) ≥ 1
3 w(T). ◀

STACS 2025

9:12 Semi-Streaming Algorithms for (1,2)-TSP, Max-TSP

Now, we provide a lemma similar to Lemma 5 which works for the weighted version.

▶ Lemma 13. Suppose M is a matching in a weighted graph G and C∗ is a maximum weight
Hamiltonian cycle of G. Then,

µ(G/M) ≥ w(C∗) − w(M)
6 − 1

3n
w(C∗).

Proof. We contract C∗ on M in two steps. First, we contract C∗ on the edges in C∗ ∩ M .
Next, we contract the resulting graph on M ′ = M \C∗. After the first step, C ′ = C∗/(C∗∩M)
is a cycle with weight w(C∗) − w(C∗ ∩ M) (see Figure 3).

Figure 3 C∗ remains a path cover after contraction on C∗ ∩ M (red edges).

Here M ′ is a matching that connects some vertices of C ′ together (see Figure 4a, Figure 4b
and Figure 4c).
Assume that the length of C ′ is k. Using Lemma 11, there is a matching M∗ ⊆ C ′ whose
weight is at least k−1

2k w(C ′) (see Figure 4d). Since the matching M1 contains at most half of
the edges of C∗, we conclude that k ≥ n/2. As a result,

w(M∗) ≥ k − 1
2k

w(C ′) ≥ n − 2
2n

(w(C∗) − w(C∗ ∩ M))

≥ w(C∗) − w(C∗ ∩ M)
2 − 1

n
w(C∗). (3)

Since M ′ ∩ C ′ = ∅, we conclude that M ′ ∩ M∗ = ∅. Because M∗ and M ′ are matchings, it
follows that M∗ ∪ M ′ is a union of disjoint paths and cycles (see Figure 4e). As a result, after
doing the second step of contraction, M∗/M ′ would also be a disjoint union of paths and
cycles (whose number of edges is equal to |M∗| since M∗ ∩ M ′ = ∅) in C ′/M ′. For instance,
if M∗ ∪ M ′ contains a cycle of length 4, then M∗/M ′ would contain a cycle of length 2 which
contains parallel edges.
Now, consider each connected component of M∗/M ′. This component is either a path or a
cycle. Hence, by Lemma 12, We obtain a matching with a weight of at least one-third of the
weight of the component.

Finally, since these components are vertex-disjoint, the union of obtained matching would
be a matching whose weight is at least w(M∗)/3. Note that this matching is also a matching
in G/M . Hence, using Equation (3), we have

µ(G/M) ≥ w(M∗)
3 ≥ w(C∗) − w(C∗ ∩ M)

6 − 1
3n

w(C∗)

≥ w(C∗) − w(M)
6 − 1

3n
w(C∗). ◀

So, we have the following theorem which is a lower bound for the approximation factor of
Algorithm 3.

S. Alipour, E. Farokhnejad, and T. Mömke 9:13

(a) An example of C∗ and
M (red edges) illustrating
the proof of Lemma 13.

(b) Distinguishing C∗ ∩ M
(blue edges) and M ′ =
M \ C∗ (red edges).

(c) C′ is the contraction of
C∗ on C∗ ∩M and M ′ (red
edges) connects some of its
vertices together.

(d) the weight of M∗ (blue
edges) is at least k−1

2k w(C′).
(e) M∗ ∪ M ′ is a disjoint union of paths and cycles
(M∗ and M ′ correspond to blue and red edges respectively).

Figure 4 An example of C∗ and M illustrating the steps in the proof of Lemma 13.

▶ Theorem 14. The approximation factor of Algorithm 3 is at least
(7

12 − 3
4n

)
(1 − ϵ).

Proof. Let C∗ be a maximum weight Hamiltonian cycle in G. By Lemma 11, there exists at
least one matching M ⊆ C∗ whose weight is at least

n − 1
2n

w(C∗).

Since M1 is a (1 − ϵ)-approximation of the maximum weighted matching in G we have

w(M1) ≥ (1 − ϵ)(n − 1)
2n

w(C∗).

By using Lemma 13 for M2 on G/M1, we have

w(M1 ∪ M2) = w(M1) + w(M2)
≥ w(M1) + (1 − ϵ)µ(G/M1)

≥ w(M1) + 1 − ϵ

6 (w(C∗) − w(M1)) − 1 − ϵ

3n
w(C∗)

≥ (1 − ϵ)
(

1
6 − 1

3n

)
w(C∗) + 5

6w(M1)

≥ (1 − ϵ)
(

1
6 − 1

3n

)
w(C∗) + 5(1 − ϵ)(n − 1)

12n
w(C∗)

=
(

7
12 − 3

4n

)
(1 − ϵ)w(C∗).

Since the weight of the edges of G are nonnegative, we have

w(C) ≥ w(M1 ∪ M2) ≥
(

7
12 − 3

4n

)
(1 − ϵ)w(C∗).

Finally, C is a Hamiltonian cycle which means w(C∗) ≥ w(C). Hence, the approximation
factor of Algorithm 1 is at least

(7
12 − 3

4n

)
(1 − ϵ). ◀

STACS 2025

9:14 Semi-Streaming Algorithms for (1,2)-TSP, Max-TSP

5.2 Implementation of Algorithm 3 in the semi-streaming model
The implementation of Algorithm 3 in the semi-streaming model follows a similar approach as
described in the previous section. Therefore, we omit a detailed explanation here. However,
note that in this part, we should use a subroutine for computing a (1 − ϵ)-approximate
maximum weight matching in the semi-streaming model. First, we recall the following
theorem from [13]. We use the algorithm of this theorem as MWMϵ in our semi-streaming
implementation of Algorithm 3.

▶ Theorem 15 (Theorem 1.3 in [13]). There exists a deterministic algorithm that returns a
(1 − ϵ)-approximate maximum weight matching using poly(1

ϵ) passes in the semi-streaming
model. The algorithm requires O(n · log W · poly(1

ϵ)) words of memory where W is the
maximum edge weight in the graph.

Thus, Algorithm 3, Theorem 14, and Theorem 15 present the following theorem for
Max-TSP in the semi-streaming model.

▶ Theorem 16. Given an instance of Max-TSP on n vertices, there is an algorithm that
returns a (7

12 − 3
4n)(1 − ϵ)-approximate Max-TSP the semi-streaming model in O(poly(1

ϵ))
passes. The algorithm requires O(n · log W · poly(1

ϵ)) words of memory where W is the
maximum edge weight in the graph.

6 Future Work

As a future work we propose the following algorithm that can help to improve the approxim-
ation factor for MPC in the semi-streaming model. The algorithm improves Algorithm 1
by iteratively finding new matchings and contracting the graph over these matchings. It is
crucial to ensure that this process preserves the path cover property. Hence, during the kth
iteration of our loop, we must remove all the edges in G that are incident to a middle point
of any path (connected component) within ∪k

i=1Mi. This is because
(
∪k

i=1Mi

)
∪ Mk+1 must

remain a path cover, which means Mk+1 cannot include any edge incident to a middle point
of a path in ∪k

i=1Mi. See Algorithm 4.

Algorithm 4 Extension of Algorithm 1.

1: Run MMϵ (or MWMϵ for weighted version) on G to find a matching M1.
2: Let i = 1.
3: while Mi ̸= ∅:
4: Let G(i) = G.
5: Remove all e ∈ E(G(i)) \ (∪i

k=0Mk) from E(G(i)) that are incident to at least one
middle point of a path (connected component) in ∪i

k=0Mk.
6: Contract G(i) on ∪i

k=0Mk.
7: Run MMϵ (or MWMϵ for weighted version) on G(i) to find a matching Mi+1.
8: i = i + 1
9: return ∪i

k=1Mk.

We leave the computation of the approximation factor of Algorithm 4 as a challenging
open problem. Currently, we know that the approximation factor is at most 3/4. Consider
the graph in Figure 5a: the algorithm may select the red edges as M1. After contraction, it
might select the red edge in Figure 5b as M2. In the next iteration, the graph becomes empty,
as we must remove any edge incident to a middle point of M1 ∪ M2. Thus, the algorithm
terminates with a path of length 3. However, the MPC has 4 edges (see Figure 5c).

S. Alipour, E. Farokhnejad, and T. Mömke 9:15

(a) M1 (red edges). (b) M2 (red edges). (c) MPC (blue edges).

Figure 5 An example of a graph where Algorithm 4 terminates after two iterations. The algorithm
produces a 3

4 -approximation of the Maximum Path Cover (MPC).

The main bottleneck to find the approximation ratio of Algorithm 4 is that after the
second iteration, there might be a lot of edges that we have to remove from the contracted
graph in order to make sure that the union of matchings remains a path cover. More precisely,
while running line 5 of Algorithm 4, a bunch of edges that are contained in every maximum
path cover might be removed. We are not aware of any argument how to bound the number
of these edges. This prevents us to provide an argument like Lemma 5 and Lemma 13.
Finding the exact approximation ratio of Algorithm 4 seems to require clever new ideas,
already for three matchings.

References

1 Anna Adamaszek, Matthias Mnich, and Katarzyna Paluch. New approximation algorithms for
(1, 2)-tsp. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella,
editors, 45th International Colloquium on Automata, Languages, and Programming, ICALP
2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 9:1–9:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.9.

2 Sharareh Alipour, Ermiya Farokhnejad, and Tobias Mömke. Improved approximation al-
gorithms for (1,2)-tsp and max-tsp using path covers in the semi-streaming model, 2025.
arXiv:2501.04813.

3 Soheil Behnezhad, Mohammad Roghani, Aviad Rubinstein, and Amin Saberi. Sublinear
algorithms for TSP via path covers. CoRR, abs/2301.05350, 2023. doi:10.48550/arXiv.2301.
05350.

4 Yu Chen, Sampath Kannan, and Sanjeev Khanna. Sublinear algorithms and lower bounds for
metric TSP cost estimation. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors,
47th International Colloquium on Automata, Languages, and Programming, ICALP 2020,
July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages
30:1–30:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ICALP.2020.30.

5 Yu Chen, Sanjeev Khanna, and Zihan Tan. Sublinear algorithms and lower bounds for
estimating MST and TSP cost in general metrics. In Kousha Etessami, Uriel Feige, and Gabriele
Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming,
ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 37:1–37:16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ICALP.2023.
37.

6 Artur Czumaj and Christian Sohler. Estimating the weight of metric minimum spanning trees
in sublinear-time. In László Babai, editor, Proceedings of the 36th Annual ACM Symposium
on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 175–183. ACM, 2004.
doi:10.1145/1007352.1007386.

STACS 2025

https://doi.org/10.4230/LIPIcs.ICALP.2018.9
https://arxiv.org/abs/2501.04813
https://doi.org/10.48550/arXiv.2301.05350
https://doi.org/10.48550/arXiv.2301.05350
https://doi.org/10.4230/LIPIcs.ICALP.2020.30
https://doi.org/10.4230/LIPIcs.ICALP.2020.30
https://doi.org/10.4230/LIPIcs.ICALP.2023.37
https://doi.org/10.4230/LIPIcs.ICALP.2023.37
https://doi.org/10.1145/1007352.1007386

9:16 Semi-Streaming Algorithms for (1,2)-TSP, Max-TSP

7 Doratha E. Drake and Stefan Hougardy. Improved linear time approximation algorithms for
weighted matchings. In Sanjeev Arora, Klaus Jansen, José D. P. Rolim, and Amit Sahai,
editors, Approximation, Randomization, and Combinatorial Optimization: Algorithms and
Techniques, 6th International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, APPROX 2003 and 7th International Workshop on Randomization
and Approximation Techniques in Computer Science, RANDOM 2003, Princeton, NJ, USA,
August 24-26, 2003, Proceedings, volume 2764 of Lecture Notes in Computer Science, pages
14–23. Springer, 2003. doi:10.1007/978-3-540-45198-3_2.

8 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
Graph distances in the streaming model: the value of space. In Proceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver, British
Columbia, Canada, January 23-25, 2005, pages 745–754. SIAM, 2005. URL: http://dl.acm.
org/citation.cfm?id=1070432.1070537.

9 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.
doi:10.1016/J.TCS.2005.09.013.

10 Manuela Fischer, Slobodan Mitrovic, and Jara Uitto. Deterministic (1+ϵ)-approximate
maximum matching with poly(1/ϵ) passes in the semi-streaming model and beyond. In Stefano
Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium
on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 248–260. ACM, 2022.
doi:10.1145/3519935.3520039.

11 Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings
via unweighted augmentations. In Peter Robinson and Faith Ellen, editors, Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON,
Canada, July 29 - August 2, 2019, pages 491–500. ACM, 2019. doi:10.1145/3293611.3331603.

12 Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. A randomized rounding approach to
the traveling salesman problem. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium
on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25,
2011, pages 550–559. IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.80.

13 Shang-En Huang and Hsin-Hao Su. (1-1013)-approximate maximum weighted matching in
poly(1/1013, log n) time in the distributed and parallel settings. In Rotem Oshman, Alexandre
Nolin, Magnús M. Halldórsson, and Alkida Balliu, editors, Proceedings of the 2023 ACM
Symposium on Principles of Distributed Computing, PODC 2023, Orlando, FL, USA, June
19-23, 2023, pages 44–54. ACM, 2023. doi:10.1145/3583668.3594570.

14 Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation
algorithm for metric TSP. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC
’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy,
June 21-25, 2021, pages 32–45. ACM, 2021. doi:10.1145/3406325.3451009.

15 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

16 Andrew McGregor. Finding graph matchings in data streams. In Chandra Chekuri, Klaus
Jansen, José D. P. Rolim, and Luca Trevisan, editors, Approximation, Randomization and
Combinatorial Optimization, Algorithms and Techniques, 8th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2005 and 9th
InternationalWorkshop on Randomization and Computation, RANDOM 2005, Berkeley, CA,
USA, August 22-24, 2005, Proceedings, volume 3624 of Lecture Notes in Computer Science,
pages 170–181. Springer, 2005. doi:10.1007/11538462_15.

https://doi.org/10.1007/978-3-540-45198-3_2
http://dl.acm.org/citation.cfm?id=1070432.1070537
http://dl.acm.org/citation.cfm?id=1070432.1070537
https://doi.org/10.1016/J.TCS.2005.09.013
https://doi.org/10.1145/3519935.3520039
https://doi.org/10.1145/3293611.3331603
https://doi.org/10.1109/FOCS.2011.80
https://doi.org/10.1145/3583668.3594570
https://doi.org/10.1145/3406325.3451009
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/11538462_15

S. Alipour, E. Farokhnejad, and T. Mömke 9:17

17 Matthias Mnich and Tobias Mömke. Improved integrality gap upper bounds for traveling
salesperson problems with distances one and two. Eur. J. Oper. Res., 266(2):436–457, 2018.
doi:10.1016/j.ejor.2017.09.036.

18 Tobias Mömke and Ola Svensson. Approximating graphic TSP by matchings. CoRR,
abs/1104.3090, 2011. arXiv:1104.3090.

19 Marcin Mucha. 13/9-approximation for graphic TSP. In Christoph Dürr and Thomas Wilke,
editors, 29th International Symposium on Theoretical Aspects of Computer Science, STACS
2012, February 29th - March 3rd, 2012, Paris, France, volume 14 of LIPIcs, pages 30–41. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.STACS.2012.30.

20 Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and
complexity classes. J. Comput. Syst. Sci., 43(3):425–440, 1991. doi:10.1016/0022-0000(91)
90023-X.

21 Ami Paz and Gregory Schwartzman. A (2+ ε)-approximation for maximum weight matching
in the semi-streaming model. ACM Transactions on Algorithms (TALG), 15(2):1–15, 2018.
doi:10.1145/3274668.

22 Sartaj Sahni and Teofilo F. Gonzalez. P-complete approximation problems. J. ACM, 23(3):555–
565, 1976. doi:10.1145/321958.321975.

23 András Sebö and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-tsp,
3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Comb., 34(5):597–629,
2014. doi:10.1007/s00493-014-2960-3.

24 Xianghui Zhong. On the approximation ratio of the k-opt and lin-kernighan algorithm
for metric and graph TSP. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders,
editors, 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020,
Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 83:1–83:13. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.83.

25 Xianghui Zhong. On the approximation ratio of the 3-opt algorithm for the (1, 2)-tsp. CoRR,
abs/2103.00504, 2021. arXiv:2103.00504.

STACS 2025

https://doi.org/10.1016/j.ejor.2017.09.036
https://arxiv.org/abs/1104.3090
https://doi.org/10.4230/LIPIcs.STACS.2012.30
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1145/3274668
https://doi.org/10.1145/321958.321975
https://doi.org/10.1007/s00493-014-2960-3
https://doi.org/10.4230/LIPIcs.ESA.2020.83
https://arxiv.org/abs/2103.00504

	1 Introduction
	1.1 Notation

	2 Technical Overview and Our Contribution
	3 Improved Approximation Factor Semi-Streaming Algorithm for MPC
	3.1 Analysis of the Approximation Factor of alg1
	3.2 Implementation of alg1 in the Semi-Streaming Model

	4 (1,2)-TSP
	4.1 Implementation of alg4 in the Semi-Streaming Model

	5 Max-TSP
	5.1 Analysis of the Approximation Factor of alg3
	5.2 Implementation of alg3 in the semi-streaming model

	6 Future Work

